Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
5a0e3ad6 74#include <linux/slab.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
06ef921d 84#define MAX_STAT_DEPTH 32
19baf839 85
19baf839 86#define KEYLENGTH (8*sizeof(t_key))
19baf839 87
19baf839
RO
88typedef unsigned int t_key;
89
90#define T_TNODE 0
91#define T_LEAF 1
92#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
91b9a277
OJ
95#define IS_TNODE(n) (!(n->parent & T_LEAF))
96#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839 97
b299e4f0 98struct rt_trie_node {
91b9a277 99 unsigned long parent;
8d965444 100 t_key key;
19baf839
RO
101};
102
103struct leaf {
91b9a277 104 unsigned long parent;
8d965444 105 t_key key;
19baf839 106 struct hlist_head list;
2373ce1c 107 struct rcu_head rcu;
19baf839
RO
108};
109
110struct leaf_info {
111 struct hlist_node hlist;
2373ce1c 112 struct rcu_head rcu;
19baf839
RO
113 int plen;
114 struct list_head falh;
115};
116
117struct tnode {
91b9a277 118 unsigned long parent;
8d965444 119 t_key key;
112d8cfc
ED
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
e0f7cb8c 127 struct tnode *tnode_free;
15be75cd 128 };
b299e4f0 129 struct rt_trie_node *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
93672292 149 unsigned int prefixes;
06ef921d 150 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 151};
19baf839
RO
152
153struct trie {
b299e4f0 154 struct rt_trie_node *trie;
19baf839
RO
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157#endif
19baf839
RO
158};
159
b299e4f0
DM
160static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
161static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 162 int wasfull);
b299e4f0 163static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
164static struct tnode *inflate(struct trie *t, struct tnode *tn);
165static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
166/* tnodes to free after resize(); protected by RTNL */
167static struct tnode *tnode_free_head;
c3059477
JP
168static size_t tnode_free_size;
169
170/*
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
174 */
175static const int sync_pages = 128;
19baf839 176
e18b890b 177static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 178static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 179
b299e4f0 180static inline struct tnode *node_parent(struct rt_trie_node *node)
06801916 181{
b59cfbf7
ED
182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183}
184
b299e4f0 185static inline struct tnode *node_parent_rcu(struct rt_trie_node *node)
b59cfbf7
ED
186{
187 struct tnode *ret = node_parent(node);
06801916 188
a034ee3c 189 return rcu_dereference_rtnl(ret);
06801916
SH
190}
191
6440cc9e
SH
192/* Same as rcu_assign_pointer
193 * but that macro() assumes that value is a pointer.
194 */
b299e4f0 195static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
06801916 196{
6440cc9e
SH
197 smp_wmb();
198 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 199}
2373ce1c 200
b299e4f0 201static inline struct rt_trie_node *tnode_get_child(struct tnode *tn, unsigned int i)
b59cfbf7
ED
202{
203 BUG_ON(i >= 1U << tn->bits);
2373ce1c 204
b59cfbf7
ED
205 return tn->child[i];
206}
207
b299e4f0 208static inline struct rt_trie_node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 209{
b299e4f0 210 struct rt_trie_node *ret = tnode_get_child(tn, i);
19baf839 211
a034ee3c 212 return rcu_dereference_rtnl(ret);
19baf839
RO
213}
214
bb435b8d 215static inline int tnode_child_length(const struct tnode *tn)
19baf839 216{
91b9a277 217 return 1 << tn->bits;
19baf839
RO
218}
219
3b004569 220static inline t_key mask_pfx(t_key k, unsigned int l)
ab66b4a7
SH
221{
222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
223}
224
3b004569 225static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
19baf839 226{
91b9a277 227 if (offset < KEYLENGTH)
19baf839 228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 229 else
19baf839
RO
230 return 0;
231}
232
233static inline int tkey_equals(t_key a, t_key b)
234{
c877efb2 235 return a == b;
19baf839
RO
236}
237
238static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239{
c877efb2
SH
240 if (bits == 0 || offset >= KEYLENGTH)
241 return 1;
91b9a277
OJ
242 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 244}
19baf839
RO
245
246static inline int tkey_mismatch(t_key a, int offset, t_key b)
247{
248 t_key diff = a ^ b;
249 int i = offset;
250
c877efb2
SH
251 if (!diff)
252 return 0;
253 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
254 i++;
255 return i;
256}
257
19baf839 258/*
e905a9ed
YH
259 To understand this stuff, an understanding of keys and all their bits is
260 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
261 all of the bits in that key are significant.
262
263 Consider a node 'n' and its parent 'tp'.
264
e905a9ed
YH
265 If n is a leaf, every bit in its key is significant. Its presence is
266 necessitated by path compression, since during a tree traversal (when
267 searching for a leaf - unless we are doing an insertion) we will completely
268 ignore all skipped bits we encounter. Thus we need to verify, at the end of
269 a potentially successful search, that we have indeed been walking the
19baf839
RO
270 correct key path.
271
e905a9ed
YH
272 Note that we can never "miss" the correct key in the tree if present by
273 following the wrong path. Path compression ensures that segments of the key
274 that are the same for all keys with a given prefix are skipped, but the
275 skipped part *is* identical for each node in the subtrie below the skipped
276 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
277 call to tkey_sub_equals() in trie_insert().
278
e905a9ed 279 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
280 have many different meanings.
281
e905a9ed 282 Example:
19baf839
RO
283 _________________________________________________________________
284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285 -----------------------------------------------------------------
e905a9ed 286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
287
288 _________________________________________________________________
289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290 -----------------------------------------------------------------
291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
292
293 tp->pos = 7
294 tp->bits = 3
295 n->pos = 15
91b9a277 296 n->bits = 4
19baf839 297
e905a9ed
YH
298 First, let's just ignore the bits that come before the parent tp, that is
299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
300 not use them for anything.
301
302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 303 index into the parent's child array. That is, they will be used to find
19baf839
RO
304 'n' among tp's children.
305
306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307 for the node n.
308
e905a9ed 309 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
310 of the bits are really not needed or indeed known in n->key.
311
e905a9ed 312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 313 n's child array, and will of course be different for each child.
e905a9ed 314
c877efb2 315
19baf839
RO
316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317 at this point.
318
319*/
320
0c7770c7 321static inline void check_tnode(const struct tnode *tn)
19baf839 322{
0c7770c7 323 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
324}
325
f5026fab
DL
326static const int halve_threshold = 25;
327static const int inflate_threshold = 50;
345aa031 328static const int halve_threshold_root = 15;
80b71b80 329static const int inflate_threshold_root = 30;
2373ce1c
RO
330
331static void __alias_free_mem(struct rcu_head *head)
19baf839 332{
2373ce1c
RO
333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
335}
336
2373ce1c 337static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 338{
2373ce1c
RO
339 call_rcu(&fa->rcu, __alias_free_mem);
340}
91b9a277 341
2373ce1c
RO
342static void __leaf_free_rcu(struct rcu_head *head)
343{
bc3c8c1e
SH
344 struct leaf *l = container_of(head, struct leaf, rcu);
345 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 346}
91b9a277 347
387a5487
SH
348static inline void free_leaf(struct leaf *l)
349{
350 call_rcu_bh(&l->rcu, __leaf_free_rcu);
351}
352
2373ce1c 353static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 354{
2373ce1c 355 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
356}
357
2373ce1c 358static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 359{
2373ce1c 360 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
361}
362
8d965444 363static struct tnode *tnode_alloc(size_t size)
f0e36f8c 364{
2373ce1c 365 if (size <= PAGE_SIZE)
8d965444 366 return kzalloc(size, GFP_KERNEL);
15be75cd 367 else
7a1c8e5a 368 return vzalloc(size);
15be75cd 369}
2373ce1c 370
15be75cd
SH
371static void __tnode_vfree(struct work_struct *arg)
372{
373 struct tnode *tn = container_of(arg, struct tnode, work);
374 vfree(tn);
f0e36f8c
PM
375}
376
2373ce1c 377static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 378{
2373ce1c 379 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444 380 size_t size = sizeof(struct tnode) +
b299e4f0 381 (sizeof(struct rt_trie_node *) << tn->bits);
f0e36f8c
PM
382
383 if (size <= PAGE_SIZE)
384 kfree(tn);
15be75cd
SH
385 else {
386 INIT_WORK(&tn->work, __tnode_vfree);
387 schedule_work(&tn->work);
388 }
f0e36f8c
PM
389}
390
2373ce1c
RO
391static inline void tnode_free(struct tnode *tn)
392{
387a5487
SH
393 if (IS_LEAF(tn))
394 free_leaf((struct leaf *) tn);
395 else
550e29bc 396 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
397}
398
e0f7cb8c
JP
399static void tnode_free_safe(struct tnode *tn)
400{
401 BUG_ON(IS_LEAF(tn));
7b85576d
JP
402 tn->tnode_free = tnode_free_head;
403 tnode_free_head = tn;
c3059477 404 tnode_free_size += sizeof(struct tnode) +
b299e4f0 405 (sizeof(struct rt_trie_node *) << tn->bits);
e0f7cb8c
JP
406}
407
408static void tnode_free_flush(void)
409{
410 struct tnode *tn;
411
412 while ((tn = tnode_free_head)) {
413 tnode_free_head = tn->tnode_free;
414 tn->tnode_free = NULL;
415 tnode_free(tn);
416 }
c3059477
JP
417
418 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 tnode_free_size = 0;
420 synchronize_rcu();
421 }
e0f7cb8c
JP
422}
423
2373ce1c
RO
424static struct leaf *leaf_new(void)
425{
bc3c8c1e 426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
427 if (l) {
428 l->parent = T_LEAF;
429 INIT_HLIST_HEAD(&l->list);
430 }
431 return l;
432}
433
434static struct leaf_info *leaf_info_new(int plen)
435{
436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
437 if (li) {
438 li->plen = plen;
439 INIT_LIST_HEAD(&li->falh);
440 }
441 return li;
442}
443
a07f5f50 444static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 445{
b299e4f0 446 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
f0e36f8c 447 struct tnode *tn = tnode_alloc(sz);
19baf839 448
91b9a277 449 if (tn) {
2373ce1c 450 tn->parent = T_TNODE;
19baf839
RO
451 tn->pos = pos;
452 tn->bits = bits;
453 tn->key = key;
454 tn->full_children = 0;
455 tn->empty_children = 1<<bits;
456 }
c877efb2 457
a034ee3c 458 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
b299e4f0 459 sizeof(struct rt_trie_node) << bits);
19baf839
RO
460 return tn;
461}
462
19baf839
RO
463/*
464 * Check whether a tnode 'n' is "full", i.e. it is an internal node
465 * and no bits are skipped. See discussion in dyntree paper p. 6
466 */
467
b299e4f0 468static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
19baf839 469{
c877efb2 470 if (n == NULL || IS_LEAF(n))
19baf839
RO
471 return 0;
472
473 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
474}
475
a07f5f50 476static inline void put_child(struct trie *t, struct tnode *tn, int i,
b299e4f0 477 struct rt_trie_node *n)
19baf839
RO
478{
479 tnode_put_child_reorg(tn, i, n, -1);
480}
481
c877efb2 482 /*
19baf839
RO
483 * Add a child at position i overwriting the old value.
484 * Update the value of full_children and empty_children.
485 */
486
b299e4f0 487static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 488 int wasfull)
19baf839 489{
b299e4f0 490 struct rt_trie_node *chi = tn->child[i];
19baf839
RO
491 int isfull;
492
0c7770c7
SH
493 BUG_ON(i >= 1<<tn->bits);
494
19baf839
RO
495 /* update emptyChildren */
496 if (n == NULL && chi != NULL)
497 tn->empty_children++;
498 else if (n != NULL && chi == NULL)
499 tn->empty_children--;
c877efb2 500
19baf839 501 /* update fullChildren */
91b9a277 502 if (wasfull == -1)
19baf839
RO
503 wasfull = tnode_full(tn, chi);
504
505 isfull = tnode_full(tn, n);
c877efb2 506 if (wasfull && !isfull)
19baf839 507 tn->full_children--;
c877efb2 508 else if (!wasfull && isfull)
19baf839 509 tn->full_children++;
91b9a277 510
c877efb2 511 if (n)
06801916 512 node_set_parent(n, tn);
19baf839 513
2373ce1c 514 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
515}
516
80b71b80 517#define MAX_WORK 10
b299e4f0 518static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
519{
520 int i;
2f80b3c8 521 struct tnode *old_tn;
e6308be8
RO
522 int inflate_threshold_use;
523 int halve_threshold_use;
80b71b80 524 int max_work;
19baf839 525
e905a9ed 526 if (!tn)
19baf839
RO
527 return NULL;
528
0c7770c7
SH
529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 tn, inflate_threshold, halve_threshold);
19baf839
RO
531
532 /* No children */
533 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 534 tnode_free_safe(tn);
19baf839
RO
535 return NULL;
536 }
537 /* One child */
538 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 539 goto one_child;
c877efb2 540 /*
19baf839
RO
541 * Double as long as the resulting node has a number of
542 * nonempty nodes that are above the threshold.
543 */
544
545 /*
c877efb2
SH
546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 548 * Telecommunications, page 6:
c877efb2 549 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
550 * children in the *doubled* node is at least 'high'."
551 *
c877efb2
SH
552 * 'high' in this instance is the variable 'inflate_threshold'. It
553 * is expressed as a percentage, so we multiply it with
554 * tnode_child_length() and instead of multiplying by 2 (since the
555 * child array will be doubled by inflate()) and multiplying
556 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 557 * multiply the left-hand side by 50.
c877efb2
SH
558 *
559 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 * - tn->empty_children is of course the number of non-null children
561 * in the current node. tn->full_children is the number of "full"
19baf839 562 * children, that is non-null tnodes with a skip value of 0.
c877efb2 563 * All of those will be doubled in the resulting inflated tnode, so
19baf839 564 * we just count them one extra time here.
c877efb2 565 *
19baf839 566 * A clearer way to write this would be:
c877efb2 567 *
19baf839 568 * to_be_doubled = tn->full_children;
c877efb2 569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
570 * tn->full_children;
571 *
572 * new_child_length = tnode_child_length(tn) * 2;
573 *
c877efb2 574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
575 * new_child_length;
576 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
577 *
578 * ...and so on, tho it would mess up the while () loop.
579 *
19baf839
RO
580 * anyway,
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 * inflate_threshold
c877efb2 583 *
19baf839
RO
584 * avoid a division:
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 * inflate_threshold * new_child_length
c877efb2 587 *
19baf839 588 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 589 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 590 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 591 *
19baf839 592 * expand new_child_length:
c877efb2 593 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 594 * tn->full_children) >=
19baf839 595 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 596 *
19baf839 597 * shorten again:
c877efb2 598 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 599 * tn->empty_children) >= inflate_threshold *
19baf839 600 * tnode_child_length(tn)
c877efb2 601 *
19baf839
RO
602 */
603
604 check_tnode(tn);
c877efb2 605
e6308be8
RO
606 /* Keep root node larger */
607
b299e4f0 608 if (!node_parent((struct rt_trie_node *)tn)) {
80b71b80
JL
609 inflate_threshold_use = inflate_threshold_root;
610 halve_threshold_use = halve_threshold_root;
a034ee3c 611 } else {
e6308be8 612 inflate_threshold_use = inflate_threshold;
80b71b80
JL
613 halve_threshold_use = halve_threshold;
614 }
e6308be8 615
80b71b80
JL
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 621
2f80b3c8
RO
622 old_tn = tn;
623 tn = inflate(t, tn);
a07f5f50 624
2f80b3c8
RO
625 if (IS_ERR(tn)) {
626 tn = old_tn;
2f36895a
RO
627#ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629#endif
630 break;
631 }
19baf839
RO
632 }
633
634 check_tnode(tn);
635
80b71b80 636 /* Return if at least one inflate is run */
a034ee3c 637 if (max_work != MAX_WORK)
b299e4f0 638 return (struct rt_trie_node *) tn;
80b71b80 639
19baf839
RO
640 /*
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
643 */
2f36895a 644
80b71b80
JL
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
19baf839 647 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 648 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 649
2f80b3c8
RO
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
2f36895a
RO
654#ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656#endif
657 break;
658 }
659 }
19baf839 660
c877efb2 661
19baf839 662 /* Only one child remains */
80b71b80
JL
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664one_child:
19baf839 665 for (i = 0; i < tnode_child_length(tn); i++) {
b299e4f0 666 struct rt_trie_node *n;
19baf839 667
91b9a277 668 n = tn->child[i];
2373ce1c 669 if (!n)
91b9a277 670 continue;
91b9a277
OJ
671
672 /* compress one level */
673
06801916 674 node_set_parent(n, NULL);
e0f7cb8c 675 tnode_free_safe(tn);
91b9a277 676 return n;
19baf839 677 }
80b71b80 678 }
b299e4f0 679 return (struct rt_trie_node *) tn;
19baf839
RO
680}
681
2f80b3c8 682static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 683{
19baf839
RO
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
687
0c7770c7 688 pr_debug("In inflate\n");
19baf839
RO
689
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691
0c7770c7 692 if (!tn)
2f80b3c8 693 return ERR_PTR(-ENOMEM);
2f36895a
RO
694
695 /*
c877efb2
SH
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
699 * of tnode is ignored.
700 */
91b9a277
OJ
701
702 for (i = 0; i < olen; i++) {
a07f5f50 703 struct tnode *inode;
2f36895a 704
a07f5f50 705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
ab66b4a7 711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 712
2f36895a
RO
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
2f80b3c8
RO
715 if (!left)
716 goto nomem;
91b9a277 717
2f36895a
RO
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
720
e905a9ed 721 if (!right) {
2f80b3c8
RO
722 tnode_free(left);
723 goto nomem;
e905a9ed 724 }
2f36895a 725
b299e4f0
DM
726 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
727 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
2f36895a
RO
728 }
729 }
730
91b9a277 731 for (i = 0; i < olen; i++) {
c95aaf9a 732 struct tnode *inode;
b299e4f0 733 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
734 struct tnode *left, *right;
735 int size, j;
c877efb2 736
19baf839
RO
737 /* An empty child */
738 if (node == NULL)
739 continue;
740
741 /* A leaf or an internal node with skipped bits */
742
c877efb2 743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 744 tn->pos + tn->bits - 1) {
a07f5f50
SH
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
19baf839
RO
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
752 }
753
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
756
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
760
e0f7cb8c 761 tnode_free_safe(inode);
91b9a277 762 continue;
19baf839
RO
763 }
764
91b9a277
OJ
765 /* An internal node with more than two children */
766
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
782 */
19baf839 783
91b9a277
OJ
784 /* Use the old key, but set the new significant
785 * bit to zero.
786 */
2f36895a 787
91b9a277
OJ
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
2f36895a 790
91b9a277 791 BUG_ON(!left);
2f36895a 792
91b9a277
OJ
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
19baf839 795
91b9a277 796 BUG_ON(!right);
19baf839 797
91b9a277
OJ
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
19baf839 802 }
91b9a277
OJ
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
805
e0f7cb8c 806 tnode_free_safe(inode);
19baf839 807 }
e0f7cb8c 808 tnode_free_safe(oldtnode);
19baf839 809 return tn;
2f80b3c8
RO
810nomem:
811 {
812 int size = tnode_child_length(tn);
813 int j;
814
0c7770c7 815 for (j = 0; j < size; j++)
2f80b3c8
RO
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
818
819 tnode_free(tn);
0c7770c7 820
2f80b3c8
RO
821 return ERR_PTR(-ENOMEM);
822 }
19baf839
RO
823}
824
2f80b3c8 825static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
826{
827 struct tnode *oldtnode = tn;
b299e4f0 828 struct rt_trie_node *left, *right;
19baf839
RO
829 int i;
830 int olen = tnode_child_length(tn);
831
0c7770c7 832 pr_debug("In halve\n");
c877efb2
SH
833
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 835
2f80b3c8
RO
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
2f36895a
RO
838
839 /*
c877efb2
SH
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
843 * of tnode is ignored.
844 */
845
91b9a277 846 for (i = 0; i < olen; i += 2) {
2f36895a
RO
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
c877efb2 849
2f36895a 850 /* Two nonempty children */
0c7770c7 851 if (left && right) {
2f80b3c8 852 struct tnode *newn;
0c7770c7 853
2f80b3c8 854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
855
856 if (!newn)
2f80b3c8 857 goto nomem;
0c7770c7 858
b299e4f0 859 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
2f36895a 860 }
2f36895a 861
2f36895a 862 }
19baf839 863
91b9a277
OJ
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
866
19baf839
RO
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
c877efb2 869
19baf839
RO
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
91b9a277 875 continue;
0c7770c7 876 }
91b9a277
OJ
877
878 if (right == NULL) {
19baf839 879 put_child(t, tn, i/2, left);
91b9a277
OJ
880 continue;
881 }
c877efb2 882
19baf839 883 /* Two nonempty children */
91b9a277
OJ
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
91b9a277
OJ
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 889 }
e0f7cb8c 890 tnode_free_safe(oldtnode);
19baf839 891 return tn;
2f80b3c8
RO
892nomem:
893 {
894 int size = tnode_child_length(tn);
895 int j;
896
0c7770c7 897 for (j = 0; j < size; j++)
2f80b3c8
RO
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
900
901 tnode_free(tn);
0c7770c7 902
2f80b3c8
RO
903 return ERR_PTR(-ENOMEM);
904 }
19baf839
RO
905}
906
772cb712 907/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
908 via get_fa_head and dump */
909
772cb712 910static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 911{
772cb712 912 struct hlist_head *head = &l->list;
19baf839
RO
913 struct hlist_node *node;
914 struct leaf_info *li;
915
2373ce1c 916 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 917 if (li->plen == plen)
19baf839 918 return li;
91b9a277 919
19baf839
RO
920 return NULL;
921}
922
a07f5f50 923static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 924{
772cb712 925 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 926
91b9a277
OJ
927 if (!li)
928 return NULL;
c877efb2 929
91b9a277 930 return &li->falh;
19baf839
RO
931}
932
933static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934{
e905a9ed
YH
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
937
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
944
945 last = li;
946 }
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
951 }
19baf839
RO
952}
953
2373ce1c
RO
954/* rcu_read_lock needs to be hold by caller from readside */
955
19baf839
RO
956static struct leaf *
957fib_find_node(struct trie *t, u32 key)
958{
959 int pos;
960 struct tnode *tn;
b299e4f0 961 struct rt_trie_node *n;
19baf839
RO
962
963 pos = 0;
a034ee3c 964 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
965
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
91b9a277 968
19baf839 969 check_tnode(tn);
91b9a277 970
c877efb2 971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 972 pos = tn->pos + tn->bits;
a07f5f50
SH
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
91b9a277 977 } else
19baf839
RO
978 break;
979 }
980 /* Case we have found a leaf. Compare prefixes */
981
91b9a277
OJ
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
984
19baf839
RO
985 return NULL;
986}
987
7b85576d 988static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 989{
19baf839 990 int wasfull;
3ed18d76 991 t_key cindex, key;
06801916 992 struct tnode *tp;
19baf839 993
3ed18d76
RO
994 key = tn->key;
995
b299e4f0 996 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
19baf839
RO
997 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
999 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000
1001 tnode_put_child_reorg((struct tnode *)tp, cindex,
b299e4f0 1002 (struct rt_trie_node *)tn, wasfull);
91b9a277 1003
b299e4f0 1004 tp = node_parent((struct rt_trie_node *) tn);
008440e3 1005 if (!tp)
b299e4f0 1006 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
008440e3 1007
e0f7cb8c 1008 tnode_free_flush();
06801916 1009 if (!tp)
19baf839 1010 break;
06801916 1011 tn = tp;
19baf839 1012 }
06801916 1013
19baf839 1014 /* Handle last (top) tnode */
7b85576d 1015 if (IS_TNODE(tn))
a07f5f50 1016 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1017
b299e4f0 1018 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
7b85576d 1019 tnode_free_flush();
19baf839
RO
1020}
1021
2373ce1c
RO
1022/* only used from updater-side */
1023
fea86ad8 1024static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1025{
1026 int pos, newpos;
1027 struct tnode *tp = NULL, *tn = NULL;
b299e4f0 1028 struct rt_trie_node *n;
19baf839
RO
1029 struct leaf *l;
1030 int missbit;
c877efb2 1031 struct list_head *fa_head = NULL;
19baf839
RO
1032 struct leaf_info *li;
1033 t_key cindex;
1034
1035 pos = 0;
c877efb2 1036 n = t->trie;
19baf839 1037
c877efb2
SH
1038 /* If we point to NULL, stop. Either the tree is empty and we should
1039 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1040 * and we should just put our new leaf in that.
c877efb2
SH
1041 * If we point to a T_TNODE, check if it matches our key. Note that
1042 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1043 * not be the parent's 'pos'+'bits'!
1044 *
c877efb2 1045 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1046 * the index from our key, push the T_TNODE and walk the tree.
1047 *
1048 * If it doesn't, we have to replace it with a new T_TNODE.
1049 *
c877efb2
SH
1050 * If we point to a T_LEAF, it might or might not have the same key
1051 * as we do. If it does, just change the value, update the T_LEAF's
1052 * value, and return it.
19baf839
RO
1053 * If it doesn't, we need to replace it with a T_TNODE.
1054 */
1055
1056 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1057 tn = (struct tnode *) n;
91b9a277 1058
c877efb2 1059 check_tnode(tn);
91b9a277 1060
c877efb2 1061 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1062 tp = tn;
91b9a277 1063 pos = tn->pos + tn->bits;
a07f5f50
SH
1064 n = tnode_get_child(tn,
1065 tkey_extract_bits(key,
1066 tn->pos,
1067 tn->bits));
19baf839 1068
06801916 1069 BUG_ON(n && node_parent(n) != tn);
91b9a277 1070 } else
19baf839
RO
1071 break;
1072 }
1073
1074 /*
1075 * n ----> NULL, LEAF or TNODE
1076 *
c877efb2 1077 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1078 */
1079
91b9a277 1080 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1081
1082 /* Case 1: n is a leaf. Compare prefixes */
1083
c877efb2 1084 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1085 l = (struct leaf *) n;
19baf839 1086 li = leaf_info_new(plen);
91b9a277 1087
fea86ad8
SH
1088 if (!li)
1089 return NULL;
19baf839
RO
1090
1091 fa_head = &li->falh;
1092 insert_leaf_info(&l->list, li);
1093 goto done;
1094 }
19baf839
RO
1095 l = leaf_new();
1096
fea86ad8
SH
1097 if (!l)
1098 return NULL;
19baf839
RO
1099
1100 l->key = key;
1101 li = leaf_info_new(plen);
1102
c877efb2 1103 if (!li) {
387a5487 1104 free_leaf(l);
fea86ad8 1105 return NULL;
f835e471 1106 }
19baf839
RO
1107
1108 fa_head = &li->falh;
1109 insert_leaf_info(&l->list, li);
1110
19baf839 1111 if (t->trie && n == NULL) {
91b9a277 1112 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1113
b299e4f0 1114 node_set_parent((struct rt_trie_node *)l, tp);
19baf839 1115
91b9a277 1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
b299e4f0 1117 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
91b9a277
OJ
1118 } else {
1119 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1120 /*
1121 * Add a new tnode here
19baf839
RO
1122 * first tnode need some special handling
1123 */
1124
1125 if (tp)
91b9a277 1126 pos = tp->pos+tp->bits;
19baf839 1127 else
91b9a277
OJ
1128 pos = 0;
1129
c877efb2 1130 if (n) {
19baf839
RO
1131 newpos = tkey_mismatch(key, pos, n->key);
1132 tn = tnode_new(n->key, newpos, 1);
91b9a277 1133 } else {
19baf839 1134 newpos = 0;
c877efb2 1135 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1136 }
19baf839 1137
c877efb2 1138 if (!tn) {
f835e471 1139 free_leaf_info(li);
387a5487 1140 free_leaf(l);
fea86ad8 1141 return NULL;
91b9a277
OJ
1142 }
1143
b299e4f0 1144 node_set_parent((struct rt_trie_node *)tn, tp);
19baf839 1145
91b9a277 1146 missbit = tkey_extract_bits(key, newpos, 1);
b299e4f0 1147 put_child(t, tn, missbit, (struct rt_trie_node *)l);
19baf839
RO
1148 put_child(t, tn, 1-missbit, n);
1149
c877efb2 1150 if (tp) {
19baf839 1151 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50 1152 put_child(t, (struct tnode *)tp, cindex,
b299e4f0 1153 (struct rt_trie_node *)tn);
91b9a277 1154 } else {
b299e4f0 1155 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
19baf839
RO
1156 tp = tn;
1157 }
1158 }
91b9a277
OJ
1159
1160 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1161 pr_warning("fib_trie"
1162 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 tp, tp->pos, tp->bits, key, plen);
91b9a277 1164
19baf839 1165 /* Rebalance the trie */
2373ce1c 1166
7b85576d 1167 trie_rebalance(t, tp);
f835e471 1168done:
19baf839
RO
1169 return fa_head;
1170}
1171
d562f1f8
RO
1172/*
1173 * Caller must hold RTNL.
1174 */
16c6cf8b 1175int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1176{
1177 struct trie *t = (struct trie *) tb->tb_data;
1178 struct fib_alias *fa, *new_fa;
c877efb2 1179 struct list_head *fa_head = NULL;
19baf839 1180 struct fib_info *fi;
4e902c57
TG
1181 int plen = cfg->fc_dst_len;
1182 u8 tos = cfg->fc_tos;
19baf839
RO
1183 u32 key, mask;
1184 int err;
1185 struct leaf *l;
1186
1187 if (plen > 32)
1188 return -EINVAL;
1189
4e902c57 1190 key = ntohl(cfg->fc_dst);
19baf839 1191
2dfe55b4 1192 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1193
91b9a277 1194 mask = ntohl(inet_make_mask(plen));
19baf839 1195
c877efb2 1196 if (key & ~mask)
19baf839
RO
1197 return -EINVAL;
1198
1199 key = key & mask;
1200
4e902c57
TG
1201 fi = fib_create_info(cfg);
1202 if (IS_ERR(fi)) {
1203 err = PTR_ERR(fi);
19baf839 1204 goto err;
4e902c57 1205 }
19baf839
RO
1206
1207 l = fib_find_node(t, key);
c877efb2 1208 fa = NULL;
19baf839 1209
c877efb2 1210 if (l) {
19baf839
RO
1211 fa_head = get_fa_head(l, plen);
1212 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1213 }
1214
1215 /* Now fa, if non-NULL, points to the first fib alias
1216 * with the same keys [prefix,tos,priority], if such key already
1217 * exists or to the node before which we will insert new one.
1218 *
1219 * If fa is NULL, we will need to allocate a new one and
1220 * insert to the head of f.
1221 *
1222 * If f is NULL, no fib node matched the destination key
1223 * and we need to allocate a new one of those as well.
1224 */
1225
936f6f8e
JA
1226 if (fa && fa->fa_tos == tos &&
1227 fa->fa_info->fib_priority == fi->fib_priority) {
1228 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1229
1230 err = -EEXIST;
4e902c57 1231 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1232 goto out;
1233
936f6f8e
JA
1234 /* We have 2 goals:
1235 * 1. Find exact match for type, scope, fib_info to avoid
1236 * duplicate routes
1237 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1238 */
1239 fa_match = NULL;
1240 fa_first = fa;
1241 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1242 list_for_each_entry_continue(fa, fa_head, fa_list) {
1243 if (fa->fa_tos != tos)
1244 break;
1245 if (fa->fa_info->fib_priority != fi->fib_priority)
1246 break;
1247 if (fa->fa_type == cfg->fc_type &&
1248 fa->fa_scope == cfg->fc_scope &&
1249 fa->fa_info == fi) {
1250 fa_match = fa;
1251 break;
1252 }
1253 }
1254
4e902c57 1255 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1256 struct fib_info *fi_drop;
1257 u8 state;
1258
936f6f8e
JA
1259 fa = fa_first;
1260 if (fa_match) {
1261 if (fa == fa_match)
1262 err = 0;
6725033f 1263 goto out;
936f6f8e 1264 }
2373ce1c 1265 err = -ENOBUFS;
e94b1766 1266 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1267 if (new_fa == NULL)
1268 goto out;
19baf839
RO
1269
1270 fi_drop = fa->fa_info;
2373ce1c
RO
1271 new_fa->fa_tos = fa->fa_tos;
1272 new_fa->fa_info = fi;
4e902c57
TG
1273 new_fa->fa_type = cfg->fc_type;
1274 new_fa->fa_scope = cfg->fc_scope;
19baf839 1275 state = fa->fa_state;
936f6f8e 1276 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1277
2373ce1c
RO
1278 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1279 alias_free_mem_rcu(fa);
19baf839
RO
1280
1281 fib_release_info(fi_drop);
1282 if (state & FA_S_ACCESSED)
76e6ebfb 1283 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1286
91b9a277 1287 goto succeeded;
19baf839
RO
1288 }
1289 /* Error if we find a perfect match which
1290 * uses the same scope, type, and nexthop
1291 * information.
1292 */
936f6f8e
JA
1293 if (fa_match)
1294 goto out;
a07f5f50 1295
4e902c57 1296 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1297 fa = fa_first;
19baf839
RO
1298 }
1299 err = -ENOENT;
4e902c57 1300 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1301 goto out;
1302
1303 err = -ENOBUFS;
e94b1766 1304 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1305 if (new_fa == NULL)
1306 goto out;
1307
1308 new_fa->fa_info = fi;
1309 new_fa->fa_tos = tos;
4e902c57
TG
1310 new_fa->fa_type = cfg->fc_type;
1311 new_fa->fa_scope = cfg->fc_scope;
19baf839 1312 new_fa->fa_state = 0;
19baf839
RO
1313 /*
1314 * Insert new entry to the list.
1315 */
1316
c877efb2 1317 if (!fa_head) {
fea86ad8
SH
1318 fa_head = fib_insert_node(t, key, plen);
1319 if (unlikely(!fa_head)) {
1320 err = -ENOMEM;
f835e471 1321 goto out_free_new_fa;
fea86ad8 1322 }
f835e471 1323 }
19baf839 1324
2373ce1c
RO
1325 list_add_tail_rcu(&new_fa->fa_list,
1326 (fa ? &fa->fa_list : fa_head));
19baf839 1327
76e6ebfb 1328 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1329 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1330 &cfg->fc_nlinfo, 0);
19baf839
RO
1331succeeded:
1332 return 0;
f835e471
RO
1333
1334out_free_new_fa:
1335 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1336out:
1337 fib_release_info(fi);
91b9a277 1338err:
19baf839
RO
1339 return err;
1340}
1341
772cb712 1342/* should be called with rcu_read_lock */
5b470441 1343static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
22bd5b9b 1344 t_key key, const struct flowi4 *flp,
ebc0ffae 1345 struct fib_result *res, int fib_flags)
19baf839 1346{
19baf839
RO
1347 struct leaf_info *li;
1348 struct hlist_head *hhead = &l->list;
1349 struct hlist_node *node;
c877efb2 1350
2373ce1c 1351 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
3be0686b 1352 struct fib_alias *fa;
a07f5f50
SH
1353 int plen = li->plen;
1354 __be32 mask = inet_make_mask(plen);
1355
888454c5 1356 if (l->key != (key & ntohl(mask)))
19baf839
RO
1357 continue;
1358
3be0686b
DM
1359 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1360 struct fib_info *fi = fa->fa_info;
1361 int nhsel, err;
a07f5f50 1362
22bd5b9b 1363 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
3be0686b 1364 continue;
22bd5b9b 1365 if (fa->fa_scope < flp->flowi4_scope)
3be0686b
DM
1366 continue;
1367 fib_alias_accessed(fa);
1368 err = fib_props[fa->fa_type].error;
1369 if (err) {
19baf839 1370#ifdef CONFIG_IP_FIB_TRIE_STATS
3be0686b
DM
1371 t->stats.semantic_match_miss++;
1372#endif
1373 return 1;
1374 }
1375 if (fi->fib_flags & RTNH_F_DEAD)
1376 continue;
1377 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1378 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1379
1380 if (nh->nh_flags & RTNH_F_DEAD)
1381 continue;
22bd5b9b 1382 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
3be0686b
DM
1383 continue;
1384
1385#ifdef CONFIG_IP_FIB_TRIE_STATS
1386 t->stats.semantic_match_passed++;
1387#endif
1388 res->prefixlen = plen;
1389 res->nh_sel = nhsel;
1390 res->type = fa->fa_type;
1391 res->scope = fa->fa_scope;
1392 res->fi = fi;
1393 res->table = tb;
1394 res->fa_head = &li->falh;
1395 if (!(fib_flags & FIB_LOOKUP_NOREF))
1396 atomic_inc(&res->fi->fib_clntref);
1397 return 0;
1398 }
1399 }
1400
1401#ifdef CONFIG_IP_FIB_TRIE_STATS
1402 t->stats.semantic_match_miss++;
19baf839 1403#endif
19baf839 1404 }
a07f5f50 1405
2e655571 1406 return 1;
19baf839
RO
1407}
1408
22bd5b9b 1409int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1410 struct fib_result *res, int fib_flags)
19baf839
RO
1411{
1412 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1413 int ret;
b299e4f0 1414 struct rt_trie_node *n;
19baf839 1415 struct tnode *pn;
3b004569 1416 unsigned int pos, bits;
22bd5b9b 1417 t_key key = ntohl(flp->daddr);
3b004569 1418 unsigned int chopped_off;
19baf839 1419 t_key cindex = 0;
3b004569 1420 unsigned int current_prefix_length = KEYLENGTH;
91b9a277 1421 struct tnode *cn;
874ffa8f 1422 t_key pref_mismatch;
91b9a277 1423
2373ce1c 1424 rcu_read_lock();
91b9a277 1425
2373ce1c 1426 n = rcu_dereference(t->trie);
c877efb2 1427 if (!n)
19baf839
RO
1428 goto failed;
1429
1430#ifdef CONFIG_IP_FIB_TRIE_STATS
1431 t->stats.gets++;
1432#endif
1433
1434 /* Just a leaf? */
1435 if (IS_LEAF(n)) {
5b470441 1436 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1437 goto found;
19baf839 1438 }
a07f5f50 1439
19baf839
RO
1440 pn = (struct tnode *) n;
1441 chopped_off = 0;
c877efb2 1442
91b9a277 1443 while (pn) {
19baf839
RO
1444 pos = pn->pos;
1445 bits = pn->bits;
1446
c877efb2 1447 if (!chopped_off)
ab66b4a7
SH
1448 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1449 pos, bits);
19baf839 1450
b902e573 1451 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1452
1453 if (n == NULL) {
1454#ifdef CONFIG_IP_FIB_TRIE_STATS
1455 t->stats.null_node_hit++;
1456#endif
1457 goto backtrace;
1458 }
1459
91b9a277 1460 if (IS_LEAF(n)) {
5b470441 1461 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1462 if (ret > 0)
91b9a277 1463 goto backtrace;
a07f5f50 1464 goto found;
91b9a277
OJ
1465 }
1466
91b9a277 1467 cn = (struct tnode *)n;
19baf839 1468
91b9a277
OJ
1469 /*
1470 * It's a tnode, and we can do some extra checks here if we
1471 * like, to avoid descending into a dead-end branch.
1472 * This tnode is in the parent's child array at index
1473 * key[p_pos..p_pos+p_bits] but potentially with some bits
1474 * chopped off, so in reality the index may be just a
1475 * subprefix, padded with zero at the end.
1476 * We can also take a look at any skipped bits in this
1477 * tnode - everything up to p_pos is supposed to be ok,
1478 * and the non-chopped bits of the index (se previous
1479 * paragraph) are also guaranteed ok, but the rest is
1480 * considered unknown.
1481 *
1482 * The skipped bits are key[pos+bits..cn->pos].
1483 */
19baf839 1484
91b9a277
OJ
1485 /* If current_prefix_length < pos+bits, we are already doing
1486 * actual prefix matching, which means everything from
1487 * pos+(bits-chopped_off) onward must be zero along some
1488 * branch of this subtree - otherwise there is *no* valid
1489 * prefix present. Here we can only check the skipped
1490 * bits. Remember, since we have already indexed into the
1491 * parent's child array, we know that the bits we chopped of
1492 * *are* zero.
1493 */
19baf839 1494
a07f5f50
SH
1495 /* NOTA BENE: Checking only skipped bits
1496 for the new node here */
19baf839 1497
91b9a277
OJ
1498 if (current_prefix_length < pos+bits) {
1499 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1500 cn->pos - current_prefix_length)
1501 || !(cn->child[0]))
91b9a277
OJ
1502 goto backtrace;
1503 }
19baf839 1504
91b9a277
OJ
1505 /*
1506 * If chopped_off=0, the index is fully validated and we
1507 * only need to look at the skipped bits for this, the new,
1508 * tnode. What we actually want to do is to find out if
1509 * these skipped bits match our key perfectly, or if we will
1510 * have to count on finding a matching prefix further down,
1511 * because if we do, we would like to have some way of
1512 * verifying the existence of such a prefix at this point.
1513 */
19baf839 1514
91b9a277
OJ
1515 /* The only thing we can do at this point is to verify that
1516 * any such matching prefix can indeed be a prefix to our
1517 * key, and if the bits in the node we are inspecting that
1518 * do not match our key are not ZERO, this cannot be true.
1519 * Thus, find out where there is a mismatch (before cn->pos)
1520 * and verify that all the mismatching bits are zero in the
1521 * new tnode's key.
1522 */
19baf839 1523
a07f5f50
SH
1524 /*
1525 * Note: We aren't very concerned about the piece of
1526 * the key that precede pn->pos+pn->bits, since these
1527 * have already been checked. The bits after cn->pos
1528 * aren't checked since these are by definition
1529 * "unknown" at this point. Thus, what we want to see
1530 * is if we are about to enter the "prefix matching"
1531 * state, and in that case verify that the skipped
1532 * bits that will prevail throughout this subtree are
1533 * zero, as they have to be if we are to find a
1534 * matching prefix.
91b9a277
OJ
1535 */
1536
874ffa8f 1537 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1538
a07f5f50
SH
1539 /*
1540 * In short: If skipped bits in this node do not match
1541 * the search key, enter the "prefix matching"
1542 * state.directly.
91b9a277
OJ
1543 */
1544 if (pref_mismatch) {
874ffa8f 1545 int mp = KEYLENGTH - fls(pref_mismatch);
91b9a277 1546
874ffa8f 1547 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1548 goto backtrace;
1549
1550 if (current_prefix_length >= cn->pos)
1551 current_prefix_length = mp;
c877efb2 1552 }
a07f5f50 1553
91b9a277
OJ
1554 pn = (struct tnode *)n; /* Descend */
1555 chopped_off = 0;
1556 continue;
1557
19baf839
RO
1558backtrace:
1559 chopped_off++;
1560
1561 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1562 while ((chopped_off <= pn->bits)
1563 && !(cindex & (1<<(chopped_off-1))))
19baf839 1564 chopped_off++;
19baf839
RO
1565
1566 /* Decrease current_... with bits chopped off */
1567 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1568 current_prefix_length = pn->pos + pn->bits
1569 - chopped_off;
91b9a277 1570
19baf839 1571 /*
c877efb2 1572 * Either we do the actual chop off according or if we have
19baf839
RO
1573 * chopped off all bits in this tnode walk up to our parent.
1574 */
1575
91b9a277 1576 if (chopped_off <= pn->bits) {
19baf839 1577 cindex &= ~(1 << (chopped_off-1));
91b9a277 1578 } else {
b299e4f0 1579 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
06801916 1580 if (!parent)
19baf839 1581 goto failed;
91b9a277 1582
19baf839 1583 /* Get Child's index */
06801916
SH
1584 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1585 pn = parent;
19baf839
RO
1586 chopped_off = 0;
1587
1588#ifdef CONFIG_IP_FIB_TRIE_STATS
1589 t->stats.backtrack++;
1590#endif
1591 goto backtrace;
c877efb2 1592 }
19baf839
RO
1593 }
1594failed:
c877efb2 1595 ret = 1;
19baf839 1596found:
2373ce1c 1597 rcu_read_unlock();
19baf839
RO
1598 return ret;
1599}
1600
9195bef7
SH
1601/*
1602 * Remove the leaf and return parent.
1603 */
1604static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1605{
b299e4f0 1606 struct tnode *tp = node_parent((struct rt_trie_node *) l);
c877efb2 1607
9195bef7 1608 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1609
c877efb2 1610 if (tp) {
9195bef7 1611 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1612 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1613 trie_rebalance(t, tp);
91b9a277 1614 } else
2373ce1c 1615 rcu_assign_pointer(t->trie, NULL);
19baf839 1616
387a5487 1617 free_leaf(l);
19baf839
RO
1618}
1619
d562f1f8
RO
1620/*
1621 * Caller must hold RTNL.
1622 */
16c6cf8b 1623int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1624{
1625 struct trie *t = (struct trie *) tb->tb_data;
1626 u32 key, mask;
4e902c57
TG
1627 int plen = cfg->fc_dst_len;
1628 u8 tos = cfg->fc_tos;
19baf839
RO
1629 struct fib_alias *fa, *fa_to_delete;
1630 struct list_head *fa_head;
1631 struct leaf *l;
91b9a277
OJ
1632 struct leaf_info *li;
1633
c877efb2 1634 if (plen > 32)
19baf839
RO
1635 return -EINVAL;
1636
4e902c57 1637 key = ntohl(cfg->fc_dst);
91b9a277 1638 mask = ntohl(inet_make_mask(plen));
19baf839 1639
c877efb2 1640 if (key & ~mask)
19baf839
RO
1641 return -EINVAL;
1642
1643 key = key & mask;
1644 l = fib_find_node(t, key);
1645
c877efb2 1646 if (!l)
19baf839
RO
1647 return -ESRCH;
1648
1649 fa_head = get_fa_head(l, plen);
1650 fa = fib_find_alias(fa_head, tos, 0);
1651
1652 if (!fa)
1653 return -ESRCH;
1654
0c7770c7 1655 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1656
1657 fa_to_delete = NULL;
936f6f8e
JA
1658 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1659 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1660 struct fib_info *fi = fa->fa_info;
1661
1662 if (fa->fa_tos != tos)
1663 break;
1664
4e902c57
TG
1665 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1666 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1667 fa->fa_scope == cfg->fc_scope) &&
1668 (!cfg->fc_protocol ||
1669 fi->fib_protocol == cfg->fc_protocol) &&
1670 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1671 fa_to_delete = fa;
1672 break;
1673 }
1674 }
1675
91b9a277
OJ
1676 if (!fa_to_delete)
1677 return -ESRCH;
19baf839 1678
91b9a277 1679 fa = fa_to_delete;
4e902c57 1680 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1681 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1682
1683 l = fib_find_node(t, key);
772cb712 1684 li = find_leaf_info(l, plen);
19baf839 1685
2373ce1c 1686 list_del_rcu(&fa->fa_list);
19baf839 1687
91b9a277 1688 if (list_empty(fa_head)) {
2373ce1c 1689 hlist_del_rcu(&li->hlist);
91b9a277 1690 free_leaf_info(li);
2373ce1c 1691 }
19baf839 1692
91b9a277 1693 if (hlist_empty(&l->list))
9195bef7 1694 trie_leaf_remove(t, l);
19baf839 1695
91b9a277 1696 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1697 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1698
2373ce1c
RO
1699 fib_release_info(fa->fa_info);
1700 alias_free_mem_rcu(fa);
91b9a277 1701 return 0;
19baf839
RO
1702}
1703
ef3660ce 1704static int trie_flush_list(struct list_head *head)
19baf839
RO
1705{
1706 struct fib_alias *fa, *fa_node;
1707 int found = 0;
1708
1709 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1710 struct fib_info *fi = fa->fa_info;
19baf839 1711
2373ce1c
RO
1712 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1713 list_del_rcu(&fa->fa_list);
1714 fib_release_info(fa->fa_info);
1715 alias_free_mem_rcu(fa);
19baf839
RO
1716 found++;
1717 }
1718 }
1719 return found;
1720}
1721
ef3660ce 1722static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1723{
1724 int found = 0;
1725 struct hlist_head *lih = &l->list;
1726 struct hlist_node *node, *tmp;
1727 struct leaf_info *li = NULL;
1728
1729 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1730 found += trie_flush_list(&li->falh);
19baf839
RO
1731
1732 if (list_empty(&li->falh)) {
2373ce1c 1733 hlist_del_rcu(&li->hlist);
19baf839
RO
1734 free_leaf_info(li);
1735 }
1736 }
1737 return found;
1738}
1739
82cfbb00
SH
1740/*
1741 * Scan for the next right leaf starting at node p->child[idx]
1742 * Since we have back pointer, no recursion necessary.
1743 */
b299e4f0 1744static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
19baf839 1745{
82cfbb00
SH
1746 do {
1747 t_key idx;
c877efb2 1748
c877efb2 1749 if (c)
82cfbb00 1750 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1751 else
82cfbb00 1752 idx = 0;
2373ce1c 1753
82cfbb00
SH
1754 while (idx < 1u << p->bits) {
1755 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1756 if (!c)
91b9a277
OJ
1757 continue;
1758
82cfbb00
SH
1759 if (IS_LEAF(c)) {
1760 prefetch(p->child[idx]);
1761 return (struct leaf *) c;
19baf839 1762 }
82cfbb00
SH
1763
1764 /* Rescan start scanning in new node */
1765 p = (struct tnode *) c;
1766 idx = 0;
19baf839 1767 }
82cfbb00
SH
1768
1769 /* Node empty, walk back up to parent */
b299e4f0 1770 c = (struct rt_trie_node *) p;
a034ee3c 1771 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1772
1773 return NULL; /* Root of trie */
1774}
1775
82cfbb00
SH
1776static struct leaf *trie_firstleaf(struct trie *t)
1777{
a034ee3c 1778 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1779
1780 if (!n)
1781 return NULL;
1782
1783 if (IS_LEAF(n)) /* trie is just a leaf */
1784 return (struct leaf *) n;
1785
1786 return leaf_walk_rcu(n, NULL);
1787}
1788
1789static struct leaf *trie_nextleaf(struct leaf *l)
1790{
b299e4f0 1791 struct rt_trie_node *c = (struct rt_trie_node *) l;
b902e573 1792 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1793
1794 if (!p)
1795 return NULL; /* trie with just one leaf */
1796
1797 return leaf_walk_rcu(p, c);
19baf839
RO
1798}
1799
71d67e66
SH
1800static struct leaf *trie_leafindex(struct trie *t, int index)
1801{
1802 struct leaf *l = trie_firstleaf(t);
1803
ec28cf73 1804 while (l && index-- > 0)
71d67e66 1805 l = trie_nextleaf(l);
ec28cf73 1806
71d67e66
SH
1807 return l;
1808}
1809
1810
d562f1f8
RO
1811/*
1812 * Caller must hold RTNL.
1813 */
16c6cf8b 1814int fib_table_flush(struct fib_table *tb)
19baf839
RO
1815{
1816 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1817 struct leaf *l, *ll = NULL;
82cfbb00 1818 int found = 0;
19baf839 1819
82cfbb00 1820 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1821 found += trie_flush_leaf(l);
19baf839
RO
1822
1823 if (ll && hlist_empty(&ll->list))
9195bef7 1824 trie_leaf_remove(t, ll);
19baf839
RO
1825 ll = l;
1826 }
1827
1828 if (ll && hlist_empty(&ll->list))
9195bef7 1829 trie_leaf_remove(t, ll);
19baf839 1830
0c7770c7 1831 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1832 return found;
1833}
1834
4aa2c466
PE
1835void fib_free_table(struct fib_table *tb)
1836{
1837 kfree(tb);
1838}
1839
a07f5f50
SH
1840static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1841 struct fib_table *tb,
19baf839
RO
1842 struct sk_buff *skb, struct netlink_callback *cb)
1843{
1844 int i, s_i;
1845 struct fib_alias *fa;
32ab5f80 1846 __be32 xkey = htonl(key);
19baf839 1847
71d67e66 1848 s_i = cb->args[5];
19baf839
RO
1849 i = 0;
1850
2373ce1c
RO
1851 /* rcu_read_lock is hold by caller */
1852
1853 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1854 if (i < s_i) {
1855 i++;
1856 continue;
1857 }
19baf839
RO
1858
1859 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1860 cb->nlh->nlmsg_seq,
1861 RTM_NEWROUTE,
1862 tb->tb_id,
1863 fa->fa_type,
1864 fa->fa_scope,
be403ea1 1865 xkey,
19baf839
RO
1866 plen,
1867 fa->fa_tos,
64347f78 1868 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1869 cb->args[5] = i;
19baf839 1870 return -1;
91b9a277 1871 }
19baf839
RO
1872 i++;
1873 }
71d67e66 1874 cb->args[5] = i;
19baf839
RO
1875 return skb->len;
1876}
1877
a88ee229
SH
1878static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1879 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1880{
a88ee229
SH
1881 struct leaf_info *li;
1882 struct hlist_node *node;
1883 int i, s_i;
19baf839 1884
71d67e66 1885 s_i = cb->args[4];
a88ee229 1886 i = 0;
19baf839 1887
a88ee229
SH
1888 /* rcu_read_lock is hold by caller */
1889 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1890 if (i < s_i) {
1891 i++;
19baf839 1892 continue;
a88ee229 1893 }
91b9a277 1894
a88ee229 1895 if (i > s_i)
71d67e66 1896 cb->args[5] = 0;
19baf839 1897
a88ee229 1898 if (list_empty(&li->falh))
19baf839
RO
1899 continue;
1900
a88ee229 1901 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1902 cb->args[4] = i;
19baf839
RO
1903 return -1;
1904 }
a88ee229 1905 i++;
19baf839 1906 }
a88ee229 1907
71d67e66 1908 cb->args[4] = i;
19baf839
RO
1909 return skb->len;
1910}
1911
16c6cf8b
SH
1912int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1913 struct netlink_callback *cb)
19baf839 1914{
a88ee229 1915 struct leaf *l;
19baf839 1916 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1917 t_key key = cb->args[2];
71d67e66 1918 int count = cb->args[3];
19baf839 1919
2373ce1c 1920 rcu_read_lock();
d5ce8a0e
SH
1921 /* Dump starting at last key.
1922 * Note: 0.0.0.0/0 (ie default) is first key.
1923 */
71d67e66 1924 if (count == 0)
d5ce8a0e
SH
1925 l = trie_firstleaf(t);
1926 else {
71d67e66
SH
1927 /* Normally, continue from last key, but if that is missing
1928 * fallback to using slow rescan
1929 */
d5ce8a0e 1930 l = fib_find_node(t, key);
71d67e66
SH
1931 if (!l)
1932 l = trie_leafindex(t, count);
d5ce8a0e 1933 }
a88ee229 1934
d5ce8a0e
SH
1935 while (l) {
1936 cb->args[2] = l->key;
a88ee229 1937 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1938 cb->args[3] = count;
a88ee229 1939 rcu_read_unlock();
a88ee229 1940 return -1;
19baf839 1941 }
d5ce8a0e 1942
71d67e66 1943 ++count;
d5ce8a0e 1944 l = trie_nextleaf(l);
71d67e66
SH
1945 memset(&cb->args[4], 0,
1946 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1947 }
71d67e66 1948 cb->args[3] = count;
2373ce1c 1949 rcu_read_unlock();
a88ee229 1950
19baf839 1951 return skb->len;
19baf839
RO
1952}
1953
5348ba85 1954void __init fib_trie_init(void)
7f9b8052 1955{
a07f5f50
SH
1956 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1957 sizeof(struct fib_alias),
bc3c8c1e
SH
1958 0, SLAB_PANIC, NULL);
1959
1960 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1961 max(sizeof(struct leaf),
1962 sizeof(struct leaf_info)),
1963 0, SLAB_PANIC, NULL);
7f9b8052 1964}
19baf839 1965
7f9b8052 1966
5348ba85 1967struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1968{
1969 struct fib_table *tb;
1970 struct trie *t;
1971
19baf839
RO
1972 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1973 GFP_KERNEL);
1974 if (tb == NULL)
1975 return NULL;
1976
1977 tb->tb_id = id;
971b893e 1978 tb->tb_default = -1;
19baf839
RO
1979
1980 t = (struct trie *) tb->tb_data;
c28a1cf4 1981 memset(t, 0, sizeof(*t));
19baf839 1982
19baf839 1983 if (id == RT_TABLE_LOCAL)
a07f5f50 1984 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
1985
1986 return tb;
1987}
1988
cb7b593c
SH
1989#ifdef CONFIG_PROC_FS
1990/* Depth first Trie walk iterator */
1991struct fib_trie_iter {
1c340b2f 1992 struct seq_net_private p;
3d3b2d25 1993 struct fib_table *tb;
cb7b593c 1994 struct tnode *tnode;
a034ee3c
ED
1995 unsigned int index;
1996 unsigned int depth;
cb7b593c 1997};
19baf839 1998
b299e4f0 1999static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2000{
cb7b593c 2001 struct tnode *tn = iter->tnode;
a034ee3c 2002 unsigned int cindex = iter->index;
cb7b593c 2003 struct tnode *p;
19baf839 2004
6640e697
EB
2005 /* A single entry routing table */
2006 if (!tn)
2007 return NULL;
2008
cb7b593c
SH
2009 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2010 iter->tnode, iter->index, iter->depth);
2011rescan:
2012 while (cindex < (1<<tn->bits)) {
b299e4f0 2013 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2014
cb7b593c
SH
2015 if (n) {
2016 if (IS_LEAF(n)) {
2017 iter->tnode = tn;
2018 iter->index = cindex + 1;
2019 } else {
2020 /* push down one level */
2021 iter->tnode = (struct tnode *) n;
2022 iter->index = 0;
2023 ++iter->depth;
2024 }
2025 return n;
2026 }
19baf839 2027
cb7b593c
SH
2028 ++cindex;
2029 }
91b9a277 2030
cb7b593c 2031 /* Current node exhausted, pop back up */
b299e4f0 2032 p = node_parent_rcu((struct rt_trie_node *)tn);
cb7b593c
SH
2033 if (p) {
2034 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2035 tn = p;
2036 --iter->depth;
2037 goto rescan;
19baf839 2038 }
cb7b593c
SH
2039
2040 /* got root? */
2041 return NULL;
19baf839
RO
2042}
2043
b299e4f0 2044static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 2045 struct trie *t)
19baf839 2046{
b299e4f0 2047 struct rt_trie_node *n;
5ddf0eb2 2048
132adf54 2049 if (!t)
5ddf0eb2
RO
2050 return NULL;
2051
2052 n = rcu_dereference(t->trie);
3d3b2d25 2053 if (!n)
5ddf0eb2 2054 return NULL;
19baf839 2055
3d3b2d25
SH
2056 if (IS_TNODE(n)) {
2057 iter->tnode = (struct tnode *) n;
2058 iter->index = 0;
2059 iter->depth = 1;
2060 } else {
2061 iter->tnode = NULL;
2062 iter->index = 0;
2063 iter->depth = 0;
91b9a277 2064 }
3d3b2d25
SH
2065
2066 return n;
cb7b593c 2067}
91b9a277 2068
cb7b593c
SH
2069static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2070{
b299e4f0 2071 struct rt_trie_node *n;
cb7b593c 2072 struct fib_trie_iter iter;
91b9a277 2073
cb7b593c 2074 memset(s, 0, sizeof(*s));
91b9a277 2075
cb7b593c 2076 rcu_read_lock();
3d3b2d25 2077 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2078 if (IS_LEAF(n)) {
93672292
SH
2079 struct leaf *l = (struct leaf *)n;
2080 struct leaf_info *li;
2081 struct hlist_node *tmp;
2082
cb7b593c
SH
2083 s->leaves++;
2084 s->totdepth += iter.depth;
2085 if (iter.depth > s->maxdepth)
2086 s->maxdepth = iter.depth;
93672292
SH
2087
2088 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2089 ++s->prefixes;
cb7b593c
SH
2090 } else {
2091 const struct tnode *tn = (const struct tnode *) n;
2092 int i;
2093
2094 s->tnodes++;
132adf54 2095 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2096 s->nodesizes[tn->bits]++;
2097
cb7b593c
SH
2098 for (i = 0; i < (1<<tn->bits); i++)
2099 if (!tn->child[i])
2100 s->nullpointers++;
19baf839 2101 }
19baf839 2102 }
2373ce1c 2103 rcu_read_unlock();
19baf839
RO
2104}
2105
cb7b593c
SH
2106/*
2107 * This outputs /proc/net/fib_triestats
2108 */
2109static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2110{
a034ee3c 2111 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2112
cb7b593c
SH
2113 if (stat->leaves)
2114 avdepth = stat->totdepth*100 / stat->leaves;
2115 else
2116 avdepth = 0;
91b9a277 2117
a07f5f50
SH
2118 seq_printf(seq, "\tAver depth: %u.%02d\n",
2119 avdepth / 100, avdepth % 100);
cb7b593c 2120 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2121
cb7b593c 2122 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2123 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2124
2125 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2126 bytes += sizeof(struct leaf_info) * stat->prefixes;
2127
187b5188 2128 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2129 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2130
06ef921d
RO
2131 max = MAX_STAT_DEPTH;
2132 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2133 max--;
19baf839 2134
cb7b593c
SH
2135 pointers = 0;
2136 for (i = 1; i <= max; i++)
2137 if (stat->nodesizes[i] != 0) {
187b5188 2138 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2139 pointers += (1<<i) * stat->nodesizes[i];
2140 }
2141 seq_putc(seq, '\n');
187b5188 2142 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2143
b299e4f0 2144 bytes += sizeof(struct rt_trie_node *) * pointers;
187b5188
SH
2145 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2146 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2147}
2373ce1c 2148
cb7b593c 2149#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2150static void trie_show_usage(struct seq_file *seq,
2151 const struct trie_use_stats *stats)
2152{
2153 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2154 seq_printf(seq, "gets = %u\n", stats->gets);
2155 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2156 seq_printf(seq, "semantic match passed = %u\n",
2157 stats->semantic_match_passed);
2158 seq_printf(seq, "semantic match miss = %u\n",
2159 stats->semantic_match_miss);
2160 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2161 seq_printf(seq, "skipped node resize = %u\n\n",
2162 stats->resize_node_skipped);
cb7b593c 2163}
66a2f7fd
SH
2164#endif /* CONFIG_IP_FIB_TRIE_STATS */
2165
3d3b2d25 2166static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2167{
3d3b2d25
SH
2168 if (tb->tb_id == RT_TABLE_LOCAL)
2169 seq_puts(seq, "Local:\n");
2170 else if (tb->tb_id == RT_TABLE_MAIN)
2171 seq_puts(seq, "Main:\n");
2172 else
2173 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2174}
19baf839 2175
3d3b2d25 2176
cb7b593c
SH
2177static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2178{
1c340b2f 2179 struct net *net = (struct net *)seq->private;
3d3b2d25 2180 unsigned int h;
877a9bff 2181
d717a9a6 2182 seq_printf(seq,
a07f5f50
SH
2183 "Basic info: size of leaf:"
2184 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2185 sizeof(struct leaf), sizeof(struct tnode));
2186
3d3b2d25
SH
2187 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2188 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2189 struct hlist_node *node;
2190 struct fib_table *tb;
2191
2192 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2193 struct trie *t = (struct trie *) tb->tb_data;
2194 struct trie_stat stat;
877a9bff 2195
3d3b2d25
SH
2196 if (!t)
2197 continue;
2198
2199 fib_table_print(seq, tb);
2200
2201 trie_collect_stats(t, &stat);
2202 trie_show_stats(seq, &stat);
2203#ifdef CONFIG_IP_FIB_TRIE_STATS
2204 trie_show_usage(seq, &t->stats);
2205#endif
2206 }
2207 }
19baf839 2208
cb7b593c 2209 return 0;
19baf839
RO
2210}
2211
cb7b593c 2212static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2213{
de05c557 2214 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2215}
2216
9a32144e 2217static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2218 .owner = THIS_MODULE,
2219 .open = fib_triestat_seq_open,
2220 .read = seq_read,
2221 .llseek = seq_lseek,
b6fcbdb4 2222 .release = single_release_net,
cb7b593c
SH
2223};
2224
b299e4f0 2225static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2226{
1218854a
YH
2227 struct fib_trie_iter *iter = seq->private;
2228 struct net *net = seq_file_net(seq);
cb7b593c 2229 loff_t idx = 0;
3d3b2d25 2230 unsigned int h;
cb7b593c 2231
3d3b2d25
SH
2232 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2233 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2234 struct hlist_node *node;
2235 struct fib_table *tb;
cb7b593c 2236
3d3b2d25 2237 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
b299e4f0 2238 struct rt_trie_node *n;
3d3b2d25
SH
2239
2240 for (n = fib_trie_get_first(iter,
2241 (struct trie *) tb->tb_data);
2242 n; n = fib_trie_get_next(iter))
2243 if (pos == idx++) {
2244 iter->tb = tb;
2245 return n;
2246 }
2247 }
cb7b593c 2248 }
3d3b2d25 2249
19baf839
RO
2250 return NULL;
2251}
2252
cb7b593c 2253static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2254 __acquires(RCU)
19baf839 2255{
cb7b593c 2256 rcu_read_lock();
1218854a 2257 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2258}
2259
cb7b593c 2260static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2261{
cb7b593c 2262 struct fib_trie_iter *iter = seq->private;
1218854a 2263 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2264 struct fib_table *tb = iter->tb;
2265 struct hlist_node *tb_node;
2266 unsigned int h;
b299e4f0 2267 struct rt_trie_node *n;
cb7b593c 2268
19baf839 2269 ++*pos;
3d3b2d25
SH
2270 /* next node in same table */
2271 n = fib_trie_get_next(iter);
2272 if (n)
2273 return n;
19baf839 2274
3d3b2d25
SH
2275 /* walk rest of this hash chain */
2276 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2277 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2278 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2279 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2280 if (n)
2281 goto found;
2282 }
19baf839 2283
3d3b2d25
SH
2284 /* new hash chain */
2285 while (++h < FIB_TABLE_HASHSZ) {
2286 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2287 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2288 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2289 if (n)
2290 goto found;
2291 }
2292 }
cb7b593c 2293 return NULL;
3d3b2d25
SH
2294
2295found:
2296 iter->tb = tb;
2297 return n;
cb7b593c 2298}
19baf839 2299
cb7b593c 2300static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2301 __releases(RCU)
19baf839 2302{
cb7b593c
SH
2303 rcu_read_unlock();
2304}
91b9a277 2305
cb7b593c
SH
2306static void seq_indent(struct seq_file *seq, int n)
2307{
a034ee3c
ED
2308 while (n-- > 0)
2309 seq_puts(seq, " ");
cb7b593c 2310}
19baf839 2311
28d36e37 2312static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2313{
132adf54 2314 switch (s) {
cb7b593c
SH
2315 case RT_SCOPE_UNIVERSE: return "universe";
2316 case RT_SCOPE_SITE: return "site";
2317 case RT_SCOPE_LINK: return "link";
2318 case RT_SCOPE_HOST: return "host";
2319 case RT_SCOPE_NOWHERE: return "nowhere";
2320 default:
28d36e37 2321 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2322 return buf;
2323 }
2324}
19baf839 2325
36cbd3dc 2326static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2327 [RTN_UNSPEC] = "UNSPEC",
2328 [RTN_UNICAST] = "UNICAST",
2329 [RTN_LOCAL] = "LOCAL",
2330 [RTN_BROADCAST] = "BROADCAST",
2331 [RTN_ANYCAST] = "ANYCAST",
2332 [RTN_MULTICAST] = "MULTICAST",
2333 [RTN_BLACKHOLE] = "BLACKHOLE",
2334 [RTN_UNREACHABLE] = "UNREACHABLE",
2335 [RTN_PROHIBIT] = "PROHIBIT",
2336 [RTN_THROW] = "THROW",
2337 [RTN_NAT] = "NAT",
2338 [RTN_XRESOLVE] = "XRESOLVE",
2339};
19baf839 2340
a034ee3c 2341static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2342{
cb7b593c
SH
2343 if (t < __RTN_MAX && rtn_type_names[t])
2344 return rtn_type_names[t];
28d36e37 2345 snprintf(buf, len, "type %u", t);
cb7b593c 2346 return buf;
19baf839
RO
2347}
2348
cb7b593c
SH
2349/* Pretty print the trie */
2350static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2351{
cb7b593c 2352 const struct fib_trie_iter *iter = seq->private;
b299e4f0 2353 struct rt_trie_node *n = v;
c877efb2 2354
3d3b2d25
SH
2355 if (!node_parent_rcu(n))
2356 fib_table_print(seq, iter->tb);
095b8501 2357
cb7b593c
SH
2358 if (IS_TNODE(n)) {
2359 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2360 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2361
1d25cd6c 2362 seq_indent(seq, iter->depth-1);
673d57e7
HH
2363 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2364 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2365 tn->empty_children);
e905a9ed 2366
cb7b593c
SH
2367 } else {
2368 struct leaf *l = (struct leaf *) n;
1328042e
SH
2369 struct leaf_info *li;
2370 struct hlist_node *node;
32ab5f80 2371 __be32 val = htonl(l->key);
cb7b593c
SH
2372
2373 seq_indent(seq, iter->depth);
673d57e7 2374 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2375
2376 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2377 struct fib_alias *fa;
2378
2379 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2380 char buf1[32], buf2[32];
2381
2382 seq_indent(seq, iter->depth+1);
2383 seq_printf(seq, " /%d %s %s", li->plen,
2384 rtn_scope(buf1, sizeof(buf1),
2385 fa->fa_scope),
2386 rtn_type(buf2, sizeof(buf2),
2387 fa->fa_type));
2388 if (fa->fa_tos)
b9c4d82a 2389 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2390 seq_putc(seq, '\n');
cb7b593c
SH
2391 }
2392 }
19baf839 2393 }
cb7b593c 2394
19baf839
RO
2395 return 0;
2396}
2397
f690808e 2398static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2399 .start = fib_trie_seq_start,
2400 .next = fib_trie_seq_next,
2401 .stop = fib_trie_seq_stop,
2402 .show = fib_trie_seq_show,
19baf839
RO
2403};
2404
cb7b593c 2405static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2406{
1c340b2f
DL
2407 return seq_open_net(inode, file, &fib_trie_seq_ops,
2408 sizeof(struct fib_trie_iter));
19baf839
RO
2409}
2410
9a32144e 2411static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2412 .owner = THIS_MODULE,
2413 .open = fib_trie_seq_open,
2414 .read = seq_read,
2415 .llseek = seq_lseek,
1c340b2f 2416 .release = seq_release_net,
19baf839
RO
2417};
2418
8315f5d8
SH
2419struct fib_route_iter {
2420 struct seq_net_private p;
2421 struct trie *main_trie;
2422 loff_t pos;
2423 t_key key;
2424};
2425
2426static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2427{
2428 struct leaf *l = NULL;
2429 struct trie *t = iter->main_trie;
2430
2431 /* use cache location of last found key */
2432 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2433 pos -= iter->pos;
2434 else {
2435 iter->pos = 0;
2436 l = trie_firstleaf(t);
2437 }
2438
2439 while (l && pos-- > 0) {
2440 iter->pos++;
2441 l = trie_nextleaf(l);
2442 }
2443
2444 if (l)
2445 iter->key = pos; /* remember it */
2446 else
2447 iter->pos = 0; /* forget it */
2448
2449 return l;
2450}
2451
2452static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2453 __acquires(RCU)
2454{
2455 struct fib_route_iter *iter = seq->private;
2456 struct fib_table *tb;
2457
2458 rcu_read_lock();
1218854a 2459 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2460 if (!tb)
2461 return NULL;
2462
2463 iter->main_trie = (struct trie *) tb->tb_data;
2464 if (*pos == 0)
2465 return SEQ_START_TOKEN;
2466 else
2467 return fib_route_get_idx(iter, *pos - 1);
2468}
2469
2470static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2471{
2472 struct fib_route_iter *iter = seq->private;
2473 struct leaf *l = v;
2474
2475 ++*pos;
2476 if (v == SEQ_START_TOKEN) {
2477 iter->pos = 0;
2478 l = trie_firstleaf(iter->main_trie);
2479 } else {
2480 iter->pos++;
2481 l = trie_nextleaf(l);
2482 }
2483
2484 if (l)
2485 iter->key = l->key;
2486 else
2487 iter->pos = 0;
2488 return l;
2489}
2490
2491static void fib_route_seq_stop(struct seq_file *seq, void *v)
2492 __releases(RCU)
2493{
2494 rcu_read_unlock();
2495}
2496
a034ee3c 2497static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2498{
a034ee3c 2499 unsigned int flags = 0;
19baf839 2500
a034ee3c
ED
2501 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2502 flags = RTF_REJECT;
cb7b593c
SH
2503 if (fi && fi->fib_nh->nh_gw)
2504 flags |= RTF_GATEWAY;
32ab5f80 2505 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2506 flags |= RTF_HOST;
2507 flags |= RTF_UP;
2508 return flags;
19baf839
RO
2509}
2510
cb7b593c
SH
2511/*
2512 * This outputs /proc/net/route.
2513 * The format of the file is not supposed to be changed
a034ee3c 2514 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2515 * legacy utilities
2516 */
2517static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2518{
cb7b593c 2519 struct leaf *l = v;
1328042e
SH
2520 struct leaf_info *li;
2521 struct hlist_node *node;
19baf839 2522
cb7b593c
SH
2523 if (v == SEQ_START_TOKEN) {
2524 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2525 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2526 "\tWindow\tIRTT");
2527 return 0;
2528 }
19baf839 2529
1328042e 2530 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2531 struct fib_alias *fa;
32ab5f80 2532 __be32 mask, prefix;
91b9a277 2533
cb7b593c
SH
2534 mask = inet_make_mask(li->plen);
2535 prefix = htonl(l->key);
19baf839 2536
cb7b593c 2537 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2538 const struct fib_info *fi = fa->fa_info;
a034ee3c 2539 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2540 int len;
19baf839 2541
cb7b593c
SH
2542 if (fa->fa_type == RTN_BROADCAST
2543 || fa->fa_type == RTN_MULTICAST)
2544 continue;
19baf839 2545
cb7b593c 2546 if (fi)
5e659e4c
PE
2547 seq_printf(seq,
2548 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2549 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2550 fi->fib_dev ? fi->fib_dev->name : "*",
2551 prefix,
2552 fi->fib_nh->nh_gw, flags, 0, 0,
2553 fi->fib_priority,
2554 mask,
a07f5f50
SH
2555 (fi->fib_advmss ?
2556 fi->fib_advmss + 40 : 0),
cb7b593c 2557 fi->fib_window,
5e659e4c 2558 fi->fib_rtt >> 3, &len);
cb7b593c 2559 else
5e659e4c
PE
2560 seq_printf(seq,
2561 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2562 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2563 prefix, 0, flags, 0, 0, 0,
5e659e4c 2564 mask, 0, 0, 0, &len);
19baf839 2565
5e659e4c 2566 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2567 }
19baf839
RO
2568 }
2569
2570 return 0;
2571}
2572
f690808e 2573static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2574 .start = fib_route_seq_start,
2575 .next = fib_route_seq_next,
2576 .stop = fib_route_seq_stop,
cb7b593c 2577 .show = fib_route_seq_show,
19baf839
RO
2578};
2579
cb7b593c 2580static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2581{
1c340b2f 2582 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2583 sizeof(struct fib_route_iter));
19baf839
RO
2584}
2585
9a32144e 2586static const struct file_operations fib_route_fops = {
cb7b593c
SH
2587 .owner = THIS_MODULE,
2588 .open = fib_route_seq_open,
2589 .read = seq_read,
2590 .llseek = seq_lseek,
1c340b2f 2591 .release = seq_release_net,
19baf839
RO
2592};
2593
61a02653 2594int __net_init fib_proc_init(struct net *net)
19baf839 2595{
61a02653 2596 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2597 goto out1;
2598
61a02653
DL
2599 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2600 &fib_triestat_fops))
cb7b593c
SH
2601 goto out2;
2602
61a02653 2603 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2604 goto out3;
2605
19baf839 2606 return 0;
cb7b593c
SH
2607
2608out3:
61a02653 2609 proc_net_remove(net, "fib_triestat");
cb7b593c 2610out2:
61a02653 2611 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2612out1:
2613 return -ENOMEM;
19baf839
RO
2614}
2615
61a02653 2616void __net_exit fib_proc_exit(struct net *net)
19baf839 2617{
61a02653
DL
2618 proc_net_remove(net, "fib_trie");
2619 proc_net_remove(net, "fib_triestat");
2620 proc_net_remove(net, "route");
19baf839
RO
2621}
2622
2623#endif /* CONFIG_PROC_FS */
This page took 0.809698 seconds and 5 git commands to generate.