Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 */
45
cb7b593c 46#define VERSION "0.403"
19baf839
RO
47
48#include <linux/config.h>
49#include <asm/uaccess.h>
50#include <asm/system.h>
51#include <asm/bitops.h>
52#include <linux/types.h>
53#include <linux/kernel.h>
54#include <linux/sched.h>
55#include <linux/mm.h>
56#include <linux/string.h>
57#include <linux/socket.h>
58#include <linux/sockios.h>
59#include <linux/errno.h>
60#include <linux/in.h>
61#include <linux/inet.h>
62#include <linux/netdevice.h>
63#include <linux/if_arp.h>
64#include <linux/proc_fs.h>
2373ce1c 65#include <linux/rcupdate.h>
19baf839
RO
66#include <linux/skbuff.h>
67#include <linux/netlink.h>
68#include <linux/init.h>
69#include <linux/list.h>
70#include <net/ip.h>
71#include <net/protocol.h>
72#include <net/route.h>
73#include <net/tcp.h>
74#include <net/sock.h>
75#include <net/ip_fib.h>
76#include "fib_lookup.h"
77
78#undef CONFIG_IP_FIB_TRIE_STATS
79#define MAX_CHILDS 16384
80
19baf839
RO
81#define KEYLENGTH (8*sizeof(t_key))
82#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
83#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
84
19baf839
RO
85typedef unsigned int t_key;
86
87#define T_TNODE 0
88#define T_LEAF 1
89#define NODE_TYPE_MASK 0x1UL
91b9a277 90#define NODE_PARENT(node) \
2373ce1c
RO
91 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
92
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95#define NODE_SET_PARENT(node, ptr) \
96 rcu_assign_pointer((node)->parent, \
97 ((unsigned long)(ptr)) | NODE_TYPE(node))
91b9a277
OJ
98
99#define IS_TNODE(n) (!(n->parent & T_LEAF))
100#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
101
102struct node {
91b9a277
OJ
103 t_key key;
104 unsigned long parent;
19baf839
RO
105};
106
107struct leaf {
91b9a277
OJ
108 t_key key;
109 unsigned long parent;
19baf839 110 struct hlist_head list;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112};
113
114struct leaf_info {
115 struct hlist_node hlist;
2373ce1c 116 struct rcu_head rcu;
19baf839
RO
117 int plen;
118 struct list_head falh;
119};
120
121struct tnode {
91b9a277
OJ
122 t_key key;
123 unsigned long parent;
124 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
125 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
126 unsigned short full_children; /* KEYLENGTH bits needed */
127 unsigned short empty_children; /* KEYLENGTH bits needed */
2373ce1c 128 struct rcu_head rcu;
91b9a277 129 struct node *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int nodesizes[MAX_CHILDS];
c877efb2 150};
19baf839
RO
151
152struct trie {
91b9a277 153 struct node *trie;
19baf839
RO
154#ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156#endif
91b9a277 157 int size;
19baf839
RO
158 unsigned int revision;
159};
160
19baf839
RO
161static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
162static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
19baf839 163static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
164static struct tnode *inflate(struct trie *t, struct tnode *tn);
165static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 166static void tnode_free(struct tnode *tn);
19baf839 167
ba89966c 168static kmem_cache_t *fn_alias_kmem __read_mostly;
19baf839
RO
169static struct trie *trie_local = NULL, *trie_main = NULL;
170
2373ce1c
RO
171
172/* rcu_read_lock needs to be hold by caller from readside */
173
c877efb2 174static inline struct node *tnode_get_child(struct tnode *tn, int i)
19baf839 175{
91b9a277 176 BUG_ON(i >= 1 << tn->bits);
19baf839 177
2373ce1c 178 return rcu_dereference(tn->child[i]);
19baf839
RO
179}
180
bb435b8d 181static inline int tnode_child_length(const struct tnode *tn)
19baf839 182{
91b9a277 183 return 1 << tn->bits;
19baf839
RO
184}
185
19baf839
RO
186static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
187{
91b9a277 188 if (offset < KEYLENGTH)
19baf839 189 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 190 else
19baf839
RO
191 return 0;
192}
193
194static inline int tkey_equals(t_key a, t_key b)
195{
c877efb2 196 return a == b;
19baf839
RO
197}
198
199static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
200{
c877efb2
SH
201 if (bits == 0 || offset >= KEYLENGTH)
202 return 1;
91b9a277
OJ
203 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
204 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 205}
19baf839
RO
206
207static inline int tkey_mismatch(t_key a, int offset, t_key b)
208{
209 t_key diff = a ^ b;
210 int i = offset;
211
c877efb2
SH
212 if (!diff)
213 return 0;
214 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
215 i++;
216 return i;
217}
218
19baf839
RO
219/*
220 To understand this stuff, an understanding of keys and all their bits is
221 necessary. Every node in the trie has a key associated with it, but not
222 all of the bits in that key are significant.
223
224 Consider a node 'n' and its parent 'tp'.
225
226 If n is a leaf, every bit in its key is significant. Its presence is
227 necessitaded by path compression, since during a tree traversal (when
228 searching for a leaf - unless we are doing an insertion) we will completely
229 ignore all skipped bits we encounter. Thus we need to verify, at the end of
230 a potentially successful search, that we have indeed been walking the
231 correct key path.
232
233 Note that we can never "miss" the correct key in the tree if present by
234 following the wrong path. Path compression ensures that segments of the key
235 that are the same for all keys with a given prefix are skipped, but the
236 skipped part *is* identical for each node in the subtrie below the skipped
237 bit! trie_insert() in this implementation takes care of that - note the
238 call to tkey_sub_equals() in trie_insert().
239
240 if n is an internal node - a 'tnode' here, the various parts of its key
241 have many different meanings.
242
243 Example:
244 _________________________________________________________________
245 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
246 -----------------------------------------------------------------
247 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
248
249 _________________________________________________________________
250 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
251 -----------------------------------------------------------------
252 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
253
254 tp->pos = 7
255 tp->bits = 3
256 n->pos = 15
91b9a277 257 n->bits = 4
19baf839
RO
258
259 First, let's just ignore the bits that come before the parent tp, that is
260 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
261 not use them for anything.
262
263 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
264 index into the parent's child array. That is, they will be used to find
265 'n' among tp's children.
266
267 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
268 for the node n.
269
270 All the bits we have seen so far are significant to the node n. The rest
271 of the bits are really not needed or indeed known in n->key.
272
273 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
274 n's child array, and will of course be different for each child.
275
c877efb2 276
19baf839
RO
277 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
278 at this point.
279
280*/
281
0c7770c7 282static inline void check_tnode(const struct tnode *tn)
19baf839 283{
0c7770c7 284 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
285}
286
287static int halve_threshold = 25;
288static int inflate_threshold = 50;
289
2373ce1c
RO
290
291static void __alias_free_mem(struct rcu_head *head)
19baf839 292{
2373ce1c
RO
293 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
294 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
295}
296
2373ce1c 297static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 298{
2373ce1c
RO
299 call_rcu(&fa->rcu, __alias_free_mem);
300}
91b9a277 301
2373ce1c
RO
302static void __leaf_free_rcu(struct rcu_head *head)
303{
304 kfree(container_of(head, struct leaf, rcu));
305}
91b9a277 306
2373ce1c
RO
307static inline void free_leaf(struct leaf *leaf)
308{
309 call_rcu(&leaf->rcu, __leaf_free_rcu);
19baf839
RO
310}
311
2373ce1c 312static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 313{
2373ce1c 314 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
315}
316
2373ce1c 317static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 318{
2373ce1c 319 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
320}
321
f0e36f8c
PM
322static struct tnode *tnode_alloc(unsigned int size)
323{
2373ce1c
RO
324 struct page *pages;
325
326 if (size <= PAGE_SIZE)
327 return kcalloc(size, 1, GFP_KERNEL);
328
329 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
330 if (!pages)
331 return NULL;
332
333 return page_address(pages);
f0e36f8c
PM
334}
335
2373ce1c 336static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 337{
2373ce1c 338 struct tnode *tn = container_of(head, struct tnode, rcu);
f0e36f8c 339 unsigned int size = sizeof(struct tnode) +
2373ce1c 340 (1 << tn->bits) * sizeof(struct node *);
f0e36f8c
PM
341
342 if (size <= PAGE_SIZE)
343 kfree(tn);
344 else
345 free_pages((unsigned long)tn, get_order(size));
346}
347
2373ce1c
RO
348static inline void tnode_free(struct tnode *tn)
349{
350 call_rcu(&tn->rcu, __tnode_free_rcu);
351}
352
353static struct leaf *leaf_new(void)
354{
355 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
356 if (l) {
357 l->parent = T_LEAF;
358 INIT_HLIST_HEAD(&l->list);
359 }
360 return l;
361}
362
363static struct leaf_info *leaf_info_new(int plen)
364{
365 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
366 if (li) {
367 li->plen = plen;
368 INIT_LIST_HEAD(&li->falh);
369 }
370 return li;
371}
372
19baf839
RO
373static struct tnode* tnode_new(t_key key, int pos, int bits)
374{
375 int nchildren = 1<<bits;
376 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
f0e36f8c 377 struct tnode *tn = tnode_alloc(sz);
19baf839 378
91b9a277 379 if (tn) {
19baf839 380 memset(tn, 0, sz);
2373ce1c 381 tn->parent = T_TNODE;
19baf839
RO
382 tn->pos = pos;
383 tn->bits = bits;
384 tn->key = key;
385 tn->full_children = 0;
386 tn->empty_children = 1<<bits;
387 }
c877efb2 388
0c7770c7
SH
389 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
390 (unsigned int) (sizeof(struct node) * 1<<bits));
19baf839
RO
391 return tn;
392}
393
19baf839
RO
394/*
395 * Check whether a tnode 'n' is "full", i.e. it is an internal node
396 * and no bits are skipped. See discussion in dyntree paper p. 6
397 */
398
bb435b8d 399static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 400{
c877efb2 401 if (n == NULL || IS_LEAF(n))
19baf839
RO
402 return 0;
403
404 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
405}
406
c877efb2 407static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
19baf839
RO
408{
409 tnode_put_child_reorg(tn, i, n, -1);
410}
411
c877efb2 412 /*
19baf839
RO
413 * Add a child at position i overwriting the old value.
414 * Update the value of full_children and empty_children.
415 */
416
c877efb2 417static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
19baf839 418{
2373ce1c 419 struct node *chi = tn->child[i];
19baf839
RO
420 int isfull;
421
0c7770c7
SH
422 BUG_ON(i >= 1<<tn->bits);
423
19baf839
RO
424
425 /* update emptyChildren */
426 if (n == NULL && chi != NULL)
427 tn->empty_children++;
428 else if (n != NULL && chi == NULL)
429 tn->empty_children--;
c877efb2 430
19baf839 431 /* update fullChildren */
91b9a277 432 if (wasfull == -1)
19baf839
RO
433 wasfull = tnode_full(tn, chi);
434
435 isfull = tnode_full(tn, n);
c877efb2 436 if (wasfull && !isfull)
19baf839 437 tn->full_children--;
c877efb2 438 else if (!wasfull && isfull)
19baf839 439 tn->full_children++;
91b9a277 440
c877efb2
SH
441 if (n)
442 NODE_SET_PARENT(n, tn);
19baf839 443
2373ce1c 444 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
445}
446
c877efb2 447static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
448{
449 int i;
2f36895a 450 int err = 0;
2f80b3c8 451 struct tnode *old_tn;
19baf839
RO
452
453 if (!tn)
454 return NULL;
455
0c7770c7
SH
456 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
457 tn, inflate_threshold, halve_threshold);
19baf839
RO
458
459 /* No children */
460 if (tn->empty_children == tnode_child_length(tn)) {
461 tnode_free(tn);
462 return NULL;
463 }
464 /* One child */
465 if (tn->empty_children == tnode_child_length(tn) - 1)
466 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 467 struct node *n;
19baf839 468
91b9a277 469 n = tn->child[i];
2373ce1c 470 if (!n)
91b9a277 471 continue;
91b9a277
OJ
472
473 /* compress one level */
2373ce1c 474 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
475 tnode_free(tn);
476 return n;
19baf839 477 }
c877efb2 478 /*
19baf839
RO
479 * Double as long as the resulting node has a number of
480 * nonempty nodes that are above the threshold.
481 */
482
483 /*
c877efb2
SH
484 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
485 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 486 * Telecommunications, page 6:
c877efb2 487 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
488 * children in the *doubled* node is at least 'high'."
489 *
c877efb2
SH
490 * 'high' in this instance is the variable 'inflate_threshold'. It
491 * is expressed as a percentage, so we multiply it with
492 * tnode_child_length() and instead of multiplying by 2 (since the
493 * child array will be doubled by inflate()) and multiplying
494 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 495 * multiply the left-hand side by 50.
c877efb2
SH
496 *
497 * The left-hand side may look a bit weird: tnode_child_length(tn)
498 * - tn->empty_children is of course the number of non-null children
499 * in the current node. tn->full_children is the number of "full"
19baf839 500 * children, that is non-null tnodes with a skip value of 0.
c877efb2 501 * All of those will be doubled in the resulting inflated tnode, so
19baf839 502 * we just count them one extra time here.
c877efb2 503 *
19baf839 504 * A clearer way to write this would be:
c877efb2 505 *
19baf839 506 * to_be_doubled = tn->full_children;
c877efb2 507 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
508 * tn->full_children;
509 *
510 * new_child_length = tnode_child_length(tn) * 2;
511 *
c877efb2 512 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
513 * new_child_length;
514 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
515 *
516 * ...and so on, tho it would mess up the while () loop.
517 *
19baf839
RO
518 * anyway,
519 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
520 * inflate_threshold
c877efb2 521 *
19baf839
RO
522 * avoid a division:
523 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
524 * inflate_threshold * new_child_length
c877efb2 525 *
19baf839 526 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 527 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 528 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 529 *
19baf839 530 * expand new_child_length:
c877efb2 531 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 532 * tn->full_children) >=
19baf839 533 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 534 *
19baf839 535 * shorten again:
c877efb2 536 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 537 * tn->empty_children) >= inflate_threshold *
19baf839 538 * tnode_child_length(tn)
c877efb2 539 *
19baf839
RO
540 */
541
542 check_tnode(tn);
c877efb2 543
2f36895a 544 err = 0;
19baf839
RO
545 while ((tn->full_children > 0 &&
546 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
547 inflate_threshold * tnode_child_length(tn))) {
548
2f80b3c8
RO
549 old_tn = tn;
550 tn = inflate(t, tn);
551 if (IS_ERR(tn)) {
552 tn = old_tn;
2f36895a
RO
553#ifdef CONFIG_IP_FIB_TRIE_STATS
554 t->stats.resize_node_skipped++;
555#endif
556 break;
557 }
19baf839
RO
558 }
559
560 check_tnode(tn);
561
562 /*
563 * Halve as long as the number of empty children in this
564 * node is above threshold.
565 */
2f36895a
RO
566
567 err = 0;
19baf839
RO
568 while (tn->bits > 1 &&
569 100 * (tnode_child_length(tn) - tn->empty_children) <
2f36895a
RO
570 halve_threshold * tnode_child_length(tn)) {
571
2f80b3c8
RO
572 old_tn = tn;
573 tn = halve(t, tn);
574 if (IS_ERR(tn)) {
575 tn = old_tn;
2f36895a
RO
576#ifdef CONFIG_IP_FIB_TRIE_STATS
577 t->stats.resize_node_skipped++;
578#endif
579 break;
580 }
581 }
19baf839 582
c877efb2 583
19baf839 584 /* Only one child remains */
19baf839
RO
585 if (tn->empty_children == tnode_child_length(tn) - 1)
586 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 587 struct node *n;
19baf839 588
91b9a277 589 n = tn->child[i];
2373ce1c 590 if (!n)
91b9a277 591 continue;
91b9a277
OJ
592
593 /* compress one level */
594
2373ce1c 595 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
596 tnode_free(tn);
597 return n;
19baf839
RO
598 }
599
600 return (struct node *) tn;
601}
602
2f80b3c8 603static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839
RO
604{
605 struct tnode *inode;
606 struct tnode *oldtnode = tn;
607 int olen = tnode_child_length(tn);
608 int i;
609
0c7770c7 610 pr_debug("In inflate\n");
19baf839
RO
611
612 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
613
0c7770c7 614 if (!tn)
2f80b3c8 615 return ERR_PTR(-ENOMEM);
2f36895a
RO
616
617 /*
c877efb2
SH
618 * Preallocate and store tnodes before the actual work so we
619 * don't get into an inconsistent state if memory allocation
620 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
621 * of tnode is ignored.
622 */
91b9a277
OJ
623
624 for (i = 0; i < olen; i++) {
2f36895a
RO
625 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
626
627 if (inode &&
628 IS_TNODE(inode) &&
629 inode->pos == oldtnode->pos + oldtnode->bits &&
630 inode->bits > 1) {
631 struct tnode *left, *right;
2f36895a 632 t_key m = TKEY_GET_MASK(inode->pos, 1);
c877efb2 633
2f36895a
RO
634 left = tnode_new(inode->key&(~m), inode->pos + 1,
635 inode->bits - 1);
2f80b3c8
RO
636 if (!left)
637 goto nomem;
91b9a277 638
2f36895a
RO
639 right = tnode_new(inode->key|m, inode->pos + 1,
640 inode->bits - 1);
641
2f80b3c8
RO
642 if (!right) {
643 tnode_free(left);
644 goto nomem;
645 }
2f36895a
RO
646
647 put_child(t, tn, 2*i, (struct node *) left);
648 put_child(t, tn, 2*i+1, (struct node *) right);
649 }
650 }
651
91b9a277 652 for (i = 0; i < olen; i++) {
19baf839 653 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
654 struct tnode *left, *right;
655 int size, j;
c877efb2 656
19baf839
RO
657 /* An empty child */
658 if (node == NULL)
659 continue;
660
661 /* A leaf or an internal node with skipped bits */
662
c877efb2 663 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 664 tn->pos + tn->bits - 1) {
c877efb2 665 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
19baf839
RO
666 1) == 0)
667 put_child(t, tn, 2*i, node);
668 else
669 put_child(t, tn, 2*i+1, node);
670 continue;
671 }
672
673 /* An internal node with two children */
674 inode = (struct tnode *) node;
675
676 if (inode->bits == 1) {
677 put_child(t, tn, 2*i, inode->child[0]);
678 put_child(t, tn, 2*i+1, inode->child[1]);
679
680 tnode_free(inode);
91b9a277 681 continue;
19baf839
RO
682 }
683
91b9a277
OJ
684 /* An internal node with more than two children */
685
686 /* We will replace this node 'inode' with two new
687 * ones, 'left' and 'right', each with half of the
688 * original children. The two new nodes will have
689 * a position one bit further down the key and this
690 * means that the "significant" part of their keys
691 * (see the discussion near the top of this file)
692 * will differ by one bit, which will be "0" in
693 * left's key and "1" in right's key. Since we are
694 * moving the key position by one step, the bit that
695 * we are moving away from - the bit at position
696 * (inode->pos) - is the one that will differ between
697 * left and right. So... we synthesize that bit in the
698 * two new keys.
699 * The mask 'm' below will be a single "one" bit at
700 * the position (inode->pos)
701 */
19baf839 702
91b9a277
OJ
703 /* Use the old key, but set the new significant
704 * bit to zero.
705 */
2f36895a 706
91b9a277
OJ
707 left = (struct tnode *) tnode_get_child(tn, 2*i);
708 put_child(t, tn, 2*i, NULL);
2f36895a 709
91b9a277 710 BUG_ON(!left);
2f36895a 711
91b9a277
OJ
712 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
713 put_child(t, tn, 2*i+1, NULL);
19baf839 714
91b9a277 715 BUG_ON(!right);
19baf839 716
91b9a277
OJ
717 size = tnode_child_length(left);
718 for (j = 0; j < size; j++) {
719 put_child(t, left, j, inode->child[j]);
720 put_child(t, right, j, inode->child[j + size]);
19baf839 721 }
91b9a277
OJ
722 put_child(t, tn, 2*i, resize(t, left));
723 put_child(t, tn, 2*i+1, resize(t, right));
724
725 tnode_free(inode);
19baf839
RO
726 }
727 tnode_free(oldtnode);
728 return tn;
2f80b3c8
RO
729nomem:
730 {
731 int size = tnode_child_length(tn);
732 int j;
733
0c7770c7 734 for (j = 0; j < size; j++)
2f80b3c8
RO
735 if (tn->child[j])
736 tnode_free((struct tnode *)tn->child[j]);
737
738 tnode_free(tn);
0c7770c7 739
2f80b3c8
RO
740 return ERR_PTR(-ENOMEM);
741 }
19baf839
RO
742}
743
2f80b3c8 744static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
745{
746 struct tnode *oldtnode = tn;
747 struct node *left, *right;
748 int i;
749 int olen = tnode_child_length(tn);
750
0c7770c7 751 pr_debug("In halve\n");
c877efb2
SH
752
753 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 754
2f80b3c8
RO
755 if (!tn)
756 return ERR_PTR(-ENOMEM);
2f36895a
RO
757
758 /*
c877efb2
SH
759 * Preallocate and store tnodes before the actual work so we
760 * don't get into an inconsistent state if memory allocation
761 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
762 * of tnode is ignored.
763 */
764
91b9a277 765 for (i = 0; i < olen; i += 2) {
2f36895a
RO
766 left = tnode_get_child(oldtnode, i);
767 right = tnode_get_child(oldtnode, i+1);
c877efb2 768
2f36895a 769 /* Two nonempty children */
0c7770c7 770 if (left && right) {
2f80b3c8 771 struct tnode *newn;
0c7770c7 772
2f80b3c8 773 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
774
775 if (!newn)
2f80b3c8 776 goto nomem;
0c7770c7 777
2f80b3c8 778 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 779 }
2f36895a 780
2f36895a 781 }
19baf839 782
91b9a277
OJ
783 for (i = 0; i < olen; i += 2) {
784 struct tnode *newBinNode;
785
19baf839
RO
786 left = tnode_get_child(oldtnode, i);
787 right = tnode_get_child(oldtnode, i+1);
c877efb2 788
19baf839
RO
789 /* At least one of the children is empty */
790 if (left == NULL) {
791 if (right == NULL) /* Both are empty */
792 continue;
793 put_child(t, tn, i/2, right);
91b9a277 794 continue;
0c7770c7 795 }
91b9a277
OJ
796
797 if (right == NULL) {
19baf839 798 put_child(t, tn, i/2, left);
91b9a277
OJ
799 continue;
800 }
c877efb2 801
19baf839 802 /* Two nonempty children */
91b9a277
OJ
803 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
804 put_child(t, tn, i/2, NULL);
91b9a277
OJ
805 put_child(t, newBinNode, 0, left);
806 put_child(t, newBinNode, 1, right);
807 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
808 }
809 tnode_free(oldtnode);
810 return tn;
2f80b3c8
RO
811nomem:
812 {
813 int size = tnode_child_length(tn);
814 int j;
815
0c7770c7 816 for (j = 0; j < size; j++)
2f80b3c8
RO
817 if (tn->child[j])
818 tnode_free((struct tnode *)tn->child[j]);
819
820 tnode_free(tn);
0c7770c7 821
2f80b3c8
RO
822 return ERR_PTR(-ENOMEM);
823 }
19baf839
RO
824}
825
91b9a277 826static void trie_init(struct trie *t)
19baf839 827{
91b9a277
OJ
828 if (!t)
829 return;
830
831 t->size = 0;
2373ce1c 832 rcu_assign_pointer(t->trie, NULL);
91b9a277 833 t->revision = 0;
19baf839 834#ifdef CONFIG_IP_FIB_TRIE_STATS
91b9a277 835 memset(&t->stats, 0, sizeof(struct trie_use_stats));
19baf839 836#endif
19baf839
RO
837}
838
2373ce1c
RO
839/* readside most use rcu_read_lock currently dump routines
840 via get_fa_head and dump */
841
19baf839
RO
842static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen)
843{
844 struct hlist_node *node;
845 struct leaf_info *li;
846
2373ce1c 847 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 848 if (li->plen == plen)
19baf839 849 return li;
91b9a277 850
19baf839
RO
851 return NULL;
852}
853
854static inline struct list_head * get_fa_head(struct leaf *l, int plen)
855{
19baf839 856 struct leaf_info *li = find_leaf_info(&l->list, plen);
c877efb2 857
91b9a277
OJ
858 if (!li)
859 return NULL;
c877efb2 860
91b9a277 861 return &li->falh;
19baf839
RO
862}
863
864static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
865{
2373ce1c
RO
866 struct leaf_info *li = NULL, *last = NULL;
867 struct hlist_node *node;
868
869 if (hlist_empty(head)) {
870 hlist_add_head_rcu(&new->hlist, head);
871 } else {
872 hlist_for_each_entry(li, node, head, hlist) {
873 if (new->plen > li->plen)
874 break;
875
876 last = li;
877 }
878 if (last)
879 hlist_add_after_rcu(&last->hlist, &new->hlist);
880 else
881 hlist_add_before_rcu(&new->hlist, &li->hlist);
882 }
19baf839
RO
883}
884
2373ce1c
RO
885/* rcu_read_lock needs to be hold by caller from readside */
886
19baf839
RO
887static struct leaf *
888fib_find_node(struct trie *t, u32 key)
889{
890 int pos;
891 struct tnode *tn;
892 struct node *n;
893
894 pos = 0;
2373ce1c 895 n = rcu_dereference(t->trie);
19baf839
RO
896
897 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
898 tn = (struct tnode *) n;
91b9a277 899
19baf839 900 check_tnode(tn);
91b9a277 901
c877efb2 902 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 903 pos = tn->pos + tn->bits;
19baf839 904 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
91b9a277 905 } else
19baf839
RO
906 break;
907 }
908 /* Case we have found a leaf. Compare prefixes */
909
91b9a277
OJ
910 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
911 return (struct leaf *)n;
912
19baf839
RO
913 return NULL;
914}
915
916static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
917{
19baf839
RO
918 int wasfull;
919 t_key cindex, key;
920 struct tnode *tp = NULL;
921
19baf839 922 key = tn->key;
19baf839
RO
923
924 while (tn != NULL && NODE_PARENT(tn) != NULL) {
19baf839
RO
925
926 tp = NODE_PARENT(tn);
927 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
928 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
929 tn = (struct tnode *) resize (t, (struct tnode *)tn);
930 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
91b9a277 931
c877efb2 932 if (!NODE_PARENT(tn))
19baf839
RO
933 break;
934
935 tn = NODE_PARENT(tn);
936 }
937 /* Handle last (top) tnode */
c877efb2 938 if (IS_TNODE(tn))
19baf839
RO
939 tn = (struct tnode*) resize(t, (struct tnode *)tn);
940
941 return (struct node*) tn;
942}
943
2373ce1c
RO
944/* only used from updater-side */
945
f835e471
RO
946static struct list_head *
947fib_insert_node(struct trie *t, int *err, u32 key, int plen)
19baf839
RO
948{
949 int pos, newpos;
950 struct tnode *tp = NULL, *tn = NULL;
951 struct node *n;
952 struct leaf *l;
953 int missbit;
c877efb2 954 struct list_head *fa_head = NULL;
19baf839
RO
955 struct leaf_info *li;
956 t_key cindex;
957
958 pos = 0;
c877efb2 959 n = t->trie;
19baf839 960
c877efb2
SH
961 /* If we point to NULL, stop. Either the tree is empty and we should
962 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 963 * and we should just put our new leaf in that.
c877efb2
SH
964 * If we point to a T_TNODE, check if it matches our key. Note that
965 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
966 * not be the parent's 'pos'+'bits'!
967 *
c877efb2 968 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
969 * the index from our key, push the T_TNODE and walk the tree.
970 *
971 * If it doesn't, we have to replace it with a new T_TNODE.
972 *
c877efb2
SH
973 * If we point to a T_LEAF, it might or might not have the same key
974 * as we do. If it does, just change the value, update the T_LEAF's
975 * value, and return it.
19baf839
RO
976 * If it doesn't, we need to replace it with a T_TNODE.
977 */
978
979 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
980 tn = (struct tnode *) n;
91b9a277 981
c877efb2 982 check_tnode(tn);
91b9a277 983
c877efb2 984 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 985 tp = tn;
91b9a277 986 pos = tn->pos + tn->bits;
19baf839
RO
987 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
988
0c7770c7 989 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 990 } else
19baf839
RO
991 break;
992 }
993
994 /*
995 * n ----> NULL, LEAF or TNODE
996 *
c877efb2 997 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
998 */
999
91b9a277 1000 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1001
1002 /* Case 1: n is a leaf. Compare prefixes */
1003
c877efb2 1004 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
91b9a277
OJ
1005 struct leaf *l = (struct leaf *) n;
1006
19baf839 1007 li = leaf_info_new(plen);
91b9a277 1008
c877efb2 1009 if (!li) {
f835e471
RO
1010 *err = -ENOMEM;
1011 goto err;
1012 }
19baf839
RO
1013
1014 fa_head = &li->falh;
1015 insert_leaf_info(&l->list, li);
1016 goto done;
1017 }
1018 t->size++;
1019 l = leaf_new();
1020
c877efb2 1021 if (!l) {
f835e471
RO
1022 *err = -ENOMEM;
1023 goto err;
1024 }
19baf839
RO
1025
1026 l->key = key;
1027 li = leaf_info_new(plen);
1028
c877efb2 1029 if (!li) {
f835e471
RO
1030 tnode_free((struct tnode *) l);
1031 *err = -ENOMEM;
1032 goto err;
1033 }
19baf839
RO
1034
1035 fa_head = &li->falh;
1036 insert_leaf_info(&l->list, li);
1037
19baf839 1038 if (t->trie && n == NULL) {
91b9a277 1039 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839
RO
1040
1041 NODE_SET_PARENT(l, tp);
19baf839 1042
91b9a277
OJ
1043 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1044 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1045 } else {
1046 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1047 /*
1048 * Add a new tnode here
19baf839
RO
1049 * first tnode need some special handling
1050 */
1051
1052 if (tp)
91b9a277 1053 pos = tp->pos+tp->bits;
19baf839 1054 else
91b9a277
OJ
1055 pos = 0;
1056
c877efb2 1057 if (n) {
19baf839
RO
1058 newpos = tkey_mismatch(key, pos, n->key);
1059 tn = tnode_new(n->key, newpos, 1);
91b9a277 1060 } else {
19baf839 1061 newpos = 0;
c877efb2 1062 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1063 }
19baf839 1064
c877efb2 1065 if (!tn) {
f835e471
RO
1066 free_leaf_info(li);
1067 tnode_free((struct tnode *) l);
1068 *err = -ENOMEM;
1069 goto err;
91b9a277
OJ
1070 }
1071
19baf839
RO
1072 NODE_SET_PARENT(tn, tp);
1073
91b9a277 1074 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1075 put_child(t, tn, missbit, (struct node *)l);
1076 put_child(t, tn, 1-missbit, n);
1077
c877efb2 1078 if (tp) {
19baf839
RO
1079 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1080 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
91b9a277 1081 } else {
2373ce1c 1082 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
19baf839
RO
1083 tp = tn;
1084 }
1085 }
91b9a277
OJ
1086
1087 if (tp && tp->pos + tp->bits > 32)
c877efb2 1088 printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
19baf839 1089 tp, tp->pos, tp->bits, key, plen);
91b9a277 1090
19baf839 1091 /* Rebalance the trie */
2373ce1c
RO
1092
1093 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471
RO
1094done:
1095 t->revision++;
91b9a277 1096err:
19baf839
RO
1097 return fa_head;
1098}
1099
1100static int
1101fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1102 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1103{
1104 struct trie *t = (struct trie *) tb->tb_data;
1105 struct fib_alias *fa, *new_fa;
c877efb2 1106 struct list_head *fa_head = NULL;
19baf839
RO
1107 struct fib_info *fi;
1108 int plen = r->rtm_dst_len;
1109 int type = r->rtm_type;
1110 u8 tos = r->rtm_tos;
1111 u32 key, mask;
1112 int err;
1113 struct leaf *l;
1114
1115 if (plen > 32)
1116 return -EINVAL;
1117
1118 key = 0;
c877efb2 1119 if (rta->rta_dst)
19baf839
RO
1120 memcpy(&key, rta->rta_dst, 4);
1121
1122 key = ntohl(key);
1123
0c7770c7 1124 pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
19baf839 1125
91b9a277 1126 mask = ntohl(inet_make_mask(plen));
19baf839 1127
c877efb2 1128 if (key & ~mask)
19baf839
RO
1129 return -EINVAL;
1130
1131 key = key & mask;
1132
91b9a277
OJ
1133 fi = fib_create_info(r, rta, nlhdr, &err);
1134
1135 if (!fi)
19baf839
RO
1136 goto err;
1137
1138 l = fib_find_node(t, key);
c877efb2 1139 fa = NULL;
19baf839 1140
c877efb2 1141 if (l) {
19baf839
RO
1142 fa_head = get_fa_head(l, plen);
1143 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1144 }
1145
1146 /* Now fa, if non-NULL, points to the first fib alias
1147 * with the same keys [prefix,tos,priority], if such key already
1148 * exists or to the node before which we will insert new one.
1149 *
1150 * If fa is NULL, we will need to allocate a new one and
1151 * insert to the head of f.
1152 *
1153 * If f is NULL, no fib node matched the destination key
1154 * and we need to allocate a new one of those as well.
1155 */
1156
91b9a277 1157 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
19baf839
RO
1158 struct fib_alias *fa_orig;
1159
1160 err = -EEXIST;
1161 if (nlhdr->nlmsg_flags & NLM_F_EXCL)
1162 goto out;
1163
1164 if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
1165 struct fib_info *fi_drop;
1166 u8 state;
1167
2373ce1c
RO
1168 err = -ENOBUFS;
1169 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1170 if (new_fa == NULL)
1171 goto out;
19baf839
RO
1172
1173 fi_drop = fa->fa_info;
2373ce1c
RO
1174 new_fa->fa_tos = fa->fa_tos;
1175 new_fa->fa_info = fi;
1176 new_fa->fa_type = type;
1177 new_fa->fa_scope = r->rtm_scope;
19baf839 1178 state = fa->fa_state;
2373ce1c 1179 new_fa->fa_state &= ~FA_S_ACCESSED;
19baf839 1180
2373ce1c
RO
1181 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1182 alias_free_mem_rcu(fa);
19baf839
RO
1183
1184 fib_release_info(fi_drop);
1185 if (state & FA_S_ACCESSED)
91b9a277 1186 rt_cache_flush(-1);
19baf839 1187
91b9a277 1188 goto succeeded;
19baf839
RO
1189 }
1190 /* Error if we find a perfect match which
1191 * uses the same scope, type, and nexthop
1192 * information.
1193 */
1194 fa_orig = fa;
1195 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1196 if (fa->fa_tos != tos)
1197 break;
1198 if (fa->fa_info->fib_priority != fi->fib_priority)
1199 break;
1200 if (fa->fa_type == type &&
1201 fa->fa_scope == r->rtm_scope &&
1202 fa->fa_info == fi) {
1203 goto out;
1204 }
1205 }
1206 if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
1207 fa = fa_orig;
1208 }
1209 err = -ENOENT;
91b9a277 1210 if (!(nlhdr->nlmsg_flags & NLM_F_CREATE))
19baf839
RO
1211 goto out;
1212
1213 err = -ENOBUFS;
1214 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1215 if (new_fa == NULL)
1216 goto out;
1217
1218 new_fa->fa_info = fi;
1219 new_fa->fa_tos = tos;
1220 new_fa->fa_type = type;
1221 new_fa->fa_scope = r->rtm_scope;
1222 new_fa->fa_state = 0;
19baf839
RO
1223 /*
1224 * Insert new entry to the list.
1225 */
1226
c877efb2 1227 if (!fa_head) {
f835e471
RO
1228 fa_head = fib_insert_node(t, &err, key, plen);
1229 err = 0;
c877efb2 1230 if (err)
f835e471
RO
1231 goto out_free_new_fa;
1232 }
19baf839 1233
2373ce1c
RO
1234 list_add_tail_rcu(&new_fa->fa_list,
1235 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1236
1237 rt_cache_flush(-1);
1238 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
1239succeeded:
1240 return 0;
f835e471
RO
1241
1242out_free_new_fa:
1243 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1244out:
1245 fib_release_info(fi);
91b9a277 1246err:
19baf839
RO
1247 return err;
1248}
1249
2373ce1c
RO
1250
1251/* should be clalled with rcu_read_lock */
0c7770c7
SH
1252static inline int check_leaf(struct trie *t, struct leaf *l,
1253 t_key key, int *plen, const struct flowi *flp,
06c74270 1254 struct fib_result *res)
19baf839 1255{
06c74270 1256 int err, i;
19baf839
RO
1257 t_key mask;
1258 struct leaf_info *li;
1259 struct hlist_head *hhead = &l->list;
1260 struct hlist_node *node;
c877efb2 1261
2373ce1c 1262 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
19baf839
RO
1263 i = li->plen;
1264 mask = ntohl(inet_make_mask(i));
c877efb2 1265 if (l->key != (key & mask))
19baf839
RO
1266 continue;
1267
06c74270 1268 if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) {
19baf839
RO
1269 *plen = i;
1270#ifdef CONFIG_IP_FIB_TRIE_STATS
1271 t->stats.semantic_match_passed++;
1272#endif
06c74270 1273 return err;
19baf839
RO
1274 }
1275#ifdef CONFIG_IP_FIB_TRIE_STATS
1276 t->stats.semantic_match_miss++;
1277#endif
1278 }
06c74270 1279 return 1;
19baf839
RO
1280}
1281
1282static int
1283fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1284{
1285 struct trie *t = (struct trie *) tb->tb_data;
1286 int plen, ret = 0;
1287 struct node *n;
1288 struct tnode *pn;
1289 int pos, bits;
91b9a277 1290 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1291 int chopped_off;
1292 t_key cindex = 0;
1293 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1294 struct tnode *cn;
1295 t_key node_prefix, key_prefix, pref_mismatch;
1296 int mp;
1297
2373ce1c 1298 rcu_read_lock();
91b9a277 1299
2373ce1c 1300 n = rcu_dereference(t->trie);
c877efb2 1301 if (!n)
19baf839
RO
1302 goto failed;
1303
1304#ifdef CONFIG_IP_FIB_TRIE_STATS
1305 t->stats.gets++;
1306#endif
1307
1308 /* Just a leaf? */
1309 if (IS_LEAF(n)) {
06c74270 1310 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
19baf839
RO
1311 goto found;
1312 goto failed;
1313 }
1314 pn = (struct tnode *) n;
1315 chopped_off = 0;
c877efb2 1316
91b9a277 1317 while (pn) {
19baf839
RO
1318 pos = pn->pos;
1319 bits = pn->bits;
1320
c877efb2 1321 if (!chopped_off)
19baf839
RO
1322 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1323
1324 n = tnode_get_child(pn, cindex);
1325
1326 if (n == NULL) {
1327#ifdef CONFIG_IP_FIB_TRIE_STATS
1328 t->stats.null_node_hit++;
1329#endif
1330 goto backtrace;
1331 }
1332
91b9a277
OJ
1333 if (IS_LEAF(n)) {
1334 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1335 goto found;
1336 else
1337 goto backtrace;
1338 }
1339
19baf839
RO
1340#define HL_OPTIMIZE
1341#ifdef HL_OPTIMIZE
91b9a277 1342 cn = (struct tnode *)n;
19baf839 1343
91b9a277
OJ
1344 /*
1345 * It's a tnode, and we can do some extra checks here if we
1346 * like, to avoid descending into a dead-end branch.
1347 * This tnode is in the parent's child array at index
1348 * key[p_pos..p_pos+p_bits] but potentially with some bits
1349 * chopped off, so in reality the index may be just a
1350 * subprefix, padded with zero at the end.
1351 * We can also take a look at any skipped bits in this
1352 * tnode - everything up to p_pos is supposed to be ok,
1353 * and the non-chopped bits of the index (se previous
1354 * paragraph) are also guaranteed ok, but the rest is
1355 * considered unknown.
1356 *
1357 * The skipped bits are key[pos+bits..cn->pos].
1358 */
19baf839 1359
91b9a277
OJ
1360 /* If current_prefix_length < pos+bits, we are already doing
1361 * actual prefix matching, which means everything from
1362 * pos+(bits-chopped_off) onward must be zero along some
1363 * branch of this subtree - otherwise there is *no* valid
1364 * prefix present. Here we can only check the skipped
1365 * bits. Remember, since we have already indexed into the
1366 * parent's child array, we know that the bits we chopped of
1367 * *are* zero.
1368 */
19baf839 1369
91b9a277 1370 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
19baf839 1371
91b9a277
OJ
1372 if (current_prefix_length < pos+bits) {
1373 if (tkey_extract_bits(cn->key, current_prefix_length,
1374 cn->pos - current_prefix_length) != 0 ||
1375 !(cn->child[0]))
1376 goto backtrace;
1377 }
19baf839 1378
91b9a277
OJ
1379 /*
1380 * If chopped_off=0, the index is fully validated and we
1381 * only need to look at the skipped bits for this, the new,
1382 * tnode. What we actually want to do is to find out if
1383 * these skipped bits match our key perfectly, or if we will
1384 * have to count on finding a matching prefix further down,
1385 * because if we do, we would like to have some way of
1386 * verifying the existence of such a prefix at this point.
1387 */
19baf839 1388
91b9a277
OJ
1389 /* The only thing we can do at this point is to verify that
1390 * any such matching prefix can indeed be a prefix to our
1391 * key, and if the bits in the node we are inspecting that
1392 * do not match our key are not ZERO, this cannot be true.
1393 * Thus, find out where there is a mismatch (before cn->pos)
1394 * and verify that all the mismatching bits are zero in the
1395 * new tnode's key.
1396 */
19baf839 1397
91b9a277
OJ
1398 /* Note: We aren't very concerned about the piece of the key
1399 * that precede pn->pos+pn->bits, since these have already been
1400 * checked. The bits after cn->pos aren't checked since these are
1401 * by definition "unknown" at this point. Thus, what we want to
1402 * see is if we are about to enter the "prefix matching" state,
1403 * and in that case verify that the skipped bits that will prevail
1404 * throughout this subtree are zero, as they have to be if we are
1405 * to find a matching prefix.
1406 */
1407
1408 node_prefix = MASK_PFX(cn->key, cn->pos);
1409 key_prefix = MASK_PFX(key, cn->pos);
1410 pref_mismatch = key_prefix^node_prefix;
1411 mp = 0;
1412
1413 /* In short: If skipped bits in this node do not match the search
1414 * key, enter the "prefix matching" state.directly.
1415 */
1416 if (pref_mismatch) {
1417 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1418 mp++;
1419 pref_mismatch = pref_mismatch <<1;
1420 }
1421 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1422
1423 if (key_prefix != 0)
1424 goto backtrace;
1425
1426 if (current_prefix_length >= cn->pos)
1427 current_prefix_length = mp;
c877efb2 1428 }
91b9a277
OJ
1429#endif
1430 pn = (struct tnode *)n; /* Descend */
1431 chopped_off = 0;
1432 continue;
1433
19baf839
RO
1434backtrace:
1435 chopped_off++;
1436
1437 /* As zero don't change the child key (cindex) */
91b9a277 1438 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
19baf839 1439 chopped_off++;
19baf839
RO
1440
1441 /* Decrease current_... with bits chopped off */
1442 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1443 current_prefix_length = pn->pos + pn->bits - chopped_off;
91b9a277 1444
19baf839 1445 /*
c877efb2 1446 * Either we do the actual chop off according or if we have
19baf839
RO
1447 * chopped off all bits in this tnode walk up to our parent.
1448 */
1449
91b9a277 1450 if (chopped_off <= pn->bits) {
19baf839 1451 cindex &= ~(1 << (chopped_off-1));
91b9a277 1452 } else {
c877efb2 1453 if (NODE_PARENT(pn) == NULL)
19baf839 1454 goto failed;
91b9a277 1455
19baf839
RO
1456 /* Get Child's index */
1457 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1458 pn = NODE_PARENT(pn);
1459 chopped_off = 0;
1460
1461#ifdef CONFIG_IP_FIB_TRIE_STATS
1462 t->stats.backtrack++;
1463#endif
1464 goto backtrace;
c877efb2 1465 }
19baf839
RO
1466 }
1467failed:
c877efb2 1468 ret = 1;
19baf839 1469found:
2373ce1c 1470 rcu_read_unlock();
19baf839
RO
1471 return ret;
1472}
1473
2373ce1c 1474/* only called from updater side */
19baf839
RO
1475static int trie_leaf_remove(struct trie *t, t_key key)
1476{
1477 t_key cindex;
1478 struct tnode *tp = NULL;
1479 struct node *n = t->trie;
1480 struct leaf *l;
1481
0c7770c7 1482 pr_debug("entering trie_leaf_remove(%p)\n", n);
19baf839
RO
1483
1484 /* Note that in the case skipped bits, those bits are *not* checked!
c877efb2 1485 * When we finish this, we will have NULL or a T_LEAF, and the
19baf839
RO
1486 * T_LEAF may or may not match our key.
1487 */
1488
91b9a277 1489 while (n != NULL && IS_TNODE(n)) {
19baf839
RO
1490 struct tnode *tn = (struct tnode *) n;
1491 check_tnode(tn);
1492 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1493
0c7770c7 1494 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 1495 }
19baf839
RO
1496 l = (struct leaf *) n;
1497
c877efb2 1498 if (!n || !tkey_equals(l->key, key))
19baf839 1499 return 0;
c877efb2
SH
1500
1501 /*
1502 * Key found.
1503 * Remove the leaf and rebalance the tree
19baf839
RO
1504 */
1505
1506 t->revision++;
1507 t->size--;
1508
2373ce1c 1509 preempt_disable();
19baf839
RO
1510 tp = NODE_PARENT(n);
1511 tnode_free((struct tnode *) n);
1512
c877efb2 1513 if (tp) {
19baf839
RO
1514 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1515 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1516 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1517 } else
2373ce1c
RO
1518 rcu_assign_pointer(t->trie, NULL);
1519 preempt_enable();
19baf839
RO
1520
1521 return 1;
1522}
1523
1524static int
1525fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
91b9a277 1526 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
19baf839
RO
1527{
1528 struct trie *t = (struct trie *) tb->tb_data;
1529 u32 key, mask;
1530 int plen = r->rtm_dst_len;
1531 u8 tos = r->rtm_tos;
1532 struct fib_alias *fa, *fa_to_delete;
1533 struct list_head *fa_head;
1534 struct leaf *l;
91b9a277
OJ
1535 struct leaf_info *li;
1536
19baf839 1537
c877efb2 1538 if (plen > 32)
19baf839
RO
1539 return -EINVAL;
1540
1541 key = 0;
c877efb2 1542 if (rta->rta_dst)
19baf839
RO
1543 memcpy(&key, rta->rta_dst, 4);
1544
1545 key = ntohl(key);
91b9a277 1546 mask = ntohl(inet_make_mask(plen));
19baf839 1547
c877efb2 1548 if (key & ~mask)
19baf839
RO
1549 return -EINVAL;
1550
1551 key = key & mask;
1552 l = fib_find_node(t, key);
1553
c877efb2 1554 if (!l)
19baf839
RO
1555 return -ESRCH;
1556
1557 fa_head = get_fa_head(l, plen);
1558 fa = fib_find_alias(fa_head, tos, 0);
1559
1560 if (!fa)
1561 return -ESRCH;
1562
0c7770c7 1563 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1564
1565 fa_to_delete = NULL;
1566 fa_head = fa->fa_list.prev;
2373ce1c 1567
19baf839
RO
1568 list_for_each_entry(fa, fa_head, fa_list) {
1569 struct fib_info *fi = fa->fa_info;
1570
1571 if (fa->fa_tos != tos)
1572 break;
1573
1574 if ((!r->rtm_type ||
1575 fa->fa_type == r->rtm_type) &&
1576 (r->rtm_scope == RT_SCOPE_NOWHERE ||
1577 fa->fa_scope == r->rtm_scope) &&
1578 (!r->rtm_protocol ||
1579 fi->fib_protocol == r->rtm_protocol) &&
1580 fib_nh_match(r, nlhdr, rta, fi) == 0) {
1581 fa_to_delete = fa;
1582 break;
1583 }
1584 }
1585
91b9a277
OJ
1586 if (!fa_to_delete)
1587 return -ESRCH;
19baf839 1588
91b9a277
OJ
1589 fa = fa_to_delete;
1590 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
1591
1592 l = fib_find_node(t, key);
1593 li = find_leaf_info(&l->list, plen);
19baf839 1594
2373ce1c 1595 list_del_rcu(&fa->fa_list);
19baf839 1596
91b9a277 1597 if (list_empty(fa_head)) {
2373ce1c 1598 hlist_del_rcu(&li->hlist);
91b9a277 1599 free_leaf_info(li);
2373ce1c 1600 }
19baf839 1601
91b9a277
OJ
1602 if (hlist_empty(&l->list))
1603 trie_leaf_remove(t, key);
19baf839 1604
91b9a277
OJ
1605 if (fa->fa_state & FA_S_ACCESSED)
1606 rt_cache_flush(-1);
19baf839 1607
2373ce1c
RO
1608 fib_release_info(fa->fa_info);
1609 alias_free_mem_rcu(fa);
91b9a277 1610 return 0;
19baf839
RO
1611}
1612
1613static int trie_flush_list(struct trie *t, struct list_head *head)
1614{
1615 struct fib_alias *fa, *fa_node;
1616 int found = 0;
1617
1618 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1619 struct fib_info *fi = fa->fa_info;
19baf839 1620
2373ce1c
RO
1621 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1622 list_del_rcu(&fa->fa_list);
1623 fib_release_info(fa->fa_info);
1624 alias_free_mem_rcu(fa);
19baf839
RO
1625 found++;
1626 }
1627 }
1628 return found;
1629}
1630
1631static int trie_flush_leaf(struct trie *t, struct leaf *l)
1632{
1633 int found = 0;
1634 struct hlist_head *lih = &l->list;
1635 struct hlist_node *node, *tmp;
1636 struct leaf_info *li = NULL;
1637
1638 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
19baf839
RO
1639 found += trie_flush_list(t, &li->falh);
1640
1641 if (list_empty(&li->falh)) {
2373ce1c 1642 hlist_del_rcu(&li->hlist);
19baf839
RO
1643 free_leaf_info(li);
1644 }
1645 }
1646 return found;
1647}
1648
2373ce1c
RO
1649/* rcu_read_lock needs to be hold by caller from readside */
1650
19baf839
RO
1651static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1652{
1653 struct node *c = (struct node *) thisleaf;
1654 struct tnode *p;
1655 int idx;
2373ce1c 1656 struct node *trie = rcu_dereference(t->trie);
19baf839 1657
c877efb2 1658 if (c == NULL) {
2373ce1c 1659 if (trie == NULL)
19baf839
RO
1660 return NULL;
1661
2373ce1c
RO
1662 if (IS_LEAF(trie)) /* trie w. just a leaf */
1663 return (struct leaf *) trie;
19baf839 1664
2373ce1c 1665 p = (struct tnode*) trie; /* Start */
91b9a277 1666 } else
19baf839 1667 p = (struct tnode *) NODE_PARENT(c);
c877efb2 1668
19baf839
RO
1669 while (p) {
1670 int pos, last;
1671
1672 /* Find the next child of the parent */
c877efb2
SH
1673 if (c)
1674 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1675 else
19baf839
RO
1676 pos = 0;
1677
1678 last = 1 << p->bits;
91b9a277 1679 for (idx = pos; idx < last ; idx++) {
2373ce1c
RO
1680 c = rcu_dereference(p->child[idx]);
1681
1682 if (!c)
91b9a277
OJ
1683 continue;
1684
1685 /* Decend if tnode */
2373ce1c
RO
1686 while (IS_TNODE(c)) {
1687 p = (struct tnode *) c;
1688 idx = 0;
91b9a277
OJ
1689
1690 /* Rightmost non-NULL branch */
1691 if (p && IS_TNODE(p))
2373ce1c
RO
1692 while (!(c = rcu_dereference(p->child[idx]))
1693 && idx < (1<<p->bits)) idx++;
91b9a277
OJ
1694
1695 /* Done with this tnode? */
2373ce1c 1696 if (idx >= (1 << p->bits) || !c)
91b9a277 1697 goto up;
19baf839 1698 }
2373ce1c 1699 return (struct leaf *) c;
19baf839
RO
1700 }
1701up:
1702 /* No more children go up one step */
91b9a277 1703 c = (struct node *) p;
19baf839
RO
1704 p = (struct tnode *) NODE_PARENT(p);
1705 }
1706 return NULL; /* Ready. Root of trie */
1707}
1708
1709static int fn_trie_flush(struct fib_table *tb)
1710{
1711 struct trie *t = (struct trie *) tb->tb_data;
1712 struct leaf *ll = NULL, *l = NULL;
1713 int found = 0, h;
1714
1715 t->revision++;
1716
2373ce1c 1717 rcu_read_lock();
91b9a277 1718 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1719 found += trie_flush_leaf(t, l);
1720
1721 if (ll && hlist_empty(&ll->list))
1722 trie_leaf_remove(t, ll->key);
1723 ll = l;
1724 }
2373ce1c 1725 rcu_read_unlock();
19baf839
RO
1726
1727 if (ll && hlist_empty(&ll->list))
1728 trie_leaf_remove(t, ll->key);
1729
0c7770c7 1730 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1731 return found;
1732}
1733
91b9a277 1734static int trie_last_dflt = -1;
19baf839
RO
1735
1736static void
1737fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1738{
1739 struct trie *t = (struct trie *) tb->tb_data;
1740 int order, last_idx;
1741 struct fib_info *fi = NULL;
1742 struct fib_info *last_resort;
1743 struct fib_alias *fa = NULL;
1744 struct list_head *fa_head;
1745 struct leaf *l;
1746
1747 last_idx = -1;
1748 last_resort = NULL;
1749 order = -1;
1750
2373ce1c 1751 rcu_read_lock();
c877efb2 1752
19baf839 1753 l = fib_find_node(t, 0);
c877efb2 1754 if (!l)
19baf839
RO
1755 goto out;
1756
1757 fa_head = get_fa_head(l, 0);
c877efb2 1758 if (!fa_head)
19baf839
RO
1759 goto out;
1760
c877efb2 1761 if (list_empty(fa_head))
19baf839
RO
1762 goto out;
1763
2373ce1c 1764 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1765 struct fib_info *next_fi = fa->fa_info;
91b9a277 1766
19baf839
RO
1767 if (fa->fa_scope != res->scope ||
1768 fa->fa_type != RTN_UNICAST)
1769 continue;
91b9a277 1770
19baf839
RO
1771 if (next_fi->fib_priority > res->fi->fib_priority)
1772 break;
1773 if (!next_fi->fib_nh[0].nh_gw ||
1774 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1775 continue;
1776 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1777
19baf839
RO
1778 if (fi == NULL) {
1779 if (next_fi != res->fi)
1780 break;
1781 } else if (!fib_detect_death(fi, order, &last_resort,
1782 &last_idx, &trie_last_dflt)) {
1783 if (res->fi)
1784 fib_info_put(res->fi);
1785 res->fi = fi;
1786 atomic_inc(&fi->fib_clntref);
1787 trie_last_dflt = order;
1788 goto out;
1789 }
1790 fi = next_fi;
1791 order++;
1792 }
1793 if (order <= 0 || fi == NULL) {
1794 trie_last_dflt = -1;
1795 goto out;
1796 }
1797
1798 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1799 if (res->fi)
1800 fib_info_put(res->fi);
1801 res->fi = fi;
1802 atomic_inc(&fi->fib_clntref);
1803 trie_last_dflt = order;
1804 goto out;
1805 }
1806 if (last_idx >= 0) {
1807 if (res->fi)
1808 fib_info_put(res->fi);
1809 res->fi = last_resort;
1810 if (last_resort)
1811 atomic_inc(&last_resort->fib_clntref);
1812 }
1813 trie_last_dflt = last_idx;
1814 out:;
2373ce1c 1815 rcu_read_unlock();
19baf839
RO
1816}
1817
c877efb2 1818static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
19baf839
RO
1819 struct sk_buff *skb, struct netlink_callback *cb)
1820{
1821 int i, s_i;
1822 struct fib_alias *fa;
1823
91b9a277 1824 u32 xkey = htonl(key);
19baf839 1825
91b9a277 1826 s_i = cb->args[3];
19baf839
RO
1827 i = 0;
1828
2373ce1c
RO
1829 /* rcu_read_lock is hold by caller */
1830
1831 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1832 if (i < s_i) {
1833 i++;
1834 continue;
1835 }
1836 if (fa->fa_info->fib_nh == NULL) {
1837 printk("Trie error _fib_nh=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
1838 i++;
1839 continue;
1840 }
1841 if (fa->fa_info == NULL) {
1842 printk("Trie error fa_info=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
1843 i++;
1844 continue;
1845 }
1846
1847 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1848 cb->nlh->nlmsg_seq,
1849 RTM_NEWROUTE,
1850 tb->tb_id,
1851 fa->fa_type,
1852 fa->fa_scope,
1853 &xkey,
1854 plen,
1855 fa->fa_tos,
90f66914 1856 fa->fa_info, 0) < 0) {
19baf839
RO
1857 cb->args[3] = i;
1858 return -1;
91b9a277 1859 }
19baf839
RO
1860 i++;
1861 }
91b9a277 1862 cb->args[3] = i;
19baf839
RO
1863 return skb->len;
1864}
1865
c877efb2 1866static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
19baf839
RO
1867 struct netlink_callback *cb)
1868{
1869 int h, s_h;
1870 struct list_head *fa_head;
1871 struct leaf *l = NULL;
19baf839 1872
91b9a277 1873 s_h = cb->args[2];
19baf839 1874
91b9a277 1875 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1876 if (h < s_h)
1877 continue;
1878 if (h > s_h)
1879 memset(&cb->args[3], 0,
1880 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1881
1882 fa_head = get_fa_head(l, plen);
91b9a277 1883
c877efb2 1884 if (!fa_head)
19baf839
RO
1885 continue;
1886
c877efb2 1887 if (list_empty(fa_head))
19baf839
RO
1888 continue;
1889
1890 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
91b9a277 1891 cb->args[2] = h;
19baf839
RO
1892 return -1;
1893 }
1894 }
91b9a277 1895 cb->args[2] = h;
19baf839
RO
1896 return skb->len;
1897}
1898
1899static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1900{
1901 int m, s_m;
1902 struct trie *t = (struct trie *) tb->tb_data;
1903
1904 s_m = cb->args[1];
1905
2373ce1c 1906 rcu_read_lock();
91b9a277 1907 for (m = 0; m <= 32; m++) {
19baf839
RO
1908 if (m < s_m)
1909 continue;
1910 if (m > s_m)
1911 memset(&cb->args[2], 0,
91b9a277 1912 sizeof(cb->args) - 2*sizeof(cb->args[0]));
19baf839
RO
1913
1914 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1915 cb->args[1] = m;
1916 goto out;
1917 }
1918 }
2373ce1c 1919 rcu_read_unlock();
19baf839
RO
1920 cb->args[1] = m;
1921 return skb->len;
91b9a277 1922out:
2373ce1c 1923 rcu_read_unlock();
19baf839
RO
1924 return -1;
1925}
1926
1927/* Fix more generic FIB names for init later */
1928
1929#ifdef CONFIG_IP_MULTIPLE_TABLES
1930struct fib_table * fib_hash_init(int id)
1931#else
1932struct fib_table * __init fib_hash_init(int id)
1933#endif
1934{
1935 struct fib_table *tb;
1936 struct trie *t;
1937
1938 if (fn_alias_kmem == NULL)
1939 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1940 sizeof(struct fib_alias),
1941 0, SLAB_HWCACHE_ALIGN,
1942 NULL, NULL);
1943
1944 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1945 GFP_KERNEL);
1946 if (tb == NULL)
1947 return NULL;
1948
1949 tb->tb_id = id;
1950 tb->tb_lookup = fn_trie_lookup;
1951 tb->tb_insert = fn_trie_insert;
1952 tb->tb_delete = fn_trie_delete;
1953 tb->tb_flush = fn_trie_flush;
1954 tb->tb_select_default = fn_trie_select_default;
1955 tb->tb_dump = fn_trie_dump;
1956 memset(tb->tb_data, 0, sizeof(struct trie));
1957
1958 t = (struct trie *) tb->tb_data;
1959
1960 trie_init(t);
1961
c877efb2 1962 if (id == RT_TABLE_LOCAL)
91b9a277 1963 trie_local = t;
c877efb2 1964 else if (id == RT_TABLE_MAIN)
91b9a277 1965 trie_main = t;
19baf839
RO
1966
1967 if (id == RT_TABLE_LOCAL)
1968 printk("IPv4 FIB: Using LC-trie version %s\n", VERSION);
1969
1970 return tb;
1971}
1972
cb7b593c
SH
1973#ifdef CONFIG_PROC_FS
1974/* Depth first Trie walk iterator */
1975struct fib_trie_iter {
1976 struct tnode *tnode;
1977 struct trie *trie;
1978 unsigned index;
1979 unsigned depth;
1980};
19baf839 1981
cb7b593c 1982static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1983{
cb7b593c
SH
1984 struct tnode *tn = iter->tnode;
1985 unsigned cindex = iter->index;
1986 struct tnode *p;
19baf839 1987
cb7b593c
SH
1988 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1989 iter->tnode, iter->index, iter->depth);
1990rescan:
1991 while (cindex < (1<<tn->bits)) {
1992 struct node *n = tnode_get_child(tn, cindex);
19baf839 1993
cb7b593c
SH
1994 if (n) {
1995 if (IS_LEAF(n)) {
1996 iter->tnode = tn;
1997 iter->index = cindex + 1;
1998 } else {
1999 /* push down one level */
2000 iter->tnode = (struct tnode *) n;
2001 iter->index = 0;
2002 ++iter->depth;
2003 }
2004 return n;
2005 }
19baf839 2006
cb7b593c
SH
2007 ++cindex;
2008 }
91b9a277 2009
cb7b593c
SH
2010 /* Current node exhausted, pop back up */
2011 p = NODE_PARENT(tn);
2012 if (p) {
2013 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2014 tn = p;
2015 --iter->depth;
2016 goto rescan;
19baf839 2017 }
cb7b593c
SH
2018
2019 /* got root? */
2020 return NULL;
19baf839
RO
2021}
2022
cb7b593c
SH
2023static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2024 struct trie *t)
19baf839 2025{
cb7b593c 2026 struct node *n = rcu_dereference(t->trie);
19baf839 2027
cb7b593c
SH
2028 if (n && IS_TNODE(n)) {
2029 iter->tnode = (struct tnode *) n;
2030 iter->trie = t;
2031 iter->index = 0;
2032 iter->depth = 0;
2033 return n;
91b9a277 2034 }
cb7b593c
SH
2035 return NULL;
2036}
91b9a277 2037
cb7b593c
SH
2038static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2039{
2040 struct node *n;
2041 struct fib_trie_iter iter;
91b9a277 2042
cb7b593c 2043 memset(s, 0, sizeof(*s));
91b9a277 2044
cb7b593c
SH
2045 rcu_read_lock();
2046 for (n = fib_trie_get_first(&iter, t); n;
2047 n = fib_trie_get_next(&iter)) {
2048 if (IS_LEAF(n)) {
2049 s->leaves++;
2050 s->totdepth += iter.depth;
2051 if (iter.depth > s->maxdepth)
2052 s->maxdepth = iter.depth;
2053 } else {
2054 const struct tnode *tn = (const struct tnode *) n;
2055 int i;
2056
2057 s->tnodes++;
2058 s->nodesizes[tn->bits]++;
2059 for (i = 0; i < (1<<tn->bits); i++)
2060 if (!tn->child[i])
2061 s->nullpointers++;
19baf839 2062 }
19baf839 2063 }
2373ce1c 2064 rcu_read_unlock();
19baf839
RO
2065}
2066
cb7b593c
SH
2067/*
2068 * This outputs /proc/net/fib_triestats
2069 */
2070static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2071{
cb7b593c 2072 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2073
cb7b593c
SH
2074 if (stat->leaves)
2075 avdepth = stat->totdepth*100 / stat->leaves;
2076 else
2077 avdepth = 0;
91b9a277 2078
cb7b593c
SH
2079 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2080 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2081
cb7b593c 2082 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
91b9a277 2083
cb7b593c
SH
2084 bytes = sizeof(struct leaf) * stat->leaves;
2085 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2086 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2087
cb7b593c
SH
2088 max = MAX_CHILDS-1;
2089 while (max >= 0 && stat->nodesizes[max] == 0)
2090 max--;
19baf839 2091
cb7b593c
SH
2092 pointers = 0;
2093 for (i = 1; i <= max; i++)
2094 if (stat->nodesizes[i] != 0) {
2095 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2096 pointers += (1<<i) * stat->nodesizes[i];
2097 }
2098 seq_putc(seq, '\n');
2099 seq_printf(seq, "\tPointers: %d\n", pointers);
2373ce1c 2100
cb7b593c
SH
2101 bytes += sizeof(struct node *) * pointers;
2102 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2103 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2373ce1c 2104
cb7b593c
SH
2105#ifdef CONFIG_IP_FIB_TRIE_STATS
2106 seq_printf(seq, "Counters:\n---------\n");
2107 seq_printf(seq,"gets = %d\n", t->stats.gets);
2108 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2109 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2110 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2111 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2112 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2113#ifdef CLEAR_STATS
2114 memset(&(t->stats), 0, sizeof(t->stats));
2115#endif
2116#endif /* CONFIG_IP_FIB_TRIE_STATS */
2117}
19baf839 2118
cb7b593c
SH
2119static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2120{
2121 struct trie_stat *stat;
91b9a277 2122
cb7b593c
SH
2123 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2124 if (!stat)
2125 return -ENOMEM;
91b9a277 2126
cb7b593c
SH
2127 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2128 sizeof(struct leaf), sizeof(struct tnode));
91b9a277 2129
cb7b593c
SH
2130 if (trie_local) {
2131 seq_printf(seq, "Local:\n");
2132 trie_collect_stats(trie_local, stat);
2133 trie_show_stats(seq, stat);
2134 }
91b9a277 2135
cb7b593c
SH
2136 if (trie_main) {
2137 seq_printf(seq, "Main:\n");
2138 trie_collect_stats(trie_main, stat);
2139 trie_show_stats(seq, stat);
19baf839 2140 }
cb7b593c 2141 kfree(stat);
19baf839 2142
cb7b593c 2143 return 0;
19baf839
RO
2144}
2145
cb7b593c 2146static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2147{
cb7b593c 2148 return single_open(file, fib_triestat_seq_show, NULL);
19baf839
RO
2149}
2150
cb7b593c
SH
2151static struct file_operations fib_triestat_fops = {
2152 .owner = THIS_MODULE,
2153 .open = fib_triestat_seq_open,
2154 .read = seq_read,
2155 .llseek = seq_lseek,
2156 .release = single_release,
2157};
2158
2159static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2160 loff_t pos)
19baf839 2161{
cb7b593c
SH
2162 loff_t idx = 0;
2163 struct node *n;
2164
2165 for (n = fib_trie_get_first(iter, trie_local);
2166 n; ++idx, n = fib_trie_get_next(iter)) {
2167 if (pos == idx)
2168 return n;
2169 }
2170
2171 for (n = fib_trie_get_first(iter, trie_main);
2172 n; ++idx, n = fib_trie_get_next(iter)) {
2173 if (pos == idx)
2174 return n;
2175 }
19baf839
RO
2176 return NULL;
2177}
2178
cb7b593c 2179static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
19baf839 2180{
cb7b593c
SH
2181 rcu_read_lock();
2182 if (*pos == 0)
91b9a277 2183 return SEQ_START_TOKEN;
cb7b593c 2184 return fib_trie_get_idx(seq->private, *pos - 1);
19baf839
RO
2185}
2186
cb7b593c 2187static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2188{
cb7b593c
SH
2189 struct fib_trie_iter *iter = seq->private;
2190 void *l = v;
2191
19baf839 2192 ++*pos;
91b9a277 2193 if (v == SEQ_START_TOKEN)
cb7b593c 2194 return fib_trie_get_idx(iter, 0);
19baf839 2195
cb7b593c
SH
2196 v = fib_trie_get_next(iter);
2197 BUG_ON(v == l);
2198 if (v)
2199 return v;
19baf839 2200
cb7b593c
SH
2201 /* continue scan in next trie */
2202 if (iter->trie == trie_local)
2203 return fib_trie_get_first(iter, trie_main);
19baf839 2204
cb7b593c
SH
2205 return NULL;
2206}
19baf839 2207
cb7b593c 2208static void fib_trie_seq_stop(struct seq_file *seq, void *v)
19baf839 2209{
cb7b593c
SH
2210 rcu_read_unlock();
2211}
91b9a277 2212
cb7b593c
SH
2213static void seq_indent(struct seq_file *seq, int n)
2214{
2215 while (n-- > 0) seq_puts(seq, " ");
2216}
19baf839 2217
cb7b593c
SH
2218static inline const char *rtn_scope(enum rt_scope_t s)
2219{
2220 static char buf[32];
19baf839 2221
cb7b593c
SH
2222 switch(s) {
2223 case RT_SCOPE_UNIVERSE: return "universe";
2224 case RT_SCOPE_SITE: return "site";
2225 case RT_SCOPE_LINK: return "link";
2226 case RT_SCOPE_HOST: return "host";
2227 case RT_SCOPE_NOWHERE: return "nowhere";
2228 default:
2229 snprintf(buf, sizeof(buf), "scope=%d", s);
2230 return buf;
2231 }
2232}
19baf839 2233
cb7b593c
SH
2234static const char *rtn_type_names[__RTN_MAX] = {
2235 [RTN_UNSPEC] = "UNSPEC",
2236 [RTN_UNICAST] = "UNICAST",
2237 [RTN_LOCAL] = "LOCAL",
2238 [RTN_BROADCAST] = "BROADCAST",
2239 [RTN_ANYCAST] = "ANYCAST",
2240 [RTN_MULTICAST] = "MULTICAST",
2241 [RTN_BLACKHOLE] = "BLACKHOLE",
2242 [RTN_UNREACHABLE] = "UNREACHABLE",
2243 [RTN_PROHIBIT] = "PROHIBIT",
2244 [RTN_THROW] = "THROW",
2245 [RTN_NAT] = "NAT",
2246 [RTN_XRESOLVE] = "XRESOLVE",
2247};
19baf839 2248
cb7b593c
SH
2249static inline const char *rtn_type(unsigned t)
2250{
2251 static char buf[32];
19baf839 2252
cb7b593c
SH
2253 if (t < __RTN_MAX && rtn_type_names[t])
2254 return rtn_type_names[t];
2255 snprintf(buf, sizeof(buf), "type %d", t);
2256 return buf;
19baf839
RO
2257}
2258
cb7b593c
SH
2259/* Pretty print the trie */
2260static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2261{
cb7b593c
SH
2262 const struct fib_trie_iter *iter = seq->private;
2263 struct node *n = v;
c877efb2 2264
cb7b593c
SH
2265 if (v == SEQ_START_TOKEN)
2266 return 0;
19baf839 2267
cb7b593c
SH
2268 if (IS_TNODE(n)) {
2269 struct tnode *tn = (struct tnode *) n;
2270 t_key prf = ntohl(MASK_PFX(tn->key, tn->pos));
91b9a277 2271
cb7b593c
SH
2272 if (!NODE_PARENT(n)) {
2273 if (iter->trie == trie_local)
2274 seq_puts(seq, "<local>:\n");
2275 else
2276 seq_puts(seq, "<main>:\n");
2277 } else {
2278 seq_indent(seq, iter->depth-1);
2279 seq_printf(seq, " +-- %d.%d.%d.%d/%d\n",
2280 NIPQUAD(prf), tn->pos);
2281 }
2282 } else {
2283 struct leaf *l = (struct leaf *) n;
2284 int i;
2285 u32 val = ntohl(l->key);
2286
2287 seq_indent(seq, iter->depth);
2288 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2289 for (i = 32; i >= 0; i--) {
2290 struct leaf_info *li = find_leaf_info(&l->list, i);
2291 if (li) {
2292 struct fib_alias *fa;
2293 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2294 seq_indent(seq, iter->depth+1);
2295 seq_printf(seq, " /%d %s %s", i,
2296 rtn_scope(fa->fa_scope),
2297 rtn_type(fa->fa_type));
2298 if (fa->fa_tos)
2299 seq_printf(seq, "tos =%d\n",
2300 fa->fa_tos);
2301 seq_putc(seq, '\n');
2302 }
2303 }
2304 }
19baf839 2305 }
cb7b593c 2306
19baf839
RO
2307 return 0;
2308}
2309
cb7b593c
SH
2310static struct seq_operations fib_trie_seq_ops = {
2311 .start = fib_trie_seq_start,
2312 .next = fib_trie_seq_next,
2313 .stop = fib_trie_seq_stop,
2314 .show = fib_trie_seq_show,
19baf839
RO
2315};
2316
cb7b593c 2317static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839
RO
2318{
2319 struct seq_file *seq;
2320 int rc = -ENOMEM;
cb7b593c 2321 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
19baf839 2322
cb7b593c
SH
2323 if (!s)
2324 goto out;
2325
2326 rc = seq_open(file, &fib_trie_seq_ops);
19baf839
RO
2327 if (rc)
2328 goto out_kfree;
2329
cb7b593c
SH
2330 seq = file->private_data;
2331 seq->private = s;
2332 memset(s, 0, sizeof(*s));
19baf839
RO
2333out:
2334 return rc;
2335out_kfree:
cb7b593c 2336 kfree(s);
19baf839
RO
2337 goto out;
2338}
2339
cb7b593c
SH
2340static struct file_operations fib_trie_fops = {
2341 .owner = THIS_MODULE,
2342 .open = fib_trie_seq_open,
2343 .read = seq_read,
2344 .llseek = seq_lseek,
c877efb2 2345 .release = seq_release_private,
19baf839
RO
2346};
2347
cb7b593c 2348static unsigned fib_flag_trans(int type, u32 mask, const struct fib_info *fi)
19baf839 2349{
cb7b593c
SH
2350 static unsigned type2flags[RTN_MAX + 1] = {
2351 [7] = RTF_REJECT, [8] = RTF_REJECT,
2352 };
2353 unsigned flags = type2flags[type];
19baf839 2354
cb7b593c
SH
2355 if (fi && fi->fib_nh->nh_gw)
2356 flags |= RTF_GATEWAY;
2357 if (mask == 0xFFFFFFFF)
2358 flags |= RTF_HOST;
2359 flags |= RTF_UP;
2360 return flags;
19baf839
RO
2361}
2362
cb7b593c
SH
2363/*
2364 * This outputs /proc/net/route.
2365 * The format of the file is not supposed to be changed
2366 * and needs to be same as fib_hash output to avoid breaking
2367 * legacy utilities
2368 */
2369static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2370{
cb7b593c
SH
2371 struct leaf *l = v;
2372 int i;
2373 char bf[128];
19baf839 2374
cb7b593c
SH
2375 if (v == SEQ_START_TOKEN) {
2376 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2377 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2378 "\tWindow\tIRTT");
2379 return 0;
2380 }
19baf839 2381
cb7b593c
SH
2382 if (IS_TNODE(l))
2383 return 0;
19baf839 2384
cb7b593c
SH
2385 for (i=32; i>=0; i--) {
2386 struct leaf_info *li = find_leaf_info(&l->list, i);
2387 struct fib_alias *fa;
2388 u32 mask, prefix;
91b9a277 2389
cb7b593c
SH
2390 if (!li)
2391 continue;
19baf839 2392
cb7b593c
SH
2393 mask = inet_make_mask(li->plen);
2394 prefix = htonl(l->key);
19baf839 2395
cb7b593c
SH
2396 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2397 const struct fib_info *fi = rcu_dereference(fa->fa_info);
2398 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2399
cb7b593c
SH
2400 if (fa->fa_type == RTN_BROADCAST
2401 || fa->fa_type == RTN_MULTICAST)
2402 continue;
19baf839 2403
cb7b593c
SH
2404 if (fi)
2405 snprintf(bf, sizeof(bf),
2406 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2407 fi->fib_dev ? fi->fib_dev->name : "*",
2408 prefix,
2409 fi->fib_nh->nh_gw, flags, 0, 0,
2410 fi->fib_priority,
2411 mask,
2412 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2413 fi->fib_window,
2414 fi->fib_rtt >> 3);
2415 else
2416 snprintf(bf, sizeof(bf),
2417 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2418 prefix, 0, flags, 0, 0, 0,
2419 mask, 0, 0, 0);
19baf839 2420
cb7b593c
SH
2421 seq_printf(seq, "%-127s\n", bf);
2422 }
19baf839
RO
2423 }
2424
2425 return 0;
2426}
2427
cb7b593c
SH
2428static struct seq_operations fib_route_seq_ops = {
2429 .start = fib_trie_seq_start,
2430 .next = fib_trie_seq_next,
2431 .stop = fib_trie_seq_stop,
2432 .show = fib_route_seq_show,
19baf839
RO
2433};
2434
cb7b593c 2435static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839
RO
2436{
2437 struct seq_file *seq;
2438 int rc = -ENOMEM;
cb7b593c 2439 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
19baf839 2440
cb7b593c
SH
2441 if (!s)
2442 goto out;
2443
2444 rc = seq_open(file, &fib_route_seq_ops);
19baf839
RO
2445 if (rc)
2446 goto out_kfree;
2447
cb7b593c
SH
2448 seq = file->private_data;
2449 seq->private = s;
2450 memset(s, 0, sizeof(*s));
19baf839
RO
2451out:
2452 return rc;
2453out_kfree:
cb7b593c 2454 kfree(s);
19baf839
RO
2455 goto out;
2456}
2457
cb7b593c
SH
2458static struct file_operations fib_route_fops = {
2459 .owner = THIS_MODULE,
2460 .open = fib_route_seq_open,
2461 .read = seq_read,
2462 .llseek = seq_lseek,
2463 .release = seq_release_private,
19baf839
RO
2464};
2465
2466int __init fib_proc_init(void)
2467{
cb7b593c
SH
2468 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2469 goto out1;
2470
2471 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2472 goto out2;
2473
2474 if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2475 goto out3;
2476
19baf839 2477 return 0;
cb7b593c
SH
2478
2479out3:
2480 proc_net_remove("fib_triestat");
2481out2:
2482 proc_net_remove("fib_trie");
2483out1:
2484 return -ENOMEM;
19baf839
RO
2485}
2486
2487void __init fib_proc_exit(void)
2488{
2489 proc_net_remove("fib_trie");
cb7b593c
SH
2490 proc_net_remove("fib_triestat");
2491 proc_net_remove("route");
19baf839
RO
2492}
2493
2494#endif /* CONFIG_PROC_FS */
This page took 0.36082 seconds and 5 git commands to generate.