Merge branch 'netdev_diet'
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
25cd9ba0 121#include <net/mpls.h>
8f0f2223
DM
122#include <linux/ipv6.h>
123#include <linux/in.h>
b6b2fed1
DM
124#include <linux/jhash.h>
125#include <linux/random.h>
9cbc1cb8 126#include <trace/events/napi.h>
cf66ba58 127#include <trace/events/net.h>
07dc22e7 128#include <trace/events/skb.h>
5acbbd42 129#include <linux/pci.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
1da177e4 138
342709ef
PE
139#include "net-sysfs.h"
140
d565b0a1
HX
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
5d38a079
HX
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
1da177e4 147static DEFINE_SPINLOCK(ptype_lock);
62532da9 148static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
149struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150struct list_head ptype_all __read_mostly; /* Taps */
62532da9 151static struct list_head offload_base __read_mostly;
1da177e4 152
ae78dbfa 153static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
154static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
ae78dbfa 157
1da177e4 158/*
7562f876 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
160 * semaphore.
161 *
c6d14c84 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
7562f876 165 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
1da177e4 177DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
178EXPORT_SYMBOL(dev_base_lock);
179
af12fa6e
ET
180/* protects napi_hash addition/deletion and napi_gen_id */
181static DEFINE_SPINLOCK(napi_hash_lock);
182
183static unsigned int napi_gen_id;
184static DEFINE_HASHTABLE(napi_hash, 8);
185
18afa4b0 186static seqcount_t devnet_rename_seq;
c91f6df2 187
4e985ada
TG
188static inline void dev_base_seq_inc(struct net *net)
189{
190 while (++net->dev_base_seq == 0);
191}
192
881d966b 193static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 194{
95c96174
ED
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
08e9897d 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
198}
199
881d966b 200static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 201{
7c28bd0b 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
203}
204
e36fa2f7 205static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
206{
207#ifdef CONFIG_RPS
e36fa2f7 208 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
209#endif
210}
211
e36fa2f7 212static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
213{
214#ifdef CONFIG_RPS
e36fa2f7 215 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
216#endif
217}
218
ce286d32 219/* Device list insertion */
53759be9 220static void list_netdevice(struct net_device *dev)
ce286d32 221{
c346dca1 222 struct net *net = dev_net(dev);
ce286d32
EB
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
c6d14c84 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
ce286d32 231 write_unlock_bh(&dev_base_lock);
4e985ada
TG
232
233 dev_base_seq_inc(net);
ce286d32
EB
234}
235
fb699dfd
ED
236/* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
ce286d32
EB
239static void unlist_netdevice(struct net_device *dev)
240{
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
c6d14c84 245 list_del_rcu(&dev->dev_list);
72c9528b 246 hlist_del_rcu(&dev->name_hlist);
fb699dfd 247 hlist_del_rcu(&dev->index_hlist);
ce286d32 248 write_unlock_bh(&dev_base_lock);
4e985ada
TG
249
250 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
251}
252
1da177e4
LT
253/*
254 * Our notifier list
255 */
256
f07d5b94 257static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
258
259/*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
bea3348e 263
9958da05 264DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 265EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 266
cf508b12 267#ifdef CONFIG_LOCKDEP
723e98b7 268/*
c773e847 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
270 * according to dev->type
271 */
272static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 288
36cbd3dc 289static const char *const netdev_lock_name[] =
723e98b7
JP
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
305
306static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 307static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
308
309static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310{
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318}
319
cf508b12
DM
320static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
723e98b7
JP
322{
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328}
cf508b12
DM
329
330static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331{
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338}
723e98b7 339#else
cf508b12
DM
340static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342{
343}
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
345{
346}
347#endif
1da177e4
LT
348
349/*******************************************************************************
350
351 Protocol management and registration routines
352
353*******************************************************************************/
354
1da177e4
LT
355/*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
c07b68e8
ED
371static inline struct list_head *ptype_head(const struct packet_type *pt)
372{
373 if (pt->type == htons(ETH_P_ALL))
7866a621 374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 375 else
7866a621
SN
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
378}
379
1da177e4
LT
380/**
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
383 *
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
387 *
4ec93edb 388 * This call does not sleep therefore it can not
1da177e4
LT
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
391 */
392
393void dev_add_pack(struct packet_type *pt)
394{
c07b68e8 395 struct list_head *head = ptype_head(pt);
1da177e4 396
c07b68e8
ED
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
1da177e4 400}
d1b19dff 401EXPORT_SYMBOL(dev_add_pack);
1da177e4 402
1da177e4
LT
403/**
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
406 *
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
4ec93edb 410 * returns.
1da177e4
LT
411 *
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
415 */
416void __dev_remove_pack(struct packet_type *pt)
417{
c07b68e8 418 struct list_head *head = ptype_head(pt);
1da177e4
LT
419 struct packet_type *pt1;
420
c07b68e8 421 spin_lock(&ptype_lock);
1da177e4
LT
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
7b6cd1ce 430 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 431out:
c07b68e8 432 spin_unlock(&ptype_lock);
1da177e4 433}
d1b19dff
ED
434EXPORT_SYMBOL(__dev_remove_pack);
435
1da177e4
LT
436/**
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
439 *
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
444 *
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
447 */
448void dev_remove_pack(struct packet_type *pt)
449{
450 __dev_remove_pack(pt);
4ec93edb 451
1da177e4
LT
452 synchronize_net();
453}
d1b19dff 454EXPORT_SYMBOL(dev_remove_pack);
1da177e4 455
62532da9
VY
456
457/**
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
460 *
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
464 *
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
468 */
469void dev_add_offload(struct packet_offload *po)
470{
471 struct list_head *head = &offload_base;
472
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
476}
477EXPORT_SYMBOL(dev_add_offload);
478
479/**
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
482 *
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
487 *
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
491 */
1d143d9f 492static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
493{
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
496
c53aa505 497 spin_lock(&offload_lock);
62532da9
VY
498
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
503 }
504 }
505
506 pr_warn("dev_remove_offload: %p not found\n", po);
507out:
c53aa505 508 spin_unlock(&offload_lock);
62532da9 509}
62532da9
VY
510
511/**
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
514 *
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
519 *
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
522 */
523void dev_remove_offload(struct packet_offload *po)
524{
525 __dev_remove_offload(po);
526
527 synchronize_net();
528}
529EXPORT_SYMBOL(dev_remove_offload);
530
1da177e4
LT
531/******************************************************************************
532
533 Device Boot-time Settings Routines
534
535*******************************************************************************/
536
537/* Boot time configuration table */
538static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540/**
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
544 *
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
548 */
549static int netdev_boot_setup_add(char *name, struct ifmap *map)
550{
551 struct netdev_boot_setup *s;
552 int i;
553
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 558 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
561 }
562 }
563
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565}
566
567/**
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
570 *
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
575 */
576int netdev_boot_setup_check(struct net_device *dev)
577{
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
580
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 583 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
589 }
590 }
591 return 0;
592}
d1b19dff 593EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
594
595
596/**
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
600 *
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
605 */
606unsigned long netdev_boot_base(const char *prefix, int unit)
607{
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
611
612 sprintf(name, "%s%d", prefix, unit);
613
614 /*
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
617 */
881d966b 618 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
619 return 1;
620
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
625}
626
627/*
628 * Saves at boot time configured settings for any netdevice.
629 */
630int __init netdev_boot_setup(char *str)
631{
632 int ints[5];
633 struct ifmap map;
634
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
638
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
649
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
652}
653
654__setup("netdev=", netdev_boot_setup);
655
656/*******************************************************************************
657
658 Device Interface Subroutines
659
660*******************************************************************************/
661
a54acb3a
ND
662/**
663 * dev_get_iflink - get 'iflink' value of a interface
664 * @dev: targeted interface
665 *
666 * Indicates the ifindex the interface is linked to.
667 * Physical interfaces have the same 'ifindex' and 'iflink' values.
668 */
669
670int dev_get_iflink(const struct net_device *dev)
671{
672 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 return dev->netdev_ops->ndo_get_iflink(dev);
674
e1622baf
ND
675 /* If dev->rtnl_link_ops is set, it's a virtual interface. */
676 if (dev->rtnl_link_ops)
677 return 0;
678
7a66bbc9 679 return dev->ifindex;
a54acb3a
ND
680}
681EXPORT_SYMBOL(dev_get_iflink);
682
1da177e4
LT
683/**
684 * __dev_get_by_name - find a device by its name
c4ea43c5 685 * @net: the applicable net namespace
1da177e4
LT
686 * @name: name to find
687 *
688 * Find an interface by name. Must be called under RTNL semaphore
689 * or @dev_base_lock. If the name is found a pointer to the device
690 * is returned. If the name is not found then %NULL is returned. The
691 * reference counters are not incremented so the caller must be
692 * careful with locks.
693 */
694
881d966b 695struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 696{
0bd8d536
ED
697 struct net_device *dev;
698 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 699
b67bfe0d 700 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
701 if (!strncmp(dev->name, name, IFNAMSIZ))
702 return dev;
0bd8d536 703
1da177e4
LT
704 return NULL;
705}
d1b19dff 706EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 707
72c9528b
ED
708/**
709 * dev_get_by_name_rcu - find a device by its name
710 * @net: the applicable net namespace
711 * @name: name to find
712 *
713 * Find an interface by name.
714 * If the name is found a pointer to the device is returned.
715 * If the name is not found then %NULL is returned.
716 * The reference counters are not incremented so the caller must be
717 * careful with locks. The caller must hold RCU lock.
718 */
719
720struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
721{
72c9528b
ED
722 struct net_device *dev;
723 struct hlist_head *head = dev_name_hash(net, name);
724
b67bfe0d 725 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
726 if (!strncmp(dev->name, name, IFNAMSIZ))
727 return dev;
728
729 return NULL;
730}
731EXPORT_SYMBOL(dev_get_by_name_rcu);
732
1da177e4
LT
733/**
734 * dev_get_by_name - find a device by its name
c4ea43c5 735 * @net: the applicable net namespace
1da177e4
LT
736 * @name: name to find
737 *
738 * Find an interface by name. This can be called from any
739 * context and does its own locking. The returned handle has
740 * the usage count incremented and the caller must use dev_put() to
741 * release it when it is no longer needed. %NULL is returned if no
742 * matching device is found.
743 */
744
881d966b 745struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
746{
747 struct net_device *dev;
748
72c9528b
ED
749 rcu_read_lock();
750 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
751 if (dev)
752 dev_hold(dev);
72c9528b 753 rcu_read_unlock();
1da177e4
LT
754 return dev;
755}
d1b19dff 756EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
757
758/**
759 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 760 * @net: the applicable net namespace
1da177e4
LT
761 * @ifindex: index of device
762 *
763 * Search for an interface by index. Returns %NULL if the device
764 * is not found or a pointer to the device. The device has not
765 * had its reference counter increased so the caller must be careful
766 * about locking. The caller must hold either the RTNL semaphore
767 * or @dev_base_lock.
768 */
769
881d966b 770struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 771{
0bd8d536
ED
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 774
b67bfe0d 775 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
776 if (dev->ifindex == ifindex)
777 return dev;
0bd8d536 778
1da177e4
LT
779 return NULL;
780}
d1b19dff 781EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 782
fb699dfd
ED
783/**
784 * dev_get_by_index_rcu - find a device by its ifindex
785 * @net: the applicable net namespace
786 * @ifindex: index of device
787 *
788 * Search for an interface by index. Returns %NULL if the device
789 * is not found or a pointer to the device. The device has not
790 * had its reference counter increased so the caller must be careful
791 * about locking. The caller must hold RCU lock.
792 */
793
794struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
795{
fb699dfd
ED
796 struct net_device *dev;
797 struct hlist_head *head = dev_index_hash(net, ifindex);
798
b67bfe0d 799 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
800 if (dev->ifindex == ifindex)
801 return dev;
802
803 return NULL;
804}
805EXPORT_SYMBOL(dev_get_by_index_rcu);
806
1da177e4
LT
807
808/**
809 * dev_get_by_index - find a device by its ifindex
c4ea43c5 810 * @net: the applicable net namespace
1da177e4
LT
811 * @ifindex: index of device
812 *
813 * Search for an interface by index. Returns NULL if the device
814 * is not found or a pointer to the device. The device returned has
815 * had a reference added and the pointer is safe until the user calls
816 * dev_put to indicate they have finished with it.
817 */
818
881d966b 819struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
820{
821 struct net_device *dev;
822
fb699dfd
ED
823 rcu_read_lock();
824 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
825 if (dev)
826 dev_hold(dev);
fb699dfd 827 rcu_read_unlock();
1da177e4
LT
828 return dev;
829}
d1b19dff 830EXPORT_SYMBOL(dev_get_by_index);
1da177e4 831
5dbe7c17
NS
832/**
833 * netdev_get_name - get a netdevice name, knowing its ifindex.
834 * @net: network namespace
835 * @name: a pointer to the buffer where the name will be stored.
836 * @ifindex: the ifindex of the interface to get the name from.
837 *
838 * The use of raw_seqcount_begin() and cond_resched() before
839 * retrying is required as we want to give the writers a chance
840 * to complete when CONFIG_PREEMPT is not set.
841 */
842int netdev_get_name(struct net *net, char *name, int ifindex)
843{
844 struct net_device *dev;
845 unsigned int seq;
846
847retry:
848 seq = raw_seqcount_begin(&devnet_rename_seq);
849 rcu_read_lock();
850 dev = dev_get_by_index_rcu(net, ifindex);
851 if (!dev) {
852 rcu_read_unlock();
853 return -ENODEV;
854 }
855
856 strcpy(name, dev->name);
857 rcu_read_unlock();
858 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
859 cond_resched();
860 goto retry;
861 }
862
863 return 0;
864}
865
1da177e4 866/**
941666c2 867 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 868 * @net: the applicable net namespace
1da177e4
LT
869 * @type: media type of device
870 * @ha: hardware address
871 *
872 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
873 * is not found or a pointer to the device.
874 * The caller must hold RCU or RTNL.
941666c2 875 * The returned device has not had its ref count increased
1da177e4
LT
876 * and the caller must therefore be careful about locking
877 *
1da177e4
LT
878 */
879
941666c2
ED
880struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
881 const char *ha)
1da177e4
LT
882{
883 struct net_device *dev;
884
941666c2 885 for_each_netdev_rcu(net, dev)
1da177e4
LT
886 if (dev->type == type &&
887 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
888 return dev;
889
890 return NULL;
1da177e4 891}
941666c2 892EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 893
881d966b 894struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
895{
896 struct net_device *dev;
897
4e9cac2b 898 ASSERT_RTNL();
881d966b 899 for_each_netdev(net, dev)
4e9cac2b 900 if (dev->type == type)
7562f876
PE
901 return dev;
902
903 return NULL;
4e9cac2b 904}
4e9cac2b
PM
905EXPORT_SYMBOL(__dev_getfirstbyhwtype);
906
881d966b 907struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 908{
99fe3c39 909 struct net_device *dev, *ret = NULL;
4e9cac2b 910
99fe3c39
ED
911 rcu_read_lock();
912 for_each_netdev_rcu(net, dev)
913 if (dev->type == type) {
914 dev_hold(dev);
915 ret = dev;
916 break;
917 }
918 rcu_read_unlock();
919 return ret;
1da177e4 920}
1da177e4
LT
921EXPORT_SYMBOL(dev_getfirstbyhwtype);
922
923/**
6c555490 924 * __dev_get_by_flags - find any device with given flags
c4ea43c5 925 * @net: the applicable net namespace
1da177e4
LT
926 * @if_flags: IFF_* values
927 * @mask: bitmask of bits in if_flags to check
928 *
929 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 930 * is not found or a pointer to the device. Must be called inside
6c555490 931 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
932 */
933
6c555490
WC
934struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
935 unsigned short mask)
1da177e4 936{
7562f876 937 struct net_device *dev, *ret;
1da177e4 938
6c555490
WC
939 ASSERT_RTNL();
940
7562f876 941 ret = NULL;
6c555490 942 for_each_netdev(net, dev) {
1da177e4 943 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 944 ret = dev;
1da177e4
LT
945 break;
946 }
947 }
7562f876 948 return ret;
1da177e4 949}
6c555490 950EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
951
952/**
953 * dev_valid_name - check if name is okay for network device
954 * @name: name string
955 *
956 * Network device names need to be valid file names to
c7fa9d18
DM
957 * to allow sysfs to work. We also disallow any kind of
958 * whitespace.
1da177e4 959 */
95f050bf 960bool dev_valid_name(const char *name)
1da177e4 961{
c7fa9d18 962 if (*name == '\0')
95f050bf 963 return false;
b6fe17d6 964 if (strlen(name) >= IFNAMSIZ)
95f050bf 965 return false;
c7fa9d18 966 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 967 return false;
c7fa9d18
DM
968
969 while (*name) {
a4176a93 970 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 971 return false;
c7fa9d18
DM
972 name++;
973 }
95f050bf 974 return true;
1da177e4 975}
d1b19dff 976EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
977
978/**
b267b179
EB
979 * __dev_alloc_name - allocate a name for a device
980 * @net: network namespace to allocate the device name in
1da177e4 981 * @name: name format string
b267b179 982 * @buf: scratch buffer and result name string
1da177e4
LT
983 *
984 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
985 * id. It scans list of devices to build up a free map, then chooses
986 * the first empty slot. The caller must hold the dev_base or rtnl lock
987 * while allocating the name and adding the device in order to avoid
988 * duplicates.
989 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
990 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
991 */
992
b267b179 993static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
994{
995 int i = 0;
1da177e4
LT
996 const char *p;
997 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 998 unsigned long *inuse;
1da177e4
LT
999 struct net_device *d;
1000
1001 p = strnchr(name, IFNAMSIZ-1, '%');
1002 if (p) {
1003 /*
1004 * Verify the string as this thing may have come from
1005 * the user. There must be either one "%d" and no other "%"
1006 * characters.
1007 */
1008 if (p[1] != 'd' || strchr(p + 2, '%'))
1009 return -EINVAL;
1010
1011 /* Use one page as a bit array of possible slots */
cfcabdcc 1012 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1013 if (!inuse)
1014 return -ENOMEM;
1015
881d966b 1016 for_each_netdev(net, d) {
1da177e4
LT
1017 if (!sscanf(d->name, name, &i))
1018 continue;
1019 if (i < 0 || i >= max_netdevices)
1020 continue;
1021
1022 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1023 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1024 if (!strncmp(buf, d->name, IFNAMSIZ))
1025 set_bit(i, inuse);
1026 }
1027
1028 i = find_first_zero_bit(inuse, max_netdevices);
1029 free_page((unsigned long) inuse);
1030 }
1031
d9031024
OP
1032 if (buf != name)
1033 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1034 if (!__dev_get_by_name(net, buf))
1da177e4 1035 return i;
1da177e4
LT
1036
1037 /* It is possible to run out of possible slots
1038 * when the name is long and there isn't enough space left
1039 * for the digits, or if all bits are used.
1040 */
1041 return -ENFILE;
1042}
1043
b267b179
EB
1044/**
1045 * dev_alloc_name - allocate a name for a device
1046 * @dev: device
1047 * @name: name format string
1048 *
1049 * Passed a format string - eg "lt%d" it will try and find a suitable
1050 * id. It scans list of devices to build up a free map, then chooses
1051 * the first empty slot. The caller must hold the dev_base or rtnl lock
1052 * while allocating the name and adding the device in order to avoid
1053 * duplicates.
1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055 * Returns the number of the unit assigned or a negative errno code.
1056 */
1057
1058int dev_alloc_name(struct net_device *dev, const char *name)
1059{
1060 char buf[IFNAMSIZ];
1061 struct net *net;
1062 int ret;
1063
c346dca1
YH
1064 BUG_ON(!dev_net(dev));
1065 net = dev_net(dev);
b267b179
EB
1066 ret = __dev_alloc_name(net, name, buf);
1067 if (ret >= 0)
1068 strlcpy(dev->name, buf, IFNAMSIZ);
1069 return ret;
1070}
d1b19dff 1071EXPORT_SYMBOL(dev_alloc_name);
b267b179 1072
828de4f6
G
1073static int dev_alloc_name_ns(struct net *net,
1074 struct net_device *dev,
1075 const char *name)
d9031024 1076{
828de4f6
G
1077 char buf[IFNAMSIZ];
1078 int ret;
8ce6cebc 1079
828de4f6
G
1080 ret = __dev_alloc_name(net, name, buf);
1081 if (ret >= 0)
1082 strlcpy(dev->name, buf, IFNAMSIZ);
1083 return ret;
1084}
1085
1086static int dev_get_valid_name(struct net *net,
1087 struct net_device *dev,
1088 const char *name)
1089{
1090 BUG_ON(!net);
8ce6cebc 1091
d9031024
OP
1092 if (!dev_valid_name(name))
1093 return -EINVAL;
1094
1c5cae81 1095 if (strchr(name, '%'))
828de4f6 1096 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1097 else if (__dev_get_by_name(net, name))
1098 return -EEXIST;
8ce6cebc
DL
1099 else if (dev->name != name)
1100 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1101
1102 return 0;
1103}
1da177e4
LT
1104
1105/**
1106 * dev_change_name - change name of a device
1107 * @dev: device
1108 * @newname: name (or format string) must be at least IFNAMSIZ
1109 *
1110 * Change name of a device, can pass format strings "eth%d".
1111 * for wildcarding.
1112 */
cf04a4c7 1113int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1114{
238fa362 1115 unsigned char old_assign_type;
fcc5a03a 1116 char oldname[IFNAMSIZ];
1da177e4 1117 int err = 0;
fcc5a03a 1118 int ret;
881d966b 1119 struct net *net;
1da177e4
LT
1120
1121 ASSERT_RTNL();
c346dca1 1122 BUG_ON(!dev_net(dev));
1da177e4 1123
c346dca1 1124 net = dev_net(dev);
1da177e4
LT
1125 if (dev->flags & IFF_UP)
1126 return -EBUSY;
1127
30e6c9fa 1128 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1129
1130 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1131 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1132 return 0;
c91f6df2 1133 }
c8d90dca 1134
fcc5a03a
HX
1135 memcpy(oldname, dev->name, IFNAMSIZ);
1136
828de4f6 1137 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1138 if (err < 0) {
30e6c9fa 1139 write_seqcount_end(&devnet_rename_seq);
d9031024 1140 return err;
c91f6df2 1141 }
1da177e4 1142
6fe82a39
VF
1143 if (oldname[0] && !strchr(oldname, '%'))
1144 netdev_info(dev, "renamed from %s\n", oldname);
1145
238fa362
TG
1146 old_assign_type = dev->name_assign_type;
1147 dev->name_assign_type = NET_NAME_RENAMED;
1148
fcc5a03a 1149rollback:
a1b3f594
EB
1150 ret = device_rename(&dev->dev, dev->name);
1151 if (ret) {
1152 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1153 dev->name_assign_type = old_assign_type;
30e6c9fa 1154 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1155 return ret;
dcc99773 1156 }
7f988eab 1157
30e6c9fa 1158 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1159
5bb025fa
VF
1160 netdev_adjacent_rename_links(dev, oldname);
1161
7f988eab 1162 write_lock_bh(&dev_base_lock);
372b2312 1163 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1164 write_unlock_bh(&dev_base_lock);
1165
1166 synchronize_rcu();
1167
1168 write_lock_bh(&dev_base_lock);
1169 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1170 write_unlock_bh(&dev_base_lock);
1171
056925ab 1172 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1173 ret = notifier_to_errno(ret);
1174
1175 if (ret) {
91e9c07b
ED
1176 /* err >= 0 after dev_alloc_name() or stores the first errno */
1177 if (err >= 0) {
fcc5a03a 1178 err = ret;
30e6c9fa 1179 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1180 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1181 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1182 dev->name_assign_type = old_assign_type;
1183 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1184 goto rollback;
91e9c07b 1185 } else {
7b6cd1ce 1186 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1187 dev->name, ret);
fcc5a03a
HX
1188 }
1189 }
1da177e4
LT
1190
1191 return err;
1192}
1193
0b815a1a
SH
1194/**
1195 * dev_set_alias - change ifalias of a device
1196 * @dev: device
1197 * @alias: name up to IFALIASZ
f0db275a 1198 * @len: limit of bytes to copy from info
0b815a1a
SH
1199 *
1200 * Set ifalias for a device,
1201 */
1202int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1203{
7364e445
AK
1204 char *new_ifalias;
1205
0b815a1a
SH
1206 ASSERT_RTNL();
1207
1208 if (len >= IFALIASZ)
1209 return -EINVAL;
1210
96ca4a2c 1211 if (!len) {
388dfc2d
SK
1212 kfree(dev->ifalias);
1213 dev->ifalias = NULL;
96ca4a2c
OH
1214 return 0;
1215 }
1216
7364e445
AK
1217 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1218 if (!new_ifalias)
0b815a1a 1219 return -ENOMEM;
7364e445 1220 dev->ifalias = new_ifalias;
0b815a1a
SH
1221
1222 strlcpy(dev->ifalias, alias, len+1);
1223 return len;
1224}
1225
1226
d8a33ac4 1227/**
3041a069 1228 * netdev_features_change - device changes features
d8a33ac4
SH
1229 * @dev: device to cause notification
1230 *
1231 * Called to indicate a device has changed features.
1232 */
1233void netdev_features_change(struct net_device *dev)
1234{
056925ab 1235 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1236}
1237EXPORT_SYMBOL(netdev_features_change);
1238
1da177e4
LT
1239/**
1240 * netdev_state_change - device changes state
1241 * @dev: device to cause notification
1242 *
1243 * Called to indicate a device has changed state. This function calls
1244 * the notifier chains for netdev_chain and sends a NEWLINK message
1245 * to the routing socket.
1246 */
1247void netdev_state_change(struct net_device *dev)
1248{
1249 if (dev->flags & IFF_UP) {
54951194
LP
1250 struct netdev_notifier_change_info change_info;
1251
1252 change_info.flags_changed = 0;
1253 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1254 &change_info.info);
7f294054 1255 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1256 }
1257}
d1b19dff 1258EXPORT_SYMBOL(netdev_state_change);
1da177e4 1259
ee89bab1
AW
1260/**
1261 * netdev_notify_peers - notify network peers about existence of @dev
1262 * @dev: network device
1263 *
1264 * Generate traffic such that interested network peers are aware of
1265 * @dev, such as by generating a gratuitous ARP. This may be used when
1266 * a device wants to inform the rest of the network about some sort of
1267 * reconfiguration such as a failover event or virtual machine
1268 * migration.
1269 */
1270void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1271{
ee89bab1
AW
1272 rtnl_lock();
1273 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1274 rtnl_unlock();
c1da4ac7 1275}
ee89bab1 1276EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1277
bd380811 1278static int __dev_open(struct net_device *dev)
1da177e4 1279{
d314774c 1280 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1281 int ret;
1da177e4 1282
e46b66bc
BH
1283 ASSERT_RTNL();
1284
1da177e4
LT
1285 if (!netif_device_present(dev))
1286 return -ENODEV;
1287
ca99ca14
NH
1288 /* Block netpoll from trying to do any rx path servicing.
1289 * If we don't do this there is a chance ndo_poll_controller
1290 * or ndo_poll may be running while we open the device
1291 */
66b5552f 1292 netpoll_poll_disable(dev);
ca99ca14 1293
3b8bcfd5
JB
1294 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1295 ret = notifier_to_errno(ret);
1296 if (ret)
1297 return ret;
1298
1da177e4 1299 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1300
d314774c
SH
1301 if (ops->ndo_validate_addr)
1302 ret = ops->ndo_validate_addr(dev);
bada339b 1303
d314774c
SH
1304 if (!ret && ops->ndo_open)
1305 ret = ops->ndo_open(dev);
1da177e4 1306
66b5552f 1307 netpoll_poll_enable(dev);
ca99ca14 1308
bada339b
JG
1309 if (ret)
1310 clear_bit(__LINK_STATE_START, &dev->state);
1311 else {
1da177e4 1312 dev->flags |= IFF_UP;
4417da66 1313 dev_set_rx_mode(dev);
1da177e4 1314 dev_activate(dev);
7bf23575 1315 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1316 }
bada339b 1317
1da177e4
LT
1318 return ret;
1319}
1320
1321/**
bd380811
PM
1322 * dev_open - prepare an interface for use.
1323 * @dev: device to open
1da177e4 1324 *
bd380811
PM
1325 * Takes a device from down to up state. The device's private open
1326 * function is invoked and then the multicast lists are loaded. Finally
1327 * the device is moved into the up state and a %NETDEV_UP message is
1328 * sent to the netdev notifier chain.
1329 *
1330 * Calling this function on an active interface is a nop. On a failure
1331 * a negative errno code is returned.
1da177e4 1332 */
bd380811
PM
1333int dev_open(struct net_device *dev)
1334{
1335 int ret;
1336
bd380811
PM
1337 if (dev->flags & IFF_UP)
1338 return 0;
1339
bd380811
PM
1340 ret = __dev_open(dev);
1341 if (ret < 0)
1342 return ret;
1343
7f294054 1344 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1345 call_netdevice_notifiers(NETDEV_UP, dev);
1346
1347 return ret;
1348}
1349EXPORT_SYMBOL(dev_open);
1350
44345724 1351static int __dev_close_many(struct list_head *head)
1da177e4 1352{
44345724 1353 struct net_device *dev;
e46b66bc 1354
bd380811 1355 ASSERT_RTNL();
9d5010db
DM
1356 might_sleep();
1357
5cde2829 1358 list_for_each_entry(dev, head, close_list) {
3f4df206 1359 /* Temporarily disable netpoll until the interface is down */
66b5552f 1360 netpoll_poll_disable(dev);
3f4df206 1361
44345724 1362 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1363
44345724 1364 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1365
44345724
OP
1366 /* Synchronize to scheduled poll. We cannot touch poll list, it
1367 * can be even on different cpu. So just clear netif_running().
1368 *
1369 * dev->stop() will invoke napi_disable() on all of it's
1370 * napi_struct instances on this device.
1371 */
4e857c58 1372 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1373 }
1da177e4 1374
44345724 1375 dev_deactivate_many(head);
d8b2a4d2 1376
5cde2829 1377 list_for_each_entry(dev, head, close_list) {
44345724 1378 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1379
44345724
OP
1380 /*
1381 * Call the device specific close. This cannot fail.
1382 * Only if device is UP
1383 *
1384 * We allow it to be called even after a DETACH hot-plug
1385 * event.
1386 */
1387 if (ops->ndo_stop)
1388 ops->ndo_stop(dev);
1389
44345724 1390 dev->flags &= ~IFF_UP;
66b5552f 1391 netpoll_poll_enable(dev);
44345724
OP
1392 }
1393
1394 return 0;
1395}
1396
1397static int __dev_close(struct net_device *dev)
1398{
f87e6f47 1399 int retval;
44345724
OP
1400 LIST_HEAD(single);
1401
5cde2829 1402 list_add(&dev->close_list, &single);
f87e6f47
LT
1403 retval = __dev_close_many(&single);
1404 list_del(&single);
ca99ca14 1405
f87e6f47 1406 return retval;
44345724
OP
1407}
1408
99c4a26a 1409int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1410{
1411 struct net_device *dev, *tmp;
1da177e4 1412
5cde2829
EB
1413 /* Remove the devices that don't need to be closed */
1414 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1415 if (!(dev->flags & IFF_UP))
5cde2829 1416 list_del_init(&dev->close_list);
44345724
OP
1417
1418 __dev_close_many(head);
1da177e4 1419
5cde2829 1420 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1421 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1422 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1423 if (unlink)
1424 list_del_init(&dev->close_list);
44345724 1425 }
bd380811
PM
1426
1427 return 0;
1428}
99c4a26a 1429EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1430
1431/**
1432 * dev_close - shutdown an interface.
1433 * @dev: device to shutdown
1434 *
1435 * This function moves an active device into down state. A
1436 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1437 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1438 * chain.
1439 */
1440int dev_close(struct net_device *dev)
1441{
e14a5993
ED
1442 if (dev->flags & IFF_UP) {
1443 LIST_HEAD(single);
1da177e4 1444
5cde2829 1445 list_add(&dev->close_list, &single);
99c4a26a 1446 dev_close_many(&single, true);
e14a5993
ED
1447 list_del(&single);
1448 }
da6e378b 1449 return 0;
1da177e4 1450}
d1b19dff 1451EXPORT_SYMBOL(dev_close);
1da177e4
LT
1452
1453
0187bdfb
BH
1454/**
1455 * dev_disable_lro - disable Large Receive Offload on a device
1456 * @dev: device
1457 *
1458 * Disable Large Receive Offload (LRO) on a net device. Must be
1459 * called under RTNL. This is needed if received packets may be
1460 * forwarded to another interface.
1461 */
1462void dev_disable_lro(struct net_device *dev)
1463{
fbe168ba
MK
1464 struct net_device *lower_dev;
1465 struct list_head *iter;
529d0489 1466
bc5787c6
MM
1467 dev->wanted_features &= ~NETIF_F_LRO;
1468 netdev_update_features(dev);
27660515 1469
22d5969f
MM
1470 if (unlikely(dev->features & NETIF_F_LRO))
1471 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1472
1473 netdev_for_each_lower_dev(dev, lower_dev, iter)
1474 dev_disable_lro(lower_dev);
0187bdfb
BH
1475}
1476EXPORT_SYMBOL(dev_disable_lro);
1477
351638e7
JP
1478static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1479 struct net_device *dev)
1480{
1481 struct netdev_notifier_info info;
1482
1483 netdev_notifier_info_init(&info, dev);
1484 return nb->notifier_call(nb, val, &info);
1485}
0187bdfb 1486
881d966b
EB
1487static int dev_boot_phase = 1;
1488
1da177e4
LT
1489/**
1490 * register_netdevice_notifier - register a network notifier block
1491 * @nb: notifier
1492 *
1493 * Register a notifier to be called when network device events occur.
1494 * The notifier passed is linked into the kernel structures and must
1495 * not be reused until it has been unregistered. A negative errno code
1496 * is returned on a failure.
1497 *
1498 * When registered all registration and up events are replayed
4ec93edb 1499 * to the new notifier to allow device to have a race free
1da177e4
LT
1500 * view of the network device list.
1501 */
1502
1503int register_netdevice_notifier(struct notifier_block *nb)
1504{
1505 struct net_device *dev;
fcc5a03a 1506 struct net_device *last;
881d966b 1507 struct net *net;
1da177e4
LT
1508 int err;
1509
1510 rtnl_lock();
f07d5b94 1511 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1512 if (err)
1513 goto unlock;
881d966b
EB
1514 if (dev_boot_phase)
1515 goto unlock;
1516 for_each_net(net) {
1517 for_each_netdev(net, dev) {
351638e7 1518 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1519 err = notifier_to_errno(err);
1520 if (err)
1521 goto rollback;
1522
1523 if (!(dev->flags & IFF_UP))
1524 continue;
1da177e4 1525
351638e7 1526 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1527 }
1da177e4 1528 }
fcc5a03a
HX
1529
1530unlock:
1da177e4
LT
1531 rtnl_unlock();
1532 return err;
fcc5a03a
HX
1533
1534rollback:
1535 last = dev;
881d966b
EB
1536 for_each_net(net) {
1537 for_each_netdev(net, dev) {
1538 if (dev == last)
8f891489 1539 goto outroll;
fcc5a03a 1540
881d966b 1541 if (dev->flags & IFF_UP) {
351638e7
JP
1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 dev);
1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1545 }
351638e7 1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1547 }
fcc5a03a 1548 }
c67625a1 1549
8f891489 1550outroll:
c67625a1 1551 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1552 goto unlock;
1da177e4 1553}
d1b19dff 1554EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1555
1556/**
1557 * unregister_netdevice_notifier - unregister a network notifier block
1558 * @nb: notifier
1559 *
1560 * Unregister a notifier previously registered by
1561 * register_netdevice_notifier(). The notifier is unlinked into the
1562 * kernel structures and may then be reused. A negative errno code
1563 * is returned on a failure.
7d3d43da
EB
1564 *
1565 * After unregistering unregister and down device events are synthesized
1566 * for all devices on the device list to the removed notifier to remove
1567 * the need for special case cleanup code.
1da177e4
LT
1568 */
1569
1570int unregister_netdevice_notifier(struct notifier_block *nb)
1571{
7d3d43da
EB
1572 struct net_device *dev;
1573 struct net *net;
9f514950
HX
1574 int err;
1575
1576 rtnl_lock();
f07d5b94 1577 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1578 if (err)
1579 goto unlock;
1580
1581 for_each_net(net) {
1582 for_each_netdev(net, dev) {
1583 if (dev->flags & IFF_UP) {
351638e7
JP
1584 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1585 dev);
1586 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1587 }
351638e7 1588 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1589 }
1590 }
1591unlock:
9f514950
HX
1592 rtnl_unlock();
1593 return err;
1da177e4 1594}
d1b19dff 1595EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1596
351638e7
JP
1597/**
1598 * call_netdevice_notifiers_info - call all network notifier blocks
1599 * @val: value passed unmodified to notifier function
1600 * @dev: net_device pointer passed unmodified to notifier function
1601 * @info: notifier information data
1602 *
1603 * Call all network notifier blocks. Parameters and return value
1604 * are as for raw_notifier_call_chain().
1605 */
1606
1d143d9f 1607static int call_netdevice_notifiers_info(unsigned long val,
1608 struct net_device *dev,
1609 struct netdev_notifier_info *info)
351638e7
JP
1610{
1611 ASSERT_RTNL();
1612 netdev_notifier_info_init(info, dev);
1613 return raw_notifier_call_chain(&netdev_chain, val, info);
1614}
351638e7 1615
1da177e4
LT
1616/**
1617 * call_netdevice_notifiers - call all network notifier blocks
1618 * @val: value passed unmodified to notifier function
c4ea43c5 1619 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1620 *
1621 * Call all network notifier blocks. Parameters and return value
f07d5b94 1622 * are as for raw_notifier_call_chain().
1da177e4
LT
1623 */
1624
ad7379d4 1625int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1626{
351638e7
JP
1627 struct netdev_notifier_info info;
1628
1629 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1630}
edf947f1 1631EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1632
c5905afb 1633static struct static_key netstamp_needed __read_mostly;
b90e5794 1634#ifdef HAVE_JUMP_LABEL
c5905afb 1635/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1636 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1637 * static_key_slow_dec() calls.
b90e5794
ED
1638 */
1639static atomic_t netstamp_needed_deferred;
1640#endif
1da177e4
LT
1641
1642void net_enable_timestamp(void)
1643{
b90e5794
ED
1644#ifdef HAVE_JUMP_LABEL
1645 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1646
1647 if (deferred) {
1648 while (--deferred)
c5905afb 1649 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1650 return;
1651 }
1652#endif
c5905afb 1653 static_key_slow_inc(&netstamp_needed);
1da177e4 1654}
d1b19dff 1655EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1656
1657void net_disable_timestamp(void)
1658{
b90e5794
ED
1659#ifdef HAVE_JUMP_LABEL
1660 if (in_interrupt()) {
1661 atomic_inc(&netstamp_needed_deferred);
1662 return;
1663 }
1664#endif
c5905afb 1665 static_key_slow_dec(&netstamp_needed);
1da177e4 1666}
d1b19dff 1667EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1668
3b098e2d 1669static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1670{
588f0330 1671 skb->tstamp.tv64 = 0;
c5905afb 1672 if (static_key_false(&netstamp_needed))
a61bbcf2 1673 __net_timestamp(skb);
1da177e4
LT
1674}
1675
588f0330 1676#define net_timestamp_check(COND, SKB) \
c5905afb 1677 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1678 if ((COND) && !(SKB)->tstamp.tv64) \
1679 __net_timestamp(SKB); \
1680 } \
3b098e2d 1681
1ee481fb 1682bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1683{
1684 unsigned int len;
1685
1686 if (!(dev->flags & IFF_UP))
1687 return false;
1688
1689 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1690 if (skb->len <= len)
1691 return true;
1692
1693 /* if TSO is enabled, we don't care about the length as the packet
1694 * could be forwarded without being segmented before
1695 */
1696 if (skb_is_gso(skb))
1697 return true;
1698
1699 return false;
1700}
1ee481fb 1701EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1702
a0265d28
HX
1703int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1704{
1705 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1706 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1707 atomic_long_inc(&dev->rx_dropped);
1708 kfree_skb(skb);
1709 return NET_RX_DROP;
1710 }
1711 }
1712
1713 if (unlikely(!is_skb_forwardable(dev, skb))) {
1714 atomic_long_inc(&dev->rx_dropped);
1715 kfree_skb(skb);
1716 return NET_RX_DROP;
1717 }
1718
1719 skb_scrub_packet(skb, true);
08b4b8ea 1720 skb->priority = 0;
a0265d28 1721 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1722 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1723
1724 return 0;
1725}
1726EXPORT_SYMBOL_GPL(__dev_forward_skb);
1727
44540960
AB
1728/**
1729 * dev_forward_skb - loopback an skb to another netif
1730 *
1731 * @dev: destination network device
1732 * @skb: buffer to forward
1733 *
1734 * return values:
1735 * NET_RX_SUCCESS (no congestion)
6ec82562 1736 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1737 *
1738 * dev_forward_skb can be used for injecting an skb from the
1739 * start_xmit function of one device into the receive queue
1740 * of another device.
1741 *
1742 * The receiving device may be in another namespace, so
1743 * we have to clear all information in the skb that could
1744 * impact namespace isolation.
1745 */
1746int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1747{
a0265d28 1748 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1749}
1750EXPORT_SYMBOL_GPL(dev_forward_skb);
1751
71d9dec2
CG
1752static inline int deliver_skb(struct sk_buff *skb,
1753 struct packet_type *pt_prev,
1754 struct net_device *orig_dev)
1755{
1080e512
MT
1756 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1757 return -ENOMEM;
71d9dec2
CG
1758 atomic_inc(&skb->users);
1759 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1760}
1761
7866a621
SN
1762static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1763 struct packet_type **pt,
fbcb2170
JP
1764 struct net_device *orig_dev,
1765 __be16 type,
7866a621
SN
1766 struct list_head *ptype_list)
1767{
1768 struct packet_type *ptype, *pt_prev = *pt;
1769
1770 list_for_each_entry_rcu(ptype, ptype_list, list) {
1771 if (ptype->type != type)
1772 continue;
1773 if (pt_prev)
fbcb2170 1774 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1775 pt_prev = ptype;
1776 }
1777 *pt = pt_prev;
1778}
1779
c0de08d0
EL
1780static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1781{
a3d744e9 1782 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1783 return false;
1784
1785 if (ptype->id_match)
1786 return ptype->id_match(ptype, skb->sk);
1787 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1788 return true;
1789
1790 return false;
1791}
1792
1da177e4
LT
1793/*
1794 * Support routine. Sends outgoing frames to any network
1795 * taps currently in use.
1796 */
1797
f6a78bfc 1798static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1799{
1800 struct packet_type *ptype;
71d9dec2
CG
1801 struct sk_buff *skb2 = NULL;
1802 struct packet_type *pt_prev = NULL;
7866a621 1803 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1804
1da177e4 1805 rcu_read_lock();
7866a621
SN
1806again:
1807 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1808 /* Never send packets back to the socket
1809 * they originated from - MvS (miquels@drinkel.ow.org)
1810 */
7866a621
SN
1811 if (skb_loop_sk(ptype, skb))
1812 continue;
71d9dec2 1813
7866a621
SN
1814 if (pt_prev) {
1815 deliver_skb(skb2, pt_prev, skb->dev);
1816 pt_prev = ptype;
1817 continue;
1818 }
1da177e4 1819
7866a621
SN
1820 /* need to clone skb, done only once */
1821 skb2 = skb_clone(skb, GFP_ATOMIC);
1822 if (!skb2)
1823 goto out_unlock;
70978182 1824
7866a621 1825 net_timestamp_set(skb2);
1da177e4 1826
7866a621
SN
1827 /* skb->nh should be correctly
1828 * set by sender, so that the second statement is
1829 * just protection against buggy protocols.
1830 */
1831 skb_reset_mac_header(skb2);
1832
1833 if (skb_network_header(skb2) < skb2->data ||
1834 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1835 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1836 ntohs(skb2->protocol),
1837 dev->name);
1838 skb_reset_network_header(skb2);
1da177e4 1839 }
7866a621
SN
1840
1841 skb2->transport_header = skb2->network_header;
1842 skb2->pkt_type = PACKET_OUTGOING;
1843 pt_prev = ptype;
1844 }
1845
1846 if (ptype_list == &ptype_all) {
1847 ptype_list = &dev->ptype_all;
1848 goto again;
1da177e4 1849 }
7866a621 1850out_unlock:
71d9dec2
CG
1851 if (pt_prev)
1852 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1853 rcu_read_unlock();
1854}
1855
2c53040f
BH
1856/**
1857 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1858 * @dev: Network device
1859 * @txq: number of queues available
1860 *
1861 * If real_num_tx_queues is changed the tc mappings may no longer be
1862 * valid. To resolve this verify the tc mapping remains valid and if
1863 * not NULL the mapping. With no priorities mapping to this
1864 * offset/count pair it will no longer be used. In the worst case TC0
1865 * is invalid nothing can be done so disable priority mappings. If is
1866 * expected that drivers will fix this mapping if they can before
1867 * calling netif_set_real_num_tx_queues.
1868 */
bb134d22 1869static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1870{
1871 int i;
1872 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1873
1874 /* If TC0 is invalidated disable TC mapping */
1875 if (tc->offset + tc->count > txq) {
7b6cd1ce 1876 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1877 dev->num_tc = 0;
1878 return;
1879 }
1880
1881 /* Invalidated prio to tc mappings set to TC0 */
1882 for (i = 1; i < TC_BITMASK + 1; i++) {
1883 int q = netdev_get_prio_tc_map(dev, i);
1884
1885 tc = &dev->tc_to_txq[q];
1886 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1887 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1888 i, q);
4f57c087
JF
1889 netdev_set_prio_tc_map(dev, i, 0);
1890 }
1891 }
1892}
1893
537c00de
AD
1894#ifdef CONFIG_XPS
1895static DEFINE_MUTEX(xps_map_mutex);
1896#define xmap_dereference(P) \
1897 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1898
10cdc3f3
AD
1899static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1900 int cpu, u16 index)
537c00de 1901{
10cdc3f3
AD
1902 struct xps_map *map = NULL;
1903 int pos;
537c00de 1904
10cdc3f3
AD
1905 if (dev_maps)
1906 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1907
10cdc3f3
AD
1908 for (pos = 0; map && pos < map->len; pos++) {
1909 if (map->queues[pos] == index) {
537c00de
AD
1910 if (map->len > 1) {
1911 map->queues[pos] = map->queues[--map->len];
1912 } else {
10cdc3f3 1913 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1914 kfree_rcu(map, rcu);
1915 map = NULL;
1916 }
10cdc3f3 1917 break;
537c00de 1918 }
537c00de
AD
1919 }
1920
10cdc3f3
AD
1921 return map;
1922}
1923
024e9679 1924static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1925{
1926 struct xps_dev_maps *dev_maps;
024e9679 1927 int cpu, i;
10cdc3f3
AD
1928 bool active = false;
1929
1930 mutex_lock(&xps_map_mutex);
1931 dev_maps = xmap_dereference(dev->xps_maps);
1932
1933 if (!dev_maps)
1934 goto out_no_maps;
1935
1936 for_each_possible_cpu(cpu) {
024e9679
AD
1937 for (i = index; i < dev->num_tx_queues; i++) {
1938 if (!remove_xps_queue(dev_maps, cpu, i))
1939 break;
1940 }
1941 if (i == dev->num_tx_queues)
10cdc3f3
AD
1942 active = true;
1943 }
1944
1945 if (!active) {
537c00de
AD
1946 RCU_INIT_POINTER(dev->xps_maps, NULL);
1947 kfree_rcu(dev_maps, rcu);
1948 }
1949
024e9679
AD
1950 for (i = index; i < dev->num_tx_queues; i++)
1951 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1952 NUMA_NO_NODE);
1953
537c00de
AD
1954out_no_maps:
1955 mutex_unlock(&xps_map_mutex);
1956}
1957
01c5f864
AD
1958static struct xps_map *expand_xps_map(struct xps_map *map,
1959 int cpu, u16 index)
1960{
1961 struct xps_map *new_map;
1962 int alloc_len = XPS_MIN_MAP_ALLOC;
1963 int i, pos;
1964
1965 for (pos = 0; map && pos < map->len; pos++) {
1966 if (map->queues[pos] != index)
1967 continue;
1968 return map;
1969 }
1970
1971 /* Need to add queue to this CPU's existing map */
1972 if (map) {
1973 if (pos < map->alloc_len)
1974 return map;
1975
1976 alloc_len = map->alloc_len * 2;
1977 }
1978
1979 /* Need to allocate new map to store queue on this CPU's map */
1980 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1981 cpu_to_node(cpu));
1982 if (!new_map)
1983 return NULL;
1984
1985 for (i = 0; i < pos; i++)
1986 new_map->queues[i] = map->queues[i];
1987 new_map->alloc_len = alloc_len;
1988 new_map->len = pos;
1989
1990 return new_map;
1991}
1992
3573540c
MT
1993int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1994 u16 index)
537c00de 1995{
01c5f864 1996 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 1997 struct xps_map *map, *new_map;
537c00de 1998 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
1999 int cpu, numa_node_id = -2;
2000 bool active = false;
537c00de
AD
2001
2002 mutex_lock(&xps_map_mutex);
2003
2004 dev_maps = xmap_dereference(dev->xps_maps);
2005
01c5f864
AD
2006 /* allocate memory for queue storage */
2007 for_each_online_cpu(cpu) {
2008 if (!cpumask_test_cpu(cpu, mask))
2009 continue;
2010
2011 if (!new_dev_maps)
2012 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2013 if (!new_dev_maps) {
2014 mutex_unlock(&xps_map_mutex);
01c5f864 2015 return -ENOMEM;
2bb60cb9 2016 }
01c5f864
AD
2017
2018 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2019 NULL;
2020
2021 map = expand_xps_map(map, cpu, index);
2022 if (!map)
2023 goto error;
2024
2025 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2026 }
2027
2028 if (!new_dev_maps)
2029 goto out_no_new_maps;
2030
537c00de 2031 for_each_possible_cpu(cpu) {
01c5f864
AD
2032 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2033 /* add queue to CPU maps */
2034 int pos = 0;
2035
2036 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 while ((pos < map->len) && (map->queues[pos] != index))
2038 pos++;
2039
2040 if (pos == map->len)
2041 map->queues[map->len++] = index;
537c00de 2042#ifdef CONFIG_NUMA
537c00de
AD
2043 if (numa_node_id == -2)
2044 numa_node_id = cpu_to_node(cpu);
2045 else if (numa_node_id != cpu_to_node(cpu))
2046 numa_node_id = -1;
537c00de 2047#endif
01c5f864
AD
2048 } else if (dev_maps) {
2049 /* fill in the new device map from the old device map */
2050 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2051 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2052 }
01c5f864 2053
537c00de
AD
2054 }
2055
01c5f864
AD
2056 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2057
537c00de 2058 /* Cleanup old maps */
01c5f864
AD
2059 if (dev_maps) {
2060 for_each_possible_cpu(cpu) {
2061 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2062 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2063 if (map && map != new_map)
2064 kfree_rcu(map, rcu);
2065 }
537c00de 2066
01c5f864 2067 kfree_rcu(dev_maps, rcu);
537c00de
AD
2068 }
2069
01c5f864
AD
2070 dev_maps = new_dev_maps;
2071 active = true;
537c00de 2072
01c5f864
AD
2073out_no_new_maps:
2074 /* update Tx queue numa node */
537c00de
AD
2075 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2076 (numa_node_id >= 0) ? numa_node_id :
2077 NUMA_NO_NODE);
2078
01c5f864
AD
2079 if (!dev_maps)
2080 goto out_no_maps;
2081
2082 /* removes queue from unused CPUs */
2083 for_each_possible_cpu(cpu) {
2084 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2085 continue;
2086
2087 if (remove_xps_queue(dev_maps, cpu, index))
2088 active = true;
2089 }
2090
2091 /* free map if not active */
2092 if (!active) {
2093 RCU_INIT_POINTER(dev->xps_maps, NULL);
2094 kfree_rcu(dev_maps, rcu);
2095 }
2096
2097out_no_maps:
537c00de
AD
2098 mutex_unlock(&xps_map_mutex);
2099
2100 return 0;
2101error:
01c5f864
AD
2102 /* remove any maps that we added */
2103 for_each_possible_cpu(cpu) {
2104 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2105 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2106 NULL;
2107 if (new_map && new_map != map)
2108 kfree(new_map);
2109 }
2110
537c00de
AD
2111 mutex_unlock(&xps_map_mutex);
2112
537c00de
AD
2113 kfree(new_dev_maps);
2114 return -ENOMEM;
2115}
2116EXPORT_SYMBOL(netif_set_xps_queue);
2117
2118#endif
f0796d5c
JF
2119/*
2120 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2121 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2122 */
e6484930 2123int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2124{
1d24eb48
TH
2125 int rc;
2126
e6484930
TH
2127 if (txq < 1 || txq > dev->num_tx_queues)
2128 return -EINVAL;
f0796d5c 2129
5c56580b
BH
2130 if (dev->reg_state == NETREG_REGISTERED ||
2131 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2132 ASSERT_RTNL();
2133
1d24eb48
TH
2134 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2135 txq);
bf264145
TH
2136 if (rc)
2137 return rc;
2138
4f57c087
JF
2139 if (dev->num_tc)
2140 netif_setup_tc(dev, txq);
2141
024e9679 2142 if (txq < dev->real_num_tx_queues) {
e6484930 2143 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2144#ifdef CONFIG_XPS
2145 netif_reset_xps_queues_gt(dev, txq);
2146#endif
2147 }
f0796d5c 2148 }
e6484930
TH
2149
2150 dev->real_num_tx_queues = txq;
2151 return 0;
f0796d5c
JF
2152}
2153EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2154
a953be53 2155#ifdef CONFIG_SYSFS
62fe0b40
BH
2156/**
2157 * netif_set_real_num_rx_queues - set actual number of RX queues used
2158 * @dev: Network device
2159 * @rxq: Actual number of RX queues
2160 *
2161 * This must be called either with the rtnl_lock held or before
2162 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2163 * negative error code. If called before registration, it always
2164 * succeeds.
62fe0b40
BH
2165 */
2166int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2167{
2168 int rc;
2169
bd25fa7b
TH
2170 if (rxq < 1 || rxq > dev->num_rx_queues)
2171 return -EINVAL;
2172
62fe0b40
BH
2173 if (dev->reg_state == NETREG_REGISTERED) {
2174 ASSERT_RTNL();
2175
62fe0b40
BH
2176 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2177 rxq);
2178 if (rc)
2179 return rc;
62fe0b40
BH
2180 }
2181
2182 dev->real_num_rx_queues = rxq;
2183 return 0;
2184}
2185EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2186#endif
2187
2c53040f
BH
2188/**
2189 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2190 *
2191 * This routine should set an upper limit on the number of RSS queues
2192 * used by default by multiqueue devices.
2193 */
a55b138b 2194int netif_get_num_default_rss_queues(void)
16917b87
YM
2195{
2196 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2197}
2198EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2199
def82a1d 2200static inline void __netif_reschedule(struct Qdisc *q)
56079431 2201{
def82a1d
JP
2202 struct softnet_data *sd;
2203 unsigned long flags;
56079431 2204
def82a1d 2205 local_irq_save(flags);
903ceff7 2206 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2207 q->next_sched = NULL;
2208 *sd->output_queue_tailp = q;
2209 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2210 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2211 local_irq_restore(flags);
2212}
2213
2214void __netif_schedule(struct Qdisc *q)
2215{
2216 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2217 __netif_reschedule(q);
56079431
DV
2218}
2219EXPORT_SYMBOL(__netif_schedule);
2220
e6247027
ED
2221struct dev_kfree_skb_cb {
2222 enum skb_free_reason reason;
2223};
2224
2225static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2226{
e6247027
ED
2227 return (struct dev_kfree_skb_cb *)skb->cb;
2228}
2229
46e5da40
JF
2230void netif_schedule_queue(struct netdev_queue *txq)
2231{
2232 rcu_read_lock();
2233 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2234 struct Qdisc *q = rcu_dereference(txq->qdisc);
2235
2236 __netif_schedule(q);
2237 }
2238 rcu_read_unlock();
2239}
2240EXPORT_SYMBOL(netif_schedule_queue);
2241
2242/**
2243 * netif_wake_subqueue - allow sending packets on subqueue
2244 * @dev: network device
2245 * @queue_index: sub queue index
2246 *
2247 * Resume individual transmit queue of a device with multiple transmit queues.
2248 */
2249void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2250{
2251 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2252
2253 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2254 struct Qdisc *q;
2255
2256 rcu_read_lock();
2257 q = rcu_dereference(txq->qdisc);
2258 __netif_schedule(q);
2259 rcu_read_unlock();
2260 }
2261}
2262EXPORT_SYMBOL(netif_wake_subqueue);
2263
2264void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2265{
2266 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2267 struct Qdisc *q;
2268
2269 rcu_read_lock();
2270 q = rcu_dereference(dev_queue->qdisc);
2271 __netif_schedule(q);
2272 rcu_read_unlock();
2273 }
2274}
2275EXPORT_SYMBOL(netif_tx_wake_queue);
2276
e6247027 2277void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2278{
e6247027 2279 unsigned long flags;
56079431 2280
e6247027
ED
2281 if (likely(atomic_read(&skb->users) == 1)) {
2282 smp_rmb();
2283 atomic_set(&skb->users, 0);
2284 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2285 return;
bea3348e 2286 }
e6247027
ED
2287 get_kfree_skb_cb(skb)->reason = reason;
2288 local_irq_save(flags);
2289 skb->next = __this_cpu_read(softnet_data.completion_queue);
2290 __this_cpu_write(softnet_data.completion_queue, skb);
2291 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2292 local_irq_restore(flags);
56079431 2293}
e6247027 2294EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2295
e6247027 2296void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2297{
2298 if (in_irq() || irqs_disabled())
e6247027 2299 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2300 else
2301 dev_kfree_skb(skb);
2302}
e6247027 2303EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2304
2305
bea3348e
SH
2306/**
2307 * netif_device_detach - mark device as removed
2308 * @dev: network device
2309 *
2310 * Mark device as removed from system and therefore no longer available.
2311 */
56079431
DV
2312void netif_device_detach(struct net_device *dev)
2313{
2314 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2315 netif_running(dev)) {
d543103a 2316 netif_tx_stop_all_queues(dev);
56079431
DV
2317 }
2318}
2319EXPORT_SYMBOL(netif_device_detach);
2320
bea3348e
SH
2321/**
2322 * netif_device_attach - mark device as attached
2323 * @dev: network device
2324 *
2325 * Mark device as attached from system and restart if needed.
2326 */
56079431
DV
2327void netif_device_attach(struct net_device *dev)
2328{
2329 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2330 netif_running(dev)) {
d543103a 2331 netif_tx_wake_all_queues(dev);
4ec93edb 2332 __netdev_watchdog_up(dev);
56079431
DV
2333 }
2334}
2335EXPORT_SYMBOL(netif_device_attach);
2336
36c92474
BH
2337static void skb_warn_bad_offload(const struct sk_buff *skb)
2338{
65e9d2fa 2339 static const netdev_features_t null_features = 0;
36c92474
BH
2340 struct net_device *dev = skb->dev;
2341 const char *driver = "";
2342
c846ad9b
BG
2343 if (!net_ratelimit())
2344 return;
2345
36c92474
BH
2346 if (dev && dev->dev.parent)
2347 driver = dev_driver_string(dev->dev.parent);
2348
2349 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2350 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2351 driver, dev ? &dev->features : &null_features,
2352 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2353 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2354 skb_shinfo(skb)->gso_type, skb->ip_summed);
2355}
2356
1da177e4
LT
2357/*
2358 * Invalidate hardware checksum when packet is to be mangled, and
2359 * complete checksum manually on outgoing path.
2360 */
84fa7933 2361int skb_checksum_help(struct sk_buff *skb)
1da177e4 2362{
d3bc23e7 2363 __wsum csum;
663ead3b 2364 int ret = 0, offset;
1da177e4 2365
84fa7933 2366 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2367 goto out_set_summed;
2368
2369 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2370 skb_warn_bad_offload(skb);
2371 return -EINVAL;
1da177e4
LT
2372 }
2373
cef401de
ED
2374 /* Before computing a checksum, we should make sure no frag could
2375 * be modified by an external entity : checksum could be wrong.
2376 */
2377 if (skb_has_shared_frag(skb)) {
2378 ret = __skb_linearize(skb);
2379 if (ret)
2380 goto out;
2381 }
2382
55508d60 2383 offset = skb_checksum_start_offset(skb);
a030847e
HX
2384 BUG_ON(offset >= skb_headlen(skb));
2385 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2386
2387 offset += skb->csum_offset;
2388 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2389
2390 if (skb_cloned(skb) &&
2391 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2392 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2393 if (ret)
2394 goto out;
2395 }
2396
a030847e 2397 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2398out_set_summed:
1da177e4 2399 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2400out:
1da177e4
LT
2401 return ret;
2402}
d1b19dff 2403EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2404
53d6471c 2405__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2406{
252e3346 2407 __be16 type = skb->protocol;
f6a78bfc 2408
19acc327
PS
2409 /* Tunnel gso handlers can set protocol to ethernet. */
2410 if (type == htons(ETH_P_TEB)) {
2411 struct ethhdr *eth;
2412
2413 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2414 return 0;
2415
2416 eth = (struct ethhdr *)skb_mac_header(skb);
2417 type = eth->h_proto;
2418 }
2419
d4bcef3f 2420 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2421}
2422
2423/**
2424 * skb_mac_gso_segment - mac layer segmentation handler.
2425 * @skb: buffer to segment
2426 * @features: features for the output path (see dev->features)
2427 */
2428struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2429 netdev_features_t features)
2430{
2431 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2432 struct packet_offload *ptype;
53d6471c
VY
2433 int vlan_depth = skb->mac_len;
2434 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2435
2436 if (unlikely(!type))
2437 return ERR_PTR(-EINVAL);
2438
53d6471c 2439 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2440
2441 rcu_read_lock();
22061d80 2442 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2443 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2444 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2445 break;
2446 }
2447 }
2448 rcu_read_unlock();
2449
98e399f8 2450 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2451
f6a78bfc
HX
2452 return segs;
2453}
05e8ef4a
PS
2454EXPORT_SYMBOL(skb_mac_gso_segment);
2455
2456
2457/* openvswitch calls this on rx path, so we need a different check.
2458 */
2459static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2460{
2461 if (tx_path)
2462 return skb->ip_summed != CHECKSUM_PARTIAL;
2463 else
2464 return skb->ip_summed == CHECKSUM_NONE;
2465}
2466
2467/**
2468 * __skb_gso_segment - Perform segmentation on skb.
2469 * @skb: buffer to segment
2470 * @features: features for the output path (see dev->features)
2471 * @tx_path: whether it is called in TX path
2472 *
2473 * This function segments the given skb and returns a list of segments.
2474 *
2475 * It may return NULL if the skb requires no segmentation. This is
2476 * only possible when GSO is used for verifying header integrity.
2477 */
2478struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2479 netdev_features_t features, bool tx_path)
2480{
2481 if (unlikely(skb_needs_check(skb, tx_path))) {
2482 int err;
2483
2484 skb_warn_bad_offload(skb);
2485
a40e0a66 2486 err = skb_cow_head(skb, 0);
2487 if (err < 0)
05e8ef4a
PS
2488 return ERR_PTR(err);
2489 }
2490
68c33163 2491 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2492 SKB_GSO_CB(skb)->encap_level = 0;
2493
05e8ef4a
PS
2494 skb_reset_mac_header(skb);
2495 skb_reset_mac_len(skb);
2496
2497 return skb_mac_gso_segment(skb, features);
2498}
12b0004d 2499EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2500
fb286bb2
HX
2501/* Take action when hardware reception checksum errors are detected. */
2502#ifdef CONFIG_BUG
2503void netdev_rx_csum_fault(struct net_device *dev)
2504{
2505 if (net_ratelimit()) {
7b6cd1ce 2506 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2507 dump_stack();
2508 }
2509}
2510EXPORT_SYMBOL(netdev_rx_csum_fault);
2511#endif
2512
1da177e4
LT
2513/* Actually, we should eliminate this check as soon as we know, that:
2514 * 1. IOMMU is present and allows to map all the memory.
2515 * 2. No high memory really exists on this machine.
2516 */
2517
c1e756bf 2518static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2519{
3d3a8533 2520#ifdef CONFIG_HIGHMEM
1da177e4 2521 int i;
5acbbd42 2522 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2523 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2524 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2525 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2526 return 1;
ea2ab693 2527 }
5acbbd42 2528 }
1da177e4 2529
5acbbd42
FT
2530 if (PCI_DMA_BUS_IS_PHYS) {
2531 struct device *pdev = dev->dev.parent;
1da177e4 2532
9092c658
ED
2533 if (!pdev)
2534 return 0;
5acbbd42 2535 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2536 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2537 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2538 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2539 return 1;
2540 }
2541 }
3d3a8533 2542#endif
1da177e4
LT
2543 return 0;
2544}
1da177e4 2545
3b392ddb
SH
2546/* If MPLS offload request, verify we are testing hardware MPLS features
2547 * instead of standard features for the netdev.
2548 */
d0edc7bf 2549#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2550static netdev_features_t net_mpls_features(struct sk_buff *skb,
2551 netdev_features_t features,
2552 __be16 type)
2553{
25cd9ba0 2554 if (eth_p_mpls(type))
3b392ddb
SH
2555 features &= skb->dev->mpls_features;
2556
2557 return features;
2558}
2559#else
2560static netdev_features_t net_mpls_features(struct sk_buff *skb,
2561 netdev_features_t features,
2562 __be16 type)
2563{
2564 return features;
2565}
2566#endif
2567
c8f44aff 2568static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2569 netdev_features_t features)
f01a5236 2570{
53d6471c 2571 int tmp;
3b392ddb
SH
2572 __be16 type;
2573
2574 type = skb_network_protocol(skb, &tmp);
2575 features = net_mpls_features(skb, features, type);
53d6471c 2576
c0d680e5 2577 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2578 !can_checksum_protocol(features, type)) {
f01a5236 2579 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2580 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2581 features &= ~NETIF_F_SG;
2582 }
2583
2584 return features;
2585}
2586
e38f3025
TM
2587netdev_features_t passthru_features_check(struct sk_buff *skb,
2588 struct net_device *dev,
2589 netdev_features_t features)
2590{
2591 return features;
2592}
2593EXPORT_SYMBOL(passthru_features_check);
2594
8cb65d00
TM
2595static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2596 struct net_device *dev,
2597 netdev_features_t features)
2598{
2599 return vlan_features_check(skb, features);
2600}
2601
c1e756bf 2602netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2603{
5f35227e 2604 struct net_device *dev = skb->dev;
fcbeb976
ED
2605 netdev_features_t features = dev->features;
2606 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6 2607
fcbeb976 2608 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2609 features &= ~NETIF_F_GSO_MASK;
2610
5f35227e
JG
2611 /* If encapsulation offload request, verify we are testing
2612 * hardware encapsulation features instead of standard
2613 * features for the netdev
2614 */
2615 if (skb->encapsulation)
2616 features &= dev->hw_enc_features;
2617
f5a7fb88
TM
2618 if (skb_vlan_tagged(skb))
2619 features = netdev_intersect_features(features,
2620 dev->vlan_features |
2621 NETIF_F_HW_VLAN_CTAG_TX |
2622 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2623
5f35227e
JG
2624 if (dev->netdev_ops->ndo_features_check)
2625 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2626 features);
8cb65d00
TM
2627 else
2628 features &= dflt_features_check(skb, dev, features);
5f35227e 2629
c1e756bf 2630 return harmonize_features(skb, features);
58e998c6 2631}
c1e756bf 2632EXPORT_SYMBOL(netif_skb_features);
58e998c6 2633
2ea25513 2634static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2635 struct netdev_queue *txq, bool more)
f6a78bfc 2636{
2ea25513
DM
2637 unsigned int len;
2638 int rc;
00829823 2639
7866a621 2640 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2641 dev_queue_xmit_nit(skb, dev);
fc741216 2642
2ea25513
DM
2643 len = skb->len;
2644 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2645 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2646 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2647
2ea25513
DM
2648 return rc;
2649}
7b9c6090 2650
8dcda22a
DM
2651struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2652 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2653{
2654 struct sk_buff *skb = first;
2655 int rc = NETDEV_TX_OK;
7b9c6090 2656
7f2e870f
DM
2657 while (skb) {
2658 struct sk_buff *next = skb->next;
fc70fb64 2659
7f2e870f 2660 skb->next = NULL;
95f6b3dd 2661 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2662 if (unlikely(!dev_xmit_complete(rc))) {
2663 skb->next = next;
2664 goto out;
2665 }
6afff0ca 2666
7f2e870f
DM
2667 skb = next;
2668 if (netif_xmit_stopped(txq) && skb) {
2669 rc = NETDEV_TX_BUSY;
2670 break;
9ccb8975 2671 }
7f2e870f 2672 }
9ccb8975 2673
7f2e870f
DM
2674out:
2675 *ret = rc;
2676 return skb;
2677}
b40863c6 2678
1ff0dc94
ED
2679static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2680 netdev_features_t features)
f6a78bfc 2681{
df8a39de 2682 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2683 !vlan_hw_offload_capable(features, skb->vlan_proto))
2684 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2685 return skb;
2686}
f6a78bfc 2687
55a93b3e 2688static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2689{
2690 netdev_features_t features;
f6a78bfc 2691
eae3f88e
DM
2692 if (skb->next)
2693 return skb;
068a2de5 2694
eae3f88e
DM
2695 features = netif_skb_features(skb);
2696 skb = validate_xmit_vlan(skb, features);
2697 if (unlikely(!skb))
2698 goto out_null;
7b9c6090 2699
04ffcb25 2700 if (netif_needs_gso(dev, skb, features)) {
ce93718f
DM
2701 struct sk_buff *segs;
2702
2703 segs = skb_gso_segment(skb, features);
cecda693 2704 if (IS_ERR(segs)) {
af6dabc9 2705 goto out_kfree_skb;
cecda693
JW
2706 } else if (segs) {
2707 consume_skb(skb);
2708 skb = segs;
f6a78bfc 2709 }
eae3f88e
DM
2710 } else {
2711 if (skb_needs_linearize(skb, features) &&
2712 __skb_linearize(skb))
2713 goto out_kfree_skb;
4ec93edb 2714
eae3f88e
DM
2715 /* If packet is not checksummed and device does not
2716 * support checksumming for this protocol, complete
2717 * checksumming here.
2718 */
2719 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2720 if (skb->encapsulation)
2721 skb_set_inner_transport_header(skb,
2722 skb_checksum_start_offset(skb));
2723 else
2724 skb_set_transport_header(skb,
2725 skb_checksum_start_offset(skb));
2726 if (!(features & NETIF_F_ALL_CSUM) &&
2727 skb_checksum_help(skb))
2728 goto out_kfree_skb;
7b9c6090 2729 }
0c772159 2730 }
7b9c6090 2731
eae3f88e 2732 return skb;
fc70fb64 2733
f6a78bfc
HX
2734out_kfree_skb:
2735 kfree_skb(skb);
eae3f88e
DM
2736out_null:
2737 return NULL;
2738}
6afff0ca 2739
55a93b3e
ED
2740struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2741{
2742 struct sk_buff *next, *head = NULL, *tail;
2743
bec3cfdc 2744 for (; skb != NULL; skb = next) {
55a93b3e
ED
2745 next = skb->next;
2746 skb->next = NULL;
bec3cfdc
ED
2747
2748 /* in case skb wont be segmented, point to itself */
2749 skb->prev = skb;
2750
55a93b3e 2751 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2752 if (!skb)
2753 continue;
55a93b3e 2754
bec3cfdc
ED
2755 if (!head)
2756 head = skb;
2757 else
2758 tail->next = skb;
2759 /* If skb was segmented, skb->prev points to
2760 * the last segment. If not, it still contains skb.
2761 */
2762 tail = skb->prev;
55a93b3e
ED
2763 }
2764 return head;
f6a78bfc
HX
2765}
2766
1def9238
ED
2767static void qdisc_pkt_len_init(struct sk_buff *skb)
2768{
2769 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2770
2771 qdisc_skb_cb(skb)->pkt_len = skb->len;
2772
2773 /* To get more precise estimation of bytes sent on wire,
2774 * we add to pkt_len the headers size of all segments
2775 */
2776 if (shinfo->gso_size) {
757b8b1d 2777 unsigned int hdr_len;
15e5a030 2778 u16 gso_segs = shinfo->gso_segs;
1def9238 2779
757b8b1d
ED
2780 /* mac layer + network layer */
2781 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2782
2783 /* + transport layer */
1def9238
ED
2784 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2785 hdr_len += tcp_hdrlen(skb);
2786 else
2787 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2788
2789 if (shinfo->gso_type & SKB_GSO_DODGY)
2790 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2791 shinfo->gso_size);
2792
2793 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2794 }
2795}
2796
bbd8a0d3
KK
2797static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2798 struct net_device *dev,
2799 struct netdev_queue *txq)
2800{
2801 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2802 bool contended;
bbd8a0d3
KK
2803 int rc;
2804
1def9238 2805 qdisc_pkt_len_init(skb);
a2da570d 2806 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2807 /*
2808 * Heuristic to force contended enqueues to serialize on a
2809 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2810 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2811 * often and dequeue packets faster.
79640a4c 2812 */
a2da570d 2813 contended = qdisc_is_running(q);
79640a4c
ED
2814 if (unlikely(contended))
2815 spin_lock(&q->busylock);
2816
bbd8a0d3
KK
2817 spin_lock(root_lock);
2818 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2819 kfree_skb(skb);
2820 rc = NET_XMIT_DROP;
2821 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2822 qdisc_run_begin(q)) {
bbd8a0d3
KK
2823 /*
2824 * This is a work-conserving queue; there are no old skbs
2825 * waiting to be sent out; and the qdisc is not running -
2826 * xmit the skb directly.
2827 */
bfe0d029 2828
bfe0d029
ED
2829 qdisc_bstats_update(q, skb);
2830
55a93b3e 2831 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2832 if (unlikely(contended)) {
2833 spin_unlock(&q->busylock);
2834 contended = false;
2835 }
bbd8a0d3 2836 __qdisc_run(q);
79640a4c 2837 } else
bc135b23 2838 qdisc_run_end(q);
bbd8a0d3
KK
2839
2840 rc = NET_XMIT_SUCCESS;
2841 } else {
a2da570d 2842 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2843 if (qdisc_run_begin(q)) {
2844 if (unlikely(contended)) {
2845 spin_unlock(&q->busylock);
2846 contended = false;
2847 }
2848 __qdisc_run(q);
2849 }
bbd8a0d3
KK
2850 }
2851 spin_unlock(root_lock);
79640a4c
ED
2852 if (unlikely(contended))
2853 spin_unlock(&q->busylock);
bbd8a0d3
KK
2854 return rc;
2855}
2856
86f8515f 2857#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2858static void skb_update_prio(struct sk_buff *skb)
2859{
6977a79d 2860 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2861
91c68ce2
ED
2862 if (!skb->priority && skb->sk && map) {
2863 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2864
2865 if (prioidx < map->priomap_len)
2866 skb->priority = map->priomap[prioidx];
2867 }
5bc1421e
NH
2868}
2869#else
2870#define skb_update_prio(skb)
2871#endif
2872
f60e5990 2873DEFINE_PER_CPU(int, xmit_recursion);
2874EXPORT_SYMBOL(xmit_recursion);
2875
11a766ce 2876#define RECURSION_LIMIT 10
745e20f1 2877
95603e22
MM
2878/**
2879 * dev_loopback_xmit - loop back @skb
2880 * @skb: buffer to transmit
2881 */
7026b1dd 2882int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
95603e22
MM
2883{
2884 skb_reset_mac_header(skb);
2885 __skb_pull(skb, skb_network_offset(skb));
2886 skb->pkt_type = PACKET_LOOPBACK;
2887 skb->ip_summed = CHECKSUM_UNNECESSARY;
2888 WARN_ON(!skb_dst(skb));
2889 skb_dst_force(skb);
2890 netif_rx_ni(skb);
2891 return 0;
2892}
2893EXPORT_SYMBOL(dev_loopback_xmit);
2894
d29f749e 2895/**
9d08dd3d 2896 * __dev_queue_xmit - transmit a buffer
d29f749e 2897 * @skb: buffer to transmit
9d08dd3d 2898 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
2899 *
2900 * Queue a buffer for transmission to a network device. The caller must
2901 * have set the device and priority and built the buffer before calling
2902 * this function. The function can be called from an interrupt.
2903 *
2904 * A negative errno code is returned on a failure. A success does not
2905 * guarantee the frame will be transmitted as it may be dropped due
2906 * to congestion or traffic shaping.
2907 *
2908 * -----------------------------------------------------------------------------------
2909 * I notice this method can also return errors from the queue disciplines,
2910 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2911 * be positive.
2912 *
2913 * Regardless of the return value, the skb is consumed, so it is currently
2914 * difficult to retry a send to this method. (You can bump the ref count
2915 * before sending to hold a reference for retry if you are careful.)
2916 *
2917 * When calling this method, interrupts MUST be enabled. This is because
2918 * the BH enable code must have IRQs enabled so that it will not deadlock.
2919 * --BLG
2920 */
0a59f3a9 2921static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
2922{
2923 struct net_device *dev = skb->dev;
dc2b4847 2924 struct netdev_queue *txq;
1da177e4
LT
2925 struct Qdisc *q;
2926 int rc = -ENOMEM;
2927
6d1ccff6
ED
2928 skb_reset_mac_header(skb);
2929
e7fd2885
WB
2930 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2931 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2932
4ec93edb
YH
2933 /* Disable soft irqs for various locks below. Also
2934 * stops preemption for RCU.
1da177e4 2935 */
4ec93edb 2936 rcu_read_lock_bh();
1da177e4 2937
5bc1421e
NH
2938 skb_update_prio(skb);
2939
02875878
ED
2940 /* If device/qdisc don't need skb->dst, release it right now while
2941 * its hot in this cpu cache.
2942 */
2943 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2944 skb_dst_drop(skb);
2945 else
2946 skb_dst_force(skb);
2947
f663dd9a 2948 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 2949 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2950
1da177e4 2951#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2952 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 2953#endif
cf66ba58 2954 trace_net_dev_queue(skb);
1da177e4 2955 if (q->enqueue) {
bbd8a0d3 2956 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2957 goto out;
1da177e4
LT
2958 }
2959
2960 /* The device has no queue. Common case for software devices:
2961 loopback, all the sorts of tunnels...
2962
932ff279
HX
2963 Really, it is unlikely that netif_tx_lock protection is necessary
2964 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2965 counters.)
2966 However, it is possible, that they rely on protection
2967 made by us here.
2968
2969 Check this and shot the lock. It is not prone from deadlocks.
2970 Either shot noqueue qdisc, it is even simpler 8)
2971 */
2972 if (dev->flags & IFF_UP) {
2973 int cpu = smp_processor_id(); /* ok because BHs are off */
2974
c773e847 2975 if (txq->xmit_lock_owner != cpu) {
1da177e4 2976
745e20f1
ED
2977 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2978 goto recursion_alert;
2979
1f59533f
JDB
2980 skb = validate_xmit_skb(skb, dev);
2981 if (!skb)
2982 goto drop;
2983
c773e847 2984 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2985
73466498 2986 if (!netif_xmit_stopped(txq)) {
745e20f1 2987 __this_cpu_inc(xmit_recursion);
ce93718f 2988 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 2989 __this_cpu_dec(xmit_recursion);
572a9d7b 2990 if (dev_xmit_complete(rc)) {
c773e847 2991 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2992 goto out;
2993 }
2994 }
c773e847 2995 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
2996 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2997 dev->name);
1da177e4
LT
2998 } else {
2999 /* Recursion is detected! It is possible,
745e20f1
ED
3000 * unfortunately
3001 */
3002recursion_alert:
e87cc472
JP
3003 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3004 dev->name);
1da177e4
LT
3005 }
3006 }
3007
3008 rc = -ENETDOWN;
1f59533f 3009drop:
d4828d85 3010 rcu_read_unlock_bh();
1da177e4 3011
015f0688 3012 atomic_long_inc(&dev->tx_dropped);
1f59533f 3013 kfree_skb_list(skb);
1da177e4
LT
3014 return rc;
3015out:
d4828d85 3016 rcu_read_unlock_bh();
1da177e4
LT
3017 return rc;
3018}
f663dd9a 3019
7026b1dd 3020int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
f663dd9a
JW
3021{
3022 return __dev_queue_xmit(skb, NULL);
3023}
7026b1dd 3024EXPORT_SYMBOL(dev_queue_xmit_sk);
1da177e4 3025
f663dd9a
JW
3026int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3027{
3028 return __dev_queue_xmit(skb, accel_priv);
3029}
3030EXPORT_SYMBOL(dev_queue_xmit_accel);
3031
1da177e4
LT
3032
3033/*=======================================================================
3034 Receiver routines
3035 =======================================================================*/
3036
6b2bedc3 3037int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3038EXPORT_SYMBOL(netdev_max_backlog);
3039
3b098e2d 3040int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3041int netdev_budget __read_mostly = 300;
3042int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3043
eecfd7c4
ED
3044/* Called with irq disabled */
3045static inline void ____napi_schedule(struct softnet_data *sd,
3046 struct napi_struct *napi)
3047{
3048 list_add_tail(&napi->poll_list, &sd->poll_list);
3049 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3050}
3051
bfb564e7
KK
3052#ifdef CONFIG_RPS
3053
3054/* One global table that all flow-based protocols share. */
6e3f7faf 3055struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3056EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3057u32 rps_cpu_mask __read_mostly;
3058EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3059
c5905afb 3060struct static_key rps_needed __read_mostly;
adc9300e 3061
c445477d
BH
3062static struct rps_dev_flow *
3063set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3064 struct rps_dev_flow *rflow, u16 next_cpu)
3065{
09994d1b 3066 if (next_cpu != RPS_NO_CPU) {
c445477d
BH
3067#ifdef CONFIG_RFS_ACCEL
3068 struct netdev_rx_queue *rxqueue;
3069 struct rps_dev_flow_table *flow_table;
3070 struct rps_dev_flow *old_rflow;
3071 u32 flow_id;
3072 u16 rxq_index;
3073 int rc;
3074
3075 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3076 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3077 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3078 goto out;
3079 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3080 if (rxq_index == skb_get_rx_queue(skb))
3081 goto out;
3082
3083 rxqueue = dev->_rx + rxq_index;
3084 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3085 if (!flow_table)
3086 goto out;
61b905da 3087 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3088 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3089 rxq_index, flow_id);
3090 if (rc < 0)
3091 goto out;
3092 old_rflow = rflow;
3093 rflow = &flow_table->flows[flow_id];
c445477d
BH
3094 rflow->filter = rc;
3095 if (old_rflow->filter == rflow->filter)
3096 old_rflow->filter = RPS_NO_FILTER;
3097 out:
3098#endif
3099 rflow->last_qtail =
09994d1b 3100 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3101 }
3102
09994d1b 3103 rflow->cpu = next_cpu;
c445477d
BH
3104 return rflow;
3105}
3106
bfb564e7
KK
3107/*
3108 * get_rps_cpu is called from netif_receive_skb and returns the target
3109 * CPU from the RPS map of the receiving queue for a given skb.
3110 * rcu_read_lock must be held on entry.
3111 */
3112static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3113 struct rps_dev_flow **rflowp)
3114{
567e4b79
ED
3115 const struct rps_sock_flow_table *sock_flow_table;
3116 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3117 struct rps_dev_flow_table *flow_table;
567e4b79 3118 struct rps_map *map;
bfb564e7 3119 int cpu = -1;
567e4b79 3120 u32 tcpu;
61b905da 3121 u32 hash;
bfb564e7
KK
3122
3123 if (skb_rx_queue_recorded(skb)) {
3124 u16 index = skb_get_rx_queue(skb);
567e4b79 3125
62fe0b40
BH
3126 if (unlikely(index >= dev->real_num_rx_queues)) {
3127 WARN_ONCE(dev->real_num_rx_queues > 1,
3128 "%s received packet on queue %u, but number "
3129 "of RX queues is %u\n",
3130 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3131 goto done;
3132 }
567e4b79
ED
3133 rxqueue += index;
3134 }
bfb564e7 3135
567e4b79
ED
3136 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3137
3138 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3139 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3140 if (!flow_table && !map)
bfb564e7
KK
3141 goto done;
3142
2d47b459 3143 skb_reset_network_header(skb);
61b905da
TH
3144 hash = skb_get_hash(skb);
3145 if (!hash)
bfb564e7
KK
3146 goto done;
3147
fec5e652
TH
3148 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3149 if (flow_table && sock_flow_table) {
fec5e652 3150 struct rps_dev_flow *rflow;
567e4b79
ED
3151 u32 next_cpu;
3152 u32 ident;
3153
3154 /* First check into global flow table if there is a match */
3155 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3156 if ((ident ^ hash) & ~rps_cpu_mask)
3157 goto try_rps;
fec5e652 3158
567e4b79
ED
3159 next_cpu = ident & rps_cpu_mask;
3160
3161 /* OK, now we know there is a match,
3162 * we can look at the local (per receive queue) flow table
3163 */
61b905da 3164 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3165 tcpu = rflow->cpu;
3166
fec5e652
TH
3167 /*
3168 * If the desired CPU (where last recvmsg was done) is
3169 * different from current CPU (one in the rx-queue flow
3170 * table entry), switch if one of the following holds:
3171 * - Current CPU is unset (equal to RPS_NO_CPU).
3172 * - Current CPU is offline.
3173 * - The current CPU's queue tail has advanced beyond the
3174 * last packet that was enqueued using this table entry.
3175 * This guarantees that all previous packets for the flow
3176 * have been dequeued, thus preserving in order delivery.
3177 */
3178 if (unlikely(tcpu != next_cpu) &&
3179 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3180 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3181 rflow->last_qtail)) >= 0)) {
3182 tcpu = next_cpu;
c445477d 3183 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3184 }
c445477d 3185
fec5e652
TH
3186 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3187 *rflowp = rflow;
3188 cpu = tcpu;
3189 goto done;
3190 }
3191 }
3192
567e4b79
ED
3193try_rps:
3194
0a9627f2 3195 if (map) {
8fc54f68 3196 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3197 if (cpu_online(tcpu)) {
3198 cpu = tcpu;
3199 goto done;
3200 }
3201 }
3202
3203done:
0a9627f2
TH
3204 return cpu;
3205}
3206
c445477d
BH
3207#ifdef CONFIG_RFS_ACCEL
3208
3209/**
3210 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3211 * @dev: Device on which the filter was set
3212 * @rxq_index: RX queue index
3213 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3214 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3215 *
3216 * Drivers that implement ndo_rx_flow_steer() should periodically call
3217 * this function for each installed filter and remove the filters for
3218 * which it returns %true.
3219 */
3220bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3221 u32 flow_id, u16 filter_id)
3222{
3223 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3224 struct rps_dev_flow_table *flow_table;
3225 struct rps_dev_flow *rflow;
3226 bool expire = true;
3227 int cpu;
3228
3229 rcu_read_lock();
3230 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3231 if (flow_table && flow_id <= flow_table->mask) {
3232 rflow = &flow_table->flows[flow_id];
3233 cpu = ACCESS_ONCE(rflow->cpu);
3234 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3235 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3236 rflow->last_qtail) <
3237 (int)(10 * flow_table->mask)))
3238 expire = false;
3239 }
3240 rcu_read_unlock();
3241 return expire;
3242}
3243EXPORT_SYMBOL(rps_may_expire_flow);
3244
3245#endif /* CONFIG_RFS_ACCEL */
3246
0a9627f2 3247/* Called from hardirq (IPI) context */
e36fa2f7 3248static void rps_trigger_softirq(void *data)
0a9627f2 3249{
e36fa2f7
ED
3250 struct softnet_data *sd = data;
3251
eecfd7c4 3252 ____napi_schedule(sd, &sd->backlog);
dee42870 3253 sd->received_rps++;
0a9627f2 3254}
e36fa2f7 3255
fec5e652 3256#endif /* CONFIG_RPS */
0a9627f2 3257
e36fa2f7
ED
3258/*
3259 * Check if this softnet_data structure is another cpu one
3260 * If yes, queue it to our IPI list and return 1
3261 * If no, return 0
3262 */
3263static int rps_ipi_queued(struct softnet_data *sd)
3264{
3265#ifdef CONFIG_RPS
903ceff7 3266 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3267
3268 if (sd != mysd) {
3269 sd->rps_ipi_next = mysd->rps_ipi_list;
3270 mysd->rps_ipi_list = sd;
3271
3272 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3273 return 1;
3274 }
3275#endif /* CONFIG_RPS */
3276 return 0;
3277}
3278
99bbc707
WB
3279#ifdef CONFIG_NET_FLOW_LIMIT
3280int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3281#endif
3282
3283static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3284{
3285#ifdef CONFIG_NET_FLOW_LIMIT
3286 struct sd_flow_limit *fl;
3287 struct softnet_data *sd;
3288 unsigned int old_flow, new_flow;
3289
3290 if (qlen < (netdev_max_backlog >> 1))
3291 return false;
3292
903ceff7 3293 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3294
3295 rcu_read_lock();
3296 fl = rcu_dereference(sd->flow_limit);
3297 if (fl) {
3958afa1 3298 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3299 old_flow = fl->history[fl->history_head];
3300 fl->history[fl->history_head] = new_flow;
3301
3302 fl->history_head++;
3303 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3304
3305 if (likely(fl->buckets[old_flow]))
3306 fl->buckets[old_flow]--;
3307
3308 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3309 fl->count++;
3310 rcu_read_unlock();
3311 return true;
3312 }
3313 }
3314 rcu_read_unlock();
3315#endif
3316 return false;
3317}
3318
0a9627f2
TH
3319/*
3320 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3321 * queue (may be a remote CPU queue).
3322 */
fec5e652
TH
3323static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3324 unsigned int *qtail)
0a9627f2 3325{
e36fa2f7 3326 struct softnet_data *sd;
0a9627f2 3327 unsigned long flags;
99bbc707 3328 unsigned int qlen;
0a9627f2 3329
e36fa2f7 3330 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3331
3332 local_irq_save(flags);
0a9627f2 3333
e36fa2f7 3334 rps_lock(sd);
99bbc707
WB
3335 qlen = skb_queue_len(&sd->input_pkt_queue);
3336 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3337 if (qlen) {
0a9627f2 3338enqueue:
e36fa2f7 3339 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3340 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3341 rps_unlock(sd);
152102c7 3342 local_irq_restore(flags);
0a9627f2
TH
3343 return NET_RX_SUCCESS;
3344 }
3345
ebda37c2
ED
3346 /* Schedule NAPI for backlog device
3347 * We can use non atomic operation since we own the queue lock
3348 */
3349 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3350 if (!rps_ipi_queued(sd))
eecfd7c4 3351 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3352 }
3353 goto enqueue;
3354 }
3355
dee42870 3356 sd->dropped++;
e36fa2f7 3357 rps_unlock(sd);
0a9627f2 3358
0a9627f2
TH
3359 local_irq_restore(flags);
3360
caf586e5 3361 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3362 kfree_skb(skb);
3363 return NET_RX_DROP;
3364}
1da177e4 3365
ae78dbfa 3366static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3367{
b0e28f1e 3368 int ret;
1da177e4 3369
588f0330 3370 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3371
cf66ba58 3372 trace_netif_rx(skb);
df334545 3373#ifdef CONFIG_RPS
c5905afb 3374 if (static_key_false(&rps_needed)) {
fec5e652 3375 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3376 int cpu;
3377
cece1945 3378 preempt_disable();
b0e28f1e 3379 rcu_read_lock();
fec5e652
TH
3380
3381 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3382 if (cpu < 0)
3383 cpu = smp_processor_id();
fec5e652
TH
3384
3385 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3386
b0e28f1e 3387 rcu_read_unlock();
cece1945 3388 preempt_enable();
adc9300e
ED
3389 } else
3390#endif
fec5e652
TH
3391 {
3392 unsigned int qtail;
3393 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3394 put_cpu();
3395 }
b0e28f1e 3396 return ret;
1da177e4 3397}
ae78dbfa
BH
3398
3399/**
3400 * netif_rx - post buffer to the network code
3401 * @skb: buffer to post
3402 *
3403 * This function receives a packet from a device driver and queues it for
3404 * the upper (protocol) levels to process. It always succeeds. The buffer
3405 * may be dropped during processing for congestion control or by the
3406 * protocol layers.
3407 *
3408 * return values:
3409 * NET_RX_SUCCESS (no congestion)
3410 * NET_RX_DROP (packet was dropped)
3411 *
3412 */
3413
3414int netif_rx(struct sk_buff *skb)
3415{
3416 trace_netif_rx_entry(skb);
3417
3418 return netif_rx_internal(skb);
3419}
d1b19dff 3420EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3421
3422int netif_rx_ni(struct sk_buff *skb)
3423{
3424 int err;
3425
ae78dbfa
BH
3426 trace_netif_rx_ni_entry(skb);
3427
1da177e4 3428 preempt_disable();
ae78dbfa 3429 err = netif_rx_internal(skb);
1da177e4
LT
3430 if (local_softirq_pending())
3431 do_softirq();
3432 preempt_enable();
3433
3434 return err;
3435}
1da177e4
LT
3436EXPORT_SYMBOL(netif_rx_ni);
3437
1da177e4
LT
3438static void net_tx_action(struct softirq_action *h)
3439{
903ceff7 3440 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3441
3442 if (sd->completion_queue) {
3443 struct sk_buff *clist;
3444
3445 local_irq_disable();
3446 clist = sd->completion_queue;
3447 sd->completion_queue = NULL;
3448 local_irq_enable();
3449
3450 while (clist) {
3451 struct sk_buff *skb = clist;
3452 clist = clist->next;
3453
547b792c 3454 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3455 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3456 trace_consume_skb(skb);
3457 else
3458 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3459 __kfree_skb(skb);
3460 }
3461 }
3462
3463 if (sd->output_queue) {
37437bb2 3464 struct Qdisc *head;
1da177e4
LT
3465
3466 local_irq_disable();
3467 head = sd->output_queue;
3468 sd->output_queue = NULL;
a9cbd588 3469 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3470 local_irq_enable();
3471
3472 while (head) {
37437bb2
DM
3473 struct Qdisc *q = head;
3474 spinlock_t *root_lock;
3475
1da177e4
LT
3476 head = head->next_sched;
3477
5fb66229 3478 root_lock = qdisc_lock(q);
37437bb2 3479 if (spin_trylock(root_lock)) {
4e857c58 3480 smp_mb__before_atomic();
def82a1d
JP
3481 clear_bit(__QDISC_STATE_SCHED,
3482 &q->state);
37437bb2
DM
3483 qdisc_run(q);
3484 spin_unlock(root_lock);
1da177e4 3485 } else {
195648bb 3486 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3487 &q->state)) {
195648bb 3488 __netif_reschedule(q);
e8a83e10 3489 } else {
4e857c58 3490 smp_mb__before_atomic();
e8a83e10
JP
3491 clear_bit(__QDISC_STATE_SCHED,
3492 &q->state);
3493 }
1da177e4
LT
3494 }
3495 }
3496 }
3497}
3498
ab95bfe0
JP
3499#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3500 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3501/* This hook is defined here for ATM LANE */
3502int (*br_fdb_test_addr_hook)(struct net_device *dev,
3503 unsigned char *addr) __read_mostly;
4fb019a0 3504EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3505#endif
1da177e4 3506
1da177e4
LT
3507#ifdef CONFIG_NET_CLS_ACT
3508/* TODO: Maybe we should just force sch_ingress to be compiled in
3509 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3510 * a compare and 2 stores extra right now if we dont have it on
3511 * but have CONFIG_NET_CLS_ACT
25985edc
LDM
3512 * NOTE: This doesn't stop any functionality; if you dont have
3513 * the ingress scheduler, you just can't add policies on ingress.
1da177e4
LT
3514 *
3515 */
24824a09 3516static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
1da177e4 3517{
1da177e4 3518 struct net_device *dev = skb->dev;
f697c3e8 3519 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
3520 int result = TC_ACT_OK;
3521 struct Qdisc *q;
4ec93edb 3522
de384830 3523 if (unlikely(MAX_RED_LOOP < ttl++)) {
e87cc472
JP
3524 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3525 skb->skb_iif, dev->ifindex);
f697c3e8
HX
3526 return TC_ACT_SHOT;
3527 }
1da177e4 3528
f697c3e8
HX
3529 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3530 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 3531
46e5da40 3532 q = rcu_dereference(rxq->qdisc);
8d50b53d 3533 if (q != &noop_qdisc) {
83874000 3534 spin_lock(qdisc_lock(q));
a9312ae8
DM
3535 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3536 result = qdisc_enqueue_root(skb, q);
83874000
DM
3537 spin_unlock(qdisc_lock(q));
3538 }
f697c3e8
HX
3539
3540 return result;
3541}
86e65da9 3542
f697c3e8
HX
3543static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3544 struct packet_type **pt_prev,
3545 int *ret, struct net_device *orig_dev)
3546{
24824a09
ED
3547 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3548
46e5da40 3549 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
f697c3e8 3550 goto out;
1da177e4 3551
f697c3e8
HX
3552 if (*pt_prev) {
3553 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3554 *pt_prev = NULL;
1da177e4
LT
3555 }
3556
24824a09 3557 switch (ing_filter(skb, rxq)) {
f697c3e8
HX
3558 case TC_ACT_SHOT:
3559 case TC_ACT_STOLEN:
3560 kfree_skb(skb);
3561 return NULL;
3562 }
3563
3564out:
3565 skb->tc_verd = 0;
3566 return skb;
1da177e4
LT
3567}
3568#endif
3569
ab95bfe0
JP
3570/**
3571 * netdev_rx_handler_register - register receive handler
3572 * @dev: device to register a handler for
3573 * @rx_handler: receive handler to register
93e2c32b 3574 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3575 *
e227867f 3576 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3577 * called from __netif_receive_skb. A negative errno code is returned
3578 * on a failure.
3579 *
3580 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3581 *
3582 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3583 */
3584int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3585 rx_handler_func_t *rx_handler,
3586 void *rx_handler_data)
ab95bfe0
JP
3587{
3588 ASSERT_RTNL();
3589
3590 if (dev->rx_handler)
3591 return -EBUSY;
3592
00cfec37 3593 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3594 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3595 rcu_assign_pointer(dev->rx_handler, rx_handler);
3596
3597 return 0;
3598}
3599EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3600
3601/**
3602 * netdev_rx_handler_unregister - unregister receive handler
3603 * @dev: device to unregister a handler from
3604 *
166ec369 3605 * Unregister a receive handler from a device.
ab95bfe0
JP
3606 *
3607 * The caller must hold the rtnl_mutex.
3608 */
3609void netdev_rx_handler_unregister(struct net_device *dev)
3610{
3611
3612 ASSERT_RTNL();
a9b3cd7f 3613 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3614 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3615 * section has a guarantee to see a non NULL rx_handler_data
3616 * as well.
3617 */
3618 synchronize_net();
a9b3cd7f 3619 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3620}
3621EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3622
b4b9e355
MG
3623/*
3624 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3625 * the special handling of PFMEMALLOC skbs.
3626 */
3627static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3628{
3629 switch (skb->protocol) {
2b8837ae
JP
3630 case htons(ETH_P_ARP):
3631 case htons(ETH_P_IP):
3632 case htons(ETH_P_IPV6):
3633 case htons(ETH_P_8021Q):
3634 case htons(ETH_P_8021AD):
b4b9e355
MG
3635 return true;
3636 default:
3637 return false;
3638 }
3639}
3640
9754e293 3641static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3642{
3643 struct packet_type *ptype, *pt_prev;
ab95bfe0 3644 rx_handler_func_t *rx_handler;
f2ccd8fa 3645 struct net_device *orig_dev;
8a4eb573 3646 bool deliver_exact = false;
1da177e4 3647 int ret = NET_RX_DROP;
252e3346 3648 __be16 type;
1da177e4 3649
588f0330 3650 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3651
cf66ba58 3652 trace_netif_receive_skb(skb);
9b22ea56 3653
cc9bd5ce 3654 orig_dev = skb->dev;
8f903c70 3655
c1d2bbe1 3656 skb_reset_network_header(skb);
fda55eca
ED
3657 if (!skb_transport_header_was_set(skb))
3658 skb_reset_transport_header(skb);
0b5c9db1 3659 skb_reset_mac_len(skb);
1da177e4
LT
3660
3661 pt_prev = NULL;
3662
3663 rcu_read_lock();
3664
63d8ea7f 3665another_round:
b6858177 3666 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3667
3668 __this_cpu_inc(softnet_data.processed);
3669
8ad227ff
PM
3670 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3671 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3672 skb = skb_vlan_untag(skb);
bcc6d479 3673 if (unlikely(!skb))
b4b9e355 3674 goto unlock;
bcc6d479
JP
3675 }
3676
1da177e4
LT
3677#ifdef CONFIG_NET_CLS_ACT
3678 if (skb->tc_verd & TC_NCLS) {
3679 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3680 goto ncls;
3681 }
3682#endif
3683
9754e293 3684 if (pfmemalloc)
b4b9e355
MG
3685 goto skip_taps;
3686
1da177e4 3687 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3688 if (pt_prev)
3689 ret = deliver_skb(skb, pt_prev, orig_dev);
3690 pt_prev = ptype;
3691 }
3692
3693 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3694 if (pt_prev)
3695 ret = deliver_skb(skb, pt_prev, orig_dev);
3696 pt_prev = ptype;
1da177e4
LT
3697 }
3698
b4b9e355 3699skip_taps:
1da177e4 3700#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
3701 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3702 if (!skb)
b4b9e355 3703 goto unlock;
1da177e4
LT
3704ncls:
3705#endif
3706
9754e293 3707 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3708 goto drop;
3709
df8a39de 3710 if (skb_vlan_tag_present(skb)) {
2425717b
JF
3711 if (pt_prev) {
3712 ret = deliver_skb(skb, pt_prev, orig_dev);
3713 pt_prev = NULL;
3714 }
48cc32d3 3715 if (vlan_do_receive(&skb))
2425717b
JF
3716 goto another_round;
3717 else if (unlikely(!skb))
b4b9e355 3718 goto unlock;
2425717b
JF
3719 }
3720
48cc32d3 3721 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3722 if (rx_handler) {
3723 if (pt_prev) {
3724 ret = deliver_skb(skb, pt_prev, orig_dev);
3725 pt_prev = NULL;
3726 }
8a4eb573
JP
3727 switch (rx_handler(&skb)) {
3728 case RX_HANDLER_CONSUMED:
3bc1b1ad 3729 ret = NET_RX_SUCCESS;
b4b9e355 3730 goto unlock;
8a4eb573 3731 case RX_HANDLER_ANOTHER:
63d8ea7f 3732 goto another_round;
8a4eb573
JP
3733 case RX_HANDLER_EXACT:
3734 deliver_exact = true;
3735 case RX_HANDLER_PASS:
3736 break;
3737 default:
3738 BUG();
3739 }
ab95bfe0 3740 }
1da177e4 3741
df8a39de
JP
3742 if (unlikely(skb_vlan_tag_present(skb))) {
3743 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
3744 skb->pkt_type = PACKET_OTHERHOST;
3745 /* Note: we might in the future use prio bits
3746 * and set skb->priority like in vlan_do_receive()
3747 * For the time being, just ignore Priority Code Point
3748 */
3749 skb->vlan_tci = 0;
3750 }
48cc32d3 3751
7866a621
SN
3752 type = skb->protocol;
3753
63d8ea7f 3754 /* deliver only exact match when indicated */
7866a621
SN
3755 if (likely(!deliver_exact)) {
3756 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3757 &ptype_base[ntohs(type) &
3758 PTYPE_HASH_MASK]);
3759 }
1f3c8804 3760
7866a621
SN
3761 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3762 &orig_dev->ptype_specific);
3763
3764 if (unlikely(skb->dev != orig_dev)) {
3765 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3766 &skb->dev->ptype_specific);
1da177e4
LT
3767 }
3768
3769 if (pt_prev) {
1080e512 3770 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3771 goto drop;
1080e512
MT
3772 else
3773 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3774 } else {
b4b9e355 3775drop:
caf586e5 3776 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3777 kfree_skb(skb);
3778 /* Jamal, now you will not able to escape explaining
3779 * me how you were going to use this. :-)
3780 */
3781 ret = NET_RX_DROP;
3782 }
3783
b4b9e355 3784unlock:
1da177e4 3785 rcu_read_unlock();
9754e293
DM
3786 return ret;
3787}
3788
3789static int __netif_receive_skb(struct sk_buff *skb)
3790{
3791 int ret;
3792
3793 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3794 unsigned long pflags = current->flags;
3795
3796 /*
3797 * PFMEMALLOC skbs are special, they should
3798 * - be delivered to SOCK_MEMALLOC sockets only
3799 * - stay away from userspace
3800 * - have bounded memory usage
3801 *
3802 * Use PF_MEMALLOC as this saves us from propagating the allocation
3803 * context down to all allocation sites.
3804 */
3805 current->flags |= PF_MEMALLOC;
3806 ret = __netif_receive_skb_core(skb, true);
3807 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3808 } else
3809 ret = __netif_receive_skb_core(skb, false);
3810
1da177e4
LT
3811 return ret;
3812}
0a9627f2 3813
ae78dbfa 3814static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3815{
588f0330 3816 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3817
c1f19b51
RC
3818 if (skb_defer_rx_timestamp(skb))
3819 return NET_RX_SUCCESS;
3820
df334545 3821#ifdef CONFIG_RPS
c5905afb 3822 if (static_key_false(&rps_needed)) {
3b098e2d
ED
3823 struct rps_dev_flow voidflow, *rflow = &voidflow;
3824 int cpu, ret;
fec5e652 3825
3b098e2d
ED
3826 rcu_read_lock();
3827
3828 cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3829
3b098e2d
ED
3830 if (cpu >= 0) {
3831 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3832 rcu_read_unlock();
adc9300e 3833 return ret;
3b098e2d 3834 }
adc9300e 3835 rcu_read_unlock();
fec5e652 3836 }
1e94d72f 3837#endif
adc9300e 3838 return __netif_receive_skb(skb);
0a9627f2 3839}
ae78dbfa
BH
3840
3841/**
3842 * netif_receive_skb - process receive buffer from network
3843 * @skb: buffer to process
3844 *
3845 * netif_receive_skb() is the main receive data processing function.
3846 * It always succeeds. The buffer may be dropped during processing
3847 * for congestion control or by the protocol layers.
3848 *
3849 * This function may only be called from softirq context and interrupts
3850 * should be enabled.
3851 *
3852 * Return values (usually ignored):
3853 * NET_RX_SUCCESS: no congestion
3854 * NET_RX_DROP: packet was dropped
3855 */
7026b1dd 3856int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
ae78dbfa
BH
3857{
3858 trace_netif_receive_skb_entry(skb);
3859
3860 return netif_receive_skb_internal(skb);
3861}
7026b1dd 3862EXPORT_SYMBOL(netif_receive_skb_sk);
1da177e4 3863
88751275
ED
3864/* Network device is going away, flush any packets still pending
3865 * Called with irqs disabled.
3866 */
152102c7 3867static void flush_backlog(void *arg)
6e583ce5 3868{
152102c7 3869 struct net_device *dev = arg;
903ceff7 3870 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
3871 struct sk_buff *skb, *tmp;
3872
e36fa2f7 3873 rps_lock(sd);
6e7676c1 3874 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 3875 if (skb->dev == dev) {
e36fa2f7 3876 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 3877 kfree_skb(skb);
76cc8b13 3878 input_queue_head_incr(sd);
6e583ce5 3879 }
6e7676c1 3880 }
e36fa2f7 3881 rps_unlock(sd);
6e7676c1
CG
3882
3883 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3884 if (skb->dev == dev) {
3885 __skb_unlink(skb, &sd->process_queue);
3886 kfree_skb(skb);
76cc8b13 3887 input_queue_head_incr(sd);
6e7676c1
CG
3888 }
3889 }
6e583ce5
SH
3890}
3891
d565b0a1
HX
3892static int napi_gro_complete(struct sk_buff *skb)
3893{
22061d80 3894 struct packet_offload *ptype;
d565b0a1 3895 __be16 type = skb->protocol;
22061d80 3896 struct list_head *head = &offload_base;
d565b0a1
HX
3897 int err = -ENOENT;
3898
c3c7c254
ED
3899 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3900
fc59f9a3
HX
3901 if (NAPI_GRO_CB(skb)->count == 1) {
3902 skb_shinfo(skb)->gso_size = 0;
d565b0a1 3903 goto out;
fc59f9a3 3904 }
d565b0a1
HX
3905
3906 rcu_read_lock();
3907 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3908 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
3909 continue;
3910
299603e8 3911 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
3912 break;
3913 }
3914 rcu_read_unlock();
3915
3916 if (err) {
3917 WARN_ON(&ptype->list == head);
3918 kfree_skb(skb);
3919 return NET_RX_SUCCESS;
3920 }
3921
3922out:
ae78dbfa 3923 return netif_receive_skb_internal(skb);
d565b0a1
HX
3924}
3925
2e71a6f8
ED
3926/* napi->gro_list contains packets ordered by age.
3927 * youngest packets at the head of it.
3928 * Complete skbs in reverse order to reduce latencies.
3929 */
3930void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 3931{
2e71a6f8 3932 struct sk_buff *skb, *prev = NULL;
d565b0a1 3933
2e71a6f8
ED
3934 /* scan list and build reverse chain */
3935 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3936 skb->prev = prev;
3937 prev = skb;
3938 }
3939
3940 for (skb = prev; skb; skb = prev) {
d565b0a1 3941 skb->next = NULL;
2e71a6f8
ED
3942
3943 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3944 return;
3945
3946 prev = skb->prev;
d565b0a1 3947 napi_gro_complete(skb);
2e71a6f8 3948 napi->gro_count--;
d565b0a1
HX
3949 }
3950
3951 napi->gro_list = NULL;
3952}
86cac58b 3953EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 3954
89c5fa33
ED
3955static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3956{
3957 struct sk_buff *p;
3958 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 3959 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
3960
3961 for (p = napi->gro_list; p; p = p->next) {
3962 unsigned long diffs;
3963
0b4cec8c
TH
3964 NAPI_GRO_CB(p)->flush = 0;
3965
3966 if (hash != skb_get_hash_raw(p)) {
3967 NAPI_GRO_CB(p)->same_flow = 0;
3968 continue;
3969 }
3970
89c5fa33
ED
3971 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3972 diffs |= p->vlan_tci ^ skb->vlan_tci;
3973 if (maclen == ETH_HLEN)
3974 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 3975 skb_mac_header(skb));
89c5fa33
ED
3976 else if (!diffs)
3977 diffs = memcmp(skb_mac_header(p),
a50e233c 3978 skb_mac_header(skb),
89c5fa33
ED
3979 maclen);
3980 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
3981 }
3982}
3983
299603e8
JC
3984static void skb_gro_reset_offset(struct sk_buff *skb)
3985{
3986 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3987 const skb_frag_t *frag0 = &pinfo->frags[0];
3988
3989 NAPI_GRO_CB(skb)->data_offset = 0;
3990 NAPI_GRO_CB(skb)->frag0 = NULL;
3991 NAPI_GRO_CB(skb)->frag0_len = 0;
3992
3993 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3994 pinfo->nr_frags &&
3995 !PageHighMem(skb_frag_page(frag0))) {
3996 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3997 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
3998 }
3999}
4000
a50e233c
ED
4001static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4002{
4003 struct skb_shared_info *pinfo = skb_shinfo(skb);
4004
4005 BUG_ON(skb->end - skb->tail < grow);
4006
4007 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4008
4009 skb->data_len -= grow;
4010 skb->tail += grow;
4011
4012 pinfo->frags[0].page_offset += grow;
4013 skb_frag_size_sub(&pinfo->frags[0], grow);
4014
4015 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4016 skb_frag_unref(skb, 0);
4017 memmove(pinfo->frags, pinfo->frags + 1,
4018 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4019 }
4020}
4021
bb728820 4022static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4023{
4024 struct sk_buff **pp = NULL;
22061d80 4025 struct packet_offload *ptype;
d565b0a1 4026 __be16 type = skb->protocol;
22061d80 4027 struct list_head *head = &offload_base;
0da2afd5 4028 int same_flow;
5b252f0c 4029 enum gro_result ret;
a50e233c 4030 int grow;
d565b0a1 4031
9c62a68d 4032 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4033 goto normal;
4034
5a212329 4035 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4036 goto normal;
4037
89c5fa33
ED
4038 gro_list_prepare(napi, skb);
4039
d565b0a1
HX
4040 rcu_read_lock();
4041 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4042 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4043 continue;
4044
86911732 4045 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4046 skb_reset_mac_len(skb);
d565b0a1
HX
4047 NAPI_GRO_CB(skb)->same_flow = 0;
4048 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4049 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4050 NAPI_GRO_CB(skb)->udp_mark = 0;
15e2396d 4051 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4052
662880f4
TH
4053 /* Setup for GRO checksum validation */
4054 switch (skb->ip_summed) {
4055 case CHECKSUM_COMPLETE:
4056 NAPI_GRO_CB(skb)->csum = skb->csum;
4057 NAPI_GRO_CB(skb)->csum_valid = 1;
4058 NAPI_GRO_CB(skb)->csum_cnt = 0;
4059 break;
4060 case CHECKSUM_UNNECESSARY:
4061 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4062 NAPI_GRO_CB(skb)->csum_valid = 0;
4063 break;
4064 default:
4065 NAPI_GRO_CB(skb)->csum_cnt = 0;
4066 NAPI_GRO_CB(skb)->csum_valid = 0;
4067 }
d565b0a1 4068
f191a1d1 4069 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4070 break;
4071 }
4072 rcu_read_unlock();
4073
4074 if (&ptype->list == head)
4075 goto normal;
4076
0da2afd5 4077 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4078 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4079
d565b0a1
HX
4080 if (pp) {
4081 struct sk_buff *nskb = *pp;
4082
4083 *pp = nskb->next;
4084 nskb->next = NULL;
4085 napi_gro_complete(nskb);
4ae5544f 4086 napi->gro_count--;
d565b0a1
HX
4087 }
4088
0da2afd5 4089 if (same_flow)
d565b0a1
HX
4090 goto ok;
4091
600adc18 4092 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4093 goto normal;
d565b0a1 4094
600adc18
ED
4095 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4096 struct sk_buff *nskb = napi->gro_list;
4097
4098 /* locate the end of the list to select the 'oldest' flow */
4099 while (nskb->next) {
4100 pp = &nskb->next;
4101 nskb = *pp;
4102 }
4103 *pp = NULL;
4104 nskb->next = NULL;
4105 napi_gro_complete(nskb);
4106 } else {
4107 napi->gro_count++;
4108 }
d565b0a1 4109 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4110 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4111 NAPI_GRO_CB(skb)->last = skb;
86911732 4112 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4113 skb->next = napi->gro_list;
4114 napi->gro_list = skb;
5d0d9be8 4115 ret = GRO_HELD;
d565b0a1 4116
ad0f9904 4117pull:
a50e233c
ED
4118 grow = skb_gro_offset(skb) - skb_headlen(skb);
4119 if (grow > 0)
4120 gro_pull_from_frag0(skb, grow);
d565b0a1 4121ok:
5d0d9be8 4122 return ret;
d565b0a1
HX
4123
4124normal:
ad0f9904
HX
4125 ret = GRO_NORMAL;
4126 goto pull;
5d38a079 4127}
96e93eab 4128
bf5a755f
JC
4129struct packet_offload *gro_find_receive_by_type(__be16 type)
4130{
4131 struct list_head *offload_head = &offload_base;
4132 struct packet_offload *ptype;
4133
4134 list_for_each_entry_rcu(ptype, offload_head, list) {
4135 if (ptype->type != type || !ptype->callbacks.gro_receive)
4136 continue;
4137 return ptype;
4138 }
4139 return NULL;
4140}
e27a2f83 4141EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4142
4143struct packet_offload *gro_find_complete_by_type(__be16 type)
4144{
4145 struct list_head *offload_head = &offload_base;
4146 struct packet_offload *ptype;
4147
4148 list_for_each_entry_rcu(ptype, offload_head, list) {
4149 if (ptype->type != type || !ptype->callbacks.gro_complete)
4150 continue;
4151 return ptype;
4152 }
4153 return NULL;
4154}
e27a2f83 4155EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4156
bb728820 4157static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4158{
5d0d9be8
HX
4159 switch (ret) {
4160 case GRO_NORMAL:
ae78dbfa 4161 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4162 ret = GRO_DROP;
4163 break;
5d38a079 4164
5d0d9be8 4165 case GRO_DROP:
5d38a079
HX
4166 kfree_skb(skb);
4167 break;
5b252f0c 4168
daa86548 4169 case GRO_MERGED_FREE:
d7e8883c
ED
4170 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4171 kmem_cache_free(skbuff_head_cache, skb);
4172 else
4173 __kfree_skb(skb);
daa86548
ED
4174 break;
4175
5b252f0c
BH
4176 case GRO_HELD:
4177 case GRO_MERGED:
4178 break;
5d38a079
HX
4179 }
4180
c7c4b3b6 4181 return ret;
5d0d9be8 4182}
5d0d9be8 4183
c7c4b3b6 4184gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4185{
ae78dbfa 4186 trace_napi_gro_receive_entry(skb);
86911732 4187
a50e233c
ED
4188 skb_gro_reset_offset(skb);
4189
89c5fa33 4190 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4191}
4192EXPORT_SYMBOL(napi_gro_receive);
4193
d0c2b0d2 4194static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4195{
93a35f59
ED
4196 if (unlikely(skb->pfmemalloc)) {
4197 consume_skb(skb);
4198 return;
4199 }
96e93eab 4200 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4201 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4202 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4203 skb->vlan_tci = 0;
66c46d74 4204 skb->dev = napi->dev;
6d152e23 4205 skb->skb_iif = 0;
c3caf119
JC
4206 skb->encapsulation = 0;
4207 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4208 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4209
4210 napi->skb = skb;
4211}
96e93eab 4212
76620aaf 4213struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4214{
5d38a079 4215 struct sk_buff *skb = napi->skb;
5d38a079
HX
4216
4217 if (!skb) {
fd11a83d 4218 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4219 napi->skb = skb;
80595d59 4220 }
96e93eab
HX
4221 return skb;
4222}
76620aaf 4223EXPORT_SYMBOL(napi_get_frags);
96e93eab 4224
a50e233c
ED
4225static gro_result_t napi_frags_finish(struct napi_struct *napi,
4226 struct sk_buff *skb,
4227 gro_result_t ret)
96e93eab 4228{
5d0d9be8
HX
4229 switch (ret) {
4230 case GRO_NORMAL:
a50e233c
ED
4231 case GRO_HELD:
4232 __skb_push(skb, ETH_HLEN);
4233 skb->protocol = eth_type_trans(skb, skb->dev);
4234 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4235 ret = GRO_DROP;
86911732 4236 break;
5d38a079 4237
5d0d9be8 4238 case GRO_DROP:
5d0d9be8
HX
4239 case GRO_MERGED_FREE:
4240 napi_reuse_skb(napi, skb);
4241 break;
5b252f0c
BH
4242
4243 case GRO_MERGED:
4244 break;
5d0d9be8 4245 }
5d38a079 4246
c7c4b3b6 4247 return ret;
5d38a079 4248}
5d0d9be8 4249
a50e233c
ED
4250/* Upper GRO stack assumes network header starts at gro_offset=0
4251 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4252 * We copy ethernet header into skb->data to have a common layout.
4253 */
4adb9c4a 4254static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4255{
4256 struct sk_buff *skb = napi->skb;
a50e233c
ED
4257 const struct ethhdr *eth;
4258 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4259
4260 napi->skb = NULL;
4261
a50e233c
ED
4262 skb_reset_mac_header(skb);
4263 skb_gro_reset_offset(skb);
4264
4265 eth = skb_gro_header_fast(skb, 0);
4266 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4267 eth = skb_gro_header_slow(skb, hlen, 0);
4268 if (unlikely(!eth)) {
4269 napi_reuse_skb(napi, skb);
4270 return NULL;
4271 }
4272 } else {
4273 gro_pull_from_frag0(skb, hlen);
4274 NAPI_GRO_CB(skb)->frag0 += hlen;
4275 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4276 }
a50e233c
ED
4277 __skb_pull(skb, hlen);
4278
4279 /*
4280 * This works because the only protocols we care about don't require
4281 * special handling.
4282 * We'll fix it up properly in napi_frags_finish()
4283 */
4284 skb->protocol = eth->h_proto;
76620aaf 4285
76620aaf
HX
4286 return skb;
4287}
76620aaf 4288
c7c4b3b6 4289gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4290{
76620aaf 4291 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4292
4293 if (!skb)
c7c4b3b6 4294 return GRO_DROP;
5d0d9be8 4295
ae78dbfa
BH
4296 trace_napi_gro_frags_entry(skb);
4297
89c5fa33 4298 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4299}
5d38a079
HX
4300EXPORT_SYMBOL(napi_gro_frags);
4301
573e8fca
TH
4302/* Compute the checksum from gro_offset and return the folded value
4303 * after adding in any pseudo checksum.
4304 */
4305__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4306{
4307 __wsum wsum;
4308 __sum16 sum;
4309
4310 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4311
4312 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4313 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4314 if (likely(!sum)) {
4315 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4316 !skb->csum_complete_sw)
4317 netdev_rx_csum_fault(skb->dev);
4318 }
4319
4320 NAPI_GRO_CB(skb)->csum = wsum;
4321 NAPI_GRO_CB(skb)->csum_valid = 1;
4322
4323 return sum;
4324}
4325EXPORT_SYMBOL(__skb_gro_checksum_complete);
4326
e326bed2 4327/*
855abcf0 4328 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4329 * Note: called with local irq disabled, but exits with local irq enabled.
4330 */
4331static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4332{
4333#ifdef CONFIG_RPS
4334 struct softnet_data *remsd = sd->rps_ipi_list;
4335
4336 if (remsd) {
4337 sd->rps_ipi_list = NULL;
4338
4339 local_irq_enable();
4340
4341 /* Send pending IPI's to kick RPS processing on remote cpus. */
4342 while (remsd) {
4343 struct softnet_data *next = remsd->rps_ipi_next;
4344
4345 if (cpu_online(remsd->cpu))
c46fff2a 4346 smp_call_function_single_async(remsd->cpu,
fce8ad15 4347 &remsd->csd);
e326bed2
ED
4348 remsd = next;
4349 }
4350 } else
4351#endif
4352 local_irq_enable();
4353}
4354
d75b1ade
ED
4355static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4356{
4357#ifdef CONFIG_RPS
4358 return sd->rps_ipi_list != NULL;
4359#else
4360 return false;
4361#endif
4362}
4363
bea3348e 4364static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4365{
4366 int work = 0;
eecfd7c4 4367 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4368
e326bed2
ED
4369 /* Check if we have pending ipi, its better to send them now,
4370 * not waiting net_rx_action() end.
4371 */
d75b1ade 4372 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4373 local_irq_disable();
4374 net_rps_action_and_irq_enable(sd);
4375 }
d75b1ade 4376
bea3348e 4377 napi->weight = weight_p;
6e7676c1 4378 local_irq_disable();
11ef7a89 4379 while (1) {
1da177e4 4380 struct sk_buff *skb;
6e7676c1
CG
4381
4382 while ((skb = __skb_dequeue(&sd->process_queue))) {
4383 local_irq_enable();
4384 __netif_receive_skb(skb);
6e7676c1 4385 local_irq_disable();
76cc8b13
TH
4386 input_queue_head_incr(sd);
4387 if (++work >= quota) {
4388 local_irq_enable();
4389 return work;
4390 }
6e7676c1 4391 }
1da177e4 4392
e36fa2f7 4393 rps_lock(sd);
11ef7a89 4394 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4395 /*
4396 * Inline a custom version of __napi_complete().
4397 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4398 * and NAPI_STATE_SCHED is the only possible flag set
4399 * on backlog.
4400 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4401 * and we dont need an smp_mb() memory barrier.
4402 */
eecfd7c4 4403 napi->state = 0;
11ef7a89 4404 rps_unlock(sd);
eecfd7c4 4405
11ef7a89 4406 break;
bea3348e 4407 }
11ef7a89
TH
4408
4409 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4410 &sd->process_queue);
e36fa2f7 4411 rps_unlock(sd);
6e7676c1
CG
4412 }
4413 local_irq_enable();
1da177e4 4414
bea3348e
SH
4415 return work;
4416}
1da177e4 4417
bea3348e
SH
4418/**
4419 * __napi_schedule - schedule for receive
c4ea43c5 4420 * @n: entry to schedule
bea3348e 4421 *
bc9ad166
ED
4422 * The entry's receive function will be scheduled to run.
4423 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4424 */
b5606c2d 4425void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4426{
4427 unsigned long flags;
1da177e4 4428
bea3348e 4429 local_irq_save(flags);
903ceff7 4430 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4431 local_irq_restore(flags);
1da177e4 4432}
bea3348e
SH
4433EXPORT_SYMBOL(__napi_schedule);
4434
bc9ad166
ED
4435/**
4436 * __napi_schedule_irqoff - schedule for receive
4437 * @n: entry to schedule
4438 *
4439 * Variant of __napi_schedule() assuming hard irqs are masked
4440 */
4441void __napi_schedule_irqoff(struct napi_struct *n)
4442{
4443 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4444}
4445EXPORT_SYMBOL(__napi_schedule_irqoff);
4446
d565b0a1
HX
4447void __napi_complete(struct napi_struct *n)
4448{
4449 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4450
d75b1ade 4451 list_del_init(&n->poll_list);
4e857c58 4452 smp_mb__before_atomic();
d565b0a1
HX
4453 clear_bit(NAPI_STATE_SCHED, &n->state);
4454}
4455EXPORT_SYMBOL(__napi_complete);
4456
3b47d303 4457void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4458{
4459 unsigned long flags;
4460
4461 /*
4462 * don't let napi dequeue from the cpu poll list
4463 * just in case its running on a different cpu
4464 */
4465 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4466 return;
4467
3b47d303
ED
4468 if (n->gro_list) {
4469 unsigned long timeout = 0;
d75b1ade 4470
3b47d303
ED
4471 if (work_done)
4472 timeout = n->dev->gro_flush_timeout;
4473
4474 if (timeout)
4475 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4476 HRTIMER_MODE_REL_PINNED);
4477 else
4478 napi_gro_flush(n, false);
4479 }
d75b1ade
ED
4480 if (likely(list_empty(&n->poll_list))) {
4481 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4482 } else {
4483 /* If n->poll_list is not empty, we need to mask irqs */
4484 local_irq_save(flags);
4485 __napi_complete(n);
4486 local_irq_restore(flags);
4487 }
d565b0a1 4488}
3b47d303 4489EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4490
af12fa6e
ET
4491/* must be called under rcu_read_lock(), as we dont take a reference */
4492struct napi_struct *napi_by_id(unsigned int napi_id)
4493{
4494 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4495 struct napi_struct *napi;
4496
4497 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4498 if (napi->napi_id == napi_id)
4499 return napi;
4500
4501 return NULL;
4502}
4503EXPORT_SYMBOL_GPL(napi_by_id);
4504
4505void napi_hash_add(struct napi_struct *napi)
4506{
4507 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4508
4509 spin_lock(&napi_hash_lock);
4510
4511 /* 0 is not a valid id, we also skip an id that is taken
4512 * we expect both events to be extremely rare
4513 */
4514 napi->napi_id = 0;
4515 while (!napi->napi_id) {
4516 napi->napi_id = ++napi_gen_id;
4517 if (napi_by_id(napi->napi_id))
4518 napi->napi_id = 0;
4519 }
4520
4521 hlist_add_head_rcu(&napi->napi_hash_node,
4522 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4523
4524 spin_unlock(&napi_hash_lock);
4525 }
4526}
4527EXPORT_SYMBOL_GPL(napi_hash_add);
4528
4529/* Warning : caller is responsible to make sure rcu grace period
4530 * is respected before freeing memory containing @napi
4531 */
4532void napi_hash_del(struct napi_struct *napi)
4533{
4534 spin_lock(&napi_hash_lock);
4535
4536 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4537 hlist_del_rcu(&napi->napi_hash_node);
4538
4539 spin_unlock(&napi_hash_lock);
4540}
4541EXPORT_SYMBOL_GPL(napi_hash_del);
4542
3b47d303
ED
4543static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4544{
4545 struct napi_struct *napi;
4546
4547 napi = container_of(timer, struct napi_struct, timer);
4548 if (napi->gro_list)
4549 napi_schedule(napi);
4550
4551 return HRTIMER_NORESTART;
4552}
4553
d565b0a1
HX
4554void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4555 int (*poll)(struct napi_struct *, int), int weight)
4556{
4557 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4558 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4559 napi->timer.function = napi_watchdog;
4ae5544f 4560 napi->gro_count = 0;
d565b0a1 4561 napi->gro_list = NULL;
5d38a079 4562 napi->skb = NULL;
d565b0a1 4563 napi->poll = poll;
82dc3c63
ED
4564 if (weight > NAPI_POLL_WEIGHT)
4565 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4566 weight, dev->name);
d565b0a1
HX
4567 napi->weight = weight;
4568 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4569 napi->dev = dev;
5d38a079 4570#ifdef CONFIG_NETPOLL
d565b0a1
HX
4571 spin_lock_init(&napi->poll_lock);
4572 napi->poll_owner = -1;
4573#endif
4574 set_bit(NAPI_STATE_SCHED, &napi->state);
4575}
4576EXPORT_SYMBOL(netif_napi_add);
4577
3b47d303
ED
4578void napi_disable(struct napi_struct *n)
4579{
4580 might_sleep();
4581 set_bit(NAPI_STATE_DISABLE, &n->state);
4582
4583 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4584 msleep(1);
4585
4586 hrtimer_cancel(&n->timer);
4587
4588 clear_bit(NAPI_STATE_DISABLE, &n->state);
4589}
4590EXPORT_SYMBOL(napi_disable);
4591
d565b0a1
HX
4592void netif_napi_del(struct napi_struct *napi)
4593{
d7b06636 4594 list_del_init(&napi->dev_list);
76620aaf 4595 napi_free_frags(napi);
d565b0a1 4596
289dccbe 4597 kfree_skb_list(napi->gro_list);
d565b0a1 4598 napi->gro_list = NULL;
4ae5544f 4599 napi->gro_count = 0;
d565b0a1
HX
4600}
4601EXPORT_SYMBOL(netif_napi_del);
4602
726ce70e
HX
4603static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4604{
4605 void *have;
4606 int work, weight;
4607
4608 list_del_init(&n->poll_list);
4609
4610 have = netpoll_poll_lock(n);
4611
4612 weight = n->weight;
4613
4614 /* This NAPI_STATE_SCHED test is for avoiding a race
4615 * with netpoll's poll_napi(). Only the entity which
4616 * obtains the lock and sees NAPI_STATE_SCHED set will
4617 * actually make the ->poll() call. Therefore we avoid
4618 * accidentally calling ->poll() when NAPI is not scheduled.
4619 */
4620 work = 0;
4621 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4622 work = n->poll(n, weight);
4623 trace_napi_poll(n);
4624 }
4625
4626 WARN_ON_ONCE(work > weight);
4627
4628 if (likely(work < weight))
4629 goto out_unlock;
4630
4631 /* Drivers must not modify the NAPI state if they
4632 * consume the entire weight. In such cases this code
4633 * still "owns" the NAPI instance and therefore can
4634 * move the instance around on the list at-will.
4635 */
4636 if (unlikely(napi_disable_pending(n))) {
4637 napi_complete(n);
4638 goto out_unlock;
4639 }
4640
4641 if (n->gro_list) {
4642 /* flush too old packets
4643 * If HZ < 1000, flush all packets.
4644 */
4645 napi_gro_flush(n, HZ >= 1000);
4646 }
4647
001ce546
HX
4648 /* Some drivers may have called napi_schedule
4649 * prior to exhausting their budget.
4650 */
4651 if (unlikely(!list_empty(&n->poll_list))) {
4652 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4653 n->dev ? n->dev->name : "backlog");
4654 goto out_unlock;
4655 }
4656
726ce70e
HX
4657 list_add_tail(&n->poll_list, repoll);
4658
4659out_unlock:
4660 netpoll_poll_unlock(have);
4661
4662 return work;
4663}
4664
1da177e4
LT
4665static void net_rx_action(struct softirq_action *h)
4666{
903ceff7 4667 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4668 unsigned long time_limit = jiffies + 2;
51b0bded 4669 int budget = netdev_budget;
d75b1ade
ED
4670 LIST_HEAD(list);
4671 LIST_HEAD(repoll);
53fb95d3 4672
1da177e4 4673 local_irq_disable();
d75b1ade
ED
4674 list_splice_init(&sd->poll_list, &list);
4675 local_irq_enable();
1da177e4 4676
ceb8d5bf 4677 for (;;) {
bea3348e 4678 struct napi_struct *n;
1da177e4 4679
ceb8d5bf
HX
4680 if (list_empty(&list)) {
4681 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4682 return;
4683 break;
4684 }
4685
6bd373eb
HX
4686 n = list_first_entry(&list, struct napi_struct, poll_list);
4687 budget -= napi_poll(n, &repoll);
4688
d75b1ade 4689 /* If softirq window is exhausted then punt.
24f8b238
SH
4690 * Allow this to run for 2 jiffies since which will allow
4691 * an average latency of 1.5/HZ.
bea3348e 4692 */
ceb8d5bf
HX
4693 if (unlikely(budget <= 0 ||
4694 time_after_eq(jiffies, time_limit))) {
4695 sd->time_squeeze++;
4696 break;
4697 }
1da177e4 4698 }
d75b1ade 4699
d75b1ade
ED
4700 local_irq_disable();
4701
4702 list_splice_tail_init(&sd->poll_list, &list);
4703 list_splice_tail(&repoll, &list);
4704 list_splice(&list, &sd->poll_list);
4705 if (!list_empty(&sd->poll_list))
4706 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4707
e326bed2 4708 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4709}
4710
aa9d8560 4711struct netdev_adjacent {
9ff162a8 4712 struct net_device *dev;
5d261913
VF
4713
4714 /* upper master flag, there can only be one master device per list */
9ff162a8 4715 bool master;
5d261913 4716
5d261913
VF
4717 /* counter for the number of times this device was added to us */
4718 u16 ref_nr;
4719
402dae96
VF
4720 /* private field for the users */
4721 void *private;
4722
9ff162a8
JP
4723 struct list_head list;
4724 struct rcu_head rcu;
9ff162a8
JP
4725};
4726
5d261913
VF
4727static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4728 struct net_device *adj_dev,
2f268f12 4729 struct list_head *adj_list)
9ff162a8 4730{
5d261913 4731 struct netdev_adjacent *adj;
5d261913 4732
2f268f12 4733 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4734 if (adj->dev == adj_dev)
4735 return adj;
9ff162a8
JP
4736 }
4737 return NULL;
4738}
4739
4740/**
4741 * netdev_has_upper_dev - Check if device is linked to an upper device
4742 * @dev: device
4743 * @upper_dev: upper device to check
4744 *
4745 * Find out if a device is linked to specified upper device and return true
4746 * in case it is. Note that this checks only immediate upper device,
4747 * not through a complete stack of devices. The caller must hold the RTNL lock.
4748 */
4749bool netdev_has_upper_dev(struct net_device *dev,
4750 struct net_device *upper_dev)
4751{
4752 ASSERT_RTNL();
4753
2f268f12 4754 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4755}
4756EXPORT_SYMBOL(netdev_has_upper_dev);
4757
4758/**
4759 * netdev_has_any_upper_dev - Check if device is linked to some device
4760 * @dev: device
4761 *
4762 * Find out if a device is linked to an upper device and return true in case
4763 * it is. The caller must hold the RTNL lock.
4764 */
1d143d9f 4765static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4766{
4767 ASSERT_RTNL();
4768
2f268f12 4769 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4770}
9ff162a8
JP
4771
4772/**
4773 * netdev_master_upper_dev_get - Get master upper device
4774 * @dev: device
4775 *
4776 * Find a master upper device and return pointer to it or NULL in case
4777 * it's not there. The caller must hold the RTNL lock.
4778 */
4779struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4780{
aa9d8560 4781 struct netdev_adjacent *upper;
9ff162a8
JP
4782
4783 ASSERT_RTNL();
4784
2f268f12 4785 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4786 return NULL;
4787
2f268f12 4788 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4789 struct netdev_adjacent, list);
9ff162a8
JP
4790 if (likely(upper->master))
4791 return upper->dev;
4792 return NULL;
4793}
4794EXPORT_SYMBOL(netdev_master_upper_dev_get);
4795
b6ccba4c
VF
4796void *netdev_adjacent_get_private(struct list_head *adj_list)
4797{
4798 struct netdev_adjacent *adj;
4799
4800 adj = list_entry(adj_list, struct netdev_adjacent, list);
4801
4802 return adj->private;
4803}
4804EXPORT_SYMBOL(netdev_adjacent_get_private);
4805
44a40855
VY
4806/**
4807 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4808 * @dev: device
4809 * @iter: list_head ** of the current position
4810 *
4811 * Gets the next device from the dev's upper list, starting from iter
4812 * position. The caller must hold RCU read lock.
4813 */
4814struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4815 struct list_head **iter)
4816{
4817 struct netdev_adjacent *upper;
4818
4819 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4820
4821 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4822
4823 if (&upper->list == &dev->adj_list.upper)
4824 return NULL;
4825
4826 *iter = &upper->list;
4827
4828 return upper->dev;
4829}
4830EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4831
31088a11
VF
4832/**
4833 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4834 * @dev: device
4835 * @iter: list_head ** of the current position
4836 *
4837 * Gets the next device from the dev's upper list, starting from iter
4838 * position. The caller must hold RCU read lock.
4839 */
2f268f12
VF
4840struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4841 struct list_head **iter)
48311f46
VF
4842{
4843 struct netdev_adjacent *upper;
4844
85328240 4845 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4846
4847 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4848
2f268f12 4849 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4850 return NULL;
4851
4852 *iter = &upper->list;
4853
4854 return upper->dev;
4855}
2f268f12 4856EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4857
31088a11
VF
4858/**
4859 * netdev_lower_get_next_private - Get the next ->private from the
4860 * lower neighbour list
4861 * @dev: device
4862 * @iter: list_head ** of the current position
4863 *
4864 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4865 * list, starting from iter position. The caller must hold either hold the
4866 * RTNL lock or its own locking that guarantees that the neighbour lower
4867 * list will remain unchainged.
4868 */
4869void *netdev_lower_get_next_private(struct net_device *dev,
4870 struct list_head **iter)
4871{
4872 struct netdev_adjacent *lower;
4873
4874 lower = list_entry(*iter, struct netdev_adjacent, list);
4875
4876 if (&lower->list == &dev->adj_list.lower)
4877 return NULL;
4878
6859e7df 4879 *iter = lower->list.next;
31088a11
VF
4880
4881 return lower->private;
4882}
4883EXPORT_SYMBOL(netdev_lower_get_next_private);
4884
4885/**
4886 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4887 * lower neighbour list, RCU
4888 * variant
4889 * @dev: device
4890 * @iter: list_head ** of the current position
4891 *
4892 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4893 * list, starting from iter position. The caller must hold RCU read lock.
4894 */
4895void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4896 struct list_head **iter)
4897{
4898 struct netdev_adjacent *lower;
4899
4900 WARN_ON_ONCE(!rcu_read_lock_held());
4901
4902 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4903
4904 if (&lower->list == &dev->adj_list.lower)
4905 return NULL;
4906
6859e7df 4907 *iter = &lower->list;
31088a11
VF
4908
4909 return lower->private;
4910}
4911EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4912
4085ebe8
VY
4913/**
4914 * netdev_lower_get_next - Get the next device from the lower neighbour
4915 * list
4916 * @dev: device
4917 * @iter: list_head ** of the current position
4918 *
4919 * Gets the next netdev_adjacent from the dev's lower neighbour
4920 * list, starting from iter position. The caller must hold RTNL lock or
4921 * its own locking that guarantees that the neighbour lower
4922 * list will remain unchainged.
4923 */
4924void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4925{
4926 struct netdev_adjacent *lower;
4927
4928 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4929
4930 if (&lower->list == &dev->adj_list.lower)
4931 return NULL;
4932
4933 *iter = &lower->list;
4934
4935 return lower->dev;
4936}
4937EXPORT_SYMBOL(netdev_lower_get_next);
4938
e001bfad 4939/**
4940 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4941 * lower neighbour list, RCU
4942 * variant
4943 * @dev: device
4944 *
4945 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4946 * list. The caller must hold RCU read lock.
4947 */
4948void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4949{
4950 struct netdev_adjacent *lower;
4951
4952 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4953 struct netdev_adjacent, list);
4954 if (lower)
4955 return lower->private;
4956 return NULL;
4957}
4958EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4959
9ff162a8
JP
4960/**
4961 * netdev_master_upper_dev_get_rcu - Get master upper device
4962 * @dev: device
4963 *
4964 * Find a master upper device and return pointer to it or NULL in case
4965 * it's not there. The caller must hold the RCU read lock.
4966 */
4967struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4968{
aa9d8560 4969 struct netdev_adjacent *upper;
9ff162a8 4970
2f268f12 4971 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 4972 struct netdev_adjacent, list);
9ff162a8
JP
4973 if (upper && likely(upper->master))
4974 return upper->dev;
4975 return NULL;
4976}
4977EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4978
0a59f3a9 4979static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
4980 struct net_device *adj_dev,
4981 struct list_head *dev_list)
4982{
4983 char linkname[IFNAMSIZ+7];
4984 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4985 "upper_%s" : "lower_%s", adj_dev->name);
4986 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4987 linkname);
4988}
0a59f3a9 4989static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
4990 char *name,
4991 struct list_head *dev_list)
4992{
4993 char linkname[IFNAMSIZ+7];
4994 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4995 "upper_%s" : "lower_%s", name);
4996 sysfs_remove_link(&(dev->dev.kobj), linkname);
4997}
4998
7ce64c79
AF
4999static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5000 struct net_device *adj_dev,
5001 struct list_head *dev_list)
5002{
5003 return (dev_list == &dev->adj_list.upper ||
5004 dev_list == &dev->adj_list.lower) &&
5005 net_eq(dev_net(dev), dev_net(adj_dev));
5006}
3ee32707 5007
5d261913
VF
5008static int __netdev_adjacent_dev_insert(struct net_device *dev,
5009 struct net_device *adj_dev,
7863c054 5010 struct list_head *dev_list,
402dae96 5011 void *private, bool master)
5d261913
VF
5012{
5013 struct netdev_adjacent *adj;
842d67a7 5014 int ret;
5d261913 5015
7863c054 5016 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
5017
5018 if (adj) {
5d261913
VF
5019 adj->ref_nr++;
5020 return 0;
5021 }
5022
5023 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5024 if (!adj)
5025 return -ENOMEM;
5026
5027 adj->dev = adj_dev;
5028 adj->master = master;
5d261913 5029 adj->ref_nr = 1;
402dae96 5030 adj->private = private;
5d261913 5031 dev_hold(adj_dev);
2f268f12
VF
5032
5033 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5034 adj_dev->name, dev->name, adj_dev->name);
5d261913 5035
7ce64c79 5036 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5037 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5038 if (ret)
5039 goto free_adj;
5040 }
5041
7863c054 5042 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5043 if (master) {
5044 ret = sysfs_create_link(&(dev->dev.kobj),
5045 &(adj_dev->dev.kobj), "master");
5046 if (ret)
5831d66e 5047 goto remove_symlinks;
842d67a7 5048
7863c054 5049 list_add_rcu(&adj->list, dev_list);
842d67a7 5050 } else {
7863c054 5051 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5052 }
5d261913
VF
5053
5054 return 0;
842d67a7 5055
5831d66e 5056remove_symlinks:
7ce64c79 5057 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5058 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5059free_adj:
5060 kfree(adj);
974daef7 5061 dev_put(adj_dev);
842d67a7
VF
5062
5063 return ret;
5d261913
VF
5064}
5065
1d143d9f 5066static void __netdev_adjacent_dev_remove(struct net_device *dev,
5067 struct net_device *adj_dev,
5068 struct list_head *dev_list)
5d261913
VF
5069{
5070 struct netdev_adjacent *adj;
5071
7863c054 5072 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 5073
2f268f12
VF
5074 if (!adj) {
5075 pr_err("tried to remove device %s from %s\n",
5076 dev->name, adj_dev->name);
5d261913 5077 BUG();
2f268f12 5078 }
5d261913
VF
5079
5080 if (adj->ref_nr > 1) {
2f268f12
VF
5081 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5082 adj->ref_nr-1);
5d261913
VF
5083 adj->ref_nr--;
5084 return;
5085 }
5086
842d67a7
VF
5087 if (adj->master)
5088 sysfs_remove_link(&(dev->dev.kobj), "master");
5089
7ce64c79 5090 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5091 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5092
5d261913 5093 list_del_rcu(&adj->list);
2f268f12
VF
5094 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5095 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5096 dev_put(adj_dev);
5097 kfree_rcu(adj, rcu);
5098}
5099
1d143d9f 5100static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5101 struct net_device *upper_dev,
5102 struct list_head *up_list,
5103 struct list_head *down_list,
5104 void *private, bool master)
5d261913
VF
5105{
5106 int ret;
5107
402dae96
VF
5108 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5109 master);
5d261913
VF
5110 if (ret)
5111 return ret;
5112
402dae96
VF
5113 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5114 false);
5d261913 5115 if (ret) {
2f268f12 5116 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5117 return ret;
5118 }
5119
5120 return 0;
5121}
5122
1d143d9f 5123static int __netdev_adjacent_dev_link(struct net_device *dev,
5124 struct net_device *upper_dev)
5d261913 5125{
2f268f12
VF
5126 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5127 &dev->all_adj_list.upper,
5128 &upper_dev->all_adj_list.lower,
402dae96 5129 NULL, false);
5d261913
VF
5130}
5131
1d143d9f 5132static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5133 struct net_device *upper_dev,
5134 struct list_head *up_list,
5135 struct list_head *down_list)
5d261913 5136{
2f268f12
VF
5137 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5138 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5139}
5140
1d143d9f 5141static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5142 struct net_device *upper_dev)
5d261913 5143{
2f268f12
VF
5144 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5145 &dev->all_adj_list.upper,
5146 &upper_dev->all_adj_list.lower);
5147}
5148
1d143d9f 5149static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5150 struct net_device *upper_dev,
5151 void *private, bool master)
2f268f12
VF
5152{
5153 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5154
5155 if (ret)
5156 return ret;
5157
5158 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5159 &dev->adj_list.upper,
5160 &upper_dev->adj_list.lower,
402dae96 5161 private, master);
2f268f12
VF
5162 if (ret) {
5163 __netdev_adjacent_dev_unlink(dev, upper_dev);
5164 return ret;
5165 }
5166
5167 return 0;
5d261913
VF
5168}
5169
1d143d9f 5170static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5171 struct net_device *upper_dev)
2f268f12
VF
5172{
5173 __netdev_adjacent_dev_unlink(dev, upper_dev);
5174 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5175 &dev->adj_list.upper,
5176 &upper_dev->adj_list.lower);
5177}
5d261913 5178
9ff162a8 5179static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5180 struct net_device *upper_dev, bool master,
5181 void *private)
9ff162a8 5182{
5d261913
VF
5183 struct netdev_adjacent *i, *j, *to_i, *to_j;
5184 int ret = 0;
9ff162a8
JP
5185
5186 ASSERT_RTNL();
5187
5188 if (dev == upper_dev)
5189 return -EBUSY;
5190
5191 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 5192 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5193 return -EBUSY;
5194
2f268f12 5195 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
9ff162a8
JP
5196 return -EEXIST;
5197
5198 if (master && netdev_master_upper_dev_get(dev))
5199 return -EBUSY;
5200
402dae96
VF
5201 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5202 master);
5d261913
VF
5203 if (ret)
5204 return ret;
9ff162a8 5205
5d261913 5206 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5207 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5208 * versa, and don't forget the devices itself. All of these
5209 * links are non-neighbours.
5210 */
2f268f12
VF
5211 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5212 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5213 pr_debug("Interlinking %s with %s, non-neighbour\n",
5214 i->dev->name, j->dev->name);
5d261913
VF
5215 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5216 if (ret)
5217 goto rollback_mesh;
5218 }
5219 }
5220
5221 /* add dev to every upper_dev's upper device */
2f268f12
VF
5222 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5223 pr_debug("linking %s's upper device %s with %s\n",
5224 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5225 ret = __netdev_adjacent_dev_link(dev, i->dev);
5226 if (ret)
5227 goto rollback_upper_mesh;
5228 }
5229
5230 /* add upper_dev to every dev's lower device */
2f268f12
VF
5231 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5232 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5233 i->dev->name, upper_dev->name);
5d261913
VF
5234 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5235 if (ret)
5236 goto rollback_lower_mesh;
5237 }
9ff162a8 5238
42e52bf9 5239 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8 5240 return 0;
5d261913
VF
5241
5242rollback_lower_mesh:
5243 to_i = i;
2f268f12 5244 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5245 if (i == to_i)
5246 break;
5247 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5248 }
5249
5250 i = NULL;
5251
5252rollback_upper_mesh:
5253 to_i = i;
2f268f12 5254 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5255 if (i == to_i)
5256 break;
5257 __netdev_adjacent_dev_unlink(dev, i->dev);
5258 }
5259
5260 i = j = NULL;
5261
5262rollback_mesh:
5263 to_i = i;
5264 to_j = j;
2f268f12
VF
5265 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5266 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5267 if (i == to_i && j == to_j)
5268 break;
5269 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5270 }
5271 if (i == to_i)
5272 break;
5273 }
5274
2f268f12 5275 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5276
5277 return ret;
9ff162a8
JP
5278}
5279
5280/**
5281 * netdev_upper_dev_link - Add a link to the upper device
5282 * @dev: device
5283 * @upper_dev: new upper device
5284 *
5285 * Adds a link to device which is upper to this one. The caller must hold
5286 * the RTNL lock. On a failure a negative errno code is returned.
5287 * On success the reference counts are adjusted and the function
5288 * returns zero.
5289 */
5290int netdev_upper_dev_link(struct net_device *dev,
5291 struct net_device *upper_dev)
5292{
402dae96 5293 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5294}
5295EXPORT_SYMBOL(netdev_upper_dev_link);
5296
5297/**
5298 * netdev_master_upper_dev_link - Add a master link to the upper device
5299 * @dev: device
5300 * @upper_dev: new upper device
5301 *
5302 * Adds a link to device which is upper to this one. In this case, only
5303 * one master upper device can be linked, although other non-master devices
5304 * might be linked as well. The caller must hold the RTNL lock.
5305 * On a failure a negative errno code is returned. On success the reference
5306 * counts are adjusted and the function returns zero.
5307 */
5308int netdev_master_upper_dev_link(struct net_device *dev,
5309 struct net_device *upper_dev)
5310{
402dae96 5311 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5312}
5313EXPORT_SYMBOL(netdev_master_upper_dev_link);
5314
402dae96
VF
5315int netdev_master_upper_dev_link_private(struct net_device *dev,
5316 struct net_device *upper_dev,
5317 void *private)
5318{
5319 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5320}
5321EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5322
9ff162a8
JP
5323/**
5324 * netdev_upper_dev_unlink - Removes a link to upper device
5325 * @dev: device
5326 * @upper_dev: new upper device
5327 *
5328 * Removes a link to device which is upper to this one. The caller must hold
5329 * the RTNL lock.
5330 */
5331void netdev_upper_dev_unlink(struct net_device *dev,
5332 struct net_device *upper_dev)
5333{
5d261913 5334 struct netdev_adjacent *i, *j;
9ff162a8
JP
5335 ASSERT_RTNL();
5336
2f268f12 5337 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5338
5339 /* Here is the tricky part. We must remove all dev's lower
5340 * devices from all upper_dev's upper devices and vice
5341 * versa, to maintain the graph relationship.
5342 */
2f268f12
VF
5343 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5344 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5345 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5346
5347 /* remove also the devices itself from lower/upper device
5348 * list
5349 */
2f268f12 5350 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5351 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5352
2f268f12 5353 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5354 __netdev_adjacent_dev_unlink(dev, i->dev);
5355
42e52bf9 5356 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8
JP
5357}
5358EXPORT_SYMBOL(netdev_upper_dev_unlink);
5359
61bd3857
MS
5360/**
5361 * netdev_bonding_info_change - Dispatch event about slave change
5362 * @dev: device
4a26e453 5363 * @bonding_info: info to dispatch
61bd3857
MS
5364 *
5365 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5366 * The caller must hold the RTNL lock.
5367 */
5368void netdev_bonding_info_change(struct net_device *dev,
5369 struct netdev_bonding_info *bonding_info)
5370{
5371 struct netdev_notifier_bonding_info info;
5372
5373 memcpy(&info.bonding_info, bonding_info,
5374 sizeof(struct netdev_bonding_info));
5375 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5376 &info.info);
5377}
5378EXPORT_SYMBOL(netdev_bonding_info_change);
5379
2ce1ee17 5380static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5381{
5382 struct netdev_adjacent *iter;
5383
5384 struct net *net = dev_net(dev);
5385
5386 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5387 if (!net_eq(net,dev_net(iter->dev)))
5388 continue;
5389 netdev_adjacent_sysfs_add(iter->dev, dev,
5390 &iter->dev->adj_list.lower);
5391 netdev_adjacent_sysfs_add(dev, iter->dev,
5392 &dev->adj_list.upper);
5393 }
5394
5395 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5396 if (!net_eq(net,dev_net(iter->dev)))
5397 continue;
5398 netdev_adjacent_sysfs_add(iter->dev, dev,
5399 &iter->dev->adj_list.upper);
5400 netdev_adjacent_sysfs_add(dev, iter->dev,
5401 &dev->adj_list.lower);
5402 }
5403}
5404
2ce1ee17 5405static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5406{
5407 struct netdev_adjacent *iter;
5408
5409 struct net *net = dev_net(dev);
5410
5411 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5412 if (!net_eq(net,dev_net(iter->dev)))
5413 continue;
5414 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5415 &iter->dev->adj_list.lower);
5416 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5417 &dev->adj_list.upper);
5418 }
5419
5420 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5421 if (!net_eq(net,dev_net(iter->dev)))
5422 continue;
5423 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5424 &iter->dev->adj_list.upper);
5425 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5426 &dev->adj_list.lower);
5427 }
5428}
5429
5bb025fa 5430void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5431{
5bb025fa 5432 struct netdev_adjacent *iter;
402dae96 5433
4c75431a
AF
5434 struct net *net = dev_net(dev);
5435
5bb025fa 5436 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5437 if (!net_eq(net,dev_net(iter->dev)))
5438 continue;
5bb025fa
VF
5439 netdev_adjacent_sysfs_del(iter->dev, oldname,
5440 &iter->dev->adj_list.lower);
5441 netdev_adjacent_sysfs_add(iter->dev, dev,
5442 &iter->dev->adj_list.lower);
5443 }
402dae96 5444
5bb025fa 5445 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5446 if (!net_eq(net,dev_net(iter->dev)))
5447 continue;
5bb025fa
VF
5448 netdev_adjacent_sysfs_del(iter->dev, oldname,
5449 &iter->dev->adj_list.upper);
5450 netdev_adjacent_sysfs_add(iter->dev, dev,
5451 &iter->dev->adj_list.upper);
5452 }
402dae96 5453}
402dae96
VF
5454
5455void *netdev_lower_dev_get_private(struct net_device *dev,
5456 struct net_device *lower_dev)
5457{
5458 struct netdev_adjacent *lower;
5459
5460 if (!lower_dev)
5461 return NULL;
5462 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5463 if (!lower)
5464 return NULL;
5465
5466 return lower->private;
5467}
5468EXPORT_SYMBOL(netdev_lower_dev_get_private);
5469
4085ebe8
VY
5470
5471int dev_get_nest_level(struct net_device *dev,
5472 bool (*type_check)(struct net_device *dev))
5473{
5474 struct net_device *lower = NULL;
5475 struct list_head *iter;
5476 int max_nest = -1;
5477 int nest;
5478
5479 ASSERT_RTNL();
5480
5481 netdev_for_each_lower_dev(dev, lower, iter) {
5482 nest = dev_get_nest_level(lower, type_check);
5483 if (max_nest < nest)
5484 max_nest = nest;
5485 }
5486
5487 if (type_check(dev))
5488 max_nest++;
5489
5490 return max_nest;
5491}
5492EXPORT_SYMBOL(dev_get_nest_level);
5493
b6c40d68
PM
5494static void dev_change_rx_flags(struct net_device *dev, int flags)
5495{
d314774c
SH
5496 const struct net_device_ops *ops = dev->netdev_ops;
5497
d2615bf4 5498 if (ops->ndo_change_rx_flags)
d314774c 5499 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5500}
5501
991fb3f7 5502static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5503{
b536db93 5504 unsigned int old_flags = dev->flags;
d04a48b0
EB
5505 kuid_t uid;
5506 kgid_t gid;
1da177e4 5507
24023451
PM
5508 ASSERT_RTNL();
5509
dad9b335
WC
5510 dev->flags |= IFF_PROMISC;
5511 dev->promiscuity += inc;
5512 if (dev->promiscuity == 0) {
5513 /*
5514 * Avoid overflow.
5515 * If inc causes overflow, untouch promisc and return error.
5516 */
5517 if (inc < 0)
5518 dev->flags &= ~IFF_PROMISC;
5519 else {
5520 dev->promiscuity -= inc;
7b6cd1ce
JP
5521 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5522 dev->name);
dad9b335
WC
5523 return -EOVERFLOW;
5524 }
5525 }
52609c0b 5526 if (dev->flags != old_flags) {
7b6cd1ce
JP
5527 pr_info("device %s %s promiscuous mode\n",
5528 dev->name,
5529 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5530 if (audit_enabled) {
5531 current_uid_gid(&uid, &gid);
7759db82
KHK
5532 audit_log(current->audit_context, GFP_ATOMIC,
5533 AUDIT_ANOM_PROMISCUOUS,
5534 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5535 dev->name, (dev->flags & IFF_PROMISC),
5536 (old_flags & IFF_PROMISC),
e1760bd5 5537 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5538 from_kuid(&init_user_ns, uid),
5539 from_kgid(&init_user_ns, gid),
7759db82 5540 audit_get_sessionid(current));
8192b0c4 5541 }
24023451 5542
b6c40d68 5543 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5544 }
991fb3f7
ND
5545 if (notify)
5546 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5547 return 0;
1da177e4
LT
5548}
5549
4417da66
PM
5550/**
5551 * dev_set_promiscuity - update promiscuity count on a device
5552 * @dev: device
5553 * @inc: modifier
5554 *
5555 * Add or remove promiscuity from a device. While the count in the device
5556 * remains above zero the interface remains promiscuous. Once it hits zero
5557 * the device reverts back to normal filtering operation. A negative inc
5558 * value is used to drop promiscuity on the device.
dad9b335 5559 * Return 0 if successful or a negative errno code on error.
4417da66 5560 */
dad9b335 5561int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5562{
b536db93 5563 unsigned int old_flags = dev->flags;
dad9b335 5564 int err;
4417da66 5565
991fb3f7 5566 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5567 if (err < 0)
dad9b335 5568 return err;
4417da66
PM
5569 if (dev->flags != old_flags)
5570 dev_set_rx_mode(dev);
dad9b335 5571 return err;
4417da66 5572}
d1b19dff 5573EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5574
991fb3f7 5575static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5576{
991fb3f7 5577 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5578
24023451
PM
5579 ASSERT_RTNL();
5580
1da177e4 5581 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5582 dev->allmulti += inc;
5583 if (dev->allmulti == 0) {
5584 /*
5585 * Avoid overflow.
5586 * If inc causes overflow, untouch allmulti and return error.
5587 */
5588 if (inc < 0)
5589 dev->flags &= ~IFF_ALLMULTI;
5590 else {
5591 dev->allmulti -= inc;
7b6cd1ce
JP
5592 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5593 dev->name);
dad9b335
WC
5594 return -EOVERFLOW;
5595 }
5596 }
24023451 5597 if (dev->flags ^ old_flags) {
b6c40d68 5598 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5599 dev_set_rx_mode(dev);
991fb3f7
ND
5600 if (notify)
5601 __dev_notify_flags(dev, old_flags,
5602 dev->gflags ^ old_gflags);
24023451 5603 }
dad9b335 5604 return 0;
4417da66 5605}
991fb3f7
ND
5606
5607/**
5608 * dev_set_allmulti - update allmulti count on a device
5609 * @dev: device
5610 * @inc: modifier
5611 *
5612 * Add or remove reception of all multicast frames to a device. While the
5613 * count in the device remains above zero the interface remains listening
5614 * to all interfaces. Once it hits zero the device reverts back to normal
5615 * filtering operation. A negative @inc value is used to drop the counter
5616 * when releasing a resource needing all multicasts.
5617 * Return 0 if successful or a negative errno code on error.
5618 */
5619
5620int dev_set_allmulti(struct net_device *dev, int inc)
5621{
5622 return __dev_set_allmulti(dev, inc, true);
5623}
d1b19dff 5624EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5625
5626/*
5627 * Upload unicast and multicast address lists to device and
5628 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5629 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5630 * are present.
5631 */
5632void __dev_set_rx_mode(struct net_device *dev)
5633{
d314774c
SH
5634 const struct net_device_ops *ops = dev->netdev_ops;
5635
4417da66
PM
5636 /* dev_open will call this function so the list will stay sane. */
5637 if (!(dev->flags&IFF_UP))
5638 return;
5639
5640 if (!netif_device_present(dev))
40b77c94 5641 return;
4417da66 5642
01789349 5643 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5644 /* Unicast addresses changes may only happen under the rtnl,
5645 * therefore calling __dev_set_promiscuity here is safe.
5646 */
32e7bfc4 5647 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5648 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5649 dev->uc_promisc = true;
32e7bfc4 5650 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5651 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5652 dev->uc_promisc = false;
4417da66 5653 }
4417da66 5654 }
01789349
JP
5655
5656 if (ops->ndo_set_rx_mode)
5657 ops->ndo_set_rx_mode(dev);
4417da66
PM
5658}
5659
5660void dev_set_rx_mode(struct net_device *dev)
5661{
b9e40857 5662 netif_addr_lock_bh(dev);
4417da66 5663 __dev_set_rx_mode(dev);
b9e40857 5664 netif_addr_unlock_bh(dev);
1da177e4
LT
5665}
5666
f0db275a
SH
5667/**
5668 * dev_get_flags - get flags reported to userspace
5669 * @dev: device
5670 *
5671 * Get the combination of flag bits exported through APIs to userspace.
5672 */
95c96174 5673unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5674{
95c96174 5675 unsigned int flags;
1da177e4
LT
5676
5677 flags = (dev->flags & ~(IFF_PROMISC |
5678 IFF_ALLMULTI |
b00055aa
SR
5679 IFF_RUNNING |
5680 IFF_LOWER_UP |
5681 IFF_DORMANT)) |
1da177e4
LT
5682 (dev->gflags & (IFF_PROMISC |
5683 IFF_ALLMULTI));
5684
b00055aa
SR
5685 if (netif_running(dev)) {
5686 if (netif_oper_up(dev))
5687 flags |= IFF_RUNNING;
5688 if (netif_carrier_ok(dev))
5689 flags |= IFF_LOWER_UP;
5690 if (netif_dormant(dev))
5691 flags |= IFF_DORMANT;
5692 }
1da177e4
LT
5693
5694 return flags;
5695}
d1b19dff 5696EXPORT_SYMBOL(dev_get_flags);
1da177e4 5697
bd380811 5698int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5699{
b536db93 5700 unsigned int old_flags = dev->flags;
bd380811 5701 int ret;
1da177e4 5702
24023451
PM
5703 ASSERT_RTNL();
5704
1da177e4
LT
5705 /*
5706 * Set the flags on our device.
5707 */
5708
5709 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5710 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5711 IFF_AUTOMEDIA)) |
5712 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5713 IFF_ALLMULTI));
5714
5715 /*
5716 * Load in the correct multicast list now the flags have changed.
5717 */
5718
b6c40d68
PM
5719 if ((old_flags ^ flags) & IFF_MULTICAST)
5720 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5721
4417da66 5722 dev_set_rx_mode(dev);
1da177e4
LT
5723
5724 /*
5725 * Have we downed the interface. We handle IFF_UP ourselves
5726 * according to user attempts to set it, rather than blindly
5727 * setting it.
5728 */
5729
5730 ret = 0;
d215d10f 5731 if ((old_flags ^ flags) & IFF_UP)
bd380811 5732 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5733
1da177e4 5734 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5735 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5736 unsigned int old_flags = dev->flags;
d1b19dff 5737
1da177e4 5738 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5739
5740 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5741 if (dev->flags != old_flags)
5742 dev_set_rx_mode(dev);
1da177e4
LT
5743 }
5744
5745 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5746 is important. Some (broken) drivers set IFF_PROMISC, when
5747 IFF_ALLMULTI is requested not asking us and not reporting.
5748 */
5749 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5750 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5751
1da177e4 5752 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5753 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5754 }
5755
bd380811
PM
5756 return ret;
5757}
5758
a528c219
ND
5759void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5760 unsigned int gchanges)
bd380811
PM
5761{
5762 unsigned int changes = dev->flags ^ old_flags;
5763
a528c219 5764 if (gchanges)
7f294054 5765 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5766
bd380811
PM
5767 if (changes & IFF_UP) {
5768 if (dev->flags & IFF_UP)
5769 call_netdevice_notifiers(NETDEV_UP, dev);
5770 else
5771 call_netdevice_notifiers(NETDEV_DOWN, dev);
5772 }
5773
5774 if (dev->flags & IFF_UP &&
be9efd36
JP
5775 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5776 struct netdev_notifier_change_info change_info;
5777
5778 change_info.flags_changed = changes;
5779 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5780 &change_info.info);
5781 }
bd380811
PM
5782}
5783
5784/**
5785 * dev_change_flags - change device settings
5786 * @dev: device
5787 * @flags: device state flags
5788 *
5789 * Change settings on device based state flags. The flags are
5790 * in the userspace exported format.
5791 */
b536db93 5792int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5793{
b536db93 5794 int ret;
991fb3f7 5795 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5796
5797 ret = __dev_change_flags(dev, flags);
5798 if (ret < 0)
5799 return ret;
5800
991fb3f7 5801 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5802 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5803 return ret;
5804}
d1b19dff 5805EXPORT_SYMBOL(dev_change_flags);
1da177e4 5806
2315dc91
VF
5807static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5808{
5809 const struct net_device_ops *ops = dev->netdev_ops;
5810
5811 if (ops->ndo_change_mtu)
5812 return ops->ndo_change_mtu(dev, new_mtu);
5813
5814 dev->mtu = new_mtu;
5815 return 0;
5816}
5817
f0db275a
SH
5818/**
5819 * dev_set_mtu - Change maximum transfer unit
5820 * @dev: device
5821 * @new_mtu: new transfer unit
5822 *
5823 * Change the maximum transfer size of the network device.
5824 */
1da177e4
LT
5825int dev_set_mtu(struct net_device *dev, int new_mtu)
5826{
2315dc91 5827 int err, orig_mtu;
1da177e4
LT
5828
5829 if (new_mtu == dev->mtu)
5830 return 0;
5831
5832 /* MTU must be positive. */
5833 if (new_mtu < 0)
5834 return -EINVAL;
5835
5836 if (!netif_device_present(dev))
5837 return -ENODEV;
5838
1d486bfb
VF
5839 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5840 err = notifier_to_errno(err);
5841 if (err)
5842 return err;
d314774c 5843
2315dc91
VF
5844 orig_mtu = dev->mtu;
5845 err = __dev_set_mtu(dev, new_mtu);
d314774c 5846
2315dc91
VF
5847 if (!err) {
5848 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5849 err = notifier_to_errno(err);
5850 if (err) {
5851 /* setting mtu back and notifying everyone again,
5852 * so that they have a chance to revert changes.
5853 */
5854 __dev_set_mtu(dev, orig_mtu);
5855 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5856 }
5857 }
1da177e4
LT
5858 return err;
5859}
d1b19dff 5860EXPORT_SYMBOL(dev_set_mtu);
1da177e4 5861
cbda10fa
VD
5862/**
5863 * dev_set_group - Change group this device belongs to
5864 * @dev: device
5865 * @new_group: group this device should belong to
5866 */
5867void dev_set_group(struct net_device *dev, int new_group)
5868{
5869 dev->group = new_group;
5870}
5871EXPORT_SYMBOL(dev_set_group);
5872
f0db275a
SH
5873/**
5874 * dev_set_mac_address - Change Media Access Control Address
5875 * @dev: device
5876 * @sa: new address
5877 *
5878 * Change the hardware (MAC) address of the device
5879 */
1da177e4
LT
5880int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5881{
d314774c 5882 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5883 int err;
5884
d314774c 5885 if (!ops->ndo_set_mac_address)
1da177e4
LT
5886 return -EOPNOTSUPP;
5887 if (sa->sa_family != dev->type)
5888 return -EINVAL;
5889 if (!netif_device_present(dev))
5890 return -ENODEV;
d314774c 5891 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
5892 if (err)
5893 return err;
fbdeca2d 5894 dev->addr_assign_type = NET_ADDR_SET;
f6521516 5895 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 5896 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 5897 return 0;
1da177e4 5898}
d1b19dff 5899EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 5900
4bf84c35
JP
5901/**
5902 * dev_change_carrier - Change device carrier
5903 * @dev: device
691b3b7e 5904 * @new_carrier: new value
4bf84c35
JP
5905 *
5906 * Change device carrier
5907 */
5908int dev_change_carrier(struct net_device *dev, bool new_carrier)
5909{
5910 const struct net_device_ops *ops = dev->netdev_ops;
5911
5912 if (!ops->ndo_change_carrier)
5913 return -EOPNOTSUPP;
5914 if (!netif_device_present(dev))
5915 return -ENODEV;
5916 return ops->ndo_change_carrier(dev, new_carrier);
5917}
5918EXPORT_SYMBOL(dev_change_carrier);
5919
66b52b0d
JP
5920/**
5921 * dev_get_phys_port_id - Get device physical port ID
5922 * @dev: device
5923 * @ppid: port ID
5924 *
5925 * Get device physical port ID
5926 */
5927int dev_get_phys_port_id(struct net_device *dev,
02637fce 5928 struct netdev_phys_item_id *ppid)
66b52b0d
JP
5929{
5930 const struct net_device_ops *ops = dev->netdev_ops;
5931
5932 if (!ops->ndo_get_phys_port_id)
5933 return -EOPNOTSUPP;
5934 return ops->ndo_get_phys_port_id(dev, ppid);
5935}
5936EXPORT_SYMBOL(dev_get_phys_port_id);
5937
db24a904
DA
5938/**
5939 * dev_get_phys_port_name - Get device physical port name
5940 * @dev: device
5941 * @name: port name
5942 *
5943 * Get device physical port name
5944 */
5945int dev_get_phys_port_name(struct net_device *dev,
5946 char *name, size_t len)
5947{
5948 const struct net_device_ops *ops = dev->netdev_ops;
5949
5950 if (!ops->ndo_get_phys_port_name)
5951 return -EOPNOTSUPP;
5952 return ops->ndo_get_phys_port_name(dev, name, len);
5953}
5954EXPORT_SYMBOL(dev_get_phys_port_name);
5955
1da177e4
LT
5956/**
5957 * dev_new_index - allocate an ifindex
c4ea43c5 5958 * @net: the applicable net namespace
1da177e4
LT
5959 *
5960 * Returns a suitable unique value for a new device interface
5961 * number. The caller must hold the rtnl semaphore or the
5962 * dev_base_lock to be sure it remains unique.
5963 */
881d966b 5964static int dev_new_index(struct net *net)
1da177e4 5965{
aa79e66e 5966 int ifindex = net->ifindex;
1da177e4
LT
5967 for (;;) {
5968 if (++ifindex <= 0)
5969 ifindex = 1;
881d966b 5970 if (!__dev_get_by_index(net, ifindex))
aa79e66e 5971 return net->ifindex = ifindex;
1da177e4
LT
5972 }
5973}
5974
1da177e4 5975/* Delayed registration/unregisteration */
3b5b34fd 5976static LIST_HEAD(net_todo_list);
200b916f 5977DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 5978
6f05f629 5979static void net_set_todo(struct net_device *dev)
1da177e4 5980{
1da177e4 5981 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 5982 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
5983}
5984
9b5e383c 5985static void rollback_registered_many(struct list_head *head)
93ee31f1 5986{
e93737b0 5987 struct net_device *dev, *tmp;
5cde2829 5988 LIST_HEAD(close_head);
9b5e383c 5989
93ee31f1
DL
5990 BUG_ON(dev_boot_phase);
5991 ASSERT_RTNL();
5992
e93737b0 5993 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5994 /* Some devices call without registering
e93737b0
KK
5995 * for initialization unwind. Remove those
5996 * devices and proceed with the remaining.
9b5e383c
ED
5997 */
5998 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
5999 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6000 dev->name, dev);
93ee31f1 6001
9b5e383c 6002 WARN_ON(1);
e93737b0
KK
6003 list_del(&dev->unreg_list);
6004 continue;
9b5e383c 6005 }
449f4544 6006 dev->dismantle = true;
9b5e383c 6007 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6008 }
93ee31f1 6009
44345724 6010 /* If device is running, close it first. */
5cde2829
EB
6011 list_for_each_entry(dev, head, unreg_list)
6012 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6013 dev_close_many(&close_head, true);
93ee31f1 6014
44345724 6015 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6016 /* And unlink it from device chain. */
6017 unlist_netdevice(dev);
93ee31f1 6018
9b5e383c
ED
6019 dev->reg_state = NETREG_UNREGISTERING;
6020 }
93ee31f1
DL
6021
6022 synchronize_net();
6023
9b5e383c 6024 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6025 struct sk_buff *skb = NULL;
6026
9b5e383c
ED
6027 /* Shutdown queueing discipline. */
6028 dev_shutdown(dev);
93ee31f1
DL
6029
6030
9b5e383c
ED
6031 /* Notify protocols, that we are about to destroy
6032 this device. They should clean all the things.
6033 */
6034 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6035
395eea6c
MB
6036 if (!dev->rtnl_link_ops ||
6037 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6038 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6039 GFP_KERNEL);
6040
9b5e383c
ED
6041 /*
6042 * Flush the unicast and multicast chains
6043 */
a748ee24 6044 dev_uc_flush(dev);
22bedad3 6045 dev_mc_flush(dev);
93ee31f1 6046
9b5e383c
ED
6047 if (dev->netdev_ops->ndo_uninit)
6048 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6049
395eea6c
MB
6050 if (skb)
6051 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6052
9ff162a8
JP
6053 /* Notifier chain MUST detach us all upper devices. */
6054 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6055
9b5e383c
ED
6056 /* Remove entries from kobject tree */
6057 netdev_unregister_kobject(dev);
024e9679
AD
6058#ifdef CONFIG_XPS
6059 /* Remove XPS queueing entries */
6060 netif_reset_xps_queues_gt(dev, 0);
6061#endif
9b5e383c 6062 }
93ee31f1 6063
850a545b 6064 synchronize_net();
395264d5 6065
a5ee1551 6066 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6067 dev_put(dev);
6068}
6069
6070static void rollback_registered(struct net_device *dev)
6071{
6072 LIST_HEAD(single);
6073
6074 list_add(&dev->unreg_list, &single);
6075 rollback_registered_many(&single);
ceaaec98 6076 list_del(&single);
93ee31f1
DL
6077}
6078
c8f44aff
MM
6079static netdev_features_t netdev_fix_features(struct net_device *dev,
6080 netdev_features_t features)
b63365a2 6081{
57422dc5
MM
6082 /* Fix illegal checksum combinations */
6083 if ((features & NETIF_F_HW_CSUM) &&
6084 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6085 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6086 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6087 }
6088
b63365a2 6089 /* TSO requires that SG is present as well. */
ea2d3688 6090 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6091 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6092 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6093 }
6094
ec5f0615
PS
6095 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6096 !(features & NETIF_F_IP_CSUM)) {
6097 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6098 features &= ~NETIF_F_TSO;
6099 features &= ~NETIF_F_TSO_ECN;
6100 }
6101
6102 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6103 !(features & NETIF_F_IPV6_CSUM)) {
6104 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6105 features &= ~NETIF_F_TSO6;
6106 }
6107
31d8b9e0
BH
6108 /* TSO ECN requires that TSO is present as well. */
6109 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6110 features &= ~NETIF_F_TSO_ECN;
6111
212b573f
MM
6112 /* Software GSO depends on SG. */
6113 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6114 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6115 features &= ~NETIF_F_GSO;
6116 }
6117
acd1130e 6118 /* UFO needs SG and checksumming */
b63365a2 6119 if (features & NETIF_F_UFO) {
79032644
MM
6120 /* maybe split UFO into V4 and V6? */
6121 if (!((features & NETIF_F_GEN_CSUM) ||
6122 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6123 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6124 netdev_dbg(dev,
acd1130e 6125 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6126 features &= ~NETIF_F_UFO;
6127 }
6128
6129 if (!(features & NETIF_F_SG)) {
6f404e44 6130 netdev_dbg(dev,
acd1130e 6131 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6132 features &= ~NETIF_F_UFO;
6133 }
6134 }
6135
d0290214
JP
6136#ifdef CONFIG_NET_RX_BUSY_POLL
6137 if (dev->netdev_ops->ndo_busy_poll)
6138 features |= NETIF_F_BUSY_POLL;
6139 else
6140#endif
6141 features &= ~NETIF_F_BUSY_POLL;
6142
b63365a2
HX
6143 return features;
6144}
b63365a2 6145
6cb6a27c 6146int __netdev_update_features(struct net_device *dev)
5455c699 6147{
c8f44aff 6148 netdev_features_t features;
5455c699
MM
6149 int err = 0;
6150
87267485
MM
6151 ASSERT_RTNL();
6152
5455c699
MM
6153 features = netdev_get_wanted_features(dev);
6154
6155 if (dev->netdev_ops->ndo_fix_features)
6156 features = dev->netdev_ops->ndo_fix_features(dev, features);
6157
6158 /* driver might be less strict about feature dependencies */
6159 features = netdev_fix_features(dev, features);
6160
6161 if (dev->features == features)
6cb6a27c 6162 return 0;
5455c699 6163
c8f44aff
MM
6164 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6165 &dev->features, &features);
5455c699
MM
6166
6167 if (dev->netdev_ops->ndo_set_features)
6168 err = dev->netdev_ops->ndo_set_features(dev, features);
6169
6cb6a27c 6170 if (unlikely(err < 0)) {
5455c699 6171 netdev_err(dev,
c8f44aff
MM
6172 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6173 err, &features, &dev->features);
6cb6a27c
MM
6174 return -1;
6175 }
6176
6177 if (!err)
6178 dev->features = features;
6179
6180 return 1;
6181}
6182
afe12cc8
MM
6183/**
6184 * netdev_update_features - recalculate device features
6185 * @dev: the device to check
6186 *
6187 * Recalculate dev->features set and send notifications if it
6188 * has changed. Should be called after driver or hardware dependent
6189 * conditions might have changed that influence the features.
6190 */
6cb6a27c
MM
6191void netdev_update_features(struct net_device *dev)
6192{
6193 if (__netdev_update_features(dev))
6194 netdev_features_change(dev);
5455c699
MM
6195}
6196EXPORT_SYMBOL(netdev_update_features);
6197
afe12cc8
MM
6198/**
6199 * netdev_change_features - recalculate device features
6200 * @dev: the device to check
6201 *
6202 * Recalculate dev->features set and send notifications even
6203 * if they have not changed. Should be called instead of
6204 * netdev_update_features() if also dev->vlan_features might
6205 * have changed to allow the changes to be propagated to stacked
6206 * VLAN devices.
6207 */
6208void netdev_change_features(struct net_device *dev)
6209{
6210 __netdev_update_features(dev);
6211 netdev_features_change(dev);
6212}
6213EXPORT_SYMBOL(netdev_change_features);
6214
fc4a7489
PM
6215/**
6216 * netif_stacked_transfer_operstate - transfer operstate
6217 * @rootdev: the root or lower level device to transfer state from
6218 * @dev: the device to transfer operstate to
6219 *
6220 * Transfer operational state from root to device. This is normally
6221 * called when a stacking relationship exists between the root
6222 * device and the device(a leaf device).
6223 */
6224void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6225 struct net_device *dev)
6226{
6227 if (rootdev->operstate == IF_OPER_DORMANT)
6228 netif_dormant_on(dev);
6229 else
6230 netif_dormant_off(dev);
6231
6232 if (netif_carrier_ok(rootdev)) {
6233 if (!netif_carrier_ok(dev))
6234 netif_carrier_on(dev);
6235 } else {
6236 if (netif_carrier_ok(dev))
6237 netif_carrier_off(dev);
6238 }
6239}
6240EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6241
a953be53 6242#ifdef CONFIG_SYSFS
1b4bf461
ED
6243static int netif_alloc_rx_queues(struct net_device *dev)
6244{
1b4bf461 6245 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6246 struct netdev_rx_queue *rx;
10595902 6247 size_t sz = count * sizeof(*rx);
1b4bf461 6248
bd25fa7b 6249 BUG_ON(count < 1);
1b4bf461 6250
10595902
PG
6251 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6252 if (!rx) {
6253 rx = vzalloc(sz);
6254 if (!rx)
6255 return -ENOMEM;
6256 }
bd25fa7b
TH
6257 dev->_rx = rx;
6258
bd25fa7b 6259 for (i = 0; i < count; i++)
fe822240 6260 rx[i].dev = dev;
1b4bf461
ED
6261 return 0;
6262}
bf264145 6263#endif
1b4bf461 6264
aa942104
CG
6265static void netdev_init_one_queue(struct net_device *dev,
6266 struct netdev_queue *queue, void *_unused)
6267{
6268 /* Initialize queue lock */
6269 spin_lock_init(&queue->_xmit_lock);
6270 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6271 queue->xmit_lock_owner = -1;
b236da69 6272 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6273 queue->dev = dev;
114cf580
TH
6274#ifdef CONFIG_BQL
6275 dql_init(&queue->dql, HZ);
6276#endif
aa942104
CG
6277}
6278
60877a32
ED
6279static void netif_free_tx_queues(struct net_device *dev)
6280{
4cb28970 6281 kvfree(dev->_tx);
60877a32
ED
6282}
6283
e6484930
TH
6284static int netif_alloc_netdev_queues(struct net_device *dev)
6285{
6286 unsigned int count = dev->num_tx_queues;
6287 struct netdev_queue *tx;
60877a32 6288 size_t sz = count * sizeof(*tx);
e6484930 6289
60877a32 6290 BUG_ON(count < 1 || count > 0xffff);
62b5942a 6291
60877a32
ED
6292 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6293 if (!tx) {
6294 tx = vzalloc(sz);
6295 if (!tx)
6296 return -ENOMEM;
6297 }
e6484930 6298 dev->_tx = tx;
1d24eb48 6299
e6484930
TH
6300 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6301 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6302
6303 return 0;
e6484930
TH
6304}
6305
1da177e4
LT
6306/**
6307 * register_netdevice - register a network device
6308 * @dev: device to register
6309 *
6310 * Take a completed network device structure and add it to the kernel
6311 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6312 * chain. 0 is returned on success. A negative errno code is returned
6313 * on a failure to set up the device, or if the name is a duplicate.
6314 *
6315 * Callers must hold the rtnl semaphore. You may want
6316 * register_netdev() instead of this.
6317 *
6318 * BUGS:
6319 * The locking appears insufficient to guarantee two parallel registers
6320 * will not get the same name.
6321 */
6322
6323int register_netdevice(struct net_device *dev)
6324{
1da177e4 6325 int ret;
d314774c 6326 struct net *net = dev_net(dev);
1da177e4
LT
6327
6328 BUG_ON(dev_boot_phase);
6329 ASSERT_RTNL();
6330
b17a7c17
SH
6331 might_sleep();
6332
1da177e4
LT
6333 /* When net_device's are persistent, this will be fatal. */
6334 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6335 BUG_ON(!net);
1da177e4 6336
f1f28aa3 6337 spin_lock_init(&dev->addr_list_lock);
cf508b12 6338 netdev_set_addr_lockdep_class(dev);
1da177e4 6339
828de4f6 6340 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6341 if (ret < 0)
6342 goto out;
6343
1da177e4 6344 /* Init, if this function is available */
d314774c
SH
6345 if (dev->netdev_ops->ndo_init) {
6346 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6347 if (ret) {
6348 if (ret > 0)
6349 ret = -EIO;
90833aa4 6350 goto out;
1da177e4
LT
6351 }
6352 }
4ec93edb 6353
f646968f
PM
6354 if (((dev->hw_features | dev->features) &
6355 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6356 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6357 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6358 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6359 ret = -EINVAL;
6360 goto err_uninit;
6361 }
6362
9c7dafbf
PE
6363 ret = -EBUSY;
6364 if (!dev->ifindex)
6365 dev->ifindex = dev_new_index(net);
6366 else if (__dev_get_by_index(net, dev->ifindex))
6367 goto err_uninit;
6368
5455c699
MM
6369 /* Transfer changeable features to wanted_features and enable
6370 * software offloads (GSO and GRO).
6371 */
6372 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6373 dev->features |= NETIF_F_SOFT_FEATURES;
6374 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6375
34324dc2
MM
6376 if (!(dev->flags & IFF_LOOPBACK)) {
6377 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6378 }
6379
1180e7d6 6380 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6381 */
1180e7d6 6382 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6383
ee579677
PS
6384 /* Make NETIF_F_SG inheritable to tunnel devices.
6385 */
6386 dev->hw_enc_features |= NETIF_F_SG;
6387
0d89d203
SH
6388 /* Make NETIF_F_SG inheritable to MPLS.
6389 */
6390 dev->mpls_features |= NETIF_F_SG;
6391
7ffbe3fd
JB
6392 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6393 ret = notifier_to_errno(ret);
6394 if (ret)
6395 goto err_uninit;
6396
8b41d188 6397 ret = netdev_register_kobject(dev);
b17a7c17 6398 if (ret)
7ce1b0ed 6399 goto err_uninit;
b17a7c17
SH
6400 dev->reg_state = NETREG_REGISTERED;
6401
6cb6a27c 6402 __netdev_update_features(dev);
8e9b59b2 6403
1da177e4
LT
6404 /*
6405 * Default initial state at registry is that the
6406 * device is present.
6407 */
6408
6409 set_bit(__LINK_STATE_PRESENT, &dev->state);
6410
8f4cccbb
BH
6411 linkwatch_init_dev(dev);
6412
1da177e4 6413 dev_init_scheduler(dev);
1da177e4 6414 dev_hold(dev);
ce286d32 6415 list_netdevice(dev);
7bf23575 6416 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6417
948b337e
JP
6418 /* If the device has permanent device address, driver should
6419 * set dev_addr and also addr_assign_type should be set to
6420 * NET_ADDR_PERM (default value).
6421 */
6422 if (dev->addr_assign_type == NET_ADDR_PERM)
6423 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6424
1da177e4 6425 /* Notify protocols, that a new device appeared. */
056925ab 6426 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6427 ret = notifier_to_errno(ret);
93ee31f1
DL
6428 if (ret) {
6429 rollback_registered(dev);
6430 dev->reg_state = NETREG_UNREGISTERED;
6431 }
d90a909e
EB
6432 /*
6433 * Prevent userspace races by waiting until the network
6434 * device is fully setup before sending notifications.
6435 */
a2835763
PM
6436 if (!dev->rtnl_link_ops ||
6437 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6438 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6439
6440out:
6441 return ret;
7ce1b0ed
HX
6442
6443err_uninit:
d314774c
SH
6444 if (dev->netdev_ops->ndo_uninit)
6445 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6446 goto out;
1da177e4 6447}
d1b19dff 6448EXPORT_SYMBOL(register_netdevice);
1da177e4 6449
937f1ba5
BH
6450/**
6451 * init_dummy_netdev - init a dummy network device for NAPI
6452 * @dev: device to init
6453 *
6454 * This takes a network device structure and initialize the minimum
6455 * amount of fields so it can be used to schedule NAPI polls without
6456 * registering a full blown interface. This is to be used by drivers
6457 * that need to tie several hardware interfaces to a single NAPI
6458 * poll scheduler due to HW limitations.
6459 */
6460int init_dummy_netdev(struct net_device *dev)
6461{
6462 /* Clear everything. Note we don't initialize spinlocks
6463 * are they aren't supposed to be taken by any of the
6464 * NAPI code and this dummy netdev is supposed to be
6465 * only ever used for NAPI polls
6466 */
6467 memset(dev, 0, sizeof(struct net_device));
6468
6469 /* make sure we BUG if trying to hit standard
6470 * register/unregister code path
6471 */
6472 dev->reg_state = NETREG_DUMMY;
6473
937f1ba5
BH
6474 /* NAPI wants this */
6475 INIT_LIST_HEAD(&dev->napi_list);
6476
6477 /* a dummy interface is started by default */
6478 set_bit(__LINK_STATE_PRESENT, &dev->state);
6479 set_bit(__LINK_STATE_START, &dev->state);
6480
29b4433d
ED
6481 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6482 * because users of this 'device' dont need to change
6483 * its refcount.
6484 */
6485
937f1ba5
BH
6486 return 0;
6487}
6488EXPORT_SYMBOL_GPL(init_dummy_netdev);
6489
6490
1da177e4
LT
6491/**
6492 * register_netdev - register a network device
6493 * @dev: device to register
6494 *
6495 * Take a completed network device structure and add it to the kernel
6496 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6497 * chain. 0 is returned on success. A negative errno code is returned
6498 * on a failure to set up the device, or if the name is a duplicate.
6499 *
38b4da38 6500 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6501 * and expands the device name if you passed a format string to
6502 * alloc_netdev.
6503 */
6504int register_netdev(struct net_device *dev)
6505{
6506 int err;
6507
6508 rtnl_lock();
1da177e4 6509 err = register_netdevice(dev);
1da177e4
LT
6510 rtnl_unlock();
6511 return err;
6512}
6513EXPORT_SYMBOL(register_netdev);
6514
29b4433d
ED
6515int netdev_refcnt_read(const struct net_device *dev)
6516{
6517 int i, refcnt = 0;
6518
6519 for_each_possible_cpu(i)
6520 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6521 return refcnt;
6522}
6523EXPORT_SYMBOL(netdev_refcnt_read);
6524
2c53040f 6525/**
1da177e4 6526 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6527 * @dev: target net_device
1da177e4
LT
6528 *
6529 * This is called when unregistering network devices.
6530 *
6531 * Any protocol or device that holds a reference should register
6532 * for netdevice notification, and cleanup and put back the
6533 * reference if they receive an UNREGISTER event.
6534 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6535 * call dev_put.
1da177e4
LT
6536 */
6537static void netdev_wait_allrefs(struct net_device *dev)
6538{
6539 unsigned long rebroadcast_time, warning_time;
29b4433d 6540 int refcnt;
1da177e4 6541
e014debe
ED
6542 linkwatch_forget_dev(dev);
6543
1da177e4 6544 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6545 refcnt = netdev_refcnt_read(dev);
6546
6547 while (refcnt != 0) {
1da177e4 6548 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6549 rtnl_lock();
1da177e4
LT
6550
6551 /* Rebroadcast unregister notification */
056925ab 6552 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6553
748e2d93 6554 __rtnl_unlock();
0115e8e3 6555 rcu_barrier();
748e2d93
ED
6556 rtnl_lock();
6557
0115e8e3 6558 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6559 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6560 &dev->state)) {
6561 /* We must not have linkwatch events
6562 * pending on unregister. If this
6563 * happens, we simply run the queue
6564 * unscheduled, resulting in a noop
6565 * for this device.
6566 */
6567 linkwatch_run_queue();
6568 }
6569
6756ae4b 6570 __rtnl_unlock();
1da177e4
LT
6571
6572 rebroadcast_time = jiffies;
6573 }
6574
6575 msleep(250);
6576
29b4433d
ED
6577 refcnt = netdev_refcnt_read(dev);
6578
1da177e4 6579 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6580 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6581 dev->name, refcnt);
1da177e4
LT
6582 warning_time = jiffies;
6583 }
6584 }
6585}
6586
6587/* The sequence is:
6588 *
6589 * rtnl_lock();
6590 * ...
6591 * register_netdevice(x1);
6592 * register_netdevice(x2);
6593 * ...
6594 * unregister_netdevice(y1);
6595 * unregister_netdevice(y2);
6596 * ...
6597 * rtnl_unlock();
6598 * free_netdev(y1);
6599 * free_netdev(y2);
6600 *
58ec3b4d 6601 * We are invoked by rtnl_unlock().
1da177e4 6602 * This allows us to deal with problems:
b17a7c17 6603 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6604 * without deadlocking with linkwatch via keventd.
6605 * 2) Since we run with the RTNL semaphore not held, we can sleep
6606 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6607 *
6608 * We must not return until all unregister events added during
6609 * the interval the lock was held have been completed.
1da177e4 6610 */
1da177e4
LT
6611void netdev_run_todo(void)
6612{
626ab0e6 6613 struct list_head list;
1da177e4 6614
1da177e4 6615 /* Snapshot list, allow later requests */
626ab0e6 6616 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6617
6618 __rtnl_unlock();
626ab0e6 6619
0115e8e3
ED
6620
6621 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6622 if (!list_empty(&list))
6623 rcu_barrier();
6624
1da177e4
LT
6625 while (!list_empty(&list)) {
6626 struct net_device *dev
e5e26d75 6627 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6628 list_del(&dev->todo_list);
6629
748e2d93 6630 rtnl_lock();
0115e8e3 6631 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6632 __rtnl_unlock();
0115e8e3 6633
b17a7c17 6634 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6635 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6636 dev->name, dev->reg_state);
6637 dump_stack();
6638 continue;
6639 }
1da177e4 6640
b17a7c17 6641 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6642
152102c7 6643 on_each_cpu(flush_backlog, dev, 1);
6e583ce5 6644
b17a7c17 6645 netdev_wait_allrefs(dev);
1da177e4 6646
b17a7c17 6647 /* paranoia */
29b4433d 6648 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
6649 BUG_ON(!list_empty(&dev->ptype_all));
6650 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
6651 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6652 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6653 WARN_ON(dev->dn_ptr);
1da177e4 6654
b17a7c17
SH
6655 if (dev->destructor)
6656 dev->destructor(dev);
9093bbb2 6657
50624c93
EB
6658 /* Report a network device has been unregistered */
6659 rtnl_lock();
6660 dev_net(dev)->dev_unreg_count--;
6661 __rtnl_unlock();
6662 wake_up(&netdev_unregistering_wq);
6663
9093bbb2
SH
6664 /* Free network device */
6665 kobject_put(&dev->dev.kobj);
1da177e4 6666 }
1da177e4
LT
6667}
6668
3cfde79c
BH
6669/* Convert net_device_stats to rtnl_link_stats64. They have the same
6670 * fields in the same order, with only the type differing.
6671 */
77a1abf5
ED
6672void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6673 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6674{
6675#if BITS_PER_LONG == 64
77a1abf5
ED
6676 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6677 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6678#else
6679 size_t i, n = sizeof(*stats64) / sizeof(u64);
6680 const unsigned long *src = (const unsigned long *)netdev_stats;
6681 u64 *dst = (u64 *)stats64;
6682
6683 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6684 sizeof(*stats64) / sizeof(u64));
6685 for (i = 0; i < n; i++)
6686 dst[i] = src[i];
6687#endif
6688}
77a1abf5 6689EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6690
eeda3fd6
SH
6691/**
6692 * dev_get_stats - get network device statistics
6693 * @dev: device to get statistics from
28172739 6694 * @storage: place to store stats
eeda3fd6 6695 *
d7753516
BH
6696 * Get network statistics from device. Return @storage.
6697 * The device driver may provide its own method by setting
6698 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6699 * otherwise the internal statistics structure is used.
eeda3fd6 6700 */
d7753516
BH
6701struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6702 struct rtnl_link_stats64 *storage)
7004bf25 6703{
eeda3fd6
SH
6704 const struct net_device_ops *ops = dev->netdev_ops;
6705
28172739
ED
6706 if (ops->ndo_get_stats64) {
6707 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6708 ops->ndo_get_stats64(dev, storage);
6709 } else if (ops->ndo_get_stats) {
3cfde79c 6710 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6711 } else {
6712 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6713 }
caf586e5 6714 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6715 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6716 return storage;
c45d286e 6717}
eeda3fd6 6718EXPORT_SYMBOL(dev_get_stats);
c45d286e 6719
24824a09 6720struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6721{
24824a09 6722 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6723
24824a09
ED
6724#ifdef CONFIG_NET_CLS_ACT
6725 if (queue)
6726 return queue;
6727 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6728 if (!queue)
6729 return NULL;
6730 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 6731 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
6732 queue->qdisc_sleeping = &noop_qdisc;
6733 rcu_assign_pointer(dev->ingress_queue, queue);
6734#endif
6735 return queue;
bb949fbd
DM
6736}
6737
2c60db03
ED
6738static const struct ethtool_ops default_ethtool_ops;
6739
d07d7507
SG
6740void netdev_set_default_ethtool_ops(struct net_device *dev,
6741 const struct ethtool_ops *ops)
6742{
6743 if (dev->ethtool_ops == &default_ethtool_ops)
6744 dev->ethtool_ops = ops;
6745}
6746EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6747
74d332c1
ED
6748void netdev_freemem(struct net_device *dev)
6749{
6750 char *addr = (char *)dev - dev->padded;
6751
4cb28970 6752 kvfree(addr);
74d332c1
ED
6753}
6754
1da177e4 6755/**
36909ea4 6756 * alloc_netdev_mqs - allocate network device
c835a677
TG
6757 * @sizeof_priv: size of private data to allocate space for
6758 * @name: device name format string
6759 * @name_assign_type: origin of device name
6760 * @setup: callback to initialize device
6761 * @txqs: the number of TX subqueues to allocate
6762 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6763 *
6764 * Allocates a struct net_device with private data area for driver use
90e51adf 6765 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6766 * for each queue on the device.
1da177e4 6767 */
36909ea4 6768struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6769 unsigned char name_assign_type,
36909ea4
TH
6770 void (*setup)(struct net_device *),
6771 unsigned int txqs, unsigned int rxqs)
1da177e4 6772{
1da177e4 6773 struct net_device *dev;
7943986c 6774 size_t alloc_size;
1ce8e7b5 6775 struct net_device *p;
1da177e4 6776
b6fe17d6
SH
6777 BUG_ON(strlen(name) >= sizeof(dev->name));
6778
36909ea4 6779 if (txqs < 1) {
7b6cd1ce 6780 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6781 return NULL;
6782 }
6783
a953be53 6784#ifdef CONFIG_SYSFS
36909ea4 6785 if (rxqs < 1) {
7b6cd1ce 6786 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6787 return NULL;
6788 }
6789#endif
6790
fd2ea0a7 6791 alloc_size = sizeof(struct net_device);
d1643d24
AD
6792 if (sizeof_priv) {
6793 /* ensure 32-byte alignment of private area */
1ce8e7b5 6794 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6795 alloc_size += sizeof_priv;
6796 }
6797 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6798 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6799
74d332c1
ED
6800 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6801 if (!p)
6802 p = vzalloc(alloc_size);
62b5942a 6803 if (!p)
1da177e4 6804 return NULL;
1da177e4 6805
1ce8e7b5 6806 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6807 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6808
29b4433d
ED
6809 dev->pcpu_refcnt = alloc_percpu(int);
6810 if (!dev->pcpu_refcnt)
74d332c1 6811 goto free_dev;
ab9c73cc 6812
ab9c73cc 6813 if (dev_addr_init(dev))
29b4433d 6814 goto free_pcpu;
ab9c73cc 6815
22bedad3 6816 dev_mc_init(dev);
a748ee24 6817 dev_uc_init(dev);
ccffad25 6818
c346dca1 6819 dev_net_set(dev, &init_net);
1da177e4 6820
8d3bdbd5 6821 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6822 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 6823 dev->gso_min_segs = 0;
8d3bdbd5 6824
8d3bdbd5
DM
6825 INIT_LIST_HEAD(&dev->napi_list);
6826 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 6827 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 6828 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
6829 INIT_LIST_HEAD(&dev->adj_list.upper);
6830 INIT_LIST_HEAD(&dev->adj_list.lower);
6831 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6832 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
6833 INIT_LIST_HEAD(&dev->ptype_all);
6834 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 6835 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
6836 setup(dev);
6837
36909ea4
TH
6838 dev->num_tx_queues = txqs;
6839 dev->real_num_tx_queues = txqs;
ed9af2e8 6840 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 6841 goto free_all;
e8a0464c 6842
a953be53 6843#ifdef CONFIG_SYSFS
36909ea4
TH
6844 dev->num_rx_queues = rxqs;
6845 dev->real_num_rx_queues = rxqs;
fe822240 6846 if (netif_alloc_rx_queues(dev))
8d3bdbd5 6847 goto free_all;
df334545 6848#endif
0a9627f2 6849
1da177e4 6850 strcpy(dev->name, name);
c835a677 6851 dev->name_assign_type = name_assign_type;
cbda10fa 6852 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
6853 if (!dev->ethtool_ops)
6854 dev->ethtool_ops = &default_ethtool_ops;
1da177e4 6855 return dev;
ab9c73cc 6856
8d3bdbd5
DM
6857free_all:
6858 free_netdev(dev);
6859 return NULL;
6860
29b4433d
ED
6861free_pcpu:
6862 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
6863free_dev:
6864 netdev_freemem(dev);
ab9c73cc 6865 return NULL;
1da177e4 6866}
36909ea4 6867EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
6868
6869/**
6870 * free_netdev - free network device
6871 * @dev: device
6872 *
4ec93edb
YH
6873 * This function does the last stage of destroying an allocated device
6874 * interface. The reference to the device object is released.
1da177e4
LT
6875 * If this is the last reference then it will be freed.
6876 */
6877void free_netdev(struct net_device *dev)
6878{
d565b0a1
HX
6879 struct napi_struct *p, *n;
6880
60877a32 6881 netif_free_tx_queues(dev);
a953be53 6882#ifdef CONFIG_SYSFS
10595902 6883 kvfree(dev->_rx);
fe822240 6884#endif
e8a0464c 6885
33d480ce 6886 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 6887
f001fde5
JP
6888 /* Flush device addresses */
6889 dev_addr_flush(dev);
6890
d565b0a1
HX
6891 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6892 netif_napi_del(p);
6893
29b4433d
ED
6894 free_percpu(dev->pcpu_refcnt);
6895 dev->pcpu_refcnt = NULL;
6896
3041a069 6897 /* Compatibility with error handling in drivers */
1da177e4 6898 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 6899 netdev_freemem(dev);
1da177e4
LT
6900 return;
6901 }
6902
6903 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6904 dev->reg_state = NETREG_RELEASED;
6905
43cb76d9
GKH
6906 /* will free via device release */
6907 put_device(&dev->dev);
1da177e4 6908}
d1b19dff 6909EXPORT_SYMBOL(free_netdev);
4ec93edb 6910
f0db275a
SH
6911/**
6912 * synchronize_net - Synchronize with packet receive processing
6913 *
6914 * Wait for packets currently being received to be done.
6915 * Does not block later packets from starting.
6916 */
4ec93edb 6917void synchronize_net(void)
1da177e4
LT
6918{
6919 might_sleep();
be3fc413
ED
6920 if (rtnl_is_locked())
6921 synchronize_rcu_expedited();
6922 else
6923 synchronize_rcu();
1da177e4 6924}
d1b19dff 6925EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
6926
6927/**
44a0873d 6928 * unregister_netdevice_queue - remove device from the kernel
1da177e4 6929 * @dev: device
44a0873d 6930 * @head: list
6ebfbc06 6931 *
1da177e4 6932 * This function shuts down a device interface and removes it
d59b54b1 6933 * from the kernel tables.
44a0873d 6934 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
6935 *
6936 * Callers must hold the rtnl semaphore. You may want
6937 * unregister_netdev() instead of this.
6938 */
6939
44a0873d 6940void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 6941{
a6620712
HX
6942 ASSERT_RTNL();
6943
44a0873d 6944 if (head) {
9fdce099 6945 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
6946 } else {
6947 rollback_registered(dev);
6948 /* Finish processing unregister after unlock */
6949 net_set_todo(dev);
6950 }
1da177e4 6951}
44a0873d 6952EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 6953
9b5e383c
ED
6954/**
6955 * unregister_netdevice_many - unregister many devices
6956 * @head: list of devices
87757a91
ED
6957 *
6958 * Note: As most callers use a stack allocated list_head,
6959 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
6960 */
6961void unregister_netdevice_many(struct list_head *head)
6962{
6963 struct net_device *dev;
6964
6965 if (!list_empty(head)) {
6966 rollback_registered_many(head);
6967 list_for_each_entry(dev, head, unreg_list)
6968 net_set_todo(dev);
87757a91 6969 list_del(head);
9b5e383c
ED
6970 }
6971}
63c8099d 6972EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 6973
1da177e4
LT
6974/**
6975 * unregister_netdev - remove device from the kernel
6976 * @dev: device
6977 *
6978 * This function shuts down a device interface and removes it
d59b54b1 6979 * from the kernel tables.
1da177e4
LT
6980 *
6981 * This is just a wrapper for unregister_netdevice that takes
6982 * the rtnl semaphore. In general you want to use this and not
6983 * unregister_netdevice.
6984 */
6985void unregister_netdev(struct net_device *dev)
6986{
6987 rtnl_lock();
6988 unregister_netdevice(dev);
6989 rtnl_unlock();
6990}
1da177e4
LT
6991EXPORT_SYMBOL(unregister_netdev);
6992
ce286d32
EB
6993/**
6994 * dev_change_net_namespace - move device to different nethost namespace
6995 * @dev: device
6996 * @net: network namespace
6997 * @pat: If not NULL name pattern to try if the current device name
6998 * is already taken in the destination network namespace.
6999 *
7000 * This function shuts down a device interface and moves it
7001 * to a new network namespace. On success 0 is returned, on
7002 * a failure a netagive errno code is returned.
7003 *
7004 * Callers must hold the rtnl semaphore.
7005 */
7006
7007int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7008{
ce286d32
EB
7009 int err;
7010
7011 ASSERT_RTNL();
7012
7013 /* Don't allow namespace local devices to be moved. */
7014 err = -EINVAL;
7015 if (dev->features & NETIF_F_NETNS_LOCAL)
7016 goto out;
7017
7018 /* Ensure the device has been registrered */
ce286d32
EB
7019 if (dev->reg_state != NETREG_REGISTERED)
7020 goto out;
7021
7022 /* Get out if there is nothing todo */
7023 err = 0;
878628fb 7024 if (net_eq(dev_net(dev), net))
ce286d32
EB
7025 goto out;
7026
7027 /* Pick the destination device name, and ensure
7028 * we can use it in the destination network namespace.
7029 */
7030 err = -EEXIST;
d9031024 7031 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7032 /* We get here if we can't use the current device name */
7033 if (!pat)
7034 goto out;
828de4f6 7035 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7036 goto out;
7037 }
7038
7039 /*
7040 * And now a mini version of register_netdevice unregister_netdevice.
7041 */
7042
7043 /* If device is running close it first. */
9b772652 7044 dev_close(dev);
ce286d32
EB
7045
7046 /* And unlink it from device chain */
7047 err = -ENODEV;
7048 unlist_netdevice(dev);
7049
7050 synchronize_net();
7051
7052 /* Shutdown queueing discipline. */
7053 dev_shutdown(dev);
7054
7055 /* Notify protocols, that we are about to destroy
7056 this device. They should clean all the things.
3b27e105
DL
7057
7058 Note that dev->reg_state stays at NETREG_REGISTERED.
7059 This is wanted because this way 8021q and macvlan know
7060 the device is just moving and can keep their slaves up.
ce286d32
EB
7061 */
7062 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7063 rcu_barrier();
7064 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7065 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7066
7067 /*
7068 * Flush the unicast and multicast chains
7069 */
a748ee24 7070 dev_uc_flush(dev);
22bedad3 7071 dev_mc_flush(dev);
ce286d32 7072
4e66ae2e
SH
7073 /* Send a netdev-removed uevent to the old namespace */
7074 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7075 netdev_adjacent_del_links(dev);
4e66ae2e 7076
ce286d32 7077 /* Actually switch the network namespace */
c346dca1 7078 dev_net_set(dev, net);
ce286d32 7079
ce286d32 7080 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7081 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7082 dev->ifindex = dev_new_index(net);
ce286d32 7083
4e66ae2e
SH
7084 /* Send a netdev-add uevent to the new namespace */
7085 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7086 netdev_adjacent_add_links(dev);
4e66ae2e 7087
8b41d188 7088 /* Fixup kobjects */
a1b3f594 7089 err = device_rename(&dev->dev, dev->name);
8b41d188 7090 WARN_ON(err);
ce286d32
EB
7091
7092 /* Add the device back in the hashes */
7093 list_netdevice(dev);
7094
7095 /* Notify protocols, that a new device appeared. */
7096 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7097
d90a909e
EB
7098 /*
7099 * Prevent userspace races by waiting until the network
7100 * device is fully setup before sending notifications.
7101 */
7f294054 7102 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7103
ce286d32
EB
7104 synchronize_net();
7105 err = 0;
7106out:
7107 return err;
7108}
463d0183 7109EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7110
1da177e4
LT
7111static int dev_cpu_callback(struct notifier_block *nfb,
7112 unsigned long action,
7113 void *ocpu)
7114{
7115 struct sk_buff **list_skb;
1da177e4
LT
7116 struct sk_buff *skb;
7117 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7118 struct softnet_data *sd, *oldsd;
7119
8bb78442 7120 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7121 return NOTIFY_OK;
7122
7123 local_irq_disable();
7124 cpu = smp_processor_id();
7125 sd = &per_cpu(softnet_data, cpu);
7126 oldsd = &per_cpu(softnet_data, oldcpu);
7127
7128 /* Find end of our completion_queue. */
7129 list_skb = &sd->completion_queue;
7130 while (*list_skb)
7131 list_skb = &(*list_skb)->next;
7132 /* Append completion queue from offline CPU. */
7133 *list_skb = oldsd->completion_queue;
7134 oldsd->completion_queue = NULL;
7135
1da177e4 7136 /* Append output queue from offline CPU. */
a9cbd588
CG
7137 if (oldsd->output_queue) {
7138 *sd->output_queue_tailp = oldsd->output_queue;
7139 sd->output_queue_tailp = oldsd->output_queue_tailp;
7140 oldsd->output_queue = NULL;
7141 oldsd->output_queue_tailp = &oldsd->output_queue;
7142 }
ac64da0b
ED
7143 /* Append NAPI poll list from offline CPU, with one exception :
7144 * process_backlog() must be called by cpu owning percpu backlog.
7145 * We properly handle process_queue & input_pkt_queue later.
7146 */
7147 while (!list_empty(&oldsd->poll_list)) {
7148 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7149 struct napi_struct,
7150 poll_list);
7151
7152 list_del_init(&napi->poll_list);
7153 if (napi->poll == process_backlog)
7154 napi->state = 0;
7155 else
7156 ____napi_schedule(sd, napi);
264524d5 7157 }
1da177e4
LT
7158
7159 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7160 local_irq_enable();
7161
7162 /* Process offline CPU's input_pkt_queue */
76cc8b13 7163 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7164 netif_rx_ni(skb);
76cc8b13 7165 input_queue_head_incr(oldsd);
fec5e652 7166 }
ac64da0b 7167 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7168 netif_rx_ni(skb);
76cc8b13
TH
7169 input_queue_head_incr(oldsd);
7170 }
1da177e4
LT
7171
7172 return NOTIFY_OK;
7173}
1da177e4
LT
7174
7175
7f353bf2 7176/**
b63365a2
HX
7177 * netdev_increment_features - increment feature set by one
7178 * @all: current feature set
7179 * @one: new feature set
7180 * @mask: mask feature set
7f353bf2
HX
7181 *
7182 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7183 * @one to the master device with current feature set @all. Will not
7184 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7185 */
c8f44aff
MM
7186netdev_features_t netdev_increment_features(netdev_features_t all,
7187 netdev_features_t one, netdev_features_t mask)
b63365a2 7188{
1742f183
MM
7189 if (mask & NETIF_F_GEN_CSUM)
7190 mask |= NETIF_F_ALL_CSUM;
7191 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7192
1742f183
MM
7193 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7194 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7195
1742f183
MM
7196 /* If one device supports hw checksumming, set for all. */
7197 if (all & NETIF_F_GEN_CSUM)
7198 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7199
7200 return all;
7201}
b63365a2 7202EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7203
430f03cd 7204static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7205{
7206 int i;
7207 struct hlist_head *hash;
7208
7209 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7210 if (hash != NULL)
7211 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7212 INIT_HLIST_HEAD(&hash[i]);
7213
7214 return hash;
7215}
7216
881d966b 7217/* Initialize per network namespace state */
4665079c 7218static int __net_init netdev_init(struct net *net)
881d966b 7219{
734b6541
RM
7220 if (net != &init_net)
7221 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7222
30d97d35
PE
7223 net->dev_name_head = netdev_create_hash();
7224 if (net->dev_name_head == NULL)
7225 goto err_name;
881d966b 7226
30d97d35
PE
7227 net->dev_index_head = netdev_create_hash();
7228 if (net->dev_index_head == NULL)
7229 goto err_idx;
881d966b
EB
7230
7231 return 0;
30d97d35
PE
7232
7233err_idx:
7234 kfree(net->dev_name_head);
7235err_name:
7236 return -ENOMEM;
881d966b
EB
7237}
7238
f0db275a
SH
7239/**
7240 * netdev_drivername - network driver for the device
7241 * @dev: network device
f0db275a
SH
7242 *
7243 * Determine network driver for device.
7244 */
3019de12 7245const char *netdev_drivername(const struct net_device *dev)
6579e57b 7246{
cf04a4c7
SH
7247 const struct device_driver *driver;
7248 const struct device *parent;
3019de12 7249 const char *empty = "";
6579e57b
AV
7250
7251 parent = dev->dev.parent;
6579e57b 7252 if (!parent)
3019de12 7253 return empty;
6579e57b
AV
7254
7255 driver = parent->driver;
7256 if (driver && driver->name)
3019de12
DM
7257 return driver->name;
7258 return empty;
6579e57b
AV
7259}
7260
6ea754eb
JP
7261static void __netdev_printk(const char *level, const struct net_device *dev,
7262 struct va_format *vaf)
256df2f3 7263{
b004ff49 7264 if (dev && dev->dev.parent) {
6ea754eb
JP
7265 dev_printk_emit(level[1] - '0',
7266 dev->dev.parent,
7267 "%s %s %s%s: %pV",
7268 dev_driver_string(dev->dev.parent),
7269 dev_name(dev->dev.parent),
7270 netdev_name(dev), netdev_reg_state(dev),
7271 vaf);
b004ff49 7272 } else if (dev) {
6ea754eb
JP
7273 printk("%s%s%s: %pV",
7274 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7275 } else {
6ea754eb 7276 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7277 }
256df2f3
JP
7278}
7279
6ea754eb
JP
7280void netdev_printk(const char *level, const struct net_device *dev,
7281 const char *format, ...)
256df2f3
JP
7282{
7283 struct va_format vaf;
7284 va_list args;
256df2f3
JP
7285
7286 va_start(args, format);
7287
7288 vaf.fmt = format;
7289 vaf.va = &args;
7290
6ea754eb 7291 __netdev_printk(level, dev, &vaf);
b004ff49 7292
256df2f3 7293 va_end(args);
256df2f3
JP
7294}
7295EXPORT_SYMBOL(netdev_printk);
7296
7297#define define_netdev_printk_level(func, level) \
6ea754eb 7298void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7299{ \
256df2f3
JP
7300 struct va_format vaf; \
7301 va_list args; \
7302 \
7303 va_start(args, fmt); \
7304 \
7305 vaf.fmt = fmt; \
7306 vaf.va = &args; \
7307 \
6ea754eb 7308 __netdev_printk(level, dev, &vaf); \
b004ff49 7309 \
256df2f3 7310 va_end(args); \
256df2f3
JP
7311} \
7312EXPORT_SYMBOL(func);
7313
7314define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7315define_netdev_printk_level(netdev_alert, KERN_ALERT);
7316define_netdev_printk_level(netdev_crit, KERN_CRIT);
7317define_netdev_printk_level(netdev_err, KERN_ERR);
7318define_netdev_printk_level(netdev_warn, KERN_WARNING);
7319define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7320define_netdev_printk_level(netdev_info, KERN_INFO);
7321
4665079c 7322static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7323{
7324 kfree(net->dev_name_head);
7325 kfree(net->dev_index_head);
7326}
7327
022cbae6 7328static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7329 .init = netdev_init,
7330 .exit = netdev_exit,
7331};
7332
4665079c 7333static void __net_exit default_device_exit(struct net *net)
ce286d32 7334{
e008b5fc 7335 struct net_device *dev, *aux;
ce286d32 7336 /*
e008b5fc 7337 * Push all migratable network devices back to the
ce286d32
EB
7338 * initial network namespace
7339 */
7340 rtnl_lock();
e008b5fc 7341 for_each_netdev_safe(net, dev, aux) {
ce286d32 7342 int err;
aca51397 7343 char fb_name[IFNAMSIZ];
ce286d32
EB
7344
7345 /* Ignore unmoveable devices (i.e. loopback) */
7346 if (dev->features & NETIF_F_NETNS_LOCAL)
7347 continue;
7348
e008b5fc
EB
7349 /* Leave virtual devices for the generic cleanup */
7350 if (dev->rtnl_link_ops)
7351 continue;
d0c082ce 7352
25985edc 7353 /* Push remaining network devices to init_net */
aca51397
PE
7354 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7355 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7356 if (err) {
7b6cd1ce
JP
7357 pr_emerg("%s: failed to move %s to init_net: %d\n",
7358 __func__, dev->name, err);
aca51397 7359 BUG();
ce286d32
EB
7360 }
7361 }
7362 rtnl_unlock();
7363}
7364
50624c93
EB
7365static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7366{
7367 /* Return with the rtnl_lock held when there are no network
7368 * devices unregistering in any network namespace in net_list.
7369 */
7370 struct net *net;
7371 bool unregistering;
ff960a73 7372 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7373
ff960a73 7374 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7375 for (;;) {
50624c93
EB
7376 unregistering = false;
7377 rtnl_lock();
7378 list_for_each_entry(net, net_list, exit_list) {
7379 if (net->dev_unreg_count > 0) {
7380 unregistering = true;
7381 break;
7382 }
7383 }
7384 if (!unregistering)
7385 break;
7386 __rtnl_unlock();
ff960a73
PZ
7387
7388 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7389 }
ff960a73 7390 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7391}
7392
04dc7f6b
EB
7393static void __net_exit default_device_exit_batch(struct list_head *net_list)
7394{
7395 /* At exit all network devices most be removed from a network
b595076a 7396 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7397 * Do this across as many network namespaces as possible to
7398 * improve batching efficiency.
7399 */
7400 struct net_device *dev;
7401 struct net *net;
7402 LIST_HEAD(dev_kill_list);
7403
50624c93
EB
7404 /* To prevent network device cleanup code from dereferencing
7405 * loopback devices or network devices that have been freed
7406 * wait here for all pending unregistrations to complete,
7407 * before unregistring the loopback device and allowing the
7408 * network namespace be freed.
7409 *
7410 * The netdev todo list containing all network devices
7411 * unregistrations that happen in default_device_exit_batch
7412 * will run in the rtnl_unlock() at the end of
7413 * default_device_exit_batch.
7414 */
7415 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7416 list_for_each_entry(net, net_list, exit_list) {
7417 for_each_netdev_reverse(net, dev) {
b0ab2fab 7418 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7419 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7420 else
7421 unregister_netdevice_queue(dev, &dev_kill_list);
7422 }
7423 }
7424 unregister_netdevice_many(&dev_kill_list);
7425 rtnl_unlock();
7426}
7427
022cbae6 7428static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7429 .exit = default_device_exit,
04dc7f6b 7430 .exit_batch = default_device_exit_batch,
ce286d32
EB
7431};
7432
1da177e4
LT
7433/*
7434 * Initialize the DEV module. At boot time this walks the device list and
7435 * unhooks any devices that fail to initialise (normally hardware not
7436 * present) and leaves us with a valid list of present and active devices.
7437 *
7438 */
7439
7440/*
7441 * This is called single threaded during boot, so no need
7442 * to take the rtnl semaphore.
7443 */
7444static int __init net_dev_init(void)
7445{
7446 int i, rc = -ENOMEM;
7447
7448 BUG_ON(!dev_boot_phase);
7449
1da177e4
LT
7450 if (dev_proc_init())
7451 goto out;
7452
8b41d188 7453 if (netdev_kobject_init())
1da177e4
LT
7454 goto out;
7455
7456 INIT_LIST_HEAD(&ptype_all);
82d8a867 7457 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7458 INIT_LIST_HEAD(&ptype_base[i]);
7459
62532da9
VY
7460 INIT_LIST_HEAD(&offload_base);
7461
881d966b
EB
7462 if (register_pernet_subsys(&netdev_net_ops))
7463 goto out;
1da177e4
LT
7464
7465 /*
7466 * Initialise the packet receive queues.
7467 */
7468
6f912042 7469 for_each_possible_cpu(i) {
e36fa2f7 7470 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7471
e36fa2f7 7472 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7473 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7474 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7475 sd->output_queue_tailp = &sd->output_queue;
df334545 7476#ifdef CONFIG_RPS
e36fa2f7
ED
7477 sd->csd.func = rps_trigger_softirq;
7478 sd->csd.info = sd;
e36fa2f7 7479 sd->cpu = i;
1e94d72f 7480#endif
0a9627f2 7481
e36fa2f7
ED
7482 sd->backlog.poll = process_backlog;
7483 sd->backlog.weight = weight_p;
1da177e4
LT
7484 }
7485
1da177e4
LT
7486 dev_boot_phase = 0;
7487
505d4f73
EB
7488 /* The loopback device is special if any other network devices
7489 * is present in a network namespace the loopback device must
7490 * be present. Since we now dynamically allocate and free the
7491 * loopback device ensure this invariant is maintained by
7492 * keeping the loopback device as the first device on the
7493 * list of network devices. Ensuring the loopback devices
7494 * is the first device that appears and the last network device
7495 * that disappears.
7496 */
7497 if (register_pernet_device(&loopback_net_ops))
7498 goto out;
7499
7500 if (register_pernet_device(&default_device_ops))
7501 goto out;
7502
962cf36c
CM
7503 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7504 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7505
7506 hotcpu_notifier(dev_cpu_callback, 0);
7507 dst_init();
1da177e4
LT
7508 rc = 0;
7509out:
7510 return rc;
7511}
7512
7513subsys_initcall(net_dev_init);
This page took 1.839443 seconds and 5 git commands to generate.