Merge branch 'qed-dcbnl'
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
1da177e4 102#include <net/dst.h>
fc4099f1 103#include <net/dst_metadata.h>
1da177e4
LT
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
44540960 106#include <net/xfrm.h>
1da177e4
LT
107#include <linux/highmem.h>
108#include <linux/init.h>
1da177e4 109#include <linux/module.h>
1da177e4
LT
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
1da177e4 113#include <net/iw_handler.h>
1da177e4 114#include <asm/current.h>
5bdb9886 115#include <linux/audit.h>
db217334 116#include <linux/dmaengine.h>
f6a78bfc 117#include <linux/err.h>
c7fa9d18 118#include <linux/ctype.h>
723e98b7 119#include <linux/if_arp.h>
6de329e2 120#include <linux/if_vlan.h>
8f0f2223 121#include <linux/ip.h>
ad55dcaf 122#include <net/ip.h>
25cd9ba0 123#include <net/mpls.h>
8f0f2223
DM
124#include <linux/ipv6.h>
125#include <linux/in.h>
b6b2fed1
DM
126#include <linux/jhash.h>
127#include <linux/random.h>
9cbc1cb8 128#include <trace/events/napi.h>
cf66ba58 129#include <trace/events/net.h>
07dc22e7 130#include <trace/events/skb.h>
5acbbd42 131#include <linux/pci.h>
caeda9b9 132#include <linux/inetdevice.h>
c445477d 133#include <linux/cpu_rmap.h>
c5905afb 134#include <linux/static_key.h>
af12fa6e 135#include <linux/hashtable.h>
60877a32 136#include <linux/vmalloc.h>
529d0489 137#include <linux/if_macvlan.h>
e7fd2885 138#include <linux/errqueue.h>
3b47d303 139#include <linux/hrtimer.h>
e687ad60 140#include <linux/netfilter_ingress.h>
6ae23ad3 141#include <linux/sctp.h>
1da177e4 142
342709ef
PE
143#include "net-sysfs.h"
144
d565b0a1
HX
145/* Instead of increasing this, you should create a hash table. */
146#define MAX_GRO_SKBS 8
147
5d38a079
HX
148/* This should be increased if a protocol with a bigger head is added. */
149#define GRO_MAX_HEAD (MAX_HEADER + 128)
150
1da177e4 151static DEFINE_SPINLOCK(ptype_lock);
62532da9 152static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
153struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154struct list_head ptype_all __read_mostly; /* Taps */
62532da9 155static struct list_head offload_base __read_mostly;
1da177e4 156
ae78dbfa 157static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
158static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
ae78dbfa 161
1da177e4 162/*
7562f876 163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
164 * semaphore.
165 *
c6d14c84 166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
7562f876 169 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
1da177e4 181DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
182EXPORT_SYMBOL(dev_base_lock);
183
af12fa6e
ET
184/* protects napi_hash addition/deletion and napi_gen_id */
185static DEFINE_SPINLOCK(napi_hash_lock);
186
52bd2d62 187static unsigned int napi_gen_id = NR_CPUS;
6180d9de 188static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 189
18afa4b0 190static seqcount_t devnet_rename_seq;
c91f6df2 191
4e985ada
TG
192static inline void dev_base_seq_inc(struct net *net)
193{
194 while (++net->dev_base_seq == 0);
195}
196
881d966b 197static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 198{
95c96174
ED
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
08e9897d 201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
202}
203
881d966b 204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 205{
7c28bd0b 206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
207}
208
e36fa2f7 209static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
210{
211#ifdef CONFIG_RPS
e36fa2f7 212 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
213#endif
214}
215
e36fa2f7 216static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
217{
218#ifdef CONFIG_RPS
e36fa2f7 219 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
220#endif
221}
222
ce286d32 223/* Device list insertion */
53759be9 224static void list_netdevice(struct net_device *dev)
ce286d32 225{
c346dca1 226 struct net *net = dev_net(dev);
ce286d32
EB
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
c6d14c84 231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
ce286d32 235 write_unlock_bh(&dev_base_lock);
4e985ada
TG
236
237 dev_base_seq_inc(net);
ce286d32
EB
238}
239
fb699dfd
ED
240/* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
ce286d32
EB
243static void unlist_netdevice(struct net_device *dev)
244{
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
c6d14c84 249 list_del_rcu(&dev->dev_list);
72c9528b 250 hlist_del_rcu(&dev->name_hlist);
fb699dfd 251 hlist_del_rcu(&dev->index_hlist);
ce286d32 252 write_unlock_bh(&dev_base_lock);
4e985ada
TG
253
254 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
255}
256
1da177e4
LT
257/*
258 * Our notifier list
259 */
260
f07d5b94 261static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
262
263/*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
bea3348e 267
9958da05 268DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 269EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 270
cf508b12 271#ifdef CONFIG_LOCKDEP
723e98b7 272/*
c773e847 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
274 * according to dev->type
275 */
276static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 292
36cbd3dc 293static const char *const netdev_lock_name[] =
723e98b7
JP
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
309
310static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 311static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
312
313static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314{
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322}
323
cf508b12
DM
324static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
723e98b7
JP
326{
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332}
cf508b12
DM
333
334static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335{
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342}
723e98b7 343#else
cf508b12
DM
344static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346{
347}
348static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
349{
350}
351#endif
1da177e4
LT
352
353/*******************************************************************************
354
355 Protocol management and registration routines
356
357*******************************************************************************/
358
1da177e4
LT
359/*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
c07b68e8
ED
375static inline struct list_head *ptype_head(const struct packet_type *pt)
376{
377 if (pt->type == htons(ETH_P_ALL))
7866a621 378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 379 else
7866a621
SN
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
382}
383
1da177e4
LT
384/**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
4ec93edb 392 * This call does not sleep therefore it can not
1da177e4
LT
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397void dev_add_pack(struct packet_type *pt)
398{
c07b68e8 399 struct list_head *head = ptype_head(pt);
1da177e4 400
c07b68e8
ED
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
1da177e4 404}
d1b19dff 405EXPORT_SYMBOL(dev_add_pack);
1da177e4 406
1da177e4
LT
407/**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
4ec93edb 414 * returns.
1da177e4
LT
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420void __dev_remove_pack(struct packet_type *pt)
421{
c07b68e8 422 struct list_head *head = ptype_head(pt);
1da177e4
LT
423 struct packet_type *pt1;
424
c07b68e8 425 spin_lock(&ptype_lock);
1da177e4
LT
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
7b6cd1ce 434 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 435out:
c07b68e8 436 spin_unlock(&ptype_lock);
1da177e4 437}
d1b19dff
ED
438EXPORT_SYMBOL(__dev_remove_pack);
439
1da177e4
LT
440/**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452void dev_remove_pack(struct packet_type *pt)
453{
454 __dev_remove_pack(pt);
4ec93edb 455
1da177e4
LT
456 synchronize_net();
457}
d1b19dff 458EXPORT_SYMBOL(dev_remove_pack);
1da177e4 459
62532da9
VY
460
461/**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473void dev_add_offload(struct packet_offload *po)
474{
bdef7de4 475 struct packet_offload *elem;
62532da9
VY
476
477 spin_lock(&offload_lock);
bdef7de4
DM
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
483 spin_unlock(&offload_lock);
484}
485EXPORT_SYMBOL(dev_add_offload);
486
487/**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
1d143d9f 500static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
501{
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
c53aa505 505 spin_lock(&offload_lock);
62532da9
VY
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515out:
c53aa505 516 spin_unlock(&offload_lock);
62532da9 517}
62532da9
VY
518
519/**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531void dev_remove_offload(struct packet_offload *po)
532{
533 __dev_remove_offload(po);
534
535 synchronize_net();
536}
537EXPORT_SYMBOL(dev_remove_offload);
538
1da177e4
LT
539/******************************************************************************
540
541 Device Boot-time Settings Routines
542
543*******************************************************************************/
544
545/* Boot time configuration table */
546static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548/**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557static int netdev_boot_setup_add(char *name, struct ifmap *map)
558{
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 566 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573}
574
575/**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584int netdev_boot_setup_check(struct net_device *dev)
585{
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 591 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600}
d1b19dff 601EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
602
603
604/**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614unsigned long netdev_boot_base(const char *prefix, int unit)
615{
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
881d966b 626 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633}
634
635/*
636 * Saves at boot time configured settings for any netdevice.
637 */
638int __init netdev_boot_setup(char *str)
639{
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660}
661
662__setup("netdev=", netdev_boot_setup);
663
664/*******************************************************************************
665
666 Device Interface Subroutines
667
668*******************************************************************************/
669
a54acb3a
ND
670/**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678int dev_get_iflink(const struct net_device *dev)
679{
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
7a66bbc9 683 return dev->ifindex;
a54acb3a
ND
684}
685EXPORT_SYMBOL(dev_get_iflink);
686
fc4099f1
PS
687/**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697{
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710}
711EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
1da177e4
LT
713/**
714 * __dev_get_by_name - find a device by its name
c4ea43c5 715 * @net: the applicable net namespace
1da177e4
LT
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
881d966b 725struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 726{
0bd8d536
ED
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 729
b67bfe0d 730 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
0bd8d536 733
1da177e4
LT
734 return NULL;
735}
d1b19dff 736EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 737
72c9528b
ED
738/**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751{
72c9528b
ED
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
b67bfe0d 755 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760}
761EXPORT_SYMBOL(dev_get_by_name_rcu);
762
1da177e4
LT
763/**
764 * dev_get_by_name - find a device by its name
c4ea43c5 765 * @net: the applicable net namespace
1da177e4
LT
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
881d966b 775struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
776{
777 struct net_device *dev;
778
72c9528b
ED
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
781 if (dev)
782 dev_hold(dev);
72c9528b 783 rcu_read_unlock();
1da177e4
LT
784 return dev;
785}
d1b19dff 786EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
787
788/**
789 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 790 * @net: the applicable net namespace
1da177e4
LT
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
881d966b 800struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 801{
0bd8d536
ED
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 804
b67bfe0d 805 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
806 if (dev->ifindex == ifindex)
807 return dev;
0bd8d536 808
1da177e4
LT
809 return NULL;
810}
d1b19dff 811EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 812
fb699dfd
ED
813/**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825{
fb699dfd
ED
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
b67bfe0d 829 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834}
835EXPORT_SYMBOL(dev_get_by_index_rcu);
836
1da177e4
LT
837
838/**
839 * dev_get_by_index - find a device by its ifindex
c4ea43c5 840 * @net: the applicable net namespace
1da177e4
LT
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
881d966b 849struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
850{
851 struct net_device *dev;
852
fb699dfd
ED
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
855 if (dev)
856 dev_hold(dev);
fb699dfd 857 rcu_read_unlock();
1da177e4
LT
858 return dev;
859}
d1b19dff 860EXPORT_SYMBOL(dev_get_by_index);
1da177e4 861
5dbe7c17
NS
862/**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872int netdev_get_name(struct net *net, char *name, int ifindex)
873{
874 struct net_device *dev;
875 unsigned int seq;
876
877retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894}
895
1da177e4 896/**
941666c2 897 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 898 * @net: the applicable net namespace
1da177e4
LT
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
941666c2 905 * The returned device has not had its ref count increased
1da177e4
LT
906 * and the caller must therefore be careful about locking
907 *
1da177e4
LT
908 */
909
941666c2
ED
910struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
1da177e4
LT
912{
913 struct net_device *dev;
914
941666c2 915 for_each_netdev_rcu(net, dev)
1da177e4
LT
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
918 return dev;
919
920 return NULL;
1da177e4 921}
941666c2 922EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 923
881d966b 924struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
925{
926 struct net_device *dev;
927
4e9cac2b 928 ASSERT_RTNL();
881d966b 929 for_each_netdev(net, dev)
4e9cac2b 930 if (dev->type == type)
7562f876
PE
931 return dev;
932
933 return NULL;
4e9cac2b 934}
4e9cac2b
PM
935EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
881d966b 937struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 938{
99fe3c39 939 struct net_device *dev, *ret = NULL;
4e9cac2b 940
99fe3c39
ED
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
1da177e4 950}
1da177e4
LT
951EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953/**
6c555490 954 * __dev_get_by_flags - find any device with given flags
c4ea43c5 955 * @net: the applicable net namespace
1da177e4
LT
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 960 * is not found or a pointer to the device. Must be called inside
6c555490 961 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
962 */
963
6c555490
WC
964struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
1da177e4 966{
7562f876 967 struct net_device *dev, *ret;
1da177e4 968
6c555490
WC
969 ASSERT_RTNL();
970
7562f876 971 ret = NULL;
6c555490 972 for_each_netdev(net, dev) {
1da177e4 973 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 974 ret = dev;
1da177e4
LT
975 break;
976 }
977 }
7562f876 978 return ret;
1da177e4 979}
6c555490 980EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
981
982/**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
c7fa9d18
DM
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
1da177e4 989 */
95f050bf 990bool dev_valid_name(const char *name)
1da177e4 991{
c7fa9d18 992 if (*name == '\0')
95f050bf 993 return false;
b6fe17d6 994 if (strlen(name) >= IFNAMSIZ)
95f050bf 995 return false;
c7fa9d18 996 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 997 return false;
c7fa9d18
DM
998
999 while (*name) {
a4176a93 1000 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1001 return false;
c7fa9d18
DM
1002 name++;
1003 }
95f050bf 1004 return true;
1da177e4 1005}
d1b19dff 1006EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1007
1008/**
b267b179
EB
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1da177e4 1011 * @name: name format string
b267b179 1012 * @buf: scratch buffer and result name string
1da177e4
LT
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1021 */
1022
b267b179 1023static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1024{
1025 int i = 0;
1da177e4
LT
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1028 unsigned long *inuse;
1da177e4
LT
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
cfcabdcc 1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1043 if (!inuse)
1044 return -ENOMEM;
1045
881d966b 1046 for_each_netdev(net, d) {
1da177e4
LT
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1053 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
d9031024
OP
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1064 if (!__dev_get_by_name(net, buf))
1da177e4 1065 return i;
1da177e4
LT
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072}
1073
b267b179
EB
1074/**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088int dev_alloc_name(struct net_device *dev, const char *name)
1089{
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
c346dca1
YH
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
b267b179
EB
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100}
d1b19dff 1101EXPORT_SYMBOL(dev_alloc_name);
b267b179 1102
828de4f6
G
1103static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
d9031024 1106{
828de4f6
G
1107 char buf[IFNAMSIZ];
1108 int ret;
8ce6cebc 1109
828de4f6
G
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114}
1115
1116static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119{
1120 BUG_ON(!net);
8ce6cebc 1121
d9031024
OP
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1c5cae81 1125 if (strchr(name, '%'))
828de4f6 1126 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
8ce6cebc
DL
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1131
1132 return 0;
1133}
1da177e4
LT
1134
1135/**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
cf04a4c7 1143int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1144{
238fa362 1145 unsigned char old_assign_type;
fcc5a03a 1146 char oldname[IFNAMSIZ];
1da177e4 1147 int err = 0;
fcc5a03a 1148 int ret;
881d966b 1149 struct net *net;
1da177e4
LT
1150
1151 ASSERT_RTNL();
c346dca1 1152 BUG_ON(!dev_net(dev));
1da177e4 1153
c346dca1 1154 net = dev_net(dev);
1da177e4
LT
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
30e6c9fa 1158 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1161 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1162 return 0;
c91f6df2 1163 }
c8d90dca 1164
fcc5a03a
HX
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
828de4f6 1167 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1168 if (err < 0) {
30e6c9fa 1169 write_seqcount_end(&devnet_rename_seq);
d9031024 1170 return err;
c91f6df2 1171 }
1da177e4 1172
6fe82a39
VF
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
238fa362
TG
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
fcc5a03a 1179rollback:
a1b3f594
EB
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1183 dev->name_assign_type = old_assign_type;
30e6c9fa 1184 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1185 return ret;
dcc99773 1186 }
7f988eab 1187
30e6c9fa 1188 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1189
5bb025fa
VF
1190 netdev_adjacent_rename_links(dev, oldname);
1191
7f988eab 1192 write_lock_bh(&dev_base_lock);
372b2312 1193 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1200 write_unlock_bh(&dev_base_lock);
1201
056925ab 1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
91e9c07b
ED
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
fcc5a03a 1208 err = ret;
30e6c9fa 1209 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1210 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1211 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1214 goto rollback;
91e9c07b 1215 } else {
7b6cd1ce 1216 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1217 dev->name, ret);
fcc5a03a
HX
1218 }
1219 }
1da177e4
LT
1220
1221 return err;
1222}
1223
0b815a1a
SH
1224/**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
f0db275a 1228 * @len: limit of bytes to copy from info
0b815a1a
SH
1229 *
1230 * Set ifalias for a device,
1231 */
1232int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233{
7364e445
AK
1234 char *new_ifalias;
1235
0b815a1a
SH
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
96ca4a2c 1241 if (!len) {
388dfc2d
SK
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
96ca4a2c
OH
1244 return 0;
1245 }
1246
7364e445
AK
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
0b815a1a 1249 return -ENOMEM;
7364e445 1250 dev->ifalias = new_ifalias;
0b815a1a
SH
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254}
1255
1256
d8a33ac4 1257/**
3041a069 1258 * netdev_features_change - device changes features
d8a33ac4
SH
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263void netdev_features_change(struct net_device *dev)
1264{
056925ab 1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1266}
1267EXPORT_SYMBOL(netdev_features_change);
1268
1da177e4
LT
1269/**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277void netdev_state_change(struct net_device *dev)
1278{
1279 if (dev->flags & IFF_UP) {
54951194
LP
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
7f294054 1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1286 }
1287}
d1b19dff 1288EXPORT_SYMBOL(netdev_state_change);
1da177e4 1289
ee89bab1
AW
1290/**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1301{
ee89bab1
AW
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
c1da4ac7 1305}
ee89bab1 1306EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1307
bd380811 1308static int __dev_open(struct net_device *dev)
1da177e4 1309{
d314774c 1310 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1311 int ret;
1da177e4 1312
e46b66bc
BH
1313 ASSERT_RTNL();
1314
1da177e4
LT
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
ca99ca14
NH
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
66b5552f 1322 netpoll_poll_disable(dev);
ca99ca14 1323
3b8bcfd5
JB
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1da177e4 1329 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1330
d314774c
SH
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
bada339b 1333
d314774c
SH
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1da177e4 1336
66b5552f 1337 netpoll_poll_enable(dev);
ca99ca14 1338
bada339b
JG
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1da177e4 1342 dev->flags |= IFF_UP;
4417da66 1343 dev_set_rx_mode(dev);
1da177e4 1344 dev_activate(dev);
7bf23575 1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1346 }
bada339b 1347
1da177e4
LT
1348 return ret;
1349}
1350
1351/**
bd380811
PM
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1da177e4 1354 *
bd380811
PM
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1da177e4 1362 */
bd380811
PM
1363int dev_open(struct net_device *dev)
1364{
1365 int ret;
1366
bd380811
PM
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
bd380811
PM
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
7f294054 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378}
1379EXPORT_SYMBOL(dev_open);
1380
44345724 1381static int __dev_close_many(struct list_head *head)
1da177e4 1382{
44345724 1383 struct net_device *dev;
e46b66bc 1384
bd380811 1385 ASSERT_RTNL();
9d5010db
DM
1386 might_sleep();
1387
5cde2829 1388 list_for_each_entry(dev, head, close_list) {
3f4df206 1389 /* Temporarily disable netpoll until the interface is down */
66b5552f 1390 netpoll_poll_disable(dev);
3f4df206 1391
44345724 1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1393
44345724 1394 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1395
44345724
OP
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
4e857c58 1402 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1403 }
1da177e4 1404
44345724 1405 dev_deactivate_many(head);
d8b2a4d2 1406
5cde2829 1407 list_for_each_entry(dev, head, close_list) {
44345724 1408 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1409
44345724
OP
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
44345724 1420 dev->flags &= ~IFF_UP;
66b5552f 1421 netpoll_poll_enable(dev);
44345724
OP
1422 }
1423
1424 return 0;
1425}
1426
1427static int __dev_close(struct net_device *dev)
1428{
f87e6f47 1429 int retval;
44345724
OP
1430 LIST_HEAD(single);
1431
5cde2829 1432 list_add(&dev->close_list, &single);
f87e6f47
LT
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
ca99ca14 1435
f87e6f47 1436 return retval;
44345724
OP
1437}
1438
99c4a26a 1439int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1440{
1441 struct net_device *dev, *tmp;
1da177e4 1442
5cde2829
EB
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1445 if (!(dev->flags & IFF_UP))
5cde2829 1446 list_del_init(&dev->close_list);
44345724
OP
1447
1448 __dev_close_many(head);
1da177e4 1449
5cde2829 1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1453 if (unlink)
1454 list_del_init(&dev->close_list);
44345724 1455 }
bd380811
PM
1456
1457 return 0;
1458}
99c4a26a 1459EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1460
1461/**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470int dev_close(struct net_device *dev)
1471{
e14a5993
ED
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1da177e4 1474
5cde2829 1475 list_add(&dev->close_list, &single);
99c4a26a 1476 dev_close_many(&single, true);
e14a5993
ED
1477 list_del(&single);
1478 }
da6e378b 1479 return 0;
1da177e4 1480}
d1b19dff 1481EXPORT_SYMBOL(dev_close);
1da177e4
LT
1482
1483
0187bdfb
BH
1484/**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492void dev_disable_lro(struct net_device *dev)
1493{
fbe168ba
MK
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
529d0489 1496
bc5787c6
MM
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
27660515 1499
22d5969f
MM
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
0187bdfb
BH
1505}
1506EXPORT_SYMBOL(dev_disable_lro);
1507
351638e7
JP
1508static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510{
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515}
0187bdfb 1516
881d966b
EB
1517static int dev_boot_phase = 1;
1518
1da177e4
LT
1519/**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
4ec93edb 1529 * to the new notifier to allow device to have a race free
1da177e4
LT
1530 * view of the network device list.
1531 */
1532
1533int register_netdevice_notifier(struct notifier_block *nb)
1534{
1535 struct net_device *dev;
fcc5a03a 1536 struct net_device *last;
881d966b 1537 struct net *net;
1da177e4
LT
1538 int err;
1539
1540 rtnl_lock();
f07d5b94 1541 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1542 if (err)
1543 goto unlock;
881d966b
EB
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
351638e7 1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1da177e4 1555
351638e7 1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1557 }
1da177e4 1558 }
fcc5a03a
HX
1559
1560unlock:
1da177e4
LT
1561 rtnl_unlock();
1562 return err;
fcc5a03a
HX
1563
1564rollback:
1565 last = dev;
881d966b
EB
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
8f891489 1569 goto outroll;
fcc5a03a 1570
881d966b 1571 if (dev->flags & IFF_UP) {
351638e7
JP
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1575 }
351638e7 1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1577 }
fcc5a03a 1578 }
c67625a1 1579
8f891489 1580outroll:
c67625a1 1581 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1582 goto unlock;
1da177e4 1583}
d1b19dff 1584EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1585
1586/**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
7d3d43da
EB
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1da177e4
LT
1598 */
1599
1600int unregister_netdevice_notifier(struct notifier_block *nb)
1601{
7d3d43da
EB
1602 struct net_device *dev;
1603 struct net *net;
9f514950
HX
1604 int err;
1605
1606 rtnl_lock();
f07d5b94 1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
351638e7
JP
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1617 }
351638e7 1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1619 }
1620 }
1621unlock:
9f514950
HX
1622 rtnl_unlock();
1623 return err;
1da177e4 1624}
d1b19dff 1625EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1626
351638e7
JP
1627/**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1d143d9f 1637static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
351638e7
JP
1640{
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644}
351638e7 1645
1da177e4
LT
1646/**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
c4ea43c5 1649 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1650 *
1651 * Call all network notifier blocks. Parameters and return value
f07d5b94 1652 * are as for raw_notifier_call_chain().
1da177e4
LT
1653 */
1654
ad7379d4 1655int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1656{
351638e7
JP
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1660}
edf947f1 1661EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1662
1cf51900 1663#ifdef CONFIG_NET_INGRESS
4577139b
DB
1664static struct static_key ingress_needed __read_mostly;
1665
1666void net_inc_ingress_queue(void)
1667{
1668 static_key_slow_inc(&ingress_needed);
1669}
1670EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672void net_dec_ingress_queue(void)
1673{
1674 static_key_slow_dec(&ingress_needed);
1675}
1676EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677#endif
1678
1f211a1b
DB
1679#ifdef CONFIG_NET_EGRESS
1680static struct static_key egress_needed __read_mostly;
1681
1682void net_inc_egress_queue(void)
1683{
1684 static_key_slow_inc(&egress_needed);
1685}
1686EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688void net_dec_egress_queue(void)
1689{
1690 static_key_slow_dec(&egress_needed);
1691}
1692EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693#endif
1694
c5905afb 1695static struct static_key netstamp_needed __read_mostly;
b90e5794 1696#ifdef HAVE_JUMP_LABEL
c5905afb 1697/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1698 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1699 * static_key_slow_dec() calls.
b90e5794
ED
1700 */
1701static atomic_t netstamp_needed_deferred;
1702#endif
1da177e4
LT
1703
1704void net_enable_timestamp(void)
1705{
b90e5794
ED
1706#ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
c5905afb 1711 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1712 return;
1713 }
1714#endif
c5905afb 1715 static_key_slow_inc(&netstamp_needed);
1da177e4 1716}
d1b19dff 1717EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1718
1719void net_disable_timestamp(void)
1720{
b90e5794
ED
1721#ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726#endif
c5905afb 1727 static_key_slow_dec(&netstamp_needed);
1da177e4 1728}
d1b19dff 1729EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1730
3b098e2d 1731static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1732{
588f0330 1733 skb->tstamp.tv64 = 0;
c5905afb 1734 if (static_key_false(&netstamp_needed))
a61bbcf2 1735 __net_timestamp(skb);
1da177e4
LT
1736}
1737
588f0330 1738#define net_timestamp_check(COND, SKB) \
c5905afb 1739 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
3b098e2d 1743
f4b05d27 1744bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1745{
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762}
1ee481fb 1763EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1764
a0265d28
HX
1765int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766{
bbbf2df0
WB
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
08b4b8ea 1775 skb->priority = 0;
a0265d28 1776 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1778
1779 return 0;
1780}
1781EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
44540960
AB
1783/**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
6ec82562 1791 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802{
a0265d28 1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1804}
1805EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
71d9dec2
CG
1807static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810{
1080e512
MT
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
71d9dec2
CG
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815}
1816
7866a621
SN
1817static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
fbcb2170
JP
1819 struct net_device *orig_dev,
1820 __be16 type,
7866a621
SN
1821 struct list_head *ptype_list)
1822{
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
fbcb2170 1829 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833}
1834
c0de08d0
EL
1835static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836{
a3d744e9 1837 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846}
1847
1da177e4
LT
1848/*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
74b20582 1853void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1854{
1855 struct packet_type *ptype;
71d9dec2
CG
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
7866a621 1858 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1859
1da177e4 1860 rcu_read_lock();
7866a621
SN
1861again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
7866a621
SN
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
71d9dec2 1868
7866a621
SN
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1da177e4 1874
7866a621
SN
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
70978182 1879
7866a621 1880 net_timestamp_set(skb2);
1da177e4 1881
7866a621
SN
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1da177e4 1894 }
7866a621
SN
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1da177e4 1904 }
7866a621 1905out_unlock:
71d9dec2
CG
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1908 rcu_read_unlock();
1909}
74b20582 1910EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1911
2c53040f
BH
1912/**
1913 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1914 * @dev: Network device
1915 * @txq: number of queues available
1916 *
1917 * If real_num_tx_queues is changed the tc mappings may no longer be
1918 * valid. To resolve this verify the tc mapping remains valid and if
1919 * not NULL the mapping. With no priorities mapping to this
1920 * offset/count pair it will no longer be used. In the worst case TC0
1921 * is invalid nothing can be done so disable priority mappings. If is
1922 * expected that drivers will fix this mapping if they can before
1923 * calling netif_set_real_num_tx_queues.
1924 */
bb134d22 1925static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1926{
1927 int i;
1928 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1929
1930 /* If TC0 is invalidated disable TC mapping */
1931 if (tc->offset + tc->count > txq) {
7b6cd1ce 1932 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1933 dev->num_tc = 0;
1934 return;
1935 }
1936
1937 /* Invalidated prio to tc mappings set to TC0 */
1938 for (i = 1; i < TC_BITMASK + 1; i++) {
1939 int q = netdev_get_prio_tc_map(dev, i);
1940
1941 tc = &dev->tc_to_txq[q];
1942 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1943 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1944 i, q);
4f57c087
JF
1945 netdev_set_prio_tc_map(dev, i, 0);
1946 }
1947 }
1948}
1949
537c00de
AD
1950#ifdef CONFIG_XPS
1951static DEFINE_MUTEX(xps_map_mutex);
1952#define xmap_dereference(P) \
1953 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1954
10cdc3f3
AD
1955static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1956 int cpu, u16 index)
537c00de 1957{
10cdc3f3
AD
1958 struct xps_map *map = NULL;
1959 int pos;
537c00de 1960
10cdc3f3
AD
1961 if (dev_maps)
1962 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1963
10cdc3f3
AD
1964 for (pos = 0; map && pos < map->len; pos++) {
1965 if (map->queues[pos] == index) {
537c00de
AD
1966 if (map->len > 1) {
1967 map->queues[pos] = map->queues[--map->len];
1968 } else {
10cdc3f3 1969 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1970 kfree_rcu(map, rcu);
1971 map = NULL;
1972 }
10cdc3f3 1973 break;
537c00de 1974 }
537c00de
AD
1975 }
1976
10cdc3f3
AD
1977 return map;
1978}
1979
024e9679 1980static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1981{
1982 struct xps_dev_maps *dev_maps;
024e9679 1983 int cpu, i;
10cdc3f3
AD
1984 bool active = false;
1985
1986 mutex_lock(&xps_map_mutex);
1987 dev_maps = xmap_dereference(dev->xps_maps);
1988
1989 if (!dev_maps)
1990 goto out_no_maps;
1991
1992 for_each_possible_cpu(cpu) {
024e9679
AD
1993 for (i = index; i < dev->num_tx_queues; i++) {
1994 if (!remove_xps_queue(dev_maps, cpu, i))
1995 break;
1996 }
1997 if (i == dev->num_tx_queues)
10cdc3f3
AD
1998 active = true;
1999 }
2000
2001 if (!active) {
537c00de
AD
2002 RCU_INIT_POINTER(dev->xps_maps, NULL);
2003 kfree_rcu(dev_maps, rcu);
2004 }
2005
024e9679
AD
2006 for (i = index; i < dev->num_tx_queues; i++)
2007 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2008 NUMA_NO_NODE);
2009
537c00de
AD
2010out_no_maps:
2011 mutex_unlock(&xps_map_mutex);
2012}
2013
01c5f864
AD
2014static struct xps_map *expand_xps_map(struct xps_map *map,
2015 int cpu, u16 index)
2016{
2017 struct xps_map *new_map;
2018 int alloc_len = XPS_MIN_MAP_ALLOC;
2019 int i, pos;
2020
2021 for (pos = 0; map && pos < map->len; pos++) {
2022 if (map->queues[pos] != index)
2023 continue;
2024 return map;
2025 }
2026
2027 /* Need to add queue to this CPU's existing map */
2028 if (map) {
2029 if (pos < map->alloc_len)
2030 return map;
2031
2032 alloc_len = map->alloc_len * 2;
2033 }
2034
2035 /* Need to allocate new map to store queue on this CPU's map */
2036 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2037 cpu_to_node(cpu));
2038 if (!new_map)
2039 return NULL;
2040
2041 for (i = 0; i < pos; i++)
2042 new_map->queues[i] = map->queues[i];
2043 new_map->alloc_len = alloc_len;
2044 new_map->len = pos;
2045
2046 return new_map;
2047}
2048
3573540c
MT
2049int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2050 u16 index)
537c00de 2051{
01c5f864 2052 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2053 struct xps_map *map, *new_map;
537c00de 2054 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2055 int cpu, numa_node_id = -2;
2056 bool active = false;
537c00de
AD
2057
2058 mutex_lock(&xps_map_mutex);
2059
2060 dev_maps = xmap_dereference(dev->xps_maps);
2061
01c5f864
AD
2062 /* allocate memory for queue storage */
2063 for_each_online_cpu(cpu) {
2064 if (!cpumask_test_cpu(cpu, mask))
2065 continue;
2066
2067 if (!new_dev_maps)
2068 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2069 if (!new_dev_maps) {
2070 mutex_unlock(&xps_map_mutex);
01c5f864 2071 return -ENOMEM;
2bb60cb9 2072 }
01c5f864
AD
2073
2074 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2075 NULL;
2076
2077 map = expand_xps_map(map, cpu, index);
2078 if (!map)
2079 goto error;
2080
2081 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2082 }
2083
2084 if (!new_dev_maps)
2085 goto out_no_new_maps;
2086
537c00de 2087 for_each_possible_cpu(cpu) {
01c5f864
AD
2088 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2089 /* add queue to CPU maps */
2090 int pos = 0;
2091
2092 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2093 while ((pos < map->len) && (map->queues[pos] != index))
2094 pos++;
2095
2096 if (pos == map->len)
2097 map->queues[map->len++] = index;
537c00de 2098#ifdef CONFIG_NUMA
537c00de
AD
2099 if (numa_node_id == -2)
2100 numa_node_id = cpu_to_node(cpu);
2101 else if (numa_node_id != cpu_to_node(cpu))
2102 numa_node_id = -1;
537c00de 2103#endif
01c5f864
AD
2104 } else if (dev_maps) {
2105 /* fill in the new device map from the old device map */
2106 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2107 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2108 }
01c5f864 2109
537c00de
AD
2110 }
2111
01c5f864
AD
2112 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2113
537c00de 2114 /* Cleanup old maps */
01c5f864
AD
2115 if (dev_maps) {
2116 for_each_possible_cpu(cpu) {
2117 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2118 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2119 if (map && map != new_map)
2120 kfree_rcu(map, rcu);
2121 }
537c00de 2122
01c5f864 2123 kfree_rcu(dev_maps, rcu);
537c00de
AD
2124 }
2125
01c5f864
AD
2126 dev_maps = new_dev_maps;
2127 active = true;
537c00de 2128
01c5f864
AD
2129out_no_new_maps:
2130 /* update Tx queue numa node */
537c00de
AD
2131 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2132 (numa_node_id >= 0) ? numa_node_id :
2133 NUMA_NO_NODE);
2134
01c5f864
AD
2135 if (!dev_maps)
2136 goto out_no_maps;
2137
2138 /* removes queue from unused CPUs */
2139 for_each_possible_cpu(cpu) {
2140 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2141 continue;
2142
2143 if (remove_xps_queue(dev_maps, cpu, index))
2144 active = true;
2145 }
2146
2147 /* free map if not active */
2148 if (!active) {
2149 RCU_INIT_POINTER(dev->xps_maps, NULL);
2150 kfree_rcu(dev_maps, rcu);
2151 }
2152
2153out_no_maps:
537c00de
AD
2154 mutex_unlock(&xps_map_mutex);
2155
2156 return 0;
2157error:
01c5f864
AD
2158 /* remove any maps that we added */
2159 for_each_possible_cpu(cpu) {
2160 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2161 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2162 NULL;
2163 if (new_map && new_map != map)
2164 kfree(new_map);
2165 }
2166
537c00de
AD
2167 mutex_unlock(&xps_map_mutex);
2168
537c00de
AD
2169 kfree(new_dev_maps);
2170 return -ENOMEM;
2171}
2172EXPORT_SYMBOL(netif_set_xps_queue);
2173
2174#endif
f0796d5c
JF
2175/*
2176 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2177 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2178 */
e6484930 2179int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2180{
1d24eb48
TH
2181 int rc;
2182
e6484930
TH
2183 if (txq < 1 || txq > dev->num_tx_queues)
2184 return -EINVAL;
f0796d5c 2185
5c56580b
BH
2186 if (dev->reg_state == NETREG_REGISTERED ||
2187 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2188 ASSERT_RTNL();
2189
1d24eb48
TH
2190 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2191 txq);
bf264145
TH
2192 if (rc)
2193 return rc;
2194
4f57c087
JF
2195 if (dev->num_tc)
2196 netif_setup_tc(dev, txq);
2197
024e9679 2198 if (txq < dev->real_num_tx_queues) {
e6484930 2199 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2200#ifdef CONFIG_XPS
2201 netif_reset_xps_queues_gt(dev, txq);
2202#endif
2203 }
f0796d5c 2204 }
e6484930
TH
2205
2206 dev->real_num_tx_queues = txq;
2207 return 0;
f0796d5c
JF
2208}
2209EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2210
a953be53 2211#ifdef CONFIG_SYSFS
62fe0b40
BH
2212/**
2213 * netif_set_real_num_rx_queues - set actual number of RX queues used
2214 * @dev: Network device
2215 * @rxq: Actual number of RX queues
2216 *
2217 * This must be called either with the rtnl_lock held or before
2218 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2219 * negative error code. If called before registration, it always
2220 * succeeds.
62fe0b40
BH
2221 */
2222int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2223{
2224 int rc;
2225
bd25fa7b
TH
2226 if (rxq < 1 || rxq > dev->num_rx_queues)
2227 return -EINVAL;
2228
62fe0b40
BH
2229 if (dev->reg_state == NETREG_REGISTERED) {
2230 ASSERT_RTNL();
2231
62fe0b40
BH
2232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2233 rxq);
2234 if (rc)
2235 return rc;
62fe0b40
BH
2236 }
2237
2238 dev->real_num_rx_queues = rxq;
2239 return 0;
2240}
2241EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2242#endif
2243
2c53040f
BH
2244/**
2245 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2246 *
2247 * This routine should set an upper limit on the number of RSS queues
2248 * used by default by multiqueue devices.
2249 */
a55b138b 2250int netif_get_num_default_rss_queues(void)
16917b87
YM
2251{
2252 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2253}
2254EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2255
3bcb846c 2256static void __netif_reschedule(struct Qdisc *q)
56079431 2257{
def82a1d
JP
2258 struct softnet_data *sd;
2259 unsigned long flags;
56079431 2260
def82a1d 2261 local_irq_save(flags);
903ceff7 2262 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2263 q->next_sched = NULL;
2264 *sd->output_queue_tailp = q;
2265 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2266 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267 local_irq_restore(flags);
2268}
2269
2270void __netif_schedule(struct Qdisc *q)
2271{
2272 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2273 __netif_reschedule(q);
56079431
DV
2274}
2275EXPORT_SYMBOL(__netif_schedule);
2276
e6247027
ED
2277struct dev_kfree_skb_cb {
2278 enum skb_free_reason reason;
2279};
2280
2281static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2282{
e6247027
ED
2283 return (struct dev_kfree_skb_cb *)skb->cb;
2284}
2285
46e5da40
JF
2286void netif_schedule_queue(struct netdev_queue *txq)
2287{
2288 rcu_read_lock();
2289 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2290 struct Qdisc *q = rcu_dereference(txq->qdisc);
2291
2292 __netif_schedule(q);
2293 }
2294 rcu_read_unlock();
2295}
2296EXPORT_SYMBOL(netif_schedule_queue);
2297
2298/**
2299 * netif_wake_subqueue - allow sending packets on subqueue
2300 * @dev: network device
2301 * @queue_index: sub queue index
2302 *
2303 * Resume individual transmit queue of a device with multiple transmit queues.
2304 */
2305void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2306{
2307 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2308
2309 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2310 struct Qdisc *q;
2311
2312 rcu_read_lock();
2313 q = rcu_dereference(txq->qdisc);
2314 __netif_schedule(q);
2315 rcu_read_unlock();
2316 }
2317}
2318EXPORT_SYMBOL(netif_wake_subqueue);
2319
2320void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2321{
2322 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2323 struct Qdisc *q;
2324
2325 rcu_read_lock();
2326 q = rcu_dereference(dev_queue->qdisc);
2327 __netif_schedule(q);
2328 rcu_read_unlock();
2329 }
2330}
2331EXPORT_SYMBOL(netif_tx_wake_queue);
2332
e6247027 2333void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2334{
e6247027 2335 unsigned long flags;
56079431 2336
e6247027
ED
2337 if (likely(atomic_read(&skb->users) == 1)) {
2338 smp_rmb();
2339 atomic_set(&skb->users, 0);
2340 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2341 return;
bea3348e 2342 }
e6247027
ED
2343 get_kfree_skb_cb(skb)->reason = reason;
2344 local_irq_save(flags);
2345 skb->next = __this_cpu_read(softnet_data.completion_queue);
2346 __this_cpu_write(softnet_data.completion_queue, skb);
2347 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2348 local_irq_restore(flags);
56079431 2349}
e6247027 2350EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2351
e6247027 2352void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2353{
2354 if (in_irq() || irqs_disabled())
e6247027 2355 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2356 else
2357 dev_kfree_skb(skb);
2358}
e6247027 2359EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2360
2361
bea3348e
SH
2362/**
2363 * netif_device_detach - mark device as removed
2364 * @dev: network device
2365 *
2366 * Mark device as removed from system and therefore no longer available.
2367 */
56079431
DV
2368void netif_device_detach(struct net_device *dev)
2369{
2370 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2371 netif_running(dev)) {
d543103a 2372 netif_tx_stop_all_queues(dev);
56079431
DV
2373 }
2374}
2375EXPORT_SYMBOL(netif_device_detach);
2376
bea3348e
SH
2377/**
2378 * netif_device_attach - mark device as attached
2379 * @dev: network device
2380 *
2381 * Mark device as attached from system and restart if needed.
2382 */
56079431
DV
2383void netif_device_attach(struct net_device *dev)
2384{
2385 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2386 netif_running(dev)) {
d543103a 2387 netif_tx_wake_all_queues(dev);
4ec93edb 2388 __netdev_watchdog_up(dev);
56079431
DV
2389 }
2390}
2391EXPORT_SYMBOL(netif_device_attach);
2392
5605c762
JP
2393/*
2394 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2395 * to be used as a distribution range.
2396 */
2397u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2398 unsigned int num_tx_queues)
2399{
2400 u32 hash;
2401 u16 qoffset = 0;
2402 u16 qcount = num_tx_queues;
2403
2404 if (skb_rx_queue_recorded(skb)) {
2405 hash = skb_get_rx_queue(skb);
2406 while (unlikely(hash >= num_tx_queues))
2407 hash -= num_tx_queues;
2408 return hash;
2409 }
2410
2411 if (dev->num_tc) {
2412 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2413 qoffset = dev->tc_to_txq[tc].offset;
2414 qcount = dev->tc_to_txq[tc].count;
2415 }
2416
2417 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2418}
2419EXPORT_SYMBOL(__skb_tx_hash);
2420
36c92474
BH
2421static void skb_warn_bad_offload(const struct sk_buff *skb)
2422{
65e9d2fa 2423 static const netdev_features_t null_features = 0;
36c92474 2424 struct net_device *dev = skb->dev;
88ad4175 2425 const char *name = "";
36c92474 2426
c846ad9b
BG
2427 if (!net_ratelimit())
2428 return;
2429
88ad4175
BM
2430 if (dev) {
2431 if (dev->dev.parent)
2432 name = dev_driver_string(dev->dev.parent);
2433 else
2434 name = netdev_name(dev);
2435 }
36c92474
BH
2436 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2437 "gso_type=%d ip_summed=%d\n",
88ad4175 2438 name, dev ? &dev->features : &null_features,
65e9d2fa 2439 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2440 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2441 skb_shinfo(skb)->gso_type, skb->ip_summed);
2442}
2443
1da177e4
LT
2444/*
2445 * Invalidate hardware checksum when packet is to be mangled, and
2446 * complete checksum manually on outgoing path.
2447 */
84fa7933 2448int skb_checksum_help(struct sk_buff *skb)
1da177e4 2449{
d3bc23e7 2450 __wsum csum;
663ead3b 2451 int ret = 0, offset;
1da177e4 2452
84fa7933 2453 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2454 goto out_set_summed;
2455
2456 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2457 skb_warn_bad_offload(skb);
2458 return -EINVAL;
1da177e4
LT
2459 }
2460
cef401de
ED
2461 /* Before computing a checksum, we should make sure no frag could
2462 * be modified by an external entity : checksum could be wrong.
2463 */
2464 if (skb_has_shared_frag(skb)) {
2465 ret = __skb_linearize(skb);
2466 if (ret)
2467 goto out;
2468 }
2469
55508d60 2470 offset = skb_checksum_start_offset(skb);
a030847e
HX
2471 BUG_ON(offset >= skb_headlen(skb));
2472 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2473
2474 offset += skb->csum_offset;
2475 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2476
2477 if (skb_cloned(skb) &&
2478 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2479 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2480 if (ret)
2481 goto out;
2482 }
2483
a030847e 2484 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2485out_set_summed:
1da177e4 2486 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2487out:
1da177e4
LT
2488 return ret;
2489}
d1b19dff 2490EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2491
6ae23ad3
TH
2492/* skb_csum_offload_check - Driver helper function to determine if a device
2493 * with limited checksum offload capabilities is able to offload the checksum
2494 * for a given packet.
2495 *
2496 * Arguments:
2497 * skb - sk_buff for the packet in question
2498 * spec - contains the description of what device can offload
2499 * csum_encapped - returns true if the checksum being offloaded is
2500 * encpasulated. That is it is checksum for the transport header
2501 * in the inner headers.
2502 * checksum_help - when set indicates that helper function should
2503 * call skb_checksum_help if offload checks fail
2504 *
2505 * Returns:
2506 * true: Packet has passed the checksum checks and should be offloadable to
2507 * the device (a driver may still need to check for additional
2508 * restrictions of its device)
2509 * false: Checksum is not offloadable. If checksum_help was set then
2510 * skb_checksum_help was called to resolve checksum for non-GSO
2511 * packets and when IP protocol is not SCTP
2512 */
2513bool __skb_csum_offload_chk(struct sk_buff *skb,
2514 const struct skb_csum_offl_spec *spec,
2515 bool *csum_encapped,
2516 bool csum_help)
2517{
2518 struct iphdr *iph;
2519 struct ipv6hdr *ipv6;
2520 void *nhdr;
2521 int protocol;
2522 u8 ip_proto;
2523
2524 if (skb->protocol == htons(ETH_P_8021Q) ||
2525 skb->protocol == htons(ETH_P_8021AD)) {
2526 if (!spec->vlan_okay)
2527 goto need_help;
2528 }
2529
2530 /* We check whether the checksum refers to a transport layer checksum in
2531 * the outermost header or an encapsulated transport layer checksum that
2532 * corresponds to the inner headers of the skb. If the checksum is for
2533 * something else in the packet we need help.
2534 */
2535 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2536 /* Non-encapsulated checksum */
2537 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2538 nhdr = skb_network_header(skb);
2539 *csum_encapped = false;
2540 if (spec->no_not_encapped)
2541 goto need_help;
2542 } else if (skb->encapsulation && spec->encap_okay &&
2543 skb_checksum_start_offset(skb) ==
2544 skb_inner_transport_offset(skb)) {
2545 /* Encapsulated checksum */
2546 *csum_encapped = true;
2547 switch (skb->inner_protocol_type) {
2548 case ENCAP_TYPE_ETHER:
2549 protocol = eproto_to_ipproto(skb->inner_protocol);
2550 break;
2551 case ENCAP_TYPE_IPPROTO:
2552 protocol = skb->inner_protocol;
2553 break;
2554 }
2555 nhdr = skb_inner_network_header(skb);
2556 } else {
2557 goto need_help;
2558 }
2559
2560 switch (protocol) {
2561 case IPPROTO_IP:
2562 if (!spec->ipv4_okay)
2563 goto need_help;
2564 iph = nhdr;
2565 ip_proto = iph->protocol;
2566 if (iph->ihl != 5 && !spec->ip_options_okay)
2567 goto need_help;
2568 break;
2569 case IPPROTO_IPV6:
2570 if (!spec->ipv6_okay)
2571 goto need_help;
2572 if (spec->no_encapped_ipv6 && *csum_encapped)
2573 goto need_help;
2574 ipv6 = nhdr;
2575 nhdr += sizeof(*ipv6);
2576 ip_proto = ipv6->nexthdr;
2577 break;
2578 default:
2579 goto need_help;
2580 }
2581
2582ip_proto_again:
2583 switch (ip_proto) {
2584 case IPPROTO_TCP:
2585 if (!spec->tcp_okay ||
2586 skb->csum_offset != offsetof(struct tcphdr, check))
2587 goto need_help;
2588 break;
2589 case IPPROTO_UDP:
2590 if (!spec->udp_okay ||
2591 skb->csum_offset != offsetof(struct udphdr, check))
2592 goto need_help;
2593 break;
2594 case IPPROTO_SCTP:
2595 if (!spec->sctp_okay ||
2596 skb->csum_offset != offsetof(struct sctphdr, checksum))
2597 goto cant_help;
2598 break;
2599 case NEXTHDR_HOP:
2600 case NEXTHDR_ROUTING:
2601 case NEXTHDR_DEST: {
2602 u8 *opthdr = nhdr;
2603
2604 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2605 goto need_help;
2606
2607 ip_proto = opthdr[0];
2608 nhdr += (opthdr[1] + 1) << 3;
2609
2610 goto ip_proto_again;
2611 }
2612 default:
2613 goto need_help;
2614 }
2615
2616 /* Passed the tests for offloading checksum */
2617 return true;
2618
2619need_help:
2620 if (csum_help && !skb_shinfo(skb)->gso_size)
2621 skb_checksum_help(skb);
2622cant_help:
2623 return false;
2624}
2625EXPORT_SYMBOL(__skb_csum_offload_chk);
2626
53d6471c 2627__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2628{
252e3346 2629 __be16 type = skb->protocol;
f6a78bfc 2630
19acc327
PS
2631 /* Tunnel gso handlers can set protocol to ethernet. */
2632 if (type == htons(ETH_P_TEB)) {
2633 struct ethhdr *eth;
2634
2635 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2636 return 0;
2637
2638 eth = (struct ethhdr *)skb_mac_header(skb);
2639 type = eth->h_proto;
2640 }
2641
d4bcef3f 2642 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2643}
2644
2645/**
2646 * skb_mac_gso_segment - mac layer segmentation handler.
2647 * @skb: buffer to segment
2648 * @features: features for the output path (see dev->features)
2649 */
2650struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2651 netdev_features_t features)
2652{
2653 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2654 struct packet_offload *ptype;
53d6471c
VY
2655 int vlan_depth = skb->mac_len;
2656 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2657
2658 if (unlikely(!type))
2659 return ERR_PTR(-EINVAL);
2660
53d6471c 2661 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2662
2663 rcu_read_lock();
22061d80 2664 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2665 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2666 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2667 break;
2668 }
2669 }
2670 rcu_read_unlock();
2671
98e399f8 2672 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2673
f6a78bfc
HX
2674 return segs;
2675}
05e8ef4a
PS
2676EXPORT_SYMBOL(skb_mac_gso_segment);
2677
2678
2679/* openvswitch calls this on rx path, so we need a different check.
2680 */
2681static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2682{
2683 if (tx_path)
2684 return skb->ip_summed != CHECKSUM_PARTIAL;
2685 else
2686 return skb->ip_summed == CHECKSUM_NONE;
2687}
2688
2689/**
2690 * __skb_gso_segment - Perform segmentation on skb.
2691 * @skb: buffer to segment
2692 * @features: features for the output path (see dev->features)
2693 * @tx_path: whether it is called in TX path
2694 *
2695 * This function segments the given skb and returns a list of segments.
2696 *
2697 * It may return NULL if the skb requires no segmentation. This is
2698 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2699 *
2700 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2701 */
2702struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2703 netdev_features_t features, bool tx_path)
2704{
2705 if (unlikely(skb_needs_check(skb, tx_path))) {
2706 int err;
2707
2708 skb_warn_bad_offload(skb);
2709
a40e0a66 2710 err = skb_cow_head(skb, 0);
2711 if (err < 0)
05e8ef4a
PS
2712 return ERR_PTR(err);
2713 }
2714
802ab55a
AD
2715 /* Only report GSO partial support if it will enable us to
2716 * support segmentation on this frame without needing additional
2717 * work.
2718 */
2719 if (features & NETIF_F_GSO_PARTIAL) {
2720 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2721 struct net_device *dev = skb->dev;
2722
2723 partial_features |= dev->features & dev->gso_partial_features;
2724 if (!skb_gso_ok(skb, features | partial_features))
2725 features &= ~NETIF_F_GSO_PARTIAL;
2726 }
2727
9207f9d4
KK
2728 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2729 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2730
68c33163 2731 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2732 SKB_GSO_CB(skb)->encap_level = 0;
2733
05e8ef4a
PS
2734 skb_reset_mac_header(skb);
2735 skb_reset_mac_len(skb);
2736
2737 return skb_mac_gso_segment(skb, features);
2738}
12b0004d 2739EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2740
fb286bb2
HX
2741/* Take action when hardware reception checksum errors are detected. */
2742#ifdef CONFIG_BUG
2743void netdev_rx_csum_fault(struct net_device *dev)
2744{
2745 if (net_ratelimit()) {
7b6cd1ce 2746 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2747 dump_stack();
2748 }
2749}
2750EXPORT_SYMBOL(netdev_rx_csum_fault);
2751#endif
2752
1da177e4
LT
2753/* Actually, we should eliminate this check as soon as we know, that:
2754 * 1. IOMMU is present and allows to map all the memory.
2755 * 2. No high memory really exists on this machine.
2756 */
2757
c1e756bf 2758static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2759{
3d3a8533 2760#ifdef CONFIG_HIGHMEM
1da177e4 2761 int i;
5acbbd42 2762 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2763 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2764 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2765 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2766 return 1;
ea2ab693 2767 }
5acbbd42 2768 }
1da177e4 2769
5acbbd42
FT
2770 if (PCI_DMA_BUS_IS_PHYS) {
2771 struct device *pdev = dev->dev.parent;
1da177e4 2772
9092c658
ED
2773 if (!pdev)
2774 return 0;
5acbbd42 2775 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2776 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2777 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2778 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2779 return 1;
2780 }
2781 }
3d3a8533 2782#endif
1da177e4
LT
2783 return 0;
2784}
1da177e4 2785
3b392ddb
SH
2786/* If MPLS offload request, verify we are testing hardware MPLS features
2787 * instead of standard features for the netdev.
2788 */
d0edc7bf 2789#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2790static netdev_features_t net_mpls_features(struct sk_buff *skb,
2791 netdev_features_t features,
2792 __be16 type)
2793{
25cd9ba0 2794 if (eth_p_mpls(type))
3b392ddb
SH
2795 features &= skb->dev->mpls_features;
2796
2797 return features;
2798}
2799#else
2800static netdev_features_t net_mpls_features(struct sk_buff *skb,
2801 netdev_features_t features,
2802 __be16 type)
2803{
2804 return features;
2805}
2806#endif
2807
c8f44aff 2808static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2809 netdev_features_t features)
f01a5236 2810{
53d6471c 2811 int tmp;
3b392ddb
SH
2812 __be16 type;
2813
2814 type = skb_network_protocol(skb, &tmp);
2815 features = net_mpls_features(skb, features, type);
53d6471c 2816
c0d680e5 2817 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2818 !can_checksum_protocol(features, type)) {
996e8021 2819 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2820 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2821 features &= ~NETIF_F_SG;
2822 }
2823
2824 return features;
2825}
2826
e38f3025
TM
2827netdev_features_t passthru_features_check(struct sk_buff *skb,
2828 struct net_device *dev,
2829 netdev_features_t features)
2830{
2831 return features;
2832}
2833EXPORT_SYMBOL(passthru_features_check);
2834
8cb65d00
TM
2835static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2836 struct net_device *dev,
2837 netdev_features_t features)
2838{
2839 return vlan_features_check(skb, features);
2840}
2841
cbc53e08
AD
2842static netdev_features_t gso_features_check(const struct sk_buff *skb,
2843 struct net_device *dev,
2844 netdev_features_t features)
2845{
2846 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2847
2848 if (gso_segs > dev->gso_max_segs)
2849 return features & ~NETIF_F_GSO_MASK;
2850
802ab55a
AD
2851 /* Support for GSO partial features requires software
2852 * intervention before we can actually process the packets
2853 * so we need to strip support for any partial features now
2854 * and we can pull them back in after we have partially
2855 * segmented the frame.
2856 */
2857 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2858 features &= ~dev->gso_partial_features;
2859
2860 /* Make sure to clear the IPv4 ID mangling feature if the
2861 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2862 */
2863 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2864 struct iphdr *iph = skb->encapsulation ?
2865 inner_ip_hdr(skb) : ip_hdr(skb);
2866
2867 if (!(iph->frag_off & htons(IP_DF)))
2868 features &= ~NETIF_F_TSO_MANGLEID;
2869 }
2870
2871 return features;
2872}
2873
c1e756bf 2874netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2875{
5f35227e 2876 struct net_device *dev = skb->dev;
fcbeb976 2877 netdev_features_t features = dev->features;
58e998c6 2878
cbc53e08
AD
2879 if (skb_is_gso(skb))
2880 features = gso_features_check(skb, dev, features);
30b678d8 2881
5f35227e
JG
2882 /* If encapsulation offload request, verify we are testing
2883 * hardware encapsulation features instead of standard
2884 * features for the netdev
2885 */
2886 if (skb->encapsulation)
2887 features &= dev->hw_enc_features;
2888
f5a7fb88
TM
2889 if (skb_vlan_tagged(skb))
2890 features = netdev_intersect_features(features,
2891 dev->vlan_features |
2892 NETIF_F_HW_VLAN_CTAG_TX |
2893 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2894
5f35227e
JG
2895 if (dev->netdev_ops->ndo_features_check)
2896 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2897 features);
8cb65d00
TM
2898 else
2899 features &= dflt_features_check(skb, dev, features);
5f35227e 2900
c1e756bf 2901 return harmonize_features(skb, features);
58e998c6 2902}
c1e756bf 2903EXPORT_SYMBOL(netif_skb_features);
58e998c6 2904
2ea25513 2905static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2906 struct netdev_queue *txq, bool more)
f6a78bfc 2907{
2ea25513
DM
2908 unsigned int len;
2909 int rc;
00829823 2910
7866a621 2911 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2912 dev_queue_xmit_nit(skb, dev);
fc741216 2913
2ea25513
DM
2914 len = skb->len;
2915 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2916 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2917 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2918
2ea25513
DM
2919 return rc;
2920}
7b9c6090 2921
8dcda22a
DM
2922struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2923 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2924{
2925 struct sk_buff *skb = first;
2926 int rc = NETDEV_TX_OK;
7b9c6090 2927
7f2e870f
DM
2928 while (skb) {
2929 struct sk_buff *next = skb->next;
fc70fb64 2930
7f2e870f 2931 skb->next = NULL;
95f6b3dd 2932 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2933 if (unlikely(!dev_xmit_complete(rc))) {
2934 skb->next = next;
2935 goto out;
2936 }
6afff0ca 2937
7f2e870f
DM
2938 skb = next;
2939 if (netif_xmit_stopped(txq) && skb) {
2940 rc = NETDEV_TX_BUSY;
2941 break;
9ccb8975 2942 }
7f2e870f 2943 }
9ccb8975 2944
7f2e870f
DM
2945out:
2946 *ret = rc;
2947 return skb;
2948}
b40863c6 2949
1ff0dc94
ED
2950static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2951 netdev_features_t features)
f6a78bfc 2952{
df8a39de 2953 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2954 !vlan_hw_offload_capable(features, skb->vlan_proto))
2955 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2956 return skb;
2957}
f6a78bfc 2958
55a93b3e 2959static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2960{
2961 netdev_features_t features;
f6a78bfc 2962
eae3f88e
DM
2963 features = netif_skb_features(skb);
2964 skb = validate_xmit_vlan(skb, features);
2965 if (unlikely(!skb))
2966 goto out_null;
7b9c6090 2967
8b86a61d 2968 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2969 struct sk_buff *segs;
2970
2971 segs = skb_gso_segment(skb, features);
cecda693 2972 if (IS_ERR(segs)) {
af6dabc9 2973 goto out_kfree_skb;
cecda693
JW
2974 } else if (segs) {
2975 consume_skb(skb);
2976 skb = segs;
f6a78bfc 2977 }
eae3f88e
DM
2978 } else {
2979 if (skb_needs_linearize(skb, features) &&
2980 __skb_linearize(skb))
2981 goto out_kfree_skb;
4ec93edb 2982
eae3f88e
DM
2983 /* If packet is not checksummed and device does not
2984 * support checksumming for this protocol, complete
2985 * checksumming here.
2986 */
2987 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2988 if (skb->encapsulation)
2989 skb_set_inner_transport_header(skb,
2990 skb_checksum_start_offset(skb));
2991 else
2992 skb_set_transport_header(skb,
2993 skb_checksum_start_offset(skb));
a188222b 2994 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2995 skb_checksum_help(skb))
2996 goto out_kfree_skb;
7b9c6090 2997 }
0c772159 2998 }
7b9c6090 2999
eae3f88e 3000 return skb;
fc70fb64 3001
f6a78bfc
HX
3002out_kfree_skb:
3003 kfree_skb(skb);
eae3f88e 3004out_null:
d21fd63e 3005 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3006 return NULL;
3007}
6afff0ca 3008
55a93b3e
ED
3009struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3010{
3011 struct sk_buff *next, *head = NULL, *tail;
3012
bec3cfdc 3013 for (; skb != NULL; skb = next) {
55a93b3e
ED
3014 next = skb->next;
3015 skb->next = NULL;
bec3cfdc
ED
3016
3017 /* in case skb wont be segmented, point to itself */
3018 skb->prev = skb;
3019
55a93b3e 3020 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3021 if (!skb)
3022 continue;
55a93b3e 3023
bec3cfdc
ED
3024 if (!head)
3025 head = skb;
3026 else
3027 tail->next = skb;
3028 /* If skb was segmented, skb->prev points to
3029 * the last segment. If not, it still contains skb.
3030 */
3031 tail = skb->prev;
55a93b3e
ED
3032 }
3033 return head;
f6a78bfc
HX
3034}
3035
1def9238
ED
3036static void qdisc_pkt_len_init(struct sk_buff *skb)
3037{
3038 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3039
3040 qdisc_skb_cb(skb)->pkt_len = skb->len;
3041
3042 /* To get more precise estimation of bytes sent on wire,
3043 * we add to pkt_len the headers size of all segments
3044 */
3045 if (shinfo->gso_size) {
757b8b1d 3046 unsigned int hdr_len;
15e5a030 3047 u16 gso_segs = shinfo->gso_segs;
1def9238 3048
757b8b1d
ED
3049 /* mac layer + network layer */
3050 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3051
3052 /* + transport layer */
1def9238
ED
3053 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3054 hdr_len += tcp_hdrlen(skb);
3055 else
3056 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3057
3058 if (shinfo->gso_type & SKB_GSO_DODGY)
3059 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3060 shinfo->gso_size);
3061
3062 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3063 }
3064}
3065
bbd8a0d3
KK
3066static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3067 struct net_device *dev,
3068 struct netdev_queue *txq)
3069{
3070 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 3071 bool contended;
bbd8a0d3
KK
3072 int rc;
3073
a2da570d 3074 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3075 /*
3076 * Heuristic to force contended enqueues to serialize on a
3077 * separate lock before trying to get qdisc main lock.
f9eb8aea 3078 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3079 * often and dequeue packets faster.
79640a4c 3080 */
a2da570d 3081 contended = qdisc_is_running(q);
79640a4c
ED
3082 if (unlikely(contended))
3083 spin_lock(&q->busylock);
3084
bbd8a0d3
KK
3085 spin_lock(root_lock);
3086 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3087 kfree_skb(skb);
3088 rc = NET_XMIT_DROP;
3089 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3090 qdisc_run_begin(q)) {
bbd8a0d3
KK
3091 /*
3092 * This is a work-conserving queue; there are no old skbs
3093 * waiting to be sent out; and the qdisc is not running -
3094 * xmit the skb directly.
3095 */
bfe0d029 3096
bfe0d029
ED
3097 qdisc_bstats_update(q, skb);
3098
55a93b3e 3099 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3100 if (unlikely(contended)) {
3101 spin_unlock(&q->busylock);
3102 contended = false;
3103 }
bbd8a0d3 3104 __qdisc_run(q);
79640a4c 3105 } else
bc135b23 3106 qdisc_run_end(q);
bbd8a0d3
KK
3107
3108 rc = NET_XMIT_SUCCESS;
3109 } else {
a2da570d 3110 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
3111 if (qdisc_run_begin(q)) {
3112 if (unlikely(contended)) {
3113 spin_unlock(&q->busylock);
3114 contended = false;
3115 }
3116 __qdisc_run(q);
3117 }
bbd8a0d3
KK
3118 }
3119 spin_unlock(root_lock);
79640a4c
ED
3120 if (unlikely(contended))
3121 spin_unlock(&q->busylock);
bbd8a0d3
KK
3122 return rc;
3123}
3124
86f8515f 3125#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3126static void skb_update_prio(struct sk_buff *skb)
3127{
6977a79d 3128 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3129
91c68ce2 3130 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3131 unsigned int prioidx =
3132 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3133
3134 if (prioidx < map->priomap_len)
3135 skb->priority = map->priomap[prioidx];
3136 }
5bc1421e
NH
3137}
3138#else
3139#define skb_update_prio(skb)
3140#endif
3141
f60e5990 3142DEFINE_PER_CPU(int, xmit_recursion);
3143EXPORT_SYMBOL(xmit_recursion);
3144
11a766ce 3145#define RECURSION_LIMIT 10
745e20f1 3146
95603e22
MM
3147/**
3148 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3149 * @net: network namespace this loopback is happening in
3150 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3151 * @skb: buffer to transmit
3152 */
0c4b51f0 3153int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3154{
3155 skb_reset_mac_header(skb);
3156 __skb_pull(skb, skb_network_offset(skb));
3157 skb->pkt_type = PACKET_LOOPBACK;
3158 skb->ip_summed = CHECKSUM_UNNECESSARY;
3159 WARN_ON(!skb_dst(skb));
3160 skb_dst_force(skb);
3161 netif_rx_ni(skb);
3162 return 0;
3163}
3164EXPORT_SYMBOL(dev_loopback_xmit);
3165
1f211a1b
DB
3166#ifdef CONFIG_NET_EGRESS
3167static struct sk_buff *
3168sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3169{
3170 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3171 struct tcf_result cl_res;
3172
3173 if (!cl)
3174 return skb;
3175
3176 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3177 * earlier by the caller.
3178 */
3179 qdisc_bstats_cpu_update(cl->q, skb);
3180
3181 switch (tc_classify(skb, cl, &cl_res, false)) {
3182 case TC_ACT_OK:
3183 case TC_ACT_RECLASSIFY:
3184 skb->tc_index = TC_H_MIN(cl_res.classid);
3185 break;
3186 case TC_ACT_SHOT:
3187 qdisc_qstats_cpu_drop(cl->q);
3188 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3189 kfree_skb(skb);
3190 return NULL;
1f211a1b
DB
3191 case TC_ACT_STOLEN:
3192 case TC_ACT_QUEUED:
3193 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3194 consume_skb(skb);
1f211a1b
DB
3195 return NULL;
3196 case TC_ACT_REDIRECT:
3197 /* No need to push/pop skb's mac_header here on egress! */
3198 skb_do_redirect(skb);
3199 *ret = NET_XMIT_SUCCESS;
3200 return NULL;
3201 default:
3202 break;
3203 }
3204
3205 return skb;
3206}
3207#endif /* CONFIG_NET_EGRESS */
3208
638b2a69
JP
3209static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3210{
3211#ifdef CONFIG_XPS
3212 struct xps_dev_maps *dev_maps;
3213 struct xps_map *map;
3214 int queue_index = -1;
3215
3216 rcu_read_lock();
3217 dev_maps = rcu_dereference(dev->xps_maps);
3218 if (dev_maps) {
3219 map = rcu_dereference(
3220 dev_maps->cpu_map[skb->sender_cpu - 1]);
3221 if (map) {
3222 if (map->len == 1)
3223 queue_index = map->queues[0];
3224 else
3225 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3226 map->len)];
3227 if (unlikely(queue_index >= dev->real_num_tx_queues))
3228 queue_index = -1;
3229 }
3230 }
3231 rcu_read_unlock();
3232
3233 return queue_index;
3234#else
3235 return -1;
3236#endif
3237}
3238
3239static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3240{
3241 struct sock *sk = skb->sk;
3242 int queue_index = sk_tx_queue_get(sk);
3243
3244 if (queue_index < 0 || skb->ooo_okay ||
3245 queue_index >= dev->real_num_tx_queues) {
3246 int new_index = get_xps_queue(dev, skb);
3247 if (new_index < 0)
3248 new_index = skb_tx_hash(dev, skb);
3249
3250 if (queue_index != new_index && sk &&
004a5d01 3251 sk_fullsock(sk) &&
638b2a69
JP
3252 rcu_access_pointer(sk->sk_dst_cache))
3253 sk_tx_queue_set(sk, new_index);
3254
3255 queue_index = new_index;
3256 }
3257
3258 return queue_index;
3259}
3260
3261struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3262 struct sk_buff *skb,
3263 void *accel_priv)
3264{
3265 int queue_index = 0;
3266
3267#ifdef CONFIG_XPS
52bd2d62
ED
3268 u32 sender_cpu = skb->sender_cpu - 1;
3269
3270 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3271 skb->sender_cpu = raw_smp_processor_id() + 1;
3272#endif
3273
3274 if (dev->real_num_tx_queues != 1) {
3275 const struct net_device_ops *ops = dev->netdev_ops;
3276 if (ops->ndo_select_queue)
3277 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3278 __netdev_pick_tx);
3279 else
3280 queue_index = __netdev_pick_tx(dev, skb);
3281
3282 if (!accel_priv)
3283 queue_index = netdev_cap_txqueue(dev, queue_index);
3284 }
3285
3286 skb_set_queue_mapping(skb, queue_index);
3287 return netdev_get_tx_queue(dev, queue_index);
3288}
3289
d29f749e 3290/**
9d08dd3d 3291 * __dev_queue_xmit - transmit a buffer
d29f749e 3292 * @skb: buffer to transmit
9d08dd3d 3293 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3294 *
3295 * Queue a buffer for transmission to a network device. The caller must
3296 * have set the device and priority and built the buffer before calling
3297 * this function. The function can be called from an interrupt.
3298 *
3299 * A negative errno code is returned on a failure. A success does not
3300 * guarantee the frame will be transmitted as it may be dropped due
3301 * to congestion or traffic shaping.
3302 *
3303 * -----------------------------------------------------------------------------------
3304 * I notice this method can also return errors from the queue disciplines,
3305 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3306 * be positive.
3307 *
3308 * Regardless of the return value, the skb is consumed, so it is currently
3309 * difficult to retry a send to this method. (You can bump the ref count
3310 * before sending to hold a reference for retry if you are careful.)
3311 *
3312 * When calling this method, interrupts MUST be enabled. This is because
3313 * the BH enable code must have IRQs enabled so that it will not deadlock.
3314 * --BLG
3315 */
0a59f3a9 3316static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3317{
3318 struct net_device *dev = skb->dev;
dc2b4847 3319 struct netdev_queue *txq;
1da177e4
LT
3320 struct Qdisc *q;
3321 int rc = -ENOMEM;
3322
6d1ccff6
ED
3323 skb_reset_mac_header(skb);
3324
e7fd2885
WB
3325 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3326 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3327
4ec93edb
YH
3328 /* Disable soft irqs for various locks below. Also
3329 * stops preemption for RCU.
1da177e4 3330 */
4ec93edb 3331 rcu_read_lock_bh();
1da177e4 3332
5bc1421e
NH
3333 skb_update_prio(skb);
3334
1f211a1b
DB
3335 qdisc_pkt_len_init(skb);
3336#ifdef CONFIG_NET_CLS_ACT
3337 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3338# ifdef CONFIG_NET_EGRESS
3339 if (static_key_false(&egress_needed)) {
3340 skb = sch_handle_egress(skb, &rc, dev);
3341 if (!skb)
3342 goto out;
3343 }
3344# endif
3345#endif
02875878
ED
3346 /* If device/qdisc don't need skb->dst, release it right now while
3347 * its hot in this cpu cache.
3348 */
3349 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3350 skb_dst_drop(skb);
3351 else
3352 skb_dst_force(skb);
3353
0c4f691f
SF
3354#ifdef CONFIG_NET_SWITCHDEV
3355 /* Don't forward if offload device already forwarded */
3356 if (skb->offload_fwd_mark &&
3357 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3358 consume_skb(skb);
3359 rc = NET_XMIT_SUCCESS;
3360 goto out;
3361 }
3362#endif
3363
f663dd9a 3364 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3365 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3366
cf66ba58 3367 trace_net_dev_queue(skb);
1da177e4 3368 if (q->enqueue) {
bbd8a0d3 3369 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3370 goto out;
1da177e4
LT
3371 }
3372
3373 /* The device has no queue. Common case for software devices:
3374 loopback, all the sorts of tunnels...
3375
932ff279
HX
3376 Really, it is unlikely that netif_tx_lock protection is necessary
3377 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3378 counters.)
3379 However, it is possible, that they rely on protection
3380 made by us here.
3381
3382 Check this and shot the lock. It is not prone from deadlocks.
3383 Either shot noqueue qdisc, it is even simpler 8)
3384 */
3385 if (dev->flags & IFF_UP) {
3386 int cpu = smp_processor_id(); /* ok because BHs are off */
3387
c773e847 3388 if (txq->xmit_lock_owner != cpu) {
1da177e4 3389
745e20f1
ED
3390 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3391 goto recursion_alert;
3392
1f59533f
JDB
3393 skb = validate_xmit_skb(skb, dev);
3394 if (!skb)
d21fd63e 3395 goto out;
1f59533f 3396
c773e847 3397 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3398
73466498 3399 if (!netif_xmit_stopped(txq)) {
745e20f1 3400 __this_cpu_inc(xmit_recursion);
ce93718f 3401 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3402 __this_cpu_dec(xmit_recursion);
572a9d7b 3403 if (dev_xmit_complete(rc)) {
c773e847 3404 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3405 goto out;
3406 }
3407 }
c773e847 3408 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3409 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3410 dev->name);
1da177e4
LT
3411 } else {
3412 /* Recursion is detected! It is possible,
745e20f1
ED
3413 * unfortunately
3414 */
3415recursion_alert:
e87cc472
JP
3416 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3417 dev->name);
1da177e4
LT
3418 }
3419 }
3420
3421 rc = -ENETDOWN;
d4828d85 3422 rcu_read_unlock_bh();
1da177e4 3423
015f0688 3424 atomic_long_inc(&dev->tx_dropped);
1f59533f 3425 kfree_skb_list(skb);
1da177e4
LT
3426 return rc;
3427out:
d4828d85 3428 rcu_read_unlock_bh();
1da177e4
LT
3429 return rc;
3430}
f663dd9a 3431
2b4aa3ce 3432int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3433{
3434 return __dev_queue_xmit(skb, NULL);
3435}
2b4aa3ce 3436EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3437
f663dd9a
JW
3438int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3439{
3440 return __dev_queue_xmit(skb, accel_priv);
3441}
3442EXPORT_SYMBOL(dev_queue_xmit_accel);
3443
1da177e4
LT
3444
3445/*=======================================================================
3446 Receiver routines
3447 =======================================================================*/
3448
6b2bedc3 3449int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3450EXPORT_SYMBOL(netdev_max_backlog);
3451
3b098e2d 3452int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3453int netdev_budget __read_mostly = 300;
3454int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3455
eecfd7c4
ED
3456/* Called with irq disabled */
3457static inline void ____napi_schedule(struct softnet_data *sd,
3458 struct napi_struct *napi)
3459{
3460 list_add_tail(&napi->poll_list, &sd->poll_list);
3461 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3462}
3463
bfb564e7
KK
3464#ifdef CONFIG_RPS
3465
3466/* One global table that all flow-based protocols share. */
6e3f7faf 3467struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3468EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3469u32 rps_cpu_mask __read_mostly;
3470EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3471
c5905afb 3472struct static_key rps_needed __read_mostly;
3df97ba8 3473EXPORT_SYMBOL(rps_needed);
adc9300e 3474
c445477d
BH
3475static struct rps_dev_flow *
3476set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3477 struct rps_dev_flow *rflow, u16 next_cpu)
3478{
a31196b0 3479 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3480#ifdef CONFIG_RFS_ACCEL
3481 struct netdev_rx_queue *rxqueue;
3482 struct rps_dev_flow_table *flow_table;
3483 struct rps_dev_flow *old_rflow;
3484 u32 flow_id;
3485 u16 rxq_index;
3486 int rc;
3487
3488 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3489 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3490 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3491 goto out;
3492 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3493 if (rxq_index == skb_get_rx_queue(skb))
3494 goto out;
3495
3496 rxqueue = dev->_rx + rxq_index;
3497 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3498 if (!flow_table)
3499 goto out;
61b905da 3500 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3501 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3502 rxq_index, flow_id);
3503 if (rc < 0)
3504 goto out;
3505 old_rflow = rflow;
3506 rflow = &flow_table->flows[flow_id];
c445477d
BH
3507 rflow->filter = rc;
3508 if (old_rflow->filter == rflow->filter)
3509 old_rflow->filter = RPS_NO_FILTER;
3510 out:
3511#endif
3512 rflow->last_qtail =
09994d1b 3513 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3514 }
3515
09994d1b 3516 rflow->cpu = next_cpu;
c445477d
BH
3517 return rflow;
3518}
3519
bfb564e7
KK
3520/*
3521 * get_rps_cpu is called from netif_receive_skb and returns the target
3522 * CPU from the RPS map of the receiving queue for a given skb.
3523 * rcu_read_lock must be held on entry.
3524 */
3525static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3526 struct rps_dev_flow **rflowp)
3527{
567e4b79
ED
3528 const struct rps_sock_flow_table *sock_flow_table;
3529 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3530 struct rps_dev_flow_table *flow_table;
567e4b79 3531 struct rps_map *map;
bfb564e7 3532 int cpu = -1;
567e4b79 3533 u32 tcpu;
61b905da 3534 u32 hash;
bfb564e7
KK
3535
3536 if (skb_rx_queue_recorded(skb)) {
3537 u16 index = skb_get_rx_queue(skb);
567e4b79 3538
62fe0b40
BH
3539 if (unlikely(index >= dev->real_num_rx_queues)) {
3540 WARN_ONCE(dev->real_num_rx_queues > 1,
3541 "%s received packet on queue %u, but number "
3542 "of RX queues is %u\n",
3543 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3544 goto done;
3545 }
567e4b79
ED
3546 rxqueue += index;
3547 }
bfb564e7 3548
567e4b79
ED
3549 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3550
3551 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3552 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3553 if (!flow_table && !map)
bfb564e7
KK
3554 goto done;
3555
2d47b459 3556 skb_reset_network_header(skb);
61b905da
TH
3557 hash = skb_get_hash(skb);
3558 if (!hash)
bfb564e7
KK
3559 goto done;
3560
fec5e652
TH
3561 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3562 if (flow_table && sock_flow_table) {
fec5e652 3563 struct rps_dev_flow *rflow;
567e4b79
ED
3564 u32 next_cpu;
3565 u32 ident;
3566
3567 /* First check into global flow table if there is a match */
3568 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3569 if ((ident ^ hash) & ~rps_cpu_mask)
3570 goto try_rps;
fec5e652 3571
567e4b79
ED
3572 next_cpu = ident & rps_cpu_mask;
3573
3574 /* OK, now we know there is a match,
3575 * we can look at the local (per receive queue) flow table
3576 */
61b905da 3577 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3578 tcpu = rflow->cpu;
3579
fec5e652
TH
3580 /*
3581 * If the desired CPU (where last recvmsg was done) is
3582 * different from current CPU (one in the rx-queue flow
3583 * table entry), switch if one of the following holds:
a31196b0 3584 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3585 * - Current CPU is offline.
3586 * - The current CPU's queue tail has advanced beyond the
3587 * last packet that was enqueued using this table entry.
3588 * This guarantees that all previous packets for the flow
3589 * have been dequeued, thus preserving in order delivery.
3590 */
3591 if (unlikely(tcpu != next_cpu) &&
a31196b0 3592 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3593 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3594 rflow->last_qtail)) >= 0)) {
3595 tcpu = next_cpu;
c445477d 3596 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3597 }
c445477d 3598
a31196b0 3599 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3600 *rflowp = rflow;
3601 cpu = tcpu;
3602 goto done;
3603 }
3604 }
3605
567e4b79
ED
3606try_rps:
3607
0a9627f2 3608 if (map) {
8fc54f68 3609 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3610 if (cpu_online(tcpu)) {
3611 cpu = tcpu;
3612 goto done;
3613 }
3614 }
3615
3616done:
0a9627f2
TH
3617 return cpu;
3618}
3619
c445477d
BH
3620#ifdef CONFIG_RFS_ACCEL
3621
3622/**
3623 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3624 * @dev: Device on which the filter was set
3625 * @rxq_index: RX queue index
3626 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3627 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3628 *
3629 * Drivers that implement ndo_rx_flow_steer() should periodically call
3630 * this function for each installed filter and remove the filters for
3631 * which it returns %true.
3632 */
3633bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3634 u32 flow_id, u16 filter_id)
3635{
3636 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3637 struct rps_dev_flow_table *flow_table;
3638 struct rps_dev_flow *rflow;
3639 bool expire = true;
a31196b0 3640 unsigned int cpu;
c445477d
BH
3641
3642 rcu_read_lock();
3643 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3644 if (flow_table && flow_id <= flow_table->mask) {
3645 rflow = &flow_table->flows[flow_id];
3646 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3647 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3648 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3649 rflow->last_qtail) <
3650 (int)(10 * flow_table->mask)))
3651 expire = false;
3652 }
3653 rcu_read_unlock();
3654 return expire;
3655}
3656EXPORT_SYMBOL(rps_may_expire_flow);
3657
3658#endif /* CONFIG_RFS_ACCEL */
3659
0a9627f2 3660/* Called from hardirq (IPI) context */
e36fa2f7 3661static void rps_trigger_softirq(void *data)
0a9627f2 3662{
e36fa2f7
ED
3663 struct softnet_data *sd = data;
3664
eecfd7c4 3665 ____napi_schedule(sd, &sd->backlog);
dee42870 3666 sd->received_rps++;
0a9627f2 3667}
e36fa2f7 3668
fec5e652 3669#endif /* CONFIG_RPS */
0a9627f2 3670
e36fa2f7
ED
3671/*
3672 * Check if this softnet_data structure is another cpu one
3673 * If yes, queue it to our IPI list and return 1
3674 * If no, return 0
3675 */
3676static int rps_ipi_queued(struct softnet_data *sd)
3677{
3678#ifdef CONFIG_RPS
903ceff7 3679 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3680
3681 if (sd != mysd) {
3682 sd->rps_ipi_next = mysd->rps_ipi_list;
3683 mysd->rps_ipi_list = sd;
3684
3685 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3686 return 1;
3687 }
3688#endif /* CONFIG_RPS */
3689 return 0;
3690}
3691
99bbc707
WB
3692#ifdef CONFIG_NET_FLOW_LIMIT
3693int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3694#endif
3695
3696static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3697{
3698#ifdef CONFIG_NET_FLOW_LIMIT
3699 struct sd_flow_limit *fl;
3700 struct softnet_data *sd;
3701 unsigned int old_flow, new_flow;
3702
3703 if (qlen < (netdev_max_backlog >> 1))
3704 return false;
3705
903ceff7 3706 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3707
3708 rcu_read_lock();
3709 fl = rcu_dereference(sd->flow_limit);
3710 if (fl) {
3958afa1 3711 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3712 old_flow = fl->history[fl->history_head];
3713 fl->history[fl->history_head] = new_flow;
3714
3715 fl->history_head++;
3716 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3717
3718 if (likely(fl->buckets[old_flow]))
3719 fl->buckets[old_flow]--;
3720
3721 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3722 fl->count++;
3723 rcu_read_unlock();
3724 return true;
3725 }
3726 }
3727 rcu_read_unlock();
3728#endif
3729 return false;
3730}
3731
0a9627f2
TH
3732/*
3733 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3734 * queue (may be a remote CPU queue).
3735 */
fec5e652
TH
3736static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3737 unsigned int *qtail)
0a9627f2 3738{
e36fa2f7 3739 struct softnet_data *sd;
0a9627f2 3740 unsigned long flags;
99bbc707 3741 unsigned int qlen;
0a9627f2 3742
e36fa2f7 3743 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3744
3745 local_irq_save(flags);
0a9627f2 3746
e36fa2f7 3747 rps_lock(sd);
e9e4dd32
JA
3748 if (!netif_running(skb->dev))
3749 goto drop;
99bbc707
WB
3750 qlen = skb_queue_len(&sd->input_pkt_queue);
3751 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3752 if (qlen) {
0a9627f2 3753enqueue:
e36fa2f7 3754 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3755 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3756 rps_unlock(sd);
152102c7 3757 local_irq_restore(flags);
0a9627f2
TH
3758 return NET_RX_SUCCESS;
3759 }
3760
ebda37c2
ED
3761 /* Schedule NAPI for backlog device
3762 * We can use non atomic operation since we own the queue lock
3763 */
3764 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3765 if (!rps_ipi_queued(sd))
eecfd7c4 3766 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3767 }
3768 goto enqueue;
3769 }
3770
e9e4dd32 3771drop:
dee42870 3772 sd->dropped++;
e36fa2f7 3773 rps_unlock(sd);
0a9627f2 3774
0a9627f2
TH
3775 local_irq_restore(flags);
3776
caf586e5 3777 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3778 kfree_skb(skb);
3779 return NET_RX_DROP;
3780}
1da177e4 3781
ae78dbfa 3782static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3783{
b0e28f1e 3784 int ret;
1da177e4 3785
588f0330 3786 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3787
cf66ba58 3788 trace_netif_rx(skb);
df334545 3789#ifdef CONFIG_RPS
c5905afb 3790 if (static_key_false(&rps_needed)) {
fec5e652 3791 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3792 int cpu;
3793
cece1945 3794 preempt_disable();
b0e28f1e 3795 rcu_read_lock();
fec5e652
TH
3796
3797 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3798 if (cpu < 0)
3799 cpu = smp_processor_id();
fec5e652
TH
3800
3801 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3802
b0e28f1e 3803 rcu_read_unlock();
cece1945 3804 preempt_enable();
adc9300e
ED
3805 } else
3806#endif
fec5e652
TH
3807 {
3808 unsigned int qtail;
3809 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3810 put_cpu();
3811 }
b0e28f1e 3812 return ret;
1da177e4 3813}
ae78dbfa
BH
3814
3815/**
3816 * netif_rx - post buffer to the network code
3817 * @skb: buffer to post
3818 *
3819 * This function receives a packet from a device driver and queues it for
3820 * the upper (protocol) levels to process. It always succeeds. The buffer
3821 * may be dropped during processing for congestion control or by the
3822 * protocol layers.
3823 *
3824 * return values:
3825 * NET_RX_SUCCESS (no congestion)
3826 * NET_RX_DROP (packet was dropped)
3827 *
3828 */
3829
3830int netif_rx(struct sk_buff *skb)
3831{
3832 trace_netif_rx_entry(skb);
3833
3834 return netif_rx_internal(skb);
3835}
d1b19dff 3836EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3837
3838int netif_rx_ni(struct sk_buff *skb)
3839{
3840 int err;
3841
ae78dbfa
BH
3842 trace_netif_rx_ni_entry(skb);
3843
1da177e4 3844 preempt_disable();
ae78dbfa 3845 err = netif_rx_internal(skb);
1da177e4
LT
3846 if (local_softirq_pending())
3847 do_softirq();
3848 preempt_enable();
3849
3850 return err;
3851}
1da177e4
LT
3852EXPORT_SYMBOL(netif_rx_ni);
3853
1da177e4
LT
3854static void net_tx_action(struct softirq_action *h)
3855{
903ceff7 3856 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3857
3858 if (sd->completion_queue) {
3859 struct sk_buff *clist;
3860
3861 local_irq_disable();
3862 clist = sd->completion_queue;
3863 sd->completion_queue = NULL;
3864 local_irq_enable();
3865
3866 while (clist) {
3867 struct sk_buff *skb = clist;
3868 clist = clist->next;
3869
547b792c 3870 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3871 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3872 trace_consume_skb(skb);
3873 else
3874 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3875
3876 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3877 __kfree_skb(skb);
3878 else
3879 __kfree_skb_defer(skb);
1da177e4 3880 }
15fad714
JDB
3881
3882 __kfree_skb_flush();
1da177e4
LT
3883 }
3884
3885 if (sd->output_queue) {
37437bb2 3886 struct Qdisc *head;
1da177e4
LT
3887
3888 local_irq_disable();
3889 head = sd->output_queue;
3890 sd->output_queue = NULL;
a9cbd588 3891 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3892 local_irq_enable();
3893
3894 while (head) {
37437bb2
DM
3895 struct Qdisc *q = head;
3896 spinlock_t *root_lock;
3897
1da177e4
LT
3898 head = head->next_sched;
3899
5fb66229 3900 root_lock = qdisc_lock(q);
3bcb846c
ED
3901 spin_lock(root_lock);
3902 /* We need to make sure head->next_sched is read
3903 * before clearing __QDISC_STATE_SCHED
3904 */
3905 smp_mb__before_atomic();
3906 clear_bit(__QDISC_STATE_SCHED, &q->state);
3907 qdisc_run(q);
3908 spin_unlock(root_lock);
1da177e4
LT
3909 }
3910 }
3911}
3912
ab95bfe0
JP
3913#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3914 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3915/* This hook is defined here for ATM LANE */
3916int (*br_fdb_test_addr_hook)(struct net_device *dev,
3917 unsigned char *addr) __read_mostly;
4fb019a0 3918EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3919#endif
1da177e4 3920
1f211a1b
DB
3921static inline struct sk_buff *
3922sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3923 struct net_device *orig_dev)
f697c3e8 3924{
e7582bab 3925#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3926 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3927 struct tcf_result cl_res;
24824a09 3928
c9e99fd0
DB
3929 /* If there's at least one ingress present somewhere (so
3930 * we get here via enabled static key), remaining devices
3931 * that are not configured with an ingress qdisc will bail
d2788d34 3932 * out here.
c9e99fd0 3933 */
d2788d34 3934 if (!cl)
4577139b 3935 return skb;
f697c3e8
HX
3936 if (*pt_prev) {
3937 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3938 *pt_prev = NULL;
1da177e4
LT
3939 }
3940
3365495c 3941 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3942 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3943 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3944
3b3ae880 3945 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3946 case TC_ACT_OK:
3947 case TC_ACT_RECLASSIFY:
3948 skb->tc_index = TC_H_MIN(cl_res.classid);
3949 break;
3950 case TC_ACT_SHOT:
24ea591d 3951 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3952 kfree_skb(skb);
3953 return NULL;
d2788d34
DB
3954 case TC_ACT_STOLEN:
3955 case TC_ACT_QUEUED:
8a3a4c6e 3956 consume_skb(skb);
d2788d34 3957 return NULL;
27b29f63
AS
3958 case TC_ACT_REDIRECT:
3959 /* skb_mac_header check was done by cls/act_bpf, so
3960 * we can safely push the L2 header back before
3961 * redirecting to another netdev
3962 */
3963 __skb_push(skb, skb->mac_len);
3964 skb_do_redirect(skb);
3965 return NULL;
d2788d34
DB
3966 default:
3967 break;
f697c3e8 3968 }
e7582bab 3969#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3970 return skb;
3971}
1da177e4 3972
ab95bfe0
JP
3973/**
3974 * netdev_rx_handler_register - register receive handler
3975 * @dev: device to register a handler for
3976 * @rx_handler: receive handler to register
93e2c32b 3977 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3978 *
e227867f 3979 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3980 * called from __netif_receive_skb. A negative errno code is returned
3981 * on a failure.
3982 *
3983 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3984 *
3985 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3986 */
3987int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3988 rx_handler_func_t *rx_handler,
3989 void *rx_handler_data)
ab95bfe0
JP
3990{
3991 ASSERT_RTNL();
3992
3993 if (dev->rx_handler)
3994 return -EBUSY;
3995
00cfec37 3996 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3997 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3998 rcu_assign_pointer(dev->rx_handler, rx_handler);
3999
4000 return 0;
4001}
4002EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4003
4004/**
4005 * netdev_rx_handler_unregister - unregister receive handler
4006 * @dev: device to unregister a handler from
4007 *
166ec369 4008 * Unregister a receive handler from a device.
ab95bfe0
JP
4009 *
4010 * The caller must hold the rtnl_mutex.
4011 */
4012void netdev_rx_handler_unregister(struct net_device *dev)
4013{
4014
4015 ASSERT_RTNL();
a9b3cd7f 4016 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4017 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4018 * section has a guarantee to see a non NULL rx_handler_data
4019 * as well.
4020 */
4021 synchronize_net();
a9b3cd7f 4022 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4023}
4024EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4025
b4b9e355
MG
4026/*
4027 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4028 * the special handling of PFMEMALLOC skbs.
4029 */
4030static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4031{
4032 switch (skb->protocol) {
2b8837ae
JP
4033 case htons(ETH_P_ARP):
4034 case htons(ETH_P_IP):
4035 case htons(ETH_P_IPV6):
4036 case htons(ETH_P_8021Q):
4037 case htons(ETH_P_8021AD):
b4b9e355
MG
4038 return true;
4039 default:
4040 return false;
4041 }
4042}
4043
e687ad60
PN
4044static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4045 int *ret, struct net_device *orig_dev)
4046{
e7582bab 4047#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
4048 if (nf_hook_ingress_active(skb)) {
4049 if (*pt_prev) {
4050 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4051 *pt_prev = NULL;
4052 }
4053
4054 return nf_hook_ingress(skb);
4055 }
e7582bab 4056#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4057 return 0;
4058}
e687ad60 4059
9754e293 4060static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4061{
4062 struct packet_type *ptype, *pt_prev;
ab95bfe0 4063 rx_handler_func_t *rx_handler;
f2ccd8fa 4064 struct net_device *orig_dev;
8a4eb573 4065 bool deliver_exact = false;
1da177e4 4066 int ret = NET_RX_DROP;
252e3346 4067 __be16 type;
1da177e4 4068
588f0330 4069 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4070
cf66ba58 4071 trace_netif_receive_skb(skb);
9b22ea56 4072
cc9bd5ce 4073 orig_dev = skb->dev;
8f903c70 4074
c1d2bbe1 4075 skb_reset_network_header(skb);
fda55eca
ED
4076 if (!skb_transport_header_was_set(skb))
4077 skb_reset_transport_header(skb);
0b5c9db1 4078 skb_reset_mac_len(skb);
1da177e4
LT
4079
4080 pt_prev = NULL;
4081
63d8ea7f 4082another_round:
b6858177 4083 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4084
4085 __this_cpu_inc(softnet_data.processed);
4086
8ad227ff
PM
4087 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4088 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4089 skb = skb_vlan_untag(skb);
bcc6d479 4090 if (unlikely(!skb))
2c17d27c 4091 goto out;
bcc6d479
JP
4092 }
4093
1da177e4
LT
4094#ifdef CONFIG_NET_CLS_ACT
4095 if (skb->tc_verd & TC_NCLS) {
4096 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4097 goto ncls;
4098 }
4099#endif
4100
9754e293 4101 if (pfmemalloc)
b4b9e355
MG
4102 goto skip_taps;
4103
1da177e4 4104 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4105 if (pt_prev)
4106 ret = deliver_skb(skb, pt_prev, orig_dev);
4107 pt_prev = ptype;
4108 }
4109
4110 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4111 if (pt_prev)
4112 ret = deliver_skb(skb, pt_prev, orig_dev);
4113 pt_prev = ptype;
1da177e4
LT
4114 }
4115
b4b9e355 4116skip_taps:
1cf51900 4117#ifdef CONFIG_NET_INGRESS
4577139b 4118 if (static_key_false(&ingress_needed)) {
1f211a1b 4119 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4120 if (!skb)
2c17d27c 4121 goto out;
e687ad60
PN
4122
4123 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4124 goto out;
4577139b 4125 }
1cf51900
PN
4126#endif
4127#ifdef CONFIG_NET_CLS_ACT
4577139b 4128 skb->tc_verd = 0;
1da177e4
LT
4129ncls:
4130#endif
9754e293 4131 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4132 goto drop;
4133
df8a39de 4134 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4135 if (pt_prev) {
4136 ret = deliver_skb(skb, pt_prev, orig_dev);
4137 pt_prev = NULL;
4138 }
48cc32d3 4139 if (vlan_do_receive(&skb))
2425717b
JF
4140 goto another_round;
4141 else if (unlikely(!skb))
2c17d27c 4142 goto out;
2425717b
JF
4143 }
4144
48cc32d3 4145 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4146 if (rx_handler) {
4147 if (pt_prev) {
4148 ret = deliver_skb(skb, pt_prev, orig_dev);
4149 pt_prev = NULL;
4150 }
8a4eb573
JP
4151 switch (rx_handler(&skb)) {
4152 case RX_HANDLER_CONSUMED:
3bc1b1ad 4153 ret = NET_RX_SUCCESS;
2c17d27c 4154 goto out;
8a4eb573 4155 case RX_HANDLER_ANOTHER:
63d8ea7f 4156 goto another_round;
8a4eb573
JP
4157 case RX_HANDLER_EXACT:
4158 deliver_exact = true;
4159 case RX_HANDLER_PASS:
4160 break;
4161 default:
4162 BUG();
4163 }
ab95bfe0 4164 }
1da177e4 4165
df8a39de
JP
4166 if (unlikely(skb_vlan_tag_present(skb))) {
4167 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4168 skb->pkt_type = PACKET_OTHERHOST;
4169 /* Note: we might in the future use prio bits
4170 * and set skb->priority like in vlan_do_receive()
4171 * For the time being, just ignore Priority Code Point
4172 */
4173 skb->vlan_tci = 0;
4174 }
48cc32d3 4175
7866a621
SN
4176 type = skb->protocol;
4177
63d8ea7f 4178 /* deliver only exact match when indicated */
7866a621
SN
4179 if (likely(!deliver_exact)) {
4180 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4181 &ptype_base[ntohs(type) &
4182 PTYPE_HASH_MASK]);
4183 }
1f3c8804 4184
7866a621
SN
4185 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4186 &orig_dev->ptype_specific);
4187
4188 if (unlikely(skb->dev != orig_dev)) {
4189 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190 &skb->dev->ptype_specific);
1da177e4
LT
4191 }
4192
4193 if (pt_prev) {
1080e512 4194 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4195 goto drop;
1080e512
MT
4196 else
4197 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4198 } else {
b4b9e355 4199drop:
6e7333d3
JW
4200 if (!deliver_exact)
4201 atomic_long_inc(&skb->dev->rx_dropped);
4202 else
4203 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4204 kfree_skb(skb);
4205 /* Jamal, now you will not able to escape explaining
4206 * me how you were going to use this. :-)
4207 */
4208 ret = NET_RX_DROP;
4209 }
4210
2c17d27c 4211out:
9754e293
DM
4212 return ret;
4213}
4214
4215static int __netif_receive_skb(struct sk_buff *skb)
4216{
4217 int ret;
4218
4219 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4220 unsigned long pflags = current->flags;
4221
4222 /*
4223 * PFMEMALLOC skbs are special, they should
4224 * - be delivered to SOCK_MEMALLOC sockets only
4225 * - stay away from userspace
4226 * - have bounded memory usage
4227 *
4228 * Use PF_MEMALLOC as this saves us from propagating the allocation
4229 * context down to all allocation sites.
4230 */
4231 current->flags |= PF_MEMALLOC;
4232 ret = __netif_receive_skb_core(skb, true);
4233 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4234 } else
4235 ret = __netif_receive_skb_core(skb, false);
4236
1da177e4
LT
4237 return ret;
4238}
0a9627f2 4239
ae78dbfa 4240static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4241{
2c17d27c
JA
4242 int ret;
4243
588f0330 4244 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4245
c1f19b51
RC
4246 if (skb_defer_rx_timestamp(skb))
4247 return NET_RX_SUCCESS;
4248
2c17d27c
JA
4249 rcu_read_lock();
4250
df334545 4251#ifdef CONFIG_RPS
c5905afb 4252 if (static_key_false(&rps_needed)) {
3b098e2d 4253 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4254 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4255
3b098e2d
ED
4256 if (cpu >= 0) {
4257 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4258 rcu_read_unlock();
adc9300e 4259 return ret;
3b098e2d 4260 }
fec5e652 4261 }
1e94d72f 4262#endif
2c17d27c
JA
4263 ret = __netif_receive_skb(skb);
4264 rcu_read_unlock();
4265 return ret;
0a9627f2 4266}
ae78dbfa
BH
4267
4268/**
4269 * netif_receive_skb - process receive buffer from network
4270 * @skb: buffer to process
4271 *
4272 * netif_receive_skb() is the main receive data processing function.
4273 * It always succeeds. The buffer may be dropped during processing
4274 * for congestion control or by the protocol layers.
4275 *
4276 * This function may only be called from softirq context and interrupts
4277 * should be enabled.
4278 *
4279 * Return values (usually ignored):
4280 * NET_RX_SUCCESS: no congestion
4281 * NET_RX_DROP: packet was dropped
4282 */
04eb4489 4283int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4284{
4285 trace_netif_receive_skb_entry(skb);
4286
4287 return netif_receive_skb_internal(skb);
4288}
04eb4489 4289EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4290
88751275
ED
4291/* Network device is going away, flush any packets still pending
4292 * Called with irqs disabled.
4293 */
152102c7 4294static void flush_backlog(void *arg)
6e583ce5 4295{
152102c7 4296 struct net_device *dev = arg;
903ceff7 4297 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4298 struct sk_buff *skb, *tmp;
4299
e36fa2f7 4300 rps_lock(sd);
6e7676c1 4301 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4302 if (skb->dev == dev) {
e36fa2f7 4303 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4304 kfree_skb(skb);
76cc8b13 4305 input_queue_head_incr(sd);
6e583ce5 4306 }
6e7676c1 4307 }
e36fa2f7 4308 rps_unlock(sd);
6e7676c1
CG
4309
4310 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4311 if (skb->dev == dev) {
4312 __skb_unlink(skb, &sd->process_queue);
4313 kfree_skb(skb);
76cc8b13 4314 input_queue_head_incr(sd);
6e7676c1
CG
4315 }
4316 }
6e583ce5
SH
4317}
4318
d565b0a1
HX
4319static int napi_gro_complete(struct sk_buff *skb)
4320{
22061d80 4321 struct packet_offload *ptype;
d565b0a1 4322 __be16 type = skb->protocol;
22061d80 4323 struct list_head *head = &offload_base;
d565b0a1
HX
4324 int err = -ENOENT;
4325
c3c7c254
ED
4326 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4327
fc59f9a3
HX
4328 if (NAPI_GRO_CB(skb)->count == 1) {
4329 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4330 goto out;
fc59f9a3 4331 }
d565b0a1
HX
4332
4333 rcu_read_lock();
4334 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4335 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4336 continue;
4337
299603e8 4338 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4339 break;
4340 }
4341 rcu_read_unlock();
4342
4343 if (err) {
4344 WARN_ON(&ptype->list == head);
4345 kfree_skb(skb);
4346 return NET_RX_SUCCESS;
4347 }
4348
4349out:
ae78dbfa 4350 return netif_receive_skb_internal(skb);
d565b0a1
HX
4351}
4352
2e71a6f8
ED
4353/* napi->gro_list contains packets ordered by age.
4354 * youngest packets at the head of it.
4355 * Complete skbs in reverse order to reduce latencies.
4356 */
4357void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4358{
2e71a6f8 4359 struct sk_buff *skb, *prev = NULL;
d565b0a1 4360
2e71a6f8
ED
4361 /* scan list and build reverse chain */
4362 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4363 skb->prev = prev;
4364 prev = skb;
4365 }
4366
4367 for (skb = prev; skb; skb = prev) {
d565b0a1 4368 skb->next = NULL;
2e71a6f8
ED
4369
4370 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4371 return;
4372
4373 prev = skb->prev;
d565b0a1 4374 napi_gro_complete(skb);
2e71a6f8 4375 napi->gro_count--;
d565b0a1
HX
4376 }
4377
4378 napi->gro_list = NULL;
4379}
86cac58b 4380EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4381
89c5fa33
ED
4382static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4383{
4384 struct sk_buff *p;
4385 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4386 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4387
4388 for (p = napi->gro_list; p; p = p->next) {
4389 unsigned long diffs;
4390
0b4cec8c
TH
4391 NAPI_GRO_CB(p)->flush = 0;
4392
4393 if (hash != skb_get_hash_raw(p)) {
4394 NAPI_GRO_CB(p)->same_flow = 0;
4395 continue;
4396 }
4397
89c5fa33
ED
4398 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4399 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4400 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4401 if (maclen == ETH_HLEN)
4402 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4403 skb_mac_header(skb));
89c5fa33
ED
4404 else if (!diffs)
4405 diffs = memcmp(skb_mac_header(p),
a50e233c 4406 skb_mac_header(skb),
89c5fa33
ED
4407 maclen);
4408 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4409 }
4410}
4411
299603e8
JC
4412static void skb_gro_reset_offset(struct sk_buff *skb)
4413{
4414 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4415 const skb_frag_t *frag0 = &pinfo->frags[0];
4416
4417 NAPI_GRO_CB(skb)->data_offset = 0;
4418 NAPI_GRO_CB(skb)->frag0 = NULL;
4419 NAPI_GRO_CB(skb)->frag0_len = 0;
4420
4421 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4422 pinfo->nr_frags &&
4423 !PageHighMem(skb_frag_page(frag0))) {
4424 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4425 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4426 }
4427}
4428
a50e233c
ED
4429static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4430{
4431 struct skb_shared_info *pinfo = skb_shinfo(skb);
4432
4433 BUG_ON(skb->end - skb->tail < grow);
4434
4435 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4436
4437 skb->data_len -= grow;
4438 skb->tail += grow;
4439
4440 pinfo->frags[0].page_offset += grow;
4441 skb_frag_size_sub(&pinfo->frags[0], grow);
4442
4443 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4444 skb_frag_unref(skb, 0);
4445 memmove(pinfo->frags, pinfo->frags + 1,
4446 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4447 }
4448}
4449
bb728820 4450static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4451{
4452 struct sk_buff **pp = NULL;
22061d80 4453 struct packet_offload *ptype;
d565b0a1 4454 __be16 type = skb->protocol;
22061d80 4455 struct list_head *head = &offload_base;
0da2afd5 4456 int same_flow;
5b252f0c 4457 enum gro_result ret;
a50e233c 4458 int grow;
d565b0a1 4459
9c62a68d 4460 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4461 goto normal;
4462
5a212329 4463 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4464 goto normal;
4465
89c5fa33
ED
4466 gro_list_prepare(napi, skb);
4467
d565b0a1
HX
4468 rcu_read_lock();
4469 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4470 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4471 continue;
4472
86911732 4473 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4474 skb_reset_mac_len(skb);
d565b0a1
HX
4475 NAPI_GRO_CB(skb)->same_flow = 0;
4476 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4477 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4478 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4479 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4480 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4481 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4482
662880f4
TH
4483 /* Setup for GRO checksum validation */
4484 switch (skb->ip_summed) {
4485 case CHECKSUM_COMPLETE:
4486 NAPI_GRO_CB(skb)->csum = skb->csum;
4487 NAPI_GRO_CB(skb)->csum_valid = 1;
4488 NAPI_GRO_CB(skb)->csum_cnt = 0;
4489 break;
4490 case CHECKSUM_UNNECESSARY:
4491 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4492 NAPI_GRO_CB(skb)->csum_valid = 0;
4493 break;
4494 default:
4495 NAPI_GRO_CB(skb)->csum_cnt = 0;
4496 NAPI_GRO_CB(skb)->csum_valid = 0;
4497 }
d565b0a1 4498
f191a1d1 4499 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4500 break;
4501 }
4502 rcu_read_unlock();
4503
4504 if (&ptype->list == head)
4505 goto normal;
4506
0da2afd5 4507 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4508 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4509
d565b0a1
HX
4510 if (pp) {
4511 struct sk_buff *nskb = *pp;
4512
4513 *pp = nskb->next;
4514 nskb->next = NULL;
4515 napi_gro_complete(nskb);
4ae5544f 4516 napi->gro_count--;
d565b0a1
HX
4517 }
4518
0da2afd5 4519 if (same_flow)
d565b0a1
HX
4520 goto ok;
4521
600adc18 4522 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4523 goto normal;
d565b0a1 4524
600adc18
ED
4525 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4526 struct sk_buff *nskb = napi->gro_list;
4527
4528 /* locate the end of the list to select the 'oldest' flow */
4529 while (nskb->next) {
4530 pp = &nskb->next;
4531 nskb = *pp;
4532 }
4533 *pp = NULL;
4534 nskb->next = NULL;
4535 napi_gro_complete(nskb);
4536 } else {
4537 napi->gro_count++;
4538 }
d565b0a1 4539 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4540 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4541 NAPI_GRO_CB(skb)->last = skb;
86911732 4542 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4543 skb->next = napi->gro_list;
4544 napi->gro_list = skb;
5d0d9be8 4545 ret = GRO_HELD;
d565b0a1 4546
ad0f9904 4547pull:
a50e233c
ED
4548 grow = skb_gro_offset(skb) - skb_headlen(skb);
4549 if (grow > 0)
4550 gro_pull_from_frag0(skb, grow);
d565b0a1 4551ok:
5d0d9be8 4552 return ret;
d565b0a1
HX
4553
4554normal:
ad0f9904
HX
4555 ret = GRO_NORMAL;
4556 goto pull;
5d38a079 4557}
96e93eab 4558
bf5a755f
JC
4559struct packet_offload *gro_find_receive_by_type(__be16 type)
4560{
4561 struct list_head *offload_head = &offload_base;
4562 struct packet_offload *ptype;
4563
4564 list_for_each_entry_rcu(ptype, offload_head, list) {
4565 if (ptype->type != type || !ptype->callbacks.gro_receive)
4566 continue;
4567 return ptype;
4568 }
4569 return NULL;
4570}
e27a2f83 4571EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4572
4573struct packet_offload *gro_find_complete_by_type(__be16 type)
4574{
4575 struct list_head *offload_head = &offload_base;
4576 struct packet_offload *ptype;
4577
4578 list_for_each_entry_rcu(ptype, offload_head, list) {
4579 if (ptype->type != type || !ptype->callbacks.gro_complete)
4580 continue;
4581 return ptype;
4582 }
4583 return NULL;
4584}
e27a2f83 4585EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4586
bb728820 4587static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4588{
5d0d9be8
HX
4589 switch (ret) {
4590 case GRO_NORMAL:
ae78dbfa 4591 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4592 ret = GRO_DROP;
4593 break;
5d38a079 4594
5d0d9be8 4595 case GRO_DROP:
5d38a079
HX
4596 kfree_skb(skb);
4597 break;
5b252f0c 4598
daa86548 4599 case GRO_MERGED_FREE:
ce87fc6c
JG
4600 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4601 skb_dst_drop(skb);
d7e8883c 4602 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4603 } else {
d7e8883c 4604 __kfree_skb(skb);
ce87fc6c 4605 }
daa86548
ED
4606 break;
4607
5b252f0c
BH
4608 case GRO_HELD:
4609 case GRO_MERGED:
4610 break;
5d38a079
HX
4611 }
4612
c7c4b3b6 4613 return ret;
5d0d9be8 4614}
5d0d9be8 4615
c7c4b3b6 4616gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4617{
93f93a44 4618 skb_mark_napi_id(skb, napi);
ae78dbfa 4619 trace_napi_gro_receive_entry(skb);
86911732 4620
a50e233c
ED
4621 skb_gro_reset_offset(skb);
4622
89c5fa33 4623 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4624}
4625EXPORT_SYMBOL(napi_gro_receive);
4626
d0c2b0d2 4627static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4628{
93a35f59
ED
4629 if (unlikely(skb->pfmemalloc)) {
4630 consume_skb(skb);
4631 return;
4632 }
96e93eab 4633 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4634 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4635 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4636 skb->vlan_tci = 0;
66c46d74 4637 skb->dev = napi->dev;
6d152e23 4638 skb->skb_iif = 0;
c3caf119
JC
4639 skb->encapsulation = 0;
4640 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4641 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4642
4643 napi->skb = skb;
4644}
96e93eab 4645
76620aaf 4646struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4647{
5d38a079 4648 struct sk_buff *skb = napi->skb;
5d38a079
HX
4649
4650 if (!skb) {
fd11a83d 4651 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4652 if (skb) {
4653 napi->skb = skb;
4654 skb_mark_napi_id(skb, napi);
4655 }
80595d59 4656 }
96e93eab
HX
4657 return skb;
4658}
76620aaf 4659EXPORT_SYMBOL(napi_get_frags);
96e93eab 4660
a50e233c
ED
4661static gro_result_t napi_frags_finish(struct napi_struct *napi,
4662 struct sk_buff *skb,
4663 gro_result_t ret)
96e93eab 4664{
5d0d9be8
HX
4665 switch (ret) {
4666 case GRO_NORMAL:
a50e233c
ED
4667 case GRO_HELD:
4668 __skb_push(skb, ETH_HLEN);
4669 skb->protocol = eth_type_trans(skb, skb->dev);
4670 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4671 ret = GRO_DROP;
86911732 4672 break;
5d38a079 4673
5d0d9be8 4674 case GRO_DROP:
5d0d9be8
HX
4675 case GRO_MERGED_FREE:
4676 napi_reuse_skb(napi, skb);
4677 break;
5b252f0c
BH
4678
4679 case GRO_MERGED:
4680 break;
5d0d9be8 4681 }
5d38a079 4682
c7c4b3b6 4683 return ret;
5d38a079 4684}
5d0d9be8 4685
a50e233c
ED
4686/* Upper GRO stack assumes network header starts at gro_offset=0
4687 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4688 * We copy ethernet header into skb->data to have a common layout.
4689 */
4adb9c4a 4690static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4691{
4692 struct sk_buff *skb = napi->skb;
a50e233c
ED
4693 const struct ethhdr *eth;
4694 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4695
4696 napi->skb = NULL;
4697
a50e233c
ED
4698 skb_reset_mac_header(skb);
4699 skb_gro_reset_offset(skb);
4700
4701 eth = skb_gro_header_fast(skb, 0);
4702 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4703 eth = skb_gro_header_slow(skb, hlen, 0);
4704 if (unlikely(!eth)) {
4da46ceb
AC
4705 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4706 __func__, napi->dev->name);
a50e233c
ED
4707 napi_reuse_skb(napi, skb);
4708 return NULL;
4709 }
4710 } else {
4711 gro_pull_from_frag0(skb, hlen);
4712 NAPI_GRO_CB(skb)->frag0 += hlen;
4713 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4714 }
a50e233c
ED
4715 __skb_pull(skb, hlen);
4716
4717 /*
4718 * This works because the only protocols we care about don't require
4719 * special handling.
4720 * We'll fix it up properly in napi_frags_finish()
4721 */
4722 skb->protocol = eth->h_proto;
76620aaf 4723
76620aaf
HX
4724 return skb;
4725}
76620aaf 4726
c7c4b3b6 4727gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4728{
76620aaf 4729 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4730
4731 if (!skb)
c7c4b3b6 4732 return GRO_DROP;
5d0d9be8 4733
ae78dbfa
BH
4734 trace_napi_gro_frags_entry(skb);
4735
89c5fa33 4736 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4737}
5d38a079
HX
4738EXPORT_SYMBOL(napi_gro_frags);
4739
573e8fca
TH
4740/* Compute the checksum from gro_offset and return the folded value
4741 * after adding in any pseudo checksum.
4742 */
4743__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4744{
4745 __wsum wsum;
4746 __sum16 sum;
4747
4748 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4749
4750 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4751 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4752 if (likely(!sum)) {
4753 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4754 !skb->csum_complete_sw)
4755 netdev_rx_csum_fault(skb->dev);
4756 }
4757
4758 NAPI_GRO_CB(skb)->csum = wsum;
4759 NAPI_GRO_CB(skb)->csum_valid = 1;
4760
4761 return sum;
4762}
4763EXPORT_SYMBOL(__skb_gro_checksum_complete);
4764
e326bed2 4765/*
855abcf0 4766 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4767 * Note: called with local irq disabled, but exits with local irq enabled.
4768 */
4769static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4770{
4771#ifdef CONFIG_RPS
4772 struct softnet_data *remsd = sd->rps_ipi_list;
4773
4774 if (remsd) {
4775 sd->rps_ipi_list = NULL;
4776
4777 local_irq_enable();
4778
4779 /* Send pending IPI's to kick RPS processing on remote cpus. */
4780 while (remsd) {
4781 struct softnet_data *next = remsd->rps_ipi_next;
4782
4783 if (cpu_online(remsd->cpu))
c46fff2a 4784 smp_call_function_single_async(remsd->cpu,
fce8ad15 4785 &remsd->csd);
e326bed2
ED
4786 remsd = next;
4787 }
4788 } else
4789#endif
4790 local_irq_enable();
4791}
4792
d75b1ade
ED
4793static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4794{
4795#ifdef CONFIG_RPS
4796 return sd->rps_ipi_list != NULL;
4797#else
4798 return false;
4799#endif
4800}
4801
bea3348e 4802static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4803{
4804 int work = 0;
eecfd7c4 4805 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4806
e326bed2
ED
4807 /* Check if we have pending ipi, its better to send them now,
4808 * not waiting net_rx_action() end.
4809 */
d75b1ade 4810 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4811 local_irq_disable();
4812 net_rps_action_and_irq_enable(sd);
4813 }
d75b1ade 4814
bea3348e 4815 napi->weight = weight_p;
6e7676c1 4816 local_irq_disable();
11ef7a89 4817 while (1) {
1da177e4 4818 struct sk_buff *skb;
6e7676c1
CG
4819
4820 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4821 rcu_read_lock();
6e7676c1
CG
4822 local_irq_enable();
4823 __netif_receive_skb(skb);
2c17d27c 4824 rcu_read_unlock();
6e7676c1 4825 local_irq_disable();
76cc8b13
TH
4826 input_queue_head_incr(sd);
4827 if (++work >= quota) {
4828 local_irq_enable();
4829 return work;
4830 }
6e7676c1 4831 }
1da177e4 4832
e36fa2f7 4833 rps_lock(sd);
11ef7a89 4834 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4835 /*
4836 * Inline a custom version of __napi_complete().
4837 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4838 * and NAPI_STATE_SCHED is the only possible flag set
4839 * on backlog.
4840 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4841 * and we dont need an smp_mb() memory barrier.
4842 */
eecfd7c4 4843 napi->state = 0;
11ef7a89 4844 rps_unlock(sd);
eecfd7c4 4845
11ef7a89 4846 break;
bea3348e 4847 }
11ef7a89
TH
4848
4849 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4850 &sd->process_queue);
e36fa2f7 4851 rps_unlock(sd);
6e7676c1
CG
4852 }
4853 local_irq_enable();
1da177e4 4854
bea3348e
SH
4855 return work;
4856}
1da177e4 4857
bea3348e
SH
4858/**
4859 * __napi_schedule - schedule for receive
c4ea43c5 4860 * @n: entry to schedule
bea3348e 4861 *
bc9ad166
ED
4862 * The entry's receive function will be scheduled to run.
4863 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4864 */
b5606c2d 4865void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4866{
4867 unsigned long flags;
1da177e4 4868
bea3348e 4869 local_irq_save(flags);
903ceff7 4870 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4871 local_irq_restore(flags);
1da177e4 4872}
bea3348e
SH
4873EXPORT_SYMBOL(__napi_schedule);
4874
bc9ad166
ED
4875/**
4876 * __napi_schedule_irqoff - schedule for receive
4877 * @n: entry to schedule
4878 *
4879 * Variant of __napi_schedule() assuming hard irqs are masked
4880 */
4881void __napi_schedule_irqoff(struct napi_struct *n)
4882{
4883 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4884}
4885EXPORT_SYMBOL(__napi_schedule_irqoff);
4886
d565b0a1
HX
4887void __napi_complete(struct napi_struct *n)
4888{
4889 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4890
d75b1ade 4891 list_del_init(&n->poll_list);
4e857c58 4892 smp_mb__before_atomic();
d565b0a1
HX
4893 clear_bit(NAPI_STATE_SCHED, &n->state);
4894}
4895EXPORT_SYMBOL(__napi_complete);
4896
3b47d303 4897void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4898{
4899 unsigned long flags;
4900
4901 /*
4902 * don't let napi dequeue from the cpu poll list
4903 * just in case its running on a different cpu
4904 */
4905 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4906 return;
4907
3b47d303
ED
4908 if (n->gro_list) {
4909 unsigned long timeout = 0;
d75b1ade 4910
3b47d303
ED
4911 if (work_done)
4912 timeout = n->dev->gro_flush_timeout;
4913
4914 if (timeout)
4915 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4916 HRTIMER_MODE_REL_PINNED);
4917 else
4918 napi_gro_flush(n, false);
4919 }
d75b1ade
ED
4920 if (likely(list_empty(&n->poll_list))) {
4921 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4922 } else {
4923 /* If n->poll_list is not empty, we need to mask irqs */
4924 local_irq_save(flags);
4925 __napi_complete(n);
4926 local_irq_restore(flags);
4927 }
d565b0a1 4928}
3b47d303 4929EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4930
af12fa6e 4931/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4932static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4933{
4934 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4935 struct napi_struct *napi;
4936
4937 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4938 if (napi->napi_id == napi_id)
4939 return napi;
4940
4941 return NULL;
4942}
02d62e86
ED
4943
4944#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4945#define BUSY_POLL_BUDGET 8
02d62e86
ED
4946bool sk_busy_loop(struct sock *sk, int nonblock)
4947{
4948 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4949 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4950 struct napi_struct *napi;
4951 int rc = false;
4952
2a028ecb 4953 rcu_read_lock();
02d62e86
ED
4954
4955 napi = napi_by_id(sk->sk_napi_id);
4956 if (!napi)
4957 goto out;
4958
ce6aea93
ED
4959 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4960 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4961
4962 do {
ce6aea93 4963 rc = 0;
2a028ecb 4964 local_bh_disable();
ce6aea93
ED
4965 if (busy_poll) {
4966 rc = busy_poll(napi);
4967 } else if (napi_schedule_prep(napi)) {
4968 void *have = netpoll_poll_lock(napi);
4969
4970 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4971 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4972 trace_napi_poll(napi);
4973 if (rc == BUSY_POLL_BUDGET) {
4974 napi_complete_done(napi, rc);
4975 napi_schedule(napi);
4976 }
4977 }
4978 netpoll_poll_unlock(have);
4979 }
2a028ecb 4980 if (rc > 0)
02a1d6e7
ED
4981 __NET_ADD_STATS(sock_net(sk),
4982 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4983 local_bh_enable();
02d62e86
ED
4984
4985 if (rc == LL_FLUSH_FAILED)
4986 break; /* permanent failure */
4987
02d62e86 4988 cpu_relax();
02d62e86
ED
4989 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4990 !need_resched() && !busy_loop_timeout(end_time));
4991
4992 rc = !skb_queue_empty(&sk->sk_receive_queue);
4993out:
2a028ecb 4994 rcu_read_unlock();
02d62e86
ED
4995 return rc;
4996}
4997EXPORT_SYMBOL(sk_busy_loop);
4998
4999#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5000
5001void napi_hash_add(struct napi_struct *napi)
5002{
d64b5e85
ED
5003 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5004 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5005 return;
af12fa6e 5006
52bd2d62 5007 spin_lock(&napi_hash_lock);
af12fa6e 5008
52bd2d62
ED
5009 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5010 do {
5011 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5012 napi_gen_id = NR_CPUS + 1;
5013 } while (napi_by_id(napi_gen_id));
5014 napi->napi_id = napi_gen_id;
af12fa6e 5015
52bd2d62
ED
5016 hlist_add_head_rcu(&napi->napi_hash_node,
5017 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5018
52bd2d62 5019 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5020}
5021EXPORT_SYMBOL_GPL(napi_hash_add);
5022
5023/* Warning : caller is responsible to make sure rcu grace period
5024 * is respected before freeing memory containing @napi
5025 */
34cbe27e 5026bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5027{
34cbe27e
ED
5028 bool rcu_sync_needed = false;
5029
af12fa6e
ET
5030 spin_lock(&napi_hash_lock);
5031
34cbe27e
ED
5032 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5033 rcu_sync_needed = true;
af12fa6e 5034 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5035 }
af12fa6e 5036 spin_unlock(&napi_hash_lock);
34cbe27e 5037 return rcu_sync_needed;
af12fa6e
ET
5038}
5039EXPORT_SYMBOL_GPL(napi_hash_del);
5040
3b47d303
ED
5041static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5042{
5043 struct napi_struct *napi;
5044
5045 napi = container_of(timer, struct napi_struct, timer);
5046 if (napi->gro_list)
5047 napi_schedule(napi);
5048
5049 return HRTIMER_NORESTART;
5050}
5051
d565b0a1
HX
5052void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5053 int (*poll)(struct napi_struct *, int), int weight)
5054{
5055 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5056 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5057 napi->timer.function = napi_watchdog;
4ae5544f 5058 napi->gro_count = 0;
d565b0a1 5059 napi->gro_list = NULL;
5d38a079 5060 napi->skb = NULL;
d565b0a1 5061 napi->poll = poll;
82dc3c63
ED
5062 if (weight > NAPI_POLL_WEIGHT)
5063 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5064 weight, dev->name);
d565b0a1
HX
5065 napi->weight = weight;
5066 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5067 napi->dev = dev;
5d38a079 5068#ifdef CONFIG_NETPOLL
d565b0a1
HX
5069 spin_lock_init(&napi->poll_lock);
5070 napi->poll_owner = -1;
5071#endif
5072 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5073 napi_hash_add(napi);
d565b0a1
HX
5074}
5075EXPORT_SYMBOL(netif_napi_add);
5076
3b47d303
ED
5077void napi_disable(struct napi_struct *n)
5078{
5079 might_sleep();
5080 set_bit(NAPI_STATE_DISABLE, &n->state);
5081
5082 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5083 msleep(1);
2d8bff12
NH
5084 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5085 msleep(1);
3b47d303
ED
5086
5087 hrtimer_cancel(&n->timer);
5088
5089 clear_bit(NAPI_STATE_DISABLE, &n->state);
5090}
5091EXPORT_SYMBOL(napi_disable);
5092
93d05d4a 5093/* Must be called in process context */
d565b0a1
HX
5094void netif_napi_del(struct napi_struct *napi)
5095{
93d05d4a
ED
5096 might_sleep();
5097 if (napi_hash_del(napi))
5098 synchronize_net();
d7b06636 5099 list_del_init(&napi->dev_list);
76620aaf 5100 napi_free_frags(napi);
d565b0a1 5101
289dccbe 5102 kfree_skb_list(napi->gro_list);
d565b0a1 5103 napi->gro_list = NULL;
4ae5544f 5104 napi->gro_count = 0;
d565b0a1
HX
5105}
5106EXPORT_SYMBOL(netif_napi_del);
5107
726ce70e
HX
5108static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5109{
5110 void *have;
5111 int work, weight;
5112
5113 list_del_init(&n->poll_list);
5114
5115 have = netpoll_poll_lock(n);
5116
5117 weight = n->weight;
5118
5119 /* This NAPI_STATE_SCHED test is for avoiding a race
5120 * with netpoll's poll_napi(). Only the entity which
5121 * obtains the lock and sees NAPI_STATE_SCHED set will
5122 * actually make the ->poll() call. Therefore we avoid
5123 * accidentally calling ->poll() when NAPI is not scheduled.
5124 */
5125 work = 0;
5126 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5127 work = n->poll(n, weight);
5128 trace_napi_poll(n);
5129 }
5130
5131 WARN_ON_ONCE(work > weight);
5132
5133 if (likely(work < weight))
5134 goto out_unlock;
5135
5136 /* Drivers must not modify the NAPI state if they
5137 * consume the entire weight. In such cases this code
5138 * still "owns" the NAPI instance and therefore can
5139 * move the instance around on the list at-will.
5140 */
5141 if (unlikely(napi_disable_pending(n))) {
5142 napi_complete(n);
5143 goto out_unlock;
5144 }
5145
5146 if (n->gro_list) {
5147 /* flush too old packets
5148 * If HZ < 1000, flush all packets.
5149 */
5150 napi_gro_flush(n, HZ >= 1000);
5151 }
5152
001ce546
HX
5153 /* Some drivers may have called napi_schedule
5154 * prior to exhausting their budget.
5155 */
5156 if (unlikely(!list_empty(&n->poll_list))) {
5157 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5158 n->dev ? n->dev->name : "backlog");
5159 goto out_unlock;
5160 }
5161
726ce70e
HX
5162 list_add_tail(&n->poll_list, repoll);
5163
5164out_unlock:
5165 netpoll_poll_unlock(have);
5166
5167 return work;
5168}
5169
1da177e4
LT
5170static void net_rx_action(struct softirq_action *h)
5171{
903ceff7 5172 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5173 unsigned long time_limit = jiffies + 2;
51b0bded 5174 int budget = netdev_budget;
d75b1ade
ED
5175 LIST_HEAD(list);
5176 LIST_HEAD(repoll);
53fb95d3 5177
1da177e4 5178 local_irq_disable();
d75b1ade
ED
5179 list_splice_init(&sd->poll_list, &list);
5180 local_irq_enable();
1da177e4 5181
ceb8d5bf 5182 for (;;) {
bea3348e 5183 struct napi_struct *n;
1da177e4 5184
ceb8d5bf
HX
5185 if (list_empty(&list)) {
5186 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5187 return;
5188 break;
5189 }
5190
6bd373eb
HX
5191 n = list_first_entry(&list, struct napi_struct, poll_list);
5192 budget -= napi_poll(n, &repoll);
5193
d75b1ade 5194 /* If softirq window is exhausted then punt.
24f8b238
SH
5195 * Allow this to run for 2 jiffies since which will allow
5196 * an average latency of 1.5/HZ.
bea3348e 5197 */
ceb8d5bf
HX
5198 if (unlikely(budget <= 0 ||
5199 time_after_eq(jiffies, time_limit))) {
5200 sd->time_squeeze++;
5201 break;
5202 }
1da177e4 5203 }
d75b1ade 5204
795bb1c0 5205 __kfree_skb_flush();
d75b1ade
ED
5206 local_irq_disable();
5207
5208 list_splice_tail_init(&sd->poll_list, &list);
5209 list_splice_tail(&repoll, &list);
5210 list_splice(&list, &sd->poll_list);
5211 if (!list_empty(&sd->poll_list))
5212 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5213
e326bed2 5214 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5215}
5216
aa9d8560 5217struct netdev_adjacent {
9ff162a8 5218 struct net_device *dev;
5d261913
VF
5219
5220 /* upper master flag, there can only be one master device per list */
9ff162a8 5221 bool master;
5d261913 5222
5d261913
VF
5223 /* counter for the number of times this device was added to us */
5224 u16 ref_nr;
5225
402dae96
VF
5226 /* private field for the users */
5227 void *private;
5228
9ff162a8
JP
5229 struct list_head list;
5230 struct rcu_head rcu;
9ff162a8
JP
5231};
5232
6ea29da1 5233static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5234 struct list_head *adj_list)
9ff162a8 5235{
5d261913 5236 struct netdev_adjacent *adj;
5d261913 5237
2f268f12 5238 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5239 if (adj->dev == adj_dev)
5240 return adj;
9ff162a8
JP
5241 }
5242 return NULL;
5243}
5244
5245/**
5246 * netdev_has_upper_dev - Check if device is linked to an upper device
5247 * @dev: device
5248 * @upper_dev: upper device to check
5249 *
5250 * Find out if a device is linked to specified upper device and return true
5251 * in case it is. Note that this checks only immediate upper device,
5252 * not through a complete stack of devices. The caller must hold the RTNL lock.
5253 */
5254bool netdev_has_upper_dev(struct net_device *dev,
5255 struct net_device *upper_dev)
5256{
5257 ASSERT_RTNL();
5258
6ea29da1 5259 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5260}
5261EXPORT_SYMBOL(netdev_has_upper_dev);
5262
5263/**
5264 * netdev_has_any_upper_dev - Check if device is linked to some device
5265 * @dev: device
5266 *
5267 * Find out if a device is linked to an upper device and return true in case
5268 * it is. The caller must hold the RTNL lock.
5269 */
1d143d9f 5270static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5271{
5272 ASSERT_RTNL();
5273
2f268f12 5274 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5275}
9ff162a8
JP
5276
5277/**
5278 * netdev_master_upper_dev_get - Get master upper device
5279 * @dev: device
5280 *
5281 * Find a master upper device and return pointer to it or NULL in case
5282 * it's not there. The caller must hold the RTNL lock.
5283 */
5284struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5285{
aa9d8560 5286 struct netdev_adjacent *upper;
9ff162a8
JP
5287
5288 ASSERT_RTNL();
5289
2f268f12 5290 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5291 return NULL;
5292
2f268f12 5293 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5294 struct netdev_adjacent, list);
9ff162a8
JP
5295 if (likely(upper->master))
5296 return upper->dev;
5297 return NULL;
5298}
5299EXPORT_SYMBOL(netdev_master_upper_dev_get);
5300
b6ccba4c
VF
5301void *netdev_adjacent_get_private(struct list_head *adj_list)
5302{
5303 struct netdev_adjacent *adj;
5304
5305 adj = list_entry(adj_list, struct netdev_adjacent, list);
5306
5307 return adj->private;
5308}
5309EXPORT_SYMBOL(netdev_adjacent_get_private);
5310
44a40855
VY
5311/**
5312 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5313 * @dev: device
5314 * @iter: list_head ** of the current position
5315 *
5316 * Gets the next device from the dev's upper list, starting from iter
5317 * position. The caller must hold RCU read lock.
5318 */
5319struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5320 struct list_head **iter)
5321{
5322 struct netdev_adjacent *upper;
5323
5324 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5325
5326 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5327
5328 if (&upper->list == &dev->adj_list.upper)
5329 return NULL;
5330
5331 *iter = &upper->list;
5332
5333 return upper->dev;
5334}
5335EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5336
31088a11
VF
5337/**
5338 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5339 * @dev: device
5340 * @iter: list_head ** of the current position
5341 *
5342 * Gets the next device from the dev's upper list, starting from iter
5343 * position. The caller must hold RCU read lock.
5344 */
2f268f12
VF
5345struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5346 struct list_head **iter)
48311f46
VF
5347{
5348 struct netdev_adjacent *upper;
5349
85328240 5350 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5351
5352 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5353
2f268f12 5354 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5355 return NULL;
5356
5357 *iter = &upper->list;
5358
5359 return upper->dev;
5360}
2f268f12 5361EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5362
31088a11
VF
5363/**
5364 * netdev_lower_get_next_private - Get the next ->private from the
5365 * lower neighbour list
5366 * @dev: device
5367 * @iter: list_head ** of the current position
5368 *
5369 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5370 * list, starting from iter position. The caller must hold either hold the
5371 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5372 * list will remain unchanged.
31088a11
VF
5373 */
5374void *netdev_lower_get_next_private(struct net_device *dev,
5375 struct list_head **iter)
5376{
5377 struct netdev_adjacent *lower;
5378
5379 lower = list_entry(*iter, struct netdev_adjacent, list);
5380
5381 if (&lower->list == &dev->adj_list.lower)
5382 return NULL;
5383
6859e7df 5384 *iter = lower->list.next;
31088a11
VF
5385
5386 return lower->private;
5387}
5388EXPORT_SYMBOL(netdev_lower_get_next_private);
5389
5390/**
5391 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5392 * lower neighbour list, RCU
5393 * variant
5394 * @dev: device
5395 * @iter: list_head ** of the current position
5396 *
5397 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5398 * list, starting from iter position. The caller must hold RCU read lock.
5399 */
5400void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5401 struct list_head **iter)
5402{
5403 struct netdev_adjacent *lower;
5404
5405 WARN_ON_ONCE(!rcu_read_lock_held());
5406
5407 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5408
5409 if (&lower->list == &dev->adj_list.lower)
5410 return NULL;
5411
6859e7df 5412 *iter = &lower->list;
31088a11
VF
5413
5414 return lower->private;
5415}
5416EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5417
4085ebe8
VY
5418/**
5419 * netdev_lower_get_next - Get the next device from the lower neighbour
5420 * list
5421 * @dev: device
5422 * @iter: list_head ** of the current position
5423 *
5424 * Gets the next netdev_adjacent from the dev's lower neighbour
5425 * list, starting from iter position. The caller must hold RTNL lock or
5426 * its own locking that guarantees that the neighbour lower
b469139e 5427 * list will remain unchanged.
4085ebe8
VY
5428 */
5429void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5430{
5431 struct netdev_adjacent *lower;
5432
cfdd28be 5433 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5434
5435 if (&lower->list == &dev->adj_list.lower)
5436 return NULL;
5437
cfdd28be 5438 *iter = lower->list.next;
4085ebe8
VY
5439
5440 return lower->dev;
5441}
5442EXPORT_SYMBOL(netdev_lower_get_next);
5443
e001bfad 5444/**
5445 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5446 * lower neighbour list, RCU
5447 * variant
5448 * @dev: device
5449 *
5450 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5451 * list. The caller must hold RCU read lock.
5452 */
5453void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5454{
5455 struct netdev_adjacent *lower;
5456
5457 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5458 struct netdev_adjacent, list);
5459 if (lower)
5460 return lower->private;
5461 return NULL;
5462}
5463EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5464
9ff162a8
JP
5465/**
5466 * netdev_master_upper_dev_get_rcu - Get master upper device
5467 * @dev: device
5468 *
5469 * Find a master upper device and return pointer to it or NULL in case
5470 * it's not there. The caller must hold the RCU read lock.
5471 */
5472struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5473{
aa9d8560 5474 struct netdev_adjacent *upper;
9ff162a8 5475
2f268f12 5476 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5477 struct netdev_adjacent, list);
9ff162a8
JP
5478 if (upper && likely(upper->master))
5479 return upper->dev;
5480 return NULL;
5481}
5482EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5483
0a59f3a9 5484static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5485 struct net_device *adj_dev,
5486 struct list_head *dev_list)
5487{
5488 char linkname[IFNAMSIZ+7];
5489 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5490 "upper_%s" : "lower_%s", adj_dev->name);
5491 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5492 linkname);
5493}
0a59f3a9 5494static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5495 char *name,
5496 struct list_head *dev_list)
5497{
5498 char linkname[IFNAMSIZ+7];
5499 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5500 "upper_%s" : "lower_%s", name);
5501 sysfs_remove_link(&(dev->dev.kobj), linkname);
5502}
5503
7ce64c79
AF
5504static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5505 struct net_device *adj_dev,
5506 struct list_head *dev_list)
5507{
5508 return (dev_list == &dev->adj_list.upper ||
5509 dev_list == &dev->adj_list.lower) &&
5510 net_eq(dev_net(dev), dev_net(adj_dev));
5511}
3ee32707 5512
5d261913
VF
5513static int __netdev_adjacent_dev_insert(struct net_device *dev,
5514 struct net_device *adj_dev,
7863c054 5515 struct list_head *dev_list,
402dae96 5516 void *private, bool master)
5d261913
VF
5517{
5518 struct netdev_adjacent *adj;
842d67a7 5519 int ret;
5d261913 5520
6ea29da1 5521 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5522
5523 if (adj) {
5d261913
VF
5524 adj->ref_nr++;
5525 return 0;
5526 }
5527
5528 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5529 if (!adj)
5530 return -ENOMEM;
5531
5532 adj->dev = adj_dev;
5533 adj->master = master;
5d261913 5534 adj->ref_nr = 1;
402dae96 5535 adj->private = private;
5d261913 5536 dev_hold(adj_dev);
2f268f12
VF
5537
5538 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5539 adj_dev->name, dev->name, adj_dev->name);
5d261913 5540
7ce64c79 5541 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5542 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5543 if (ret)
5544 goto free_adj;
5545 }
5546
7863c054 5547 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5548 if (master) {
5549 ret = sysfs_create_link(&(dev->dev.kobj),
5550 &(adj_dev->dev.kobj), "master");
5551 if (ret)
5831d66e 5552 goto remove_symlinks;
842d67a7 5553
7863c054 5554 list_add_rcu(&adj->list, dev_list);
842d67a7 5555 } else {
7863c054 5556 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5557 }
5d261913
VF
5558
5559 return 0;
842d67a7 5560
5831d66e 5561remove_symlinks:
7ce64c79 5562 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5563 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5564free_adj:
5565 kfree(adj);
974daef7 5566 dev_put(adj_dev);
842d67a7
VF
5567
5568 return ret;
5d261913
VF
5569}
5570
1d143d9f 5571static void __netdev_adjacent_dev_remove(struct net_device *dev,
5572 struct net_device *adj_dev,
5573 struct list_head *dev_list)
5d261913
VF
5574{
5575 struct netdev_adjacent *adj;
5576
6ea29da1 5577 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5578
2f268f12
VF
5579 if (!adj) {
5580 pr_err("tried to remove device %s from %s\n",
5581 dev->name, adj_dev->name);
5d261913 5582 BUG();
2f268f12 5583 }
5d261913
VF
5584
5585 if (adj->ref_nr > 1) {
2f268f12
VF
5586 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5587 adj->ref_nr-1);
5d261913
VF
5588 adj->ref_nr--;
5589 return;
5590 }
5591
842d67a7
VF
5592 if (adj->master)
5593 sysfs_remove_link(&(dev->dev.kobj), "master");
5594
7ce64c79 5595 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5596 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5597
5d261913 5598 list_del_rcu(&adj->list);
2f268f12
VF
5599 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5600 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5601 dev_put(adj_dev);
5602 kfree_rcu(adj, rcu);
5603}
5604
1d143d9f 5605static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5606 struct net_device *upper_dev,
5607 struct list_head *up_list,
5608 struct list_head *down_list,
5609 void *private, bool master)
5d261913
VF
5610{
5611 int ret;
5612
402dae96
VF
5613 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5614 master);
5d261913
VF
5615 if (ret)
5616 return ret;
5617
402dae96
VF
5618 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5619 false);
5d261913 5620 if (ret) {
2f268f12 5621 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5622 return ret;
5623 }
5624
5625 return 0;
5626}
5627
1d143d9f 5628static int __netdev_adjacent_dev_link(struct net_device *dev,
5629 struct net_device *upper_dev)
5d261913 5630{
2f268f12
VF
5631 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5632 &dev->all_adj_list.upper,
5633 &upper_dev->all_adj_list.lower,
402dae96 5634 NULL, false);
5d261913
VF
5635}
5636
1d143d9f 5637static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5638 struct net_device *upper_dev,
5639 struct list_head *up_list,
5640 struct list_head *down_list)
5d261913 5641{
2f268f12
VF
5642 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5643 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5644}
5645
1d143d9f 5646static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5647 struct net_device *upper_dev)
5d261913 5648{
2f268f12
VF
5649 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5650 &dev->all_adj_list.upper,
5651 &upper_dev->all_adj_list.lower);
5652}
5653
1d143d9f 5654static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5655 struct net_device *upper_dev,
5656 void *private, bool master)
2f268f12
VF
5657{
5658 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5659
5660 if (ret)
5661 return ret;
5662
5663 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5664 &dev->adj_list.upper,
5665 &upper_dev->adj_list.lower,
402dae96 5666 private, master);
2f268f12
VF
5667 if (ret) {
5668 __netdev_adjacent_dev_unlink(dev, upper_dev);
5669 return ret;
5670 }
5671
5672 return 0;
5d261913
VF
5673}
5674
1d143d9f 5675static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5676 struct net_device *upper_dev)
2f268f12
VF
5677{
5678 __netdev_adjacent_dev_unlink(dev, upper_dev);
5679 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5680 &dev->adj_list.upper,
5681 &upper_dev->adj_list.lower);
5682}
5d261913 5683
9ff162a8 5684static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5685 struct net_device *upper_dev, bool master,
29bf24af 5686 void *upper_priv, void *upper_info)
9ff162a8 5687{
0e4ead9d 5688 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5689 struct netdev_adjacent *i, *j, *to_i, *to_j;
5690 int ret = 0;
9ff162a8
JP
5691
5692 ASSERT_RTNL();
5693
5694 if (dev == upper_dev)
5695 return -EBUSY;
5696
5697 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5698 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5699 return -EBUSY;
5700
6ea29da1 5701 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5702 return -EEXIST;
5703
5704 if (master && netdev_master_upper_dev_get(dev))
5705 return -EBUSY;
5706
0e4ead9d
JP
5707 changeupper_info.upper_dev = upper_dev;
5708 changeupper_info.master = master;
5709 changeupper_info.linking = true;
29bf24af 5710 changeupper_info.upper_info = upper_info;
0e4ead9d 5711
573c7ba0
JP
5712 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5713 &changeupper_info.info);
5714 ret = notifier_to_errno(ret);
5715 if (ret)
5716 return ret;
5717
6dffb044 5718 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5719 master);
5d261913
VF
5720 if (ret)
5721 return ret;
9ff162a8 5722
5d261913 5723 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5724 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5725 * versa, and don't forget the devices itself. All of these
5726 * links are non-neighbours.
5727 */
2f268f12
VF
5728 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5729 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5730 pr_debug("Interlinking %s with %s, non-neighbour\n",
5731 i->dev->name, j->dev->name);
5d261913
VF
5732 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5733 if (ret)
5734 goto rollback_mesh;
5735 }
5736 }
5737
5738 /* add dev to every upper_dev's upper device */
2f268f12
VF
5739 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5740 pr_debug("linking %s's upper device %s with %s\n",
5741 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5742 ret = __netdev_adjacent_dev_link(dev, i->dev);
5743 if (ret)
5744 goto rollback_upper_mesh;
5745 }
5746
5747 /* add upper_dev to every dev's lower device */
2f268f12
VF
5748 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5749 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5750 i->dev->name, upper_dev->name);
5d261913
VF
5751 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5752 if (ret)
5753 goto rollback_lower_mesh;
5754 }
9ff162a8 5755
b03804e7
IS
5756 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5757 &changeupper_info.info);
5758 ret = notifier_to_errno(ret);
5759 if (ret)
5760 goto rollback_lower_mesh;
5761
9ff162a8 5762 return 0;
5d261913
VF
5763
5764rollback_lower_mesh:
5765 to_i = i;
2f268f12 5766 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5767 if (i == to_i)
5768 break;
5769 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5770 }
5771
5772 i = NULL;
5773
5774rollback_upper_mesh:
5775 to_i = i;
2f268f12 5776 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5777 if (i == to_i)
5778 break;
5779 __netdev_adjacent_dev_unlink(dev, i->dev);
5780 }
5781
5782 i = j = NULL;
5783
5784rollback_mesh:
5785 to_i = i;
5786 to_j = j;
2f268f12
VF
5787 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5788 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5789 if (i == to_i && j == to_j)
5790 break;
5791 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5792 }
5793 if (i == to_i)
5794 break;
5795 }
5796
2f268f12 5797 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5798
5799 return ret;
9ff162a8
JP
5800}
5801
5802/**
5803 * netdev_upper_dev_link - Add a link to the upper device
5804 * @dev: device
5805 * @upper_dev: new upper device
5806 *
5807 * Adds a link to device which is upper to this one. The caller must hold
5808 * the RTNL lock. On a failure a negative errno code is returned.
5809 * On success the reference counts are adjusted and the function
5810 * returns zero.
5811 */
5812int netdev_upper_dev_link(struct net_device *dev,
5813 struct net_device *upper_dev)
5814{
29bf24af 5815 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5816}
5817EXPORT_SYMBOL(netdev_upper_dev_link);
5818
5819/**
5820 * netdev_master_upper_dev_link - Add a master link to the upper device
5821 * @dev: device
5822 * @upper_dev: new upper device
6dffb044 5823 * @upper_priv: upper device private
29bf24af 5824 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5825 *
5826 * Adds a link to device which is upper to this one. In this case, only
5827 * one master upper device can be linked, although other non-master devices
5828 * might be linked as well. The caller must hold the RTNL lock.
5829 * On a failure a negative errno code is returned. On success the reference
5830 * counts are adjusted and the function returns zero.
5831 */
5832int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5833 struct net_device *upper_dev,
29bf24af 5834 void *upper_priv, void *upper_info)
9ff162a8 5835{
29bf24af
JP
5836 return __netdev_upper_dev_link(dev, upper_dev, true,
5837 upper_priv, upper_info);
9ff162a8
JP
5838}
5839EXPORT_SYMBOL(netdev_master_upper_dev_link);
5840
5841/**
5842 * netdev_upper_dev_unlink - Removes a link to upper device
5843 * @dev: device
5844 * @upper_dev: new upper device
5845 *
5846 * Removes a link to device which is upper to this one. The caller must hold
5847 * the RTNL lock.
5848 */
5849void netdev_upper_dev_unlink(struct net_device *dev,
5850 struct net_device *upper_dev)
5851{
0e4ead9d 5852 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5853 struct netdev_adjacent *i, *j;
9ff162a8
JP
5854 ASSERT_RTNL();
5855
0e4ead9d
JP
5856 changeupper_info.upper_dev = upper_dev;
5857 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5858 changeupper_info.linking = false;
5859
573c7ba0
JP
5860 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5861 &changeupper_info.info);
5862
2f268f12 5863 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5864
5865 /* Here is the tricky part. We must remove all dev's lower
5866 * devices from all upper_dev's upper devices and vice
5867 * versa, to maintain the graph relationship.
5868 */
2f268f12
VF
5869 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5870 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5871 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5872
5873 /* remove also the devices itself from lower/upper device
5874 * list
5875 */
2f268f12 5876 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5877 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5878
2f268f12 5879 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5880 __netdev_adjacent_dev_unlink(dev, i->dev);
5881
0e4ead9d
JP
5882 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5883 &changeupper_info.info);
9ff162a8
JP
5884}
5885EXPORT_SYMBOL(netdev_upper_dev_unlink);
5886
61bd3857
MS
5887/**
5888 * netdev_bonding_info_change - Dispatch event about slave change
5889 * @dev: device
4a26e453 5890 * @bonding_info: info to dispatch
61bd3857
MS
5891 *
5892 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5893 * The caller must hold the RTNL lock.
5894 */
5895void netdev_bonding_info_change(struct net_device *dev,
5896 struct netdev_bonding_info *bonding_info)
5897{
5898 struct netdev_notifier_bonding_info info;
5899
5900 memcpy(&info.bonding_info, bonding_info,
5901 sizeof(struct netdev_bonding_info));
5902 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5903 &info.info);
5904}
5905EXPORT_SYMBOL(netdev_bonding_info_change);
5906
2ce1ee17 5907static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5908{
5909 struct netdev_adjacent *iter;
5910
5911 struct net *net = dev_net(dev);
5912
5913 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5914 if (!net_eq(net,dev_net(iter->dev)))
5915 continue;
5916 netdev_adjacent_sysfs_add(iter->dev, dev,
5917 &iter->dev->adj_list.lower);
5918 netdev_adjacent_sysfs_add(dev, iter->dev,
5919 &dev->adj_list.upper);
5920 }
5921
5922 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5923 if (!net_eq(net,dev_net(iter->dev)))
5924 continue;
5925 netdev_adjacent_sysfs_add(iter->dev, dev,
5926 &iter->dev->adj_list.upper);
5927 netdev_adjacent_sysfs_add(dev, iter->dev,
5928 &dev->adj_list.lower);
5929 }
5930}
5931
2ce1ee17 5932static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5933{
5934 struct netdev_adjacent *iter;
5935
5936 struct net *net = dev_net(dev);
5937
5938 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5939 if (!net_eq(net,dev_net(iter->dev)))
5940 continue;
5941 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5942 &iter->dev->adj_list.lower);
5943 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5944 &dev->adj_list.upper);
5945 }
5946
5947 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5948 if (!net_eq(net,dev_net(iter->dev)))
5949 continue;
5950 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5951 &iter->dev->adj_list.upper);
5952 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5953 &dev->adj_list.lower);
5954 }
5955}
5956
5bb025fa 5957void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5958{
5bb025fa 5959 struct netdev_adjacent *iter;
402dae96 5960
4c75431a
AF
5961 struct net *net = dev_net(dev);
5962
5bb025fa 5963 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5964 if (!net_eq(net,dev_net(iter->dev)))
5965 continue;
5bb025fa
VF
5966 netdev_adjacent_sysfs_del(iter->dev, oldname,
5967 &iter->dev->adj_list.lower);
5968 netdev_adjacent_sysfs_add(iter->dev, dev,
5969 &iter->dev->adj_list.lower);
5970 }
402dae96 5971
5bb025fa 5972 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5973 if (!net_eq(net,dev_net(iter->dev)))
5974 continue;
5bb025fa
VF
5975 netdev_adjacent_sysfs_del(iter->dev, oldname,
5976 &iter->dev->adj_list.upper);
5977 netdev_adjacent_sysfs_add(iter->dev, dev,
5978 &iter->dev->adj_list.upper);
5979 }
402dae96 5980}
402dae96
VF
5981
5982void *netdev_lower_dev_get_private(struct net_device *dev,
5983 struct net_device *lower_dev)
5984{
5985 struct netdev_adjacent *lower;
5986
5987 if (!lower_dev)
5988 return NULL;
6ea29da1 5989 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5990 if (!lower)
5991 return NULL;
5992
5993 return lower->private;
5994}
5995EXPORT_SYMBOL(netdev_lower_dev_get_private);
5996
4085ebe8
VY
5997
5998int dev_get_nest_level(struct net_device *dev,
b618aaa9 5999 bool (*type_check)(const struct net_device *dev))
4085ebe8
VY
6000{
6001 struct net_device *lower = NULL;
6002 struct list_head *iter;
6003 int max_nest = -1;
6004 int nest;
6005
6006 ASSERT_RTNL();
6007
6008 netdev_for_each_lower_dev(dev, lower, iter) {
6009 nest = dev_get_nest_level(lower, type_check);
6010 if (max_nest < nest)
6011 max_nest = nest;
6012 }
6013
6014 if (type_check(dev))
6015 max_nest++;
6016
6017 return max_nest;
6018}
6019EXPORT_SYMBOL(dev_get_nest_level);
6020
04d48266
JP
6021/**
6022 * netdev_lower_change - Dispatch event about lower device state change
6023 * @lower_dev: device
6024 * @lower_state_info: state to dispatch
6025 *
6026 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6027 * The caller must hold the RTNL lock.
6028 */
6029void netdev_lower_state_changed(struct net_device *lower_dev,
6030 void *lower_state_info)
6031{
6032 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6033
6034 ASSERT_RTNL();
6035 changelowerstate_info.lower_state_info = lower_state_info;
6036 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6037 &changelowerstate_info.info);
6038}
6039EXPORT_SYMBOL(netdev_lower_state_changed);
6040
b6c40d68
PM
6041static void dev_change_rx_flags(struct net_device *dev, int flags)
6042{
d314774c
SH
6043 const struct net_device_ops *ops = dev->netdev_ops;
6044
d2615bf4 6045 if (ops->ndo_change_rx_flags)
d314774c 6046 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6047}
6048
991fb3f7 6049static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6050{
b536db93 6051 unsigned int old_flags = dev->flags;
d04a48b0
EB
6052 kuid_t uid;
6053 kgid_t gid;
1da177e4 6054
24023451
PM
6055 ASSERT_RTNL();
6056
dad9b335
WC
6057 dev->flags |= IFF_PROMISC;
6058 dev->promiscuity += inc;
6059 if (dev->promiscuity == 0) {
6060 /*
6061 * Avoid overflow.
6062 * If inc causes overflow, untouch promisc and return error.
6063 */
6064 if (inc < 0)
6065 dev->flags &= ~IFF_PROMISC;
6066 else {
6067 dev->promiscuity -= inc;
7b6cd1ce
JP
6068 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6069 dev->name);
dad9b335
WC
6070 return -EOVERFLOW;
6071 }
6072 }
52609c0b 6073 if (dev->flags != old_flags) {
7b6cd1ce
JP
6074 pr_info("device %s %s promiscuous mode\n",
6075 dev->name,
6076 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6077 if (audit_enabled) {
6078 current_uid_gid(&uid, &gid);
7759db82
KHK
6079 audit_log(current->audit_context, GFP_ATOMIC,
6080 AUDIT_ANOM_PROMISCUOUS,
6081 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6082 dev->name, (dev->flags & IFF_PROMISC),
6083 (old_flags & IFF_PROMISC),
e1760bd5 6084 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6085 from_kuid(&init_user_ns, uid),
6086 from_kgid(&init_user_ns, gid),
7759db82 6087 audit_get_sessionid(current));
8192b0c4 6088 }
24023451 6089
b6c40d68 6090 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6091 }
991fb3f7
ND
6092 if (notify)
6093 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6094 return 0;
1da177e4
LT
6095}
6096
4417da66
PM
6097/**
6098 * dev_set_promiscuity - update promiscuity count on a device
6099 * @dev: device
6100 * @inc: modifier
6101 *
6102 * Add or remove promiscuity from a device. While the count in the device
6103 * remains above zero the interface remains promiscuous. Once it hits zero
6104 * the device reverts back to normal filtering operation. A negative inc
6105 * value is used to drop promiscuity on the device.
dad9b335 6106 * Return 0 if successful or a negative errno code on error.
4417da66 6107 */
dad9b335 6108int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6109{
b536db93 6110 unsigned int old_flags = dev->flags;
dad9b335 6111 int err;
4417da66 6112
991fb3f7 6113 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6114 if (err < 0)
dad9b335 6115 return err;
4417da66
PM
6116 if (dev->flags != old_flags)
6117 dev_set_rx_mode(dev);
dad9b335 6118 return err;
4417da66 6119}
d1b19dff 6120EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6121
991fb3f7 6122static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6123{
991fb3f7 6124 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6125
24023451
PM
6126 ASSERT_RTNL();
6127
1da177e4 6128 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6129 dev->allmulti += inc;
6130 if (dev->allmulti == 0) {
6131 /*
6132 * Avoid overflow.
6133 * If inc causes overflow, untouch allmulti and return error.
6134 */
6135 if (inc < 0)
6136 dev->flags &= ~IFF_ALLMULTI;
6137 else {
6138 dev->allmulti -= inc;
7b6cd1ce
JP
6139 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6140 dev->name);
dad9b335
WC
6141 return -EOVERFLOW;
6142 }
6143 }
24023451 6144 if (dev->flags ^ old_flags) {
b6c40d68 6145 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6146 dev_set_rx_mode(dev);
991fb3f7
ND
6147 if (notify)
6148 __dev_notify_flags(dev, old_flags,
6149 dev->gflags ^ old_gflags);
24023451 6150 }
dad9b335 6151 return 0;
4417da66 6152}
991fb3f7
ND
6153
6154/**
6155 * dev_set_allmulti - update allmulti count on a device
6156 * @dev: device
6157 * @inc: modifier
6158 *
6159 * Add or remove reception of all multicast frames to a device. While the
6160 * count in the device remains above zero the interface remains listening
6161 * to all interfaces. Once it hits zero the device reverts back to normal
6162 * filtering operation. A negative @inc value is used to drop the counter
6163 * when releasing a resource needing all multicasts.
6164 * Return 0 if successful or a negative errno code on error.
6165 */
6166
6167int dev_set_allmulti(struct net_device *dev, int inc)
6168{
6169 return __dev_set_allmulti(dev, inc, true);
6170}
d1b19dff 6171EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6172
6173/*
6174 * Upload unicast and multicast address lists to device and
6175 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6176 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6177 * are present.
6178 */
6179void __dev_set_rx_mode(struct net_device *dev)
6180{
d314774c
SH
6181 const struct net_device_ops *ops = dev->netdev_ops;
6182
4417da66
PM
6183 /* dev_open will call this function so the list will stay sane. */
6184 if (!(dev->flags&IFF_UP))
6185 return;
6186
6187 if (!netif_device_present(dev))
40b77c94 6188 return;
4417da66 6189
01789349 6190 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6191 /* Unicast addresses changes may only happen under the rtnl,
6192 * therefore calling __dev_set_promiscuity here is safe.
6193 */
32e7bfc4 6194 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6195 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6196 dev->uc_promisc = true;
32e7bfc4 6197 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6198 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6199 dev->uc_promisc = false;
4417da66 6200 }
4417da66 6201 }
01789349
JP
6202
6203 if (ops->ndo_set_rx_mode)
6204 ops->ndo_set_rx_mode(dev);
4417da66
PM
6205}
6206
6207void dev_set_rx_mode(struct net_device *dev)
6208{
b9e40857 6209 netif_addr_lock_bh(dev);
4417da66 6210 __dev_set_rx_mode(dev);
b9e40857 6211 netif_addr_unlock_bh(dev);
1da177e4
LT
6212}
6213
f0db275a
SH
6214/**
6215 * dev_get_flags - get flags reported to userspace
6216 * @dev: device
6217 *
6218 * Get the combination of flag bits exported through APIs to userspace.
6219 */
95c96174 6220unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6221{
95c96174 6222 unsigned int flags;
1da177e4
LT
6223
6224 flags = (dev->flags & ~(IFF_PROMISC |
6225 IFF_ALLMULTI |
b00055aa
SR
6226 IFF_RUNNING |
6227 IFF_LOWER_UP |
6228 IFF_DORMANT)) |
1da177e4
LT
6229 (dev->gflags & (IFF_PROMISC |
6230 IFF_ALLMULTI));
6231
b00055aa
SR
6232 if (netif_running(dev)) {
6233 if (netif_oper_up(dev))
6234 flags |= IFF_RUNNING;
6235 if (netif_carrier_ok(dev))
6236 flags |= IFF_LOWER_UP;
6237 if (netif_dormant(dev))
6238 flags |= IFF_DORMANT;
6239 }
1da177e4
LT
6240
6241 return flags;
6242}
d1b19dff 6243EXPORT_SYMBOL(dev_get_flags);
1da177e4 6244
bd380811 6245int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6246{
b536db93 6247 unsigned int old_flags = dev->flags;
bd380811 6248 int ret;
1da177e4 6249
24023451
PM
6250 ASSERT_RTNL();
6251
1da177e4
LT
6252 /*
6253 * Set the flags on our device.
6254 */
6255
6256 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6257 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6258 IFF_AUTOMEDIA)) |
6259 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6260 IFF_ALLMULTI));
6261
6262 /*
6263 * Load in the correct multicast list now the flags have changed.
6264 */
6265
b6c40d68
PM
6266 if ((old_flags ^ flags) & IFF_MULTICAST)
6267 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6268
4417da66 6269 dev_set_rx_mode(dev);
1da177e4
LT
6270
6271 /*
6272 * Have we downed the interface. We handle IFF_UP ourselves
6273 * according to user attempts to set it, rather than blindly
6274 * setting it.
6275 */
6276
6277 ret = 0;
d215d10f 6278 if ((old_flags ^ flags) & IFF_UP)
bd380811 6279 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6280
1da177e4 6281 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6282 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6283 unsigned int old_flags = dev->flags;
d1b19dff 6284
1da177e4 6285 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6286
6287 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6288 if (dev->flags != old_flags)
6289 dev_set_rx_mode(dev);
1da177e4
LT
6290 }
6291
6292 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6293 is important. Some (broken) drivers set IFF_PROMISC, when
6294 IFF_ALLMULTI is requested not asking us and not reporting.
6295 */
6296 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6297 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6298
1da177e4 6299 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6300 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6301 }
6302
bd380811
PM
6303 return ret;
6304}
6305
a528c219
ND
6306void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6307 unsigned int gchanges)
bd380811
PM
6308{
6309 unsigned int changes = dev->flags ^ old_flags;
6310
a528c219 6311 if (gchanges)
7f294054 6312 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6313
bd380811
PM
6314 if (changes & IFF_UP) {
6315 if (dev->flags & IFF_UP)
6316 call_netdevice_notifiers(NETDEV_UP, dev);
6317 else
6318 call_netdevice_notifiers(NETDEV_DOWN, dev);
6319 }
6320
6321 if (dev->flags & IFF_UP &&
be9efd36
JP
6322 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6323 struct netdev_notifier_change_info change_info;
6324
6325 change_info.flags_changed = changes;
6326 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6327 &change_info.info);
6328 }
bd380811
PM
6329}
6330
6331/**
6332 * dev_change_flags - change device settings
6333 * @dev: device
6334 * @flags: device state flags
6335 *
6336 * Change settings on device based state flags. The flags are
6337 * in the userspace exported format.
6338 */
b536db93 6339int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6340{
b536db93 6341 int ret;
991fb3f7 6342 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6343
6344 ret = __dev_change_flags(dev, flags);
6345 if (ret < 0)
6346 return ret;
6347
991fb3f7 6348 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6349 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6350 return ret;
6351}
d1b19dff 6352EXPORT_SYMBOL(dev_change_flags);
1da177e4 6353
2315dc91
VF
6354static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6355{
6356 const struct net_device_ops *ops = dev->netdev_ops;
6357
6358 if (ops->ndo_change_mtu)
6359 return ops->ndo_change_mtu(dev, new_mtu);
6360
6361 dev->mtu = new_mtu;
6362 return 0;
6363}
6364
f0db275a
SH
6365/**
6366 * dev_set_mtu - Change maximum transfer unit
6367 * @dev: device
6368 * @new_mtu: new transfer unit
6369 *
6370 * Change the maximum transfer size of the network device.
6371 */
1da177e4
LT
6372int dev_set_mtu(struct net_device *dev, int new_mtu)
6373{
2315dc91 6374 int err, orig_mtu;
1da177e4
LT
6375
6376 if (new_mtu == dev->mtu)
6377 return 0;
6378
6379 /* MTU must be positive. */
6380 if (new_mtu < 0)
6381 return -EINVAL;
6382
6383 if (!netif_device_present(dev))
6384 return -ENODEV;
6385
1d486bfb
VF
6386 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6387 err = notifier_to_errno(err);
6388 if (err)
6389 return err;
d314774c 6390
2315dc91
VF
6391 orig_mtu = dev->mtu;
6392 err = __dev_set_mtu(dev, new_mtu);
d314774c 6393
2315dc91
VF
6394 if (!err) {
6395 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6396 err = notifier_to_errno(err);
6397 if (err) {
6398 /* setting mtu back and notifying everyone again,
6399 * so that they have a chance to revert changes.
6400 */
6401 __dev_set_mtu(dev, orig_mtu);
6402 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6403 }
6404 }
1da177e4
LT
6405 return err;
6406}
d1b19dff 6407EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6408
cbda10fa
VD
6409/**
6410 * dev_set_group - Change group this device belongs to
6411 * @dev: device
6412 * @new_group: group this device should belong to
6413 */
6414void dev_set_group(struct net_device *dev, int new_group)
6415{
6416 dev->group = new_group;
6417}
6418EXPORT_SYMBOL(dev_set_group);
6419
f0db275a
SH
6420/**
6421 * dev_set_mac_address - Change Media Access Control Address
6422 * @dev: device
6423 * @sa: new address
6424 *
6425 * Change the hardware (MAC) address of the device
6426 */
1da177e4
LT
6427int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6428{
d314774c 6429 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6430 int err;
6431
d314774c 6432 if (!ops->ndo_set_mac_address)
1da177e4
LT
6433 return -EOPNOTSUPP;
6434 if (sa->sa_family != dev->type)
6435 return -EINVAL;
6436 if (!netif_device_present(dev))
6437 return -ENODEV;
d314774c 6438 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6439 if (err)
6440 return err;
fbdeca2d 6441 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6442 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6443 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6444 return 0;
1da177e4 6445}
d1b19dff 6446EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6447
4bf84c35
JP
6448/**
6449 * dev_change_carrier - Change device carrier
6450 * @dev: device
691b3b7e 6451 * @new_carrier: new value
4bf84c35
JP
6452 *
6453 * Change device carrier
6454 */
6455int dev_change_carrier(struct net_device *dev, bool new_carrier)
6456{
6457 const struct net_device_ops *ops = dev->netdev_ops;
6458
6459 if (!ops->ndo_change_carrier)
6460 return -EOPNOTSUPP;
6461 if (!netif_device_present(dev))
6462 return -ENODEV;
6463 return ops->ndo_change_carrier(dev, new_carrier);
6464}
6465EXPORT_SYMBOL(dev_change_carrier);
6466
66b52b0d
JP
6467/**
6468 * dev_get_phys_port_id - Get device physical port ID
6469 * @dev: device
6470 * @ppid: port ID
6471 *
6472 * Get device physical port ID
6473 */
6474int dev_get_phys_port_id(struct net_device *dev,
02637fce 6475 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6476{
6477 const struct net_device_ops *ops = dev->netdev_ops;
6478
6479 if (!ops->ndo_get_phys_port_id)
6480 return -EOPNOTSUPP;
6481 return ops->ndo_get_phys_port_id(dev, ppid);
6482}
6483EXPORT_SYMBOL(dev_get_phys_port_id);
6484
db24a904
DA
6485/**
6486 * dev_get_phys_port_name - Get device physical port name
6487 * @dev: device
6488 * @name: port name
ed49e650 6489 * @len: limit of bytes to copy to name
db24a904
DA
6490 *
6491 * Get device physical port name
6492 */
6493int dev_get_phys_port_name(struct net_device *dev,
6494 char *name, size_t len)
6495{
6496 const struct net_device_ops *ops = dev->netdev_ops;
6497
6498 if (!ops->ndo_get_phys_port_name)
6499 return -EOPNOTSUPP;
6500 return ops->ndo_get_phys_port_name(dev, name, len);
6501}
6502EXPORT_SYMBOL(dev_get_phys_port_name);
6503
d746d707
AK
6504/**
6505 * dev_change_proto_down - update protocol port state information
6506 * @dev: device
6507 * @proto_down: new value
6508 *
6509 * This info can be used by switch drivers to set the phys state of the
6510 * port.
6511 */
6512int dev_change_proto_down(struct net_device *dev, bool proto_down)
6513{
6514 const struct net_device_ops *ops = dev->netdev_ops;
6515
6516 if (!ops->ndo_change_proto_down)
6517 return -EOPNOTSUPP;
6518 if (!netif_device_present(dev))
6519 return -ENODEV;
6520 return ops->ndo_change_proto_down(dev, proto_down);
6521}
6522EXPORT_SYMBOL(dev_change_proto_down);
6523
1da177e4
LT
6524/**
6525 * dev_new_index - allocate an ifindex
c4ea43c5 6526 * @net: the applicable net namespace
1da177e4
LT
6527 *
6528 * Returns a suitable unique value for a new device interface
6529 * number. The caller must hold the rtnl semaphore or the
6530 * dev_base_lock to be sure it remains unique.
6531 */
881d966b 6532static int dev_new_index(struct net *net)
1da177e4 6533{
aa79e66e 6534 int ifindex = net->ifindex;
1da177e4
LT
6535 for (;;) {
6536 if (++ifindex <= 0)
6537 ifindex = 1;
881d966b 6538 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6539 return net->ifindex = ifindex;
1da177e4
LT
6540 }
6541}
6542
1da177e4 6543/* Delayed registration/unregisteration */
3b5b34fd 6544static LIST_HEAD(net_todo_list);
200b916f 6545DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6546
6f05f629 6547static void net_set_todo(struct net_device *dev)
1da177e4 6548{
1da177e4 6549 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6550 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6551}
6552
9b5e383c 6553static void rollback_registered_many(struct list_head *head)
93ee31f1 6554{
e93737b0 6555 struct net_device *dev, *tmp;
5cde2829 6556 LIST_HEAD(close_head);
9b5e383c 6557
93ee31f1
DL
6558 BUG_ON(dev_boot_phase);
6559 ASSERT_RTNL();
6560
e93737b0 6561 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6562 /* Some devices call without registering
e93737b0
KK
6563 * for initialization unwind. Remove those
6564 * devices and proceed with the remaining.
9b5e383c
ED
6565 */
6566 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6567 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6568 dev->name, dev);
93ee31f1 6569
9b5e383c 6570 WARN_ON(1);
e93737b0
KK
6571 list_del(&dev->unreg_list);
6572 continue;
9b5e383c 6573 }
449f4544 6574 dev->dismantle = true;
9b5e383c 6575 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6576 }
93ee31f1 6577
44345724 6578 /* If device is running, close it first. */
5cde2829
EB
6579 list_for_each_entry(dev, head, unreg_list)
6580 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6581 dev_close_many(&close_head, true);
93ee31f1 6582
44345724 6583 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6584 /* And unlink it from device chain. */
6585 unlist_netdevice(dev);
93ee31f1 6586
9b5e383c 6587 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6588 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6589 }
93ee31f1
DL
6590
6591 synchronize_net();
6592
9b5e383c 6593 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6594 struct sk_buff *skb = NULL;
6595
9b5e383c
ED
6596 /* Shutdown queueing discipline. */
6597 dev_shutdown(dev);
93ee31f1
DL
6598
6599
9b5e383c
ED
6600 /* Notify protocols, that we are about to destroy
6601 this device. They should clean all the things.
6602 */
6603 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6604
395eea6c
MB
6605 if (!dev->rtnl_link_ops ||
6606 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6607 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6608 GFP_KERNEL);
6609
9b5e383c
ED
6610 /*
6611 * Flush the unicast and multicast chains
6612 */
a748ee24 6613 dev_uc_flush(dev);
22bedad3 6614 dev_mc_flush(dev);
93ee31f1 6615
9b5e383c
ED
6616 if (dev->netdev_ops->ndo_uninit)
6617 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6618
395eea6c
MB
6619 if (skb)
6620 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6621
9ff162a8
JP
6622 /* Notifier chain MUST detach us all upper devices. */
6623 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6624
9b5e383c
ED
6625 /* Remove entries from kobject tree */
6626 netdev_unregister_kobject(dev);
024e9679
AD
6627#ifdef CONFIG_XPS
6628 /* Remove XPS queueing entries */
6629 netif_reset_xps_queues_gt(dev, 0);
6630#endif
9b5e383c 6631 }
93ee31f1 6632
850a545b 6633 synchronize_net();
395264d5 6634
a5ee1551 6635 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6636 dev_put(dev);
6637}
6638
6639static void rollback_registered(struct net_device *dev)
6640{
6641 LIST_HEAD(single);
6642
6643 list_add(&dev->unreg_list, &single);
6644 rollback_registered_many(&single);
ceaaec98 6645 list_del(&single);
93ee31f1
DL
6646}
6647
fd867d51
JW
6648static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6649 struct net_device *upper, netdev_features_t features)
6650{
6651 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6652 netdev_features_t feature;
5ba3f7d6 6653 int feature_bit;
fd867d51 6654
5ba3f7d6
JW
6655 for_each_netdev_feature(&upper_disables, feature_bit) {
6656 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6657 if (!(upper->wanted_features & feature)
6658 && (features & feature)) {
6659 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6660 &feature, upper->name);
6661 features &= ~feature;
6662 }
6663 }
6664
6665 return features;
6666}
6667
6668static void netdev_sync_lower_features(struct net_device *upper,
6669 struct net_device *lower, netdev_features_t features)
6670{
6671 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6672 netdev_features_t feature;
5ba3f7d6 6673 int feature_bit;
fd867d51 6674
5ba3f7d6
JW
6675 for_each_netdev_feature(&upper_disables, feature_bit) {
6676 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6677 if (!(features & feature) && (lower->features & feature)) {
6678 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6679 &feature, lower->name);
6680 lower->wanted_features &= ~feature;
6681 netdev_update_features(lower);
6682
6683 if (unlikely(lower->features & feature))
6684 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6685 &feature, lower->name);
6686 }
6687 }
6688}
6689
c8f44aff
MM
6690static netdev_features_t netdev_fix_features(struct net_device *dev,
6691 netdev_features_t features)
b63365a2 6692{
57422dc5
MM
6693 /* Fix illegal checksum combinations */
6694 if ((features & NETIF_F_HW_CSUM) &&
6695 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6696 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6697 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6698 }
6699
b63365a2 6700 /* TSO requires that SG is present as well. */
ea2d3688 6701 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6702 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6703 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6704 }
6705
ec5f0615
PS
6706 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6707 !(features & NETIF_F_IP_CSUM)) {
6708 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6709 features &= ~NETIF_F_TSO;
6710 features &= ~NETIF_F_TSO_ECN;
6711 }
6712
6713 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6714 !(features & NETIF_F_IPV6_CSUM)) {
6715 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6716 features &= ~NETIF_F_TSO6;
6717 }
6718
b1dc497b
AD
6719 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6720 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6721 features &= ~NETIF_F_TSO_MANGLEID;
6722
31d8b9e0
BH
6723 /* TSO ECN requires that TSO is present as well. */
6724 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6725 features &= ~NETIF_F_TSO_ECN;
6726
212b573f
MM
6727 /* Software GSO depends on SG. */
6728 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6729 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6730 features &= ~NETIF_F_GSO;
6731 }
6732
acd1130e 6733 /* UFO needs SG and checksumming */
b63365a2 6734 if (features & NETIF_F_UFO) {
79032644 6735 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6736 if (!(features & NETIF_F_HW_CSUM) &&
6737 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6738 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6739 netdev_dbg(dev,
acd1130e 6740 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6741 features &= ~NETIF_F_UFO;
6742 }
6743
6744 if (!(features & NETIF_F_SG)) {
6f404e44 6745 netdev_dbg(dev,
acd1130e 6746 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6747 features &= ~NETIF_F_UFO;
6748 }
6749 }
6750
802ab55a
AD
6751 /* GSO partial features require GSO partial be set */
6752 if ((features & dev->gso_partial_features) &&
6753 !(features & NETIF_F_GSO_PARTIAL)) {
6754 netdev_dbg(dev,
6755 "Dropping partially supported GSO features since no GSO partial.\n");
6756 features &= ~dev->gso_partial_features;
6757 }
6758
d0290214
JP
6759#ifdef CONFIG_NET_RX_BUSY_POLL
6760 if (dev->netdev_ops->ndo_busy_poll)
6761 features |= NETIF_F_BUSY_POLL;
6762 else
6763#endif
6764 features &= ~NETIF_F_BUSY_POLL;
6765
b63365a2
HX
6766 return features;
6767}
b63365a2 6768
6cb6a27c 6769int __netdev_update_features(struct net_device *dev)
5455c699 6770{
fd867d51 6771 struct net_device *upper, *lower;
c8f44aff 6772 netdev_features_t features;
fd867d51 6773 struct list_head *iter;
e7868a85 6774 int err = -1;
5455c699 6775
87267485
MM
6776 ASSERT_RTNL();
6777
5455c699
MM
6778 features = netdev_get_wanted_features(dev);
6779
6780 if (dev->netdev_ops->ndo_fix_features)
6781 features = dev->netdev_ops->ndo_fix_features(dev, features);
6782
6783 /* driver might be less strict about feature dependencies */
6784 features = netdev_fix_features(dev, features);
6785
fd867d51
JW
6786 /* some features can't be enabled if they're off an an upper device */
6787 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6788 features = netdev_sync_upper_features(dev, upper, features);
6789
5455c699 6790 if (dev->features == features)
e7868a85 6791 goto sync_lower;
5455c699 6792
c8f44aff
MM
6793 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6794 &dev->features, &features);
5455c699
MM
6795
6796 if (dev->netdev_ops->ndo_set_features)
6797 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6798 else
6799 err = 0;
5455c699 6800
6cb6a27c 6801 if (unlikely(err < 0)) {
5455c699 6802 netdev_err(dev,
c8f44aff
MM
6803 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6804 err, &features, &dev->features);
17b85d29
NA
6805 /* return non-0 since some features might have changed and
6806 * it's better to fire a spurious notification than miss it
6807 */
6808 return -1;
6cb6a27c
MM
6809 }
6810
e7868a85 6811sync_lower:
fd867d51
JW
6812 /* some features must be disabled on lower devices when disabled
6813 * on an upper device (think: bonding master or bridge)
6814 */
6815 netdev_for_each_lower_dev(dev, lower, iter)
6816 netdev_sync_lower_features(dev, lower, features);
6817
6cb6a27c
MM
6818 if (!err)
6819 dev->features = features;
6820
e7868a85 6821 return err < 0 ? 0 : 1;
6cb6a27c
MM
6822}
6823
afe12cc8
MM
6824/**
6825 * netdev_update_features - recalculate device features
6826 * @dev: the device to check
6827 *
6828 * Recalculate dev->features set and send notifications if it
6829 * has changed. Should be called after driver or hardware dependent
6830 * conditions might have changed that influence the features.
6831 */
6cb6a27c
MM
6832void netdev_update_features(struct net_device *dev)
6833{
6834 if (__netdev_update_features(dev))
6835 netdev_features_change(dev);
5455c699
MM
6836}
6837EXPORT_SYMBOL(netdev_update_features);
6838
afe12cc8
MM
6839/**
6840 * netdev_change_features - recalculate device features
6841 * @dev: the device to check
6842 *
6843 * Recalculate dev->features set and send notifications even
6844 * if they have not changed. Should be called instead of
6845 * netdev_update_features() if also dev->vlan_features might
6846 * have changed to allow the changes to be propagated to stacked
6847 * VLAN devices.
6848 */
6849void netdev_change_features(struct net_device *dev)
6850{
6851 __netdev_update_features(dev);
6852 netdev_features_change(dev);
6853}
6854EXPORT_SYMBOL(netdev_change_features);
6855
fc4a7489
PM
6856/**
6857 * netif_stacked_transfer_operstate - transfer operstate
6858 * @rootdev: the root or lower level device to transfer state from
6859 * @dev: the device to transfer operstate to
6860 *
6861 * Transfer operational state from root to device. This is normally
6862 * called when a stacking relationship exists between the root
6863 * device and the device(a leaf device).
6864 */
6865void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6866 struct net_device *dev)
6867{
6868 if (rootdev->operstate == IF_OPER_DORMANT)
6869 netif_dormant_on(dev);
6870 else
6871 netif_dormant_off(dev);
6872
6873 if (netif_carrier_ok(rootdev)) {
6874 if (!netif_carrier_ok(dev))
6875 netif_carrier_on(dev);
6876 } else {
6877 if (netif_carrier_ok(dev))
6878 netif_carrier_off(dev);
6879 }
6880}
6881EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6882
a953be53 6883#ifdef CONFIG_SYSFS
1b4bf461
ED
6884static int netif_alloc_rx_queues(struct net_device *dev)
6885{
1b4bf461 6886 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6887 struct netdev_rx_queue *rx;
10595902 6888 size_t sz = count * sizeof(*rx);
1b4bf461 6889
bd25fa7b 6890 BUG_ON(count < 1);
1b4bf461 6891
10595902
PG
6892 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6893 if (!rx) {
6894 rx = vzalloc(sz);
6895 if (!rx)
6896 return -ENOMEM;
6897 }
bd25fa7b
TH
6898 dev->_rx = rx;
6899
bd25fa7b 6900 for (i = 0; i < count; i++)
fe822240 6901 rx[i].dev = dev;
1b4bf461
ED
6902 return 0;
6903}
bf264145 6904#endif
1b4bf461 6905
aa942104
CG
6906static void netdev_init_one_queue(struct net_device *dev,
6907 struct netdev_queue *queue, void *_unused)
6908{
6909 /* Initialize queue lock */
6910 spin_lock_init(&queue->_xmit_lock);
6911 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6912 queue->xmit_lock_owner = -1;
b236da69 6913 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6914 queue->dev = dev;
114cf580
TH
6915#ifdef CONFIG_BQL
6916 dql_init(&queue->dql, HZ);
6917#endif
aa942104
CG
6918}
6919
60877a32
ED
6920static void netif_free_tx_queues(struct net_device *dev)
6921{
4cb28970 6922 kvfree(dev->_tx);
60877a32
ED
6923}
6924
e6484930
TH
6925static int netif_alloc_netdev_queues(struct net_device *dev)
6926{
6927 unsigned int count = dev->num_tx_queues;
6928 struct netdev_queue *tx;
60877a32 6929 size_t sz = count * sizeof(*tx);
e6484930 6930
d339727c
ED
6931 if (count < 1 || count > 0xffff)
6932 return -EINVAL;
62b5942a 6933
60877a32
ED
6934 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6935 if (!tx) {
6936 tx = vzalloc(sz);
6937 if (!tx)
6938 return -ENOMEM;
6939 }
e6484930 6940 dev->_tx = tx;
1d24eb48 6941
e6484930
TH
6942 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6943 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6944
6945 return 0;
e6484930
TH
6946}
6947
a2029240
DV
6948void netif_tx_stop_all_queues(struct net_device *dev)
6949{
6950 unsigned int i;
6951
6952 for (i = 0; i < dev->num_tx_queues; i++) {
6953 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6954 netif_tx_stop_queue(txq);
6955 }
6956}
6957EXPORT_SYMBOL(netif_tx_stop_all_queues);
6958
1da177e4
LT
6959/**
6960 * register_netdevice - register a network device
6961 * @dev: device to register
6962 *
6963 * Take a completed network device structure and add it to the kernel
6964 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6965 * chain. 0 is returned on success. A negative errno code is returned
6966 * on a failure to set up the device, or if the name is a duplicate.
6967 *
6968 * Callers must hold the rtnl semaphore. You may want
6969 * register_netdev() instead of this.
6970 *
6971 * BUGS:
6972 * The locking appears insufficient to guarantee two parallel registers
6973 * will not get the same name.
6974 */
6975
6976int register_netdevice(struct net_device *dev)
6977{
1da177e4 6978 int ret;
d314774c 6979 struct net *net = dev_net(dev);
1da177e4
LT
6980
6981 BUG_ON(dev_boot_phase);
6982 ASSERT_RTNL();
6983
b17a7c17
SH
6984 might_sleep();
6985
1da177e4
LT
6986 /* When net_device's are persistent, this will be fatal. */
6987 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6988 BUG_ON(!net);
1da177e4 6989
f1f28aa3 6990 spin_lock_init(&dev->addr_list_lock);
cf508b12 6991 netdev_set_addr_lockdep_class(dev);
1da177e4 6992
828de4f6 6993 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6994 if (ret < 0)
6995 goto out;
6996
1da177e4 6997 /* Init, if this function is available */
d314774c
SH
6998 if (dev->netdev_ops->ndo_init) {
6999 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7000 if (ret) {
7001 if (ret > 0)
7002 ret = -EIO;
90833aa4 7003 goto out;
1da177e4
LT
7004 }
7005 }
4ec93edb 7006
f646968f
PM
7007 if (((dev->hw_features | dev->features) &
7008 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7009 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7010 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7011 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7012 ret = -EINVAL;
7013 goto err_uninit;
7014 }
7015
9c7dafbf
PE
7016 ret = -EBUSY;
7017 if (!dev->ifindex)
7018 dev->ifindex = dev_new_index(net);
7019 else if (__dev_get_by_index(net, dev->ifindex))
7020 goto err_uninit;
7021
5455c699
MM
7022 /* Transfer changeable features to wanted_features and enable
7023 * software offloads (GSO and GRO).
7024 */
7025 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7026 dev->features |= NETIF_F_SOFT_FEATURES;
7027 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7028
cbc53e08 7029 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7030 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7031
7f348a60
AD
7032 /* If IPv4 TCP segmentation offload is supported we should also
7033 * allow the device to enable segmenting the frame with the option
7034 * of ignoring a static IP ID value. This doesn't enable the
7035 * feature itself but allows the user to enable it later.
7036 */
cbc53e08
AD
7037 if (dev->hw_features & NETIF_F_TSO)
7038 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7039 if (dev->vlan_features & NETIF_F_TSO)
7040 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7041 if (dev->mpls_features & NETIF_F_TSO)
7042 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7043 if (dev->hw_enc_features & NETIF_F_TSO)
7044 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7045
1180e7d6 7046 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7047 */
1180e7d6 7048 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7049
ee579677
PS
7050 /* Make NETIF_F_SG inheritable to tunnel devices.
7051 */
802ab55a 7052 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7053
0d89d203
SH
7054 /* Make NETIF_F_SG inheritable to MPLS.
7055 */
7056 dev->mpls_features |= NETIF_F_SG;
7057
7ffbe3fd
JB
7058 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7059 ret = notifier_to_errno(ret);
7060 if (ret)
7061 goto err_uninit;
7062
8b41d188 7063 ret = netdev_register_kobject(dev);
b17a7c17 7064 if (ret)
7ce1b0ed 7065 goto err_uninit;
b17a7c17
SH
7066 dev->reg_state = NETREG_REGISTERED;
7067
6cb6a27c 7068 __netdev_update_features(dev);
8e9b59b2 7069
1da177e4
LT
7070 /*
7071 * Default initial state at registry is that the
7072 * device is present.
7073 */
7074
7075 set_bit(__LINK_STATE_PRESENT, &dev->state);
7076
8f4cccbb
BH
7077 linkwatch_init_dev(dev);
7078
1da177e4 7079 dev_init_scheduler(dev);
1da177e4 7080 dev_hold(dev);
ce286d32 7081 list_netdevice(dev);
7bf23575 7082 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7083
948b337e
JP
7084 /* If the device has permanent device address, driver should
7085 * set dev_addr and also addr_assign_type should be set to
7086 * NET_ADDR_PERM (default value).
7087 */
7088 if (dev->addr_assign_type == NET_ADDR_PERM)
7089 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7090
1da177e4 7091 /* Notify protocols, that a new device appeared. */
056925ab 7092 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7093 ret = notifier_to_errno(ret);
93ee31f1
DL
7094 if (ret) {
7095 rollback_registered(dev);
7096 dev->reg_state = NETREG_UNREGISTERED;
7097 }
d90a909e
EB
7098 /*
7099 * Prevent userspace races by waiting until the network
7100 * device is fully setup before sending notifications.
7101 */
a2835763
PM
7102 if (!dev->rtnl_link_ops ||
7103 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7104 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7105
7106out:
7107 return ret;
7ce1b0ed
HX
7108
7109err_uninit:
d314774c
SH
7110 if (dev->netdev_ops->ndo_uninit)
7111 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7112 goto out;
1da177e4 7113}
d1b19dff 7114EXPORT_SYMBOL(register_netdevice);
1da177e4 7115
937f1ba5
BH
7116/**
7117 * init_dummy_netdev - init a dummy network device for NAPI
7118 * @dev: device to init
7119 *
7120 * This takes a network device structure and initialize the minimum
7121 * amount of fields so it can be used to schedule NAPI polls without
7122 * registering a full blown interface. This is to be used by drivers
7123 * that need to tie several hardware interfaces to a single NAPI
7124 * poll scheduler due to HW limitations.
7125 */
7126int init_dummy_netdev(struct net_device *dev)
7127{
7128 /* Clear everything. Note we don't initialize spinlocks
7129 * are they aren't supposed to be taken by any of the
7130 * NAPI code and this dummy netdev is supposed to be
7131 * only ever used for NAPI polls
7132 */
7133 memset(dev, 0, sizeof(struct net_device));
7134
7135 /* make sure we BUG if trying to hit standard
7136 * register/unregister code path
7137 */
7138 dev->reg_state = NETREG_DUMMY;
7139
937f1ba5
BH
7140 /* NAPI wants this */
7141 INIT_LIST_HEAD(&dev->napi_list);
7142
7143 /* a dummy interface is started by default */
7144 set_bit(__LINK_STATE_PRESENT, &dev->state);
7145 set_bit(__LINK_STATE_START, &dev->state);
7146
29b4433d
ED
7147 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7148 * because users of this 'device' dont need to change
7149 * its refcount.
7150 */
7151
937f1ba5
BH
7152 return 0;
7153}
7154EXPORT_SYMBOL_GPL(init_dummy_netdev);
7155
7156
1da177e4
LT
7157/**
7158 * register_netdev - register a network device
7159 * @dev: device to register
7160 *
7161 * Take a completed network device structure and add it to the kernel
7162 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7163 * chain. 0 is returned on success. A negative errno code is returned
7164 * on a failure to set up the device, or if the name is a duplicate.
7165 *
38b4da38 7166 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7167 * and expands the device name if you passed a format string to
7168 * alloc_netdev.
7169 */
7170int register_netdev(struct net_device *dev)
7171{
7172 int err;
7173
7174 rtnl_lock();
1da177e4 7175 err = register_netdevice(dev);
1da177e4
LT
7176 rtnl_unlock();
7177 return err;
7178}
7179EXPORT_SYMBOL(register_netdev);
7180
29b4433d
ED
7181int netdev_refcnt_read(const struct net_device *dev)
7182{
7183 int i, refcnt = 0;
7184
7185 for_each_possible_cpu(i)
7186 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7187 return refcnt;
7188}
7189EXPORT_SYMBOL(netdev_refcnt_read);
7190
2c53040f 7191/**
1da177e4 7192 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7193 * @dev: target net_device
1da177e4
LT
7194 *
7195 * This is called when unregistering network devices.
7196 *
7197 * Any protocol or device that holds a reference should register
7198 * for netdevice notification, and cleanup and put back the
7199 * reference if they receive an UNREGISTER event.
7200 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7201 * call dev_put.
1da177e4
LT
7202 */
7203static void netdev_wait_allrefs(struct net_device *dev)
7204{
7205 unsigned long rebroadcast_time, warning_time;
29b4433d 7206 int refcnt;
1da177e4 7207
e014debe
ED
7208 linkwatch_forget_dev(dev);
7209
1da177e4 7210 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7211 refcnt = netdev_refcnt_read(dev);
7212
7213 while (refcnt != 0) {
1da177e4 7214 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7215 rtnl_lock();
1da177e4
LT
7216
7217 /* Rebroadcast unregister notification */
056925ab 7218 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7219
748e2d93 7220 __rtnl_unlock();
0115e8e3 7221 rcu_barrier();
748e2d93
ED
7222 rtnl_lock();
7223
0115e8e3 7224 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7225 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7226 &dev->state)) {
7227 /* We must not have linkwatch events
7228 * pending on unregister. If this
7229 * happens, we simply run the queue
7230 * unscheduled, resulting in a noop
7231 * for this device.
7232 */
7233 linkwatch_run_queue();
7234 }
7235
6756ae4b 7236 __rtnl_unlock();
1da177e4
LT
7237
7238 rebroadcast_time = jiffies;
7239 }
7240
7241 msleep(250);
7242
29b4433d
ED
7243 refcnt = netdev_refcnt_read(dev);
7244
1da177e4 7245 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7246 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7247 dev->name, refcnt);
1da177e4
LT
7248 warning_time = jiffies;
7249 }
7250 }
7251}
7252
7253/* The sequence is:
7254 *
7255 * rtnl_lock();
7256 * ...
7257 * register_netdevice(x1);
7258 * register_netdevice(x2);
7259 * ...
7260 * unregister_netdevice(y1);
7261 * unregister_netdevice(y2);
7262 * ...
7263 * rtnl_unlock();
7264 * free_netdev(y1);
7265 * free_netdev(y2);
7266 *
58ec3b4d 7267 * We are invoked by rtnl_unlock().
1da177e4 7268 * This allows us to deal with problems:
b17a7c17 7269 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7270 * without deadlocking with linkwatch via keventd.
7271 * 2) Since we run with the RTNL semaphore not held, we can sleep
7272 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7273 *
7274 * We must not return until all unregister events added during
7275 * the interval the lock was held have been completed.
1da177e4 7276 */
1da177e4
LT
7277void netdev_run_todo(void)
7278{
626ab0e6 7279 struct list_head list;
1da177e4 7280
1da177e4 7281 /* Snapshot list, allow later requests */
626ab0e6 7282 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7283
7284 __rtnl_unlock();
626ab0e6 7285
0115e8e3
ED
7286
7287 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7288 if (!list_empty(&list))
7289 rcu_barrier();
7290
1da177e4
LT
7291 while (!list_empty(&list)) {
7292 struct net_device *dev
e5e26d75 7293 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7294 list_del(&dev->todo_list);
7295
748e2d93 7296 rtnl_lock();
0115e8e3 7297 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7298 __rtnl_unlock();
0115e8e3 7299
b17a7c17 7300 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7301 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7302 dev->name, dev->reg_state);
7303 dump_stack();
7304 continue;
7305 }
1da177e4 7306
b17a7c17 7307 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7308
b17a7c17 7309 netdev_wait_allrefs(dev);
1da177e4 7310
b17a7c17 7311 /* paranoia */
29b4433d 7312 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7313 BUG_ON(!list_empty(&dev->ptype_all));
7314 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7315 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7316 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7317 WARN_ON(dev->dn_ptr);
1da177e4 7318
b17a7c17
SH
7319 if (dev->destructor)
7320 dev->destructor(dev);
9093bbb2 7321
50624c93
EB
7322 /* Report a network device has been unregistered */
7323 rtnl_lock();
7324 dev_net(dev)->dev_unreg_count--;
7325 __rtnl_unlock();
7326 wake_up(&netdev_unregistering_wq);
7327
9093bbb2
SH
7328 /* Free network device */
7329 kobject_put(&dev->dev.kobj);
1da177e4 7330 }
1da177e4
LT
7331}
7332
9256645a
JW
7333/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7334 * all the same fields in the same order as net_device_stats, with only
7335 * the type differing, but rtnl_link_stats64 may have additional fields
7336 * at the end for newer counters.
3cfde79c 7337 */
77a1abf5
ED
7338void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7339 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7340{
7341#if BITS_PER_LONG == 64
9256645a 7342 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7343 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7344 /* zero out counters that only exist in rtnl_link_stats64 */
7345 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7346 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7347#else
9256645a 7348 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7349 const unsigned long *src = (const unsigned long *)netdev_stats;
7350 u64 *dst = (u64 *)stats64;
7351
9256645a 7352 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7353 for (i = 0; i < n; i++)
7354 dst[i] = src[i];
9256645a
JW
7355 /* zero out counters that only exist in rtnl_link_stats64 */
7356 memset((char *)stats64 + n * sizeof(u64), 0,
7357 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7358#endif
7359}
77a1abf5 7360EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7361
eeda3fd6
SH
7362/**
7363 * dev_get_stats - get network device statistics
7364 * @dev: device to get statistics from
28172739 7365 * @storage: place to store stats
eeda3fd6 7366 *
d7753516
BH
7367 * Get network statistics from device. Return @storage.
7368 * The device driver may provide its own method by setting
7369 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7370 * otherwise the internal statistics structure is used.
eeda3fd6 7371 */
d7753516
BH
7372struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7373 struct rtnl_link_stats64 *storage)
7004bf25 7374{
eeda3fd6
SH
7375 const struct net_device_ops *ops = dev->netdev_ops;
7376
28172739
ED
7377 if (ops->ndo_get_stats64) {
7378 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7379 ops->ndo_get_stats64(dev, storage);
7380 } else if (ops->ndo_get_stats) {
3cfde79c 7381 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7382 } else {
7383 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7384 }
caf586e5 7385 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7386 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7387 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7388 return storage;
c45d286e 7389}
eeda3fd6 7390EXPORT_SYMBOL(dev_get_stats);
c45d286e 7391
24824a09 7392struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7393{
24824a09 7394 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7395
24824a09
ED
7396#ifdef CONFIG_NET_CLS_ACT
7397 if (queue)
7398 return queue;
7399 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7400 if (!queue)
7401 return NULL;
7402 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7403 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7404 queue->qdisc_sleeping = &noop_qdisc;
7405 rcu_assign_pointer(dev->ingress_queue, queue);
7406#endif
7407 return queue;
bb949fbd
DM
7408}
7409
2c60db03
ED
7410static const struct ethtool_ops default_ethtool_ops;
7411
d07d7507
SG
7412void netdev_set_default_ethtool_ops(struct net_device *dev,
7413 const struct ethtool_ops *ops)
7414{
7415 if (dev->ethtool_ops == &default_ethtool_ops)
7416 dev->ethtool_ops = ops;
7417}
7418EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7419
74d332c1
ED
7420void netdev_freemem(struct net_device *dev)
7421{
7422 char *addr = (char *)dev - dev->padded;
7423
4cb28970 7424 kvfree(addr);
74d332c1
ED
7425}
7426
1da177e4 7427/**
36909ea4 7428 * alloc_netdev_mqs - allocate network device
c835a677
TG
7429 * @sizeof_priv: size of private data to allocate space for
7430 * @name: device name format string
7431 * @name_assign_type: origin of device name
7432 * @setup: callback to initialize device
7433 * @txqs: the number of TX subqueues to allocate
7434 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7435 *
7436 * Allocates a struct net_device with private data area for driver use
90e51adf 7437 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7438 * for each queue on the device.
1da177e4 7439 */
36909ea4 7440struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7441 unsigned char name_assign_type,
36909ea4
TH
7442 void (*setup)(struct net_device *),
7443 unsigned int txqs, unsigned int rxqs)
1da177e4 7444{
1da177e4 7445 struct net_device *dev;
7943986c 7446 size_t alloc_size;
1ce8e7b5 7447 struct net_device *p;
1da177e4 7448
b6fe17d6
SH
7449 BUG_ON(strlen(name) >= sizeof(dev->name));
7450
36909ea4 7451 if (txqs < 1) {
7b6cd1ce 7452 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7453 return NULL;
7454 }
7455
a953be53 7456#ifdef CONFIG_SYSFS
36909ea4 7457 if (rxqs < 1) {
7b6cd1ce 7458 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7459 return NULL;
7460 }
7461#endif
7462
fd2ea0a7 7463 alloc_size = sizeof(struct net_device);
d1643d24
AD
7464 if (sizeof_priv) {
7465 /* ensure 32-byte alignment of private area */
1ce8e7b5 7466 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7467 alloc_size += sizeof_priv;
7468 }
7469 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7470 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7471
74d332c1
ED
7472 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7473 if (!p)
7474 p = vzalloc(alloc_size);
62b5942a 7475 if (!p)
1da177e4 7476 return NULL;
1da177e4 7477
1ce8e7b5 7478 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7479 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7480
29b4433d
ED
7481 dev->pcpu_refcnt = alloc_percpu(int);
7482 if (!dev->pcpu_refcnt)
74d332c1 7483 goto free_dev;
ab9c73cc 7484
ab9c73cc 7485 if (dev_addr_init(dev))
29b4433d 7486 goto free_pcpu;
ab9c73cc 7487
22bedad3 7488 dev_mc_init(dev);
a748ee24 7489 dev_uc_init(dev);
ccffad25 7490
c346dca1 7491 dev_net_set(dev, &init_net);
1da177e4 7492
8d3bdbd5 7493 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7494 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7495
8d3bdbd5
DM
7496 INIT_LIST_HEAD(&dev->napi_list);
7497 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7498 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7499 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7500 INIT_LIST_HEAD(&dev->adj_list.upper);
7501 INIT_LIST_HEAD(&dev->adj_list.lower);
7502 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7503 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7504 INIT_LIST_HEAD(&dev->ptype_all);
7505 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7506 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7507 setup(dev);
7508
a813104d 7509 if (!dev->tx_queue_len) {
f84bb1ea 7510 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7511 dev->tx_queue_len = 1;
7512 }
906470c1 7513
36909ea4
TH
7514 dev->num_tx_queues = txqs;
7515 dev->real_num_tx_queues = txqs;
ed9af2e8 7516 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7517 goto free_all;
e8a0464c 7518
a953be53 7519#ifdef CONFIG_SYSFS
36909ea4
TH
7520 dev->num_rx_queues = rxqs;
7521 dev->real_num_rx_queues = rxqs;
fe822240 7522 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7523 goto free_all;
df334545 7524#endif
0a9627f2 7525
1da177e4 7526 strcpy(dev->name, name);
c835a677 7527 dev->name_assign_type = name_assign_type;
cbda10fa 7528 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7529 if (!dev->ethtool_ops)
7530 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7531
7532 nf_hook_ingress_init(dev);
7533
1da177e4 7534 return dev;
ab9c73cc 7535
8d3bdbd5
DM
7536free_all:
7537 free_netdev(dev);
7538 return NULL;
7539
29b4433d
ED
7540free_pcpu:
7541 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7542free_dev:
7543 netdev_freemem(dev);
ab9c73cc 7544 return NULL;
1da177e4 7545}
36909ea4 7546EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7547
7548/**
7549 * free_netdev - free network device
7550 * @dev: device
7551 *
4ec93edb
YH
7552 * This function does the last stage of destroying an allocated device
7553 * interface. The reference to the device object is released.
1da177e4 7554 * If this is the last reference then it will be freed.
93d05d4a 7555 * Must be called in process context.
1da177e4
LT
7556 */
7557void free_netdev(struct net_device *dev)
7558{
d565b0a1
HX
7559 struct napi_struct *p, *n;
7560
93d05d4a 7561 might_sleep();
60877a32 7562 netif_free_tx_queues(dev);
a953be53 7563#ifdef CONFIG_SYSFS
10595902 7564 kvfree(dev->_rx);
fe822240 7565#endif
e8a0464c 7566
33d480ce 7567 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7568
f001fde5
JP
7569 /* Flush device addresses */
7570 dev_addr_flush(dev);
7571
d565b0a1
HX
7572 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7573 netif_napi_del(p);
7574
29b4433d
ED
7575 free_percpu(dev->pcpu_refcnt);
7576 dev->pcpu_refcnt = NULL;
7577
3041a069 7578 /* Compatibility with error handling in drivers */
1da177e4 7579 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7580 netdev_freemem(dev);
1da177e4
LT
7581 return;
7582 }
7583
7584 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7585 dev->reg_state = NETREG_RELEASED;
7586
43cb76d9
GKH
7587 /* will free via device release */
7588 put_device(&dev->dev);
1da177e4 7589}
d1b19dff 7590EXPORT_SYMBOL(free_netdev);
4ec93edb 7591
f0db275a
SH
7592/**
7593 * synchronize_net - Synchronize with packet receive processing
7594 *
7595 * Wait for packets currently being received to be done.
7596 * Does not block later packets from starting.
7597 */
4ec93edb 7598void synchronize_net(void)
1da177e4
LT
7599{
7600 might_sleep();
be3fc413
ED
7601 if (rtnl_is_locked())
7602 synchronize_rcu_expedited();
7603 else
7604 synchronize_rcu();
1da177e4 7605}
d1b19dff 7606EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7607
7608/**
44a0873d 7609 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7610 * @dev: device
44a0873d 7611 * @head: list
6ebfbc06 7612 *
1da177e4 7613 * This function shuts down a device interface and removes it
d59b54b1 7614 * from the kernel tables.
44a0873d 7615 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7616 *
7617 * Callers must hold the rtnl semaphore. You may want
7618 * unregister_netdev() instead of this.
7619 */
7620
44a0873d 7621void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7622{
a6620712
HX
7623 ASSERT_RTNL();
7624
44a0873d 7625 if (head) {
9fdce099 7626 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7627 } else {
7628 rollback_registered(dev);
7629 /* Finish processing unregister after unlock */
7630 net_set_todo(dev);
7631 }
1da177e4 7632}
44a0873d 7633EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7634
9b5e383c
ED
7635/**
7636 * unregister_netdevice_many - unregister many devices
7637 * @head: list of devices
87757a91
ED
7638 *
7639 * Note: As most callers use a stack allocated list_head,
7640 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7641 */
7642void unregister_netdevice_many(struct list_head *head)
7643{
7644 struct net_device *dev;
7645
7646 if (!list_empty(head)) {
7647 rollback_registered_many(head);
7648 list_for_each_entry(dev, head, unreg_list)
7649 net_set_todo(dev);
87757a91 7650 list_del(head);
9b5e383c
ED
7651 }
7652}
63c8099d 7653EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7654
1da177e4
LT
7655/**
7656 * unregister_netdev - remove device from the kernel
7657 * @dev: device
7658 *
7659 * This function shuts down a device interface and removes it
d59b54b1 7660 * from the kernel tables.
1da177e4
LT
7661 *
7662 * This is just a wrapper for unregister_netdevice that takes
7663 * the rtnl semaphore. In general you want to use this and not
7664 * unregister_netdevice.
7665 */
7666void unregister_netdev(struct net_device *dev)
7667{
7668 rtnl_lock();
7669 unregister_netdevice(dev);
7670 rtnl_unlock();
7671}
1da177e4
LT
7672EXPORT_SYMBOL(unregister_netdev);
7673
ce286d32
EB
7674/**
7675 * dev_change_net_namespace - move device to different nethost namespace
7676 * @dev: device
7677 * @net: network namespace
7678 * @pat: If not NULL name pattern to try if the current device name
7679 * is already taken in the destination network namespace.
7680 *
7681 * This function shuts down a device interface and moves it
7682 * to a new network namespace. On success 0 is returned, on
7683 * a failure a netagive errno code is returned.
7684 *
7685 * Callers must hold the rtnl semaphore.
7686 */
7687
7688int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7689{
ce286d32
EB
7690 int err;
7691
7692 ASSERT_RTNL();
7693
7694 /* Don't allow namespace local devices to be moved. */
7695 err = -EINVAL;
7696 if (dev->features & NETIF_F_NETNS_LOCAL)
7697 goto out;
7698
7699 /* Ensure the device has been registrered */
ce286d32
EB
7700 if (dev->reg_state != NETREG_REGISTERED)
7701 goto out;
7702
7703 /* Get out if there is nothing todo */
7704 err = 0;
878628fb 7705 if (net_eq(dev_net(dev), net))
ce286d32
EB
7706 goto out;
7707
7708 /* Pick the destination device name, and ensure
7709 * we can use it in the destination network namespace.
7710 */
7711 err = -EEXIST;
d9031024 7712 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7713 /* We get here if we can't use the current device name */
7714 if (!pat)
7715 goto out;
828de4f6 7716 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7717 goto out;
7718 }
7719
7720 /*
7721 * And now a mini version of register_netdevice unregister_netdevice.
7722 */
7723
7724 /* If device is running close it first. */
9b772652 7725 dev_close(dev);
ce286d32
EB
7726
7727 /* And unlink it from device chain */
7728 err = -ENODEV;
7729 unlist_netdevice(dev);
7730
7731 synchronize_net();
7732
7733 /* Shutdown queueing discipline. */
7734 dev_shutdown(dev);
7735
7736 /* Notify protocols, that we are about to destroy
7737 this device. They should clean all the things.
3b27e105
DL
7738
7739 Note that dev->reg_state stays at NETREG_REGISTERED.
7740 This is wanted because this way 8021q and macvlan know
7741 the device is just moving and can keep their slaves up.
ce286d32
EB
7742 */
7743 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7744 rcu_barrier();
7745 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7746 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7747
7748 /*
7749 * Flush the unicast and multicast chains
7750 */
a748ee24 7751 dev_uc_flush(dev);
22bedad3 7752 dev_mc_flush(dev);
ce286d32 7753
4e66ae2e
SH
7754 /* Send a netdev-removed uevent to the old namespace */
7755 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7756 netdev_adjacent_del_links(dev);
4e66ae2e 7757
ce286d32 7758 /* Actually switch the network namespace */
c346dca1 7759 dev_net_set(dev, net);
ce286d32 7760
ce286d32 7761 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7762 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7763 dev->ifindex = dev_new_index(net);
ce286d32 7764
4e66ae2e
SH
7765 /* Send a netdev-add uevent to the new namespace */
7766 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7767 netdev_adjacent_add_links(dev);
4e66ae2e 7768
8b41d188 7769 /* Fixup kobjects */
a1b3f594 7770 err = device_rename(&dev->dev, dev->name);
8b41d188 7771 WARN_ON(err);
ce286d32
EB
7772
7773 /* Add the device back in the hashes */
7774 list_netdevice(dev);
7775
7776 /* Notify protocols, that a new device appeared. */
7777 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7778
d90a909e
EB
7779 /*
7780 * Prevent userspace races by waiting until the network
7781 * device is fully setup before sending notifications.
7782 */
7f294054 7783 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7784
ce286d32
EB
7785 synchronize_net();
7786 err = 0;
7787out:
7788 return err;
7789}
463d0183 7790EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7791
1da177e4
LT
7792static int dev_cpu_callback(struct notifier_block *nfb,
7793 unsigned long action,
7794 void *ocpu)
7795{
7796 struct sk_buff **list_skb;
1da177e4
LT
7797 struct sk_buff *skb;
7798 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7799 struct softnet_data *sd, *oldsd;
7800
8bb78442 7801 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7802 return NOTIFY_OK;
7803
7804 local_irq_disable();
7805 cpu = smp_processor_id();
7806 sd = &per_cpu(softnet_data, cpu);
7807 oldsd = &per_cpu(softnet_data, oldcpu);
7808
7809 /* Find end of our completion_queue. */
7810 list_skb = &sd->completion_queue;
7811 while (*list_skb)
7812 list_skb = &(*list_skb)->next;
7813 /* Append completion queue from offline CPU. */
7814 *list_skb = oldsd->completion_queue;
7815 oldsd->completion_queue = NULL;
7816
1da177e4 7817 /* Append output queue from offline CPU. */
a9cbd588
CG
7818 if (oldsd->output_queue) {
7819 *sd->output_queue_tailp = oldsd->output_queue;
7820 sd->output_queue_tailp = oldsd->output_queue_tailp;
7821 oldsd->output_queue = NULL;
7822 oldsd->output_queue_tailp = &oldsd->output_queue;
7823 }
ac64da0b
ED
7824 /* Append NAPI poll list from offline CPU, with one exception :
7825 * process_backlog() must be called by cpu owning percpu backlog.
7826 * We properly handle process_queue & input_pkt_queue later.
7827 */
7828 while (!list_empty(&oldsd->poll_list)) {
7829 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7830 struct napi_struct,
7831 poll_list);
7832
7833 list_del_init(&napi->poll_list);
7834 if (napi->poll == process_backlog)
7835 napi->state = 0;
7836 else
7837 ____napi_schedule(sd, napi);
264524d5 7838 }
1da177e4
LT
7839
7840 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7841 local_irq_enable();
7842
7843 /* Process offline CPU's input_pkt_queue */
76cc8b13 7844 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7845 netif_rx_ni(skb);
76cc8b13 7846 input_queue_head_incr(oldsd);
fec5e652 7847 }
ac64da0b 7848 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7849 netif_rx_ni(skb);
76cc8b13
TH
7850 input_queue_head_incr(oldsd);
7851 }
1da177e4
LT
7852
7853 return NOTIFY_OK;
7854}
1da177e4
LT
7855
7856
7f353bf2 7857/**
b63365a2
HX
7858 * netdev_increment_features - increment feature set by one
7859 * @all: current feature set
7860 * @one: new feature set
7861 * @mask: mask feature set
7f353bf2
HX
7862 *
7863 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7864 * @one to the master device with current feature set @all. Will not
7865 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7866 */
c8f44aff
MM
7867netdev_features_t netdev_increment_features(netdev_features_t all,
7868 netdev_features_t one, netdev_features_t mask)
b63365a2 7869{
c8cd0989 7870 if (mask & NETIF_F_HW_CSUM)
a188222b 7871 mask |= NETIF_F_CSUM_MASK;
1742f183 7872 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7873
a188222b 7874 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7875 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7876
1742f183 7877 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
7878 if (all & NETIF_F_HW_CSUM)
7879 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
7880
7881 return all;
7882}
b63365a2 7883EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7884
430f03cd 7885static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7886{
7887 int i;
7888 struct hlist_head *hash;
7889
7890 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7891 if (hash != NULL)
7892 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7893 INIT_HLIST_HEAD(&hash[i]);
7894
7895 return hash;
7896}
7897
881d966b 7898/* Initialize per network namespace state */
4665079c 7899static int __net_init netdev_init(struct net *net)
881d966b 7900{
734b6541
RM
7901 if (net != &init_net)
7902 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7903
30d97d35
PE
7904 net->dev_name_head = netdev_create_hash();
7905 if (net->dev_name_head == NULL)
7906 goto err_name;
881d966b 7907
30d97d35
PE
7908 net->dev_index_head = netdev_create_hash();
7909 if (net->dev_index_head == NULL)
7910 goto err_idx;
881d966b
EB
7911
7912 return 0;
30d97d35
PE
7913
7914err_idx:
7915 kfree(net->dev_name_head);
7916err_name:
7917 return -ENOMEM;
881d966b
EB
7918}
7919
f0db275a
SH
7920/**
7921 * netdev_drivername - network driver for the device
7922 * @dev: network device
f0db275a
SH
7923 *
7924 * Determine network driver for device.
7925 */
3019de12 7926const char *netdev_drivername(const struct net_device *dev)
6579e57b 7927{
cf04a4c7
SH
7928 const struct device_driver *driver;
7929 const struct device *parent;
3019de12 7930 const char *empty = "";
6579e57b
AV
7931
7932 parent = dev->dev.parent;
6579e57b 7933 if (!parent)
3019de12 7934 return empty;
6579e57b
AV
7935
7936 driver = parent->driver;
7937 if (driver && driver->name)
3019de12
DM
7938 return driver->name;
7939 return empty;
6579e57b
AV
7940}
7941
6ea754eb
JP
7942static void __netdev_printk(const char *level, const struct net_device *dev,
7943 struct va_format *vaf)
256df2f3 7944{
b004ff49 7945 if (dev && dev->dev.parent) {
6ea754eb
JP
7946 dev_printk_emit(level[1] - '0',
7947 dev->dev.parent,
7948 "%s %s %s%s: %pV",
7949 dev_driver_string(dev->dev.parent),
7950 dev_name(dev->dev.parent),
7951 netdev_name(dev), netdev_reg_state(dev),
7952 vaf);
b004ff49 7953 } else if (dev) {
6ea754eb
JP
7954 printk("%s%s%s: %pV",
7955 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7956 } else {
6ea754eb 7957 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7958 }
256df2f3
JP
7959}
7960
6ea754eb
JP
7961void netdev_printk(const char *level, const struct net_device *dev,
7962 const char *format, ...)
256df2f3
JP
7963{
7964 struct va_format vaf;
7965 va_list args;
256df2f3
JP
7966
7967 va_start(args, format);
7968
7969 vaf.fmt = format;
7970 vaf.va = &args;
7971
6ea754eb 7972 __netdev_printk(level, dev, &vaf);
b004ff49 7973
256df2f3 7974 va_end(args);
256df2f3
JP
7975}
7976EXPORT_SYMBOL(netdev_printk);
7977
7978#define define_netdev_printk_level(func, level) \
6ea754eb 7979void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7980{ \
256df2f3
JP
7981 struct va_format vaf; \
7982 va_list args; \
7983 \
7984 va_start(args, fmt); \
7985 \
7986 vaf.fmt = fmt; \
7987 vaf.va = &args; \
7988 \
6ea754eb 7989 __netdev_printk(level, dev, &vaf); \
b004ff49 7990 \
256df2f3 7991 va_end(args); \
256df2f3
JP
7992} \
7993EXPORT_SYMBOL(func);
7994
7995define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7996define_netdev_printk_level(netdev_alert, KERN_ALERT);
7997define_netdev_printk_level(netdev_crit, KERN_CRIT);
7998define_netdev_printk_level(netdev_err, KERN_ERR);
7999define_netdev_printk_level(netdev_warn, KERN_WARNING);
8000define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8001define_netdev_printk_level(netdev_info, KERN_INFO);
8002
4665079c 8003static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8004{
8005 kfree(net->dev_name_head);
8006 kfree(net->dev_index_head);
8007}
8008
022cbae6 8009static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8010 .init = netdev_init,
8011 .exit = netdev_exit,
8012};
8013
4665079c 8014static void __net_exit default_device_exit(struct net *net)
ce286d32 8015{
e008b5fc 8016 struct net_device *dev, *aux;
ce286d32 8017 /*
e008b5fc 8018 * Push all migratable network devices back to the
ce286d32
EB
8019 * initial network namespace
8020 */
8021 rtnl_lock();
e008b5fc 8022 for_each_netdev_safe(net, dev, aux) {
ce286d32 8023 int err;
aca51397 8024 char fb_name[IFNAMSIZ];
ce286d32
EB
8025
8026 /* Ignore unmoveable devices (i.e. loopback) */
8027 if (dev->features & NETIF_F_NETNS_LOCAL)
8028 continue;
8029
e008b5fc
EB
8030 /* Leave virtual devices for the generic cleanup */
8031 if (dev->rtnl_link_ops)
8032 continue;
d0c082ce 8033
25985edc 8034 /* Push remaining network devices to init_net */
aca51397
PE
8035 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8036 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8037 if (err) {
7b6cd1ce
JP
8038 pr_emerg("%s: failed to move %s to init_net: %d\n",
8039 __func__, dev->name, err);
aca51397 8040 BUG();
ce286d32
EB
8041 }
8042 }
8043 rtnl_unlock();
8044}
8045
50624c93
EB
8046static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8047{
8048 /* Return with the rtnl_lock held when there are no network
8049 * devices unregistering in any network namespace in net_list.
8050 */
8051 struct net *net;
8052 bool unregistering;
ff960a73 8053 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8054
ff960a73 8055 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8056 for (;;) {
50624c93
EB
8057 unregistering = false;
8058 rtnl_lock();
8059 list_for_each_entry(net, net_list, exit_list) {
8060 if (net->dev_unreg_count > 0) {
8061 unregistering = true;
8062 break;
8063 }
8064 }
8065 if (!unregistering)
8066 break;
8067 __rtnl_unlock();
ff960a73
PZ
8068
8069 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8070 }
ff960a73 8071 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8072}
8073
04dc7f6b
EB
8074static void __net_exit default_device_exit_batch(struct list_head *net_list)
8075{
8076 /* At exit all network devices most be removed from a network
b595076a 8077 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8078 * Do this across as many network namespaces as possible to
8079 * improve batching efficiency.
8080 */
8081 struct net_device *dev;
8082 struct net *net;
8083 LIST_HEAD(dev_kill_list);
8084
50624c93
EB
8085 /* To prevent network device cleanup code from dereferencing
8086 * loopback devices or network devices that have been freed
8087 * wait here for all pending unregistrations to complete,
8088 * before unregistring the loopback device and allowing the
8089 * network namespace be freed.
8090 *
8091 * The netdev todo list containing all network devices
8092 * unregistrations that happen in default_device_exit_batch
8093 * will run in the rtnl_unlock() at the end of
8094 * default_device_exit_batch.
8095 */
8096 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8097 list_for_each_entry(net, net_list, exit_list) {
8098 for_each_netdev_reverse(net, dev) {
b0ab2fab 8099 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8100 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8101 else
8102 unregister_netdevice_queue(dev, &dev_kill_list);
8103 }
8104 }
8105 unregister_netdevice_many(&dev_kill_list);
8106 rtnl_unlock();
8107}
8108
022cbae6 8109static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8110 .exit = default_device_exit,
04dc7f6b 8111 .exit_batch = default_device_exit_batch,
ce286d32
EB
8112};
8113
1da177e4
LT
8114/*
8115 * Initialize the DEV module. At boot time this walks the device list and
8116 * unhooks any devices that fail to initialise (normally hardware not
8117 * present) and leaves us with a valid list of present and active devices.
8118 *
8119 */
8120
8121/*
8122 * This is called single threaded during boot, so no need
8123 * to take the rtnl semaphore.
8124 */
8125static int __init net_dev_init(void)
8126{
8127 int i, rc = -ENOMEM;
8128
8129 BUG_ON(!dev_boot_phase);
8130
1da177e4
LT
8131 if (dev_proc_init())
8132 goto out;
8133
8b41d188 8134 if (netdev_kobject_init())
1da177e4
LT
8135 goto out;
8136
8137 INIT_LIST_HEAD(&ptype_all);
82d8a867 8138 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8139 INIT_LIST_HEAD(&ptype_base[i]);
8140
62532da9
VY
8141 INIT_LIST_HEAD(&offload_base);
8142
881d966b
EB
8143 if (register_pernet_subsys(&netdev_net_ops))
8144 goto out;
1da177e4
LT
8145
8146 /*
8147 * Initialise the packet receive queues.
8148 */
8149
6f912042 8150 for_each_possible_cpu(i) {
e36fa2f7 8151 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8152
e36fa2f7 8153 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8154 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8155 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8156 sd->output_queue_tailp = &sd->output_queue;
df334545 8157#ifdef CONFIG_RPS
e36fa2f7
ED
8158 sd->csd.func = rps_trigger_softirq;
8159 sd->csd.info = sd;
e36fa2f7 8160 sd->cpu = i;
1e94d72f 8161#endif
0a9627f2 8162
e36fa2f7
ED
8163 sd->backlog.poll = process_backlog;
8164 sd->backlog.weight = weight_p;
1da177e4
LT
8165 }
8166
1da177e4
LT
8167 dev_boot_phase = 0;
8168
505d4f73
EB
8169 /* The loopback device is special if any other network devices
8170 * is present in a network namespace the loopback device must
8171 * be present. Since we now dynamically allocate and free the
8172 * loopback device ensure this invariant is maintained by
8173 * keeping the loopback device as the first device on the
8174 * list of network devices. Ensuring the loopback devices
8175 * is the first device that appears and the last network device
8176 * that disappears.
8177 */
8178 if (register_pernet_device(&loopback_net_ops))
8179 goto out;
8180
8181 if (register_pernet_device(&default_device_ops))
8182 goto out;
8183
962cf36c
CM
8184 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8185 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8186
8187 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8188 dst_subsys_init();
1da177e4
LT
8189 rc = 0;
8190out:
8191 return rc;
8192}
8193
8194subsys_initcall(net_dev_init);
This page took 2.037966 seconds and 5 git commands to generate.