af_unix: take receive queue lock while appending new skb
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4 101#include <net/dst.h>
fc4099f1 102#include <net/dst_metadata.h>
1da177e4
LT
103#include <net/pkt_sched.h>
104#include <net/checksum.h>
44540960 105#include <net/xfrm.h>
1da177e4
LT
106#include <linux/highmem.h>
107#include <linux/init.h>
1da177e4 108#include <linux/module.h>
1da177e4
LT
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
1da177e4 112#include <net/iw_handler.h>
1da177e4 113#include <asm/current.h>
5bdb9886 114#include <linux/audit.h>
db217334 115#include <linux/dmaengine.h>
f6a78bfc 116#include <linux/err.h>
c7fa9d18 117#include <linux/ctype.h>
723e98b7 118#include <linux/if_arp.h>
6de329e2 119#include <linux/if_vlan.h>
8f0f2223 120#include <linux/ip.h>
ad55dcaf 121#include <net/ip.h>
25cd9ba0 122#include <net/mpls.h>
8f0f2223
DM
123#include <linux/ipv6.h>
124#include <linux/in.h>
b6b2fed1
DM
125#include <linux/jhash.h>
126#include <linux/random.h>
9cbc1cb8 127#include <trace/events/napi.h>
cf66ba58 128#include <trace/events/net.h>
07dc22e7 129#include <trace/events/skb.h>
5acbbd42 130#include <linux/pci.h>
caeda9b9 131#include <linux/inetdevice.h>
c445477d 132#include <linux/cpu_rmap.h>
c5905afb 133#include <linux/static_key.h>
af12fa6e 134#include <linux/hashtable.h>
60877a32 135#include <linux/vmalloc.h>
529d0489 136#include <linux/if_macvlan.h>
e7fd2885 137#include <linux/errqueue.h>
3b47d303 138#include <linux/hrtimer.h>
e687ad60 139#include <linux/netfilter_ingress.h>
1da177e4 140
342709ef
PE
141#include "net-sysfs.h"
142
d565b0a1
HX
143/* Instead of increasing this, you should create a hash table. */
144#define MAX_GRO_SKBS 8
145
5d38a079
HX
146/* This should be increased if a protocol with a bigger head is added. */
147#define GRO_MAX_HEAD (MAX_HEADER + 128)
148
1da177e4 149static DEFINE_SPINLOCK(ptype_lock);
62532da9 150static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
151struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152struct list_head ptype_all __read_mostly; /* Taps */
62532da9 153static struct list_head offload_base __read_mostly;
1da177e4 154
ae78dbfa 155static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
156static int call_netdevice_notifiers_info(unsigned long val,
157 struct net_device *dev,
158 struct netdev_notifier_info *info);
ae78dbfa 159
1da177e4 160/*
7562f876 161 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
162 * semaphore.
163 *
c6d14c84 164 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
165 *
166 * Writers must hold the rtnl semaphore while they loop through the
7562f876 167 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
168 * actual updates. This allows pure readers to access the list even
169 * while a writer is preparing to update it.
170 *
171 * To put it another way, dev_base_lock is held for writing only to
172 * protect against pure readers; the rtnl semaphore provides the
173 * protection against other writers.
174 *
175 * See, for example usages, register_netdevice() and
176 * unregister_netdevice(), which must be called with the rtnl
177 * semaphore held.
178 */
1da177e4 179DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
180EXPORT_SYMBOL(dev_base_lock);
181
af12fa6e
ET
182/* protects napi_hash addition/deletion and napi_gen_id */
183static DEFINE_SPINLOCK(napi_hash_lock);
184
185static unsigned int napi_gen_id;
186static DEFINE_HASHTABLE(napi_hash, 8);
187
18afa4b0 188static seqcount_t devnet_rename_seq;
c91f6df2 189
4e985ada
TG
190static inline void dev_base_seq_inc(struct net *net)
191{
192 while (++net->dev_base_seq == 0);
193}
194
881d966b 195static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 196{
95c96174
ED
197 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
08e9897d 199 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
200}
201
881d966b 202static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 203{
7c28bd0b 204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
205}
206
e36fa2f7 207static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
208{
209#ifdef CONFIG_RPS
e36fa2f7 210 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
211#endif
212}
213
e36fa2f7 214static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
215{
216#ifdef CONFIG_RPS
e36fa2f7 217 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
218#endif
219}
220
ce286d32 221/* Device list insertion */
53759be9 222static void list_netdevice(struct net_device *dev)
ce286d32 223{
c346dca1 224 struct net *net = dev_net(dev);
ce286d32
EB
225
226 ASSERT_RTNL();
227
228 write_lock_bh(&dev_base_lock);
c6d14c84 229 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 230 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
231 hlist_add_head_rcu(&dev->index_hlist,
232 dev_index_hash(net, dev->ifindex));
ce286d32 233 write_unlock_bh(&dev_base_lock);
4e985ada
TG
234
235 dev_base_seq_inc(net);
ce286d32
EB
236}
237
fb699dfd
ED
238/* Device list removal
239 * caller must respect a RCU grace period before freeing/reusing dev
240 */
ce286d32
EB
241static void unlist_netdevice(struct net_device *dev)
242{
243 ASSERT_RTNL();
244
245 /* Unlink dev from the device chain */
246 write_lock_bh(&dev_base_lock);
c6d14c84 247 list_del_rcu(&dev->dev_list);
72c9528b 248 hlist_del_rcu(&dev->name_hlist);
fb699dfd 249 hlist_del_rcu(&dev->index_hlist);
ce286d32 250 write_unlock_bh(&dev_base_lock);
4e985ada
TG
251
252 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
253}
254
1da177e4
LT
255/*
256 * Our notifier list
257 */
258
f07d5b94 259static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
260
261/*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
bea3348e 265
9958da05 266DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 267EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 268
cf508b12 269#ifdef CONFIG_LOCKDEP
723e98b7 270/*
c773e847 271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
272 * according to dev->type
273 */
274static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
287 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 290
36cbd3dc 291static const char *const netdev_lock_name[] =
723e98b7
JP
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
304 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
307
308static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 309static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
310
311static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312{
313 int i;
314
315 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316 if (netdev_lock_type[i] == dev_type)
317 return i;
318 /* the last key is used by default */
319 return ARRAY_SIZE(netdev_lock_type) - 1;
320}
321
cf508b12
DM
322static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323 unsigned short dev_type)
723e98b7
JP
324{
325 int i;
326
327 i = netdev_lock_pos(dev_type);
328 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329 netdev_lock_name[i]);
330}
cf508b12
DM
331
332static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333{
334 int i;
335
336 i = netdev_lock_pos(dev->type);
337 lockdep_set_class_and_name(&dev->addr_list_lock,
338 &netdev_addr_lock_key[i],
339 netdev_lock_name[i]);
340}
723e98b7 341#else
cf508b12
DM
342static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 unsigned short dev_type)
344{
345}
346static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
347{
348}
349#endif
1da177e4
LT
350
351/*******************************************************************************
352
353 Protocol management and registration routines
354
355*******************************************************************************/
356
1da177e4
LT
357/*
358 * Add a protocol ID to the list. Now that the input handler is
359 * smarter we can dispense with all the messy stuff that used to be
360 * here.
361 *
362 * BEWARE!!! Protocol handlers, mangling input packets,
363 * MUST BE last in hash buckets and checking protocol handlers
364 * MUST start from promiscuous ptype_all chain in net_bh.
365 * It is true now, do not change it.
366 * Explanation follows: if protocol handler, mangling packet, will
367 * be the first on list, it is not able to sense, that packet
368 * is cloned and should be copied-on-write, so that it will
369 * change it and subsequent readers will get broken packet.
370 * --ANK (980803)
371 */
372
c07b68e8
ED
373static inline struct list_head *ptype_head(const struct packet_type *pt)
374{
375 if (pt->type == htons(ETH_P_ALL))
7866a621 376 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 377 else
7866a621
SN
378 return pt->dev ? &pt->dev->ptype_specific :
379 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
380}
381
1da177e4
LT
382/**
383 * dev_add_pack - add packet handler
384 * @pt: packet type declaration
385 *
386 * Add a protocol handler to the networking stack. The passed &packet_type
387 * is linked into kernel lists and may not be freed until it has been
388 * removed from the kernel lists.
389 *
4ec93edb 390 * This call does not sleep therefore it can not
1da177e4
LT
391 * guarantee all CPU's that are in middle of receiving packets
392 * will see the new packet type (until the next received packet).
393 */
394
395void dev_add_pack(struct packet_type *pt)
396{
c07b68e8 397 struct list_head *head = ptype_head(pt);
1da177e4 398
c07b68e8
ED
399 spin_lock(&ptype_lock);
400 list_add_rcu(&pt->list, head);
401 spin_unlock(&ptype_lock);
1da177e4 402}
d1b19dff 403EXPORT_SYMBOL(dev_add_pack);
1da177e4 404
1da177e4
LT
405/**
406 * __dev_remove_pack - remove packet handler
407 * @pt: packet type declaration
408 *
409 * Remove a protocol handler that was previously added to the kernel
410 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
411 * from the kernel lists and can be freed or reused once this function
4ec93edb 412 * returns.
1da177e4
LT
413 *
414 * The packet type might still be in use by receivers
415 * and must not be freed until after all the CPU's have gone
416 * through a quiescent state.
417 */
418void __dev_remove_pack(struct packet_type *pt)
419{
c07b68e8 420 struct list_head *head = ptype_head(pt);
1da177e4
LT
421 struct packet_type *pt1;
422
c07b68e8 423 spin_lock(&ptype_lock);
1da177e4
LT
424
425 list_for_each_entry(pt1, head, list) {
426 if (pt == pt1) {
427 list_del_rcu(&pt->list);
428 goto out;
429 }
430 }
431
7b6cd1ce 432 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 433out:
c07b68e8 434 spin_unlock(&ptype_lock);
1da177e4 435}
d1b19dff
ED
436EXPORT_SYMBOL(__dev_remove_pack);
437
1da177e4
LT
438/**
439 * dev_remove_pack - remove packet handler
440 * @pt: packet type declaration
441 *
442 * Remove a protocol handler that was previously added to the kernel
443 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
444 * from the kernel lists and can be freed or reused once this function
445 * returns.
446 *
447 * This call sleeps to guarantee that no CPU is looking at the packet
448 * type after return.
449 */
450void dev_remove_pack(struct packet_type *pt)
451{
452 __dev_remove_pack(pt);
4ec93edb 453
1da177e4
LT
454 synchronize_net();
455}
d1b19dff 456EXPORT_SYMBOL(dev_remove_pack);
1da177e4 457
62532da9
VY
458
459/**
460 * dev_add_offload - register offload handlers
461 * @po: protocol offload declaration
462 *
463 * Add protocol offload handlers to the networking stack. The passed
464 * &proto_offload is linked into kernel lists and may not be freed until
465 * it has been removed from the kernel lists.
466 *
467 * This call does not sleep therefore it can not
468 * guarantee all CPU's that are in middle of receiving packets
469 * will see the new offload handlers (until the next received packet).
470 */
471void dev_add_offload(struct packet_offload *po)
472{
bdef7de4 473 struct packet_offload *elem;
62532da9
VY
474
475 spin_lock(&offload_lock);
bdef7de4
DM
476 list_for_each_entry(elem, &offload_base, list) {
477 if (po->priority < elem->priority)
478 break;
479 }
480 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
481 spin_unlock(&offload_lock);
482}
483EXPORT_SYMBOL(dev_add_offload);
484
485/**
486 * __dev_remove_offload - remove offload handler
487 * @po: packet offload declaration
488 *
489 * Remove a protocol offload handler that was previously added to the
490 * kernel offload handlers by dev_add_offload(). The passed &offload_type
491 * is removed from the kernel lists and can be freed or reused once this
492 * function returns.
493 *
494 * The packet type might still be in use by receivers
495 * and must not be freed until after all the CPU's have gone
496 * through a quiescent state.
497 */
1d143d9f 498static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
499{
500 struct list_head *head = &offload_base;
501 struct packet_offload *po1;
502
c53aa505 503 spin_lock(&offload_lock);
62532da9
VY
504
505 list_for_each_entry(po1, head, list) {
506 if (po == po1) {
507 list_del_rcu(&po->list);
508 goto out;
509 }
510 }
511
512 pr_warn("dev_remove_offload: %p not found\n", po);
513out:
c53aa505 514 spin_unlock(&offload_lock);
62532da9 515}
62532da9
VY
516
517/**
518 * dev_remove_offload - remove packet offload handler
519 * @po: packet offload declaration
520 *
521 * Remove a packet offload handler that was previously added to the kernel
522 * offload handlers by dev_add_offload(). The passed &offload_type is
523 * removed from the kernel lists and can be freed or reused once this
524 * function returns.
525 *
526 * This call sleeps to guarantee that no CPU is looking at the packet
527 * type after return.
528 */
529void dev_remove_offload(struct packet_offload *po)
530{
531 __dev_remove_offload(po);
532
533 synchronize_net();
534}
535EXPORT_SYMBOL(dev_remove_offload);
536
1da177e4
LT
537/******************************************************************************
538
539 Device Boot-time Settings Routines
540
541*******************************************************************************/
542
543/* Boot time configuration table */
544static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546/**
547 * netdev_boot_setup_add - add new setup entry
548 * @name: name of the device
549 * @map: configured settings for the device
550 *
551 * Adds new setup entry to the dev_boot_setup list. The function
552 * returns 0 on error and 1 on success. This is a generic routine to
553 * all netdevices.
554 */
555static int netdev_boot_setup_add(char *name, struct ifmap *map)
556{
557 struct netdev_boot_setup *s;
558 int i;
559
560 s = dev_boot_setup;
561 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 564 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
565 memcpy(&s[i].map, map, sizeof(s[i].map));
566 break;
567 }
568 }
569
570 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571}
572
573/**
574 * netdev_boot_setup_check - check boot time settings
575 * @dev: the netdevice
576 *
577 * Check boot time settings for the device.
578 * The found settings are set for the device to be used
579 * later in the device probing.
580 * Returns 0 if no settings found, 1 if they are.
581 */
582int netdev_boot_setup_check(struct net_device *dev)
583{
584 struct netdev_boot_setup *s = dev_boot_setup;
585 int i;
586
587 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 589 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
590 dev->irq = s[i].map.irq;
591 dev->base_addr = s[i].map.base_addr;
592 dev->mem_start = s[i].map.mem_start;
593 dev->mem_end = s[i].map.mem_end;
594 return 1;
595 }
596 }
597 return 0;
598}
d1b19dff 599EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
600
601
602/**
603 * netdev_boot_base - get address from boot time settings
604 * @prefix: prefix for network device
605 * @unit: id for network device
606 *
607 * Check boot time settings for the base address of device.
608 * The found settings are set for the device to be used
609 * later in the device probing.
610 * Returns 0 if no settings found.
611 */
612unsigned long netdev_boot_base(const char *prefix, int unit)
613{
614 const struct netdev_boot_setup *s = dev_boot_setup;
615 char name[IFNAMSIZ];
616 int i;
617
618 sprintf(name, "%s%d", prefix, unit);
619
620 /*
621 * If device already registered then return base of 1
622 * to indicate not to probe for this interface
623 */
881d966b 624 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
625 return 1;
626
627 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628 if (!strcmp(name, s[i].name))
629 return s[i].map.base_addr;
630 return 0;
631}
632
633/*
634 * Saves at boot time configured settings for any netdevice.
635 */
636int __init netdev_boot_setup(char *str)
637{
638 int ints[5];
639 struct ifmap map;
640
641 str = get_options(str, ARRAY_SIZE(ints), ints);
642 if (!str || !*str)
643 return 0;
644
645 /* Save settings */
646 memset(&map, 0, sizeof(map));
647 if (ints[0] > 0)
648 map.irq = ints[1];
649 if (ints[0] > 1)
650 map.base_addr = ints[2];
651 if (ints[0] > 2)
652 map.mem_start = ints[3];
653 if (ints[0] > 3)
654 map.mem_end = ints[4];
655
656 /* Add new entry to the list */
657 return netdev_boot_setup_add(str, &map);
658}
659
660__setup("netdev=", netdev_boot_setup);
661
662/*******************************************************************************
663
664 Device Interface Subroutines
665
666*******************************************************************************/
667
a54acb3a
ND
668/**
669 * dev_get_iflink - get 'iflink' value of a interface
670 * @dev: targeted interface
671 *
672 * Indicates the ifindex the interface is linked to.
673 * Physical interfaces have the same 'ifindex' and 'iflink' values.
674 */
675
676int dev_get_iflink(const struct net_device *dev)
677{
678 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679 return dev->netdev_ops->ndo_get_iflink(dev);
680
7a66bbc9 681 return dev->ifindex;
a54acb3a
ND
682}
683EXPORT_SYMBOL(dev_get_iflink);
684
fc4099f1
PS
685/**
686 * dev_fill_metadata_dst - Retrieve tunnel egress information.
687 * @dev: targeted interface
688 * @skb: The packet.
689 *
690 * For better visibility of tunnel traffic OVS needs to retrieve
691 * egress tunnel information for a packet. Following API allows
692 * user to get this info.
693 */
694int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695{
696 struct ip_tunnel_info *info;
697
698 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
699 return -EINVAL;
700
701 info = skb_tunnel_info_unclone(skb);
702 if (!info)
703 return -ENOMEM;
704 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705 return -EINVAL;
706
707 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708}
709EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
1da177e4
LT
711/**
712 * __dev_get_by_name - find a device by its name
c4ea43c5 713 * @net: the applicable net namespace
1da177e4
LT
714 * @name: name to find
715 *
716 * Find an interface by name. Must be called under RTNL semaphore
717 * or @dev_base_lock. If the name is found a pointer to the device
718 * is returned. If the name is not found then %NULL is returned. The
719 * reference counters are not incremented so the caller must be
720 * careful with locks.
721 */
722
881d966b 723struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 724{
0bd8d536
ED
725 struct net_device *dev;
726 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 727
b67bfe0d 728 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
729 if (!strncmp(dev->name, name, IFNAMSIZ))
730 return dev;
0bd8d536 731
1da177e4
LT
732 return NULL;
733}
d1b19dff 734EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 735
72c9528b
ED
736/**
737 * dev_get_by_name_rcu - find a device by its name
738 * @net: the applicable net namespace
739 * @name: name to find
740 *
741 * Find an interface by name.
742 * If the name is found a pointer to the device is returned.
743 * If the name is not found then %NULL is returned.
744 * The reference counters are not incremented so the caller must be
745 * careful with locks. The caller must hold RCU lock.
746 */
747
748struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749{
72c9528b
ED
750 struct net_device *dev;
751 struct hlist_head *head = dev_name_hash(net, name);
752
b67bfe0d 753 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
754 if (!strncmp(dev->name, name, IFNAMSIZ))
755 return dev;
756
757 return NULL;
758}
759EXPORT_SYMBOL(dev_get_by_name_rcu);
760
1da177e4
LT
761/**
762 * dev_get_by_name - find a device by its name
c4ea43c5 763 * @net: the applicable net namespace
1da177e4
LT
764 * @name: name to find
765 *
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
771 */
772
881d966b 773struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
774{
775 struct net_device *dev;
776
72c9528b
ED
777 rcu_read_lock();
778 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
779 if (dev)
780 dev_hold(dev);
72c9528b 781 rcu_read_unlock();
1da177e4
LT
782 return dev;
783}
d1b19dff 784EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
785
786/**
787 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 788 * @net: the applicable net namespace
1da177e4
LT
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns %NULL if the device
792 * is not found or a pointer to the device. The device has not
793 * had its reference counter increased so the caller must be careful
794 * about locking. The caller must hold either the RTNL semaphore
795 * or @dev_base_lock.
796 */
797
881d966b 798struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 799{
0bd8d536
ED
800 struct net_device *dev;
801 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 802
b67bfe0d 803 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
804 if (dev->ifindex == ifindex)
805 return dev;
0bd8d536 806
1da177e4
LT
807 return NULL;
808}
d1b19dff 809EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 810
fb699dfd
ED
811/**
812 * dev_get_by_index_rcu - find a device by its ifindex
813 * @net: the applicable net namespace
814 * @ifindex: index of device
815 *
816 * Search for an interface by index. Returns %NULL if the device
817 * is not found or a pointer to the device. The device has not
818 * had its reference counter increased so the caller must be careful
819 * about locking. The caller must hold RCU lock.
820 */
821
822struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823{
fb699dfd
ED
824 struct net_device *dev;
825 struct hlist_head *head = dev_index_hash(net, ifindex);
826
b67bfe0d 827 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
828 if (dev->ifindex == ifindex)
829 return dev;
830
831 return NULL;
832}
833EXPORT_SYMBOL(dev_get_by_index_rcu);
834
1da177e4
LT
835
836/**
837 * dev_get_by_index - find a device by its ifindex
c4ea43c5 838 * @net: the applicable net namespace
1da177e4
LT
839 * @ifindex: index of device
840 *
841 * Search for an interface by index. Returns NULL if the device
842 * is not found or a pointer to the device. The device returned has
843 * had a reference added and the pointer is safe until the user calls
844 * dev_put to indicate they have finished with it.
845 */
846
881d966b 847struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
848{
849 struct net_device *dev;
850
fb699dfd
ED
851 rcu_read_lock();
852 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
853 if (dev)
854 dev_hold(dev);
fb699dfd 855 rcu_read_unlock();
1da177e4
LT
856 return dev;
857}
d1b19dff 858EXPORT_SYMBOL(dev_get_by_index);
1da177e4 859
5dbe7c17
NS
860/**
861 * netdev_get_name - get a netdevice name, knowing its ifindex.
862 * @net: network namespace
863 * @name: a pointer to the buffer where the name will be stored.
864 * @ifindex: the ifindex of the interface to get the name from.
865 *
866 * The use of raw_seqcount_begin() and cond_resched() before
867 * retrying is required as we want to give the writers a chance
868 * to complete when CONFIG_PREEMPT is not set.
869 */
870int netdev_get_name(struct net *net, char *name, int ifindex)
871{
872 struct net_device *dev;
873 unsigned int seq;
874
875retry:
876 seq = raw_seqcount_begin(&devnet_rename_seq);
877 rcu_read_lock();
878 dev = dev_get_by_index_rcu(net, ifindex);
879 if (!dev) {
880 rcu_read_unlock();
881 return -ENODEV;
882 }
883
884 strcpy(name, dev->name);
885 rcu_read_unlock();
886 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887 cond_resched();
888 goto retry;
889 }
890
891 return 0;
892}
893
1da177e4 894/**
941666c2 895 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 896 * @net: the applicable net namespace
1da177e4
LT
897 * @type: media type of device
898 * @ha: hardware address
899 *
900 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
901 * is not found or a pointer to the device.
902 * The caller must hold RCU or RTNL.
941666c2 903 * The returned device has not had its ref count increased
1da177e4
LT
904 * and the caller must therefore be careful about locking
905 *
1da177e4
LT
906 */
907
941666c2
ED
908struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909 const char *ha)
1da177e4
LT
910{
911 struct net_device *dev;
912
941666c2 913 for_each_netdev_rcu(net, dev)
1da177e4
LT
914 if (dev->type == type &&
915 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
916 return dev;
917
918 return NULL;
1da177e4 919}
941666c2 920EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 921
881d966b 922struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
923{
924 struct net_device *dev;
925
4e9cac2b 926 ASSERT_RTNL();
881d966b 927 for_each_netdev(net, dev)
4e9cac2b 928 if (dev->type == type)
7562f876
PE
929 return dev;
930
931 return NULL;
4e9cac2b 932}
4e9cac2b
PM
933EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
881d966b 935struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 936{
99fe3c39 937 struct net_device *dev, *ret = NULL;
4e9cac2b 938
99fe3c39
ED
939 rcu_read_lock();
940 for_each_netdev_rcu(net, dev)
941 if (dev->type == type) {
942 dev_hold(dev);
943 ret = dev;
944 break;
945 }
946 rcu_read_unlock();
947 return ret;
1da177e4 948}
1da177e4
LT
949EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951/**
6c555490 952 * __dev_get_by_flags - find any device with given flags
c4ea43c5 953 * @net: the applicable net namespace
1da177e4
LT
954 * @if_flags: IFF_* values
955 * @mask: bitmask of bits in if_flags to check
956 *
957 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 958 * is not found or a pointer to the device. Must be called inside
6c555490 959 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
960 */
961
6c555490
WC
962struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 unsigned short mask)
1da177e4 964{
7562f876 965 struct net_device *dev, *ret;
1da177e4 966
6c555490
WC
967 ASSERT_RTNL();
968
7562f876 969 ret = NULL;
6c555490 970 for_each_netdev(net, dev) {
1da177e4 971 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 972 ret = dev;
1da177e4
LT
973 break;
974 }
975 }
7562f876 976 return ret;
1da177e4 977}
6c555490 978EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
979
980/**
981 * dev_valid_name - check if name is okay for network device
982 * @name: name string
983 *
984 * Network device names need to be valid file names to
c7fa9d18
DM
985 * to allow sysfs to work. We also disallow any kind of
986 * whitespace.
1da177e4 987 */
95f050bf 988bool dev_valid_name(const char *name)
1da177e4 989{
c7fa9d18 990 if (*name == '\0')
95f050bf 991 return false;
b6fe17d6 992 if (strlen(name) >= IFNAMSIZ)
95f050bf 993 return false;
c7fa9d18 994 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 995 return false;
c7fa9d18
DM
996
997 while (*name) {
a4176a93 998 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 999 return false;
c7fa9d18
DM
1000 name++;
1001 }
95f050bf 1002 return true;
1da177e4 1003}
d1b19dff 1004EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1005
1006/**
b267b179
EB
1007 * __dev_alloc_name - allocate a name for a device
1008 * @net: network namespace to allocate the device name in
1da177e4 1009 * @name: name format string
b267b179 1010 * @buf: scratch buffer and result name string
1da177e4
LT
1011 *
1012 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1013 * id. It scans list of devices to build up a free map, then chooses
1014 * the first empty slot. The caller must hold the dev_base or rtnl lock
1015 * while allocating the name and adding the device in order to avoid
1016 * duplicates.
1017 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1019 */
1020
b267b179 1021static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1022{
1023 int i = 0;
1da177e4
LT
1024 const char *p;
1025 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1026 unsigned long *inuse;
1da177e4
LT
1027 struct net_device *d;
1028
1029 p = strnchr(name, IFNAMSIZ-1, '%');
1030 if (p) {
1031 /*
1032 * Verify the string as this thing may have come from
1033 * the user. There must be either one "%d" and no other "%"
1034 * characters.
1035 */
1036 if (p[1] != 'd' || strchr(p + 2, '%'))
1037 return -EINVAL;
1038
1039 /* Use one page as a bit array of possible slots */
cfcabdcc 1040 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1041 if (!inuse)
1042 return -ENOMEM;
1043
881d966b 1044 for_each_netdev(net, d) {
1da177e4
LT
1045 if (!sscanf(d->name, name, &i))
1046 continue;
1047 if (i < 0 || i >= max_netdevices)
1048 continue;
1049
1050 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1051 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1052 if (!strncmp(buf, d->name, IFNAMSIZ))
1053 set_bit(i, inuse);
1054 }
1055
1056 i = find_first_zero_bit(inuse, max_netdevices);
1057 free_page((unsigned long) inuse);
1058 }
1059
d9031024
OP
1060 if (buf != name)
1061 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1062 if (!__dev_get_by_name(net, buf))
1da177e4 1063 return i;
1da177e4
LT
1064
1065 /* It is possible to run out of possible slots
1066 * when the name is long and there isn't enough space left
1067 * for the digits, or if all bits are used.
1068 */
1069 return -ENFILE;
1070}
1071
b267b179
EB
1072/**
1073 * dev_alloc_name - allocate a name for a device
1074 * @dev: device
1075 * @name: name format string
1076 *
1077 * Passed a format string - eg "lt%d" it will try and find a suitable
1078 * id. It scans list of devices to build up a free map, then chooses
1079 * the first empty slot. The caller must hold the dev_base or rtnl lock
1080 * while allocating the name and adding the device in order to avoid
1081 * duplicates.
1082 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083 * Returns the number of the unit assigned or a negative errno code.
1084 */
1085
1086int dev_alloc_name(struct net_device *dev, const char *name)
1087{
1088 char buf[IFNAMSIZ];
1089 struct net *net;
1090 int ret;
1091
c346dca1
YH
1092 BUG_ON(!dev_net(dev));
1093 net = dev_net(dev);
b267b179
EB
1094 ret = __dev_alloc_name(net, name, buf);
1095 if (ret >= 0)
1096 strlcpy(dev->name, buf, IFNAMSIZ);
1097 return ret;
1098}
d1b19dff 1099EXPORT_SYMBOL(dev_alloc_name);
b267b179 1100
828de4f6
G
1101static int dev_alloc_name_ns(struct net *net,
1102 struct net_device *dev,
1103 const char *name)
d9031024 1104{
828de4f6
G
1105 char buf[IFNAMSIZ];
1106 int ret;
8ce6cebc 1107
828de4f6
G
1108 ret = __dev_alloc_name(net, name, buf);
1109 if (ret >= 0)
1110 strlcpy(dev->name, buf, IFNAMSIZ);
1111 return ret;
1112}
1113
1114static int dev_get_valid_name(struct net *net,
1115 struct net_device *dev,
1116 const char *name)
1117{
1118 BUG_ON(!net);
8ce6cebc 1119
d9031024
OP
1120 if (!dev_valid_name(name))
1121 return -EINVAL;
1122
1c5cae81 1123 if (strchr(name, '%'))
828de4f6 1124 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1125 else if (__dev_get_by_name(net, name))
1126 return -EEXIST;
8ce6cebc
DL
1127 else if (dev->name != name)
1128 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1129
1130 return 0;
1131}
1da177e4
LT
1132
1133/**
1134 * dev_change_name - change name of a device
1135 * @dev: device
1136 * @newname: name (or format string) must be at least IFNAMSIZ
1137 *
1138 * Change name of a device, can pass format strings "eth%d".
1139 * for wildcarding.
1140 */
cf04a4c7 1141int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1142{
238fa362 1143 unsigned char old_assign_type;
fcc5a03a 1144 char oldname[IFNAMSIZ];
1da177e4 1145 int err = 0;
fcc5a03a 1146 int ret;
881d966b 1147 struct net *net;
1da177e4
LT
1148
1149 ASSERT_RTNL();
c346dca1 1150 BUG_ON(!dev_net(dev));
1da177e4 1151
c346dca1 1152 net = dev_net(dev);
1da177e4
LT
1153 if (dev->flags & IFF_UP)
1154 return -EBUSY;
1155
30e6c9fa 1156 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1157
1158 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1159 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1160 return 0;
c91f6df2 1161 }
c8d90dca 1162
fcc5a03a
HX
1163 memcpy(oldname, dev->name, IFNAMSIZ);
1164
828de4f6 1165 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1166 if (err < 0) {
30e6c9fa 1167 write_seqcount_end(&devnet_rename_seq);
d9031024 1168 return err;
c91f6df2 1169 }
1da177e4 1170
6fe82a39
VF
1171 if (oldname[0] && !strchr(oldname, '%'))
1172 netdev_info(dev, "renamed from %s\n", oldname);
1173
238fa362
TG
1174 old_assign_type = dev->name_assign_type;
1175 dev->name_assign_type = NET_NAME_RENAMED;
1176
fcc5a03a 1177rollback:
a1b3f594
EB
1178 ret = device_rename(&dev->dev, dev->name);
1179 if (ret) {
1180 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1181 dev->name_assign_type = old_assign_type;
30e6c9fa 1182 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1183 return ret;
dcc99773 1184 }
7f988eab 1185
30e6c9fa 1186 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1187
5bb025fa
VF
1188 netdev_adjacent_rename_links(dev, oldname);
1189
7f988eab 1190 write_lock_bh(&dev_base_lock);
372b2312 1191 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1192 write_unlock_bh(&dev_base_lock);
1193
1194 synchronize_rcu();
1195
1196 write_lock_bh(&dev_base_lock);
1197 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1198 write_unlock_bh(&dev_base_lock);
1199
056925ab 1200 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1201 ret = notifier_to_errno(ret);
1202
1203 if (ret) {
91e9c07b
ED
1204 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205 if (err >= 0) {
fcc5a03a 1206 err = ret;
30e6c9fa 1207 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1208 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1209 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1210 dev->name_assign_type = old_assign_type;
1211 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1212 goto rollback;
91e9c07b 1213 } else {
7b6cd1ce 1214 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1215 dev->name, ret);
fcc5a03a
HX
1216 }
1217 }
1da177e4
LT
1218
1219 return err;
1220}
1221
0b815a1a
SH
1222/**
1223 * dev_set_alias - change ifalias of a device
1224 * @dev: device
1225 * @alias: name up to IFALIASZ
f0db275a 1226 * @len: limit of bytes to copy from info
0b815a1a
SH
1227 *
1228 * Set ifalias for a device,
1229 */
1230int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231{
7364e445
AK
1232 char *new_ifalias;
1233
0b815a1a
SH
1234 ASSERT_RTNL();
1235
1236 if (len >= IFALIASZ)
1237 return -EINVAL;
1238
96ca4a2c 1239 if (!len) {
388dfc2d
SK
1240 kfree(dev->ifalias);
1241 dev->ifalias = NULL;
96ca4a2c
OH
1242 return 0;
1243 }
1244
7364e445
AK
1245 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246 if (!new_ifalias)
0b815a1a 1247 return -ENOMEM;
7364e445 1248 dev->ifalias = new_ifalias;
0b815a1a
SH
1249
1250 strlcpy(dev->ifalias, alias, len+1);
1251 return len;
1252}
1253
1254
d8a33ac4 1255/**
3041a069 1256 * netdev_features_change - device changes features
d8a33ac4
SH
1257 * @dev: device to cause notification
1258 *
1259 * Called to indicate a device has changed features.
1260 */
1261void netdev_features_change(struct net_device *dev)
1262{
056925ab 1263 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1264}
1265EXPORT_SYMBOL(netdev_features_change);
1266
1da177e4
LT
1267/**
1268 * netdev_state_change - device changes state
1269 * @dev: device to cause notification
1270 *
1271 * Called to indicate a device has changed state. This function calls
1272 * the notifier chains for netdev_chain and sends a NEWLINK message
1273 * to the routing socket.
1274 */
1275void netdev_state_change(struct net_device *dev)
1276{
1277 if (dev->flags & IFF_UP) {
54951194
LP
1278 struct netdev_notifier_change_info change_info;
1279
1280 change_info.flags_changed = 0;
1281 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282 &change_info.info);
7f294054 1283 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1284 }
1285}
d1b19dff 1286EXPORT_SYMBOL(netdev_state_change);
1da177e4 1287
ee89bab1
AW
1288/**
1289 * netdev_notify_peers - notify network peers about existence of @dev
1290 * @dev: network device
1291 *
1292 * Generate traffic such that interested network peers are aware of
1293 * @dev, such as by generating a gratuitous ARP. This may be used when
1294 * a device wants to inform the rest of the network about some sort of
1295 * reconfiguration such as a failover event or virtual machine
1296 * migration.
1297 */
1298void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1299{
ee89bab1
AW
1300 rtnl_lock();
1301 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302 rtnl_unlock();
c1da4ac7 1303}
ee89bab1 1304EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1305
bd380811 1306static int __dev_open(struct net_device *dev)
1da177e4 1307{
d314774c 1308 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1309 int ret;
1da177e4 1310
e46b66bc
BH
1311 ASSERT_RTNL();
1312
1da177e4
LT
1313 if (!netif_device_present(dev))
1314 return -ENODEV;
1315
ca99ca14
NH
1316 /* Block netpoll from trying to do any rx path servicing.
1317 * If we don't do this there is a chance ndo_poll_controller
1318 * or ndo_poll may be running while we open the device
1319 */
66b5552f 1320 netpoll_poll_disable(dev);
ca99ca14 1321
3b8bcfd5
JB
1322 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323 ret = notifier_to_errno(ret);
1324 if (ret)
1325 return ret;
1326
1da177e4 1327 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1328
d314774c
SH
1329 if (ops->ndo_validate_addr)
1330 ret = ops->ndo_validate_addr(dev);
bada339b 1331
d314774c
SH
1332 if (!ret && ops->ndo_open)
1333 ret = ops->ndo_open(dev);
1da177e4 1334
66b5552f 1335 netpoll_poll_enable(dev);
ca99ca14 1336
bada339b
JG
1337 if (ret)
1338 clear_bit(__LINK_STATE_START, &dev->state);
1339 else {
1da177e4 1340 dev->flags |= IFF_UP;
4417da66 1341 dev_set_rx_mode(dev);
1da177e4 1342 dev_activate(dev);
7bf23575 1343 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1344 }
bada339b 1345
1da177e4
LT
1346 return ret;
1347}
1348
1349/**
bd380811
PM
1350 * dev_open - prepare an interface for use.
1351 * @dev: device to open
1da177e4 1352 *
bd380811
PM
1353 * Takes a device from down to up state. The device's private open
1354 * function is invoked and then the multicast lists are loaded. Finally
1355 * the device is moved into the up state and a %NETDEV_UP message is
1356 * sent to the netdev notifier chain.
1357 *
1358 * Calling this function on an active interface is a nop. On a failure
1359 * a negative errno code is returned.
1da177e4 1360 */
bd380811
PM
1361int dev_open(struct net_device *dev)
1362{
1363 int ret;
1364
bd380811
PM
1365 if (dev->flags & IFF_UP)
1366 return 0;
1367
bd380811
PM
1368 ret = __dev_open(dev);
1369 if (ret < 0)
1370 return ret;
1371
7f294054 1372 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1373 call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375 return ret;
1376}
1377EXPORT_SYMBOL(dev_open);
1378
44345724 1379static int __dev_close_many(struct list_head *head)
1da177e4 1380{
44345724 1381 struct net_device *dev;
e46b66bc 1382
bd380811 1383 ASSERT_RTNL();
9d5010db
DM
1384 might_sleep();
1385
5cde2829 1386 list_for_each_entry(dev, head, close_list) {
3f4df206 1387 /* Temporarily disable netpoll until the interface is down */
66b5552f 1388 netpoll_poll_disable(dev);
3f4df206 1389
44345724 1390 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1391
44345724 1392 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1393
44345724
OP
1394 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395 * can be even on different cpu. So just clear netif_running().
1396 *
1397 * dev->stop() will invoke napi_disable() on all of it's
1398 * napi_struct instances on this device.
1399 */
4e857c58 1400 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1401 }
1da177e4 1402
44345724 1403 dev_deactivate_many(head);
d8b2a4d2 1404
5cde2829 1405 list_for_each_entry(dev, head, close_list) {
44345724 1406 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1407
44345724
OP
1408 /*
1409 * Call the device specific close. This cannot fail.
1410 * Only if device is UP
1411 *
1412 * We allow it to be called even after a DETACH hot-plug
1413 * event.
1414 */
1415 if (ops->ndo_stop)
1416 ops->ndo_stop(dev);
1417
44345724 1418 dev->flags &= ~IFF_UP;
66b5552f 1419 netpoll_poll_enable(dev);
44345724
OP
1420 }
1421
1422 return 0;
1423}
1424
1425static int __dev_close(struct net_device *dev)
1426{
f87e6f47 1427 int retval;
44345724
OP
1428 LIST_HEAD(single);
1429
5cde2829 1430 list_add(&dev->close_list, &single);
f87e6f47
LT
1431 retval = __dev_close_many(&single);
1432 list_del(&single);
ca99ca14 1433
f87e6f47 1434 return retval;
44345724
OP
1435}
1436
99c4a26a 1437int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1438{
1439 struct net_device *dev, *tmp;
1da177e4 1440
5cde2829
EB
1441 /* Remove the devices that don't need to be closed */
1442 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1443 if (!(dev->flags & IFF_UP))
5cde2829 1444 list_del_init(&dev->close_list);
44345724
OP
1445
1446 __dev_close_many(head);
1da177e4 1447
5cde2829 1448 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1450 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1451 if (unlink)
1452 list_del_init(&dev->close_list);
44345724 1453 }
bd380811
PM
1454
1455 return 0;
1456}
99c4a26a 1457EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1458
1459/**
1460 * dev_close - shutdown an interface.
1461 * @dev: device to shutdown
1462 *
1463 * This function moves an active device into down state. A
1464 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466 * chain.
1467 */
1468int dev_close(struct net_device *dev)
1469{
e14a5993
ED
1470 if (dev->flags & IFF_UP) {
1471 LIST_HEAD(single);
1da177e4 1472
5cde2829 1473 list_add(&dev->close_list, &single);
99c4a26a 1474 dev_close_many(&single, true);
e14a5993
ED
1475 list_del(&single);
1476 }
da6e378b 1477 return 0;
1da177e4 1478}
d1b19dff 1479EXPORT_SYMBOL(dev_close);
1da177e4
LT
1480
1481
0187bdfb
BH
1482/**
1483 * dev_disable_lro - disable Large Receive Offload on a device
1484 * @dev: device
1485 *
1486 * Disable Large Receive Offload (LRO) on a net device. Must be
1487 * called under RTNL. This is needed if received packets may be
1488 * forwarded to another interface.
1489 */
1490void dev_disable_lro(struct net_device *dev)
1491{
fbe168ba
MK
1492 struct net_device *lower_dev;
1493 struct list_head *iter;
529d0489 1494
bc5787c6
MM
1495 dev->wanted_features &= ~NETIF_F_LRO;
1496 netdev_update_features(dev);
27660515 1497
22d5969f
MM
1498 if (unlikely(dev->features & NETIF_F_LRO))
1499 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1500
1501 netdev_for_each_lower_dev(dev, lower_dev, iter)
1502 dev_disable_lro(lower_dev);
0187bdfb
BH
1503}
1504EXPORT_SYMBOL(dev_disable_lro);
1505
351638e7
JP
1506static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507 struct net_device *dev)
1508{
1509 struct netdev_notifier_info info;
1510
1511 netdev_notifier_info_init(&info, dev);
1512 return nb->notifier_call(nb, val, &info);
1513}
0187bdfb 1514
881d966b
EB
1515static int dev_boot_phase = 1;
1516
1da177e4
LT
1517/**
1518 * register_netdevice_notifier - register a network notifier block
1519 * @nb: notifier
1520 *
1521 * Register a notifier to be called when network device events occur.
1522 * The notifier passed is linked into the kernel structures and must
1523 * not be reused until it has been unregistered. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * When registered all registration and up events are replayed
4ec93edb 1527 * to the new notifier to allow device to have a race free
1da177e4
LT
1528 * view of the network device list.
1529 */
1530
1531int register_netdevice_notifier(struct notifier_block *nb)
1532{
1533 struct net_device *dev;
fcc5a03a 1534 struct net_device *last;
881d966b 1535 struct net *net;
1da177e4
LT
1536 int err;
1537
1538 rtnl_lock();
f07d5b94 1539 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1540 if (err)
1541 goto unlock;
881d966b
EB
1542 if (dev_boot_phase)
1543 goto unlock;
1544 for_each_net(net) {
1545 for_each_netdev(net, dev) {
351638e7 1546 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1547 err = notifier_to_errno(err);
1548 if (err)
1549 goto rollback;
1550
1551 if (!(dev->flags & IFF_UP))
1552 continue;
1da177e4 1553
351638e7 1554 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1555 }
1da177e4 1556 }
fcc5a03a
HX
1557
1558unlock:
1da177e4
LT
1559 rtnl_unlock();
1560 return err;
fcc5a03a
HX
1561
1562rollback:
1563 last = dev;
881d966b
EB
1564 for_each_net(net) {
1565 for_each_netdev(net, dev) {
1566 if (dev == last)
8f891489 1567 goto outroll;
fcc5a03a 1568
881d966b 1569 if (dev->flags & IFF_UP) {
351638e7
JP
1570 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571 dev);
1572 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1573 }
351638e7 1574 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1575 }
fcc5a03a 1576 }
c67625a1 1577
8f891489 1578outroll:
c67625a1 1579 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1580 goto unlock;
1da177e4 1581}
d1b19dff 1582EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1583
1584/**
1585 * unregister_netdevice_notifier - unregister a network notifier block
1586 * @nb: notifier
1587 *
1588 * Unregister a notifier previously registered by
1589 * register_netdevice_notifier(). The notifier is unlinked into the
1590 * kernel structures and may then be reused. A negative errno code
1591 * is returned on a failure.
7d3d43da
EB
1592 *
1593 * After unregistering unregister and down device events are synthesized
1594 * for all devices on the device list to the removed notifier to remove
1595 * the need for special case cleanup code.
1da177e4
LT
1596 */
1597
1598int unregister_netdevice_notifier(struct notifier_block *nb)
1599{
7d3d43da
EB
1600 struct net_device *dev;
1601 struct net *net;
9f514950
HX
1602 int err;
1603
1604 rtnl_lock();
f07d5b94 1605 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1606 if (err)
1607 goto unlock;
1608
1609 for_each_net(net) {
1610 for_each_netdev(net, dev) {
1611 if (dev->flags & IFF_UP) {
351638e7
JP
1612 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613 dev);
1614 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1615 }
351638e7 1616 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1617 }
1618 }
1619unlock:
9f514950
HX
1620 rtnl_unlock();
1621 return err;
1da177e4 1622}
d1b19dff 1623EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1624
351638e7
JP
1625/**
1626 * call_netdevice_notifiers_info - call all network notifier blocks
1627 * @val: value passed unmodified to notifier function
1628 * @dev: net_device pointer passed unmodified to notifier function
1629 * @info: notifier information data
1630 *
1631 * Call all network notifier blocks. Parameters and return value
1632 * are as for raw_notifier_call_chain().
1633 */
1634
1d143d9f 1635static int call_netdevice_notifiers_info(unsigned long val,
1636 struct net_device *dev,
1637 struct netdev_notifier_info *info)
351638e7
JP
1638{
1639 ASSERT_RTNL();
1640 netdev_notifier_info_init(info, dev);
1641 return raw_notifier_call_chain(&netdev_chain, val, info);
1642}
351638e7 1643
1da177e4
LT
1644/**
1645 * call_netdevice_notifiers - call all network notifier blocks
1646 * @val: value passed unmodified to notifier function
c4ea43c5 1647 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1648 *
1649 * Call all network notifier blocks. Parameters and return value
f07d5b94 1650 * are as for raw_notifier_call_chain().
1da177e4
LT
1651 */
1652
ad7379d4 1653int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1654{
351638e7
JP
1655 struct netdev_notifier_info info;
1656
1657 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1658}
edf947f1 1659EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1660
1cf51900 1661#ifdef CONFIG_NET_INGRESS
4577139b
DB
1662static struct static_key ingress_needed __read_mostly;
1663
1664void net_inc_ingress_queue(void)
1665{
1666 static_key_slow_inc(&ingress_needed);
1667}
1668EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670void net_dec_ingress_queue(void)
1671{
1672 static_key_slow_dec(&ingress_needed);
1673}
1674EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675#endif
1676
c5905afb 1677static struct static_key netstamp_needed __read_mostly;
b90e5794 1678#ifdef HAVE_JUMP_LABEL
c5905afb 1679/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1680 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1681 * static_key_slow_dec() calls.
b90e5794
ED
1682 */
1683static atomic_t netstamp_needed_deferred;
1684#endif
1da177e4
LT
1685
1686void net_enable_timestamp(void)
1687{
b90e5794
ED
1688#ifdef HAVE_JUMP_LABEL
1689 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691 if (deferred) {
1692 while (--deferred)
c5905afb 1693 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1694 return;
1695 }
1696#endif
c5905afb 1697 static_key_slow_inc(&netstamp_needed);
1da177e4 1698}
d1b19dff 1699EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1700
1701void net_disable_timestamp(void)
1702{
b90e5794
ED
1703#ifdef HAVE_JUMP_LABEL
1704 if (in_interrupt()) {
1705 atomic_inc(&netstamp_needed_deferred);
1706 return;
1707 }
1708#endif
c5905afb 1709 static_key_slow_dec(&netstamp_needed);
1da177e4 1710}
d1b19dff 1711EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1712
3b098e2d 1713static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1714{
588f0330 1715 skb->tstamp.tv64 = 0;
c5905afb 1716 if (static_key_false(&netstamp_needed))
a61bbcf2 1717 __net_timestamp(skb);
1da177e4
LT
1718}
1719
588f0330 1720#define net_timestamp_check(COND, SKB) \
c5905afb 1721 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1722 if ((COND) && !(SKB)->tstamp.tv64) \
1723 __net_timestamp(SKB); \
1724 } \
3b098e2d 1725
1ee481fb 1726bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1727{
1728 unsigned int len;
1729
1730 if (!(dev->flags & IFF_UP))
1731 return false;
1732
1733 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734 if (skb->len <= len)
1735 return true;
1736
1737 /* if TSO is enabled, we don't care about the length as the packet
1738 * could be forwarded without being segmented before
1739 */
1740 if (skb_is_gso(skb))
1741 return true;
1742
1743 return false;
1744}
1ee481fb 1745EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1746
a0265d28
HX
1747int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748{
bbbf2df0
WB
1749 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1751 atomic_long_inc(&dev->rx_dropped);
1752 kfree_skb(skb);
1753 return NET_RX_DROP;
1754 }
1755
1756 skb_scrub_packet(skb, true);
08b4b8ea 1757 skb->priority = 0;
a0265d28 1758 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1759 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1760
1761 return 0;
1762}
1763EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
44540960
AB
1765/**
1766 * dev_forward_skb - loopback an skb to another netif
1767 *
1768 * @dev: destination network device
1769 * @skb: buffer to forward
1770 *
1771 * return values:
1772 * NET_RX_SUCCESS (no congestion)
6ec82562 1773 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1774 *
1775 * dev_forward_skb can be used for injecting an skb from the
1776 * start_xmit function of one device into the receive queue
1777 * of another device.
1778 *
1779 * The receiving device may be in another namespace, so
1780 * we have to clear all information in the skb that could
1781 * impact namespace isolation.
1782 */
1783int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784{
a0265d28 1785 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1786}
1787EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
71d9dec2
CG
1789static inline int deliver_skb(struct sk_buff *skb,
1790 struct packet_type *pt_prev,
1791 struct net_device *orig_dev)
1792{
1080e512
MT
1793 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794 return -ENOMEM;
71d9dec2
CG
1795 atomic_inc(&skb->users);
1796 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797}
1798
7866a621
SN
1799static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800 struct packet_type **pt,
fbcb2170
JP
1801 struct net_device *orig_dev,
1802 __be16 type,
7866a621
SN
1803 struct list_head *ptype_list)
1804{
1805 struct packet_type *ptype, *pt_prev = *pt;
1806
1807 list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 if (ptype->type != type)
1809 continue;
1810 if (pt_prev)
fbcb2170 1811 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1812 pt_prev = ptype;
1813 }
1814 *pt = pt_prev;
1815}
1816
c0de08d0
EL
1817static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818{
a3d744e9 1819 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1820 return false;
1821
1822 if (ptype->id_match)
1823 return ptype->id_match(ptype, skb->sk);
1824 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825 return true;
1826
1827 return false;
1828}
1829
1da177e4
LT
1830/*
1831 * Support routine. Sends outgoing frames to any network
1832 * taps currently in use.
1833 */
1834
f6a78bfc 1835static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1836{
1837 struct packet_type *ptype;
71d9dec2
CG
1838 struct sk_buff *skb2 = NULL;
1839 struct packet_type *pt_prev = NULL;
7866a621 1840 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1841
1da177e4 1842 rcu_read_lock();
7866a621
SN
1843again:
1844 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1845 /* Never send packets back to the socket
1846 * they originated from - MvS (miquels@drinkel.ow.org)
1847 */
7866a621
SN
1848 if (skb_loop_sk(ptype, skb))
1849 continue;
71d9dec2 1850
7866a621
SN
1851 if (pt_prev) {
1852 deliver_skb(skb2, pt_prev, skb->dev);
1853 pt_prev = ptype;
1854 continue;
1855 }
1da177e4 1856
7866a621
SN
1857 /* need to clone skb, done only once */
1858 skb2 = skb_clone(skb, GFP_ATOMIC);
1859 if (!skb2)
1860 goto out_unlock;
70978182 1861
7866a621 1862 net_timestamp_set(skb2);
1da177e4 1863
7866a621
SN
1864 /* skb->nh should be correctly
1865 * set by sender, so that the second statement is
1866 * just protection against buggy protocols.
1867 */
1868 skb_reset_mac_header(skb2);
1869
1870 if (skb_network_header(skb2) < skb2->data ||
1871 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873 ntohs(skb2->protocol),
1874 dev->name);
1875 skb_reset_network_header(skb2);
1da177e4 1876 }
7866a621
SN
1877
1878 skb2->transport_header = skb2->network_header;
1879 skb2->pkt_type = PACKET_OUTGOING;
1880 pt_prev = ptype;
1881 }
1882
1883 if (ptype_list == &ptype_all) {
1884 ptype_list = &dev->ptype_all;
1885 goto again;
1da177e4 1886 }
7866a621 1887out_unlock:
71d9dec2
CG
1888 if (pt_prev)
1889 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1890 rcu_read_unlock();
1891}
1892
2c53040f
BH
1893/**
1894 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1895 * @dev: Network device
1896 * @txq: number of queues available
1897 *
1898 * If real_num_tx_queues is changed the tc mappings may no longer be
1899 * valid. To resolve this verify the tc mapping remains valid and if
1900 * not NULL the mapping. With no priorities mapping to this
1901 * offset/count pair it will no longer be used. In the worst case TC0
1902 * is invalid nothing can be done so disable priority mappings. If is
1903 * expected that drivers will fix this mapping if they can before
1904 * calling netif_set_real_num_tx_queues.
1905 */
bb134d22 1906static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1907{
1908 int i;
1909 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911 /* If TC0 is invalidated disable TC mapping */
1912 if (tc->offset + tc->count > txq) {
7b6cd1ce 1913 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1914 dev->num_tc = 0;
1915 return;
1916 }
1917
1918 /* Invalidated prio to tc mappings set to TC0 */
1919 for (i = 1; i < TC_BITMASK + 1; i++) {
1920 int q = netdev_get_prio_tc_map(dev, i);
1921
1922 tc = &dev->tc_to_txq[q];
1923 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1924 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925 i, q);
4f57c087
JF
1926 netdev_set_prio_tc_map(dev, i, 0);
1927 }
1928 }
1929}
1930
537c00de
AD
1931#ifdef CONFIG_XPS
1932static DEFINE_MUTEX(xps_map_mutex);
1933#define xmap_dereference(P) \
1934 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
10cdc3f3
AD
1936static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937 int cpu, u16 index)
537c00de 1938{
10cdc3f3
AD
1939 struct xps_map *map = NULL;
1940 int pos;
537c00de 1941
10cdc3f3
AD
1942 if (dev_maps)
1943 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1944
10cdc3f3
AD
1945 for (pos = 0; map && pos < map->len; pos++) {
1946 if (map->queues[pos] == index) {
537c00de
AD
1947 if (map->len > 1) {
1948 map->queues[pos] = map->queues[--map->len];
1949 } else {
10cdc3f3 1950 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1951 kfree_rcu(map, rcu);
1952 map = NULL;
1953 }
10cdc3f3 1954 break;
537c00de 1955 }
537c00de
AD
1956 }
1957
10cdc3f3
AD
1958 return map;
1959}
1960
024e9679 1961static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1962{
1963 struct xps_dev_maps *dev_maps;
024e9679 1964 int cpu, i;
10cdc3f3
AD
1965 bool active = false;
1966
1967 mutex_lock(&xps_map_mutex);
1968 dev_maps = xmap_dereference(dev->xps_maps);
1969
1970 if (!dev_maps)
1971 goto out_no_maps;
1972
1973 for_each_possible_cpu(cpu) {
024e9679
AD
1974 for (i = index; i < dev->num_tx_queues; i++) {
1975 if (!remove_xps_queue(dev_maps, cpu, i))
1976 break;
1977 }
1978 if (i == dev->num_tx_queues)
10cdc3f3
AD
1979 active = true;
1980 }
1981
1982 if (!active) {
537c00de
AD
1983 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984 kfree_rcu(dev_maps, rcu);
1985 }
1986
024e9679
AD
1987 for (i = index; i < dev->num_tx_queues; i++)
1988 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989 NUMA_NO_NODE);
1990
537c00de
AD
1991out_no_maps:
1992 mutex_unlock(&xps_map_mutex);
1993}
1994
01c5f864
AD
1995static struct xps_map *expand_xps_map(struct xps_map *map,
1996 int cpu, u16 index)
1997{
1998 struct xps_map *new_map;
1999 int alloc_len = XPS_MIN_MAP_ALLOC;
2000 int i, pos;
2001
2002 for (pos = 0; map && pos < map->len; pos++) {
2003 if (map->queues[pos] != index)
2004 continue;
2005 return map;
2006 }
2007
2008 /* Need to add queue to this CPU's existing map */
2009 if (map) {
2010 if (pos < map->alloc_len)
2011 return map;
2012
2013 alloc_len = map->alloc_len * 2;
2014 }
2015
2016 /* Need to allocate new map to store queue on this CPU's map */
2017 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018 cpu_to_node(cpu));
2019 if (!new_map)
2020 return NULL;
2021
2022 for (i = 0; i < pos; i++)
2023 new_map->queues[i] = map->queues[i];
2024 new_map->alloc_len = alloc_len;
2025 new_map->len = pos;
2026
2027 return new_map;
2028}
2029
3573540c
MT
2030int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031 u16 index)
537c00de 2032{
01c5f864 2033 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2034 struct xps_map *map, *new_map;
537c00de 2035 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2036 int cpu, numa_node_id = -2;
2037 bool active = false;
537c00de
AD
2038
2039 mutex_lock(&xps_map_mutex);
2040
2041 dev_maps = xmap_dereference(dev->xps_maps);
2042
01c5f864
AD
2043 /* allocate memory for queue storage */
2044 for_each_online_cpu(cpu) {
2045 if (!cpumask_test_cpu(cpu, mask))
2046 continue;
2047
2048 if (!new_dev_maps)
2049 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2050 if (!new_dev_maps) {
2051 mutex_unlock(&xps_map_mutex);
01c5f864 2052 return -ENOMEM;
2bb60cb9 2053 }
01c5f864
AD
2054
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057
2058 map = expand_xps_map(map, cpu, index);
2059 if (!map)
2060 goto error;
2061
2062 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063 }
2064
2065 if (!new_dev_maps)
2066 goto out_no_new_maps;
2067
537c00de 2068 for_each_possible_cpu(cpu) {
01c5f864
AD
2069 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070 /* add queue to CPU maps */
2071 int pos = 0;
2072
2073 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074 while ((pos < map->len) && (map->queues[pos] != index))
2075 pos++;
2076
2077 if (pos == map->len)
2078 map->queues[map->len++] = index;
537c00de 2079#ifdef CONFIG_NUMA
537c00de
AD
2080 if (numa_node_id == -2)
2081 numa_node_id = cpu_to_node(cpu);
2082 else if (numa_node_id != cpu_to_node(cpu))
2083 numa_node_id = -1;
537c00de 2084#endif
01c5f864
AD
2085 } else if (dev_maps) {
2086 /* fill in the new device map from the old device map */
2087 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2089 }
01c5f864 2090
537c00de
AD
2091 }
2092
01c5f864
AD
2093 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
537c00de 2095 /* Cleanup old maps */
01c5f864
AD
2096 if (dev_maps) {
2097 for_each_possible_cpu(cpu) {
2098 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100 if (map && map != new_map)
2101 kfree_rcu(map, rcu);
2102 }
537c00de 2103
01c5f864 2104 kfree_rcu(dev_maps, rcu);
537c00de
AD
2105 }
2106
01c5f864
AD
2107 dev_maps = new_dev_maps;
2108 active = true;
537c00de 2109
01c5f864
AD
2110out_no_new_maps:
2111 /* update Tx queue numa node */
537c00de
AD
2112 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113 (numa_node_id >= 0) ? numa_node_id :
2114 NUMA_NO_NODE);
2115
01c5f864
AD
2116 if (!dev_maps)
2117 goto out_no_maps;
2118
2119 /* removes queue from unused CPUs */
2120 for_each_possible_cpu(cpu) {
2121 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122 continue;
2123
2124 if (remove_xps_queue(dev_maps, cpu, index))
2125 active = true;
2126 }
2127
2128 /* free map if not active */
2129 if (!active) {
2130 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131 kfree_rcu(dev_maps, rcu);
2132 }
2133
2134out_no_maps:
537c00de
AD
2135 mutex_unlock(&xps_map_mutex);
2136
2137 return 0;
2138error:
01c5f864
AD
2139 /* remove any maps that we added */
2140 for_each_possible_cpu(cpu) {
2141 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143 NULL;
2144 if (new_map && new_map != map)
2145 kfree(new_map);
2146 }
2147
537c00de
AD
2148 mutex_unlock(&xps_map_mutex);
2149
537c00de
AD
2150 kfree(new_dev_maps);
2151 return -ENOMEM;
2152}
2153EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155#endif
f0796d5c
JF
2156/*
2157 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159 */
e6484930 2160int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2161{
1d24eb48
TH
2162 int rc;
2163
e6484930
TH
2164 if (txq < 1 || txq > dev->num_tx_queues)
2165 return -EINVAL;
f0796d5c 2166
5c56580b
BH
2167 if (dev->reg_state == NETREG_REGISTERED ||
2168 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2169 ASSERT_RTNL();
2170
1d24eb48
TH
2171 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172 txq);
bf264145
TH
2173 if (rc)
2174 return rc;
2175
4f57c087
JF
2176 if (dev->num_tc)
2177 netif_setup_tc(dev, txq);
2178
024e9679 2179 if (txq < dev->real_num_tx_queues) {
e6484930 2180 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2181#ifdef CONFIG_XPS
2182 netif_reset_xps_queues_gt(dev, txq);
2183#endif
2184 }
f0796d5c 2185 }
e6484930
TH
2186
2187 dev->real_num_tx_queues = txq;
2188 return 0;
f0796d5c
JF
2189}
2190EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2191
a953be53 2192#ifdef CONFIG_SYSFS
62fe0b40
BH
2193/**
2194 * netif_set_real_num_rx_queues - set actual number of RX queues used
2195 * @dev: Network device
2196 * @rxq: Actual number of RX queues
2197 *
2198 * This must be called either with the rtnl_lock held or before
2199 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2200 * negative error code. If called before registration, it always
2201 * succeeds.
62fe0b40
BH
2202 */
2203int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204{
2205 int rc;
2206
bd25fa7b
TH
2207 if (rxq < 1 || rxq > dev->num_rx_queues)
2208 return -EINVAL;
2209
62fe0b40
BH
2210 if (dev->reg_state == NETREG_REGISTERED) {
2211 ASSERT_RTNL();
2212
62fe0b40
BH
2213 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214 rxq);
2215 if (rc)
2216 return rc;
62fe0b40
BH
2217 }
2218
2219 dev->real_num_rx_queues = rxq;
2220 return 0;
2221}
2222EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223#endif
2224
2c53040f
BH
2225/**
2226 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2227 *
2228 * This routine should set an upper limit on the number of RSS queues
2229 * used by default by multiqueue devices.
2230 */
a55b138b 2231int netif_get_num_default_rss_queues(void)
16917b87
YM
2232{
2233 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234}
2235EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
def82a1d 2237static inline void __netif_reschedule(struct Qdisc *q)
56079431 2238{
def82a1d
JP
2239 struct softnet_data *sd;
2240 unsigned long flags;
56079431 2241
def82a1d 2242 local_irq_save(flags);
903ceff7 2243 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2244 q->next_sched = NULL;
2245 *sd->output_queue_tailp = q;
2246 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2247 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248 local_irq_restore(flags);
2249}
2250
2251void __netif_schedule(struct Qdisc *q)
2252{
2253 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254 __netif_reschedule(q);
56079431
DV
2255}
2256EXPORT_SYMBOL(__netif_schedule);
2257
e6247027
ED
2258struct dev_kfree_skb_cb {
2259 enum skb_free_reason reason;
2260};
2261
2262static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2263{
e6247027
ED
2264 return (struct dev_kfree_skb_cb *)skb->cb;
2265}
2266
46e5da40
JF
2267void netif_schedule_queue(struct netdev_queue *txq)
2268{
2269 rcu_read_lock();
2270 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273 __netif_schedule(q);
2274 }
2275 rcu_read_unlock();
2276}
2277EXPORT_SYMBOL(netif_schedule_queue);
2278
2279/**
2280 * netif_wake_subqueue - allow sending packets on subqueue
2281 * @dev: network device
2282 * @queue_index: sub queue index
2283 *
2284 * Resume individual transmit queue of a device with multiple transmit queues.
2285 */
2286void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287{
2288 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291 struct Qdisc *q;
2292
2293 rcu_read_lock();
2294 q = rcu_dereference(txq->qdisc);
2295 __netif_schedule(q);
2296 rcu_read_unlock();
2297 }
2298}
2299EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302{
2303 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304 struct Qdisc *q;
2305
2306 rcu_read_lock();
2307 q = rcu_dereference(dev_queue->qdisc);
2308 __netif_schedule(q);
2309 rcu_read_unlock();
2310 }
2311}
2312EXPORT_SYMBOL(netif_tx_wake_queue);
2313
e6247027 2314void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2315{
e6247027 2316 unsigned long flags;
56079431 2317
e6247027
ED
2318 if (likely(atomic_read(&skb->users) == 1)) {
2319 smp_rmb();
2320 atomic_set(&skb->users, 0);
2321 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322 return;
bea3348e 2323 }
e6247027
ED
2324 get_kfree_skb_cb(skb)->reason = reason;
2325 local_irq_save(flags);
2326 skb->next = __this_cpu_read(softnet_data.completion_queue);
2327 __this_cpu_write(softnet_data.completion_queue, skb);
2328 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329 local_irq_restore(flags);
56079431 2330}
e6247027 2331EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2332
e6247027 2333void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2334{
2335 if (in_irq() || irqs_disabled())
e6247027 2336 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2337 else
2338 dev_kfree_skb(skb);
2339}
e6247027 2340EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2341
2342
bea3348e
SH
2343/**
2344 * netif_device_detach - mark device as removed
2345 * @dev: network device
2346 *
2347 * Mark device as removed from system and therefore no longer available.
2348 */
56079431
DV
2349void netif_device_detach(struct net_device *dev)
2350{
2351 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352 netif_running(dev)) {
d543103a 2353 netif_tx_stop_all_queues(dev);
56079431
DV
2354 }
2355}
2356EXPORT_SYMBOL(netif_device_detach);
2357
bea3348e
SH
2358/**
2359 * netif_device_attach - mark device as attached
2360 * @dev: network device
2361 *
2362 * Mark device as attached from system and restart if needed.
2363 */
56079431
DV
2364void netif_device_attach(struct net_device *dev)
2365{
2366 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367 netif_running(dev)) {
d543103a 2368 netif_tx_wake_all_queues(dev);
4ec93edb 2369 __netdev_watchdog_up(dev);
56079431
DV
2370 }
2371}
2372EXPORT_SYMBOL(netif_device_attach);
2373
5605c762
JP
2374/*
2375 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376 * to be used as a distribution range.
2377 */
2378u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379 unsigned int num_tx_queues)
2380{
2381 u32 hash;
2382 u16 qoffset = 0;
2383 u16 qcount = num_tx_queues;
2384
2385 if (skb_rx_queue_recorded(skb)) {
2386 hash = skb_get_rx_queue(skb);
2387 while (unlikely(hash >= num_tx_queues))
2388 hash -= num_tx_queues;
2389 return hash;
2390 }
2391
2392 if (dev->num_tc) {
2393 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394 qoffset = dev->tc_to_txq[tc].offset;
2395 qcount = dev->tc_to_txq[tc].count;
2396 }
2397
2398 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399}
2400EXPORT_SYMBOL(__skb_tx_hash);
2401
36c92474
BH
2402static void skb_warn_bad_offload(const struct sk_buff *skb)
2403{
65e9d2fa 2404 static const netdev_features_t null_features = 0;
36c92474 2405 struct net_device *dev = skb->dev;
88ad4175 2406 const char *name = "";
36c92474 2407
c846ad9b
BG
2408 if (!net_ratelimit())
2409 return;
2410
88ad4175
BM
2411 if (dev) {
2412 if (dev->dev.parent)
2413 name = dev_driver_string(dev->dev.parent);
2414 else
2415 name = netdev_name(dev);
2416 }
36c92474
BH
2417 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2418 "gso_type=%d ip_summed=%d\n",
88ad4175 2419 name, dev ? &dev->features : &null_features,
65e9d2fa 2420 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2421 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2422 skb_shinfo(skb)->gso_type, skb->ip_summed);
2423}
2424
1da177e4
LT
2425/*
2426 * Invalidate hardware checksum when packet is to be mangled, and
2427 * complete checksum manually on outgoing path.
2428 */
84fa7933 2429int skb_checksum_help(struct sk_buff *skb)
1da177e4 2430{
d3bc23e7 2431 __wsum csum;
663ead3b 2432 int ret = 0, offset;
1da177e4 2433
84fa7933 2434 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2435 goto out_set_summed;
2436
2437 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2438 skb_warn_bad_offload(skb);
2439 return -EINVAL;
1da177e4
LT
2440 }
2441
cef401de
ED
2442 /* Before computing a checksum, we should make sure no frag could
2443 * be modified by an external entity : checksum could be wrong.
2444 */
2445 if (skb_has_shared_frag(skb)) {
2446 ret = __skb_linearize(skb);
2447 if (ret)
2448 goto out;
2449 }
2450
55508d60 2451 offset = skb_checksum_start_offset(skb);
a030847e
HX
2452 BUG_ON(offset >= skb_headlen(skb));
2453 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2454
2455 offset += skb->csum_offset;
2456 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2457
2458 if (skb_cloned(skb) &&
2459 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2460 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2461 if (ret)
2462 goto out;
2463 }
2464
a030847e 2465 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2466out_set_summed:
1da177e4 2467 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2468out:
1da177e4
LT
2469 return ret;
2470}
d1b19dff 2471EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2472
53d6471c 2473__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2474{
252e3346 2475 __be16 type = skb->protocol;
f6a78bfc 2476
19acc327
PS
2477 /* Tunnel gso handlers can set protocol to ethernet. */
2478 if (type == htons(ETH_P_TEB)) {
2479 struct ethhdr *eth;
2480
2481 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2482 return 0;
2483
2484 eth = (struct ethhdr *)skb_mac_header(skb);
2485 type = eth->h_proto;
2486 }
2487
d4bcef3f 2488 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2489}
2490
2491/**
2492 * skb_mac_gso_segment - mac layer segmentation handler.
2493 * @skb: buffer to segment
2494 * @features: features for the output path (see dev->features)
2495 */
2496struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2497 netdev_features_t features)
2498{
2499 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2500 struct packet_offload *ptype;
53d6471c
VY
2501 int vlan_depth = skb->mac_len;
2502 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2503
2504 if (unlikely(!type))
2505 return ERR_PTR(-EINVAL);
2506
53d6471c 2507 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2508
2509 rcu_read_lock();
22061d80 2510 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2511 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2512 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2513 break;
2514 }
2515 }
2516 rcu_read_unlock();
2517
98e399f8 2518 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2519
f6a78bfc
HX
2520 return segs;
2521}
05e8ef4a
PS
2522EXPORT_SYMBOL(skb_mac_gso_segment);
2523
2524
2525/* openvswitch calls this on rx path, so we need a different check.
2526 */
2527static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2528{
2529 if (tx_path)
2530 return skb->ip_summed != CHECKSUM_PARTIAL;
2531 else
2532 return skb->ip_summed == CHECKSUM_NONE;
2533}
2534
2535/**
2536 * __skb_gso_segment - Perform segmentation on skb.
2537 * @skb: buffer to segment
2538 * @features: features for the output path (see dev->features)
2539 * @tx_path: whether it is called in TX path
2540 *
2541 * This function segments the given skb and returns a list of segments.
2542 *
2543 * It may return NULL if the skb requires no segmentation. This is
2544 * only possible when GSO is used for verifying header integrity.
2545 */
2546struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2547 netdev_features_t features, bool tx_path)
2548{
2549 if (unlikely(skb_needs_check(skb, tx_path))) {
2550 int err;
2551
2552 skb_warn_bad_offload(skb);
2553
a40e0a66 2554 err = skb_cow_head(skb, 0);
2555 if (err < 0)
05e8ef4a
PS
2556 return ERR_PTR(err);
2557 }
2558
68c33163 2559 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2560 SKB_GSO_CB(skb)->encap_level = 0;
2561
05e8ef4a
PS
2562 skb_reset_mac_header(skb);
2563 skb_reset_mac_len(skb);
2564
2565 return skb_mac_gso_segment(skb, features);
2566}
12b0004d 2567EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2568
fb286bb2
HX
2569/* Take action when hardware reception checksum errors are detected. */
2570#ifdef CONFIG_BUG
2571void netdev_rx_csum_fault(struct net_device *dev)
2572{
2573 if (net_ratelimit()) {
7b6cd1ce 2574 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2575 dump_stack();
2576 }
2577}
2578EXPORT_SYMBOL(netdev_rx_csum_fault);
2579#endif
2580
1da177e4
LT
2581/* Actually, we should eliminate this check as soon as we know, that:
2582 * 1. IOMMU is present and allows to map all the memory.
2583 * 2. No high memory really exists on this machine.
2584 */
2585
c1e756bf 2586static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2587{
3d3a8533 2588#ifdef CONFIG_HIGHMEM
1da177e4 2589 int i;
5acbbd42 2590 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2592 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2593 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2594 return 1;
ea2ab693 2595 }
5acbbd42 2596 }
1da177e4 2597
5acbbd42
FT
2598 if (PCI_DMA_BUS_IS_PHYS) {
2599 struct device *pdev = dev->dev.parent;
1da177e4 2600
9092c658
ED
2601 if (!pdev)
2602 return 0;
5acbbd42 2603 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2604 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2605 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2606 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2607 return 1;
2608 }
2609 }
3d3a8533 2610#endif
1da177e4
LT
2611 return 0;
2612}
1da177e4 2613
3b392ddb
SH
2614/* If MPLS offload request, verify we are testing hardware MPLS features
2615 * instead of standard features for the netdev.
2616 */
d0edc7bf 2617#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2618static netdev_features_t net_mpls_features(struct sk_buff *skb,
2619 netdev_features_t features,
2620 __be16 type)
2621{
25cd9ba0 2622 if (eth_p_mpls(type))
3b392ddb
SH
2623 features &= skb->dev->mpls_features;
2624
2625 return features;
2626}
2627#else
2628static netdev_features_t net_mpls_features(struct sk_buff *skb,
2629 netdev_features_t features,
2630 __be16 type)
2631{
2632 return features;
2633}
2634#endif
2635
c8f44aff 2636static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2637 netdev_features_t features)
f01a5236 2638{
53d6471c 2639 int tmp;
3b392ddb
SH
2640 __be16 type;
2641
2642 type = skb_network_protocol(skb, &tmp);
2643 features = net_mpls_features(skb, features, type);
53d6471c 2644
c0d680e5 2645 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2646 !can_checksum_protocol(features, type)) {
f01a5236 2647 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2648 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2649 features &= ~NETIF_F_SG;
2650 }
2651
2652 return features;
2653}
2654
e38f3025
TM
2655netdev_features_t passthru_features_check(struct sk_buff *skb,
2656 struct net_device *dev,
2657 netdev_features_t features)
2658{
2659 return features;
2660}
2661EXPORT_SYMBOL(passthru_features_check);
2662
8cb65d00
TM
2663static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2664 struct net_device *dev,
2665 netdev_features_t features)
2666{
2667 return vlan_features_check(skb, features);
2668}
2669
c1e756bf 2670netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2671{
5f35227e 2672 struct net_device *dev = skb->dev;
fcbeb976
ED
2673 netdev_features_t features = dev->features;
2674 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6 2675
fcbeb976 2676 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2677 features &= ~NETIF_F_GSO_MASK;
2678
5f35227e
JG
2679 /* If encapsulation offload request, verify we are testing
2680 * hardware encapsulation features instead of standard
2681 * features for the netdev
2682 */
2683 if (skb->encapsulation)
2684 features &= dev->hw_enc_features;
2685
f5a7fb88
TM
2686 if (skb_vlan_tagged(skb))
2687 features = netdev_intersect_features(features,
2688 dev->vlan_features |
2689 NETIF_F_HW_VLAN_CTAG_TX |
2690 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2691
5f35227e
JG
2692 if (dev->netdev_ops->ndo_features_check)
2693 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2694 features);
8cb65d00
TM
2695 else
2696 features &= dflt_features_check(skb, dev, features);
5f35227e 2697
c1e756bf 2698 return harmonize_features(skb, features);
58e998c6 2699}
c1e756bf 2700EXPORT_SYMBOL(netif_skb_features);
58e998c6 2701
2ea25513 2702static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2703 struct netdev_queue *txq, bool more)
f6a78bfc 2704{
2ea25513
DM
2705 unsigned int len;
2706 int rc;
00829823 2707
7866a621 2708 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2709 dev_queue_xmit_nit(skb, dev);
fc741216 2710
2ea25513
DM
2711 len = skb->len;
2712 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2713 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2714 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2715
2ea25513
DM
2716 return rc;
2717}
7b9c6090 2718
8dcda22a
DM
2719struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2720 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2721{
2722 struct sk_buff *skb = first;
2723 int rc = NETDEV_TX_OK;
7b9c6090 2724
7f2e870f
DM
2725 while (skb) {
2726 struct sk_buff *next = skb->next;
fc70fb64 2727
7f2e870f 2728 skb->next = NULL;
95f6b3dd 2729 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2730 if (unlikely(!dev_xmit_complete(rc))) {
2731 skb->next = next;
2732 goto out;
2733 }
6afff0ca 2734
7f2e870f
DM
2735 skb = next;
2736 if (netif_xmit_stopped(txq) && skb) {
2737 rc = NETDEV_TX_BUSY;
2738 break;
9ccb8975 2739 }
7f2e870f 2740 }
9ccb8975 2741
7f2e870f
DM
2742out:
2743 *ret = rc;
2744 return skb;
2745}
b40863c6 2746
1ff0dc94
ED
2747static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2748 netdev_features_t features)
f6a78bfc 2749{
df8a39de 2750 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2751 !vlan_hw_offload_capable(features, skb->vlan_proto))
2752 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2753 return skb;
2754}
f6a78bfc 2755
55a93b3e 2756static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2757{
2758 netdev_features_t features;
f6a78bfc 2759
eae3f88e
DM
2760 if (skb->next)
2761 return skb;
068a2de5 2762
eae3f88e
DM
2763 features = netif_skb_features(skb);
2764 skb = validate_xmit_vlan(skb, features);
2765 if (unlikely(!skb))
2766 goto out_null;
7b9c6090 2767
8b86a61d 2768 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2769 struct sk_buff *segs;
2770
2771 segs = skb_gso_segment(skb, features);
cecda693 2772 if (IS_ERR(segs)) {
af6dabc9 2773 goto out_kfree_skb;
cecda693
JW
2774 } else if (segs) {
2775 consume_skb(skb);
2776 skb = segs;
f6a78bfc 2777 }
eae3f88e
DM
2778 } else {
2779 if (skb_needs_linearize(skb, features) &&
2780 __skb_linearize(skb))
2781 goto out_kfree_skb;
4ec93edb 2782
eae3f88e
DM
2783 /* If packet is not checksummed and device does not
2784 * support checksumming for this protocol, complete
2785 * checksumming here.
2786 */
2787 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2788 if (skb->encapsulation)
2789 skb_set_inner_transport_header(skb,
2790 skb_checksum_start_offset(skb));
2791 else
2792 skb_set_transport_header(skb,
2793 skb_checksum_start_offset(skb));
2794 if (!(features & NETIF_F_ALL_CSUM) &&
2795 skb_checksum_help(skb))
2796 goto out_kfree_skb;
7b9c6090 2797 }
0c772159 2798 }
7b9c6090 2799
eae3f88e 2800 return skb;
fc70fb64 2801
f6a78bfc
HX
2802out_kfree_skb:
2803 kfree_skb(skb);
eae3f88e
DM
2804out_null:
2805 return NULL;
2806}
6afff0ca 2807
55a93b3e
ED
2808struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2809{
2810 struct sk_buff *next, *head = NULL, *tail;
2811
bec3cfdc 2812 for (; skb != NULL; skb = next) {
55a93b3e
ED
2813 next = skb->next;
2814 skb->next = NULL;
bec3cfdc
ED
2815
2816 /* in case skb wont be segmented, point to itself */
2817 skb->prev = skb;
2818
55a93b3e 2819 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2820 if (!skb)
2821 continue;
55a93b3e 2822
bec3cfdc
ED
2823 if (!head)
2824 head = skb;
2825 else
2826 tail->next = skb;
2827 /* If skb was segmented, skb->prev points to
2828 * the last segment. If not, it still contains skb.
2829 */
2830 tail = skb->prev;
55a93b3e
ED
2831 }
2832 return head;
f6a78bfc
HX
2833}
2834
1def9238
ED
2835static void qdisc_pkt_len_init(struct sk_buff *skb)
2836{
2837 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2838
2839 qdisc_skb_cb(skb)->pkt_len = skb->len;
2840
2841 /* To get more precise estimation of bytes sent on wire,
2842 * we add to pkt_len the headers size of all segments
2843 */
2844 if (shinfo->gso_size) {
757b8b1d 2845 unsigned int hdr_len;
15e5a030 2846 u16 gso_segs = shinfo->gso_segs;
1def9238 2847
757b8b1d
ED
2848 /* mac layer + network layer */
2849 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2850
2851 /* + transport layer */
1def9238
ED
2852 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2853 hdr_len += tcp_hdrlen(skb);
2854 else
2855 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2856
2857 if (shinfo->gso_type & SKB_GSO_DODGY)
2858 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2859 shinfo->gso_size);
2860
2861 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2862 }
2863}
2864
bbd8a0d3
KK
2865static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2866 struct net_device *dev,
2867 struct netdev_queue *txq)
2868{
2869 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2870 bool contended;
bbd8a0d3
KK
2871 int rc;
2872
1def9238 2873 qdisc_pkt_len_init(skb);
a2da570d 2874 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2875 /*
2876 * Heuristic to force contended enqueues to serialize on a
2877 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2878 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2879 * often and dequeue packets faster.
79640a4c 2880 */
a2da570d 2881 contended = qdisc_is_running(q);
79640a4c
ED
2882 if (unlikely(contended))
2883 spin_lock(&q->busylock);
2884
bbd8a0d3
KK
2885 spin_lock(root_lock);
2886 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2887 kfree_skb(skb);
2888 rc = NET_XMIT_DROP;
2889 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2890 qdisc_run_begin(q)) {
bbd8a0d3
KK
2891 /*
2892 * This is a work-conserving queue; there are no old skbs
2893 * waiting to be sent out; and the qdisc is not running -
2894 * xmit the skb directly.
2895 */
bfe0d029 2896
bfe0d029
ED
2897 qdisc_bstats_update(q, skb);
2898
55a93b3e 2899 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2900 if (unlikely(contended)) {
2901 spin_unlock(&q->busylock);
2902 contended = false;
2903 }
bbd8a0d3 2904 __qdisc_run(q);
79640a4c 2905 } else
bc135b23 2906 qdisc_run_end(q);
bbd8a0d3
KK
2907
2908 rc = NET_XMIT_SUCCESS;
2909 } else {
a2da570d 2910 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2911 if (qdisc_run_begin(q)) {
2912 if (unlikely(contended)) {
2913 spin_unlock(&q->busylock);
2914 contended = false;
2915 }
2916 __qdisc_run(q);
2917 }
bbd8a0d3
KK
2918 }
2919 spin_unlock(root_lock);
79640a4c
ED
2920 if (unlikely(contended))
2921 spin_unlock(&q->busylock);
bbd8a0d3
KK
2922 return rc;
2923}
2924
86f8515f 2925#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2926static void skb_update_prio(struct sk_buff *skb)
2927{
6977a79d 2928 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2929
91c68ce2
ED
2930 if (!skb->priority && skb->sk && map) {
2931 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2932
2933 if (prioidx < map->priomap_len)
2934 skb->priority = map->priomap[prioidx];
2935 }
5bc1421e
NH
2936}
2937#else
2938#define skb_update_prio(skb)
2939#endif
2940
f60e5990 2941DEFINE_PER_CPU(int, xmit_recursion);
2942EXPORT_SYMBOL(xmit_recursion);
2943
11a766ce 2944#define RECURSION_LIMIT 10
745e20f1 2945
95603e22
MM
2946/**
2947 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
2948 * @net: network namespace this loopback is happening in
2949 * @sk: sk needed to be a netfilter okfn
95603e22
MM
2950 * @skb: buffer to transmit
2951 */
0c4b51f0 2952int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
2953{
2954 skb_reset_mac_header(skb);
2955 __skb_pull(skb, skb_network_offset(skb));
2956 skb->pkt_type = PACKET_LOOPBACK;
2957 skb->ip_summed = CHECKSUM_UNNECESSARY;
2958 WARN_ON(!skb_dst(skb));
2959 skb_dst_force(skb);
2960 netif_rx_ni(skb);
2961 return 0;
2962}
2963EXPORT_SYMBOL(dev_loopback_xmit);
2964
638b2a69
JP
2965static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2966{
2967#ifdef CONFIG_XPS
2968 struct xps_dev_maps *dev_maps;
2969 struct xps_map *map;
2970 int queue_index = -1;
2971
2972 rcu_read_lock();
2973 dev_maps = rcu_dereference(dev->xps_maps);
2974 if (dev_maps) {
2975 map = rcu_dereference(
2976 dev_maps->cpu_map[skb->sender_cpu - 1]);
2977 if (map) {
2978 if (map->len == 1)
2979 queue_index = map->queues[0];
2980 else
2981 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2982 map->len)];
2983 if (unlikely(queue_index >= dev->real_num_tx_queues))
2984 queue_index = -1;
2985 }
2986 }
2987 rcu_read_unlock();
2988
2989 return queue_index;
2990#else
2991 return -1;
2992#endif
2993}
2994
2995static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2996{
2997 struct sock *sk = skb->sk;
2998 int queue_index = sk_tx_queue_get(sk);
2999
3000 if (queue_index < 0 || skb->ooo_okay ||
3001 queue_index >= dev->real_num_tx_queues) {
3002 int new_index = get_xps_queue(dev, skb);
3003 if (new_index < 0)
3004 new_index = skb_tx_hash(dev, skb);
3005
3006 if (queue_index != new_index && sk &&
004a5d01 3007 sk_fullsock(sk) &&
638b2a69
JP
3008 rcu_access_pointer(sk->sk_dst_cache))
3009 sk_tx_queue_set(sk, new_index);
3010
3011 queue_index = new_index;
3012 }
3013
3014 return queue_index;
3015}
3016
3017struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3018 struct sk_buff *skb,
3019 void *accel_priv)
3020{
3021 int queue_index = 0;
3022
3023#ifdef CONFIG_XPS
3024 if (skb->sender_cpu == 0)
3025 skb->sender_cpu = raw_smp_processor_id() + 1;
3026#endif
3027
3028 if (dev->real_num_tx_queues != 1) {
3029 const struct net_device_ops *ops = dev->netdev_ops;
3030 if (ops->ndo_select_queue)
3031 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3032 __netdev_pick_tx);
3033 else
3034 queue_index = __netdev_pick_tx(dev, skb);
3035
3036 if (!accel_priv)
3037 queue_index = netdev_cap_txqueue(dev, queue_index);
3038 }
3039
3040 skb_set_queue_mapping(skb, queue_index);
3041 return netdev_get_tx_queue(dev, queue_index);
3042}
3043
d29f749e 3044/**
9d08dd3d 3045 * __dev_queue_xmit - transmit a buffer
d29f749e 3046 * @skb: buffer to transmit
9d08dd3d 3047 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3048 *
3049 * Queue a buffer for transmission to a network device. The caller must
3050 * have set the device and priority and built the buffer before calling
3051 * this function. The function can be called from an interrupt.
3052 *
3053 * A negative errno code is returned on a failure. A success does not
3054 * guarantee the frame will be transmitted as it may be dropped due
3055 * to congestion or traffic shaping.
3056 *
3057 * -----------------------------------------------------------------------------------
3058 * I notice this method can also return errors from the queue disciplines,
3059 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3060 * be positive.
3061 *
3062 * Regardless of the return value, the skb is consumed, so it is currently
3063 * difficult to retry a send to this method. (You can bump the ref count
3064 * before sending to hold a reference for retry if you are careful.)
3065 *
3066 * When calling this method, interrupts MUST be enabled. This is because
3067 * the BH enable code must have IRQs enabled so that it will not deadlock.
3068 * --BLG
3069 */
0a59f3a9 3070static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3071{
3072 struct net_device *dev = skb->dev;
dc2b4847 3073 struct netdev_queue *txq;
1da177e4
LT
3074 struct Qdisc *q;
3075 int rc = -ENOMEM;
3076
6d1ccff6
ED
3077 skb_reset_mac_header(skb);
3078
e7fd2885
WB
3079 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3080 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3081
4ec93edb
YH
3082 /* Disable soft irqs for various locks below. Also
3083 * stops preemption for RCU.
1da177e4 3084 */
4ec93edb 3085 rcu_read_lock_bh();
1da177e4 3086
5bc1421e
NH
3087 skb_update_prio(skb);
3088
02875878
ED
3089 /* If device/qdisc don't need skb->dst, release it right now while
3090 * its hot in this cpu cache.
3091 */
3092 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3093 skb_dst_drop(skb);
3094 else
3095 skb_dst_force(skb);
3096
0c4f691f
SF
3097#ifdef CONFIG_NET_SWITCHDEV
3098 /* Don't forward if offload device already forwarded */
3099 if (skb->offload_fwd_mark &&
3100 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3101 consume_skb(skb);
3102 rc = NET_XMIT_SUCCESS;
3103 goto out;
3104 }
3105#endif
3106
f663dd9a 3107 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3108 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3109
1da177e4 3110#ifdef CONFIG_NET_CLS_ACT
d1b19dff 3111 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 3112#endif
cf66ba58 3113 trace_net_dev_queue(skb);
1da177e4 3114 if (q->enqueue) {
bbd8a0d3 3115 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3116 goto out;
1da177e4
LT
3117 }
3118
3119 /* The device has no queue. Common case for software devices:
3120 loopback, all the sorts of tunnels...
3121
932ff279
HX
3122 Really, it is unlikely that netif_tx_lock protection is necessary
3123 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3124 counters.)
3125 However, it is possible, that they rely on protection
3126 made by us here.
3127
3128 Check this and shot the lock. It is not prone from deadlocks.
3129 Either shot noqueue qdisc, it is even simpler 8)
3130 */
3131 if (dev->flags & IFF_UP) {
3132 int cpu = smp_processor_id(); /* ok because BHs are off */
3133
c773e847 3134 if (txq->xmit_lock_owner != cpu) {
1da177e4 3135
745e20f1
ED
3136 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3137 goto recursion_alert;
3138
1f59533f
JDB
3139 skb = validate_xmit_skb(skb, dev);
3140 if (!skb)
3141 goto drop;
3142
c773e847 3143 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3144
73466498 3145 if (!netif_xmit_stopped(txq)) {
745e20f1 3146 __this_cpu_inc(xmit_recursion);
ce93718f 3147 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3148 __this_cpu_dec(xmit_recursion);
572a9d7b 3149 if (dev_xmit_complete(rc)) {
c773e847 3150 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3151 goto out;
3152 }
3153 }
c773e847 3154 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3155 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3156 dev->name);
1da177e4
LT
3157 } else {
3158 /* Recursion is detected! It is possible,
745e20f1
ED
3159 * unfortunately
3160 */
3161recursion_alert:
e87cc472
JP
3162 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3163 dev->name);
1da177e4
LT
3164 }
3165 }
3166
3167 rc = -ENETDOWN;
1f59533f 3168drop:
d4828d85 3169 rcu_read_unlock_bh();
1da177e4 3170
015f0688 3171 atomic_long_inc(&dev->tx_dropped);
1f59533f 3172 kfree_skb_list(skb);
1da177e4
LT
3173 return rc;
3174out:
d4828d85 3175 rcu_read_unlock_bh();
1da177e4
LT
3176 return rc;
3177}
f663dd9a 3178
2b4aa3ce 3179int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3180{
3181 return __dev_queue_xmit(skb, NULL);
3182}
2b4aa3ce 3183EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3184
f663dd9a
JW
3185int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3186{
3187 return __dev_queue_xmit(skb, accel_priv);
3188}
3189EXPORT_SYMBOL(dev_queue_xmit_accel);
3190
1da177e4
LT
3191
3192/*=======================================================================
3193 Receiver routines
3194 =======================================================================*/
3195
6b2bedc3 3196int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3197EXPORT_SYMBOL(netdev_max_backlog);
3198
3b098e2d 3199int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3200int netdev_budget __read_mostly = 300;
3201int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3202
eecfd7c4
ED
3203/* Called with irq disabled */
3204static inline void ____napi_schedule(struct softnet_data *sd,
3205 struct napi_struct *napi)
3206{
3207 list_add_tail(&napi->poll_list, &sd->poll_list);
3208 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3209}
3210
bfb564e7
KK
3211#ifdef CONFIG_RPS
3212
3213/* One global table that all flow-based protocols share. */
6e3f7faf 3214struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3215EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3216u32 rps_cpu_mask __read_mostly;
3217EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3218
c5905afb 3219struct static_key rps_needed __read_mostly;
adc9300e 3220
c445477d
BH
3221static struct rps_dev_flow *
3222set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3223 struct rps_dev_flow *rflow, u16 next_cpu)
3224{
a31196b0 3225 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3226#ifdef CONFIG_RFS_ACCEL
3227 struct netdev_rx_queue *rxqueue;
3228 struct rps_dev_flow_table *flow_table;
3229 struct rps_dev_flow *old_rflow;
3230 u32 flow_id;
3231 u16 rxq_index;
3232 int rc;
3233
3234 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3235 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3236 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3237 goto out;
3238 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3239 if (rxq_index == skb_get_rx_queue(skb))
3240 goto out;
3241
3242 rxqueue = dev->_rx + rxq_index;
3243 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3244 if (!flow_table)
3245 goto out;
61b905da 3246 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3247 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3248 rxq_index, flow_id);
3249 if (rc < 0)
3250 goto out;
3251 old_rflow = rflow;
3252 rflow = &flow_table->flows[flow_id];
c445477d
BH
3253 rflow->filter = rc;
3254 if (old_rflow->filter == rflow->filter)
3255 old_rflow->filter = RPS_NO_FILTER;
3256 out:
3257#endif
3258 rflow->last_qtail =
09994d1b 3259 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3260 }
3261
09994d1b 3262 rflow->cpu = next_cpu;
c445477d
BH
3263 return rflow;
3264}
3265
bfb564e7
KK
3266/*
3267 * get_rps_cpu is called from netif_receive_skb and returns the target
3268 * CPU from the RPS map of the receiving queue for a given skb.
3269 * rcu_read_lock must be held on entry.
3270 */
3271static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3272 struct rps_dev_flow **rflowp)
3273{
567e4b79
ED
3274 const struct rps_sock_flow_table *sock_flow_table;
3275 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3276 struct rps_dev_flow_table *flow_table;
567e4b79 3277 struct rps_map *map;
bfb564e7 3278 int cpu = -1;
567e4b79 3279 u32 tcpu;
61b905da 3280 u32 hash;
bfb564e7
KK
3281
3282 if (skb_rx_queue_recorded(skb)) {
3283 u16 index = skb_get_rx_queue(skb);
567e4b79 3284
62fe0b40
BH
3285 if (unlikely(index >= dev->real_num_rx_queues)) {
3286 WARN_ONCE(dev->real_num_rx_queues > 1,
3287 "%s received packet on queue %u, but number "
3288 "of RX queues is %u\n",
3289 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3290 goto done;
3291 }
567e4b79
ED
3292 rxqueue += index;
3293 }
bfb564e7 3294
567e4b79
ED
3295 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3296
3297 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3298 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3299 if (!flow_table && !map)
bfb564e7
KK
3300 goto done;
3301
2d47b459 3302 skb_reset_network_header(skb);
61b905da
TH
3303 hash = skb_get_hash(skb);
3304 if (!hash)
bfb564e7
KK
3305 goto done;
3306
fec5e652
TH
3307 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3308 if (flow_table && sock_flow_table) {
fec5e652 3309 struct rps_dev_flow *rflow;
567e4b79
ED
3310 u32 next_cpu;
3311 u32 ident;
3312
3313 /* First check into global flow table if there is a match */
3314 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3315 if ((ident ^ hash) & ~rps_cpu_mask)
3316 goto try_rps;
fec5e652 3317
567e4b79
ED
3318 next_cpu = ident & rps_cpu_mask;
3319
3320 /* OK, now we know there is a match,
3321 * we can look at the local (per receive queue) flow table
3322 */
61b905da 3323 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3324 tcpu = rflow->cpu;
3325
fec5e652
TH
3326 /*
3327 * If the desired CPU (where last recvmsg was done) is
3328 * different from current CPU (one in the rx-queue flow
3329 * table entry), switch if one of the following holds:
a31196b0 3330 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3331 * - Current CPU is offline.
3332 * - The current CPU's queue tail has advanced beyond the
3333 * last packet that was enqueued using this table entry.
3334 * This guarantees that all previous packets for the flow
3335 * have been dequeued, thus preserving in order delivery.
3336 */
3337 if (unlikely(tcpu != next_cpu) &&
a31196b0 3338 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3339 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3340 rflow->last_qtail)) >= 0)) {
3341 tcpu = next_cpu;
c445477d 3342 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3343 }
c445477d 3344
a31196b0 3345 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3346 *rflowp = rflow;
3347 cpu = tcpu;
3348 goto done;
3349 }
3350 }
3351
567e4b79
ED
3352try_rps:
3353
0a9627f2 3354 if (map) {
8fc54f68 3355 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3356 if (cpu_online(tcpu)) {
3357 cpu = tcpu;
3358 goto done;
3359 }
3360 }
3361
3362done:
0a9627f2
TH
3363 return cpu;
3364}
3365
c445477d
BH
3366#ifdef CONFIG_RFS_ACCEL
3367
3368/**
3369 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3370 * @dev: Device on which the filter was set
3371 * @rxq_index: RX queue index
3372 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3373 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3374 *
3375 * Drivers that implement ndo_rx_flow_steer() should periodically call
3376 * this function for each installed filter and remove the filters for
3377 * which it returns %true.
3378 */
3379bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3380 u32 flow_id, u16 filter_id)
3381{
3382 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3383 struct rps_dev_flow_table *flow_table;
3384 struct rps_dev_flow *rflow;
3385 bool expire = true;
a31196b0 3386 unsigned int cpu;
c445477d
BH
3387
3388 rcu_read_lock();
3389 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3390 if (flow_table && flow_id <= flow_table->mask) {
3391 rflow = &flow_table->flows[flow_id];
3392 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3393 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3394 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3395 rflow->last_qtail) <
3396 (int)(10 * flow_table->mask)))
3397 expire = false;
3398 }
3399 rcu_read_unlock();
3400 return expire;
3401}
3402EXPORT_SYMBOL(rps_may_expire_flow);
3403
3404#endif /* CONFIG_RFS_ACCEL */
3405
0a9627f2 3406/* Called from hardirq (IPI) context */
e36fa2f7 3407static void rps_trigger_softirq(void *data)
0a9627f2 3408{
e36fa2f7
ED
3409 struct softnet_data *sd = data;
3410
eecfd7c4 3411 ____napi_schedule(sd, &sd->backlog);
dee42870 3412 sd->received_rps++;
0a9627f2 3413}
e36fa2f7 3414
fec5e652 3415#endif /* CONFIG_RPS */
0a9627f2 3416
e36fa2f7
ED
3417/*
3418 * Check if this softnet_data structure is another cpu one
3419 * If yes, queue it to our IPI list and return 1
3420 * If no, return 0
3421 */
3422static int rps_ipi_queued(struct softnet_data *sd)
3423{
3424#ifdef CONFIG_RPS
903ceff7 3425 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3426
3427 if (sd != mysd) {
3428 sd->rps_ipi_next = mysd->rps_ipi_list;
3429 mysd->rps_ipi_list = sd;
3430
3431 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3432 return 1;
3433 }
3434#endif /* CONFIG_RPS */
3435 return 0;
3436}
3437
99bbc707
WB
3438#ifdef CONFIG_NET_FLOW_LIMIT
3439int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3440#endif
3441
3442static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3443{
3444#ifdef CONFIG_NET_FLOW_LIMIT
3445 struct sd_flow_limit *fl;
3446 struct softnet_data *sd;
3447 unsigned int old_flow, new_flow;
3448
3449 if (qlen < (netdev_max_backlog >> 1))
3450 return false;
3451
903ceff7 3452 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3453
3454 rcu_read_lock();
3455 fl = rcu_dereference(sd->flow_limit);
3456 if (fl) {
3958afa1 3457 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3458 old_flow = fl->history[fl->history_head];
3459 fl->history[fl->history_head] = new_flow;
3460
3461 fl->history_head++;
3462 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3463
3464 if (likely(fl->buckets[old_flow]))
3465 fl->buckets[old_flow]--;
3466
3467 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3468 fl->count++;
3469 rcu_read_unlock();
3470 return true;
3471 }
3472 }
3473 rcu_read_unlock();
3474#endif
3475 return false;
3476}
3477
0a9627f2
TH
3478/*
3479 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3480 * queue (may be a remote CPU queue).
3481 */
fec5e652
TH
3482static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3483 unsigned int *qtail)
0a9627f2 3484{
e36fa2f7 3485 struct softnet_data *sd;
0a9627f2 3486 unsigned long flags;
99bbc707 3487 unsigned int qlen;
0a9627f2 3488
e36fa2f7 3489 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3490
3491 local_irq_save(flags);
0a9627f2 3492
e36fa2f7 3493 rps_lock(sd);
e9e4dd32
JA
3494 if (!netif_running(skb->dev))
3495 goto drop;
99bbc707
WB
3496 qlen = skb_queue_len(&sd->input_pkt_queue);
3497 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3498 if (qlen) {
0a9627f2 3499enqueue:
e36fa2f7 3500 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3501 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3502 rps_unlock(sd);
152102c7 3503 local_irq_restore(flags);
0a9627f2
TH
3504 return NET_RX_SUCCESS;
3505 }
3506
ebda37c2
ED
3507 /* Schedule NAPI for backlog device
3508 * We can use non atomic operation since we own the queue lock
3509 */
3510 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3511 if (!rps_ipi_queued(sd))
eecfd7c4 3512 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3513 }
3514 goto enqueue;
3515 }
3516
e9e4dd32 3517drop:
dee42870 3518 sd->dropped++;
e36fa2f7 3519 rps_unlock(sd);
0a9627f2 3520
0a9627f2
TH
3521 local_irq_restore(flags);
3522
caf586e5 3523 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3524 kfree_skb(skb);
3525 return NET_RX_DROP;
3526}
1da177e4 3527
ae78dbfa 3528static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3529{
b0e28f1e 3530 int ret;
1da177e4 3531
588f0330 3532 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3533
cf66ba58 3534 trace_netif_rx(skb);
df334545 3535#ifdef CONFIG_RPS
c5905afb 3536 if (static_key_false(&rps_needed)) {
fec5e652 3537 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3538 int cpu;
3539
cece1945 3540 preempt_disable();
b0e28f1e 3541 rcu_read_lock();
fec5e652
TH
3542
3543 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3544 if (cpu < 0)
3545 cpu = smp_processor_id();
fec5e652
TH
3546
3547 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3548
b0e28f1e 3549 rcu_read_unlock();
cece1945 3550 preempt_enable();
adc9300e
ED
3551 } else
3552#endif
fec5e652
TH
3553 {
3554 unsigned int qtail;
3555 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3556 put_cpu();
3557 }
b0e28f1e 3558 return ret;
1da177e4 3559}
ae78dbfa
BH
3560
3561/**
3562 * netif_rx - post buffer to the network code
3563 * @skb: buffer to post
3564 *
3565 * This function receives a packet from a device driver and queues it for
3566 * the upper (protocol) levels to process. It always succeeds. The buffer
3567 * may be dropped during processing for congestion control or by the
3568 * protocol layers.
3569 *
3570 * return values:
3571 * NET_RX_SUCCESS (no congestion)
3572 * NET_RX_DROP (packet was dropped)
3573 *
3574 */
3575
3576int netif_rx(struct sk_buff *skb)
3577{
3578 trace_netif_rx_entry(skb);
3579
3580 return netif_rx_internal(skb);
3581}
d1b19dff 3582EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3583
3584int netif_rx_ni(struct sk_buff *skb)
3585{
3586 int err;
3587
ae78dbfa
BH
3588 trace_netif_rx_ni_entry(skb);
3589
1da177e4 3590 preempt_disable();
ae78dbfa 3591 err = netif_rx_internal(skb);
1da177e4
LT
3592 if (local_softirq_pending())
3593 do_softirq();
3594 preempt_enable();
3595
3596 return err;
3597}
1da177e4
LT
3598EXPORT_SYMBOL(netif_rx_ni);
3599
1da177e4
LT
3600static void net_tx_action(struct softirq_action *h)
3601{
903ceff7 3602 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3603
3604 if (sd->completion_queue) {
3605 struct sk_buff *clist;
3606
3607 local_irq_disable();
3608 clist = sd->completion_queue;
3609 sd->completion_queue = NULL;
3610 local_irq_enable();
3611
3612 while (clist) {
3613 struct sk_buff *skb = clist;
3614 clist = clist->next;
3615
547b792c 3616 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3617 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3618 trace_consume_skb(skb);
3619 else
3620 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3621 __kfree_skb(skb);
3622 }
3623 }
3624
3625 if (sd->output_queue) {
37437bb2 3626 struct Qdisc *head;
1da177e4
LT
3627
3628 local_irq_disable();
3629 head = sd->output_queue;
3630 sd->output_queue = NULL;
a9cbd588 3631 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3632 local_irq_enable();
3633
3634 while (head) {
37437bb2
DM
3635 struct Qdisc *q = head;
3636 spinlock_t *root_lock;
3637
1da177e4
LT
3638 head = head->next_sched;
3639
5fb66229 3640 root_lock = qdisc_lock(q);
37437bb2 3641 if (spin_trylock(root_lock)) {
4e857c58 3642 smp_mb__before_atomic();
def82a1d
JP
3643 clear_bit(__QDISC_STATE_SCHED,
3644 &q->state);
37437bb2
DM
3645 qdisc_run(q);
3646 spin_unlock(root_lock);
1da177e4 3647 } else {
195648bb 3648 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3649 &q->state)) {
195648bb 3650 __netif_reschedule(q);
e8a83e10 3651 } else {
4e857c58 3652 smp_mb__before_atomic();
e8a83e10
JP
3653 clear_bit(__QDISC_STATE_SCHED,
3654 &q->state);
3655 }
1da177e4
LT
3656 }
3657 }
3658 }
3659}
3660
ab95bfe0
JP
3661#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3662 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3663/* This hook is defined here for ATM LANE */
3664int (*br_fdb_test_addr_hook)(struct net_device *dev,
3665 unsigned char *addr) __read_mostly;
4fb019a0 3666EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3667#endif
1da177e4 3668
f697c3e8
HX
3669static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3670 struct packet_type **pt_prev,
3671 int *ret, struct net_device *orig_dev)
3672{
e7582bab 3673#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3674 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3675 struct tcf_result cl_res;
24824a09 3676
c9e99fd0
DB
3677 /* If there's at least one ingress present somewhere (so
3678 * we get here via enabled static key), remaining devices
3679 * that are not configured with an ingress qdisc will bail
d2788d34 3680 * out here.
c9e99fd0 3681 */
d2788d34 3682 if (!cl)
4577139b 3683 return skb;
f697c3e8
HX
3684 if (*pt_prev) {
3685 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3686 *pt_prev = NULL;
1da177e4
LT
3687 }
3688
3365495c 3689 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3690 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3691 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3692
3b3ae880 3693 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3694 case TC_ACT_OK:
3695 case TC_ACT_RECLASSIFY:
3696 skb->tc_index = TC_H_MIN(cl_res.classid);
3697 break;
3698 case TC_ACT_SHOT:
24ea591d 3699 qdisc_qstats_cpu_drop(cl->q);
d2788d34
DB
3700 case TC_ACT_STOLEN:
3701 case TC_ACT_QUEUED:
3702 kfree_skb(skb);
3703 return NULL;
27b29f63
AS
3704 case TC_ACT_REDIRECT:
3705 /* skb_mac_header check was done by cls/act_bpf, so
3706 * we can safely push the L2 header back before
3707 * redirecting to another netdev
3708 */
3709 __skb_push(skb, skb->mac_len);
3710 skb_do_redirect(skb);
3711 return NULL;
d2788d34
DB
3712 default:
3713 break;
f697c3e8 3714 }
e7582bab 3715#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3716 return skb;
3717}
1da177e4 3718
ab95bfe0
JP
3719/**
3720 * netdev_rx_handler_register - register receive handler
3721 * @dev: device to register a handler for
3722 * @rx_handler: receive handler to register
93e2c32b 3723 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3724 *
e227867f 3725 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3726 * called from __netif_receive_skb. A negative errno code is returned
3727 * on a failure.
3728 *
3729 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3730 *
3731 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3732 */
3733int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3734 rx_handler_func_t *rx_handler,
3735 void *rx_handler_data)
ab95bfe0
JP
3736{
3737 ASSERT_RTNL();
3738
3739 if (dev->rx_handler)
3740 return -EBUSY;
3741
00cfec37 3742 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3743 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3744 rcu_assign_pointer(dev->rx_handler, rx_handler);
3745
3746 return 0;
3747}
3748EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3749
3750/**
3751 * netdev_rx_handler_unregister - unregister receive handler
3752 * @dev: device to unregister a handler from
3753 *
166ec369 3754 * Unregister a receive handler from a device.
ab95bfe0
JP
3755 *
3756 * The caller must hold the rtnl_mutex.
3757 */
3758void netdev_rx_handler_unregister(struct net_device *dev)
3759{
3760
3761 ASSERT_RTNL();
a9b3cd7f 3762 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3763 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3764 * section has a guarantee to see a non NULL rx_handler_data
3765 * as well.
3766 */
3767 synchronize_net();
a9b3cd7f 3768 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3769}
3770EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3771
b4b9e355
MG
3772/*
3773 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3774 * the special handling of PFMEMALLOC skbs.
3775 */
3776static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3777{
3778 switch (skb->protocol) {
2b8837ae
JP
3779 case htons(ETH_P_ARP):
3780 case htons(ETH_P_IP):
3781 case htons(ETH_P_IPV6):
3782 case htons(ETH_P_8021Q):
3783 case htons(ETH_P_8021AD):
b4b9e355
MG
3784 return true;
3785 default:
3786 return false;
3787 }
3788}
3789
e687ad60
PN
3790static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3791 int *ret, struct net_device *orig_dev)
3792{
e7582bab 3793#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
3794 if (nf_hook_ingress_active(skb)) {
3795 if (*pt_prev) {
3796 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3797 *pt_prev = NULL;
3798 }
3799
3800 return nf_hook_ingress(skb);
3801 }
e7582bab 3802#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
3803 return 0;
3804}
e687ad60 3805
9754e293 3806static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3807{
3808 struct packet_type *ptype, *pt_prev;
ab95bfe0 3809 rx_handler_func_t *rx_handler;
f2ccd8fa 3810 struct net_device *orig_dev;
8a4eb573 3811 bool deliver_exact = false;
1da177e4 3812 int ret = NET_RX_DROP;
252e3346 3813 __be16 type;
1da177e4 3814
588f0330 3815 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3816
cf66ba58 3817 trace_netif_receive_skb(skb);
9b22ea56 3818
cc9bd5ce 3819 orig_dev = skb->dev;
8f903c70 3820
c1d2bbe1 3821 skb_reset_network_header(skb);
fda55eca
ED
3822 if (!skb_transport_header_was_set(skb))
3823 skb_reset_transport_header(skb);
0b5c9db1 3824 skb_reset_mac_len(skb);
1da177e4
LT
3825
3826 pt_prev = NULL;
3827
63d8ea7f 3828another_round:
b6858177 3829 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3830
3831 __this_cpu_inc(softnet_data.processed);
3832
8ad227ff
PM
3833 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3834 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3835 skb = skb_vlan_untag(skb);
bcc6d479 3836 if (unlikely(!skb))
2c17d27c 3837 goto out;
bcc6d479
JP
3838 }
3839
1da177e4
LT
3840#ifdef CONFIG_NET_CLS_ACT
3841 if (skb->tc_verd & TC_NCLS) {
3842 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3843 goto ncls;
3844 }
3845#endif
3846
9754e293 3847 if (pfmemalloc)
b4b9e355
MG
3848 goto skip_taps;
3849
1da177e4 3850 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3851 if (pt_prev)
3852 ret = deliver_skb(skb, pt_prev, orig_dev);
3853 pt_prev = ptype;
3854 }
3855
3856 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3857 if (pt_prev)
3858 ret = deliver_skb(skb, pt_prev, orig_dev);
3859 pt_prev = ptype;
1da177e4
LT
3860 }
3861
b4b9e355 3862skip_taps:
1cf51900 3863#ifdef CONFIG_NET_INGRESS
4577139b
DB
3864 if (static_key_false(&ingress_needed)) {
3865 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3866 if (!skb)
2c17d27c 3867 goto out;
e687ad60
PN
3868
3869 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 3870 goto out;
4577139b 3871 }
1cf51900
PN
3872#endif
3873#ifdef CONFIG_NET_CLS_ACT
4577139b 3874 skb->tc_verd = 0;
1da177e4
LT
3875ncls:
3876#endif
9754e293 3877 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3878 goto drop;
3879
df8a39de 3880 if (skb_vlan_tag_present(skb)) {
2425717b
JF
3881 if (pt_prev) {
3882 ret = deliver_skb(skb, pt_prev, orig_dev);
3883 pt_prev = NULL;
3884 }
48cc32d3 3885 if (vlan_do_receive(&skb))
2425717b
JF
3886 goto another_round;
3887 else if (unlikely(!skb))
2c17d27c 3888 goto out;
2425717b
JF
3889 }
3890
48cc32d3 3891 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3892 if (rx_handler) {
3893 if (pt_prev) {
3894 ret = deliver_skb(skb, pt_prev, orig_dev);
3895 pt_prev = NULL;
3896 }
8a4eb573
JP
3897 switch (rx_handler(&skb)) {
3898 case RX_HANDLER_CONSUMED:
3bc1b1ad 3899 ret = NET_RX_SUCCESS;
2c17d27c 3900 goto out;
8a4eb573 3901 case RX_HANDLER_ANOTHER:
63d8ea7f 3902 goto another_round;
8a4eb573
JP
3903 case RX_HANDLER_EXACT:
3904 deliver_exact = true;
3905 case RX_HANDLER_PASS:
3906 break;
3907 default:
3908 BUG();
3909 }
ab95bfe0 3910 }
1da177e4 3911
df8a39de
JP
3912 if (unlikely(skb_vlan_tag_present(skb))) {
3913 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
3914 skb->pkt_type = PACKET_OTHERHOST;
3915 /* Note: we might in the future use prio bits
3916 * and set skb->priority like in vlan_do_receive()
3917 * For the time being, just ignore Priority Code Point
3918 */
3919 skb->vlan_tci = 0;
3920 }
48cc32d3 3921
7866a621
SN
3922 type = skb->protocol;
3923
63d8ea7f 3924 /* deliver only exact match when indicated */
7866a621
SN
3925 if (likely(!deliver_exact)) {
3926 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3927 &ptype_base[ntohs(type) &
3928 PTYPE_HASH_MASK]);
3929 }
1f3c8804 3930
7866a621
SN
3931 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3932 &orig_dev->ptype_specific);
3933
3934 if (unlikely(skb->dev != orig_dev)) {
3935 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3936 &skb->dev->ptype_specific);
1da177e4
LT
3937 }
3938
3939 if (pt_prev) {
1080e512 3940 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3941 goto drop;
1080e512
MT
3942 else
3943 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3944 } else {
b4b9e355 3945drop:
caf586e5 3946 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3947 kfree_skb(skb);
3948 /* Jamal, now you will not able to escape explaining
3949 * me how you were going to use this. :-)
3950 */
3951 ret = NET_RX_DROP;
3952 }
3953
2c17d27c 3954out:
9754e293
DM
3955 return ret;
3956}
3957
3958static int __netif_receive_skb(struct sk_buff *skb)
3959{
3960 int ret;
3961
3962 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3963 unsigned long pflags = current->flags;
3964
3965 /*
3966 * PFMEMALLOC skbs are special, they should
3967 * - be delivered to SOCK_MEMALLOC sockets only
3968 * - stay away from userspace
3969 * - have bounded memory usage
3970 *
3971 * Use PF_MEMALLOC as this saves us from propagating the allocation
3972 * context down to all allocation sites.
3973 */
3974 current->flags |= PF_MEMALLOC;
3975 ret = __netif_receive_skb_core(skb, true);
3976 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3977 } else
3978 ret = __netif_receive_skb_core(skb, false);
3979
1da177e4
LT
3980 return ret;
3981}
0a9627f2 3982
ae78dbfa 3983static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3984{
2c17d27c
JA
3985 int ret;
3986
588f0330 3987 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3988
c1f19b51
RC
3989 if (skb_defer_rx_timestamp(skb))
3990 return NET_RX_SUCCESS;
3991
2c17d27c
JA
3992 rcu_read_lock();
3993
df334545 3994#ifdef CONFIG_RPS
c5905afb 3995 if (static_key_false(&rps_needed)) {
3b098e2d 3996 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 3997 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3998
3b098e2d
ED
3999 if (cpu >= 0) {
4000 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4001 rcu_read_unlock();
adc9300e 4002 return ret;
3b098e2d 4003 }
fec5e652 4004 }
1e94d72f 4005#endif
2c17d27c
JA
4006 ret = __netif_receive_skb(skb);
4007 rcu_read_unlock();
4008 return ret;
0a9627f2 4009}
ae78dbfa
BH
4010
4011/**
4012 * netif_receive_skb - process receive buffer from network
4013 * @skb: buffer to process
4014 *
4015 * netif_receive_skb() is the main receive data processing function.
4016 * It always succeeds. The buffer may be dropped during processing
4017 * for congestion control or by the protocol layers.
4018 *
4019 * This function may only be called from softirq context and interrupts
4020 * should be enabled.
4021 *
4022 * Return values (usually ignored):
4023 * NET_RX_SUCCESS: no congestion
4024 * NET_RX_DROP: packet was dropped
4025 */
04eb4489 4026int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4027{
4028 trace_netif_receive_skb_entry(skb);
4029
4030 return netif_receive_skb_internal(skb);
4031}
04eb4489 4032EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4033
88751275
ED
4034/* Network device is going away, flush any packets still pending
4035 * Called with irqs disabled.
4036 */
152102c7 4037static void flush_backlog(void *arg)
6e583ce5 4038{
152102c7 4039 struct net_device *dev = arg;
903ceff7 4040 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4041 struct sk_buff *skb, *tmp;
4042
e36fa2f7 4043 rps_lock(sd);
6e7676c1 4044 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4045 if (skb->dev == dev) {
e36fa2f7 4046 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4047 kfree_skb(skb);
76cc8b13 4048 input_queue_head_incr(sd);
6e583ce5 4049 }
6e7676c1 4050 }
e36fa2f7 4051 rps_unlock(sd);
6e7676c1
CG
4052
4053 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4054 if (skb->dev == dev) {
4055 __skb_unlink(skb, &sd->process_queue);
4056 kfree_skb(skb);
76cc8b13 4057 input_queue_head_incr(sd);
6e7676c1
CG
4058 }
4059 }
6e583ce5
SH
4060}
4061
d565b0a1
HX
4062static int napi_gro_complete(struct sk_buff *skb)
4063{
22061d80 4064 struct packet_offload *ptype;
d565b0a1 4065 __be16 type = skb->protocol;
22061d80 4066 struct list_head *head = &offload_base;
d565b0a1
HX
4067 int err = -ENOENT;
4068
c3c7c254
ED
4069 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4070
fc59f9a3
HX
4071 if (NAPI_GRO_CB(skb)->count == 1) {
4072 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4073 goto out;
fc59f9a3 4074 }
d565b0a1
HX
4075
4076 rcu_read_lock();
4077 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4078 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4079 continue;
4080
299603e8 4081 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4082 break;
4083 }
4084 rcu_read_unlock();
4085
4086 if (err) {
4087 WARN_ON(&ptype->list == head);
4088 kfree_skb(skb);
4089 return NET_RX_SUCCESS;
4090 }
4091
4092out:
ae78dbfa 4093 return netif_receive_skb_internal(skb);
d565b0a1
HX
4094}
4095
2e71a6f8
ED
4096/* napi->gro_list contains packets ordered by age.
4097 * youngest packets at the head of it.
4098 * Complete skbs in reverse order to reduce latencies.
4099 */
4100void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4101{
2e71a6f8 4102 struct sk_buff *skb, *prev = NULL;
d565b0a1 4103
2e71a6f8
ED
4104 /* scan list and build reverse chain */
4105 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4106 skb->prev = prev;
4107 prev = skb;
4108 }
4109
4110 for (skb = prev; skb; skb = prev) {
d565b0a1 4111 skb->next = NULL;
2e71a6f8
ED
4112
4113 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4114 return;
4115
4116 prev = skb->prev;
d565b0a1 4117 napi_gro_complete(skb);
2e71a6f8 4118 napi->gro_count--;
d565b0a1
HX
4119 }
4120
4121 napi->gro_list = NULL;
4122}
86cac58b 4123EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4124
89c5fa33
ED
4125static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4126{
4127 struct sk_buff *p;
4128 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4129 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4130
4131 for (p = napi->gro_list; p; p = p->next) {
4132 unsigned long diffs;
4133
0b4cec8c
TH
4134 NAPI_GRO_CB(p)->flush = 0;
4135
4136 if (hash != skb_get_hash_raw(p)) {
4137 NAPI_GRO_CB(p)->same_flow = 0;
4138 continue;
4139 }
4140
89c5fa33
ED
4141 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4142 diffs |= p->vlan_tci ^ skb->vlan_tci;
4143 if (maclen == ETH_HLEN)
4144 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4145 skb_mac_header(skb));
89c5fa33
ED
4146 else if (!diffs)
4147 diffs = memcmp(skb_mac_header(p),
a50e233c 4148 skb_mac_header(skb),
89c5fa33
ED
4149 maclen);
4150 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4151 }
4152}
4153
299603e8
JC
4154static void skb_gro_reset_offset(struct sk_buff *skb)
4155{
4156 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4157 const skb_frag_t *frag0 = &pinfo->frags[0];
4158
4159 NAPI_GRO_CB(skb)->data_offset = 0;
4160 NAPI_GRO_CB(skb)->frag0 = NULL;
4161 NAPI_GRO_CB(skb)->frag0_len = 0;
4162
4163 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4164 pinfo->nr_frags &&
4165 !PageHighMem(skb_frag_page(frag0))) {
4166 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4167 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4168 }
4169}
4170
a50e233c
ED
4171static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4172{
4173 struct skb_shared_info *pinfo = skb_shinfo(skb);
4174
4175 BUG_ON(skb->end - skb->tail < grow);
4176
4177 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4178
4179 skb->data_len -= grow;
4180 skb->tail += grow;
4181
4182 pinfo->frags[0].page_offset += grow;
4183 skb_frag_size_sub(&pinfo->frags[0], grow);
4184
4185 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4186 skb_frag_unref(skb, 0);
4187 memmove(pinfo->frags, pinfo->frags + 1,
4188 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4189 }
4190}
4191
bb728820 4192static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4193{
4194 struct sk_buff **pp = NULL;
22061d80 4195 struct packet_offload *ptype;
d565b0a1 4196 __be16 type = skb->protocol;
22061d80 4197 struct list_head *head = &offload_base;
0da2afd5 4198 int same_flow;
5b252f0c 4199 enum gro_result ret;
a50e233c 4200 int grow;
d565b0a1 4201
9c62a68d 4202 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4203 goto normal;
4204
5a212329 4205 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4206 goto normal;
4207
89c5fa33
ED
4208 gro_list_prepare(napi, skb);
4209
d565b0a1
HX
4210 rcu_read_lock();
4211 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4212 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4213 continue;
4214
86911732 4215 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4216 skb_reset_mac_len(skb);
d565b0a1
HX
4217 NAPI_GRO_CB(skb)->same_flow = 0;
4218 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4219 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4220 NAPI_GRO_CB(skb)->udp_mark = 0;
15e2396d 4221 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4222
662880f4
TH
4223 /* Setup for GRO checksum validation */
4224 switch (skb->ip_summed) {
4225 case CHECKSUM_COMPLETE:
4226 NAPI_GRO_CB(skb)->csum = skb->csum;
4227 NAPI_GRO_CB(skb)->csum_valid = 1;
4228 NAPI_GRO_CB(skb)->csum_cnt = 0;
4229 break;
4230 case CHECKSUM_UNNECESSARY:
4231 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4232 NAPI_GRO_CB(skb)->csum_valid = 0;
4233 break;
4234 default:
4235 NAPI_GRO_CB(skb)->csum_cnt = 0;
4236 NAPI_GRO_CB(skb)->csum_valid = 0;
4237 }
d565b0a1 4238
f191a1d1 4239 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4240 break;
4241 }
4242 rcu_read_unlock();
4243
4244 if (&ptype->list == head)
4245 goto normal;
4246
0da2afd5 4247 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4248 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4249
d565b0a1
HX
4250 if (pp) {
4251 struct sk_buff *nskb = *pp;
4252
4253 *pp = nskb->next;
4254 nskb->next = NULL;
4255 napi_gro_complete(nskb);
4ae5544f 4256 napi->gro_count--;
d565b0a1
HX
4257 }
4258
0da2afd5 4259 if (same_flow)
d565b0a1
HX
4260 goto ok;
4261
600adc18 4262 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4263 goto normal;
d565b0a1 4264
600adc18
ED
4265 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4266 struct sk_buff *nskb = napi->gro_list;
4267
4268 /* locate the end of the list to select the 'oldest' flow */
4269 while (nskb->next) {
4270 pp = &nskb->next;
4271 nskb = *pp;
4272 }
4273 *pp = NULL;
4274 nskb->next = NULL;
4275 napi_gro_complete(nskb);
4276 } else {
4277 napi->gro_count++;
4278 }
d565b0a1 4279 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4280 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4281 NAPI_GRO_CB(skb)->last = skb;
86911732 4282 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4283 skb->next = napi->gro_list;
4284 napi->gro_list = skb;
5d0d9be8 4285 ret = GRO_HELD;
d565b0a1 4286
ad0f9904 4287pull:
a50e233c
ED
4288 grow = skb_gro_offset(skb) - skb_headlen(skb);
4289 if (grow > 0)
4290 gro_pull_from_frag0(skb, grow);
d565b0a1 4291ok:
5d0d9be8 4292 return ret;
d565b0a1
HX
4293
4294normal:
ad0f9904
HX
4295 ret = GRO_NORMAL;
4296 goto pull;
5d38a079 4297}
96e93eab 4298
bf5a755f
JC
4299struct packet_offload *gro_find_receive_by_type(__be16 type)
4300{
4301 struct list_head *offload_head = &offload_base;
4302 struct packet_offload *ptype;
4303
4304 list_for_each_entry_rcu(ptype, offload_head, list) {
4305 if (ptype->type != type || !ptype->callbacks.gro_receive)
4306 continue;
4307 return ptype;
4308 }
4309 return NULL;
4310}
e27a2f83 4311EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4312
4313struct packet_offload *gro_find_complete_by_type(__be16 type)
4314{
4315 struct list_head *offload_head = &offload_base;
4316 struct packet_offload *ptype;
4317
4318 list_for_each_entry_rcu(ptype, offload_head, list) {
4319 if (ptype->type != type || !ptype->callbacks.gro_complete)
4320 continue;
4321 return ptype;
4322 }
4323 return NULL;
4324}
e27a2f83 4325EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4326
bb728820 4327static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4328{
5d0d9be8
HX
4329 switch (ret) {
4330 case GRO_NORMAL:
ae78dbfa 4331 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4332 ret = GRO_DROP;
4333 break;
5d38a079 4334
5d0d9be8 4335 case GRO_DROP:
5d38a079
HX
4336 kfree_skb(skb);
4337 break;
5b252f0c 4338
daa86548 4339 case GRO_MERGED_FREE:
d7e8883c
ED
4340 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4341 kmem_cache_free(skbuff_head_cache, skb);
4342 else
4343 __kfree_skb(skb);
daa86548
ED
4344 break;
4345
5b252f0c
BH
4346 case GRO_HELD:
4347 case GRO_MERGED:
4348 break;
5d38a079
HX
4349 }
4350
c7c4b3b6 4351 return ret;
5d0d9be8 4352}
5d0d9be8 4353
c7c4b3b6 4354gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4355{
ae78dbfa 4356 trace_napi_gro_receive_entry(skb);
86911732 4357
a50e233c
ED
4358 skb_gro_reset_offset(skb);
4359
89c5fa33 4360 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4361}
4362EXPORT_SYMBOL(napi_gro_receive);
4363
d0c2b0d2 4364static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4365{
93a35f59
ED
4366 if (unlikely(skb->pfmemalloc)) {
4367 consume_skb(skb);
4368 return;
4369 }
96e93eab 4370 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4371 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4372 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4373 skb->vlan_tci = 0;
66c46d74 4374 skb->dev = napi->dev;
6d152e23 4375 skb->skb_iif = 0;
c3caf119
JC
4376 skb->encapsulation = 0;
4377 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4378 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4379
4380 napi->skb = skb;
4381}
96e93eab 4382
76620aaf 4383struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4384{
5d38a079 4385 struct sk_buff *skb = napi->skb;
5d38a079
HX
4386
4387 if (!skb) {
fd11a83d 4388 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4389 napi->skb = skb;
80595d59 4390 }
96e93eab
HX
4391 return skb;
4392}
76620aaf 4393EXPORT_SYMBOL(napi_get_frags);
96e93eab 4394
a50e233c
ED
4395static gro_result_t napi_frags_finish(struct napi_struct *napi,
4396 struct sk_buff *skb,
4397 gro_result_t ret)
96e93eab 4398{
5d0d9be8
HX
4399 switch (ret) {
4400 case GRO_NORMAL:
a50e233c
ED
4401 case GRO_HELD:
4402 __skb_push(skb, ETH_HLEN);
4403 skb->protocol = eth_type_trans(skb, skb->dev);
4404 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4405 ret = GRO_DROP;
86911732 4406 break;
5d38a079 4407
5d0d9be8 4408 case GRO_DROP:
5d0d9be8
HX
4409 case GRO_MERGED_FREE:
4410 napi_reuse_skb(napi, skb);
4411 break;
5b252f0c
BH
4412
4413 case GRO_MERGED:
4414 break;
5d0d9be8 4415 }
5d38a079 4416
c7c4b3b6 4417 return ret;
5d38a079 4418}
5d0d9be8 4419
a50e233c
ED
4420/* Upper GRO stack assumes network header starts at gro_offset=0
4421 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4422 * We copy ethernet header into skb->data to have a common layout.
4423 */
4adb9c4a 4424static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4425{
4426 struct sk_buff *skb = napi->skb;
a50e233c
ED
4427 const struct ethhdr *eth;
4428 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4429
4430 napi->skb = NULL;
4431
a50e233c
ED
4432 skb_reset_mac_header(skb);
4433 skb_gro_reset_offset(skb);
4434
4435 eth = skb_gro_header_fast(skb, 0);
4436 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4437 eth = skb_gro_header_slow(skb, hlen, 0);
4438 if (unlikely(!eth)) {
4439 napi_reuse_skb(napi, skb);
4440 return NULL;
4441 }
4442 } else {
4443 gro_pull_from_frag0(skb, hlen);
4444 NAPI_GRO_CB(skb)->frag0 += hlen;
4445 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4446 }
a50e233c
ED
4447 __skb_pull(skb, hlen);
4448
4449 /*
4450 * This works because the only protocols we care about don't require
4451 * special handling.
4452 * We'll fix it up properly in napi_frags_finish()
4453 */
4454 skb->protocol = eth->h_proto;
76620aaf 4455
76620aaf
HX
4456 return skb;
4457}
76620aaf 4458
c7c4b3b6 4459gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4460{
76620aaf 4461 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4462
4463 if (!skb)
c7c4b3b6 4464 return GRO_DROP;
5d0d9be8 4465
ae78dbfa
BH
4466 trace_napi_gro_frags_entry(skb);
4467
89c5fa33 4468 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4469}
5d38a079
HX
4470EXPORT_SYMBOL(napi_gro_frags);
4471
573e8fca
TH
4472/* Compute the checksum from gro_offset and return the folded value
4473 * after adding in any pseudo checksum.
4474 */
4475__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4476{
4477 __wsum wsum;
4478 __sum16 sum;
4479
4480 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4481
4482 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4483 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4484 if (likely(!sum)) {
4485 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4486 !skb->csum_complete_sw)
4487 netdev_rx_csum_fault(skb->dev);
4488 }
4489
4490 NAPI_GRO_CB(skb)->csum = wsum;
4491 NAPI_GRO_CB(skb)->csum_valid = 1;
4492
4493 return sum;
4494}
4495EXPORT_SYMBOL(__skb_gro_checksum_complete);
4496
e326bed2 4497/*
855abcf0 4498 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4499 * Note: called with local irq disabled, but exits with local irq enabled.
4500 */
4501static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4502{
4503#ifdef CONFIG_RPS
4504 struct softnet_data *remsd = sd->rps_ipi_list;
4505
4506 if (remsd) {
4507 sd->rps_ipi_list = NULL;
4508
4509 local_irq_enable();
4510
4511 /* Send pending IPI's to kick RPS processing on remote cpus. */
4512 while (remsd) {
4513 struct softnet_data *next = remsd->rps_ipi_next;
4514
4515 if (cpu_online(remsd->cpu))
c46fff2a 4516 smp_call_function_single_async(remsd->cpu,
fce8ad15 4517 &remsd->csd);
e326bed2
ED
4518 remsd = next;
4519 }
4520 } else
4521#endif
4522 local_irq_enable();
4523}
4524
d75b1ade
ED
4525static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4526{
4527#ifdef CONFIG_RPS
4528 return sd->rps_ipi_list != NULL;
4529#else
4530 return false;
4531#endif
4532}
4533
bea3348e 4534static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4535{
4536 int work = 0;
eecfd7c4 4537 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4538
e326bed2
ED
4539 /* Check if we have pending ipi, its better to send them now,
4540 * not waiting net_rx_action() end.
4541 */
d75b1ade 4542 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4543 local_irq_disable();
4544 net_rps_action_and_irq_enable(sd);
4545 }
d75b1ade 4546
bea3348e 4547 napi->weight = weight_p;
6e7676c1 4548 local_irq_disable();
11ef7a89 4549 while (1) {
1da177e4 4550 struct sk_buff *skb;
6e7676c1
CG
4551
4552 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4553 rcu_read_lock();
6e7676c1
CG
4554 local_irq_enable();
4555 __netif_receive_skb(skb);
2c17d27c 4556 rcu_read_unlock();
6e7676c1 4557 local_irq_disable();
76cc8b13
TH
4558 input_queue_head_incr(sd);
4559 if (++work >= quota) {
4560 local_irq_enable();
4561 return work;
4562 }
6e7676c1 4563 }
1da177e4 4564
e36fa2f7 4565 rps_lock(sd);
11ef7a89 4566 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4567 /*
4568 * Inline a custom version of __napi_complete().
4569 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4570 * and NAPI_STATE_SCHED is the only possible flag set
4571 * on backlog.
4572 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4573 * and we dont need an smp_mb() memory barrier.
4574 */
eecfd7c4 4575 napi->state = 0;
11ef7a89 4576 rps_unlock(sd);
eecfd7c4 4577
11ef7a89 4578 break;
bea3348e 4579 }
11ef7a89
TH
4580
4581 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4582 &sd->process_queue);
e36fa2f7 4583 rps_unlock(sd);
6e7676c1
CG
4584 }
4585 local_irq_enable();
1da177e4 4586
bea3348e
SH
4587 return work;
4588}
1da177e4 4589
bea3348e
SH
4590/**
4591 * __napi_schedule - schedule for receive
c4ea43c5 4592 * @n: entry to schedule
bea3348e 4593 *
bc9ad166
ED
4594 * The entry's receive function will be scheduled to run.
4595 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4596 */
b5606c2d 4597void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4598{
4599 unsigned long flags;
1da177e4 4600
bea3348e 4601 local_irq_save(flags);
903ceff7 4602 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4603 local_irq_restore(flags);
1da177e4 4604}
bea3348e
SH
4605EXPORT_SYMBOL(__napi_schedule);
4606
bc9ad166
ED
4607/**
4608 * __napi_schedule_irqoff - schedule for receive
4609 * @n: entry to schedule
4610 *
4611 * Variant of __napi_schedule() assuming hard irqs are masked
4612 */
4613void __napi_schedule_irqoff(struct napi_struct *n)
4614{
4615 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4616}
4617EXPORT_SYMBOL(__napi_schedule_irqoff);
4618
d565b0a1
HX
4619void __napi_complete(struct napi_struct *n)
4620{
4621 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4622
d75b1ade 4623 list_del_init(&n->poll_list);
4e857c58 4624 smp_mb__before_atomic();
d565b0a1
HX
4625 clear_bit(NAPI_STATE_SCHED, &n->state);
4626}
4627EXPORT_SYMBOL(__napi_complete);
4628
3b47d303 4629void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4630{
4631 unsigned long flags;
4632
4633 /*
4634 * don't let napi dequeue from the cpu poll list
4635 * just in case its running on a different cpu
4636 */
4637 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4638 return;
4639
3b47d303
ED
4640 if (n->gro_list) {
4641 unsigned long timeout = 0;
d75b1ade 4642
3b47d303
ED
4643 if (work_done)
4644 timeout = n->dev->gro_flush_timeout;
4645
4646 if (timeout)
4647 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4648 HRTIMER_MODE_REL_PINNED);
4649 else
4650 napi_gro_flush(n, false);
4651 }
d75b1ade
ED
4652 if (likely(list_empty(&n->poll_list))) {
4653 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4654 } else {
4655 /* If n->poll_list is not empty, we need to mask irqs */
4656 local_irq_save(flags);
4657 __napi_complete(n);
4658 local_irq_restore(flags);
4659 }
d565b0a1 4660}
3b47d303 4661EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4662
af12fa6e
ET
4663/* must be called under rcu_read_lock(), as we dont take a reference */
4664struct napi_struct *napi_by_id(unsigned int napi_id)
4665{
4666 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4667 struct napi_struct *napi;
4668
4669 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4670 if (napi->napi_id == napi_id)
4671 return napi;
4672
4673 return NULL;
4674}
4675EXPORT_SYMBOL_GPL(napi_by_id);
4676
4677void napi_hash_add(struct napi_struct *napi)
4678{
4679 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4680
4681 spin_lock(&napi_hash_lock);
4682
4683 /* 0 is not a valid id, we also skip an id that is taken
4684 * we expect both events to be extremely rare
4685 */
4686 napi->napi_id = 0;
4687 while (!napi->napi_id) {
4688 napi->napi_id = ++napi_gen_id;
4689 if (napi_by_id(napi->napi_id))
4690 napi->napi_id = 0;
4691 }
4692
4693 hlist_add_head_rcu(&napi->napi_hash_node,
4694 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4695
4696 spin_unlock(&napi_hash_lock);
4697 }
4698}
4699EXPORT_SYMBOL_GPL(napi_hash_add);
4700
4701/* Warning : caller is responsible to make sure rcu grace period
4702 * is respected before freeing memory containing @napi
4703 */
4704void napi_hash_del(struct napi_struct *napi)
4705{
4706 spin_lock(&napi_hash_lock);
4707
4708 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4709 hlist_del_rcu(&napi->napi_hash_node);
4710
4711 spin_unlock(&napi_hash_lock);
4712}
4713EXPORT_SYMBOL_GPL(napi_hash_del);
4714
3b47d303
ED
4715static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4716{
4717 struct napi_struct *napi;
4718
4719 napi = container_of(timer, struct napi_struct, timer);
4720 if (napi->gro_list)
4721 napi_schedule(napi);
4722
4723 return HRTIMER_NORESTART;
4724}
4725
d565b0a1
HX
4726void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4727 int (*poll)(struct napi_struct *, int), int weight)
4728{
4729 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4730 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4731 napi->timer.function = napi_watchdog;
4ae5544f 4732 napi->gro_count = 0;
d565b0a1 4733 napi->gro_list = NULL;
5d38a079 4734 napi->skb = NULL;
d565b0a1 4735 napi->poll = poll;
82dc3c63
ED
4736 if (weight > NAPI_POLL_WEIGHT)
4737 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4738 weight, dev->name);
d565b0a1
HX
4739 napi->weight = weight;
4740 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4741 napi->dev = dev;
5d38a079 4742#ifdef CONFIG_NETPOLL
d565b0a1
HX
4743 spin_lock_init(&napi->poll_lock);
4744 napi->poll_owner = -1;
4745#endif
4746 set_bit(NAPI_STATE_SCHED, &napi->state);
4747}
4748EXPORT_SYMBOL(netif_napi_add);
4749
3b47d303
ED
4750void napi_disable(struct napi_struct *n)
4751{
4752 might_sleep();
4753 set_bit(NAPI_STATE_DISABLE, &n->state);
4754
4755 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4756 msleep(1);
2d8bff12
NH
4757 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4758 msleep(1);
3b47d303
ED
4759
4760 hrtimer_cancel(&n->timer);
4761
4762 clear_bit(NAPI_STATE_DISABLE, &n->state);
4763}
4764EXPORT_SYMBOL(napi_disable);
4765
d565b0a1
HX
4766void netif_napi_del(struct napi_struct *napi)
4767{
d7b06636 4768 list_del_init(&napi->dev_list);
76620aaf 4769 napi_free_frags(napi);
d565b0a1 4770
289dccbe 4771 kfree_skb_list(napi->gro_list);
d565b0a1 4772 napi->gro_list = NULL;
4ae5544f 4773 napi->gro_count = 0;
d565b0a1
HX
4774}
4775EXPORT_SYMBOL(netif_napi_del);
4776
726ce70e
HX
4777static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4778{
4779 void *have;
4780 int work, weight;
4781
4782 list_del_init(&n->poll_list);
4783
4784 have = netpoll_poll_lock(n);
4785
4786 weight = n->weight;
4787
4788 /* This NAPI_STATE_SCHED test is for avoiding a race
4789 * with netpoll's poll_napi(). Only the entity which
4790 * obtains the lock and sees NAPI_STATE_SCHED set will
4791 * actually make the ->poll() call. Therefore we avoid
4792 * accidentally calling ->poll() when NAPI is not scheduled.
4793 */
4794 work = 0;
4795 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4796 work = n->poll(n, weight);
4797 trace_napi_poll(n);
4798 }
4799
4800 WARN_ON_ONCE(work > weight);
4801
4802 if (likely(work < weight))
4803 goto out_unlock;
4804
4805 /* Drivers must not modify the NAPI state if they
4806 * consume the entire weight. In such cases this code
4807 * still "owns" the NAPI instance and therefore can
4808 * move the instance around on the list at-will.
4809 */
4810 if (unlikely(napi_disable_pending(n))) {
4811 napi_complete(n);
4812 goto out_unlock;
4813 }
4814
4815 if (n->gro_list) {
4816 /* flush too old packets
4817 * If HZ < 1000, flush all packets.
4818 */
4819 napi_gro_flush(n, HZ >= 1000);
4820 }
4821
001ce546
HX
4822 /* Some drivers may have called napi_schedule
4823 * prior to exhausting their budget.
4824 */
4825 if (unlikely(!list_empty(&n->poll_list))) {
4826 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4827 n->dev ? n->dev->name : "backlog");
4828 goto out_unlock;
4829 }
4830
726ce70e
HX
4831 list_add_tail(&n->poll_list, repoll);
4832
4833out_unlock:
4834 netpoll_poll_unlock(have);
4835
4836 return work;
4837}
4838
1da177e4
LT
4839static void net_rx_action(struct softirq_action *h)
4840{
903ceff7 4841 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4842 unsigned long time_limit = jiffies + 2;
51b0bded 4843 int budget = netdev_budget;
d75b1ade
ED
4844 LIST_HEAD(list);
4845 LIST_HEAD(repoll);
53fb95d3 4846
1da177e4 4847 local_irq_disable();
d75b1ade
ED
4848 list_splice_init(&sd->poll_list, &list);
4849 local_irq_enable();
1da177e4 4850
ceb8d5bf 4851 for (;;) {
bea3348e 4852 struct napi_struct *n;
1da177e4 4853
ceb8d5bf
HX
4854 if (list_empty(&list)) {
4855 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4856 return;
4857 break;
4858 }
4859
6bd373eb
HX
4860 n = list_first_entry(&list, struct napi_struct, poll_list);
4861 budget -= napi_poll(n, &repoll);
4862
d75b1ade 4863 /* If softirq window is exhausted then punt.
24f8b238
SH
4864 * Allow this to run for 2 jiffies since which will allow
4865 * an average latency of 1.5/HZ.
bea3348e 4866 */
ceb8d5bf
HX
4867 if (unlikely(budget <= 0 ||
4868 time_after_eq(jiffies, time_limit))) {
4869 sd->time_squeeze++;
4870 break;
4871 }
1da177e4 4872 }
d75b1ade 4873
d75b1ade
ED
4874 local_irq_disable();
4875
4876 list_splice_tail_init(&sd->poll_list, &list);
4877 list_splice_tail(&repoll, &list);
4878 list_splice(&list, &sd->poll_list);
4879 if (!list_empty(&sd->poll_list))
4880 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4881
e326bed2 4882 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4883}
4884
aa9d8560 4885struct netdev_adjacent {
9ff162a8 4886 struct net_device *dev;
5d261913
VF
4887
4888 /* upper master flag, there can only be one master device per list */
9ff162a8 4889 bool master;
5d261913 4890
5d261913
VF
4891 /* counter for the number of times this device was added to us */
4892 u16 ref_nr;
4893
402dae96
VF
4894 /* private field for the users */
4895 void *private;
4896
9ff162a8
JP
4897 struct list_head list;
4898 struct rcu_head rcu;
9ff162a8
JP
4899};
4900
6ea29da1 4901static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 4902 struct list_head *adj_list)
9ff162a8 4903{
5d261913 4904 struct netdev_adjacent *adj;
5d261913 4905
2f268f12 4906 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4907 if (adj->dev == adj_dev)
4908 return adj;
9ff162a8
JP
4909 }
4910 return NULL;
4911}
4912
4913/**
4914 * netdev_has_upper_dev - Check if device is linked to an upper device
4915 * @dev: device
4916 * @upper_dev: upper device to check
4917 *
4918 * Find out if a device is linked to specified upper device and return true
4919 * in case it is. Note that this checks only immediate upper device,
4920 * not through a complete stack of devices. The caller must hold the RTNL lock.
4921 */
4922bool netdev_has_upper_dev(struct net_device *dev,
4923 struct net_device *upper_dev)
4924{
4925 ASSERT_RTNL();
4926
6ea29da1 4927 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4928}
4929EXPORT_SYMBOL(netdev_has_upper_dev);
4930
4931/**
4932 * netdev_has_any_upper_dev - Check if device is linked to some device
4933 * @dev: device
4934 *
4935 * Find out if a device is linked to an upper device and return true in case
4936 * it is. The caller must hold the RTNL lock.
4937 */
1d143d9f 4938static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4939{
4940 ASSERT_RTNL();
4941
2f268f12 4942 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4943}
9ff162a8
JP
4944
4945/**
4946 * netdev_master_upper_dev_get - Get master upper device
4947 * @dev: device
4948 *
4949 * Find a master upper device and return pointer to it or NULL in case
4950 * it's not there. The caller must hold the RTNL lock.
4951 */
4952struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4953{
aa9d8560 4954 struct netdev_adjacent *upper;
9ff162a8
JP
4955
4956 ASSERT_RTNL();
4957
2f268f12 4958 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4959 return NULL;
4960
2f268f12 4961 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4962 struct netdev_adjacent, list);
9ff162a8
JP
4963 if (likely(upper->master))
4964 return upper->dev;
4965 return NULL;
4966}
4967EXPORT_SYMBOL(netdev_master_upper_dev_get);
4968
b6ccba4c
VF
4969void *netdev_adjacent_get_private(struct list_head *adj_list)
4970{
4971 struct netdev_adjacent *adj;
4972
4973 adj = list_entry(adj_list, struct netdev_adjacent, list);
4974
4975 return adj->private;
4976}
4977EXPORT_SYMBOL(netdev_adjacent_get_private);
4978
44a40855
VY
4979/**
4980 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4981 * @dev: device
4982 * @iter: list_head ** of the current position
4983 *
4984 * Gets the next device from the dev's upper list, starting from iter
4985 * position. The caller must hold RCU read lock.
4986 */
4987struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4988 struct list_head **iter)
4989{
4990 struct netdev_adjacent *upper;
4991
4992 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4993
4994 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4995
4996 if (&upper->list == &dev->adj_list.upper)
4997 return NULL;
4998
4999 *iter = &upper->list;
5000
5001 return upper->dev;
5002}
5003EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5004
31088a11
VF
5005/**
5006 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5007 * @dev: device
5008 * @iter: list_head ** of the current position
5009 *
5010 * Gets the next device from the dev's upper list, starting from iter
5011 * position. The caller must hold RCU read lock.
5012 */
2f268f12
VF
5013struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5014 struct list_head **iter)
48311f46
VF
5015{
5016 struct netdev_adjacent *upper;
5017
85328240 5018 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5019
5020 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5021
2f268f12 5022 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5023 return NULL;
5024
5025 *iter = &upper->list;
5026
5027 return upper->dev;
5028}
2f268f12 5029EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5030
31088a11
VF
5031/**
5032 * netdev_lower_get_next_private - Get the next ->private from the
5033 * lower neighbour list
5034 * @dev: device
5035 * @iter: list_head ** of the current position
5036 *
5037 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5038 * list, starting from iter position. The caller must hold either hold the
5039 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5040 * list will remain unchanged.
31088a11
VF
5041 */
5042void *netdev_lower_get_next_private(struct net_device *dev,
5043 struct list_head **iter)
5044{
5045 struct netdev_adjacent *lower;
5046
5047 lower = list_entry(*iter, struct netdev_adjacent, list);
5048
5049 if (&lower->list == &dev->adj_list.lower)
5050 return NULL;
5051
6859e7df 5052 *iter = lower->list.next;
31088a11
VF
5053
5054 return lower->private;
5055}
5056EXPORT_SYMBOL(netdev_lower_get_next_private);
5057
5058/**
5059 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5060 * lower neighbour list, RCU
5061 * variant
5062 * @dev: device
5063 * @iter: list_head ** of the current position
5064 *
5065 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5066 * list, starting from iter position. The caller must hold RCU read lock.
5067 */
5068void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5069 struct list_head **iter)
5070{
5071 struct netdev_adjacent *lower;
5072
5073 WARN_ON_ONCE(!rcu_read_lock_held());
5074
5075 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5076
5077 if (&lower->list == &dev->adj_list.lower)
5078 return NULL;
5079
6859e7df 5080 *iter = &lower->list;
31088a11
VF
5081
5082 return lower->private;
5083}
5084EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5085
4085ebe8
VY
5086/**
5087 * netdev_lower_get_next - Get the next device from the lower neighbour
5088 * list
5089 * @dev: device
5090 * @iter: list_head ** of the current position
5091 *
5092 * Gets the next netdev_adjacent from the dev's lower neighbour
5093 * list, starting from iter position. The caller must hold RTNL lock or
5094 * its own locking that guarantees that the neighbour lower
b469139e 5095 * list will remain unchanged.
4085ebe8
VY
5096 */
5097void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5098{
5099 struct netdev_adjacent *lower;
5100
5101 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5102
5103 if (&lower->list == &dev->adj_list.lower)
5104 return NULL;
5105
5106 *iter = &lower->list;
5107
5108 return lower->dev;
5109}
5110EXPORT_SYMBOL(netdev_lower_get_next);
5111
e001bfad 5112/**
5113 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5114 * lower neighbour list, RCU
5115 * variant
5116 * @dev: device
5117 *
5118 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5119 * list. The caller must hold RCU read lock.
5120 */
5121void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5122{
5123 struct netdev_adjacent *lower;
5124
5125 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5126 struct netdev_adjacent, list);
5127 if (lower)
5128 return lower->private;
5129 return NULL;
5130}
5131EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5132
9ff162a8
JP
5133/**
5134 * netdev_master_upper_dev_get_rcu - Get master upper device
5135 * @dev: device
5136 *
5137 * Find a master upper device and return pointer to it or NULL in case
5138 * it's not there. The caller must hold the RCU read lock.
5139 */
5140struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5141{
aa9d8560 5142 struct netdev_adjacent *upper;
9ff162a8 5143
2f268f12 5144 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5145 struct netdev_adjacent, list);
9ff162a8
JP
5146 if (upper && likely(upper->master))
5147 return upper->dev;
5148 return NULL;
5149}
5150EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5151
0a59f3a9 5152static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5153 struct net_device *adj_dev,
5154 struct list_head *dev_list)
5155{
5156 char linkname[IFNAMSIZ+7];
5157 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5158 "upper_%s" : "lower_%s", adj_dev->name);
5159 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5160 linkname);
5161}
0a59f3a9 5162static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5163 char *name,
5164 struct list_head *dev_list)
5165{
5166 char linkname[IFNAMSIZ+7];
5167 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5168 "upper_%s" : "lower_%s", name);
5169 sysfs_remove_link(&(dev->dev.kobj), linkname);
5170}
5171
7ce64c79
AF
5172static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5173 struct net_device *adj_dev,
5174 struct list_head *dev_list)
5175{
5176 return (dev_list == &dev->adj_list.upper ||
5177 dev_list == &dev->adj_list.lower) &&
5178 net_eq(dev_net(dev), dev_net(adj_dev));
5179}
3ee32707 5180
5d261913
VF
5181static int __netdev_adjacent_dev_insert(struct net_device *dev,
5182 struct net_device *adj_dev,
7863c054 5183 struct list_head *dev_list,
402dae96 5184 void *private, bool master)
5d261913
VF
5185{
5186 struct netdev_adjacent *adj;
842d67a7 5187 int ret;
5d261913 5188
6ea29da1 5189 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5190
5191 if (adj) {
5d261913
VF
5192 adj->ref_nr++;
5193 return 0;
5194 }
5195
5196 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5197 if (!adj)
5198 return -ENOMEM;
5199
5200 adj->dev = adj_dev;
5201 adj->master = master;
5d261913 5202 adj->ref_nr = 1;
402dae96 5203 adj->private = private;
5d261913 5204 dev_hold(adj_dev);
2f268f12
VF
5205
5206 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5207 adj_dev->name, dev->name, adj_dev->name);
5d261913 5208
7ce64c79 5209 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5210 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5211 if (ret)
5212 goto free_adj;
5213 }
5214
7863c054 5215 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5216 if (master) {
5217 ret = sysfs_create_link(&(dev->dev.kobj),
5218 &(adj_dev->dev.kobj), "master");
5219 if (ret)
5831d66e 5220 goto remove_symlinks;
842d67a7 5221
7863c054 5222 list_add_rcu(&adj->list, dev_list);
842d67a7 5223 } else {
7863c054 5224 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5225 }
5d261913
VF
5226
5227 return 0;
842d67a7 5228
5831d66e 5229remove_symlinks:
7ce64c79 5230 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5231 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5232free_adj:
5233 kfree(adj);
974daef7 5234 dev_put(adj_dev);
842d67a7
VF
5235
5236 return ret;
5d261913
VF
5237}
5238
1d143d9f 5239static void __netdev_adjacent_dev_remove(struct net_device *dev,
5240 struct net_device *adj_dev,
5241 struct list_head *dev_list)
5d261913
VF
5242{
5243 struct netdev_adjacent *adj;
5244
6ea29da1 5245 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5246
2f268f12
VF
5247 if (!adj) {
5248 pr_err("tried to remove device %s from %s\n",
5249 dev->name, adj_dev->name);
5d261913 5250 BUG();
2f268f12 5251 }
5d261913
VF
5252
5253 if (adj->ref_nr > 1) {
2f268f12
VF
5254 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5255 adj->ref_nr-1);
5d261913
VF
5256 adj->ref_nr--;
5257 return;
5258 }
5259
842d67a7
VF
5260 if (adj->master)
5261 sysfs_remove_link(&(dev->dev.kobj), "master");
5262
7ce64c79 5263 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5264 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5265
5d261913 5266 list_del_rcu(&adj->list);
2f268f12
VF
5267 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5268 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5269 dev_put(adj_dev);
5270 kfree_rcu(adj, rcu);
5271}
5272
1d143d9f 5273static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5274 struct net_device *upper_dev,
5275 struct list_head *up_list,
5276 struct list_head *down_list,
5277 void *private, bool master)
5d261913
VF
5278{
5279 int ret;
5280
402dae96
VF
5281 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5282 master);
5d261913
VF
5283 if (ret)
5284 return ret;
5285
402dae96
VF
5286 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5287 false);
5d261913 5288 if (ret) {
2f268f12 5289 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5290 return ret;
5291 }
5292
5293 return 0;
5294}
5295
1d143d9f 5296static int __netdev_adjacent_dev_link(struct net_device *dev,
5297 struct net_device *upper_dev)
5d261913 5298{
2f268f12
VF
5299 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5300 &dev->all_adj_list.upper,
5301 &upper_dev->all_adj_list.lower,
402dae96 5302 NULL, false);
5d261913
VF
5303}
5304
1d143d9f 5305static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5306 struct net_device *upper_dev,
5307 struct list_head *up_list,
5308 struct list_head *down_list)
5d261913 5309{
2f268f12
VF
5310 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5311 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5312}
5313
1d143d9f 5314static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5315 struct net_device *upper_dev)
5d261913 5316{
2f268f12
VF
5317 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5318 &dev->all_adj_list.upper,
5319 &upper_dev->all_adj_list.lower);
5320}
5321
1d143d9f 5322static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5323 struct net_device *upper_dev,
5324 void *private, bool master)
2f268f12
VF
5325{
5326 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5327
5328 if (ret)
5329 return ret;
5330
5331 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5332 &dev->adj_list.upper,
5333 &upper_dev->adj_list.lower,
402dae96 5334 private, master);
2f268f12
VF
5335 if (ret) {
5336 __netdev_adjacent_dev_unlink(dev, upper_dev);
5337 return ret;
5338 }
5339
5340 return 0;
5d261913
VF
5341}
5342
1d143d9f 5343static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5344 struct net_device *upper_dev)
2f268f12
VF
5345{
5346 __netdev_adjacent_dev_unlink(dev, upper_dev);
5347 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5348 &dev->adj_list.upper,
5349 &upper_dev->adj_list.lower);
5350}
5d261913 5351
9ff162a8 5352static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5353 struct net_device *upper_dev, bool master,
5354 void *private)
9ff162a8 5355{
0e4ead9d 5356 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5357 struct netdev_adjacent *i, *j, *to_i, *to_j;
5358 int ret = 0;
9ff162a8
JP
5359
5360 ASSERT_RTNL();
5361
5362 if (dev == upper_dev)
5363 return -EBUSY;
5364
5365 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5366 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5367 return -EBUSY;
5368
6ea29da1 5369 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5370 return -EEXIST;
5371
5372 if (master && netdev_master_upper_dev_get(dev))
5373 return -EBUSY;
5374
0e4ead9d
JP
5375 changeupper_info.upper_dev = upper_dev;
5376 changeupper_info.master = master;
5377 changeupper_info.linking = true;
5378
573c7ba0
JP
5379 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5380 &changeupper_info.info);
5381 ret = notifier_to_errno(ret);
5382 if (ret)
5383 return ret;
5384
402dae96
VF
5385 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5386 master);
5d261913
VF
5387 if (ret)
5388 return ret;
9ff162a8 5389
5d261913 5390 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5391 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5392 * versa, and don't forget the devices itself. All of these
5393 * links are non-neighbours.
5394 */
2f268f12
VF
5395 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5396 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5397 pr_debug("Interlinking %s with %s, non-neighbour\n",
5398 i->dev->name, j->dev->name);
5d261913
VF
5399 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5400 if (ret)
5401 goto rollback_mesh;
5402 }
5403 }
5404
5405 /* add dev to every upper_dev's upper device */
2f268f12
VF
5406 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5407 pr_debug("linking %s's upper device %s with %s\n",
5408 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5409 ret = __netdev_adjacent_dev_link(dev, i->dev);
5410 if (ret)
5411 goto rollback_upper_mesh;
5412 }
5413
5414 /* add upper_dev to every dev's lower device */
2f268f12
VF
5415 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5416 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5417 i->dev->name, upper_dev->name);
5d261913
VF
5418 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5419 if (ret)
5420 goto rollback_lower_mesh;
5421 }
9ff162a8 5422
0e4ead9d
JP
5423 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5424 &changeupper_info.info);
9ff162a8 5425 return 0;
5d261913
VF
5426
5427rollback_lower_mesh:
5428 to_i = i;
2f268f12 5429 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5430 if (i == to_i)
5431 break;
5432 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5433 }
5434
5435 i = NULL;
5436
5437rollback_upper_mesh:
5438 to_i = i;
2f268f12 5439 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5440 if (i == to_i)
5441 break;
5442 __netdev_adjacent_dev_unlink(dev, i->dev);
5443 }
5444
5445 i = j = NULL;
5446
5447rollback_mesh:
5448 to_i = i;
5449 to_j = j;
2f268f12
VF
5450 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5451 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5452 if (i == to_i && j == to_j)
5453 break;
5454 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5455 }
5456 if (i == to_i)
5457 break;
5458 }
5459
2f268f12 5460 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5461
5462 return ret;
9ff162a8
JP
5463}
5464
5465/**
5466 * netdev_upper_dev_link - Add a link to the upper device
5467 * @dev: device
5468 * @upper_dev: new upper device
5469 *
5470 * Adds a link to device which is upper to this one. The caller must hold
5471 * the RTNL lock. On a failure a negative errno code is returned.
5472 * On success the reference counts are adjusted and the function
5473 * returns zero.
5474 */
5475int netdev_upper_dev_link(struct net_device *dev,
5476 struct net_device *upper_dev)
5477{
402dae96 5478 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5479}
5480EXPORT_SYMBOL(netdev_upper_dev_link);
5481
5482/**
5483 * netdev_master_upper_dev_link - Add a master link to the upper device
5484 * @dev: device
5485 * @upper_dev: new upper device
5486 *
5487 * Adds a link to device which is upper to this one. In this case, only
5488 * one master upper device can be linked, although other non-master devices
5489 * might be linked as well. The caller must hold the RTNL lock.
5490 * On a failure a negative errno code is returned. On success the reference
5491 * counts are adjusted and the function returns zero.
5492 */
5493int netdev_master_upper_dev_link(struct net_device *dev,
5494 struct net_device *upper_dev)
5495{
402dae96 5496 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5497}
5498EXPORT_SYMBOL(netdev_master_upper_dev_link);
5499
402dae96
VF
5500int netdev_master_upper_dev_link_private(struct net_device *dev,
5501 struct net_device *upper_dev,
5502 void *private)
5503{
5504 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5505}
5506EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5507
9ff162a8
JP
5508/**
5509 * netdev_upper_dev_unlink - Removes a link to upper device
5510 * @dev: device
5511 * @upper_dev: new upper device
5512 *
5513 * Removes a link to device which is upper to this one. The caller must hold
5514 * the RTNL lock.
5515 */
5516void netdev_upper_dev_unlink(struct net_device *dev,
5517 struct net_device *upper_dev)
5518{
0e4ead9d 5519 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5520 struct netdev_adjacent *i, *j;
9ff162a8
JP
5521 ASSERT_RTNL();
5522
0e4ead9d
JP
5523 changeupper_info.upper_dev = upper_dev;
5524 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5525 changeupper_info.linking = false;
5526
573c7ba0
JP
5527 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5528 &changeupper_info.info);
5529
2f268f12 5530 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5531
5532 /* Here is the tricky part. We must remove all dev's lower
5533 * devices from all upper_dev's upper devices and vice
5534 * versa, to maintain the graph relationship.
5535 */
2f268f12
VF
5536 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5537 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5538 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5539
5540 /* remove also the devices itself from lower/upper device
5541 * list
5542 */
2f268f12 5543 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5544 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5545
2f268f12 5546 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5547 __netdev_adjacent_dev_unlink(dev, i->dev);
5548
0e4ead9d
JP
5549 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5550 &changeupper_info.info);
9ff162a8
JP
5551}
5552EXPORT_SYMBOL(netdev_upper_dev_unlink);
5553
61bd3857
MS
5554/**
5555 * netdev_bonding_info_change - Dispatch event about slave change
5556 * @dev: device
4a26e453 5557 * @bonding_info: info to dispatch
61bd3857
MS
5558 *
5559 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5560 * The caller must hold the RTNL lock.
5561 */
5562void netdev_bonding_info_change(struct net_device *dev,
5563 struct netdev_bonding_info *bonding_info)
5564{
5565 struct netdev_notifier_bonding_info info;
5566
5567 memcpy(&info.bonding_info, bonding_info,
5568 sizeof(struct netdev_bonding_info));
5569 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5570 &info.info);
5571}
5572EXPORT_SYMBOL(netdev_bonding_info_change);
5573
2ce1ee17 5574static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5575{
5576 struct netdev_adjacent *iter;
5577
5578 struct net *net = dev_net(dev);
5579
5580 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5581 if (!net_eq(net,dev_net(iter->dev)))
5582 continue;
5583 netdev_adjacent_sysfs_add(iter->dev, dev,
5584 &iter->dev->adj_list.lower);
5585 netdev_adjacent_sysfs_add(dev, iter->dev,
5586 &dev->adj_list.upper);
5587 }
5588
5589 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5590 if (!net_eq(net,dev_net(iter->dev)))
5591 continue;
5592 netdev_adjacent_sysfs_add(iter->dev, dev,
5593 &iter->dev->adj_list.upper);
5594 netdev_adjacent_sysfs_add(dev, iter->dev,
5595 &dev->adj_list.lower);
5596 }
5597}
5598
2ce1ee17 5599static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5600{
5601 struct netdev_adjacent *iter;
5602
5603 struct net *net = dev_net(dev);
5604
5605 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5606 if (!net_eq(net,dev_net(iter->dev)))
5607 continue;
5608 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5609 &iter->dev->adj_list.lower);
5610 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5611 &dev->adj_list.upper);
5612 }
5613
5614 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5615 if (!net_eq(net,dev_net(iter->dev)))
5616 continue;
5617 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5618 &iter->dev->adj_list.upper);
5619 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5620 &dev->adj_list.lower);
5621 }
5622}
5623
5bb025fa 5624void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5625{
5bb025fa 5626 struct netdev_adjacent *iter;
402dae96 5627
4c75431a
AF
5628 struct net *net = dev_net(dev);
5629
5bb025fa 5630 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5631 if (!net_eq(net,dev_net(iter->dev)))
5632 continue;
5bb025fa
VF
5633 netdev_adjacent_sysfs_del(iter->dev, oldname,
5634 &iter->dev->adj_list.lower);
5635 netdev_adjacent_sysfs_add(iter->dev, dev,
5636 &iter->dev->adj_list.lower);
5637 }
402dae96 5638
5bb025fa 5639 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5640 if (!net_eq(net,dev_net(iter->dev)))
5641 continue;
5bb025fa
VF
5642 netdev_adjacent_sysfs_del(iter->dev, oldname,
5643 &iter->dev->adj_list.upper);
5644 netdev_adjacent_sysfs_add(iter->dev, dev,
5645 &iter->dev->adj_list.upper);
5646 }
402dae96 5647}
402dae96
VF
5648
5649void *netdev_lower_dev_get_private(struct net_device *dev,
5650 struct net_device *lower_dev)
5651{
5652 struct netdev_adjacent *lower;
5653
5654 if (!lower_dev)
5655 return NULL;
6ea29da1 5656 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5657 if (!lower)
5658 return NULL;
5659
5660 return lower->private;
5661}
5662EXPORT_SYMBOL(netdev_lower_dev_get_private);
5663
4085ebe8
VY
5664
5665int dev_get_nest_level(struct net_device *dev,
5666 bool (*type_check)(struct net_device *dev))
5667{
5668 struct net_device *lower = NULL;
5669 struct list_head *iter;
5670 int max_nest = -1;
5671 int nest;
5672
5673 ASSERT_RTNL();
5674
5675 netdev_for_each_lower_dev(dev, lower, iter) {
5676 nest = dev_get_nest_level(lower, type_check);
5677 if (max_nest < nest)
5678 max_nest = nest;
5679 }
5680
5681 if (type_check(dev))
5682 max_nest++;
5683
5684 return max_nest;
5685}
5686EXPORT_SYMBOL(dev_get_nest_level);
5687
b6c40d68
PM
5688static void dev_change_rx_flags(struct net_device *dev, int flags)
5689{
d314774c
SH
5690 const struct net_device_ops *ops = dev->netdev_ops;
5691
d2615bf4 5692 if (ops->ndo_change_rx_flags)
d314774c 5693 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5694}
5695
991fb3f7 5696static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5697{
b536db93 5698 unsigned int old_flags = dev->flags;
d04a48b0
EB
5699 kuid_t uid;
5700 kgid_t gid;
1da177e4 5701
24023451
PM
5702 ASSERT_RTNL();
5703
dad9b335
WC
5704 dev->flags |= IFF_PROMISC;
5705 dev->promiscuity += inc;
5706 if (dev->promiscuity == 0) {
5707 /*
5708 * Avoid overflow.
5709 * If inc causes overflow, untouch promisc and return error.
5710 */
5711 if (inc < 0)
5712 dev->flags &= ~IFF_PROMISC;
5713 else {
5714 dev->promiscuity -= inc;
7b6cd1ce
JP
5715 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5716 dev->name);
dad9b335
WC
5717 return -EOVERFLOW;
5718 }
5719 }
52609c0b 5720 if (dev->flags != old_flags) {
7b6cd1ce
JP
5721 pr_info("device %s %s promiscuous mode\n",
5722 dev->name,
5723 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5724 if (audit_enabled) {
5725 current_uid_gid(&uid, &gid);
7759db82
KHK
5726 audit_log(current->audit_context, GFP_ATOMIC,
5727 AUDIT_ANOM_PROMISCUOUS,
5728 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5729 dev->name, (dev->flags & IFF_PROMISC),
5730 (old_flags & IFF_PROMISC),
e1760bd5 5731 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5732 from_kuid(&init_user_ns, uid),
5733 from_kgid(&init_user_ns, gid),
7759db82 5734 audit_get_sessionid(current));
8192b0c4 5735 }
24023451 5736
b6c40d68 5737 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5738 }
991fb3f7
ND
5739 if (notify)
5740 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5741 return 0;
1da177e4
LT
5742}
5743
4417da66
PM
5744/**
5745 * dev_set_promiscuity - update promiscuity count on a device
5746 * @dev: device
5747 * @inc: modifier
5748 *
5749 * Add or remove promiscuity from a device. While the count in the device
5750 * remains above zero the interface remains promiscuous. Once it hits zero
5751 * the device reverts back to normal filtering operation. A negative inc
5752 * value is used to drop promiscuity on the device.
dad9b335 5753 * Return 0 if successful or a negative errno code on error.
4417da66 5754 */
dad9b335 5755int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5756{
b536db93 5757 unsigned int old_flags = dev->flags;
dad9b335 5758 int err;
4417da66 5759
991fb3f7 5760 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5761 if (err < 0)
dad9b335 5762 return err;
4417da66
PM
5763 if (dev->flags != old_flags)
5764 dev_set_rx_mode(dev);
dad9b335 5765 return err;
4417da66 5766}
d1b19dff 5767EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5768
991fb3f7 5769static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5770{
991fb3f7 5771 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5772
24023451
PM
5773 ASSERT_RTNL();
5774
1da177e4 5775 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5776 dev->allmulti += inc;
5777 if (dev->allmulti == 0) {
5778 /*
5779 * Avoid overflow.
5780 * If inc causes overflow, untouch allmulti and return error.
5781 */
5782 if (inc < 0)
5783 dev->flags &= ~IFF_ALLMULTI;
5784 else {
5785 dev->allmulti -= inc;
7b6cd1ce
JP
5786 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5787 dev->name);
dad9b335
WC
5788 return -EOVERFLOW;
5789 }
5790 }
24023451 5791 if (dev->flags ^ old_flags) {
b6c40d68 5792 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5793 dev_set_rx_mode(dev);
991fb3f7
ND
5794 if (notify)
5795 __dev_notify_flags(dev, old_flags,
5796 dev->gflags ^ old_gflags);
24023451 5797 }
dad9b335 5798 return 0;
4417da66 5799}
991fb3f7
ND
5800
5801/**
5802 * dev_set_allmulti - update allmulti count on a device
5803 * @dev: device
5804 * @inc: modifier
5805 *
5806 * Add or remove reception of all multicast frames to a device. While the
5807 * count in the device remains above zero the interface remains listening
5808 * to all interfaces. Once it hits zero the device reverts back to normal
5809 * filtering operation. A negative @inc value is used to drop the counter
5810 * when releasing a resource needing all multicasts.
5811 * Return 0 if successful or a negative errno code on error.
5812 */
5813
5814int dev_set_allmulti(struct net_device *dev, int inc)
5815{
5816 return __dev_set_allmulti(dev, inc, true);
5817}
d1b19dff 5818EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5819
5820/*
5821 * Upload unicast and multicast address lists to device and
5822 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5823 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5824 * are present.
5825 */
5826void __dev_set_rx_mode(struct net_device *dev)
5827{
d314774c
SH
5828 const struct net_device_ops *ops = dev->netdev_ops;
5829
4417da66
PM
5830 /* dev_open will call this function so the list will stay sane. */
5831 if (!(dev->flags&IFF_UP))
5832 return;
5833
5834 if (!netif_device_present(dev))
40b77c94 5835 return;
4417da66 5836
01789349 5837 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5838 /* Unicast addresses changes may only happen under the rtnl,
5839 * therefore calling __dev_set_promiscuity here is safe.
5840 */
32e7bfc4 5841 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5842 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5843 dev->uc_promisc = true;
32e7bfc4 5844 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5845 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5846 dev->uc_promisc = false;
4417da66 5847 }
4417da66 5848 }
01789349
JP
5849
5850 if (ops->ndo_set_rx_mode)
5851 ops->ndo_set_rx_mode(dev);
4417da66
PM
5852}
5853
5854void dev_set_rx_mode(struct net_device *dev)
5855{
b9e40857 5856 netif_addr_lock_bh(dev);
4417da66 5857 __dev_set_rx_mode(dev);
b9e40857 5858 netif_addr_unlock_bh(dev);
1da177e4
LT
5859}
5860
f0db275a
SH
5861/**
5862 * dev_get_flags - get flags reported to userspace
5863 * @dev: device
5864 *
5865 * Get the combination of flag bits exported through APIs to userspace.
5866 */
95c96174 5867unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5868{
95c96174 5869 unsigned int flags;
1da177e4
LT
5870
5871 flags = (dev->flags & ~(IFF_PROMISC |
5872 IFF_ALLMULTI |
b00055aa
SR
5873 IFF_RUNNING |
5874 IFF_LOWER_UP |
5875 IFF_DORMANT)) |
1da177e4
LT
5876 (dev->gflags & (IFF_PROMISC |
5877 IFF_ALLMULTI));
5878
b00055aa
SR
5879 if (netif_running(dev)) {
5880 if (netif_oper_up(dev))
5881 flags |= IFF_RUNNING;
5882 if (netif_carrier_ok(dev))
5883 flags |= IFF_LOWER_UP;
5884 if (netif_dormant(dev))
5885 flags |= IFF_DORMANT;
5886 }
1da177e4
LT
5887
5888 return flags;
5889}
d1b19dff 5890EXPORT_SYMBOL(dev_get_flags);
1da177e4 5891
bd380811 5892int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5893{
b536db93 5894 unsigned int old_flags = dev->flags;
bd380811 5895 int ret;
1da177e4 5896
24023451
PM
5897 ASSERT_RTNL();
5898
1da177e4
LT
5899 /*
5900 * Set the flags on our device.
5901 */
5902
5903 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5904 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5905 IFF_AUTOMEDIA)) |
5906 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5907 IFF_ALLMULTI));
5908
5909 /*
5910 * Load in the correct multicast list now the flags have changed.
5911 */
5912
b6c40d68
PM
5913 if ((old_flags ^ flags) & IFF_MULTICAST)
5914 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5915
4417da66 5916 dev_set_rx_mode(dev);
1da177e4
LT
5917
5918 /*
5919 * Have we downed the interface. We handle IFF_UP ourselves
5920 * according to user attempts to set it, rather than blindly
5921 * setting it.
5922 */
5923
5924 ret = 0;
d215d10f 5925 if ((old_flags ^ flags) & IFF_UP)
bd380811 5926 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5927
1da177e4 5928 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5929 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5930 unsigned int old_flags = dev->flags;
d1b19dff 5931
1da177e4 5932 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5933
5934 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5935 if (dev->flags != old_flags)
5936 dev_set_rx_mode(dev);
1da177e4
LT
5937 }
5938
5939 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5940 is important. Some (broken) drivers set IFF_PROMISC, when
5941 IFF_ALLMULTI is requested not asking us and not reporting.
5942 */
5943 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5944 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5945
1da177e4 5946 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5947 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5948 }
5949
bd380811
PM
5950 return ret;
5951}
5952
a528c219
ND
5953void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5954 unsigned int gchanges)
bd380811
PM
5955{
5956 unsigned int changes = dev->flags ^ old_flags;
5957
a528c219 5958 if (gchanges)
7f294054 5959 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5960
bd380811
PM
5961 if (changes & IFF_UP) {
5962 if (dev->flags & IFF_UP)
5963 call_netdevice_notifiers(NETDEV_UP, dev);
5964 else
5965 call_netdevice_notifiers(NETDEV_DOWN, dev);
5966 }
5967
5968 if (dev->flags & IFF_UP &&
be9efd36
JP
5969 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5970 struct netdev_notifier_change_info change_info;
5971
5972 change_info.flags_changed = changes;
5973 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5974 &change_info.info);
5975 }
bd380811
PM
5976}
5977
5978/**
5979 * dev_change_flags - change device settings
5980 * @dev: device
5981 * @flags: device state flags
5982 *
5983 * Change settings on device based state flags. The flags are
5984 * in the userspace exported format.
5985 */
b536db93 5986int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5987{
b536db93 5988 int ret;
991fb3f7 5989 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5990
5991 ret = __dev_change_flags(dev, flags);
5992 if (ret < 0)
5993 return ret;
5994
991fb3f7 5995 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5996 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5997 return ret;
5998}
d1b19dff 5999EXPORT_SYMBOL(dev_change_flags);
1da177e4 6000
2315dc91
VF
6001static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6002{
6003 const struct net_device_ops *ops = dev->netdev_ops;
6004
6005 if (ops->ndo_change_mtu)
6006 return ops->ndo_change_mtu(dev, new_mtu);
6007
6008 dev->mtu = new_mtu;
6009 return 0;
6010}
6011
f0db275a
SH
6012/**
6013 * dev_set_mtu - Change maximum transfer unit
6014 * @dev: device
6015 * @new_mtu: new transfer unit
6016 *
6017 * Change the maximum transfer size of the network device.
6018 */
1da177e4
LT
6019int dev_set_mtu(struct net_device *dev, int new_mtu)
6020{
2315dc91 6021 int err, orig_mtu;
1da177e4
LT
6022
6023 if (new_mtu == dev->mtu)
6024 return 0;
6025
6026 /* MTU must be positive. */
6027 if (new_mtu < 0)
6028 return -EINVAL;
6029
6030 if (!netif_device_present(dev))
6031 return -ENODEV;
6032
1d486bfb
VF
6033 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6034 err = notifier_to_errno(err);
6035 if (err)
6036 return err;
d314774c 6037
2315dc91
VF
6038 orig_mtu = dev->mtu;
6039 err = __dev_set_mtu(dev, new_mtu);
d314774c 6040
2315dc91
VF
6041 if (!err) {
6042 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6043 err = notifier_to_errno(err);
6044 if (err) {
6045 /* setting mtu back and notifying everyone again,
6046 * so that they have a chance to revert changes.
6047 */
6048 __dev_set_mtu(dev, orig_mtu);
6049 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6050 }
6051 }
1da177e4
LT
6052 return err;
6053}
d1b19dff 6054EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6055
cbda10fa
VD
6056/**
6057 * dev_set_group - Change group this device belongs to
6058 * @dev: device
6059 * @new_group: group this device should belong to
6060 */
6061void dev_set_group(struct net_device *dev, int new_group)
6062{
6063 dev->group = new_group;
6064}
6065EXPORT_SYMBOL(dev_set_group);
6066
f0db275a
SH
6067/**
6068 * dev_set_mac_address - Change Media Access Control Address
6069 * @dev: device
6070 * @sa: new address
6071 *
6072 * Change the hardware (MAC) address of the device
6073 */
1da177e4
LT
6074int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6075{
d314774c 6076 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6077 int err;
6078
d314774c 6079 if (!ops->ndo_set_mac_address)
1da177e4
LT
6080 return -EOPNOTSUPP;
6081 if (sa->sa_family != dev->type)
6082 return -EINVAL;
6083 if (!netif_device_present(dev))
6084 return -ENODEV;
d314774c 6085 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6086 if (err)
6087 return err;
fbdeca2d 6088 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6089 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6090 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6091 return 0;
1da177e4 6092}
d1b19dff 6093EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6094
4bf84c35
JP
6095/**
6096 * dev_change_carrier - Change device carrier
6097 * @dev: device
691b3b7e 6098 * @new_carrier: new value
4bf84c35
JP
6099 *
6100 * Change device carrier
6101 */
6102int dev_change_carrier(struct net_device *dev, bool new_carrier)
6103{
6104 const struct net_device_ops *ops = dev->netdev_ops;
6105
6106 if (!ops->ndo_change_carrier)
6107 return -EOPNOTSUPP;
6108 if (!netif_device_present(dev))
6109 return -ENODEV;
6110 return ops->ndo_change_carrier(dev, new_carrier);
6111}
6112EXPORT_SYMBOL(dev_change_carrier);
6113
66b52b0d
JP
6114/**
6115 * dev_get_phys_port_id - Get device physical port ID
6116 * @dev: device
6117 * @ppid: port ID
6118 *
6119 * Get device physical port ID
6120 */
6121int dev_get_phys_port_id(struct net_device *dev,
02637fce 6122 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6123{
6124 const struct net_device_ops *ops = dev->netdev_ops;
6125
6126 if (!ops->ndo_get_phys_port_id)
6127 return -EOPNOTSUPP;
6128 return ops->ndo_get_phys_port_id(dev, ppid);
6129}
6130EXPORT_SYMBOL(dev_get_phys_port_id);
6131
db24a904
DA
6132/**
6133 * dev_get_phys_port_name - Get device physical port name
6134 * @dev: device
6135 * @name: port name
6136 *
6137 * Get device physical port name
6138 */
6139int dev_get_phys_port_name(struct net_device *dev,
6140 char *name, size_t len)
6141{
6142 const struct net_device_ops *ops = dev->netdev_ops;
6143
6144 if (!ops->ndo_get_phys_port_name)
6145 return -EOPNOTSUPP;
6146 return ops->ndo_get_phys_port_name(dev, name, len);
6147}
6148EXPORT_SYMBOL(dev_get_phys_port_name);
6149
d746d707
AK
6150/**
6151 * dev_change_proto_down - update protocol port state information
6152 * @dev: device
6153 * @proto_down: new value
6154 *
6155 * This info can be used by switch drivers to set the phys state of the
6156 * port.
6157 */
6158int dev_change_proto_down(struct net_device *dev, bool proto_down)
6159{
6160 const struct net_device_ops *ops = dev->netdev_ops;
6161
6162 if (!ops->ndo_change_proto_down)
6163 return -EOPNOTSUPP;
6164 if (!netif_device_present(dev))
6165 return -ENODEV;
6166 return ops->ndo_change_proto_down(dev, proto_down);
6167}
6168EXPORT_SYMBOL(dev_change_proto_down);
6169
1da177e4
LT
6170/**
6171 * dev_new_index - allocate an ifindex
c4ea43c5 6172 * @net: the applicable net namespace
1da177e4
LT
6173 *
6174 * Returns a suitable unique value for a new device interface
6175 * number. The caller must hold the rtnl semaphore or the
6176 * dev_base_lock to be sure it remains unique.
6177 */
881d966b 6178static int dev_new_index(struct net *net)
1da177e4 6179{
aa79e66e 6180 int ifindex = net->ifindex;
1da177e4
LT
6181 for (;;) {
6182 if (++ifindex <= 0)
6183 ifindex = 1;
881d966b 6184 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6185 return net->ifindex = ifindex;
1da177e4
LT
6186 }
6187}
6188
1da177e4 6189/* Delayed registration/unregisteration */
3b5b34fd 6190static LIST_HEAD(net_todo_list);
200b916f 6191DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6192
6f05f629 6193static void net_set_todo(struct net_device *dev)
1da177e4 6194{
1da177e4 6195 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6196 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6197}
6198
9b5e383c 6199static void rollback_registered_many(struct list_head *head)
93ee31f1 6200{
e93737b0 6201 struct net_device *dev, *tmp;
5cde2829 6202 LIST_HEAD(close_head);
9b5e383c 6203
93ee31f1
DL
6204 BUG_ON(dev_boot_phase);
6205 ASSERT_RTNL();
6206
e93737b0 6207 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6208 /* Some devices call without registering
e93737b0
KK
6209 * for initialization unwind. Remove those
6210 * devices and proceed with the remaining.
9b5e383c
ED
6211 */
6212 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6213 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6214 dev->name, dev);
93ee31f1 6215
9b5e383c 6216 WARN_ON(1);
e93737b0
KK
6217 list_del(&dev->unreg_list);
6218 continue;
9b5e383c 6219 }
449f4544 6220 dev->dismantle = true;
9b5e383c 6221 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6222 }
93ee31f1 6223
44345724 6224 /* If device is running, close it first. */
5cde2829
EB
6225 list_for_each_entry(dev, head, unreg_list)
6226 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6227 dev_close_many(&close_head, true);
93ee31f1 6228
44345724 6229 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6230 /* And unlink it from device chain. */
6231 unlist_netdevice(dev);
93ee31f1 6232
9b5e383c 6233 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6234 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6235 }
93ee31f1
DL
6236
6237 synchronize_net();
6238
9b5e383c 6239 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6240 struct sk_buff *skb = NULL;
6241
9b5e383c
ED
6242 /* Shutdown queueing discipline. */
6243 dev_shutdown(dev);
93ee31f1
DL
6244
6245
9b5e383c
ED
6246 /* Notify protocols, that we are about to destroy
6247 this device. They should clean all the things.
6248 */
6249 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6250
395eea6c
MB
6251 if (!dev->rtnl_link_ops ||
6252 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6253 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6254 GFP_KERNEL);
6255
9b5e383c
ED
6256 /*
6257 * Flush the unicast and multicast chains
6258 */
a748ee24 6259 dev_uc_flush(dev);
22bedad3 6260 dev_mc_flush(dev);
93ee31f1 6261
9b5e383c
ED
6262 if (dev->netdev_ops->ndo_uninit)
6263 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6264
395eea6c
MB
6265 if (skb)
6266 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6267
9ff162a8
JP
6268 /* Notifier chain MUST detach us all upper devices. */
6269 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6270
9b5e383c
ED
6271 /* Remove entries from kobject tree */
6272 netdev_unregister_kobject(dev);
024e9679
AD
6273#ifdef CONFIG_XPS
6274 /* Remove XPS queueing entries */
6275 netif_reset_xps_queues_gt(dev, 0);
6276#endif
9b5e383c 6277 }
93ee31f1 6278
850a545b 6279 synchronize_net();
395264d5 6280
a5ee1551 6281 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6282 dev_put(dev);
6283}
6284
6285static void rollback_registered(struct net_device *dev)
6286{
6287 LIST_HEAD(single);
6288
6289 list_add(&dev->unreg_list, &single);
6290 rollback_registered_many(&single);
ceaaec98 6291 list_del(&single);
93ee31f1
DL
6292}
6293
fd867d51
JW
6294static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6295 struct net_device *upper, netdev_features_t features)
6296{
6297 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6298 netdev_features_t feature;
5ba3f7d6 6299 int feature_bit;
fd867d51 6300
5ba3f7d6
JW
6301 for_each_netdev_feature(&upper_disables, feature_bit) {
6302 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6303 if (!(upper->wanted_features & feature)
6304 && (features & feature)) {
6305 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6306 &feature, upper->name);
6307 features &= ~feature;
6308 }
6309 }
6310
6311 return features;
6312}
6313
6314static void netdev_sync_lower_features(struct net_device *upper,
6315 struct net_device *lower, netdev_features_t features)
6316{
6317 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6318 netdev_features_t feature;
5ba3f7d6 6319 int feature_bit;
fd867d51 6320
5ba3f7d6
JW
6321 for_each_netdev_feature(&upper_disables, feature_bit) {
6322 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6323 if (!(features & feature) && (lower->features & feature)) {
6324 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6325 &feature, lower->name);
6326 lower->wanted_features &= ~feature;
6327 netdev_update_features(lower);
6328
6329 if (unlikely(lower->features & feature))
6330 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6331 &feature, lower->name);
6332 }
6333 }
6334}
6335
c8f44aff
MM
6336static netdev_features_t netdev_fix_features(struct net_device *dev,
6337 netdev_features_t features)
b63365a2 6338{
57422dc5
MM
6339 /* Fix illegal checksum combinations */
6340 if ((features & NETIF_F_HW_CSUM) &&
6341 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6342 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6343 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6344 }
6345
b63365a2 6346 /* TSO requires that SG is present as well. */
ea2d3688 6347 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6348 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6349 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6350 }
6351
ec5f0615
PS
6352 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6353 !(features & NETIF_F_IP_CSUM)) {
6354 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6355 features &= ~NETIF_F_TSO;
6356 features &= ~NETIF_F_TSO_ECN;
6357 }
6358
6359 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6360 !(features & NETIF_F_IPV6_CSUM)) {
6361 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6362 features &= ~NETIF_F_TSO6;
6363 }
6364
31d8b9e0
BH
6365 /* TSO ECN requires that TSO is present as well. */
6366 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6367 features &= ~NETIF_F_TSO_ECN;
6368
212b573f
MM
6369 /* Software GSO depends on SG. */
6370 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6371 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6372 features &= ~NETIF_F_GSO;
6373 }
6374
acd1130e 6375 /* UFO needs SG and checksumming */
b63365a2 6376 if (features & NETIF_F_UFO) {
79032644
MM
6377 /* maybe split UFO into V4 and V6? */
6378 if (!((features & NETIF_F_GEN_CSUM) ||
6379 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6380 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6381 netdev_dbg(dev,
acd1130e 6382 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6383 features &= ~NETIF_F_UFO;
6384 }
6385
6386 if (!(features & NETIF_F_SG)) {
6f404e44 6387 netdev_dbg(dev,
acd1130e 6388 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6389 features &= ~NETIF_F_UFO;
6390 }
6391 }
6392
d0290214
JP
6393#ifdef CONFIG_NET_RX_BUSY_POLL
6394 if (dev->netdev_ops->ndo_busy_poll)
6395 features |= NETIF_F_BUSY_POLL;
6396 else
6397#endif
6398 features &= ~NETIF_F_BUSY_POLL;
6399
b63365a2
HX
6400 return features;
6401}
b63365a2 6402
6cb6a27c 6403int __netdev_update_features(struct net_device *dev)
5455c699 6404{
fd867d51 6405 struct net_device *upper, *lower;
c8f44aff 6406 netdev_features_t features;
fd867d51 6407 struct list_head *iter;
e7868a85 6408 int err = -1;
5455c699 6409
87267485
MM
6410 ASSERT_RTNL();
6411
5455c699
MM
6412 features = netdev_get_wanted_features(dev);
6413
6414 if (dev->netdev_ops->ndo_fix_features)
6415 features = dev->netdev_ops->ndo_fix_features(dev, features);
6416
6417 /* driver might be less strict about feature dependencies */
6418 features = netdev_fix_features(dev, features);
6419
fd867d51
JW
6420 /* some features can't be enabled if they're off an an upper device */
6421 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6422 features = netdev_sync_upper_features(dev, upper, features);
6423
5455c699 6424 if (dev->features == features)
e7868a85 6425 goto sync_lower;
5455c699 6426
c8f44aff
MM
6427 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6428 &dev->features, &features);
5455c699
MM
6429
6430 if (dev->netdev_ops->ndo_set_features)
6431 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6432 else
6433 err = 0;
5455c699 6434
6cb6a27c 6435 if (unlikely(err < 0)) {
5455c699 6436 netdev_err(dev,
c8f44aff
MM
6437 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6438 err, &features, &dev->features);
00ee5927 6439 return 0;
6cb6a27c
MM
6440 }
6441
e7868a85 6442sync_lower:
fd867d51
JW
6443 /* some features must be disabled on lower devices when disabled
6444 * on an upper device (think: bonding master or bridge)
6445 */
6446 netdev_for_each_lower_dev(dev, lower, iter)
6447 netdev_sync_lower_features(dev, lower, features);
6448
6cb6a27c
MM
6449 if (!err)
6450 dev->features = features;
6451
e7868a85 6452 return err < 0 ? 0 : 1;
6cb6a27c
MM
6453}
6454
afe12cc8
MM
6455/**
6456 * netdev_update_features - recalculate device features
6457 * @dev: the device to check
6458 *
6459 * Recalculate dev->features set and send notifications if it
6460 * has changed. Should be called after driver or hardware dependent
6461 * conditions might have changed that influence the features.
6462 */
6cb6a27c
MM
6463void netdev_update_features(struct net_device *dev)
6464{
6465 if (__netdev_update_features(dev))
6466 netdev_features_change(dev);
5455c699
MM
6467}
6468EXPORT_SYMBOL(netdev_update_features);
6469
afe12cc8
MM
6470/**
6471 * netdev_change_features - recalculate device features
6472 * @dev: the device to check
6473 *
6474 * Recalculate dev->features set and send notifications even
6475 * if they have not changed. Should be called instead of
6476 * netdev_update_features() if also dev->vlan_features might
6477 * have changed to allow the changes to be propagated to stacked
6478 * VLAN devices.
6479 */
6480void netdev_change_features(struct net_device *dev)
6481{
6482 __netdev_update_features(dev);
6483 netdev_features_change(dev);
6484}
6485EXPORT_SYMBOL(netdev_change_features);
6486
fc4a7489
PM
6487/**
6488 * netif_stacked_transfer_operstate - transfer operstate
6489 * @rootdev: the root or lower level device to transfer state from
6490 * @dev: the device to transfer operstate to
6491 *
6492 * Transfer operational state from root to device. This is normally
6493 * called when a stacking relationship exists between the root
6494 * device and the device(a leaf device).
6495 */
6496void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6497 struct net_device *dev)
6498{
6499 if (rootdev->operstate == IF_OPER_DORMANT)
6500 netif_dormant_on(dev);
6501 else
6502 netif_dormant_off(dev);
6503
6504 if (netif_carrier_ok(rootdev)) {
6505 if (!netif_carrier_ok(dev))
6506 netif_carrier_on(dev);
6507 } else {
6508 if (netif_carrier_ok(dev))
6509 netif_carrier_off(dev);
6510 }
6511}
6512EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6513
a953be53 6514#ifdef CONFIG_SYSFS
1b4bf461
ED
6515static int netif_alloc_rx_queues(struct net_device *dev)
6516{
1b4bf461 6517 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6518 struct netdev_rx_queue *rx;
10595902 6519 size_t sz = count * sizeof(*rx);
1b4bf461 6520
bd25fa7b 6521 BUG_ON(count < 1);
1b4bf461 6522
10595902
PG
6523 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6524 if (!rx) {
6525 rx = vzalloc(sz);
6526 if (!rx)
6527 return -ENOMEM;
6528 }
bd25fa7b
TH
6529 dev->_rx = rx;
6530
bd25fa7b 6531 for (i = 0; i < count; i++)
fe822240 6532 rx[i].dev = dev;
1b4bf461
ED
6533 return 0;
6534}
bf264145 6535#endif
1b4bf461 6536
aa942104
CG
6537static void netdev_init_one_queue(struct net_device *dev,
6538 struct netdev_queue *queue, void *_unused)
6539{
6540 /* Initialize queue lock */
6541 spin_lock_init(&queue->_xmit_lock);
6542 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6543 queue->xmit_lock_owner = -1;
b236da69 6544 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6545 queue->dev = dev;
114cf580
TH
6546#ifdef CONFIG_BQL
6547 dql_init(&queue->dql, HZ);
6548#endif
aa942104
CG
6549}
6550
60877a32
ED
6551static void netif_free_tx_queues(struct net_device *dev)
6552{
4cb28970 6553 kvfree(dev->_tx);
60877a32
ED
6554}
6555
e6484930
TH
6556static int netif_alloc_netdev_queues(struct net_device *dev)
6557{
6558 unsigned int count = dev->num_tx_queues;
6559 struct netdev_queue *tx;
60877a32 6560 size_t sz = count * sizeof(*tx);
e6484930 6561
d339727c
ED
6562 if (count < 1 || count > 0xffff)
6563 return -EINVAL;
62b5942a 6564
60877a32
ED
6565 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6566 if (!tx) {
6567 tx = vzalloc(sz);
6568 if (!tx)
6569 return -ENOMEM;
6570 }
e6484930 6571 dev->_tx = tx;
1d24eb48 6572
e6484930
TH
6573 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6574 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6575
6576 return 0;
e6484930
TH
6577}
6578
a2029240
DV
6579void netif_tx_stop_all_queues(struct net_device *dev)
6580{
6581 unsigned int i;
6582
6583 for (i = 0; i < dev->num_tx_queues; i++) {
6584 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6585 netif_tx_stop_queue(txq);
6586 }
6587}
6588EXPORT_SYMBOL(netif_tx_stop_all_queues);
6589
1da177e4
LT
6590/**
6591 * register_netdevice - register a network device
6592 * @dev: device to register
6593 *
6594 * Take a completed network device structure and add it to the kernel
6595 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6596 * chain. 0 is returned on success. A negative errno code is returned
6597 * on a failure to set up the device, or if the name is a duplicate.
6598 *
6599 * Callers must hold the rtnl semaphore. You may want
6600 * register_netdev() instead of this.
6601 *
6602 * BUGS:
6603 * The locking appears insufficient to guarantee two parallel registers
6604 * will not get the same name.
6605 */
6606
6607int register_netdevice(struct net_device *dev)
6608{
1da177e4 6609 int ret;
d314774c 6610 struct net *net = dev_net(dev);
1da177e4
LT
6611
6612 BUG_ON(dev_boot_phase);
6613 ASSERT_RTNL();
6614
b17a7c17
SH
6615 might_sleep();
6616
1da177e4
LT
6617 /* When net_device's are persistent, this will be fatal. */
6618 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6619 BUG_ON(!net);
1da177e4 6620
f1f28aa3 6621 spin_lock_init(&dev->addr_list_lock);
cf508b12 6622 netdev_set_addr_lockdep_class(dev);
1da177e4 6623
828de4f6 6624 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6625 if (ret < 0)
6626 goto out;
6627
1da177e4 6628 /* Init, if this function is available */
d314774c
SH
6629 if (dev->netdev_ops->ndo_init) {
6630 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6631 if (ret) {
6632 if (ret > 0)
6633 ret = -EIO;
90833aa4 6634 goto out;
1da177e4
LT
6635 }
6636 }
4ec93edb 6637
f646968f
PM
6638 if (((dev->hw_features | dev->features) &
6639 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6640 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6641 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6642 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6643 ret = -EINVAL;
6644 goto err_uninit;
6645 }
6646
9c7dafbf
PE
6647 ret = -EBUSY;
6648 if (!dev->ifindex)
6649 dev->ifindex = dev_new_index(net);
6650 else if (__dev_get_by_index(net, dev->ifindex))
6651 goto err_uninit;
6652
5455c699
MM
6653 /* Transfer changeable features to wanted_features and enable
6654 * software offloads (GSO and GRO).
6655 */
6656 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6657 dev->features |= NETIF_F_SOFT_FEATURES;
6658 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6659
34324dc2
MM
6660 if (!(dev->flags & IFF_LOOPBACK)) {
6661 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6662 }
6663
1180e7d6 6664 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6665 */
1180e7d6 6666 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6667
ee579677
PS
6668 /* Make NETIF_F_SG inheritable to tunnel devices.
6669 */
6670 dev->hw_enc_features |= NETIF_F_SG;
6671
0d89d203
SH
6672 /* Make NETIF_F_SG inheritable to MPLS.
6673 */
6674 dev->mpls_features |= NETIF_F_SG;
6675
7ffbe3fd
JB
6676 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6677 ret = notifier_to_errno(ret);
6678 if (ret)
6679 goto err_uninit;
6680
8b41d188 6681 ret = netdev_register_kobject(dev);
b17a7c17 6682 if (ret)
7ce1b0ed 6683 goto err_uninit;
b17a7c17
SH
6684 dev->reg_state = NETREG_REGISTERED;
6685
6cb6a27c 6686 __netdev_update_features(dev);
8e9b59b2 6687
1da177e4
LT
6688 /*
6689 * Default initial state at registry is that the
6690 * device is present.
6691 */
6692
6693 set_bit(__LINK_STATE_PRESENT, &dev->state);
6694
8f4cccbb
BH
6695 linkwatch_init_dev(dev);
6696
1da177e4 6697 dev_init_scheduler(dev);
1da177e4 6698 dev_hold(dev);
ce286d32 6699 list_netdevice(dev);
7bf23575 6700 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6701
948b337e
JP
6702 /* If the device has permanent device address, driver should
6703 * set dev_addr and also addr_assign_type should be set to
6704 * NET_ADDR_PERM (default value).
6705 */
6706 if (dev->addr_assign_type == NET_ADDR_PERM)
6707 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6708
1da177e4 6709 /* Notify protocols, that a new device appeared. */
056925ab 6710 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6711 ret = notifier_to_errno(ret);
93ee31f1
DL
6712 if (ret) {
6713 rollback_registered(dev);
6714 dev->reg_state = NETREG_UNREGISTERED;
6715 }
d90a909e
EB
6716 /*
6717 * Prevent userspace races by waiting until the network
6718 * device is fully setup before sending notifications.
6719 */
a2835763
PM
6720 if (!dev->rtnl_link_ops ||
6721 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6722 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6723
6724out:
6725 return ret;
7ce1b0ed
HX
6726
6727err_uninit:
d314774c
SH
6728 if (dev->netdev_ops->ndo_uninit)
6729 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6730 goto out;
1da177e4 6731}
d1b19dff 6732EXPORT_SYMBOL(register_netdevice);
1da177e4 6733
937f1ba5
BH
6734/**
6735 * init_dummy_netdev - init a dummy network device for NAPI
6736 * @dev: device to init
6737 *
6738 * This takes a network device structure and initialize the minimum
6739 * amount of fields so it can be used to schedule NAPI polls without
6740 * registering a full blown interface. This is to be used by drivers
6741 * that need to tie several hardware interfaces to a single NAPI
6742 * poll scheduler due to HW limitations.
6743 */
6744int init_dummy_netdev(struct net_device *dev)
6745{
6746 /* Clear everything. Note we don't initialize spinlocks
6747 * are they aren't supposed to be taken by any of the
6748 * NAPI code and this dummy netdev is supposed to be
6749 * only ever used for NAPI polls
6750 */
6751 memset(dev, 0, sizeof(struct net_device));
6752
6753 /* make sure we BUG if trying to hit standard
6754 * register/unregister code path
6755 */
6756 dev->reg_state = NETREG_DUMMY;
6757
937f1ba5
BH
6758 /* NAPI wants this */
6759 INIT_LIST_HEAD(&dev->napi_list);
6760
6761 /* a dummy interface is started by default */
6762 set_bit(__LINK_STATE_PRESENT, &dev->state);
6763 set_bit(__LINK_STATE_START, &dev->state);
6764
29b4433d
ED
6765 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6766 * because users of this 'device' dont need to change
6767 * its refcount.
6768 */
6769
937f1ba5
BH
6770 return 0;
6771}
6772EXPORT_SYMBOL_GPL(init_dummy_netdev);
6773
6774
1da177e4
LT
6775/**
6776 * register_netdev - register a network device
6777 * @dev: device to register
6778 *
6779 * Take a completed network device structure and add it to the kernel
6780 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6781 * chain. 0 is returned on success. A negative errno code is returned
6782 * on a failure to set up the device, or if the name is a duplicate.
6783 *
38b4da38 6784 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6785 * and expands the device name if you passed a format string to
6786 * alloc_netdev.
6787 */
6788int register_netdev(struct net_device *dev)
6789{
6790 int err;
6791
6792 rtnl_lock();
1da177e4 6793 err = register_netdevice(dev);
1da177e4
LT
6794 rtnl_unlock();
6795 return err;
6796}
6797EXPORT_SYMBOL(register_netdev);
6798
29b4433d
ED
6799int netdev_refcnt_read(const struct net_device *dev)
6800{
6801 int i, refcnt = 0;
6802
6803 for_each_possible_cpu(i)
6804 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6805 return refcnt;
6806}
6807EXPORT_SYMBOL(netdev_refcnt_read);
6808
2c53040f 6809/**
1da177e4 6810 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6811 * @dev: target net_device
1da177e4
LT
6812 *
6813 * This is called when unregistering network devices.
6814 *
6815 * Any protocol or device that holds a reference should register
6816 * for netdevice notification, and cleanup and put back the
6817 * reference if they receive an UNREGISTER event.
6818 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6819 * call dev_put.
1da177e4
LT
6820 */
6821static void netdev_wait_allrefs(struct net_device *dev)
6822{
6823 unsigned long rebroadcast_time, warning_time;
29b4433d 6824 int refcnt;
1da177e4 6825
e014debe
ED
6826 linkwatch_forget_dev(dev);
6827
1da177e4 6828 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6829 refcnt = netdev_refcnt_read(dev);
6830
6831 while (refcnt != 0) {
1da177e4 6832 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6833 rtnl_lock();
1da177e4
LT
6834
6835 /* Rebroadcast unregister notification */
056925ab 6836 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6837
748e2d93 6838 __rtnl_unlock();
0115e8e3 6839 rcu_barrier();
748e2d93
ED
6840 rtnl_lock();
6841
0115e8e3 6842 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6843 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6844 &dev->state)) {
6845 /* We must not have linkwatch events
6846 * pending on unregister. If this
6847 * happens, we simply run the queue
6848 * unscheduled, resulting in a noop
6849 * for this device.
6850 */
6851 linkwatch_run_queue();
6852 }
6853
6756ae4b 6854 __rtnl_unlock();
1da177e4
LT
6855
6856 rebroadcast_time = jiffies;
6857 }
6858
6859 msleep(250);
6860
29b4433d
ED
6861 refcnt = netdev_refcnt_read(dev);
6862
1da177e4 6863 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6864 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6865 dev->name, refcnt);
1da177e4
LT
6866 warning_time = jiffies;
6867 }
6868 }
6869}
6870
6871/* The sequence is:
6872 *
6873 * rtnl_lock();
6874 * ...
6875 * register_netdevice(x1);
6876 * register_netdevice(x2);
6877 * ...
6878 * unregister_netdevice(y1);
6879 * unregister_netdevice(y2);
6880 * ...
6881 * rtnl_unlock();
6882 * free_netdev(y1);
6883 * free_netdev(y2);
6884 *
58ec3b4d 6885 * We are invoked by rtnl_unlock().
1da177e4 6886 * This allows us to deal with problems:
b17a7c17 6887 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6888 * without deadlocking with linkwatch via keventd.
6889 * 2) Since we run with the RTNL semaphore not held, we can sleep
6890 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6891 *
6892 * We must not return until all unregister events added during
6893 * the interval the lock was held have been completed.
1da177e4 6894 */
1da177e4
LT
6895void netdev_run_todo(void)
6896{
626ab0e6 6897 struct list_head list;
1da177e4 6898
1da177e4 6899 /* Snapshot list, allow later requests */
626ab0e6 6900 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6901
6902 __rtnl_unlock();
626ab0e6 6903
0115e8e3
ED
6904
6905 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6906 if (!list_empty(&list))
6907 rcu_barrier();
6908
1da177e4
LT
6909 while (!list_empty(&list)) {
6910 struct net_device *dev
e5e26d75 6911 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6912 list_del(&dev->todo_list);
6913
748e2d93 6914 rtnl_lock();
0115e8e3 6915 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6916 __rtnl_unlock();
0115e8e3 6917
b17a7c17 6918 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6919 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6920 dev->name, dev->reg_state);
6921 dump_stack();
6922 continue;
6923 }
1da177e4 6924
b17a7c17 6925 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6926
b17a7c17 6927 netdev_wait_allrefs(dev);
1da177e4 6928
b17a7c17 6929 /* paranoia */
29b4433d 6930 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
6931 BUG_ON(!list_empty(&dev->ptype_all));
6932 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
6933 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6934 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6935 WARN_ON(dev->dn_ptr);
1da177e4 6936
b17a7c17
SH
6937 if (dev->destructor)
6938 dev->destructor(dev);
9093bbb2 6939
50624c93
EB
6940 /* Report a network device has been unregistered */
6941 rtnl_lock();
6942 dev_net(dev)->dev_unreg_count--;
6943 __rtnl_unlock();
6944 wake_up(&netdev_unregistering_wq);
6945
9093bbb2
SH
6946 /* Free network device */
6947 kobject_put(&dev->dev.kobj);
1da177e4 6948 }
1da177e4
LT
6949}
6950
3cfde79c
BH
6951/* Convert net_device_stats to rtnl_link_stats64. They have the same
6952 * fields in the same order, with only the type differing.
6953 */
77a1abf5
ED
6954void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6955 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6956{
6957#if BITS_PER_LONG == 64
77a1abf5
ED
6958 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6959 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6960#else
6961 size_t i, n = sizeof(*stats64) / sizeof(u64);
6962 const unsigned long *src = (const unsigned long *)netdev_stats;
6963 u64 *dst = (u64 *)stats64;
6964
6965 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6966 sizeof(*stats64) / sizeof(u64));
6967 for (i = 0; i < n; i++)
6968 dst[i] = src[i];
6969#endif
6970}
77a1abf5 6971EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6972
eeda3fd6
SH
6973/**
6974 * dev_get_stats - get network device statistics
6975 * @dev: device to get statistics from
28172739 6976 * @storage: place to store stats
eeda3fd6 6977 *
d7753516
BH
6978 * Get network statistics from device. Return @storage.
6979 * The device driver may provide its own method by setting
6980 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6981 * otherwise the internal statistics structure is used.
eeda3fd6 6982 */
d7753516
BH
6983struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6984 struct rtnl_link_stats64 *storage)
7004bf25 6985{
eeda3fd6
SH
6986 const struct net_device_ops *ops = dev->netdev_ops;
6987
28172739
ED
6988 if (ops->ndo_get_stats64) {
6989 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6990 ops->ndo_get_stats64(dev, storage);
6991 } else if (ops->ndo_get_stats) {
3cfde79c 6992 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6993 } else {
6994 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6995 }
caf586e5 6996 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6997 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6998 return storage;
c45d286e 6999}
eeda3fd6 7000EXPORT_SYMBOL(dev_get_stats);
c45d286e 7001
24824a09 7002struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7003{
24824a09 7004 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7005
24824a09
ED
7006#ifdef CONFIG_NET_CLS_ACT
7007 if (queue)
7008 return queue;
7009 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7010 if (!queue)
7011 return NULL;
7012 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7013 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7014 queue->qdisc_sleeping = &noop_qdisc;
7015 rcu_assign_pointer(dev->ingress_queue, queue);
7016#endif
7017 return queue;
bb949fbd
DM
7018}
7019
2c60db03
ED
7020static const struct ethtool_ops default_ethtool_ops;
7021
d07d7507
SG
7022void netdev_set_default_ethtool_ops(struct net_device *dev,
7023 const struct ethtool_ops *ops)
7024{
7025 if (dev->ethtool_ops == &default_ethtool_ops)
7026 dev->ethtool_ops = ops;
7027}
7028EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7029
74d332c1
ED
7030void netdev_freemem(struct net_device *dev)
7031{
7032 char *addr = (char *)dev - dev->padded;
7033
4cb28970 7034 kvfree(addr);
74d332c1
ED
7035}
7036
1da177e4 7037/**
36909ea4 7038 * alloc_netdev_mqs - allocate network device
c835a677
TG
7039 * @sizeof_priv: size of private data to allocate space for
7040 * @name: device name format string
7041 * @name_assign_type: origin of device name
7042 * @setup: callback to initialize device
7043 * @txqs: the number of TX subqueues to allocate
7044 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7045 *
7046 * Allocates a struct net_device with private data area for driver use
90e51adf 7047 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7048 * for each queue on the device.
1da177e4 7049 */
36909ea4 7050struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7051 unsigned char name_assign_type,
36909ea4
TH
7052 void (*setup)(struct net_device *),
7053 unsigned int txqs, unsigned int rxqs)
1da177e4 7054{
1da177e4 7055 struct net_device *dev;
7943986c 7056 size_t alloc_size;
1ce8e7b5 7057 struct net_device *p;
1da177e4 7058
b6fe17d6
SH
7059 BUG_ON(strlen(name) >= sizeof(dev->name));
7060
36909ea4 7061 if (txqs < 1) {
7b6cd1ce 7062 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7063 return NULL;
7064 }
7065
a953be53 7066#ifdef CONFIG_SYSFS
36909ea4 7067 if (rxqs < 1) {
7b6cd1ce 7068 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7069 return NULL;
7070 }
7071#endif
7072
fd2ea0a7 7073 alloc_size = sizeof(struct net_device);
d1643d24
AD
7074 if (sizeof_priv) {
7075 /* ensure 32-byte alignment of private area */
1ce8e7b5 7076 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7077 alloc_size += sizeof_priv;
7078 }
7079 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7080 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7081
74d332c1
ED
7082 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7083 if (!p)
7084 p = vzalloc(alloc_size);
62b5942a 7085 if (!p)
1da177e4 7086 return NULL;
1da177e4 7087
1ce8e7b5 7088 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7089 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7090
29b4433d
ED
7091 dev->pcpu_refcnt = alloc_percpu(int);
7092 if (!dev->pcpu_refcnt)
74d332c1 7093 goto free_dev;
ab9c73cc 7094
ab9c73cc 7095 if (dev_addr_init(dev))
29b4433d 7096 goto free_pcpu;
ab9c73cc 7097
22bedad3 7098 dev_mc_init(dev);
a748ee24 7099 dev_uc_init(dev);
ccffad25 7100
c346dca1 7101 dev_net_set(dev, &init_net);
1da177e4 7102
8d3bdbd5 7103 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7104 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 7105 dev->gso_min_segs = 0;
8d3bdbd5 7106
8d3bdbd5
DM
7107 INIT_LIST_HEAD(&dev->napi_list);
7108 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7109 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7110 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7111 INIT_LIST_HEAD(&dev->adj_list.upper);
7112 INIT_LIST_HEAD(&dev->adj_list.lower);
7113 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7114 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7115 INIT_LIST_HEAD(&dev->ptype_all);
7116 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7117 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7118 setup(dev);
7119
906470c1 7120 if (!dev->tx_queue_len)
f84bb1ea 7121 dev->priv_flags |= IFF_NO_QUEUE;
906470c1 7122
36909ea4
TH
7123 dev->num_tx_queues = txqs;
7124 dev->real_num_tx_queues = txqs;
ed9af2e8 7125 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7126 goto free_all;
e8a0464c 7127
a953be53 7128#ifdef CONFIG_SYSFS
36909ea4
TH
7129 dev->num_rx_queues = rxqs;
7130 dev->real_num_rx_queues = rxqs;
fe822240 7131 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7132 goto free_all;
df334545 7133#endif
0a9627f2 7134
1da177e4 7135 strcpy(dev->name, name);
c835a677 7136 dev->name_assign_type = name_assign_type;
cbda10fa 7137 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7138 if (!dev->ethtool_ops)
7139 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7140
7141 nf_hook_ingress_init(dev);
7142
1da177e4 7143 return dev;
ab9c73cc 7144
8d3bdbd5
DM
7145free_all:
7146 free_netdev(dev);
7147 return NULL;
7148
29b4433d
ED
7149free_pcpu:
7150 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7151free_dev:
7152 netdev_freemem(dev);
ab9c73cc 7153 return NULL;
1da177e4 7154}
36909ea4 7155EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7156
7157/**
7158 * free_netdev - free network device
7159 * @dev: device
7160 *
4ec93edb
YH
7161 * This function does the last stage of destroying an allocated device
7162 * interface. The reference to the device object is released.
1da177e4
LT
7163 * If this is the last reference then it will be freed.
7164 */
7165void free_netdev(struct net_device *dev)
7166{
d565b0a1
HX
7167 struct napi_struct *p, *n;
7168
60877a32 7169 netif_free_tx_queues(dev);
a953be53 7170#ifdef CONFIG_SYSFS
10595902 7171 kvfree(dev->_rx);
fe822240 7172#endif
e8a0464c 7173
33d480ce 7174 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7175
f001fde5
JP
7176 /* Flush device addresses */
7177 dev_addr_flush(dev);
7178
d565b0a1
HX
7179 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7180 netif_napi_del(p);
7181
29b4433d
ED
7182 free_percpu(dev->pcpu_refcnt);
7183 dev->pcpu_refcnt = NULL;
7184
3041a069 7185 /* Compatibility with error handling in drivers */
1da177e4 7186 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7187 netdev_freemem(dev);
1da177e4
LT
7188 return;
7189 }
7190
7191 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7192 dev->reg_state = NETREG_RELEASED;
7193
43cb76d9
GKH
7194 /* will free via device release */
7195 put_device(&dev->dev);
1da177e4 7196}
d1b19dff 7197EXPORT_SYMBOL(free_netdev);
4ec93edb 7198
f0db275a
SH
7199/**
7200 * synchronize_net - Synchronize with packet receive processing
7201 *
7202 * Wait for packets currently being received to be done.
7203 * Does not block later packets from starting.
7204 */
4ec93edb 7205void synchronize_net(void)
1da177e4
LT
7206{
7207 might_sleep();
be3fc413
ED
7208 if (rtnl_is_locked())
7209 synchronize_rcu_expedited();
7210 else
7211 synchronize_rcu();
1da177e4 7212}
d1b19dff 7213EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7214
7215/**
44a0873d 7216 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7217 * @dev: device
44a0873d 7218 * @head: list
6ebfbc06 7219 *
1da177e4 7220 * This function shuts down a device interface and removes it
d59b54b1 7221 * from the kernel tables.
44a0873d 7222 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7223 *
7224 * Callers must hold the rtnl semaphore. You may want
7225 * unregister_netdev() instead of this.
7226 */
7227
44a0873d 7228void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7229{
a6620712
HX
7230 ASSERT_RTNL();
7231
44a0873d 7232 if (head) {
9fdce099 7233 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7234 } else {
7235 rollback_registered(dev);
7236 /* Finish processing unregister after unlock */
7237 net_set_todo(dev);
7238 }
1da177e4 7239}
44a0873d 7240EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7241
9b5e383c
ED
7242/**
7243 * unregister_netdevice_many - unregister many devices
7244 * @head: list of devices
87757a91
ED
7245 *
7246 * Note: As most callers use a stack allocated list_head,
7247 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7248 */
7249void unregister_netdevice_many(struct list_head *head)
7250{
7251 struct net_device *dev;
7252
7253 if (!list_empty(head)) {
7254 rollback_registered_many(head);
7255 list_for_each_entry(dev, head, unreg_list)
7256 net_set_todo(dev);
87757a91 7257 list_del(head);
9b5e383c
ED
7258 }
7259}
63c8099d 7260EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7261
1da177e4
LT
7262/**
7263 * unregister_netdev - remove device from the kernel
7264 * @dev: device
7265 *
7266 * This function shuts down a device interface and removes it
d59b54b1 7267 * from the kernel tables.
1da177e4
LT
7268 *
7269 * This is just a wrapper for unregister_netdevice that takes
7270 * the rtnl semaphore. In general you want to use this and not
7271 * unregister_netdevice.
7272 */
7273void unregister_netdev(struct net_device *dev)
7274{
7275 rtnl_lock();
7276 unregister_netdevice(dev);
7277 rtnl_unlock();
7278}
1da177e4
LT
7279EXPORT_SYMBOL(unregister_netdev);
7280
ce286d32
EB
7281/**
7282 * dev_change_net_namespace - move device to different nethost namespace
7283 * @dev: device
7284 * @net: network namespace
7285 * @pat: If not NULL name pattern to try if the current device name
7286 * is already taken in the destination network namespace.
7287 *
7288 * This function shuts down a device interface and moves it
7289 * to a new network namespace. On success 0 is returned, on
7290 * a failure a netagive errno code is returned.
7291 *
7292 * Callers must hold the rtnl semaphore.
7293 */
7294
7295int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7296{
ce286d32
EB
7297 int err;
7298
7299 ASSERT_RTNL();
7300
7301 /* Don't allow namespace local devices to be moved. */
7302 err = -EINVAL;
7303 if (dev->features & NETIF_F_NETNS_LOCAL)
7304 goto out;
7305
7306 /* Ensure the device has been registrered */
ce286d32
EB
7307 if (dev->reg_state != NETREG_REGISTERED)
7308 goto out;
7309
7310 /* Get out if there is nothing todo */
7311 err = 0;
878628fb 7312 if (net_eq(dev_net(dev), net))
ce286d32
EB
7313 goto out;
7314
7315 /* Pick the destination device name, and ensure
7316 * we can use it in the destination network namespace.
7317 */
7318 err = -EEXIST;
d9031024 7319 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7320 /* We get here if we can't use the current device name */
7321 if (!pat)
7322 goto out;
828de4f6 7323 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7324 goto out;
7325 }
7326
7327 /*
7328 * And now a mini version of register_netdevice unregister_netdevice.
7329 */
7330
7331 /* If device is running close it first. */
9b772652 7332 dev_close(dev);
ce286d32
EB
7333
7334 /* And unlink it from device chain */
7335 err = -ENODEV;
7336 unlist_netdevice(dev);
7337
7338 synchronize_net();
7339
7340 /* Shutdown queueing discipline. */
7341 dev_shutdown(dev);
7342
7343 /* Notify protocols, that we are about to destroy
7344 this device. They should clean all the things.
3b27e105
DL
7345
7346 Note that dev->reg_state stays at NETREG_REGISTERED.
7347 This is wanted because this way 8021q and macvlan know
7348 the device is just moving and can keep their slaves up.
ce286d32
EB
7349 */
7350 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7351 rcu_barrier();
7352 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7353 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7354
7355 /*
7356 * Flush the unicast and multicast chains
7357 */
a748ee24 7358 dev_uc_flush(dev);
22bedad3 7359 dev_mc_flush(dev);
ce286d32 7360
4e66ae2e
SH
7361 /* Send a netdev-removed uevent to the old namespace */
7362 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7363 netdev_adjacent_del_links(dev);
4e66ae2e 7364
ce286d32 7365 /* Actually switch the network namespace */
c346dca1 7366 dev_net_set(dev, net);
ce286d32 7367
ce286d32 7368 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7369 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7370 dev->ifindex = dev_new_index(net);
ce286d32 7371
4e66ae2e
SH
7372 /* Send a netdev-add uevent to the new namespace */
7373 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7374 netdev_adjacent_add_links(dev);
4e66ae2e 7375
8b41d188 7376 /* Fixup kobjects */
a1b3f594 7377 err = device_rename(&dev->dev, dev->name);
8b41d188 7378 WARN_ON(err);
ce286d32
EB
7379
7380 /* Add the device back in the hashes */
7381 list_netdevice(dev);
7382
7383 /* Notify protocols, that a new device appeared. */
7384 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7385
d90a909e
EB
7386 /*
7387 * Prevent userspace races by waiting until the network
7388 * device is fully setup before sending notifications.
7389 */
7f294054 7390 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7391
ce286d32
EB
7392 synchronize_net();
7393 err = 0;
7394out:
7395 return err;
7396}
463d0183 7397EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7398
1da177e4
LT
7399static int dev_cpu_callback(struct notifier_block *nfb,
7400 unsigned long action,
7401 void *ocpu)
7402{
7403 struct sk_buff **list_skb;
1da177e4
LT
7404 struct sk_buff *skb;
7405 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7406 struct softnet_data *sd, *oldsd;
7407
8bb78442 7408 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7409 return NOTIFY_OK;
7410
7411 local_irq_disable();
7412 cpu = smp_processor_id();
7413 sd = &per_cpu(softnet_data, cpu);
7414 oldsd = &per_cpu(softnet_data, oldcpu);
7415
7416 /* Find end of our completion_queue. */
7417 list_skb = &sd->completion_queue;
7418 while (*list_skb)
7419 list_skb = &(*list_skb)->next;
7420 /* Append completion queue from offline CPU. */
7421 *list_skb = oldsd->completion_queue;
7422 oldsd->completion_queue = NULL;
7423
1da177e4 7424 /* Append output queue from offline CPU. */
a9cbd588
CG
7425 if (oldsd->output_queue) {
7426 *sd->output_queue_tailp = oldsd->output_queue;
7427 sd->output_queue_tailp = oldsd->output_queue_tailp;
7428 oldsd->output_queue = NULL;
7429 oldsd->output_queue_tailp = &oldsd->output_queue;
7430 }
ac64da0b
ED
7431 /* Append NAPI poll list from offline CPU, with one exception :
7432 * process_backlog() must be called by cpu owning percpu backlog.
7433 * We properly handle process_queue & input_pkt_queue later.
7434 */
7435 while (!list_empty(&oldsd->poll_list)) {
7436 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7437 struct napi_struct,
7438 poll_list);
7439
7440 list_del_init(&napi->poll_list);
7441 if (napi->poll == process_backlog)
7442 napi->state = 0;
7443 else
7444 ____napi_schedule(sd, napi);
264524d5 7445 }
1da177e4
LT
7446
7447 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7448 local_irq_enable();
7449
7450 /* Process offline CPU's input_pkt_queue */
76cc8b13 7451 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7452 netif_rx_ni(skb);
76cc8b13 7453 input_queue_head_incr(oldsd);
fec5e652 7454 }
ac64da0b 7455 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7456 netif_rx_ni(skb);
76cc8b13
TH
7457 input_queue_head_incr(oldsd);
7458 }
1da177e4
LT
7459
7460 return NOTIFY_OK;
7461}
1da177e4
LT
7462
7463
7f353bf2 7464/**
b63365a2
HX
7465 * netdev_increment_features - increment feature set by one
7466 * @all: current feature set
7467 * @one: new feature set
7468 * @mask: mask feature set
7f353bf2
HX
7469 *
7470 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7471 * @one to the master device with current feature set @all. Will not
7472 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7473 */
c8f44aff
MM
7474netdev_features_t netdev_increment_features(netdev_features_t all,
7475 netdev_features_t one, netdev_features_t mask)
b63365a2 7476{
1742f183
MM
7477 if (mask & NETIF_F_GEN_CSUM)
7478 mask |= NETIF_F_ALL_CSUM;
7479 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7480
1742f183
MM
7481 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7482 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7483
1742f183
MM
7484 /* If one device supports hw checksumming, set for all. */
7485 if (all & NETIF_F_GEN_CSUM)
7486 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7487
7488 return all;
7489}
b63365a2 7490EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7491
430f03cd 7492static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7493{
7494 int i;
7495 struct hlist_head *hash;
7496
7497 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7498 if (hash != NULL)
7499 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7500 INIT_HLIST_HEAD(&hash[i]);
7501
7502 return hash;
7503}
7504
881d966b 7505/* Initialize per network namespace state */
4665079c 7506static int __net_init netdev_init(struct net *net)
881d966b 7507{
734b6541
RM
7508 if (net != &init_net)
7509 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7510
30d97d35
PE
7511 net->dev_name_head = netdev_create_hash();
7512 if (net->dev_name_head == NULL)
7513 goto err_name;
881d966b 7514
30d97d35
PE
7515 net->dev_index_head = netdev_create_hash();
7516 if (net->dev_index_head == NULL)
7517 goto err_idx;
881d966b
EB
7518
7519 return 0;
30d97d35
PE
7520
7521err_idx:
7522 kfree(net->dev_name_head);
7523err_name:
7524 return -ENOMEM;
881d966b
EB
7525}
7526
f0db275a
SH
7527/**
7528 * netdev_drivername - network driver for the device
7529 * @dev: network device
f0db275a
SH
7530 *
7531 * Determine network driver for device.
7532 */
3019de12 7533const char *netdev_drivername(const struct net_device *dev)
6579e57b 7534{
cf04a4c7
SH
7535 const struct device_driver *driver;
7536 const struct device *parent;
3019de12 7537 const char *empty = "";
6579e57b
AV
7538
7539 parent = dev->dev.parent;
6579e57b 7540 if (!parent)
3019de12 7541 return empty;
6579e57b
AV
7542
7543 driver = parent->driver;
7544 if (driver && driver->name)
3019de12
DM
7545 return driver->name;
7546 return empty;
6579e57b
AV
7547}
7548
6ea754eb
JP
7549static void __netdev_printk(const char *level, const struct net_device *dev,
7550 struct va_format *vaf)
256df2f3 7551{
b004ff49 7552 if (dev && dev->dev.parent) {
6ea754eb
JP
7553 dev_printk_emit(level[1] - '0',
7554 dev->dev.parent,
7555 "%s %s %s%s: %pV",
7556 dev_driver_string(dev->dev.parent),
7557 dev_name(dev->dev.parent),
7558 netdev_name(dev), netdev_reg_state(dev),
7559 vaf);
b004ff49 7560 } else if (dev) {
6ea754eb
JP
7561 printk("%s%s%s: %pV",
7562 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7563 } else {
6ea754eb 7564 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7565 }
256df2f3
JP
7566}
7567
6ea754eb
JP
7568void netdev_printk(const char *level, const struct net_device *dev,
7569 const char *format, ...)
256df2f3
JP
7570{
7571 struct va_format vaf;
7572 va_list args;
256df2f3
JP
7573
7574 va_start(args, format);
7575
7576 vaf.fmt = format;
7577 vaf.va = &args;
7578
6ea754eb 7579 __netdev_printk(level, dev, &vaf);
b004ff49 7580
256df2f3 7581 va_end(args);
256df2f3
JP
7582}
7583EXPORT_SYMBOL(netdev_printk);
7584
7585#define define_netdev_printk_level(func, level) \
6ea754eb 7586void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7587{ \
256df2f3
JP
7588 struct va_format vaf; \
7589 va_list args; \
7590 \
7591 va_start(args, fmt); \
7592 \
7593 vaf.fmt = fmt; \
7594 vaf.va = &args; \
7595 \
6ea754eb 7596 __netdev_printk(level, dev, &vaf); \
b004ff49 7597 \
256df2f3 7598 va_end(args); \
256df2f3
JP
7599} \
7600EXPORT_SYMBOL(func);
7601
7602define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7603define_netdev_printk_level(netdev_alert, KERN_ALERT);
7604define_netdev_printk_level(netdev_crit, KERN_CRIT);
7605define_netdev_printk_level(netdev_err, KERN_ERR);
7606define_netdev_printk_level(netdev_warn, KERN_WARNING);
7607define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7608define_netdev_printk_level(netdev_info, KERN_INFO);
7609
4665079c 7610static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7611{
7612 kfree(net->dev_name_head);
7613 kfree(net->dev_index_head);
7614}
7615
022cbae6 7616static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7617 .init = netdev_init,
7618 .exit = netdev_exit,
7619};
7620
4665079c 7621static void __net_exit default_device_exit(struct net *net)
ce286d32 7622{
e008b5fc 7623 struct net_device *dev, *aux;
ce286d32 7624 /*
e008b5fc 7625 * Push all migratable network devices back to the
ce286d32
EB
7626 * initial network namespace
7627 */
7628 rtnl_lock();
e008b5fc 7629 for_each_netdev_safe(net, dev, aux) {
ce286d32 7630 int err;
aca51397 7631 char fb_name[IFNAMSIZ];
ce286d32
EB
7632
7633 /* Ignore unmoveable devices (i.e. loopback) */
7634 if (dev->features & NETIF_F_NETNS_LOCAL)
7635 continue;
7636
e008b5fc
EB
7637 /* Leave virtual devices for the generic cleanup */
7638 if (dev->rtnl_link_ops)
7639 continue;
d0c082ce 7640
25985edc 7641 /* Push remaining network devices to init_net */
aca51397
PE
7642 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7643 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7644 if (err) {
7b6cd1ce
JP
7645 pr_emerg("%s: failed to move %s to init_net: %d\n",
7646 __func__, dev->name, err);
aca51397 7647 BUG();
ce286d32
EB
7648 }
7649 }
7650 rtnl_unlock();
7651}
7652
50624c93
EB
7653static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7654{
7655 /* Return with the rtnl_lock held when there are no network
7656 * devices unregistering in any network namespace in net_list.
7657 */
7658 struct net *net;
7659 bool unregistering;
ff960a73 7660 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7661
ff960a73 7662 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7663 for (;;) {
50624c93
EB
7664 unregistering = false;
7665 rtnl_lock();
7666 list_for_each_entry(net, net_list, exit_list) {
7667 if (net->dev_unreg_count > 0) {
7668 unregistering = true;
7669 break;
7670 }
7671 }
7672 if (!unregistering)
7673 break;
7674 __rtnl_unlock();
ff960a73
PZ
7675
7676 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7677 }
ff960a73 7678 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7679}
7680
04dc7f6b
EB
7681static void __net_exit default_device_exit_batch(struct list_head *net_list)
7682{
7683 /* At exit all network devices most be removed from a network
b595076a 7684 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7685 * Do this across as many network namespaces as possible to
7686 * improve batching efficiency.
7687 */
7688 struct net_device *dev;
7689 struct net *net;
7690 LIST_HEAD(dev_kill_list);
7691
50624c93
EB
7692 /* To prevent network device cleanup code from dereferencing
7693 * loopback devices or network devices that have been freed
7694 * wait here for all pending unregistrations to complete,
7695 * before unregistring the loopback device and allowing the
7696 * network namespace be freed.
7697 *
7698 * The netdev todo list containing all network devices
7699 * unregistrations that happen in default_device_exit_batch
7700 * will run in the rtnl_unlock() at the end of
7701 * default_device_exit_batch.
7702 */
7703 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7704 list_for_each_entry(net, net_list, exit_list) {
7705 for_each_netdev_reverse(net, dev) {
b0ab2fab 7706 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7707 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7708 else
7709 unregister_netdevice_queue(dev, &dev_kill_list);
7710 }
7711 }
7712 unregister_netdevice_many(&dev_kill_list);
7713 rtnl_unlock();
7714}
7715
022cbae6 7716static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7717 .exit = default_device_exit,
04dc7f6b 7718 .exit_batch = default_device_exit_batch,
ce286d32
EB
7719};
7720
1da177e4
LT
7721/*
7722 * Initialize the DEV module. At boot time this walks the device list and
7723 * unhooks any devices that fail to initialise (normally hardware not
7724 * present) and leaves us with a valid list of present and active devices.
7725 *
7726 */
7727
7728/*
7729 * This is called single threaded during boot, so no need
7730 * to take the rtnl semaphore.
7731 */
7732static int __init net_dev_init(void)
7733{
7734 int i, rc = -ENOMEM;
7735
7736 BUG_ON(!dev_boot_phase);
7737
1da177e4
LT
7738 if (dev_proc_init())
7739 goto out;
7740
8b41d188 7741 if (netdev_kobject_init())
1da177e4
LT
7742 goto out;
7743
7744 INIT_LIST_HEAD(&ptype_all);
82d8a867 7745 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7746 INIT_LIST_HEAD(&ptype_base[i]);
7747
62532da9
VY
7748 INIT_LIST_HEAD(&offload_base);
7749
881d966b
EB
7750 if (register_pernet_subsys(&netdev_net_ops))
7751 goto out;
1da177e4
LT
7752
7753 /*
7754 * Initialise the packet receive queues.
7755 */
7756
6f912042 7757 for_each_possible_cpu(i) {
e36fa2f7 7758 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7759
e36fa2f7 7760 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7761 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7762 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7763 sd->output_queue_tailp = &sd->output_queue;
df334545 7764#ifdef CONFIG_RPS
e36fa2f7
ED
7765 sd->csd.func = rps_trigger_softirq;
7766 sd->csd.info = sd;
e36fa2f7 7767 sd->cpu = i;
1e94d72f 7768#endif
0a9627f2 7769
e36fa2f7
ED
7770 sd->backlog.poll = process_backlog;
7771 sd->backlog.weight = weight_p;
1da177e4
LT
7772 }
7773
1da177e4
LT
7774 dev_boot_phase = 0;
7775
505d4f73
EB
7776 /* The loopback device is special if any other network devices
7777 * is present in a network namespace the loopback device must
7778 * be present. Since we now dynamically allocate and free the
7779 * loopback device ensure this invariant is maintained by
7780 * keeping the loopback device as the first device on the
7781 * list of network devices. Ensuring the loopback devices
7782 * is the first device that appears and the last network device
7783 * that disappears.
7784 */
7785 if (register_pernet_device(&loopback_net_ops))
7786 goto out;
7787
7788 if (register_pernet_device(&default_device_ops))
7789 goto out;
7790
962cf36c
CM
7791 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7792 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7793
7794 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 7795 dst_subsys_init();
1da177e4
LT
7796 rc = 0;
7797out:
7798 return rc;
7799}
7800
7801subsys_initcall(net_dev_init);
This page took 1.978896 seconds and 5 git commands to generate.