ipv6: udp: fix UDP_MIB_IGNOREDMULTI updates
[deliverable/linux.git] / net / core / filter.c
CommitLineData
1da177e4
LT
1/*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
bd4cf0ed
AS
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
1da177e4 6 *
bd4cf0ed
AS
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
1da177e4
LT
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
1da177e4
LT
22 */
23
24#include <linux/module.h>
25#include <linux/types.h>
1da177e4
LT
26#include <linux/mm.h>
27#include <linux/fcntl.h>
28#include <linux/socket.h>
29#include <linux/in.h>
30#include <linux/inet.h>
31#include <linux/netdevice.h>
32#include <linux/if_packet.h>
5a0e3ad6 33#include <linux/gfp.h>
1da177e4
LT
34#include <net/ip.h>
35#include <net/protocol.h>
4738c1db 36#include <net/netlink.h>
1da177e4
LT
37#include <linux/skbuff.h>
38#include <net/sock.h>
10b89ee4 39#include <net/flow_dissector.h>
1da177e4
LT
40#include <linux/errno.h>
41#include <linux/timer.h>
1da177e4 42#include <asm/uaccess.h>
40daafc8 43#include <asm/unaligned.h>
1da177e4 44#include <linux/filter.h>
86e4ca66 45#include <linux/ratelimit.h>
46b325c7 46#include <linux/seccomp.h>
f3335031 47#include <linux/if_vlan.h>
89aa0758 48#include <linux/bpf.h>
d691f9e8 49#include <net/sch_generic.h>
8d20aabe 50#include <net/cls_cgroup.h>
d3aa45ce 51#include <net/dst_metadata.h>
c46646d0 52#include <net/dst.h>
538950a1 53#include <net/sock_reuseport.h>
1da177e4 54
43db6d65
SH
55/**
56 * sk_filter - run a packet through a socket filter
57 * @sk: sock associated with &sk_buff
58 * @skb: buffer to filter
43db6d65 59 *
ff936a04
AS
60 * Run the eBPF program and then cut skb->data to correct size returned by
61 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
43db6d65 62 * than pkt_len we keep whole skb->data. This is the socket level
ff936a04 63 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
43db6d65
SH
64 * be accepted or -EPERM if the packet should be tossed.
65 *
66 */
67int sk_filter(struct sock *sk, struct sk_buff *skb)
68{
69 int err;
70 struct sk_filter *filter;
71
c93bdd0e
MG
72 /*
73 * If the skb was allocated from pfmemalloc reserves, only
74 * allow SOCK_MEMALLOC sockets to use it as this socket is
75 * helping free memory
76 */
77 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
78 return -ENOMEM;
79
43db6d65
SH
80 err = security_sock_rcv_skb(sk, skb);
81 if (err)
82 return err;
83
80f8f102
ED
84 rcu_read_lock();
85 filter = rcu_dereference(sk->sk_filter);
43db6d65 86 if (filter) {
ff936a04 87 unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
0d7da9dd 88
43db6d65
SH
89 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
90 }
80f8f102 91 rcu_read_unlock();
43db6d65
SH
92
93 return err;
94}
95EXPORT_SYMBOL(sk_filter);
96
30743837 97static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 98{
56193d1b 99 return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
bd4cf0ed
AS
100}
101
30743837 102static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 103{
eb9672f4 104 struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
bd4cf0ed
AS
105 struct nlattr *nla;
106
107 if (skb_is_nonlinear(skb))
108 return 0;
109
05ab8f26
MK
110 if (skb->len < sizeof(struct nlattr))
111 return 0;
112
30743837 113 if (a > skb->len - sizeof(struct nlattr))
bd4cf0ed
AS
114 return 0;
115
30743837 116 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
bd4cf0ed
AS
117 if (nla)
118 return (void *) nla - (void *) skb->data;
119
120 return 0;
121}
122
30743837 123static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 124{
eb9672f4 125 struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
bd4cf0ed
AS
126 struct nlattr *nla;
127
128 if (skb_is_nonlinear(skb))
129 return 0;
130
05ab8f26
MK
131 if (skb->len < sizeof(struct nlattr))
132 return 0;
133
30743837 134 if (a > skb->len - sizeof(struct nlattr))
bd4cf0ed
AS
135 return 0;
136
30743837
DB
137 nla = (struct nlattr *) &skb->data[a];
138 if (nla->nla_len > skb->len - a)
bd4cf0ed
AS
139 return 0;
140
30743837 141 nla = nla_find_nested(nla, x);
bd4cf0ed
AS
142 if (nla)
143 return (void *) nla - (void *) skb->data;
144
145 return 0;
146}
147
30743837 148static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed
AS
149{
150 return raw_smp_processor_id();
151}
152
9bac3d6d
AS
153static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
154 struct bpf_insn *insn_buf)
155{
156 struct bpf_insn *insn = insn_buf;
157
158 switch (skb_field) {
159 case SKF_AD_MARK:
160 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
161
162 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
163 offsetof(struct sk_buff, mark));
164 break;
165
166 case SKF_AD_PKTTYPE:
167 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
168 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
169#ifdef __BIG_ENDIAN_BITFIELD
170 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
171#endif
172 break;
173
174 case SKF_AD_QUEUE:
175 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
176
177 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
178 offsetof(struct sk_buff, queue_mapping));
179 break;
c2497395 180
c2497395
AS
181 case SKF_AD_VLAN_TAG:
182 case SKF_AD_VLAN_TAG_PRESENT:
183 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
184 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
185
186 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
187 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
188 offsetof(struct sk_buff, vlan_tci));
189 if (skb_field == SKF_AD_VLAN_TAG) {
190 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
191 ~VLAN_TAG_PRESENT);
192 } else {
193 /* dst_reg >>= 12 */
194 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
195 /* dst_reg &= 1 */
196 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
197 }
198 break;
9bac3d6d
AS
199 }
200
201 return insn - insn_buf;
202}
203
bd4cf0ed 204static bool convert_bpf_extensions(struct sock_filter *fp,
2695fb55 205 struct bpf_insn **insnp)
bd4cf0ed 206{
2695fb55 207 struct bpf_insn *insn = *insnp;
9bac3d6d 208 u32 cnt;
bd4cf0ed
AS
209
210 switch (fp->k) {
211 case SKF_AD_OFF + SKF_AD_PROTOCOL:
0b8c707d
DB
212 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
213
214 /* A = *(u16 *) (CTX + offsetof(protocol)) */
215 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
216 offsetof(struct sk_buff, protocol));
217 /* A = ntohs(A) [emitting a nop or swap16] */
218 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
bd4cf0ed
AS
219 break;
220
221 case SKF_AD_OFF + SKF_AD_PKTTYPE:
9bac3d6d
AS
222 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
223 insn += cnt - 1;
bd4cf0ed
AS
224 break;
225
226 case SKF_AD_OFF + SKF_AD_IFINDEX:
227 case SKF_AD_OFF + SKF_AD_HATYPE:
bd4cf0ed
AS
228 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
229 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
f8f6d679
DB
230 BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
231
232 *insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
233 BPF_REG_TMP, BPF_REG_CTX,
234 offsetof(struct sk_buff, dev));
235 /* if (tmp != 0) goto pc + 1 */
236 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
237 *insn++ = BPF_EXIT_INSN();
238 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
239 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
240 offsetof(struct net_device, ifindex));
241 else
242 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
243 offsetof(struct net_device, type));
bd4cf0ed
AS
244 break;
245
246 case SKF_AD_OFF + SKF_AD_MARK:
9bac3d6d
AS
247 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
248 insn += cnt - 1;
bd4cf0ed
AS
249 break;
250
251 case SKF_AD_OFF + SKF_AD_RXHASH:
252 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
253
9739eef1
AS
254 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
255 offsetof(struct sk_buff, hash));
bd4cf0ed
AS
256 break;
257
258 case SKF_AD_OFF + SKF_AD_QUEUE:
9bac3d6d
AS
259 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
260 insn += cnt - 1;
bd4cf0ed
AS
261 break;
262
263 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
c2497395
AS
264 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
265 BPF_REG_A, BPF_REG_CTX, insn);
266 insn += cnt - 1;
267 break;
bd4cf0ed 268
c2497395
AS
269 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
270 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
271 BPF_REG_A, BPF_REG_CTX, insn);
272 insn += cnt - 1;
bd4cf0ed
AS
273 break;
274
27cd5452
MS
275 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
276 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
277
278 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
279 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
280 offsetof(struct sk_buff, vlan_proto));
281 /* A = ntohs(A) [emitting a nop or swap16] */
282 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
283 break;
284
bd4cf0ed
AS
285 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
286 case SKF_AD_OFF + SKF_AD_NLATTR:
287 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
288 case SKF_AD_OFF + SKF_AD_CPU:
4cd3675e 289 case SKF_AD_OFF + SKF_AD_RANDOM:
e430f34e 290 /* arg1 = CTX */
f8f6d679 291 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
bd4cf0ed 292 /* arg2 = A */
f8f6d679 293 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
bd4cf0ed 294 /* arg3 = X */
f8f6d679 295 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
e430f34e 296 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
bd4cf0ed
AS
297 switch (fp->k) {
298 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
f8f6d679 299 *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
bd4cf0ed
AS
300 break;
301 case SKF_AD_OFF + SKF_AD_NLATTR:
f8f6d679 302 *insn = BPF_EMIT_CALL(__skb_get_nlattr);
bd4cf0ed
AS
303 break;
304 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
f8f6d679 305 *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
bd4cf0ed
AS
306 break;
307 case SKF_AD_OFF + SKF_AD_CPU:
f8f6d679 308 *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
bd4cf0ed 309 break;
4cd3675e 310 case SKF_AD_OFF + SKF_AD_RANDOM:
3ad00405
DB
311 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
312 bpf_user_rnd_init_once();
4cd3675e 313 break;
bd4cf0ed
AS
314 }
315 break;
316
317 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
9739eef1
AS
318 /* A ^= X */
319 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
bd4cf0ed
AS
320 break;
321
322 default:
323 /* This is just a dummy call to avoid letting the compiler
324 * evict __bpf_call_base() as an optimization. Placed here
325 * where no-one bothers.
326 */
327 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
328 return false;
329 }
330
331 *insnp = insn;
332 return true;
333}
334
335/**
8fb575ca 336 * bpf_convert_filter - convert filter program
bd4cf0ed
AS
337 * @prog: the user passed filter program
338 * @len: the length of the user passed filter program
339 * @new_prog: buffer where converted program will be stored
340 * @new_len: pointer to store length of converted program
341 *
342 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
343 * Conversion workflow:
344 *
345 * 1) First pass for calculating the new program length:
8fb575ca 346 * bpf_convert_filter(old_prog, old_len, NULL, &new_len)
bd4cf0ed
AS
347 *
348 * 2) 2nd pass to remap in two passes: 1st pass finds new
349 * jump offsets, 2nd pass remapping:
2695fb55 350 * new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
8fb575ca 351 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
bd4cf0ed 352 */
d9e12f42
NS
353static int bpf_convert_filter(struct sock_filter *prog, int len,
354 struct bpf_insn *new_prog, int *new_len)
bd4cf0ed
AS
355{
356 int new_flen = 0, pass = 0, target, i;
2695fb55 357 struct bpf_insn *new_insn;
bd4cf0ed
AS
358 struct sock_filter *fp;
359 int *addrs = NULL;
360 u8 bpf_src;
361
362 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
30743837 363 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
bd4cf0ed 364
6f9a093b 365 if (len <= 0 || len > BPF_MAXINSNS)
bd4cf0ed
AS
366 return -EINVAL;
367
368 if (new_prog) {
658da937
DB
369 addrs = kcalloc(len, sizeof(*addrs),
370 GFP_KERNEL | __GFP_NOWARN);
bd4cf0ed
AS
371 if (!addrs)
372 return -ENOMEM;
373 }
374
375do_pass:
376 new_insn = new_prog;
377 fp = prog;
378
8b614aeb
DB
379 /* Classic BPF related prologue emission. */
380 if (new_insn) {
381 /* Classic BPF expects A and X to be reset first. These need
382 * to be guaranteed to be the first two instructions.
383 */
384 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
385 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
386
387 /* All programs must keep CTX in callee saved BPF_REG_CTX.
388 * In eBPF case it's done by the compiler, here we need to
389 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
390 */
391 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
392 } else {
393 new_insn += 3;
394 }
bd4cf0ed
AS
395
396 for (i = 0; i < len; fp++, i++) {
2695fb55
AS
397 struct bpf_insn tmp_insns[6] = { };
398 struct bpf_insn *insn = tmp_insns;
bd4cf0ed
AS
399
400 if (addrs)
401 addrs[i] = new_insn - new_prog;
402
403 switch (fp->code) {
404 /* All arithmetic insns and skb loads map as-is. */
405 case BPF_ALU | BPF_ADD | BPF_X:
406 case BPF_ALU | BPF_ADD | BPF_K:
407 case BPF_ALU | BPF_SUB | BPF_X:
408 case BPF_ALU | BPF_SUB | BPF_K:
409 case BPF_ALU | BPF_AND | BPF_X:
410 case BPF_ALU | BPF_AND | BPF_K:
411 case BPF_ALU | BPF_OR | BPF_X:
412 case BPF_ALU | BPF_OR | BPF_K:
413 case BPF_ALU | BPF_LSH | BPF_X:
414 case BPF_ALU | BPF_LSH | BPF_K:
415 case BPF_ALU | BPF_RSH | BPF_X:
416 case BPF_ALU | BPF_RSH | BPF_K:
417 case BPF_ALU | BPF_XOR | BPF_X:
418 case BPF_ALU | BPF_XOR | BPF_K:
419 case BPF_ALU | BPF_MUL | BPF_X:
420 case BPF_ALU | BPF_MUL | BPF_K:
421 case BPF_ALU | BPF_DIV | BPF_X:
422 case BPF_ALU | BPF_DIV | BPF_K:
423 case BPF_ALU | BPF_MOD | BPF_X:
424 case BPF_ALU | BPF_MOD | BPF_K:
425 case BPF_ALU | BPF_NEG:
426 case BPF_LD | BPF_ABS | BPF_W:
427 case BPF_LD | BPF_ABS | BPF_H:
428 case BPF_LD | BPF_ABS | BPF_B:
429 case BPF_LD | BPF_IND | BPF_W:
430 case BPF_LD | BPF_IND | BPF_H:
431 case BPF_LD | BPF_IND | BPF_B:
432 /* Check for overloaded BPF extension and
433 * directly convert it if found, otherwise
434 * just move on with mapping.
435 */
436 if (BPF_CLASS(fp->code) == BPF_LD &&
437 BPF_MODE(fp->code) == BPF_ABS &&
438 convert_bpf_extensions(fp, &insn))
439 break;
440
f8f6d679 441 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
bd4cf0ed
AS
442 break;
443
f8f6d679
DB
444 /* Jump transformation cannot use BPF block macros
445 * everywhere as offset calculation and target updates
446 * require a bit more work than the rest, i.e. jump
447 * opcodes map as-is, but offsets need adjustment.
448 */
449
450#define BPF_EMIT_JMP \
bd4cf0ed
AS
451 do { \
452 if (target >= len || target < 0) \
453 goto err; \
454 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
455 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
456 insn->off -= insn - tmp_insns; \
457 } while (0)
458
f8f6d679
DB
459 case BPF_JMP | BPF_JA:
460 target = i + fp->k + 1;
461 insn->code = fp->code;
462 BPF_EMIT_JMP;
bd4cf0ed
AS
463 break;
464
465 case BPF_JMP | BPF_JEQ | BPF_K:
466 case BPF_JMP | BPF_JEQ | BPF_X:
467 case BPF_JMP | BPF_JSET | BPF_K:
468 case BPF_JMP | BPF_JSET | BPF_X:
469 case BPF_JMP | BPF_JGT | BPF_K:
470 case BPF_JMP | BPF_JGT | BPF_X:
471 case BPF_JMP | BPF_JGE | BPF_K:
472 case BPF_JMP | BPF_JGE | BPF_X:
473 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
474 /* BPF immediates are signed, zero extend
475 * immediate into tmp register and use it
476 * in compare insn.
477 */
f8f6d679 478 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
bd4cf0ed 479
e430f34e
AS
480 insn->dst_reg = BPF_REG_A;
481 insn->src_reg = BPF_REG_TMP;
bd4cf0ed
AS
482 bpf_src = BPF_X;
483 } else {
e430f34e 484 insn->dst_reg = BPF_REG_A;
bd4cf0ed
AS
485 insn->imm = fp->k;
486 bpf_src = BPF_SRC(fp->code);
19539ce7 487 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
1da177e4 488 }
bd4cf0ed
AS
489
490 /* Common case where 'jump_false' is next insn. */
491 if (fp->jf == 0) {
492 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
493 target = i + fp->jt + 1;
f8f6d679 494 BPF_EMIT_JMP;
bd4cf0ed 495 break;
1da177e4 496 }
bd4cf0ed
AS
497
498 /* Convert JEQ into JNE when 'jump_true' is next insn. */
499 if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
500 insn->code = BPF_JMP | BPF_JNE | bpf_src;
501 target = i + fp->jf + 1;
f8f6d679 502 BPF_EMIT_JMP;
bd4cf0ed 503 break;
0b05b2a4 504 }
bd4cf0ed
AS
505
506 /* Other jumps are mapped into two insns: Jxx and JA. */
507 target = i + fp->jt + 1;
508 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
f8f6d679 509 BPF_EMIT_JMP;
bd4cf0ed
AS
510 insn++;
511
512 insn->code = BPF_JMP | BPF_JA;
513 target = i + fp->jf + 1;
f8f6d679 514 BPF_EMIT_JMP;
bd4cf0ed
AS
515 break;
516
517 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
518 case BPF_LDX | BPF_MSH | BPF_B:
9739eef1 519 /* tmp = A */
f8f6d679 520 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
1268e253 521 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
f8f6d679 522 *insn++ = BPF_LD_ABS(BPF_B, fp->k);
9739eef1 523 /* A &= 0xf */
f8f6d679 524 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
9739eef1 525 /* A <<= 2 */
f8f6d679 526 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
9739eef1 527 /* X = A */
f8f6d679 528 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
9739eef1 529 /* A = tmp */
f8f6d679 530 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
bd4cf0ed
AS
531 break;
532
6205b9cf
DB
533 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
534 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
535 */
bd4cf0ed
AS
536 case BPF_RET | BPF_A:
537 case BPF_RET | BPF_K:
6205b9cf
DB
538 if (BPF_RVAL(fp->code) == BPF_K)
539 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
540 0, fp->k);
9739eef1 541 *insn = BPF_EXIT_INSN();
bd4cf0ed
AS
542 break;
543
544 /* Store to stack. */
545 case BPF_ST:
546 case BPF_STX:
f8f6d679
DB
547 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
548 BPF_ST ? BPF_REG_A : BPF_REG_X,
549 -(BPF_MEMWORDS - fp->k) * 4);
bd4cf0ed
AS
550 break;
551
552 /* Load from stack. */
553 case BPF_LD | BPF_MEM:
554 case BPF_LDX | BPF_MEM:
f8f6d679
DB
555 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
556 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
557 -(BPF_MEMWORDS - fp->k) * 4);
bd4cf0ed
AS
558 break;
559
560 /* A = K or X = K */
561 case BPF_LD | BPF_IMM:
562 case BPF_LDX | BPF_IMM:
f8f6d679
DB
563 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
564 BPF_REG_A : BPF_REG_X, fp->k);
bd4cf0ed
AS
565 break;
566
567 /* X = A */
568 case BPF_MISC | BPF_TAX:
f8f6d679 569 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
bd4cf0ed
AS
570 break;
571
572 /* A = X */
573 case BPF_MISC | BPF_TXA:
f8f6d679 574 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
bd4cf0ed
AS
575 break;
576
577 /* A = skb->len or X = skb->len */
578 case BPF_LD | BPF_W | BPF_LEN:
579 case BPF_LDX | BPF_W | BPF_LEN:
f8f6d679
DB
580 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
581 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
582 offsetof(struct sk_buff, len));
bd4cf0ed
AS
583 break;
584
f8f6d679 585 /* Access seccomp_data fields. */
bd4cf0ed 586 case BPF_LDX | BPF_ABS | BPF_W:
9739eef1
AS
587 /* A = *(u32 *) (ctx + K) */
588 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
bd4cf0ed
AS
589 break;
590
ca9f1fd2 591 /* Unknown instruction. */
1da177e4 592 default:
bd4cf0ed 593 goto err;
1da177e4 594 }
bd4cf0ed
AS
595
596 insn++;
597 if (new_prog)
598 memcpy(new_insn, tmp_insns,
599 sizeof(*insn) * (insn - tmp_insns));
bd4cf0ed 600 new_insn += insn - tmp_insns;
1da177e4
LT
601 }
602
bd4cf0ed
AS
603 if (!new_prog) {
604 /* Only calculating new length. */
605 *new_len = new_insn - new_prog;
606 return 0;
607 }
608
609 pass++;
610 if (new_flen != new_insn - new_prog) {
611 new_flen = new_insn - new_prog;
612 if (pass > 2)
613 goto err;
bd4cf0ed
AS
614 goto do_pass;
615 }
616
617 kfree(addrs);
618 BUG_ON(*new_len != new_flen);
1da177e4 619 return 0;
bd4cf0ed
AS
620err:
621 kfree(addrs);
622 return -EINVAL;
1da177e4
LT
623}
624
bd4cf0ed 625/* Security:
bd4cf0ed 626 *
2d5311e4 627 * As we dont want to clear mem[] array for each packet going through
8ea6e345 628 * __bpf_prog_run(), we check that filter loaded by user never try to read
2d5311e4 629 * a cell if not previously written, and we check all branches to be sure
25985edc 630 * a malicious user doesn't try to abuse us.
2d5311e4 631 */
ec31a05c 632static int check_load_and_stores(const struct sock_filter *filter, int flen)
2d5311e4 633{
34805931 634 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
2d5311e4
ED
635 int pc, ret = 0;
636
637 BUILD_BUG_ON(BPF_MEMWORDS > 16);
34805931 638
99e72a0f 639 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
2d5311e4
ED
640 if (!masks)
641 return -ENOMEM;
34805931 642
2d5311e4
ED
643 memset(masks, 0xff, flen * sizeof(*masks));
644
645 for (pc = 0; pc < flen; pc++) {
646 memvalid &= masks[pc];
647
648 switch (filter[pc].code) {
34805931
DB
649 case BPF_ST:
650 case BPF_STX:
2d5311e4
ED
651 memvalid |= (1 << filter[pc].k);
652 break;
34805931
DB
653 case BPF_LD | BPF_MEM:
654 case BPF_LDX | BPF_MEM:
2d5311e4
ED
655 if (!(memvalid & (1 << filter[pc].k))) {
656 ret = -EINVAL;
657 goto error;
658 }
659 break;
34805931
DB
660 case BPF_JMP | BPF_JA:
661 /* A jump must set masks on target */
2d5311e4
ED
662 masks[pc + 1 + filter[pc].k] &= memvalid;
663 memvalid = ~0;
664 break;
34805931
DB
665 case BPF_JMP | BPF_JEQ | BPF_K:
666 case BPF_JMP | BPF_JEQ | BPF_X:
667 case BPF_JMP | BPF_JGE | BPF_K:
668 case BPF_JMP | BPF_JGE | BPF_X:
669 case BPF_JMP | BPF_JGT | BPF_K:
670 case BPF_JMP | BPF_JGT | BPF_X:
671 case BPF_JMP | BPF_JSET | BPF_K:
672 case BPF_JMP | BPF_JSET | BPF_X:
673 /* A jump must set masks on targets */
2d5311e4
ED
674 masks[pc + 1 + filter[pc].jt] &= memvalid;
675 masks[pc + 1 + filter[pc].jf] &= memvalid;
676 memvalid = ~0;
677 break;
678 }
679 }
680error:
681 kfree(masks);
682 return ret;
683}
684
34805931
DB
685static bool chk_code_allowed(u16 code_to_probe)
686{
687 static const bool codes[] = {
688 /* 32 bit ALU operations */
689 [BPF_ALU | BPF_ADD | BPF_K] = true,
690 [BPF_ALU | BPF_ADD | BPF_X] = true,
691 [BPF_ALU | BPF_SUB | BPF_K] = true,
692 [BPF_ALU | BPF_SUB | BPF_X] = true,
693 [BPF_ALU | BPF_MUL | BPF_K] = true,
694 [BPF_ALU | BPF_MUL | BPF_X] = true,
695 [BPF_ALU | BPF_DIV | BPF_K] = true,
696 [BPF_ALU | BPF_DIV | BPF_X] = true,
697 [BPF_ALU | BPF_MOD | BPF_K] = true,
698 [BPF_ALU | BPF_MOD | BPF_X] = true,
699 [BPF_ALU | BPF_AND | BPF_K] = true,
700 [BPF_ALU | BPF_AND | BPF_X] = true,
701 [BPF_ALU | BPF_OR | BPF_K] = true,
702 [BPF_ALU | BPF_OR | BPF_X] = true,
703 [BPF_ALU | BPF_XOR | BPF_K] = true,
704 [BPF_ALU | BPF_XOR | BPF_X] = true,
705 [BPF_ALU | BPF_LSH | BPF_K] = true,
706 [BPF_ALU | BPF_LSH | BPF_X] = true,
707 [BPF_ALU | BPF_RSH | BPF_K] = true,
708 [BPF_ALU | BPF_RSH | BPF_X] = true,
709 [BPF_ALU | BPF_NEG] = true,
710 /* Load instructions */
711 [BPF_LD | BPF_W | BPF_ABS] = true,
712 [BPF_LD | BPF_H | BPF_ABS] = true,
713 [BPF_LD | BPF_B | BPF_ABS] = true,
714 [BPF_LD | BPF_W | BPF_LEN] = true,
715 [BPF_LD | BPF_W | BPF_IND] = true,
716 [BPF_LD | BPF_H | BPF_IND] = true,
717 [BPF_LD | BPF_B | BPF_IND] = true,
718 [BPF_LD | BPF_IMM] = true,
719 [BPF_LD | BPF_MEM] = true,
720 [BPF_LDX | BPF_W | BPF_LEN] = true,
721 [BPF_LDX | BPF_B | BPF_MSH] = true,
722 [BPF_LDX | BPF_IMM] = true,
723 [BPF_LDX | BPF_MEM] = true,
724 /* Store instructions */
725 [BPF_ST] = true,
726 [BPF_STX] = true,
727 /* Misc instructions */
728 [BPF_MISC | BPF_TAX] = true,
729 [BPF_MISC | BPF_TXA] = true,
730 /* Return instructions */
731 [BPF_RET | BPF_K] = true,
732 [BPF_RET | BPF_A] = true,
733 /* Jump instructions */
734 [BPF_JMP | BPF_JA] = true,
735 [BPF_JMP | BPF_JEQ | BPF_K] = true,
736 [BPF_JMP | BPF_JEQ | BPF_X] = true,
737 [BPF_JMP | BPF_JGE | BPF_K] = true,
738 [BPF_JMP | BPF_JGE | BPF_X] = true,
739 [BPF_JMP | BPF_JGT | BPF_K] = true,
740 [BPF_JMP | BPF_JGT | BPF_X] = true,
741 [BPF_JMP | BPF_JSET | BPF_K] = true,
742 [BPF_JMP | BPF_JSET | BPF_X] = true,
743 };
744
745 if (code_to_probe >= ARRAY_SIZE(codes))
746 return false;
747
748 return codes[code_to_probe];
749}
750
1da177e4 751/**
4df95ff4 752 * bpf_check_classic - verify socket filter code
1da177e4
LT
753 * @filter: filter to verify
754 * @flen: length of filter
755 *
756 * Check the user's filter code. If we let some ugly
757 * filter code slip through kaboom! The filter must contain
93699863
KK
758 * no references or jumps that are out of range, no illegal
759 * instructions, and must end with a RET instruction.
1da177e4 760 *
7b11f69f
KK
761 * All jumps are forward as they are not signed.
762 *
763 * Returns 0 if the rule set is legal or -EINVAL if not.
1da177e4 764 */
d9e12f42
NS
765static int bpf_check_classic(const struct sock_filter *filter,
766 unsigned int flen)
1da177e4 767{
aa1113d9 768 bool anc_found;
34805931 769 int pc;
1da177e4 770
1b93ae64 771 if (flen == 0 || flen > BPF_MAXINSNS)
1da177e4
LT
772 return -EINVAL;
773
34805931 774 /* Check the filter code now */
1da177e4 775 for (pc = 0; pc < flen; pc++) {
ec31a05c 776 const struct sock_filter *ftest = &filter[pc];
93699863 777
34805931
DB
778 /* May we actually operate on this code? */
779 if (!chk_code_allowed(ftest->code))
cba328fc 780 return -EINVAL;
34805931 781
93699863 782 /* Some instructions need special checks */
34805931
DB
783 switch (ftest->code) {
784 case BPF_ALU | BPF_DIV | BPF_K:
785 case BPF_ALU | BPF_MOD | BPF_K:
786 /* Check for division by zero */
b6069a95
ED
787 if (ftest->k == 0)
788 return -EINVAL;
789 break;
229394e8
RV
790 case BPF_ALU | BPF_LSH | BPF_K:
791 case BPF_ALU | BPF_RSH | BPF_K:
792 if (ftest->k >= 32)
793 return -EINVAL;
794 break;
34805931
DB
795 case BPF_LD | BPF_MEM:
796 case BPF_LDX | BPF_MEM:
797 case BPF_ST:
798 case BPF_STX:
799 /* Check for invalid memory addresses */
93699863
KK
800 if (ftest->k >= BPF_MEMWORDS)
801 return -EINVAL;
802 break;
34805931
DB
803 case BPF_JMP | BPF_JA:
804 /* Note, the large ftest->k might cause loops.
93699863
KK
805 * Compare this with conditional jumps below,
806 * where offsets are limited. --ANK (981016)
807 */
34805931 808 if (ftest->k >= (unsigned int)(flen - pc - 1))
93699863 809 return -EINVAL;
01f2f3f6 810 break;
34805931
DB
811 case BPF_JMP | BPF_JEQ | BPF_K:
812 case BPF_JMP | BPF_JEQ | BPF_X:
813 case BPF_JMP | BPF_JGE | BPF_K:
814 case BPF_JMP | BPF_JGE | BPF_X:
815 case BPF_JMP | BPF_JGT | BPF_K:
816 case BPF_JMP | BPF_JGT | BPF_X:
817 case BPF_JMP | BPF_JSET | BPF_K:
818 case BPF_JMP | BPF_JSET | BPF_X:
819 /* Both conditionals must be safe */
e35bedf3 820 if (pc + ftest->jt + 1 >= flen ||
93699863
KK
821 pc + ftest->jf + 1 >= flen)
822 return -EINVAL;
cba328fc 823 break;
34805931
DB
824 case BPF_LD | BPF_W | BPF_ABS:
825 case BPF_LD | BPF_H | BPF_ABS:
826 case BPF_LD | BPF_B | BPF_ABS:
aa1113d9 827 anc_found = false;
34805931
DB
828 if (bpf_anc_helper(ftest) & BPF_ANC)
829 anc_found = true;
830 /* Ancillary operation unknown or unsupported */
aa1113d9
DB
831 if (anc_found == false && ftest->k >= SKF_AD_OFF)
832 return -EINVAL;
01f2f3f6
HPP
833 }
834 }
93699863 835
34805931 836 /* Last instruction must be a RET code */
01f2f3f6 837 switch (filter[flen - 1].code) {
34805931
DB
838 case BPF_RET | BPF_K:
839 case BPF_RET | BPF_A:
2d5311e4 840 return check_load_and_stores(filter, flen);
cba328fc 841 }
34805931 842
cba328fc 843 return -EINVAL;
1da177e4
LT
844}
845
7ae457c1
AS
846static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
847 const struct sock_fprog *fprog)
a3ea269b 848{
009937e7 849 unsigned int fsize = bpf_classic_proglen(fprog);
a3ea269b
DB
850 struct sock_fprog_kern *fkprog;
851
852 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
853 if (!fp->orig_prog)
854 return -ENOMEM;
855
856 fkprog = fp->orig_prog;
857 fkprog->len = fprog->len;
658da937
DB
858
859 fkprog->filter = kmemdup(fp->insns, fsize,
860 GFP_KERNEL | __GFP_NOWARN);
a3ea269b
DB
861 if (!fkprog->filter) {
862 kfree(fp->orig_prog);
863 return -ENOMEM;
864 }
865
866 return 0;
867}
868
7ae457c1 869static void bpf_release_orig_filter(struct bpf_prog *fp)
a3ea269b
DB
870{
871 struct sock_fprog_kern *fprog = fp->orig_prog;
872
873 if (fprog) {
874 kfree(fprog->filter);
875 kfree(fprog);
876 }
877}
878
7ae457c1
AS
879static void __bpf_prog_release(struct bpf_prog *prog)
880{
24701ece 881 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
89aa0758
AS
882 bpf_prog_put(prog);
883 } else {
884 bpf_release_orig_filter(prog);
885 bpf_prog_free(prog);
886 }
7ae457c1
AS
887}
888
34c5bd66
PN
889static void __sk_filter_release(struct sk_filter *fp)
890{
7ae457c1
AS
891 __bpf_prog_release(fp->prog);
892 kfree(fp);
34c5bd66
PN
893}
894
47e958ea 895/**
46bcf14f 896 * sk_filter_release_rcu - Release a socket filter by rcu_head
47e958ea
PE
897 * @rcu: rcu_head that contains the sk_filter to free
898 */
fbc907f0 899static void sk_filter_release_rcu(struct rcu_head *rcu)
47e958ea
PE
900{
901 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
902
34c5bd66 903 __sk_filter_release(fp);
47e958ea 904}
fbc907f0
DB
905
906/**
907 * sk_filter_release - release a socket filter
908 * @fp: filter to remove
909 *
910 * Remove a filter from a socket and release its resources.
911 */
912static void sk_filter_release(struct sk_filter *fp)
913{
914 if (atomic_dec_and_test(&fp->refcnt))
915 call_rcu(&fp->rcu, sk_filter_release_rcu);
916}
917
918void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
919{
7ae457c1 920 u32 filter_size = bpf_prog_size(fp->prog->len);
fbc907f0 921
278571ba
AS
922 atomic_sub(filter_size, &sk->sk_omem_alloc);
923 sk_filter_release(fp);
fbc907f0 924}
47e958ea 925
278571ba
AS
926/* try to charge the socket memory if there is space available
927 * return true on success
928 */
929bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
bd4cf0ed 930{
7ae457c1 931 u32 filter_size = bpf_prog_size(fp->prog->len);
278571ba
AS
932
933 /* same check as in sock_kmalloc() */
934 if (filter_size <= sysctl_optmem_max &&
935 atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
936 atomic_inc(&fp->refcnt);
937 atomic_add(filter_size, &sk->sk_omem_alloc);
938 return true;
bd4cf0ed 939 }
278571ba 940 return false;
bd4cf0ed
AS
941}
942
7ae457c1 943static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
bd4cf0ed
AS
944{
945 struct sock_filter *old_prog;
7ae457c1 946 struct bpf_prog *old_fp;
34805931 947 int err, new_len, old_len = fp->len;
bd4cf0ed
AS
948
949 /* We are free to overwrite insns et al right here as it
950 * won't be used at this point in time anymore internally
951 * after the migration to the internal BPF instruction
952 * representation.
953 */
954 BUILD_BUG_ON(sizeof(struct sock_filter) !=
2695fb55 955 sizeof(struct bpf_insn));
bd4cf0ed 956
bd4cf0ed
AS
957 /* Conversion cannot happen on overlapping memory areas,
958 * so we need to keep the user BPF around until the 2nd
959 * pass. At this time, the user BPF is stored in fp->insns.
960 */
961 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
658da937 962 GFP_KERNEL | __GFP_NOWARN);
bd4cf0ed
AS
963 if (!old_prog) {
964 err = -ENOMEM;
965 goto out_err;
966 }
967
968 /* 1st pass: calculate the new program length. */
8fb575ca 969 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
bd4cf0ed
AS
970 if (err)
971 goto out_err_free;
972
973 /* Expand fp for appending the new filter representation. */
974 old_fp = fp;
60a3b225 975 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
bd4cf0ed
AS
976 if (!fp) {
977 /* The old_fp is still around in case we couldn't
978 * allocate new memory, so uncharge on that one.
979 */
980 fp = old_fp;
981 err = -ENOMEM;
982 goto out_err_free;
983 }
984
bd4cf0ed
AS
985 fp->len = new_len;
986
2695fb55 987 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
8fb575ca 988 err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
bd4cf0ed 989 if (err)
8fb575ca 990 /* 2nd bpf_convert_filter() can fail only if it fails
bd4cf0ed
AS
991 * to allocate memory, remapping must succeed. Note,
992 * that at this time old_fp has already been released
278571ba 993 * by krealloc().
bd4cf0ed
AS
994 */
995 goto out_err_free;
996
7ae457c1 997 bpf_prog_select_runtime(fp);
5fe821a9 998
bd4cf0ed
AS
999 kfree(old_prog);
1000 return fp;
1001
1002out_err_free:
1003 kfree(old_prog);
1004out_err:
7ae457c1 1005 __bpf_prog_release(fp);
bd4cf0ed
AS
1006 return ERR_PTR(err);
1007}
1008
ac67eb2c
DB
1009static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1010 bpf_aux_classic_check_t trans)
302d6637
JP
1011{
1012 int err;
1013
bd4cf0ed 1014 fp->bpf_func = NULL;
a91263d5 1015 fp->jited = 0;
302d6637 1016
4df95ff4 1017 err = bpf_check_classic(fp->insns, fp->len);
418c96ac 1018 if (err) {
7ae457c1 1019 __bpf_prog_release(fp);
bd4cf0ed 1020 return ERR_PTR(err);
418c96ac 1021 }
302d6637 1022
4ae92bc7
NS
1023 /* There might be additional checks and transformations
1024 * needed on classic filters, f.e. in case of seccomp.
1025 */
1026 if (trans) {
1027 err = trans(fp->insns, fp->len);
1028 if (err) {
1029 __bpf_prog_release(fp);
1030 return ERR_PTR(err);
1031 }
1032 }
1033
bd4cf0ed
AS
1034 /* Probe if we can JIT compile the filter and if so, do
1035 * the compilation of the filter.
1036 */
302d6637 1037 bpf_jit_compile(fp);
bd4cf0ed
AS
1038
1039 /* JIT compiler couldn't process this filter, so do the
1040 * internal BPF translation for the optimized interpreter.
1041 */
5fe821a9 1042 if (!fp->jited)
7ae457c1 1043 fp = bpf_migrate_filter(fp);
bd4cf0ed
AS
1044
1045 return fp;
302d6637
JP
1046}
1047
1048/**
7ae457c1 1049 * bpf_prog_create - create an unattached filter
c6c4b97c 1050 * @pfp: the unattached filter that is created
677a9fd3 1051 * @fprog: the filter program
302d6637 1052 *
c6c4b97c 1053 * Create a filter independent of any socket. We first run some
302d6637
JP
1054 * sanity checks on it to make sure it does not explode on us later.
1055 * If an error occurs or there is insufficient memory for the filter
1056 * a negative errno code is returned. On success the return is zero.
1057 */
7ae457c1 1058int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
302d6637 1059{
009937e7 1060 unsigned int fsize = bpf_classic_proglen(fprog);
7ae457c1 1061 struct bpf_prog *fp;
302d6637
JP
1062
1063 /* Make sure new filter is there and in the right amounts. */
1064 if (fprog->filter == NULL)
1065 return -EINVAL;
1066
60a3b225 1067 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
302d6637
JP
1068 if (!fp)
1069 return -ENOMEM;
a3ea269b 1070
302d6637
JP
1071 memcpy(fp->insns, fprog->filter, fsize);
1072
302d6637 1073 fp->len = fprog->len;
a3ea269b
DB
1074 /* Since unattached filters are not copied back to user
1075 * space through sk_get_filter(), we do not need to hold
1076 * a copy here, and can spare us the work.
1077 */
1078 fp->orig_prog = NULL;
302d6637 1079
7ae457c1 1080 /* bpf_prepare_filter() already takes care of freeing
bd4cf0ed
AS
1081 * memory in case something goes wrong.
1082 */
4ae92bc7 1083 fp = bpf_prepare_filter(fp, NULL);
bd4cf0ed
AS
1084 if (IS_ERR(fp))
1085 return PTR_ERR(fp);
302d6637
JP
1086
1087 *pfp = fp;
1088 return 0;
302d6637 1089}
7ae457c1 1090EXPORT_SYMBOL_GPL(bpf_prog_create);
302d6637 1091
ac67eb2c
DB
1092/**
1093 * bpf_prog_create_from_user - create an unattached filter from user buffer
1094 * @pfp: the unattached filter that is created
1095 * @fprog: the filter program
1096 * @trans: post-classic verifier transformation handler
bab18991 1097 * @save_orig: save classic BPF program
ac67eb2c
DB
1098 *
1099 * This function effectively does the same as bpf_prog_create(), only
1100 * that it builds up its insns buffer from user space provided buffer.
1101 * It also allows for passing a bpf_aux_classic_check_t handler.
1102 */
1103int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
bab18991 1104 bpf_aux_classic_check_t trans, bool save_orig)
ac67eb2c
DB
1105{
1106 unsigned int fsize = bpf_classic_proglen(fprog);
1107 struct bpf_prog *fp;
bab18991 1108 int err;
ac67eb2c
DB
1109
1110 /* Make sure new filter is there and in the right amounts. */
1111 if (fprog->filter == NULL)
1112 return -EINVAL;
1113
1114 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1115 if (!fp)
1116 return -ENOMEM;
1117
1118 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1119 __bpf_prog_free(fp);
1120 return -EFAULT;
1121 }
1122
1123 fp->len = fprog->len;
ac67eb2c
DB
1124 fp->orig_prog = NULL;
1125
bab18991
DB
1126 if (save_orig) {
1127 err = bpf_prog_store_orig_filter(fp, fprog);
1128 if (err) {
1129 __bpf_prog_free(fp);
1130 return -ENOMEM;
1131 }
1132 }
1133
ac67eb2c
DB
1134 /* bpf_prepare_filter() already takes care of freeing
1135 * memory in case something goes wrong.
1136 */
1137 fp = bpf_prepare_filter(fp, trans);
1138 if (IS_ERR(fp))
1139 return PTR_ERR(fp);
1140
1141 *pfp = fp;
1142 return 0;
1143}
2ea273d7 1144EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
ac67eb2c 1145
7ae457c1 1146void bpf_prog_destroy(struct bpf_prog *fp)
302d6637 1147{
7ae457c1 1148 __bpf_prog_release(fp);
302d6637 1149}
7ae457c1 1150EXPORT_SYMBOL_GPL(bpf_prog_destroy);
302d6637 1151
49b31e57
DB
1152static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1153{
1154 struct sk_filter *fp, *old_fp;
1155
1156 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1157 if (!fp)
1158 return -ENOMEM;
1159
1160 fp->prog = prog;
1161 atomic_set(&fp->refcnt, 0);
1162
1163 if (!sk_filter_charge(sk, fp)) {
1164 kfree(fp);
1165 return -ENOMEM;
1166 }
1167
1168 old_fp = rcu_dereference_protected(sk->sk_filter,
1169 sock_owned_by_user(sk));
1170 rcu_assign_pointer(sk->sk_filter, fp);
1171
1172 if (old_fp)
1173 sk_filter_uncharge(sk, old_fp);
1174
1175 return 0;
1176}
1177
538950a1
CG
1178static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1179{
1180 struct bpf_prog *old_prog;
1181 int err;
1182
1183 if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1184 return -ENOMEM;
1185
fa463497 1186 if (sk_unhashed(sk) && sk->sk_reuseport) {
538950a1
CG
1187 err = reuseport_alloc(sk);
1188 if (err)
1189 return err;
1190 } else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1191 /* The socket wasn't bound with SO_REUSEPORT */
1192 return -EINVAL;
1193 }
1194
1195 old_prog = reuseport_attach_prog(sk, prog);
1196 if (old_prog)
1197 bpf_prog_destroy(old_prog);
1198
1199 return 0;
1200}
1201
1202static
1203struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1da177e4 1204{
009937e7 1205 unsigned int fsize = bpf_classic_proglen(fprog);
7ae457c1
AS
1206 unsigned int bpf_fsize = bpf_prog_size(fprog->len);
1207 struct bpf_prog *prog;
1da177e4
LT
1208 int err;
1209
d59577b6 1210 if (sock_flag(sk, SOCK_FILTER_LOCKED))
538950a1 1211 return ERR_PTR(-EPERM);
d59577b6 1212
1da177e4 1213 /* Make sure new filter is there and in the right amounts. */
e35bedf3 1214 if (fprog->filter == NULL)
538950a1 1215 return ERR_PTR(-EINVAL);
1da177e4 1216
60a3b225 1217 prog = bpf_prog_alloc(bpf_fsize, 0);
7ae457c1 1218 if (!prog)
538950a1 1219 return ERR_PTR(-ENOMEM);
a3ea269b 1220
7ae457c1 1221 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
c0d1379a 1222 __bpf_prog_free(prog);
538950a1 1223 return ERR_PTR(-EFAULT);
1da177e4
LT
1224 }
1225
7ae457c1 1226 prog->len = fprog->len;
1da177e4 1227
7ae457c1 1228 err = bpf_prog_store_orig_filter(prog, fprog);
a3ea269b 1229 if (err) {
c0d1379a 1230 __bpf_prog_free(prog);
538950a1 1231 return ERR_PTR(-ENOMEM);
a3ea269b
DB
1232 }
1233
7ae457c1 1234 /* bpf_prepare_filter() already takes care of freeing
bd4cf0ed
AS
1235 * memory in case something goes wrong.
1236 */
538950a1
CG
1237 return bpf_prepare_filter(prog, NULL);
1238}
1239
1240/**
1241 * sk_attach_filter - attach a socket filter
1242 * @fprog: the filter program
1243 * @sk: the socket to use
1244 *
1245 * Attach the user's filter code. We first run some sanity checks on
1246 * it to make sure it does not explode on us later. If an error
1247 * occurs or there is insufficient memory for the filter a negative
1248 * errno code is returned. On success the return is zero.
1249 */
1250int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1251{
1252 struct bpf_prog *prog = __get_filter(fprog, sk);
1253 int err;
1254
7ae457c1
AS
1255 if (IS_ERR(prog))
1256 return PTR_ERR(prog);
1257
49b31e57
DB
1258 err = __sk_attach_prog(prog, sk);
1259 if (err < 0) {
7ae457c1 1260 __bpf_prog_release(prog);
49b31e57 1261 return err;
278571ba
AS
1262 }
1263
d3904b73 1264 return 0;
1da177e4 1265}
5ff3f073 1266EXPORT_SYMBOL_GPL(sk_attach_filter);
1da177e4 1267
538950a1 1268int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
89aa0758 1269{
538950a1 1270 struct bpf_prog *prog = __get_filter(fprog, sk);
49b31e57 1271 int err;
89aa0758 1272
538950a1
CG
1273 if (IS_ERR(prog))
1274 return PTR_ERR(prog);
1275
1276 err = __reuseport_attach_prog(prog, sk);
1277 if (err < 0) {
1278 __bpf_prog_release(prog);
1279 return err;
1280 }
1281
1282 return 0;
1283}
1284
1285static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1286{
1287 struct bpf_prog *prog;
1288
89aa0758 1289 if (sock_flag(sk, SOCK_FILTER_LOCKED))
538950a1 1290 return ERR_PTR(-EPERM);
89aa0758
AS
1291
1292 prog = bpf_prog_get(ufd);
198bf1b0 1293 if (IS_ERR(prog))
538950a1 1294 return prog;
89aa0758 1295
24701ece 1296 if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
89aa0758 1297 bpf_prog_put(prog);
538950a1 1298 return ERR_PTR(-EINVAL);
89aa0758
AS
1299 }
1300
538950a1
CG
1301 return prog;
1302}
1303
1304int sk_attach_bpf(u32 ufd, struct sock *sk)
1305{
1306 struct bpf_prog *prog = __get_bpf(ufd, sk);
1307 int err;
1308
1309 if (IS_ERR(prog))
1310 return PTR_ERR(prog);
1311
49b31e57
DB
1312 err = __sk_attach_prog(prog, sk);
1313 if (err < 0) {
89aa0758 1314 bpf_prog_put(prog);
49b31e57 1315 return err;
89aa0758
AS
1316 }
1317
89aa0758
AS
1318 return 0;
1319}
1320
538950a1
CG
1321int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1322{
1323 struct bpf_prog *prog = __get_bpf(ufd, sk);
1324 int err;
1325
1326 if (IS_ERR(prog))
1327 return PTR_ERR(prog);
1328
1329 err = __reuseport_attach_prog(prog, sk);
1330 if (err < 0) {
1331 bpf_prog_put(prog);
1332 return err;
1333 }
1334
1335 return 0;
1336}
1337
21cafc1d
DB
1338struct bpf_scratchpad {
1339 union {
1340 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1341 u8 buff[MAX_BPF_STACK];
1342 };
1343};
1344
1345static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
91bc4822
AS
1346
1347static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
608cd71a 1348{
21cafc1d 1349 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
608cd71a 1350 struct sk_buff *skb = (struct sk_buff *) (long) r1;
a166151c 1351 int offset = (int) r2;
608cd71a
AS
1352 void *from = (void *) (long) r3;
1353 unsigned int len = (unsigned int) r4;
608cd71a
AS
1354 void *ptr;
1355
8afd54c8 1356 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
781c53bc
DB
1357 return -EINVAL;
1358
608cd71a
AS
1359 /* bpf verifier guarantees that:
1360 * 'from' pointer points to bpf program stack
1361 * 'len' bytes of it were initialized
1362 * 'len' > 0
1363 * 'skb' is a valid pointer to 'struct sk_buff'
1364 *
1365 * so check for invalid 'offset' and too large 'len'
1366 */
21cafc1d 1367 if (unlikely((u32) offset > 0xffff || len > sizeof(sp->buff)))
608cd71a 1368 return -EFAULT;
3697649f 1369 if (unlikely(skb_try_make_writable(skb, offset + len)))
608cd71a
AS
1370 return -EFAULT;
1371
21cafc1d 1372 ptr = skb_header_pointer(skb, offset, len, sp->buff);
608cd71a
AS
1373 if (unlikely(!ptr))
1374 return -EFAULT;
1375
781c53bc 1376 if (flags & BPF_F_RECOMPUTE_CSUM)
91bc4822 1377 skb_postpull_rcsum(skb, ptr, len);
608cd71a
AS
1378
1379 memcpy(ptr, from, len);
1380
21cafc1d 1381 if (ptr == sp->buff)
608cd71a
AS
1382 /* skb_store_bits cannot return -EFAULT here */
1383 skb_store_bits(skb, offset, ptr, len);
1384
781c53bc 1385 if (flags & BPF_F_RECOMPUTE_CSUM)
f8ffad69 1386 skb_postpush_rcsum(skb, ptr, len);
8afd54c8
DB
1387 if (flags & BPF_F_INVALIDATE_HASH)
1388 skb_clear_hash(skb);
f8ffad69 1389
608cd71a
AS
1390 return 0;
1391}
1392
577c50aa 1393static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
608cd71a
AS
1394 .func = bpf_skb_store_bytes,
1395 .gpl_only = false,
1396 .ret_type = RET_INTEGER,
1397 .arg1_type = ARG_PTR_TO_CTX,
1398 .arg2_type = ARG_ANYTHING,
1399 .arg3_type = ARG_PTR_TO_STACK,
1400 .arg4_type = ARG_CONST_STACK_SIZE,
91bc4822
AS
1401 .arg5_type = ARG_ANYTHING,
1402};
1403
05c74e5e
DB
1404static u64 bpf_skb_load_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1405{
1406 const struct sk_buff *skb = (const struct sk_buff *)(unsigned long) r1;
1407 int offset = (int) r2;
1408 void *to = (void *)(unsigned long) r3;
1409 unsigned int len = (unsigned int) r4;
1410 void *ptr;
1411
21cafc1d 1412 if (unlikely((u32) offset > 0xffff || len > MAX_BPF_STACK))
05c74e5e
DB
1413 return -EFAULT;
1414
1415 ptr = skb_header_pointer(skb, offset, len, to);
1416 if (unlikely(!ptr))
1417 return -EFAULT;
1418 if (ptr != to)
1419 memcpy(to, ptr, len);
1420
1421 return 0;
1422}
1423
577c50aa 1424static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
05c74e5e
DB
1425 .func = bpf_skb_load_bytes,
1426 .gpl_only = false,
1427 .ret_type = RET_INTEGER,
1428 .arg1_type = ARG_PTR_TO_CTX,
1429 .arg2_type = ARG_ANYTHING,
1430 .arg3_type = ARG_PTR_TO_STACK,
1431 .arg4_type = ARG_CONST_STACK_SIZE,
1432};
1433
a166151c 1434static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
91bc4822
AS
1435{
1436 struct sk_buff *skb = (struct sk_buff *) (long) r1;
a166151c 1437 int offset = (int) r2;
91bc4822
AS
1438 __sum16 sum, *ptr;
1439
781c53bc
DB
1440 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1441 return -EINVAL;
a166151c 1442 if (unlikely((u32) offset > 0xffff))
91bc4822 1443 return -EFAULT;
3697649f 1444 if (unlikely(skb_try_make_writable(skb, offset + sizeof(sum))))
91bc4822
AS
1445 return -EFAULT;
1446
1447 ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1448 if (unlikely(!ptr))
1449 return -EFAULT;
1450
781c53bc 1451 switch (flags & BPF_F_HDR_FIELD_MASK) {
8050c0f0
DB
1452 case 0:
1453 if (unlikely(from != 0))
1454 return -EINVAL;
1455
1456 csum_replace_by_diff(ptr, to);
1457 break;
91bc4822
AS
1458 case 2:
1459 csum_replace2(ptr, from, to);
1460 break;
1461 case 4:
1462 csum_replace4(ptr, from, to);
1463 break;
1464 default:
1465 return -EINVAL;
1466 }
1467
1468 if (ptr == &sum)
1469 /* skb_store_bits guaranteed to not return -EFAULT here */
1470 skb_store_bits(skb, offset, ptr, sizeof(sum));
1471
1472 return 0;
1473}
1474
577c50aa 1475static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
91bc4822
AS
1476 .func = bpf_l3_csum_replace,
1477 .gpl_only = false,
1478 .ret_type = RET_INTEGER,
1479 .arg1_type = ARG_PTR_TO_CTX,
1480 .arg2_type = ARG_ANYTHING,
1481 .arg3_type = ARG_ANYTHING,
1482 .arg4_type = ARG_ANYTHING,
1483 .arg5_type = ARG_ANYTHING,
1484};
1485
a166151c 1486static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
91bc4822
AS
1487{
1488 struct sk_buff *skb = (struct sk_buff *) (long) r1;
781c53bc 1489 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
2f72959a 1490 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
a166151c 1491 int offset = (int) r2;
91bc4822
AS
1492 __sum16 sum, *ptr;
1493
2f72959a
DB
1494 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_PSEUDO_HDR |
1495 BPF_F_HDR_FIELD_MASK)))
781c53bc 1496 return -EINVAL;
a166151c 1497 if (unlikely((u32) offset > 0xffff))
91bc4822 1498 return -EFAULT;
3697649f 1499 if (unlikely(skb_try_make_writable(skb, offset + sizeof(sum))))
91bc4822
AS
1500 return -EFAULT;
1501
1502 ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1503 if (unlikely(!ptr))
1504 return -EFAULT;
2f72959a
DB
1505 if (is_mmzero && !*ptr)
1506 return 0;
91bc4822 1507
781c53bc 1508 switch (flags & BPF_F_HDR_FIELD_MASK) {
7d672345
DB
1509 case 0:
1510 if (unlikely(from != 0))
1511 return -EINVAL;
1512
1513 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1514 break;
91bc4822
AS
1515 case 2:
1516 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1517 break;
1518 case 4:
1519 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1520 break;
1521 default:
1522 return -EINVAL;
1523 }
1524
2f72959a
DB
1525 if (is_mmzero && !*ptr)
1526 *ptr = CSUM_MANGLED_0;
91bc4822
AS
1527 if (ptr == &sum)
1528 /* skb_store_bits guaranteed to not return -EFAULT here */
1529 skb_store_bits(skb, offset, ptr, sizeof(sum));
1530
1531 return 0;
1532}
1533
577c50aa 1534static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
91bc4822
AS
1535 .func = bpf_l4_csum_replace,
1536 .gpl_only = false,
1537 .ret_type = RET_INTEGER,
1538 .arg1_type = ARG_PTR_TO_CTX,
1539 .arg2_type = ARG_ANYTHING,
1540 .arg3_type = ARG_ANYTHING,
1541 .arg4_type = ARG_ANYTHING,
1542 .arg5_type = ARG_ANYTHING,
608cd71a
AS
1543};
1544
7d672345
DB
1545static u64 bpf_csum_diff(u64 r1, u64 from_size, u64 r3, u64 to_size, u64 seed)
1546{
21cafc1d 1547 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
7d672345
DB
1548 u64 diff_size = from_size + to_size;
1549 __be32 *from = (__be32 *) (long) r1;
1550 __be32 *to = (__be32 *) (long) r3;
1551 int i, j = 0;
1552
1553 /* This is quite flexible, some examples:
1554 *
1555 * from_size == 0, to_size > 0, seed := csum --> pushing data
1556 * from_size > 0, to_size == 0, seed := csum --> pulling data
1557 * from_size > 0, to_size > 0, seed := 0 --> diffing data
1558 *
1559 * Even for diffing, from_size and to_size don't need to be equal.
1560 */
1561 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1562 diff_size > sizeof(sp->diff)))
1563 return -EINVAL;
1564
1565 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1566 sp->diff[j] = ~from[i];
1567 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
1568 sp->diff[j] = to[i];
1569
1570 return csum_partial(sp->diff, diff_size, seed);
1571}
1572
577c50aa 1573static const struct bpf_func_proto bpf_csum_diff_proto = {
7d672345
DB
1574 .func = bpf_csum_diff,
1575 .gpl_only = false,
1576 .ret_type = RET_INTEGER,
1577 .arg1_type = ARG_PTR_TO_STACK,
1578 .arg2_type = ARG_CONST_STACK_SIZE_OR_ZERO,
1579 .arg3_type = ARG_PTR_TO_STACK,
1580 .arg4_type = ARG_CONST_STACK_SIZE_OR_ZERO,
1581 .arg5_type = ARG_ANYTHING,
1582};
1583
3896d655
AS
1584static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
1585{
1586 struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
1587 struct net_device *dev;
1588
781c53bc
DB
1589 if (unlikely(flags & ~(BPF_F_INGRESS)))
1590 return -EINVAL;
1591
3896d655
AS
1592 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1593 if (unlikely(!dev))
1594 return -EINVAL;
1595
3896d655
AS
1596 skb2 = skb_clone(skb, GFP_ATOMIC);
1597 if (unlikely(!skb2))
1598 return -ENOMEM;
1599
781c53bc 1600 if (flags & BPF_F_INGRESS) {
f8ffad69
DB
1601 if (skb_at_tc_ingress(skb2))
1602 skb_postpush_rcsum(skb2, skb_mac_header(skb2),
1603 skb2->mac_len);
3896d655 1604 return dev_forward_skb(dev, skb2);
f8ffad69 1605 }
3896d655
AS
1606
1607 skb2->dev = dev;
1608 return dev_queue_xmit(skb2);
1609}
1610
577c50aa 1611static const struct bpf_func_proto bpf_clone_redirect_proto = {
3896d655
AS
1612 .func = bpf_clone_redirect,
1613 .gpl_only = false,
1614 .ret_type = RET_INTEGER,
1615 .arg1_type = ARG_PTR_TO_CTX,
1616 .arg2_type = ARG_ANYTHING,
1617 .arg3_type = ARG_ANYTHING,
1618};
1619
27b29f63
AS
1620struct redirect_info {
1621 u32 ifindex;
1622 u32 flags;
1623};
1624
1625static DEFINE_PER_CPU(struct redirect_info, redirect_info);
781c53bc 1626
27b29f63
AS
1627static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
1628{
1629 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1630
781c53bc
DB
1631 if (unlikely(flags & ~(BPF_F_INGRESS)))
1632 return TC_ACT_SHOT;
1633
27b29f63
AS
1634 ri->ifindex = ifindex;
1635 ri->flags = flags;
781c53bc 1636
27b29f63
AS
1637 return TC_ACT_REDIRECT;
1638}
1639
1640int skb_do_redirect(struct sk_buff *skb)
1641{
1642 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1643 struct net_device *dev;
1644
1645 dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1646 ri->ifindex = 0;
1647 if (unlikely(!dev)) {
1648 kfree_skb(skb);
1649 return -EINVAL;
1650 }
1651
781c53bc 1652 if (ri->flags & BPF_F_INGRESS) {
f8ffad69
DB
1653 if (skb_at_tc_ingress(skb))
1654 skb_postpush_rcsum(skb, skb_mac_header(skb),
1655 skb->mac_len);
27b29f63 1656 return dev_forward_skb(dev, skb);
f8ffad69 1657 }
27b29f63
AS
1658
1659 skb->dev = dev;
1660 return dev_queue_xmit(skb);
1661}
1662
577c50aa 1663static const struct bpf_func_proto bpf_redirect_proto = {
27b29f63
AS
1664 .func = bpf_redirect,
1665 .gpl_only = false,
1666 .ret_type = RET_INTEGER,
1667 .arg1_type = ARG_ANYTHING,
1668 .arg2_type = ARG_ANYTHING,
1669};
1670
8d20aabe
DB
1671static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1672{
1673 return task_get_classid((struct sk_buff *) (unsigned long) r1);
1674}
1675
1676static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1677 .func = bpf_get_cgroup_classid,
1678 .gpl_only = false,
1679 .ret_type = RET_INTEGER,
1680 .arg1_type = ARG_PTR_TO_CTX,
1681};
1682
c46646d0
DB
1683static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1684{
808c1b69 1685 return dst_tclassid((struct sk_buff *) (unsigned long) r1);
c46646d0
DB
1686}
1687
1688static const struct bpf_func_proto bpf_get_route_realm_proto = {
1689 .func = bpf_get_route_realm,
1690 .gpl_only = false,
1691 .ret_type = RET_INTEGER,
1692 .arg1_type = ARG_PTR_TO_CTX,
1693};
1694
4e10df9a
AS
1695static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
1696{
1697 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1698 __be16 vlan_proto = (__force __be16) r2;
1699
1700 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1701 vlan_proto != htons(ETH_P_8021AD)))
1702 vlan_proto = htons(ETH_P_8021Q);
1703
1704 return skb_vlan_push(skb, vlan_proto, vlan_tci);
1705}
1706
1707const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1708 .func = bpf_skb_vlan_push,
1709 .gpl_only = false,
1710 .ret_type = RET_INTEGER,
1711 .arg1_type = ARG_PTR_TO_CTX,
1712 .arg2_type = ARG_ANYTHING,
1713 .arg3_type = ARG_ANYTHING,
1714};
4d9c5c53 1715EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
4e10df9a
AS
1716
1717static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1718{
1719 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1720
1721 return skb_vlan_pop(skb);
1722}
1723
1724const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1725 .func = bpf_skb_vlan_pop,
1726 .gpl_only = false,
1727 .ret_type = RET_INTEGER,
1728 .arg1_type = ARG_PTR_TO_CTX,
1729};
4d9c5c53 1730EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
4e10df9a
AS
1731
1732bool bpf_helper_changes_skb_data(void *func)
1733{
1734 if (func == bpf_skb_vlan_push)
1735 return true;
1736 if (func == bpf_skb_vlan_pop)
1737 return true;
3697649f
DB
1738 if (func == bpf_skb_store_bytes)
1739 return true;
1740 if (func == bpf_l3_csum_replace)
1741 return true;
1742 if (func == bpf_l4_csum_replace)
1743 return true;
1744
4e10df9a
AS
1745 return false;
1746}
1747
c6c33454
DB
1748static unsigned short bpf_tunnel_key_af(u64 flags)
1749{
1750 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
1751}
1752
d3aa45ce
AS
1753static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1754{
1755 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1756 struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
c6c33454
DB
1757 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
1758 u8 compat[sizeof(struct bpf_tunnel_key)];
d3aa45ce 1759
c6c33454 1760 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6))))
7f9562a1 1761 return -EINVAL;
c6c33454
DB
1762 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags))
1763 return -EPROTO;
1764 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
1765 switch (size) {
4018ab18
DB
1766 case offsetof(struct bpf_tunnel_key, tunnel_label):
1767 goto set_compat;
c6c33454
DB
1768 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
1769 /* Fixup deprecated structure layouts here, so we have
1770 * a common path later on.
1771 */
1772 if (ip_tunnel_info_af(info) != AF_INET)
1773 return -EINVAL;
4018ab18 1774set_compat:
c6c33454
DB
1775 to = (struct bpf_tunnel_key *)compat;
1776 break;
1777 default:
1778 return -EINVAL;
1779 }
1780 }
d3aa45ce
AS
1781
1782 to->tunnel_id = be64_to_cpu(info->key.tun_id);
c6c33454
DB
1783 to->tunnel_tos = info->key.tos;
1784 to->tunnel_ttl = info->key.ttl;
1785
4018ab18 1786 if (flags & BPF_F_TUNINFO_IPV6) {
c6c33454
DB
1787 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
1788 sizeof(to->remote_ipv6));
4018ab18
DB
1789 to->tunnel_label = be32_to_cpu(info->key.label);
1790 } else {
c6c33454 1791 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4018ab18 1792 }
c6c33454
DB
1793
1794 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
1795 memcpy((void *)(long) r2, to, size);
d3aa45ce
AS
1796
1797 return 0;
1798}
1799
577c50aa 1800static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
d3aa45ce
AS
1801 .func = bpf_skb_get_tunnel_key,
1802 .gpl_only = false,
1803 .ret_type = RET_INTEGER,
1804 .arg1_type = ARG_PTR_TO_CTX,
1805 .arg2_type = ARG_PTR_TO_STACK,
1806 .arg3_type = ARG_CONST_STACK_SIZE,
1807 .arg4_type = ARG_ANYTHING,
1808};
1809
14ca0751
DB
1810static u64 bpf_skb_get_tunnel_opt(u64 r1, u64 r2, u64 size, u64 r4, u64 r5)
1811{
1812 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1813 u8 *to = (u8 *) (long) r2;
1814 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
1815
1816 if (unlikely(!info ||
1817 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT)))
1818 return -ENOENT;
1819 if (unlikely(size < info->options_len))
1820 return -ENOMEM;
1821
1822 ip_tunnel_info_opts_get(to, info);
1823
1824 return info->options_len;
1825}
1826
1827static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
1828 .func = bpf_skb_get_tunnel_opt,
1829 .gpl_only = false,
1830 .ret_type = RET_INTEGER,
1831 .arg1_type = ARG_PTR_TO_CTX,
1832 .arg2_type = ARG_PTR_TO_STACK,
1833 .arg3_type = ARG_CONST_STACK_SIZE,
1834};
1835
d3aa45ce
AS
1836static struct metadata_dst __percpu *md_dst;
1837
1838static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1839{
1840 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1841 struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
1842 struct metadata_dst *md = this_cpu_ptr(md_dst);
c6c33454 1843 u8 compat[sizeof(struct bpf_tunnel_key)];
d3aa45ce
AS
1844 struct ip_tunnel_info *info;
1845
22080870
DB
1846 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
1847 BPF_F_DONT_FRAGMENT)))
d3aa45ce 1848 return -EINVAL;
c6c33454
DB
1849 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
1850 switch (size) {
4018ab18 1851 case offsetof(struct bpf_tunnel_key, tunnel_label):
c6c33454
DB
1852 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
1853 /* Fixup deprecated structure layouts here, so we have
1854 * a common path later on.
1855 */
1856 memcpy(compat, from, size);
1857 memset(compat + size, 0, sizeof(compat) - size);
1858 from = (struct bpf_tunnel_key *)compat;
1859 break;
1860 default:
1861 return -EINVAL;
1862 }
1863 }
4018ab18
DB
1864 if (unlikely(!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label))
1865 return -EINVAL;
d3aa45ce
AS
1866
1867 skb_dst_drop(skb);
1868 dst_hold((struct dst_entry *) md);
1869 skb_dst_set(skb, (struct dst_entry *) md);
1870
1871 info = &md->u.tun_info;
1872 info->mode = IP_TUNNEL_INFO_TX;
c6c33454 1873
db3c6139 1874 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
22080870
DB
1875 if (flags & BPF_F_DONT_FRAGMENT)
1876 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
1877
d3aa45ce 1878 info->key.tun_id = cpu_to_be64(from->tunnel_id);
c6c33454
DB
1879 info->key.tos = from->tunnel_tos;
1880 info->key.ttl = from->tunnel_ttl;
1881
1882 if (flags & BPF_F_TUNINFO_IPV6) {
1883 info->mode |= IP_TUNNEL_INFO_IPV6;
1884 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
1885 sizeof(from->remote_ipv6));
4018ab18
DB
1886 info->key.label = cpu_to_be32(from->tunnel_label) &
1887 IPV6_FLOWLABEL_MASK;
c6c33454
DB
1888 } else {
1889 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2da897e5
DB
1890 if (flags & BPF_F_ZERO_CSUM_TX)
1891 info->key.tun_flags &= ~TUNNEL_CSUM;
c6c33454 1892 }
d3aa45ce
AS
1893
1894 return 0;
1895}
1896
577c50aa 1897static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
d3aa45ce
AS
1898 .func = bpf_skb_set_tunnel_key,
1899 .gpl_only = false,
1900 .ret_type = RET_INTEGER,
1901 .arg1_type = ARG_PTR_TO_CTX,
1902 .arg2_type = ARG_PTR_TO_STACK,
1903 .arg3_type = ARG_CONST_STACK_SIZE,
1904 .arg4_type = ARG_ANYTHING,
1905};
1906
14ca0751
DB
1907static u64 bpf_skb_set_tunnel_opt(u64 r1, u64 r2, u64 size, u64 r4, u64 r5)
1908{
1909 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1910 u8 *from = (u8 *) (long) r2;
1911 struct ip_tunnel_info *info = skb_tunnel_info(skb);
1912 const struct metadata_dst *md = this_cpu_ptr(md_dst);
1913
1914 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
1915 return -EINVAL;
fca5fdf6 1916 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
14ca0751
DB
1917 return -ENOMEM;
1918
1919 ip_tunnel_info_opts_set(info, from, size);
1920
1921 return 0;
1922}
1923
1924static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
1925 .func = bpf_skb_set_tunnel_opt,
1926 .gpl_only = false,
1927 .ret_type = RET_INTEGER,
1928 .arg1_type = ARG_PTR_TO_CTX,
1929 .arg2_type = ARG_PTR_TO_STACK,
1930 .arg3_type = ARG_CONST_STACK_SIZE,
1931};
1932
1933static const struct bpf_func_proto *
1934bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
d3aa45ce
AS
1935{
1936 if (!md_dst) {
14ca0751
DB
1937 /* Race is not possible, since it's called from verifier
1938 * that is holding verifier mutex.
d3aa45ce 1939 */
fca5fdf6 1940 md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
14ca0751 1941 GFP_KERNEL);
d3aa45ce
AS
1942 if (!md_dst)
1943 return NULL;
1944 }
14ca0751
DB
1945
1946 switch (which) {
1947 case BPF_FUNC_skb_set_tunnel_key:
1948 return &bpf_skb_set_tunnel_key_proto;
1949 case BPF_FUNC_skb_set_tunnel_opt:
1950 return &bpf_skb_set_tunnel_opt_proto;
1951 default:
1952 return NULL;
1953 }
d3aa45ce
AS
1954}
1955
d4052c4a
DB
1956static const struct bpf_func_proto *
1957sk_filter_func_proto(enum bpf_func_id func_id)
89aa0758
AS
1958{
1959 switch (func_id) {
1960 case BPF_FUNC_map_lookup_elem:
1961 return &bpf_map_lookup_elem_proto;
1962 case BPF_FUNC_map_update_elem:
1963 return &bpf_map_update_elem_proto;
1964 case BPF_FUNC_map_delete_elem:
1965 return &bpf_map_delete_elem_proto;
03e69b50
DB
1966 case BPF_FUNC_get_prandom_u32:
1967 return &bpf_get_prandom_u32_proto;
c04167ce
DB
1968 case BPF_FUNC_get_smp_processor_id:
1969 return &bpf_get_smp_processor_id_proto;
04fd61ab
AS
1970 case BPF_FUNC_tail_call:
1971 return &bpf_tail_call_proto;
17ca8cbf
DB
1972 case BPF_FUNC_ktime_get_ns:
1973 return &bpf_ktime_get_ns_proto;
0756ea3e 1974 case BPF_FUNC_trace_printk:
1be7f75d
AS
1975 if (capable(CAP_SYS_ADMIN))
1976 return bpf_get_trace_printk_proto();
89aa0758
AS
1977 default:
1978 return NULL;
1979 }
1980}
1981
608cd71a
AS
1982static const struct bpf_func_proto *
1983tc_cls_act_func_proto(enum bpf_func_id func_id)
1984{
1985 switch (func_id) {
1986 case BPF_FUNC_skb_store_bytes:
1987 return &bpf_skb_store_bytes_proto;
05c74e5e
DB
1988 case BPF_FUNC_skb_load_bytes:
1989 return &bpf_skb_load_bytes_proto;
7d672345
DB
1990 case BPF_FUNC_csum_diff:
1991 return &bpf_csum_diff_proto;
91bc4822
AS
1992 case BPF_FUNC_l3_csum_replace:
1993 return &bpf_l3_csum_replace_proto;
1994 case BPF_FUNC_l4_csum_replace:
1995 return &bpf_l4_csum_replace_proto;
3896d655
AS
1996 case BPF_FUNC_clone_redirect:
1997 return &bpf_clone_redirect_proto;
8d20aabe
DB
1998 case BPF_FUNC_get_cgroup_classid:
1999 return &bpf_get_cgroup_classid_proto;
4e10df9a
AS
2000 case BPF_FUNC_skb_vlan_push:
2001 return &bpf_skb_vlan_push_proto;
2002 case BPF_FUNC_skb_vlan_pop:
2003 return &bpf_skb_vlan_pop_proto;
d3aa45ce
AS
2004 case BPF_FUNC_skb_get_tunnel_key:
2005 return &bpf_skb_get_tunnel_key_proto;
2006 case BPF_FUNC_skb_set_tunnel_key:
14ca0751
DB
2007 return bpf_get_skb_set_tunnel_proto(func_id);
2008 case BPF_FUNC_skb_get_tunnel_opt:
2009 return &bpf_skb_get_tunnel_opt_proto;
2010 case BPF_FUNC_skb_set_tunnel_opt:
2011 return bpf_get_skb_set_tunnel_proto(func_id);
27b29f63
AS
2012 case BPF_FUNC_redirect:
2013 return &bpf_redirect_proto;
c46646d0
DB
2014 case BPF_FUNC_get_route_realm:
2015 return &bpf_get_route_realm_proto;
608cd71a
AS
2016 default:
2017 return sk_filter_func_proto(func_id);
2018 }
2019}
2020
d691f9e8 2021static bool __is_valid_access(int off, int size, enum bpf_access_type type)
89aa0758 2022{
9bac3d6d
AS
2023 /* check bounds */
2024 if (off < 0 || off >= sizeof(struct __sk_buff))
2025 return false;
2026
2027 /* disallow misaligned access */
2028 if (off % size != 0)
2029 return false;
2030
2031 /* all __sk_buff fields are __u32 */
2032 if (size != 4)
2033 return false;
2034
2035 return true;
2036}
2037
d691f9e8
AS
2038static bool sk_filter_is_valid_access(int off, int size,
2039 enum bpf_access_type type)
2040{
045efa82
DB
2041 if (off == offsetof(struct __sk_buff, tc_classid))
2042 return false;
2043
d691f9e8
AS
2044 if (type == BPF_WRITE) {
2045 switch (off) {
2046 case offsetof(struct __sk_buff, cb[0]) ...
2047 offsetof(struct __sk_buff, cb[4]):
2048 break;
2049 default:
2050 return false;
2051 }
2052 }
2053
2054 return __is_valid_access(off, size, type);
2055}
2056
2057static bool tc_cls_act_is_valid_access(int off, int size,
2058 enum bpf_access_type type)
2059{
2060 if (type == BPF_WRITE) {
2061 switch (off) {
2062 case offsetof(struct __sk_buff, mark):
2063 case offsetof(struct __sk_buff, tc_index):
754f1e6a 2064 case offsetof(struct __sk_buff, priority):
d691f9e8 2065 case offsetof(struct __sk_buff, cb[0]) ...
09c37a2c
DB
2066 offsetof(struct __sk_buff, cb[4]):
2067 case offsetof(struct __sk_buff, tc_classid):
d691f9e8
AS
2068 break;
2069 default:
2070 return false;
2071 }
2072 }
2073 return __is_valid_access(off, size, type);
2074}
2075
2076static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
2077 int src_reg, int ctx_off,
ff936a04
AS
2078 struct bpf_insn *insn_buf,
2079 struct bpf_prog *prog)
9bac3d6d
AS
2080{
2081 struct bpf_insn *insn = insn_buf;
2082
2083 switch (ctx_off) {
2084 case offsetof(struct __sk_buff, len):
2085 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
2086
2087 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
2088 offsetof(struct sk_buff, len));
2089 break;
2090
0b8c707d
DB
2091 case offsetof(struct __sk_buff, protocol):
2092 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
2093
2094 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
2095 offsetof(struct sk_buff, protocol));
2096 break;
2097
27cd5452
MS
2098 case offsetof(struct __sk_buff, vlan_proto):
2099 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
2100
2101 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
2102 offsetof(struct sk_buff, vlan_proto));
2103 break;
2104
bcad5718
DB
2105 case offsetof(struct __sk_buff, priority):
2106 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
2107
754f1e6a
DB
2108 if (type == BPF_WRITE)
2109 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
2110 offsetof(struct sk_buff, priority));
2111 else
2112 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
2113 offsetof(struct sk_buff, priority));
bcad5718
DB
2114 break;
2115
37e82c2f
AS
2116 case offsetof(struct __sk_buff, ingress_ifindex):
2117 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);
2118
2119 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
2120 offsetof(struct sk_buff, skb_iif));
2121 break;
2122
2123 case offsetof(struct __sk_buff, ifindex):
2124 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
2125
2126 *insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
2127 dst_reg, src_reg,
2128 offsetof(struct sk_buff, dev));
2129 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
2130 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
2131 offsetof(struct net_device, ifindex));
2132 break;
2133
ba7591d8
DB
2134 case offsetof(struct __sk_buff, hash):
2135 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
2136
2137 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
2138 offsetof(struct sk_buff, hash));
2139 break;
2140
9bac3d6d 2141 case offsetof(struct __sk_buff, mark):
d691f9e8
AS
2142 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
2143
2144 if (type == BPF_WRITE)
2145 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
2146 offsetof(struct sk_buff, mark));
2147 else
2148 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
2149 offsetof(struct sk_buff, mark));
2150 break;
9bac3d6d
AS
2151
2152 case offsetof(struct __sk_buff, pkt_type):
2153 return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);
2154
2155 case offsetof(struct __sk_buff, queue_mapping):
2156 return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
c2497395 2157
c2497395
AS
2158 case offsetof(struct __sk_buff, vlan_present):
2159 return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
2160 dst_reg, src_reg, insn);
2161
2162 case offsetof(struct __sk_buff, vlan_tci):
2163 return convert_skb_access(SKF_AD_VLAN_TAG,
2164 dst_reg, src_reg, insn);
d691f9e8
AS
2165
2166 case offsetof(struct __sk_buff, cb[0]) ...
2167 offsetof(struct __sk_buff, cb[4]):
2168 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
2169
ff936a04 2170 prog->cb_access = 1;
d691f9e8
AS
2171 ctx_off -= offsetof(struct __sk_buff, cb[0]);
2172 ctx_off += offsetof(struct sk_buff, cb);
2173 ctx_off += offsetof(struct qdisc_skb_cb, data);
2174 if (type == BPF_WRITE)
2175 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
2176 else
2177 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
2178 break;
2179
045efa82
DB
2180 case offsetof(struct __sk_buff, tc_classid):
2181 ctx_off -= offsetof(struct __sk_buff, tc_classid);
2182 ctx_off += offsetof(struct sk_buff, cb);
2183 ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
09c37a2c
DB
2184 if (type == BPF_WRITE)
2185 *insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
2186 else
2187 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
045efa82
DB
2188 break;
2189
d691f9e8
AS
2190 case offsetof(struct __sk_buff, tc_index):
2191#ifdef CONFIG_NET_SCHED
2192 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);
2193
2194 if (type == BPF_WRITE)
2195 *insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
2196 offsetof(struct sk_buff, tc_index));
2197 else
2198 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
2199 offsetof(struct sk_buff, tc_index));
2200 break;
2201#else
2202 if (type == BPF_WRITE)
2203 *insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
2204 else
2205 *insn++ = BPF_MOV64_IMM(dst_reg, 0);
2206 break;
2207#endif
9bac3d6d
AS
2208 }
2209
2210 return insn - insn_buf;
89aa0758
AS
2211}
2212
d4052c4a
DB
2213static const struct bpf_verifier_ops sk_filter_ops = {
2214 .get_func_proto = sk_filter_func_proto,
2215 .is_valid_access = sk_filter_is_valid_access,
d691f9e8 2216 .convert_ctx_access = bpf_net_convert_ctx_access,
89aa0758
AS
2217};
2218
608cd71a
AS
2219static const struct bpf_verifier_ops tc_cls_act_ops = {
2220 .get_func_proto = tc_cls_act_func_proto,
d691f9e8
AS
2221 .is_valid_access = tc_cls_act_is_valid_access,
2222 .convert_ctx_access = bpf_net_convert_ctx_access,
608cd71a
AS
2223};
2224
d4052c4a
DB
2225static struct bpf_prog_type_list sk_filter_type __read_mostly = {
2226 .ops = &sk_filter_ops,
89aa0758
AS
2227 .type = BPF_PROG_TYPE_SOCKET_FILTER,
2228};
2229
96be4325 2230static struct bpf_prog_type_list sched_cls_type __read_mostly = {
608cd71a 2231 .ops = &tc_cls_act_ops,
96be4325
DB
2232 .type = BPF_PROG_TYPE_SCHED_CLS,
2233};
2234
94caee8c 2235static struct bpf_prog_type_list sched_act_type __read_mostly = {
608cd71a 2236 .ops = &tc_cls_act_ops,
94caee8c
DB
2237 .type = BPF_PROG_TYPE_SCHED_ACT,
2238};
2239
d4052c4a 2240static int __init register_sk_filter_ops(void)
89aa0758 2241{
d4052c4a 2242 bpf_register_prog_type(&sk_filter_type);
96be4325 2243 bpf_register_prog_type(&sched_cls_type);
94caee8c 2244 bpf_register_prog_type(&sched_act_type);
96be4325 2245
89aa0758
AS
2246 return 0;
2247}
d4052c4a
DB
2248late_initcall(register_sk_filter_ops);
2249
55b33325
PE
2250int sk_detach_filter(struct sock *sk)
2251{
2252 int ret = -ENOENT;
2253 struct sk_filter *filter;
2254
d59577b6
VB
2255 if (sock_flag(sk, SOCK_FILTER_LOCKED))
2256 return -EPERM;
2257
f91ff5b9
ED
2258 filter = rcu_dereference_protected(sk->sk_filter,
2259 sock_owned_by_user(sk));
55b33325 2260 if (filter) {
a9b3cd7f 2261 RCU_INIT_POINTER(sk->sk_filter, NULL);
46bcf14f 2262 sk_filter_uncharge(sk, filter);
55b33325
PE
2263 ret = 0;
2264 }
a3ea269b 2265
55b33325
PE
2266 return ret;
2267}
5ff3f073 2268EXPORT_SYMBOL_GPL(sk_detach_filter);
a8fc9277 2269
a3ea269b
DB
2270int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
2271 unsigned int len)
a8fc9277 2272{
a3ea269b 2273 struct sock_fprog_kern *fprog;
a8fc9277 2274 struct sk_filter *filter;
a3ea269b 2275 int ret = 0;
a8fc9277
PE
2276
2277 lock_sock(sk);
2278 filter = rcu_dereference_protected(sk->sk_filter,
a3ea269b 2279 sock_owned_by_user(sk));
a8fc9277
PE
2280 if (!filter)
2281 goto out;
a3ea269b
DB
2282
2283 /* We're copying the filter that has been originally attached,
93d08b69
DB
2284 * so no conversion/decode needed anymore. eBPF programs that
2285 * have no original program cannot be dumped through this.
a3ea269b 2286 */
93d08b69 2287 ret = -EACCES;
7ae457c1 2288 fprog = filter->prog->orig_prog;
93d08b69
DB
2289 if (!fprog)
2290 goto out;
a3ea269b
DB
2291
2292 ret = fprog->len;
a8fc9277 2293 if (!len)
a3ea269b 2294 /* User space only enquires number of filter blocks. */
a8fc9277 2295 goto out;
a3ea269b 2296
a8fc9277 2297 ret = -EINVAL;
a3ea269b 2298 if (len < fprog->len)
a8fc9277
PE
2299 goto out;
2300
2301 ret = -EFAULT;
009937e7 2302 if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
a3ea269b 2303 goto out;
a8fc9277 2304
a3ea269b
DB
2305 /* Instead of bytes, the API requests to return the number
2306 * of filter blocks.
2307 */
2308 ret = fprog->len;
a8fc9277
PE
2309out:
2310 release_sock(sk);
2311 return ret;
2312}
This page took 0.976255 seconds and 5 git commands to generate.