mm: use zonelists instead of zones when direct reclaiming pages
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
fd966255
RO
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
19baf839
RO
51 */
52
05eee48c 53#define VERSION "0.408"
19baf839 54
19baf839
RO
55#include <asm/uaccess.h>
56#include <asm/system.h>
1977f032 57#include <linux/bitops.h>
19baf839
RO
58#include <linux/types.h>
59#include <linux/kernel.h>
19baf839
RO
60#include <linux/mm.h>
61#include <linux/string.h>
62#include <linux/socket.h>
63#include <linux/sockios.h>
64#include <linux/errno.h>
65#include <linux/in.h>
66#include <linux/inet.h>
cd8787ab 67#include <linux/inetdevice.h>
19baf839
RO
68#include <linux/netdevice.h>
69#include <linux/if_arp.h>
70#include <linux/proc_fs.h>
2373ce1c 71#include <linux/rcupdate.h>
19baf839
RO
72#include <linux/skbuff.h>
73#include <linux/netlink.h>
74#include <linux/init.h>
75#include <linux/list.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
19baf839 87#define KEYLENGTH (8*sizeof(t_key))
19baf839 88
19baf839
RO
89typedef unsigned int t_key;
90
91#define T_TNODE 0
92#define T_LEAF 1
93#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
94#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
91b9a277
OJ
96#define IS_TNODE(n) (!(n->parent & T_LEAF))
97#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
98
99struct node {
91b9a277 100 unsigned long parent;
8d965444 101 t_key key;
19baf839
RO
102};
103
104struct leaf {
91b9a277 105 unsigned long parent;
8d965444 106 t_key key;
19baf839 107 struct hlist_head list;
2373ce1c 108 struct rcu_head rcu;
19baf839
RO
109};
110
111struct leaf_info {
112 struct hlist_node hlist;
2373ce1c 113 struct rcu_head rcu;
19baf839
RO
114 int plen;
115 struct list_head falh;
116};
117
118struct tnode {
91b9a277 119 unsigned long parent;
8d965444 120 t_key key;
112d8cfc
ED
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
125 union {
126 struct rcu_head rcu;
127 struct work_struct work;
128 };
91b9a277 129 struct node *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
93672292 149 unsigned int prefixes;
06ef921d 150 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 151};
19baf839
RO
152
153struct trie {
91b9a277 154 struct node *trie;
19baf839
RO
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157#endif
19baf839
RO
158};
159
19baf839 160static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
161static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
162 int wasfull);
19baf839 163static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
164static struct tnode *inflate(struct trie *t, struct tnode *tn);
165static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 166
e18b890b 167static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 168static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 169
06801916
SH
170static inline struct tnode *node_parent(struct node *node)
171{
b59cfbf7
ED
172 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
173}
174
175static inline struct tnode *node_parent_rcu(struct node *node)
176{
177 struct tnode *ret = node_parent(node);
06801916 178
06801916
SH
179 return rcu_dereference(ret);
180}
181
6440cc9e
SH
182/* Same as rcu_assign_pointer
183 * but that macro() assumes that value is a pointer.
184 */
06801916
SH
185static inline void node_set_parent(struct node *node, struct tnode *ptr)
186{
6440cc9e
SH
187 smp_wmb();
188 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 189}
2373ce1c 190
b59cfbf7
ED
191static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
192{
193 BUG_ON(i >= 1U << tn->bits);
2373ce1c 194
b59cfbf7
ED
195 return tn->child[i];
196}
197
198static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 199{
b59cfbf7 200 struct node *ret = tnode_get_child(tn, i);
19baf839 201
b59cfbf7 202 return rcu_dereference(ret);
19baf839
RO
203}
204
bb435b8d 205static inline int tnode_child_length(const struct tnode *tn)
19baf839 206{
91b9a277 207 return 1 << tn->bits;
19baf839
RO
208}
209
ab66b4a7
SH
210static inline t_key mask_pfx(t_key k, unsigned short l)
211{
212 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
213}
214
19baf839
RO
215static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
216{
91b9a277 217 if (offset < KEYLENGTH)
19baf839 218 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 219 else
19baf839
RO
220 return 0;
221}
222
223static inline int tkey_equals(t_key a, t_key b)
224{
c877efb2 225 return a == b;
19baf839
RO
226}
227
228static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
229{
c877efb2
SH
230 if (bits == 0 || offset >= KEYLENGTH)
231 return 1;
91b9a277
OJ
232 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
233 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 234}
19baf839
RO
235
236static inline int tkey_mismatch(t_key a, int offset, t_key b)
237{
238 t_key diff = a ^ b;
239 int i = offset;
240
c877efb2
SH
241 if (!diff)
242 return 0;
243 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
244 i++;
245 return i;
246}
247
19baf839 248/*
e905a9ed
YH
249 To understand this stuff, an understanding of keys and all their bits is
250 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
251 all of the bits in that key are significant.
252
253 Consider a node 'n' and its parent 'tp'.
254
e905a9ed
YH
255 If n is a leaf, every bit in its key is significant. Its presence is
256 necessitated by path compression, since during a tree traversal (when
257 searching for a leaf - unless we are doing an insertion) we will completely
258 ignore all skipped bits we encounter. Thus we need to verify, at the end of
259 a potentially successful search, that we have indeed been walking the
19baf839
RO
260 correct key path.
261
e905a9ed
YH
262 Note that we can never "miss" the correct key in the tree if present by
263 following the wrong path. Path compression ensures that segments of the key
264 that are the same for all keys with a given prefix are skipped, but the
265 skipped part *is* identical for each node in the subtrie below the skipped
266 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
267 call to tkey_sub_equals() in trie_insert().
268
e905a9ed 269 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
270 have many different meanings.
271
e905a9ed 272 Example:
19baf839
RO
273 _________________________________________________________________
274 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
275 -----------------------------------------------------------------
e905a9ed 276 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
277
278 _________________________________________________________________
279 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
280 -----------------------------------------------------------------
281 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
282
283 tp->pos = 7
284 tp->bits = 3
285 n->pos = 15
91b9a277 286 n->bits = 4
19baf839 287
e905a9ed
YH
288 First, let's just ignore the bits that come before the parent tp, that is
289 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
290 not use them for anything.
291
292 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 293 index into the parent's child array. That is, they will be used to find
19baf839
RO
294 'n' among tp's children.
295
296 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
297 for the node n.
298
e905a9ed 299 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
300 of the bits are really not needed or indeed known in n->key.
301
e905a9ed 302 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 303 n's child array, and will of course be different for each child.
e905a9ed 304
c877efb2 305
19baf839
RO
306 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
307 at this point.
308
309*/
310
0c7770c7 311static inline void check_tnode(const struct tnode *tn)
19baf839 312{
0c7770c7 313 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
314}
315
f5026fab
DL
316static const int halve_threshold = 25;
317static const int inflate_threshold = 50;
318static const int halve_threshold_root = 8;
319static const int inflate_threshold_root = 15;
19baf839 320
2373ce1c
RO
321
322static void __alias_free_mem(struct rcu_head *head)
19baf839 323{
2373ce1c
RO
324 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
325 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
326}
327
2373ce1c 328static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 329{
2373ce1c
RO
330 call_rcu(&fa->rcu, __alias_free_mem);
331}
91b9a277 332
2373ce1c
RO
333static void __leaf_free_rcu(struct rcu_head *head)
334{
bc3c8c1e
SH
335 struct leaf *l = container_of(head, struct leaf, rcu);
336 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 337}
91b9a277 338
387a5487
SH
339static inline void free_leaf(struct leaf *l)
340{
341 call_rcu_bh(&l->rcu, __leaf_free_rcu);
342}
343
2373ce1c 344static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 345{
2373ce1c 346 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
347}
348
2373ce1c 349static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 350{
2373ce1c 351 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
352}
353
8d965444 354static struct tnode *tnode_alloc(size_t size)
f0e36f8c 355{
2373ce1c 356 if (size <= PAGE_SIZE)
8d965444 357 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
358 else
359 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
360}
2373ce1c 361
15be75cd
SH
362static void __tnode_vfree(struct work_struct *arg)
363{
364 struct tnode *tn = container_of(arg, struct tnode, work);
365 vfree(tn);
f0e36f8c
PM
366}
367
2373ce1c 368static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 369{
2373ce1c 370 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
371 size_t size = sizeof(struct tnode) +
372 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
373
374 if (size <= PAGE_SIZE)
375 kfree(tn);
15be75cd
SH
376 else {
377 INIT_WORK(&tn->work, __tnode_vfree);
378 schedule_work(&tn->work);
379 }
f0e36f8c
PM
380}
381
2373ce1c
RO
382static inline void tnode_free(struct tnode *tn)
383{
387a5487
SH
384 if (IS_LEAF(tn))
385 free_leaf((struct leaf *) tn);
386 else
550e29bc 387 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
388}
389
390static struct leaf *leaf_new(void)
391{
bc3c8c1e 392 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
393 if (l) {
394 l->parent = T_LEAF;
395 INIT_HLIST_HEAD(&l->list);
396 }
397 return l;
398}
399
400static struct leaf_info *leaf_info_new(int plen)
401{
402 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
403 if (li) {
404 li->plen = plen;
405 INIT_LIST_HEAD(&li->falh);
406 }
407 return li;
408}
409
a07f5f50 410static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 411{
8d965444 412 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 413 struct tnode *tn = tnode_alloc(sz);
19baf839 414
91b9a277 415 if (tn) {
2373ce1c 416 tn->parent = T_TNODE;
19baf839
RO
417 tn->pos = pos;
418 tn->bits = bits;
419 tn->key = key;
420 tn->full_children = 0;
421 tn->empty_children = 1<<bits;
422 }
c877efb2 423
8d965444
ED
424 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
425 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
426 return tn;
427}
428
19baf839
RO
429/*
430 * Check whether a tnode 'n' is "full", i.e. it is an internal node
431 * and no bits are skipped. See discussion in dyntree paper p. 6
432 */
433
bb435b8d 434static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 435{
c877efb2 436 if (n == NULL || IS_LEAF(n))
19baf839
RO
437 return 0;
438
439 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
440}
441
a07f5f50
SH
442static inline void put_child(struct trie *t, struct tnode *tn, int i,
443 struct node *n)
19baf839
RO
444{
445 tnode_put_child_reorg(tn, i, n, -1);
446}
447
c877efb2 448 /*
19baf839
RO
449 * Add a child at position i overwriting the old value.
450 * Update the value of full_children and empty_children.
451 */
452
a07f5f50
SH
453static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
454 int wasfull)
19baf839 455{
2373ce1c 456 struct node *chi = tn->child[i];
19baf839
RO
457 int isfull;
458
0c7770c7
SH
459 BUG_ON(i >= 1<<tn->bits);
460
19baf839
RO
461 /* update emptyChildren */
462 if (n == NULL && chi != NULL)
463 tn->empty_children++;
464 else if (n != NULL && chi == NULL)
465 tn->empty_children--;
c877efb2 466
19baf839 467 /* update fullChildren */
91b9a277 468 if (wasfull == -1)
19baf839
RO
469 wasfull = tnode_full(tn, chi);
470
471 isfull = tnode_full(tn, n);
c877efb2 472 if (wasfull && !isfull)
19baf839 473 tn->full_children--;
c877efb2 474 else if (!wasfull && isfull)
19baf839 475 tn->full_children++;
91b9a277 476
c877efb2 477 if (n)
06801916 478 node_set_parent(n, tn);
19baf839 479
2373ce1c 480 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
481}
482
c877efb2 483static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
484{
485 int i;
2f36895a 486 int err = 0;
2f80b3c8 487 struct tnode *old_tn;
e6308be8
RO
488 int inflate_threshold_use;
489 int halve_threshold_use;
05eee48c 490 int max_resize;
19baf839 491
e905a9ed 492 if (!tn)
19baf839
RO
493 return NULL;
494
0c7770c7
SH
495 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
496 tn, inflate_threshold, halve_threshold);
19baf839
RO
497
498 /* No children */
499 if (tn->empty_children == tnode_child_length(tn)) {
500 tnode_free(tn);
501 return NULL;
502 }
503 /* One child */
504 if (tn->empty_children == tnode_child_length(tn) - 1)
505 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 506 struct node *n;
19baf839 507
91b9a277 508 n = tn->child[i];
2373ce1c 509 if (!n)
91b9a277 510 continue;
91b9a277
OJ
511
512 /* compress one level */
06801916 513 node_set_parent(n, NULL);
91b9a277
OJ
514 tnode_free(tn);
515 return n;
19baf839 516 }
c877efb2 517 /*
19baf839
RO
518 * Double as long as the resulting node has a number of
519 * nonempty nodes that are above the threshold.
520 */
521
522 /*
c877efb2
SH
523 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
524 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 525 * Telecommunications, page 6:
c877efb2 526 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
527 * children in the *doubled* node is at least 'high'."
528 *
c877efb2
SH
529 * 'high' in this instance is the variable 'inflate_threshold'. It
530 * is expressed as a percentage, so we multiply it with
531 * tnode_child_length() and instead of multiplying by 2 (since the
532 * child array will be doubled by inflate()) and multiplying
533 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 534 * multiply the left-hand side by 50.
c877efb2
SH
535 *
536 * The left-hand side may look a bit weird: tnode_child_length(tn)
537 * - tn->empty_children is of course the number of non-null children
538 * in the current node. tn->full_children is the number of "full"
19baf839 539 * children, that is non-null tnodes with a skip value of 0.
c877efb2 540 * All of those will be doubled in the resulting inflated tnode, so
19baf839 541 * we just count them one extra time here.
c877efb2 542 *
19baf839 543 * A clearer way to write this would be:
c877efb2 544 *
19baf839 545 * to_be_doubled = tn->full_children;
c877efb2 546 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
547 * tn->full_children;
548 *
549 * new_child_length = tnode_child_length(tn) * 2;
550 *
c877efb2 551 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
552 * new_child_length;
553 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
554 *
555 * ...and so on, tho it would mess up the while () loop.
556 *
19baf839
RO
557 * anyway,
558 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
559 * inflate_threshold
c877efb2 560 *
19baf839
RO
561 * avoid a division:
562 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
563 * inflate_threshold * new_child_length
c877efb2 564 *
19baf839 565 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 566 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 567 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 568 *
19baf839 569 * expand new_child_length:
c877efb2 570 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 571 * tn->full_children) >=
19baf839 572 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 573 *
19baf839 574 * shorten again:
c877efb2 575 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 576 * tn->empty_children) >= inflate_threshold *
19baf839 577 * tnode_child_length(tn)
c877efb2 578 *
19baf839
RO
579 */
580
581 check_tnode(tn);
c877efb2 582
e6308be8
RO
583 /* Keep root node larger */
584
132adf54 585 if (!tn->parent)
e6308be8 586 inflate_threshold_use = inflate_threshold_root;
e905a9ed 587 else
e6308be8
RO
588 inflate_threshold_use = inflate_threshold;
589
2f36895a 590 err = 0;
05eee48c
RO
591 max_resize = 10;
592 while ((tn->full_children > 0 && max_resize-- &&
a07f5f50
SH
593 50 * (tn->full_children + tnode_child_length(tn)
594 - tn->empty_children)
595 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 596
2f80b3c8
RO
597 old_tn = tn;
598 tn = inflate(t, tn);
a07f5f50 599
2f80b3c8
RO
600 if (IS_ERR(tn)) {
601 tn = old_tn;
2f36895a
RO
602#ifdef CONFIG_IP_FIB_TRIE_STATS
603 t->stats.resize_node_skipped++;
604#endif
605 break;
606 }
19baf839
RO
607 }
608
05eee48c
RO
609 if (max_resize < 0) {
610 if (!tn->parent)
a07f5f50
SH
611 pr_warning("Fix inflate_threshold_root."
612 " Now=%d size=%d bits\n",
613 inflate_threshold_root, tn->bits);
05eee48c 614 else
a07f5f50
SH
615 pr_warning("Fix inflate_threshold."
616 " Now=%d size=%d bits\n",
617 inflate_threshold, tn->bits);
05eee48c
RO
618 }
619
19baf839
RO
620 check_tnode(tn);
621
622 /*
623 * Halve as long as the number of empty children in this
624 * node is above threshold.
625 */
2f36895a 626
e6308be8
RO
627
628 /* Keep root node larger */
629
132adf54 630 if (!tn->parent)
e6308be8 631 halve_threshold_use = halve_threshold_root;
e905a9ed 632 else
e6308be8
RO
633 halve_threshold_use = halve_threshold;
634
2f36895a 635 err = 0;
05eee48c
RO
636 max_resize = 10;
637 while (tn->bits > 1 && max_resize-- &&
19baf839 638 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 639 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 640
2f80b3c8
RO
641 old_tn = tn;
642 tn = halve(t, tn);
643 if (IS_ERR(tn)) {
644 tn = old_tn;
2f36895a
RO
645#ifdef CONFIG_IP_FIB_TRIE_STATS
646 t->stats.resize_node_skipped++;
647#endif
648 break;
649 }
650 }
19baf839 651
05eee48c
RO
652 if (max_resize < 0) {
653 if (!tn->parent)
a07f5f50
SH
654 pr_warning("Fix halve_threshold_root."
655 " Now=%d size=%d bits\n",
656 halve_threshold_root, tn->bits);
05eee48c 657 else
a07f5f50
SH
658 pr_warning("Fix halve_threshold."
659 " Now=%d size=%d bits\n",
660 halve_threshold, tn->bits);
05eee48c 661 }
c877efb2 662
19baf839 663 /* Only one child remains */
19baf839
RO
664 if (tn->empty_children == tnode_child_length(tn) - 1)
665 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 666 struct node *n;
19baf839 667
91b9a277 668 n = tn->child[i];
2373ce1c 669 if (!n)
91b9a277 670 continue;
91b9a277
OJ
671
672 /* compress one level */
673
06801916 674 node_set_parent(n, NULL);
91b9a277
OJ
675 tnode_free(tn);
676 return n;
19baf839
RO
677 }
678
679 return (struct node *) tn;
680}
681
2f80b3c8 682static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 683{
19baf839
RO
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
687
0c7770c7 688 pr_debug("In inflate\n");
19baf839
RO
689
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691
0c7770c7 692 if (!tn)
2f80b3c8 693 return ERR_PTR(-ENOMEM);
2f36895a
RO
694
695 /*
c877efb2
SH
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
699 * of tnode is ignored.
700 */
91b9a277
OJ
701
702 for (i = 0; i < olen; i++) {
a07f5f50 703 struct tnode *inode;
2f36895a 704
a07f5f50 705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
ab66b4a7 711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 712
2f36895a
RO
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
2f80b3c8
RO
715 if (!left)
716 goto nomem;
91b9a277 717
2f36895a
RO
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
720
e905a9ed 721 if (!right) {
2f80b3c8
RO
722 tnode_free(left);
723 goto nomem;
e905a9ed 724 }
2f36895a
RO
725
726 put_child(t, tn, 2*i, (struct node *) left);
727 put_child(t, tn, 2*i+1, (struct node *) right);
728 }
729 }
730
91b9a277 731 for (i = 0; i < olen; i++) {
c95aaf9a 732 struct tnode *inode;
19baf839 733 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
734 struct tnode *left, *right;
735 int size, j;
c877efb2 736
19baf839
RO
737 /* An empty child */
738 if (node == NULL)
739 continue;
740
741 /* A leaf or an internal node with skipped bits */
742
c877efb2 743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 744 tn->pos + tn->bits - 1) {
a07f5f50
SH
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
19baf839
RO
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
752 }
753
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
756
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
760
761 tnode_free(inode);
91b9a277 762 continue;
19baf839
RO
763 }
764
91b9a277
OJ
765 /* An internal node with more than two children */
766
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
782 */
19baf839 783
91b9a277
OJ
784 /* Use the old key, but set the new significant
785 * bit to zero.
786 */
2f36895a 787
91b9a277
OJ
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
2f36895a 790
91b9a277 791 BUG_ON(!left);
2f36895a 792
91b9a277
OJ
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
19baf839 795
91b9a277 796 BUG_ON(!right);
19baf839 797
91b9a277
OJ
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
19baf839 802 }
91b9a277
OJ
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
805
806 tnode_free(inode);
19baf839
RO
807 }
808 tnode_free(oldtnode);
809 return tn;
2f80b3c8
RO
810nomem:
811 {
812 int size = tnode_child_length(tn);
813 int j;
814
0c7770c7 815 for (j = 0; j < size; j++)
2f80b3c8
RO
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
818
819 tnode_free(tn);
0c7770c7 820
2f80b3c8
RO
821 return ERR_PTR(-ENOMEM);
822 }
19baf839
RO
823}
824
2f80b3c8 825static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
826{
827 struct tnode *oldtnode = tn;
828 struct node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
831
0c7770c7 832 pr_debug("In halve\n");
c877efb2
SH
833
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 835
2f80b3c8
RO
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
2f36895a
RO
838
839 /*
c877efb2
SH
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
843 * of tnode is ignored.
844 */
845
91b9a277 846 for (i = 0; i < olen; i += 2) {
2f36895a
RO
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
c877efb2 849
2f36895a 850 /* Two nonempty children */
0c7770c7 851 if (left && right) {
2f80b3c8 852 struct tnode *newn;
0c7770c7 853
2f80b3c8 854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
855
856 if (!newn)
2f80b3c8 857 goto nomem;
0c7770c7 858
2f80b3c8 859 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 860 }
2f36895a 861
2f36895a 862 }
19baf839 863
91b9a277
OJ
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
866
19baf839
RO
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
c877efb2 869
19baf839
RO
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
91b9a277 875 continue;
0c7770c7 876 }
91b9a277
OJ
877
878 if (right == NULL) {
19baf839 879 put_child(t, tn, i/2, left);
91b9a277
OJ
880 continue;
881 }
c877efb2 882
19baf839 883 /* Two nonempty children */
91b9a277
OJ
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
91b9a277
OJ
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
889 }
890 tnode_free(oldtnode);
891 return tn;
2f80b3c8
RO
892nomem:
893 {
894 int size = tnode_child_length(tn);
895 int j;
896
0c7770c7 897 for (j = 0; j < size; j++)
2f80b3c8
RO
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
900
901 tnode_free(tn);
0c7770c7 902
2f80b3c8
RO
903 return ERR_PTR(-ENOMEM);
904 }
19baf839
RO
905}
906
772cb712 907/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
908 via get_fa_head and dump */
909
772cb712 910static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 911{
772cb712 912 struct hlist_head *head = &l->list;
19baf839
RO
913 struct hlist_node *node;
914 struct leaf_info *li;
915
2373ce1c 916 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 917 if (li->plen == plen)
19baf839 918 return li;
91b9a277 919
19baf839
RO
920 return NULL;
921}
922
a07f5f50 923static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 924{
772cb712 925 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 926
91b9a277
OJ
927 if (!li)
928 return NULL;
c877efb2 929
91b9a277 930 return &li->falh;
19baf839
RO
931}
932
933static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934{
e905a9ed
YH
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
937
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
944
945 last = li;
946 }
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
951 }
19baf839
RO
952}
953
2373ce1c
RO
954/* rcu_read_lock needs to be hold by caller from readside */
955
19baf839
RO
956static struct leaf *
957fib_find_node(struct trie *t, u32 key)
958{
959 int pos;
960 struct tnode *tn;
961 struct node *n;
962
963 pos = 0;
2373ce1c 964 n = rcu_dereference(t->trie);
19baf839
RO
965
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
91b9a277 968
19baf839 969 check_tnode(tn);
91b9a277 970
c877efb2 971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 972 pos = tn->pos + tn->bits;
a07f5f50
SH
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
91b9a277 977 } else
19baf839
RO
978 break;
979 }
980 /* Case we have found a leaf. Compare prefixes */
981
91b9a277
OJ
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
984
19baf839
RO
985 return NULL;
986}
987
988static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
989{
19baf839 990 int wasfull;
06801916
SH
991 t_key cindex, key = tn->key;
992 struct tnode *tp;
19baf839 993
06801916 994 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
995 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
996 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
997 tn = (struct tnode *) resize(t, (struct tnode *)tn);
998
999 tnode_put_child_reorg((struct tnode *)tp, cindex,
1000 (struct node *)tn, wasfull);
91b9a277 1001
06801916
SH
1002 tp = node_parent((struct node *) tn);
1003 if (!tp)
19baf839 1004 break;
06801916 1005 tn = tp;
19baf839 1006 }
06801916 1007
19baf839 1008 /* Handle last (top) tnode */
c877efb2 1009 if (IS_TNODE(tn))
a07f5f50 1010 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1011
a07f5f50 1012 return (struct node *)tn;
19baf839
RO
1013}
1014
2373ce1c
RO
1015/* only used from updater-side */
1016
fea86ad8 1017static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1018{
1019 int pos, newpos;
1020 struct tnode *tp = NULL, *tn = NULL;
1021 struct node *n;
1022 struct leaf *l;
1023 int missbit;
c877efb2 1024 struct list_head *fa_head = NULL;
19baf839
RO
1025 struct leaf_info *li;
1026 t_key cindex;
1027
1028 pos = 0;
c877efb2 1029 n = t->trie;
19baf839 1030
c877efb2
SH
1031 /* If we point to NULL, stop. Either the tree is empty and we should
1032 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1033 * and we should just put our new leaf in that.
c877efb2
SH
1034 * If we point to a T_TNODE, check if it matches our key. Note that
1035 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1036 * not be the parent's 'pos'+'bits'!
1037 *
c877efb2 1038 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1039 * the index from our key, push the T_TNODE and walk the tree.
1040 *
1041 * If it doesn't, we have to replace it with a new T_TNODE.
1042 *
c877efb2
SH
1043 * If we point to a T_LEAF, it might or might not have the same key
1044 * as we do. If it does, just change the value, update the T_LEAF's
1045 * value, and return it.
19baf839
RO
1046 * If it doesn't, we need to replace it with a T_TNODE.
1047 */
1048
1049 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1050 tn = (struct tnode *) n;
91b9a277 1051
c877efb2 1052 check_tnode(tn);
91b9a277 1053
c877efb2 1054 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1055 tp = tn;
91b9a277 1056 pos = tn->pos + tn->bits;
a07f5f50
SH
1057 n = tnode_get_child(tn,
1058 tkey_extract_bits(key,
1059 tn->pos,
1060 tn->bits));
19baf839 1061
06801916 1062 BUG_ON(n && node_parent(n) != tn);
91b9a277 1063 } else
19baf839
RO
1064 break;
1065 }
1066
1067 /*
1068 * n ----> NULL, LEAF or TNODE
1069 *
c877efb2 1070 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1071 */
1072
91b9a277 1073 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1074
1075 /* Case 1: n is a leaf. Compare prefixes */
1076
c877efb2 1077 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1078 l = (struct leaf *) n;
19baf839 1079 li = leaf_info_new(plen);
91b9a277 1080
fea86ad8
SH
1081 if (!li)
1082 return NULL;
19baf839
RO
1083
1084 fa_head = &li->falh;
1085 insert_leaf_info(&l->list, li);
1086 goto done;
1087 }
19baf839
RO
1088 l = leaf_new();
1089
fea86ad8
SH
1090 if (!l)
1091 return NULL;
19baf839
RO
1092
1093 l->key = key;
1094 li = leaf_info_new(plen);
1095
c877efb2 1096 if (!li) {
387a5487 1097 free_leaf(l);
fea86ad8 1098 return NULL;
f835e471 1099 }
19baf839
RO
1100
1101 fa_head = &li->falh;
1102 insert_leaf_info(&l->list, li);
1103
19baf839 1104 if (t->trie && n == NULL) {
91b9a277 1105 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1106
06801916 1107 node_set_parent((struct node *)l, tp);
19baf839 1108
91b9a277
OJ
1109 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1110 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1111 } else {
1112 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1113 /*
1114 * Add a new tnode here
19baf839
RO
1115 * first tnode need some special handling
1116 */
1117
1118 if (tp)
91b9a277 1119 pos = tp->pos+tp->bits;
19baf839 1120 else
91b9a277
OJ
1121 pos = 0;
1122
c877efb2 1123 if (n) {
19baf839
RO
1124 newpos = tkey_mismatch(key, pos, n->key);
1125 tn = tnode_new(n->key, newpos, 1);
91b9a277 1126 } else {
19baf839 1127 newpos = 0;
c877efb2 1128 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1129 }
19baf839 1130
c877efb2 1131 if (!tn) {
f835e471 1132 free_leaf_info(li);
387a5487 1133 free_leaf(l);
fea86ad8 1134 return NULL;
91b9a277
OJ
1135 }
1136
06801916 1137 node_set_parent((struct node *)tn, tp);
19baf839 1138
91b9a277 1139 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1140 put_child(t, tn, missbit, (struct node *)l);
1141 put_child(t, tn, 1-missbit, n);
1142
c877efb2 1143 if (tp) {
19baf839 1144 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1145 put_child(t, (struct tnode *)tp, cindex,
1146 (struct node *)tn);
91b9a277 1147 } else {
a07f5f50 1148 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1149 tp = tn;
1150 }
1151 }
91b9a277
OJ
1152
1153 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1154 pr_warning("fib_trie"
1155 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1156 tp, tp->pos, tp->bits, key, plen);
91b9a277 1157
19baf839 1158 /* Rebalance the trie */
2373ce1c
RO
1159
1160 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471 1161done:
19baf839
RO
1162 return fa_head;
1163}
1164
d562f1f8
RO
1165/*
1166 * Caller must hold RTNL.
1167 */
4e902c57 1168static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1169{
1170 struct trie *t = (struct trie *) tb->tb_data;
1171 struct fib_alias *fa, *new_fa;
c877efb2 1172 struct list_head *fa_head = NULL;
19baf839 1173 struct fib_info *fi;
4e902c57
TG
1174 int plen = cfg->fc_dst_len;
1175 u8 tos = cfg->fc_tos;
19baf839
RO
1176 u32 key, mask;
1177 int err;
1178 struct leaf *l;
1179
1180 if (plen > 32)
1181 return -EINVAL;
1182
4e902c57 1183 key = ntohl(cfg->fc_dst);
19baf839 1184
2dfe55b4 1185 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1186
91b9a277 1187 mask = ntohl(inet_make_mask(plen));
19baf839 1188
c877efb2 1189 if (key & ~mask)
19baf839
RO
1190 return -EINVAL;
1191
1192 key = key & mask;
1193
4e902c57
TG
1194 fi = fib_create_info(cfg);
1195 if (IS_ERR(fi)) {
1196 err = PTR_ERR(fi);
19baf839 1197 goto err;
4e902c57 1198 }
19baf839
RO
1199
1200 l = fib_find_node(t, key);
c877efb2 1201 fa = NULL;
19baf839 1202
c877efb2 1203 if (l) {
19baf839
RO
1204 fa_head = get_fa_head(l, plen);
1205 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1206 }
1207
1208 /* Now fa, if non-NULL, points to the first fib alias
1209 * with the same keys [prefix,tos,priority], if such key already
1210 * exists or to the node before which we will insert new one.
1211 *
1212 * If fa is NULL, we will need to allocate a new one and
1213 * insert to the head of f.
1214 *
1215 * If f is NULL, no fib node matched the destination key
1216 * and we need to allocate a new one of those as well.
1217 */
1218
936f6f8e
JA
1219 if (fa && fa->fa_tos == tos &&
1220 fa->fa_info->fib_priority == fi->fib_priority) {
1221 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1222
1223 err = -EEXIST;
4e902c57 1224 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1225 goto out;
1226
936f6f8e
JA
1227 /* We have 2 goals:
1228 * 1. Find exact match for type, scope, fib_info to avoid
1229 * duplicate routes
1230 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1231 */
1232 fa_match = NULL;
1233 fa_first = fa;
1234 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1235 list_for_each_entry_continue(fa, fa_head, fa_list) {
1236 if (fa->fa_tos != tos)
1237 break;
1238 if (fa->fa_info->fib_priority != fi->fib_priority)
1239 break;
1240 if (fa->fa_type == cfg->fc_type &&
1241 fa->fa_scope == cfg->fc_scope &&
1242 fa->fa_info == fi) {
1243 fa_match = fa;
1244 break;
1245 }
1246 }
1247
4e902c57 1248 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1249 struct fib_info *fi_drop;
1250 u8 state;
1251
936f6f8e
JA
1252 fa = fa_first;
1253 if (fa_match) {
1254 if (fa == fa_match)
1255 err = 0;
6725033f 1256 goto out;
936f6f8e 1257 }
2373ce1c 1258 err = -ENOBUFS;
e94b1766 1259 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1260 if (new_fa == NULL)
1261 goto out;
19baf839
RO
1262
1263 fi_drop = fa->fa_info;
2373ce1c
RO
1264 new_fa->fa_tos = fa->fa_tos;
1265 new_fa->fa_info = fi;
4e902c57
TG
1266 new_fa->fa_type = cfg->fc_type;
1267 new_fa->fa_scope = cfg->fc_scope;
19baf839 1268 state = fa->fa_state;
936f6f8e 1269 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1270
2373ce1c
RO
1271 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1272 alias_free_mem_rcu(fa);
19baf839
RO
1273
1274 fib_release_info(fi_drop);
1275 if (state & FA_S_ACCESSED)
91b9a277 1276 rt_cache_flush(-1);
b8f55831
MK
1277 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1278 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1279
91b9a277 1280 goto succeeded;
19baf839
RO
1281 }
1282 /* Error if we find a perfect match which
1283 * uses the same scope, type, and nexthop
1284 * information.
1285 */
936f6f8e
JA
1286 if (fa_match)
1287 goto out;
a07f5f50 1288
4e902c57 1289 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1290 fa = fa_first;
19baf839
RO
1291 }
1292 err = -ENOENT;
4e902c57 1293 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1294 goto out;
1295
1296 err = -ENOBUFS;
e94b1766 1297 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1298 if (new_fa == NULL)
1299 goto out;
1300
1301 new_fa->fa_info = fi;
1302 new_fa->fa_tos = tos;
4e902c57
TG
1303 new_fa->fa_type = cfg->fc_type;
1304 new_fa->fa_scope = cfg->fc_scope;
19baf839 1305 new_fa->fa_state = 0;
19baf839
RO
1306 /*
1307 * Insert new entry to the list.
1308 */
1309
c877efb2 1310 if (!fa_head) {
fea86ad8
SH
1311 fa_head = fib_insert_node(t, key, plen);
1312 if (unlikely(!fa_head)) {
1313 err = -ENOMEM;
f835e471 1314 goto out_free_new_fa;
fea86ad8 1315 }
f835e471 1316 }
19baf839 1317
2373ce1c
RO
1318 list_add_tail_rcu(&new_fa->fa_list,
1319 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1320
1321 rt_cache_flush(-1);
4e902c57 1322 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1323 &cfg->fc_nlinfo, 0);
19baf839
RO
1324succeeded:
1325 return 0;
f835e471
RO
1326
1327out_free_new_fa:
1328 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1329out:
1330 fib_release_info(fi);
91b9a277 1331err:
19baf839
RO
1332 return err;
1333}
1334
772cb712 1335/* should be called with rcu_read_lock */
a07f5f50
SH
1336static int check_leaf(struct trie *t, struct leaf *l,
1337 t_key key, const struct flowi *flp,
1338 struct fib_result *res)
19baf839 1339{
19baf839
RO
1340 struct leaf_info *li;
1341 struct hlist_head *hhead = &l->list;
1342 struct hlist_node *node;
c877efb2 1343
2373ce1c 1344 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1345 int err;
1346 int plen = li->plen;
1347 __be32 mask = inet_make_mask(plen);
1348
888454c5 1349 if (l->key != (key & ntohl(mask)))
19baf839
RO
1350 continue;
1351
a07f5f50
SH
1352 err = fib_semantic_match(&li->falh, flp, res,
1353 htonl(l->key), mask, plen);
1354
19baf839 1355#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1356 if (err <= 0)
19baf839 1357 t->stats.semantic_match_passed++;
a07f5f50
SH
1358 else
1359 t->stats.semantic_match_miss++;
19baf839 1360#endif
a07f5f50
SH
1361 if (err <= 0)
1362 return plen;
19baf839 1363 }
a07f5f50
SH
1364
1365 return -1;
19baf839
RO
1366}
1367
a07f5f50
SH
1368static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1369 struct fib_result *res)
19baf839
RO
1370{
1371 struct trie *t = (struct trie *) tb->tb_data;
1372 int plen, ret = 0;
1373 struct node *n;
1374 struct tnode *pn;
1375 int pos, bits;
91b9a277 1376 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1377 int chopped_off;
1378 t_key cindex = 0;
1379 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1380 struct tnode *cn;
1381 t_key node_prefix, key_prefix, pref_mismatch;
1382 int mp;
1383
2373ce1c 1384 rcu_read_lock();
91b9a277 1385
2373ce1c 1386 n = rcu_dereference(t->trie);
c877efb2 1387 if (!n)
19baf839
RO
1388 goto failed;
1389
1390#ifdef CONFIG_IP_FIB_TRIE_STATS
1391 t->stats.gets++;
1392#endif
1393
1394 /* Just a leaf? */
1395 if (IS_LEAF(n)) {
a07f5f50
SH
1396 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1397 if (plen < 0)
1398 goto failed;
1399 ret = 0;
1400 goto found;
19baf839 1401 }
a07f5f50 1402
19baf839
RO
1403 pn = (struct tnode *) n;
1404 chopped_off = 0;
c877efb2 1405
91b9a277 1406 while (pn) {
19baf839
RO
1407 pos = pn->pos;
1408 bits = pn->bits;
1409
c877efb2 1410 if (!chopped_off)
ab66b4a7
SH
1411 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1412 pos, bits);
19baf839
RO
1413
1414 n = tnode_get_child(pn, cindex);
1415
1416 if (n == NULL) {
1417#ifdef CONFIG_IP_FIB_TRIE_STATS
1418 t->stats.null_node_hit++;
1419#endif
1420 goto backtrace;
1421 }
1422
91b9a277 1423 if (IS_LEAF(n)) {
a07f5f50
SH
1424 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1425 if (plen < 0)
91b9a277 1426 goto backtrace;
a07f5f50
SH
1427
1428 ret = 0;
1429 goto found;
91b9a277
OJ
1430 }
1431
91b9a277 1432 cn = (struct tnode *)n;
19baf839 1433
91b9a277
OJ
1434 /*
1435 * It's a tnode, and we can do some extra checks here if we
1436 * like, to avoid descending into a dead-end branch.
1437 * This tnode is in the parent's child array at index
1438 * key[p_pos..p_pos+p_bits] but potentially with some bits
1439 * chopped off, so in reality the index may be just a
1440 * subprefix, padded with zero at the end.
1441 * We can also take a look at any skipped bits in this
1442 * tnode - everything up to p_pos is supposed to be ok,
1443 * and the non-chopped bits of the index (se previous
1444 * paragraph) are also guaranteed ok, but the rest is
1445 * considered unknown.
1446 *
1447 * The skipped bits are key[pos+bits..cn->pos].
1448 */
19baf839 1449
91b9a277
OJ
1450 /* If current_prefix_length < pos+bits, we are already doing
1451 * actual prefix matching, which means everything from
1452 * pos+(bits-chopped_off) onward must be zero along some
1453 * branch of this subtree - otherwise there is *no* valid
1454 * prefix present. Here we can only check the skipped
1455 * bits. Remember, since we have already indexed into the
1456 * parent's child array, we know that the bits we chopped of
1457 * *are* zero.
1458 */
19baf839 1459
a07f5f50
SH
1460 /* NOTA BENE: Checking only skipped bits
1461 for the new node here */
19baf839 1462
91b9a277
OJ
1463 if (current_prefix_length < pos+bits) {
1464 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1465 cn->pos - current_prefix_length)
1466 || !(cn->child[0]))
91b9a277
OJ
1467 goto backtrace;
1468 }
19baf839 1469
91b9a277
OJ
1470 /*
1471 * If chopped_off=0, the index is fully validated and we
1472 * only need to look at the skipped bits for this, the new,
1473 * tnode. What we actually want to do is to find out if
1474 * these skipped bits match our key perfectly, or if we will
1475 * have to count on finding a matching prefix further down,
1476 * because if we do, we would like to have some way of
1477 * verifying the existence of such a prefix at this point.
1478 */
19baf839 1479
91b9a277
OJ
1480 /* The only thing we can do at this point is to verify that
1481 * any such matching prefix can indeed be a prefix to our
1482 * key, and if the bits in the node we are inspecting that
1483 * do not match our key are not ZERO, this cannot be true.
1484 * Thus, find out where there is a mismatch (before cn->pos)
1485 * and verify that all the mismatching bits are zero in the
1486 * new tnode's key.
1487 */
19baf839 1488
a07f5f50
SH
1489 /*
1490 * Note: We aren't very concerned about the piece of
1491 * the key that precede pn->pos+pn->bits, since these
1492 * have already been checked. The bits after cn->pos
1493 * aren't checked since these are by definition
1494 * "unknown" at this point. Thus, what we want to see
1495 * is if we are about to enter the "prefix matching"
1496 * state, and in that case verify that the skipped
1497 * bits that will prevail throughout this subtree are
1498 * zero, as they have to be if we are to find a
1499 * matching prefix.
91b9a277
OJ
1500 */
1501
ab66b4a7
SH
1502 node_prefix = mask_pfx(cn->key, cn->pos);
1503 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1504 pref_mismatch = key_prefix^node_prefix;
1505 mp = 0;
1506
a07f5f50
SH
1507 /*
1508 * In short: If skipped bits in this node do not match
1509 * the search key, enter the "prefix matching"
1510 * state.directly.
91b9a277
OJ
1511 */
1512 if (pref_mismatch) {
1513 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1514 mp++;
a07f5f50 1515 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1516 }
1517 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1518
1519 if (key_prefix != 0)
1520 goto backtrace;
1521
1522 if (current_prefix_length >= cn->pos)
1523 current_prefix_length = mp;
c877efb2 1524 }
a07f5f50 1525
91b9a277
OJ
1526 pn = (struct tnode *)n; /* Descend */
1527 chopped_off = 0;
1528 continue;
1529
19baf839
RO
1530backtrace:
1531 chopped_off++;
1532
1533 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1534 while ((chopped_off <= pn->bits)
1535 && !(cindex & (1<<(chopped_off-1))))
19baf839 1536 chopped_off++;
19baf839
RO
1537
1538 /* Decrease current_... with bits chopped off */
1539 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1540 current_prefix_length = pn->pos + pn->bits
1541 - chopped_off;
91b9a277 1542
19baf839 1543 /*
c877efb2 1544 * Either we do the actual chop off according or if we have
19baf839
RO
1545 * chopped off all bits in this tnode walk up to our parent.
1546 */
1547
91b9a277 1548 if (chopped_off <= pn->bits) {
19baf839 1549 cindex &= ~(1 << (chopped_off-1));
91b9a277 1550 } else {
06801916
SH
1551 struct tnode *parent = node_parent((struct node *) pn);
1552 if (!parent)
19baf839 1553 goto failed;
91b9a277 1554
19baf839 1555 /* Get Child's index */
06801916
SH
1556 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1557 pn = parent;
19baf839
RO
1558 chopped_off = 0;
1559
1560#ifdef CONFIG_IP_FIB_TRIE_STATS
1561 t->stats.backtrack++;
1562#endif
1563 goto backtrace;
c877efb2 1564 }
19baf839
RO
1565 }
1566failed:
c877efb2 1567 ret = 1;
19baf839 1568found:
2373ce1c 1569 rcu_read_unlock();
19baf839
RO
1570 return ret;
1571}
1572
9195bef7
SH
1573/*
1574 * Remove the leaf and return parent.
1575 */
1576static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1577{
9195bef7 1578 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1579
9195bef7 1580 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1581
c877efb2 1582 if (tp) {
9195bef7 1583 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1584 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1585 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1586 } else
2373ce1c 1587 rcu_assign_pointer(t->trie, NULL);
19baf839 1588
387a5487 1589 free_leaf(l);
19baf839
RO
1590}
1591
d562f1f8
RO
1592/*
1593 * Caller must hold RTNL.
1594 */
4e902c57 1595static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1596{
1597 struct trie *t = (struct trie *) tb->tb_data;
1598 u32 key, mask;
4e902c57
TG
1599 int plen = cfg->fc_dst_len;
1600 u8 tos = cfg->fc_tos;
19baf839
RO
1601 struct fib_alias *fa, *fa_to_delete;
1602 struct list_head *fa_head;
1603 struct leaf *l;
91b9a277
OJ
1604 struct leaf_info *li;
1605
c877efb2 1606 if (plen > 32)
19baf839
RO
1607 return -EINVAL;
1608
4e902c57 1609 key = ntohl(cfg->fc_dst);
91b9a277 1610 mask = ntohl(inet_make_mask(plen));
19baf839 1611
c877efb2 1612 if (key & ~mask)
19baf839
RO
1613 return -EINVAL;
1614
1615 key = key & mask;
1616 l = fib_find_node(t, key);
1617
c877efb2 1618 if (!l)
19baf839
RO
1619 return -ESRCH;
1620
1621 fa_head = get_fa_head(l, plen);
1622 fa = fib_find_alias(fa_head, tos, 0);
1623
1624 if (!fa)
1625 return -ESRCH;
1626
0c7770c7 1627 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1628
1629 fa_to_delete = NULL;
936f6f8e
JA
1630 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1631 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1632 struct fib_info *fi = fa->fa_info;
1633
1634 if (fa->fa_tos != tos)
1635 break;
1636
4e902c57
TG
1637 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1638 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1639 fa->fa_scope == cfg->fc_scope) &&
1640 (!cfg->fc_protocol ||
1641 fi->fib_protocol == cfg->fc_protocol) &&
1642 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1643 fa_to_delete = fa;
1644 break;
1645 }
1646 }
1647
91b9a277
OJ
1648 if (!fa_to_delete)
1649 return -ESRCH;
19baf839 1650
91b9a277 1651 fa = fa_to_delete;
4e902c57 1652 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1653 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1654
1655 l = fib_find_node(t, key);
772cb712 1656 li = find_leaf_info(l, plen);
19baf839 1657
2373ce1c 1658 list_del_rcu(&fa->fa_list);
19baf839 1659
91b9a277 1660 if (list_empty(fa_head)) {
2373ce1c 1661 hlist_del_rcu(&li->hlist);
91b9a277 1662 free_leaf_info(li);
2373ce1c 1663 }
19baf839 1664
91b9a277 1665 if (hlist_empty(&l->list))
9195bef7 1666 trie_leaf_remove(t, l);
19baf839 1667
91b9a277
OJ
1668 if (fa->fa_state & FA_S_ACCESSED)
1669 rt_cache_flush(-1);
19baf839 1670
2373ce1c
RO
1671 fib_release_info(fa->fa_info);
1672 alias_free_mem_rcu(fa);
91b9a277 1673 return 0;
19baf839
RO
1674}
1675
ef3660ce 1676static int trie_flush_list(struct list_head *head)
19baf839
RO
1677{
1678 struct fib_alias *fa, *fa_node;
1679 int found = 0;
1680
1681 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1682 struct fib_info *fi = fa->fa_info;
19baf839 1683
2373ce1c
RO
1684 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1685 list_del_rcu(&fa->fa_list);
1686 fib_release_info(fa->fa_info);
1687 alias_free_mem_rcu(fa);
19baf839
RO
1688 found++;
1689 }
1690 }
1691 return found;
1692}
1693
ef3660ce 1694static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1695{
1696 int found = 0;
1697 struct hlist_head *lih = &l->list;
1698 struct hlist_node *node, *tmp;
1699 struct leaf_info *li = NULL;
1700
1701 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1702 found += trie_flush_list(&li->falh);
19baf839
RO
1703
1704 if (list_empty(&li->falh)) {
2373ce1c 1705 hlist_del_rcu(&li->hlist);
19baf839
RO
1706 free_leaf_info(li);
1707 }
1708 }
1709 return found;
1710}
1711
82cfbb00
SH
1712/*
1713 * Scan for the next right leaf starting at node p->child[idx]
1714 * Since we have back pointer, no recursion necessary.
1715 */
1716static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1717{
82cfbb00
SH
1718 do {
1719 t_key idx;
c877efb2 1720
c877efb2 1721 if (c)
82cfbb00 1722 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1723 else
82cfbb00 1724 idx = 0;
2373ce1c 1725
82cfbb00
SH
1726 while (idx < 1u << p->bits) {
1727 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1728 if (!c)
91b9a277
OJ
1729 continue;
1730
82cfbb00
SH
1731 if (IS_LEAF(c)) {
1732 prefetch(p->child[idx]);
1733 return (struct leaf *) c;
19baf839 1734 }
82cfbb00
SH
1735
1736 /* Rescan start scanning in new node */
1737 p = (struct tnode *) c;
1738 idx = 0;
19baf839 1739 }
82cfbb00
SH
1740
1741 /* Node empty, walk back up to parent */
91b9a277 1742 c = (struct node *) p;
82cfbb00
SH
1743 } while ( (p = node_parent_rcu(c)) != NULL);
1744
1745 return NULL; /* Root of trie */
1746}
1747
82cfbb00
SH
1748static struct leaf *trie_firstleaf(struct trie *t)
1749{
1750 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1751
1752 if (!n)
1753 return NULL;
1754
1755 if (IS_LEAF(n)) /* trie is just a leaf */
1756 return (struct leaf *) n;
1757
1758 return leaf_walk_rcu(n, NULL);
1759}
1760
1761static struct leaf *trie_nextleaf(struct leaf *l)
1762{
1763 struct node *c = (struct node *) l;
1764 struct tnode *p = node_parent(c);
1765
1766 if (!p)
1767 return NULL; /* trie with just one leaf */
1768
1769 return leaf_walk_rcu(p, c);
19baf839
RO
1770}
1771
71d67e66
SH
1772static struct leaf *trie_leafindex(struct trie *t, int index)
1773{
1774 struct leaf *l = trie_firstleaf(t);
1775
ec28cf73 1776 while (l && index-- > 0)
71d67e66 1777 l = trie_nextleaf(l);
ec28cf73 1778
71d67e66
SH
1779 return l;
1780}
1781
1782
d562f1f8
RO
1783/*
1784 * Caller must hold RTNL.
1785 */
19baf839
RO
1786static int fn_trie_flush(struct fib_table *tb)
1787{
1788 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1789 struct leaf *l, *ll = NULL;
82cfbb00 1790 int found = 0;
19baf839 1791
82cfbb00 1792 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1793 found += trie_flush_leaf(l);
19baf839
RO
1794
1795 if (ll && hlist_empty(&ll->list))
9195bef7 1796 trie_leaf_remove(t, ll);
19baf839
RO
1797 ll = l;
1798 }
1799
1800 if (ll && hlist_empty(&ll->list))
9195bef7 1801 trie_leaf_remove(t, ll);
19baf839 1802
0c7770c7 1803 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1804 return found;
1805}
1806
a07f5f50
SH
1807static void fn_trie_select_default(struct fib_table *tb,
1808 const struct flowi *flp,
1809 struct fib_result *res)
19baf839
RO
1810{
1811 struct trie *t = (struct trie *) tb->tb_data;
1812 int order, last_idx;
1813 struct fib_info *fi = NULL;
1814 struct fib_info *last_resort;
1815 struct fib_alias *fa = NULL;
1816 struct list_head *fa_head;
1817 struct leaf *l;
1818
1819 last_idx = -1;
1820 last_resort = NULL;
1821 order = -1;
1822
2373ce1c 1823 rcu_read_lock();
c877efb2 1824
19baf839 1825 l = fib_find_node(t, 0);
c877efb2 1826 if (!l)
19baf839
RO
1827 goto out;
1828
1829 fa_head = get_fa_head(l, 0);
c877efb2 1830 if (!fa_head)
19baf839
RO
1831 goto out;
1832
c877efb2 1833 if (list_empty(fa_head))
19baf839
RO
1834 goto out;
1835
2373ce1c 1836 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1837 struct fib_info *next_fi = fa->fa_info;
91b9a277 1838
19baf839
RO
1839 if (fa->fa_scope != res->scope ||
1840 fa->fa_type != RTN_UNICAST)
1841 continue;
91b9a277 1842
19baf839
RO
1843 if (next_fi->fib_priority > res->fi->fib_priority)
1844 break;
1845 if (!next_fi->fib_nh[0].nh_gw ||
1846 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1847 continue;
1848 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1849
19baf839
RO
1850 if (fi == NULL) {
1851 if (next_fi != res->fi)
1852 break;
1853 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1854 &last_idx, tb->tb_default)) {
a2bbe682 1855 fib_result_assign(res, fi);
971b893e 1856 tb->tb_default = order;
19baf839
RO
1857 goto out;
1858 }
1859 fi = next_fi;
1860 order++;
1861 }
1862 if (order <= 0 || fi == NULL) {
971b893e 1863 tb->tb_default = -1;
19baf839
RO
1864 goto out;
1865 }
1866
971b893e
DL
1867 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1868 tb->tb_default)) {
a2bbe682 1869 fib_result_assign(res, fi);
971b893e 1870 tb->tb_default = order;
19baf839
RO
1871 goto out;
1872 }
a2bbe682
DL
1873 if (last_idx >= 0)
1874 fib_result_assign(res, last_resort);
971b893e
DL
1875 tb->tb_default = last_idx;
1876out:
2373ce1c 1877 rcu_read_unlock();
19baf839
RO
1878}
1879
a07f5f50
SH
1880static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1881 struct fib_table *tb,
19baf839
RO
1882 struct sk_buff *skb, struct netlink_callback *cb)
1883{
1884 int i, s_i;
1885 struct fib_alias *fa;
32ab5f80 1886 __be32 xkey = htonl(key);
19baf839 1887
71d67e66 1888 s_i = cb->args[5];
19baf839
RO
1889 i = 0;
1890
2373ce1c
RO
1891 /* rcu_read_lock is hold by caller */
1892
1893 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1894 if (i < s_i) {
1895 i++;
1896 continue;
1897 }
19baf839
RO
1898
1899 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1900 cb->nlh->nlmsg_seq,
1901 RTM_NEWROUTE,
1902 tb->tb_id,
1903 fa->fa_type,
1904 fa->fa_scope,
be403ea1 1905 xkey,
19baf839
RO
1906 plen,
1907 fa->fa_tos,
64347f78 1908 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1909 cb->args[5] = i;
19baf839 1910 return -1;
91b9a277 1911 }
19baf839
RO
1912 i++;
1913 }
71d67e66 1914 cb->args[5] = i;
19baf839
RO
1915 return skb->len;
1916}
1917
a88ee229
SH
1918static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1919 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1920{
a88ee229
SH
1921 struct leaf_info *li;
1922 struct hlist_node *node;
1923 int i, s_i;
19baf839 1924
71d67e66 1925 s_i = cb->args[4];
a88ee229 1926 i = 0;
19baf839 1927
a88ee229
SH
1928 /* rcu_read_lock is hold by caller */
1929 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1930 if (i < s_i) {
1931 i++;
19baf839 1932 continue;
a88ee229 1933 }
91b9a277 1934
a88ee229 1935 if (i > s_i)
71d67e66 1936 cb->args[5] = 0;
19baf839 1937
a88ee229 1938 if (list_empty(&li->falh))
19baf839
RO
1939 continue;
1940
a88ee229 1941 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1942 cb->args[4] = i;
19baf839
RO
1943 return -1;
1944 }
a88ee229 1945 i++;
19baf839 1946 }
a88ee229 1947
71d67e66 1948 cb->args[4] = i;
19baf839
RO
1949 return skb->len;
1950}
1951
a07f5f50
SH
1952static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1953 struct netlink_callback *cb)
19baf839 1954{
a88ee229 1955 struct leaf *l;
19baf839 1956 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1957 t_key key = cb->args[2];
71d67e66 1958 int count = cb->args[3];
19baf839 1959
2373ce1c 1960 rcu_read_lock();
d5ce8a0e
SH
1961 /* Dump starting at last key.
1962 * Note: 0.0.0.0/0 (ie default) is first key.
1963 */
71d67e66 1964 if (count == 0)
d5ce8a0e
SH
1965 l = trie_firstleaf(t);
1966 else {
71d67e66
SH
1967 /* Normally, continue from last key, but if that is missing
1968 * fallback to using slow rescan
1969 */
d5ce8a0e 1970 l = fib_find_node(t, key);
71d67e66
SH
1971 if (!l)
1972 l = trie_leafindex(t, count);
d5ce8a0e 1973 }
a88ee229 1974
d5ce8a0e
SH
1975 while (l) {
1976 cb->args[2] = l->key;
a88ee229 1977 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1978 cb->args[3] = count;
a88ee229 1979 rcu_read_unlock();
a88ee229 1980 return -1;
19baf839 1981 }
d5ce8a0e 1982
71d67e66 1983 ++count;
d5ce8a0e 1984 l = trie_nextleaf(l);
71d67e66
SH
1985 memset(&cb->args[4], 0,
1986 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1987 }
71d67e66 1988 cb->args[3] = count;
2373ce1c 1989 rcu_read_unlock();
a88ee229 1990
19baf839 1991 return skb->len;
19baf839
RO
1992}
1993
7f9b8052
SH
1994void __init fib_hash_init(void)
1995{
a07f5f50
SH
1996 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1997 sizeof(struct fib_alias),
bc3c8c1e
SH
1998 0, SLAB_PANIC, NULL);
1999
2000 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2001 max(sizeof(struct leaf),
2002 sizeof(struct leaf_info)),
2003 0, SLAB_PANIC, NULL);
7f9b8052 2004}
19baf839 2005
7f9b8052
SH
2006
2007/* Fix more generic FIB names for init later */
2008struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2009{
2010 struct fib_table *tb;
2011 struct trie *t;
2012
19baf839
RO
2013 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2014 GFP_KERNEL);
2015 if (tb == NULL)
2016 return NULL;
2017
2018 tb->tb_id = id;
971b893e 2019 tb->tb_default = -1;
19baf839
RO
2020 tb->tb_lookup = fn_trie_lookup;
2021 tb->tb_insert = fn_trie_insert;
2022 tb->tb_delete = fn_trie_delete;
2023 tb->tb_flush = fn_trie_flush;
2024 tb->tb_select_default = fn_trie_select_default;
2025 tb->tb_dump = fn_trie_dump;
19baf839
RO
2026
2027 t = (struct trie *) tb->tb_data;
c28a1cf4 2028 memset(t, 0, sizeof(*t));
19baf839 2029
19baf839 2030 if (id == RT_TABLE_LOCAL)
a07f5f50 2031 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2032
2033 return tb;
2034}
2035
cb7b593c
SH
2036#ifdef CONFIG_PROC_FS
2037/* Depth first Trie walk iterator */
2038struct fib_trie_iter {
1c340b2f 2039 struct seq_net_private p;
3d3b2d25 2040 struct fib_table *tb;
cb7b593c 2041 struct tnode *tnode;
cb7b593c
SH
2042 unsigned index;
2043 unsigned depth;
2044};
19baf839 2045
cb7b593c 2046static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2047{
cb7b593c
SH
2048 struct tnode *tn = iter->tnode;
2049 unsigned cindex = iter->index;
2050 struct tnode *p;
19baf839 2051
6640e697
EB
2052 /* A single entry routing table */
2053 if (!tn)
2054 return NULL;
2055
cb7b593c
SH
2056 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2057 iter->tnode, iter->index, iter->depth);
2058rescan:
2059 while (cindex < (1<<tn->bits)) {
b59cfbf7 2060 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2061
cb7b593c
SH
2062 if (n) {
2063 if (IS_LEAF(n)) {
2064 iter->tnode = tn;
2065 iter->index = cindex + 1;
2066 } else {
2067 /* push down one level */
2068 iter->tnode = (struct tnode *) n;
2069 iter->index = 0;
2070 ++iter->depth;
2071 }
2072 return n;
2073 }
19baf839 2074
cb7b593c
SH
2075 ++cindex;
2076 }
91b9a277 2077
cb7b593c 2078 /* Current node exhausted, pop back up */
b59cfbf7 2079 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2080 if (p) {
2081 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2082 tn = p;
2083 --iter->depth;
2084 goto rescan;
19baf839 2085 }
cb7b593c
SH
2086
2087 /* got root? */
2088 return NULL;
19baf839
RO
2089}
2090
cb7b593c
SH
2091static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2092 struct trie *t)
19baf839 2093{
3d3b2d25 2094 struct node *n;
5ddf0eb2 2095
132adf54 2096 if (!t)
5ddf0eb2
RO
2097 return NULL;
2098
2099 n = rcu_dereference(t->trie);
3d3b2d25 2100 if (!n)
5ddf0eb2 2101 return NULL;
19baf839 2102
3d3b2d25
SH
2103 if (IS_TNODE(n)) {
2104 iter->tnode = (struct tnode *) n;
2105 iter->index = 0;
2106 iter->depth = 1;
2107 } else {
2108 iter->tnode = NULL;
2109 iter->index = 0;
2110 iter->depth = 0;
91b9a277 2111 }
3d3b2d25
SH
2112
2113 return n;
cb7b593c 2114}
91b9a277 2115
cb7b593c
SH
2116static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2117{
2118 struct node *n;
2119 struct fib_trie_iter iter;
91b9a277 2120
cb7b593c 2121 memset(s, 0, sizeof(*s));
91b9a277 2122
cb7b593c 2123 rcu_read_lock();
3d3b2d25 2124 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2125 if (IS_LEAF(n)) {
93672292
SH
2126 struct leaf *l = (struct leaf *)n;
2127 struct leaf_info *li;
2128 struct hlist_node *tmp;
2129
cb7b593c
SH
2130 s->leaves++;
2131 s->totdepth += iter.depth;
2132 if (iter.depth > s->maxdepth)
2133 s->maxdepth = iter.depth;
93672292
SH
2134
2135 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2136 ++s->prefixes;
cb7b593c
SH
2137 } else {
2138 const struct tnode *tn = (const struct tnode *) n;
2139 int i;
2140
2141 s->tnodes++;
132adf54 2142 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2143 s->nodesizes[tn->bits]++;
2144
cb7b593c
SH
2145 for (i = 0; i < (1<<tn->bits); i++)
2146 if (!tn->child[i])
2147 s->nullpointers++;
19baf839 2148 }
19baf839 2149 }
2373ce1c 2150 rcu_read_unlock();
19baf839
RO
2151}
2152
cb7b593c
SH
2153/*
2154 * This outputs /proc/net/fib_triestats
2155 */
2156static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2157{
cb7b593c 2158 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2159
cb7b593c
SH
2160 if (stat->leaves)
2161 avdepth = stat->totdepth*100 / stat->leaves;
2162 else
2163 avdepth = 0;
91b9a277 2164
a07f5f50
SH
2165 seq_printf(seq, "\tAver depth: %u.%02d\n",
2166 avdepth / 100, avdepth % 100);
cb7b593c 2167 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2168
cb7b593c 2169 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2170 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2171
2172 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2173 bytes += sizeof(struct leaf_info) * stat->prefixes;
2174
187b5188 2175 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2176 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2177
06ef921d
RO
2178 max = MAX_STAT_DEPTH;
2179 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2180 max--;
19baf839 2181
cb7b593c
SH
2182 pointers = 0;
2183 for (i = 1; i <= max; i++)
2184 if (stat->nodesizes[i] != 0) {
187b5188 2185 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2186 pointers += (1<<i) * stat->nodesizes[i];
2187 }
2188 seq_putc(seq, '\n');
187b5188 2189 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2190
cb7b593c 2191 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2192 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2193 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2194}
2373ce1c 2195
cb7b593c 2196#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2197static void trie_show_usage(struct seq_file *seq,
2198 const struct trie_use_stats *stats)
2199{
2200 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2201 seq_printf(seq, "gets = %u\n", stats->gets);
2202 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2203 seq_printf(seq, "semantic match passed = %u\n",
2204 stats->semantic_match_passed);
2205 seq_printf(seq, "semantic match miss = %u\n",
2206 stats->semantic_match_miss);
2207 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2208 seq_printf(seq, "skipped node resize = %u\n\n",
2209 stats->resize_node_skipped);
cb7b593c 2210}
66a2f7fd
SH
2211#endif /* CONFIG_IP_FIB_TRIE_STATS */
2212
3d3b2d25 2213static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2214{
3d3b2d25
SH
2215 if (tb->tb_id == RT_TABLE_LOCAL)
2216 seq_puts(seq, "Local:\n");
2217 else if (tb->tb_id == RT_TABLE_MAIN)
2218 seq_puts(seq, "Main:\n");
2219 else
2220 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2221}
19baf839 2222
3d3b2d25 2223
cb7b593c
SH
2224static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2225{
1c340b2f 2226 struct net *net = (struct net *)seq->private;
3d3b2d25 2227 unsigned int h;
877a9bff 2228
d717a9a6 2229 seq_printf(seq,
a07f5f50
SH
2230 "Basic info: size of leaf:"
2231 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2232 sizeof(struct leaf), sizeof(struct tnode));
2233
3d3b2d25
SH
2234 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2235 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2236 struct hlist_node *node;
2237 struct fib_table *tb;
2238
2239 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2240 struct trie *t = (struct trie *) tb->tb_data;
2241 struct trie_stat stat;
877a9bff 2242
3d3b2d25
SH
2243 if (!t)
2244 continue;
2245
2246 fib_table_print(seq, tb);
2247
2248 trie_collect_stats(t, &stat);
2249 trie_show_stats(seq, &stat);
2250#ifdef CONFIG_IP_FIB_TRIE_STATS
2251 trie_show_usage(seq, &t->stats);
2252#endif
2253 }
2254 }
19baf839 2255
cb7b593c 2256 return 0;
19baf839
RO
2257}
2258
cb7b593c 2259static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2260{
1c340b2f
DL
2261 int err;
2262 struct net *net;
2263
2264 net = get_proc_net(inode);
2265 if (net == NULL)
2266 return -ENXIO;
2267 err = single_open(file, fib_triestat_seq_show, net);
2268 if (err < 0) {
2269 put_net(net);
2270 return err;
2271 }
2272 return 0;
2273}
2274
2275static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2276{
2277 struct seq_file *seq = f->private_data;
2278 put_net(seq->private);
2279 return single_release(ino, f);
19baf839
RO
2280}
2281
9a32144e 2282static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2283 .owner = THIS_MODULE,
2284 .open = fib_triestat_seq_open,
2285 .read = seq_read,
2286 .llseek = seq_lseek,
1c340b2f 2287 .release = fib_triestat_seq_release,
cb7b593c
SH
2288};
2289
1218854a 2290static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2291{
1218854a
YH
2292 struct fib_trie_iter *iter = seq->private;
2293 struct net *net = seq_file_net(seq);
cb7b593c 2294 loff_t idx = 0;
3d3b2d25 2295 unsigned int h;
cb7b593c 2296
3d3b2d25
SH
2297 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2298 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2299 struct hlist_node *node;
2300 struct fib_table *tb;
cb7b593c 2301
3d3b2d25
SH
2302 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2303 struct node *n;
2304
2305 for (n = fib_trie_get_first(iter,
2306 (struct trie *) tb->tb_data);
2307 n; n = fib_trie_get_next(iter))
2308 if (pos == idx++) {
2309 iter->tb = tb;
2310 return n;
2311 }
2312 }
cb7b593c 2313 }
3d3b2d25 2314
19baf839
RO
2315 return NULL;
2316}
2317
cb7b593c 2318static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2319 __acquires(RCU)
19baf839 2320{
cb7b593c 2321 rcu_read_lock();
1218854a 2322 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2323}
2324
cb7b593c 2325static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2326{
cb7b593c 2327 struct fib_trie_iter *iter = seq->private;
1218854a 2328 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2329 struct fib_table *tb = iter->tb;
2330 struct hlist_node *tb_node;
2331 unsigned int h;
2332 struct node *n;
cb7b593c 2333
19baf839 2334 ++*pos;
3d3b2d25
SH
2335 /* next node in same table */
2336 n = fib_trie_get_next(iter);
2337 if (n)
2338 return n;
19baf839 2339
3d3b2d25
SH
2340 /* walk rest of this hash chain */
2341 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2342 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2343 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2344 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2345 if (n)
2346 goto found;
2347 }
19baf839 2348
3d3b2d25
SH
2349 /* new hash chain */
2350 while (++h < FIB_TABLE_HASHSZ) {
2351 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2352 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2353 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2354 if (n)
2355 goto found;
2356 }
2357 }
cb7b593c 2358 return NULL;
3d3b2d25
SH
2359
2360found:
2361 iter->tb = tb;
2362 return n;
cb7b593c 2363}
19baf839 2364
cb7b593c 2365static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2366 __releases(RCU)
19baf839 2367{
cb7b593c
SH
2368 rcu_read_unlock();
2369}
91b9a277 2370
cb7b593c
SH
2371static void seq_indent(struct seq_file *seq, int n)
2372{
2373 while (n-- > 0) seq_puts(seq, " ");
2374}
19baf839 2375
28d36e37 2376static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2377{
132adf54 2378 switch (s) {
cb7b593c
SH
2379 case RT_SCOPE_UNIVERSE: return "universe";
2380 case RT_SCOPE_SITE: return "site";
2381 case RT_SCOPE_LINK: return "link";
2382 case RT_SCOPE_HOST: return "host";
2383 case RT_SCOPE_NOWHERE: return "nowhere";
2384 default:
28d36e37 2385 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2386 return buf;
2387 }
2388}
19baf839 2389
cb7b593c
SH
2390static const char *rtn_type_names[__RTN_MAX] = {
2391 [RTN_UNSPEC] = "UNSPEC",
2392 [RTN_UNICAST] = "UNICAST",
2393 [RTN_LOCAL] = "LOCAL",
2394 [RTN_BROADCAST] = "BROADCAST",
2395 [RTN_ANYCAST] = "ANYCAST",
2396 [RTN_MULTICAST] = "MULTICAST",
2397 [RTN_BLACKHOLE] = "BLACKHOLE",
2398 [RTN_UNREACHABLE] = "UNREACHABLE",
2399 [RTN_PROHIBIT] = "PROHIBIT",
2400 [RTN_THROW] = "THROW",
2401 [RTN_NAT] = "NAT",
2402 [RTN_XRESOLVE] = "XRESOLVE",
2403};
19baf839 2404
28d36e37 2405static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2406{
cb7b593c
SH
2407 if (t < __RTN_MAX && rtn_type_names[t])
2408 return rtn_type_names[t];
28d36e37 2409 snprintf(buf, len, "type %u", t);
cb7b593c 2410 return buf;
19baf839
RO
2411}
2412
cb7b593c
SH
2413/* Pretty print the trie */
2414static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2415{
cb7b593c
SH
2416 const struct fib_trie_iter *iter = seq->private;
2417 struct node *n = v;
c877efb2 2418
3d3b2d25
SH
2419 if (!node_parent_rcu(n))
2420 fib_table_print(seq, iter->tb);
095b8501 2421
cb7b593c
SH
2422 if (IS_TNODE(n)) {
2423 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2424 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2425
1d25cd6c 2426 seq_indent(seq, iter->depth-1);
a7d632b6 2427 seq_printf(seq, " +-- " NIPQUAD_FMT "/%d %d %d %d\n",
e905a9ed 2428 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
1d25cd6c 2429 tn->empty_children);
e905a9ed 2430
cb7b593c
SH
2431 } else {
2432 struct leaf *l = (struct leaf *) n;
1328042e
SH
2433 struct leaf_info *li;
2434 struct hlist_node *node;
32ab5f80 2435 __be32 val = htonl(l->key);
cb7b593c
SH
2436
2437 seq_indent(seq, iter->depth);
a7d632b6 2438 seq_printf(seq, " |-- " NIPQUAD_FMT "\n", NIPQUAD(val));
1328042e
SH
2439
2440 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2441 struct fib_alias *fa;
2442
2443 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2444 char buf1[32], buf2[32];
2445
2446 seq_indent(seq, iter->depth+1);
2447 seq_printf(seq, " /%d %s %s", li->plen,
2448 rtn_scope(buf1, sizeof(buf1),
2449 fa->fa_scope),
2450 rtn_type(buf2, sizeof(buf2),
2451 fa->fa_type));
2452 if (fa->fa_tos)
b9c4d82a 2453 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2454 seq_putc(seq, '\n');
cb7b593c
SH
2455 }
2456 }
19baf839 2457 }
cb7b593c 2458
19baf839
RO
2459 return 0;
2460}
2461
f690808e 2462static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2463 .start = fib_trie_seq_start,
2464 .next = fib_trie_seq_next,
2465 .stop = fib_trie_seq_stop,
2466 .show = fib_trie_seq_show,
19baf839
RO
2467};
2468
cb7b593c 2469static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2470{
1c340b2f
DL
2471 return seq_open_net(inode, file, &fib_trie_seq_ops,
2472 sizeof(struct fib_trie_iter));
19baf839
RO
2473}
2474
9a32144e 2475static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2476 .owner = THIS_MODULE,
2477 .open = fib_trie_seq_open,
2478 .read = seq_read,
2479 .llseek = seq_lseek,
1c340b2f 2480 .release = seq_release_net,
19baf839
RO
2481};
2482
8315f5d8
SH
2483struct fib_route_iter {
2484 struct seq_net_private p;
2485 struct trie *main_trie;
2486 loff_t pos;
2487 t_key key;
2488};
2489
2490static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2491{
2492 struct leaf *l = NULL;
2493 struct trie *t = iter->main_trie;
2494
2495 /* use cache location of last found key */
2496 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2497 pos -= iter->pos;
2498 else {
2499 iter->pos = 0;
2500 l = trie_firstleaf(t);
2501 }
2502
2503 while (l && pos-- > 0) {
2504 iter->pos++;
2505 l = trie_nextleaf(l);
2506 }
2507
2508 if (l)
2509 iter->key = pos; /* remember it */
2510 else
2511 iter->pos = 0; /* forget it */
2512
2513 return l;
2514}
2515
2516static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2517 __acquires(RCU)
2518{
2519 struct fib_route_iter *iter = seq->private;
2520 struct fib_table *tb;
2521
2522 rcu_read_lock();
1218854a 2523 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2524 if (!tb)
2525 return NULL;
2526
2527 iter->main_trie = (struct trie *) tb->tb_data;
2528 if (*pos == 0)
2529 return SEQ_START_TOKEN;
2530 else
2531 return fib_route_get_idx(iter, *pos - 1);
2532}
2533
2534static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2535{
2536 struct fib_route_iter *iter = seq->private;
2537 struct leaf *l = v;
2538
2539 ++*pos;
2540 if (v == SEQ_START_TOKEN) {
2541 iter->pos = 0;
2542 l = trie_firstleaf(iter->main_trie);
2543 } else {
2544 iter->pos++;
2545 l = trie_nextleaf(l);
2546 }
2547
2548 if (l)
2549 iter->key = l->key;
2550 else
2551 iter->pos = 0;
2552 return l;
2553}
2554
2555static void fib_route_seq_stop(struct seq_file *seq, void *v)
2556 __releases(RCU)
2557{
2558 rcu_read_unlock();
2559}
2560
32ab5f80 2561static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2562{
cb7b593c
SH
2563 static unsigned type2flags[RTN_MAX + 1] = {
2564 [7] = RTF_REJECT, [8] = RTF_REJECT,
2565 };
2566 unsigned flags = type2flags[type];
19baf839 2567
cb7b593c
SH
2568 if (fi && fi->fib_nh->nh_gw)
2569 flags |= RTF_GATEWAY;
32ab5f80 2570 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2571 flags |= RTF_HOST;
2572 flags |= RTF_UP;
2573 return flags;
19baf839
RO
2574}
2575
cb7b593c
SH
2576/*
2577 * This outputs /proc/net/route.
2578 * The format of the file is not supposed to be changed
2579 * and needs to be same as fib_hash output to avoid breaking
2580 * legacy utilities
2581 */
2582static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2583{
cb7b593c 2584 struct leaf *l = v;
1328042e
SH
2585 struct leaf_info *li;
2586 struct hlist_node *node;
19baf839 2587
cb7b593c
SH
2588 if (v == SEQ_START_TOKEN) {
2589 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2590 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2591 "\tWindow\tIRTT");
2592 return 0;
2593 }
19baf839 2594
1328042e 2595 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2596 struct fib_alias *fa;
32ab5f80 2597 __be32 mask, prefix;
91b9a277 2598
cb7b593c
SH
2599 mask = inet_make_mask(li->plen);
2600 prefix = htonl(l->key);
19baf839 2601
cb7b593c 2602 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2603 const struct fib_info *fi = fa->fa_info;
cb7b593c 2604 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2605 int len;
19baf839 2606
cb7b593c
SH
2607 if (fa->fa_type == RTN_BROADCAST
2608 || fa->fa_type == RTN_MULTICAST)
2609 continue;
19baf839 2610
cb7b593c 2611 if (fi)
5e659e4c
PE
2612 seq_printf(seq,
2613 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2614 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2615 fi->fib_dev ? fi->fib_dev->name : "*",
2616 prefix,
2617 fi->fib_nh->nh_gw, flags, 0, 0,
2618 fi->fib_priority,
2619 mask,
a07f5f50
SH
2620 (fi->fib_advmss ?
2621 fi->fib_advmss + 40 : 0),
cb7b593c 2622 fi->fib_window,
5e659e4c 2623 fi->fib_rtt >> 3, &len);
cb7b593c 2624 else
5e659e4c
PE
2625 seq_printf(seq,
2626 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2627 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2628 prefix, 0, flags, 0, 0, 0,
5e659e4c 2629 mask, 0, 0, 0, &len);
19baf839 2630
5e659e4c 2631 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2632 }
19baf839
RO
2633 }
2634
2635 return 0;
2636}
2637
f690808e 2638static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2639 .start = fib_route_seq_start,
2640 .next = fib_route_seq_next,
2641 .stop = fib_route_seq_stop,
cb7b593c 2642 .show = fib_route_seq_show,
19baf839
RO
2643};
2644
cb7b593c 2645static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2646{
1c340b2f 2647 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2648 sizeof(struct fib_route_iter));
19baf839
RO
2649}
2650
9a32144e 2651static const struct file_operations fib_route_fops = {
cb7b593c
SH
2652 .owner = THIS_MODULE,
2653 .open = fib_route_seq_open,
2654 .read = seq_read,
2655 .llseek = seq_lseek,
1c340b2f 2656 .release = seq_release_net,
19baf839
RO
2657};
2658
61a02653 2659int __net_init fib_proc_init(struct net *net)
19baf839 2660{
61a02653 2661 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2662 goto out1;
2663
61a02653
DL
2664 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2665 &fib_triestat_fops))
cb7b593c
SH
2666 goto out2;
2667
61a02653 2668 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2669 goto out3;
2670
19baf839 2671 return 0;
cb7b593c
SH
2672
2673out3:
61a02653 2674 proc_net_remove(net, "fib_triestat");
cb7b593c 2675out2:
61a02653 2676 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2677out1:
2678 return -ENOMEM;
19baf839
RO
2679}
2680
61a02653 2681void __net_exit fib_proc_exit(struct net *net)
19baf839 2682{
61a02653
DL
2683 proc_net_remove(net, "fib_trie");
2684 proc_net_remove(net, "fib_triestat");
2685 proc_net_remove(net, "route");
19baf839
RO
2686}
2687
2688#endif /* CONFIG_PROC_FS */
This page took 0.591073 seconds and 5 git commands to generate.