net: add _skb_dst opaque field
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
05eee48c 51#define VERSION "0.408"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
457c4cbc 74#include <net/net_namespace.h>
19baf839
RO
75#include <net/ip.h>
76#include <net/protocol.h>
77#include <net/route.h>
78#include <net/tcp.h>
79#include <net/sock.h>
80#include <net/ip_fib.h>
81#include "fib_lookup.h"
82
06ef921d 83#define MAX_STAT_DEPTH 32
19baf839 84
19baf839 85#define KEYLENGTH (8*sizeof(t_key))
19baf839 86
19baf839
RO
87typedef unsigned int t_key;
88
89#define T_TNODE 0
90#define T_LEAF 1
91#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
92#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
91b9a277
OJ
94#define IS_TNODE(n) (!(n->parent & T_LEAF))
95#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
96
97struct node {
91b9a277 98 unsigned long parent;
8d965444 99 t_key key;
19baf839
RO
100};
101
102struct leaf {
91b9a277 103 unsigned long parent;
8d965444 104 t_key key;
19baf839 105 struct hlist_head list;
2373ce1c 106 struct rcu_head rcu;
19baf839
RO
107};
108
109struct leaf_info {
110 struct hlist_node hlist;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112 int plen;
113 struct list_head falh;
114};
115
116struct tnode {
91b9a277 117 unsigned long parent;
8d965444 118 t_key key;
112d8cfc
ED
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 };
91b9a277 127 struct node *child[0];
19baf839
RO
128};
129
130#ifdef CONFIG_IP_FIB_TRIE_STATS
131struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
2f36895a 137 unsigned int resize_node_skipped;
19baf839
RO
138};
139#endif
140
141struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
93672292 147 unsigned int prefixes;
06ef921d 148 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 149};
19baf839
RO
150
151struct trie {
91b9a277 152 struct node *trie;
19baf839
RO
153#ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats;
155#endif
19baf839
RO
156};
157
19baf839 158static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
159static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
160 int wasfull);
19baf839 161static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
162static struct tnode *inflate(struct trie *t, struct tnode *tn);
163static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 164
e18b890b 165static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 166static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 167
06801916
SH
168static inline struct tnode *node_parent(struct node *node)
169{
b59cfbf7
ED
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171}
172
173static inline struct tnode *node_parent_rcu(struct node *node)
174{
175 struct tnode *ret = node_parent(node);
06801916 176
06801916
SH
177 return rcu_dereference(ret);
178}
179
6440cc9e
SH
180/* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
182 */
06801916
SH
183static inline void node_set_parent(struct node *node, struct tnode *ptr)
184{
6440cc9e
SH
185 smp_wmb();
186 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 187}
2373ce1c 188
b59cfbf7
ED
189static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
190{
191 BUG_ON(i >= 1U << tn->bits);
2373ce1c 192
b59cfbf7
ED
193 return tn->child[i];
194}
195
196static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 197{
b59cfbf7 198 struct node *ret = tnode_get_child(tn, i);
19baf839 199
b59cfbf7 200 return rcu_dereference(ret);
19baf839
RO
201}
202
bb435b8d 203static inline int tnode_child_length(const struct tnode *tn)
19baf839 204{
91b9a277 205 return 1 << tn->bits;
19baf839
RO
206}
207
ab66b4a7
SH
208static inline t_key mask_pfx(t_key k, unsigned short l)
209{
210 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
211}
212
19baf839
RO
213static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
214{
91b9a277 215 if (offset < KEYLENGTH)
19baf839 216 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 217 else
19baf839
RO
218 return 0;
219}
220
221static inline int tkey_equals(t_key a, t_key b)
222{
c877efb2 223 return a == b;
19baf839
RO
224}
225
226static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
227{
c877efb2
SH
228 if (bits == 0 || offset >= KEYLENGTH)
229 return 1;
91b9a277
OJ
230 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
231 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 232}
19baf839
RO
233
234static inline int tkey_mismatch(t_key a, int offset, t_key b)
235{
236 t_key diff = a ^ b;
237 int i = offset;
238
c877efb2
SH
239 if (!diff)
240 return 0;
241 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
242 i++;
243 return i;
244}
245
19baf839 246/*
e905a9ed
YH
247 To understand this stuff, an understanding of keys and all their bits is
248 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
249 all of the bits in that key are significant.
250
251 Consider a node 'n' and its parent 'tp'.
252
e905a9ed
YH
253 If n is a leaf, every bit in its key is significant. Its presence is
254 necessitated by path compression, since during a tree traversal (when
255 searching for a leaf - unless we are doing an insertion) we will completely
256 ignore all skipped bits we encounter. Thus we need to verify, at the end of
257 a potentially successful search, that we have indeed been walking the
19baf839
RO
258 correct key path.
259
e905a9ed
YH
260 Note that we can never "miss" the correct key in the tree if present by
261 following the wrong path. Path compression ensures that segments of the key
262 that are the same for all keys with a given prefix are skipped, but the
263 skipped part *is* identical for each node in the subtrie below the skipped
264 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
265 call to tkey_sub_equals() in trie_insert().
266
e905a9ed 267 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
268 have many different meanings.
269
e905a9ed 270 Example:
19baf839
RO
271 _________________________________________________________________
272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273 -----------------------------------------------------------------
e905a9ed 274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
275
276 _________________________________________________________________
277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278 -----------------------------------------------------------------
279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
280
281 tp->pos = 7
282 tp->bits = 3
283 n->pos = 15
91b9a277 284 n->bits = 4
19baf839 285
e905a9ed
YH
286 First, let's just ignore the bits that come before the parent tp, that is
287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
288 not use them for anything.
289
290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 291 index into the parent's child array. That is, they will be used to find
19baf839
RO
292 'n' among tp's children.
293
294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
295 for the node n.
296
e905a9ed 297 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
298 of the bits are really not needed or indeed known in n->key.
299
e905a9ed 300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 301 n's child array, and will of course be different for each child.
e905a9ed 302
c877efb2 303
19baf839
RO
304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
305 at this point.
306
307*/
308
0c7770c7 309static inline void check_tnode(const struct tnode *tn)
19baf839 310{
0c7770c7 311 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
312}
313
f5026fab
DL
314static const int halve_threshold = 25;
315static const int inflate_threshold = 50;
316static const int halve_threshold_root = 8;
317static const int inflate_threshold_root = 15;
19baf839 318
2373ce1c
RO
319
320static void __alias_free_mem(struct rcu_head *head)
19baf839 321{
2373ce1c
RO
322 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
323 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
324}
325
2373ce1c 326static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 327{
2373ce1c
RO
328 call_rcu(&fa->rcu, __alias_free_mem);
329}
91b9a277 330
2373ce1c
RO
331static void __leaf_free_rcu(struct rcu_head *head)
332{
bc3c8c1e
SH
333 struct leaf *l = container_of(head, struct leaf, rcu);
334 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 335}
91b9a277 336
387a5487
SH
337static inline void free_leaf(struct leaf *l)
338{
339 call_rcu_bh(&l->rcu, __leaf_free_rcu);
340}
341
2373ce1c 342static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 343{
2373ce1c 344 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
345}
346
2373ce1c 347static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 348{
2373ce1c 349 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
350}
351
8d965444 352static struct tnode *tnode_alloc(size_t size)
f0e36f8c 353{
2373ce1c 354 if (size <= PAGE_SIZE)
8d965444 355 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
356 else
357 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
358}
2373ce1c 359
15be75cd
SH
360static void __tnode_vfree(struct work_struct *arg)
361{
362 struct tnode *tn = container_of(arg, struct tnode, work);
363 vfree(tn);
f0e36f8c
PM
364}
365
2373ce1c 366static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 367{
2373ce1c 368 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
369 size_t size = sizeof(struct tnode) +
370 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
371
372 if (size <= PAGE_SIZE)
373 kfree(tn);
15be75cd
SH
374 else {
375 INIT_WORK(&tn->work, __tnode_vfree);
376 schedule_work(&tn->work);
377 }
f0e36f8c
PM
378}
379
2373ce1c
RO
380static inline void tnode_free(struct tnode *tn)
381{
387a5487
SH
382 if (IS_LEAF(tn))
383 free_leaf((struct leaf *) tn);
384 else
550e29bc 385 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
386}
387
388static struct leaf *leaf_new(void)
389{
bc3c8c1e 390 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
391 if (l) {
392 l->parent = T_LEAF;
393 INIT_HLIST_HEAD(&l->list);
394 }
395 return l;
396}
397
398static struct leaf_info *leaf_info_new(int plen)
399{
400 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
401 if (li) {
402 li->plen = plen;
403 INIT_LIST_HEAD(&li->falh);
404 }
405 return li;
406}
407
a07f5f50 408static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 409{
8d965444 410 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 411 struct tnode *tn = tnode_alloc(sz);
19baf839 412
91b9a277 413 if (tn) {
2373ce1c 414 tn->parent = T_TNODE;
19baf839
RO
415 tn->pos = pos;
416 tn->bits = bits;
417 tn->key = key;
418 tn->full_children = 0;
419 tn->empty_children = 1<<bits;
420 }
c877efb2 421
8d965444
ED
422 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
423 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
424 return tn;
425}
426
19baf839
RO
427/*
428 * Check whether a tnode 'n' is "full", i.e. it is an internal node
429 * and no bits are skipped. See discussion in dyntree paper p. 6
430 */
431
bb435b8d 432static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 433{
c877efb2 434 if (n == NULL || IS_LEAF(n))
19baf839
RO
435 return 0;
436
437 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
438}
439
a07f5f50
SH
440static inline void put_child(struct trie *t, struct tnode *tn, int i,
441 struct node *n)
19baf839
RO
442{
443 tnode_put_child_reorg(tn, i, n, -1);
444}
445
c877efb2 446 /*
19baf839
RO
447 * Add a child at position i overwriting the old value.
448 * Update the value of full_children and empty_children.
449 */
450
a07f5f50
SH
451static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
452 int wasfull)
19baf839 453{
2373ce1c 454 struct node *chi = tn->child[i];
19baf839
RO
455 int isfull;
456
0c7770c7
SH
457 BUG_ON(i >= 1<<tn->bits);
458
19baf839
RO
459 /* update emptyChildren */
460 if (n == NULL && chi != NULL)
461 tn->empty_children++;
462 else if (n != NULL && chi == NULL)
463 tn->empty_children--;
c877efb2 464
19baf839 465 /* update fullChildren */
91b9a277 466 if (wasfull == -1)
19baf839
RO
467 wasfull = tnode_full(tn, chi);
468
469 isfull = tnode_full(tn, n);
c877efb2 470 if (wasfull && !isfull)
19baf839 471 tn->full_children--;
c877efb2 472 else if (!wasfull && isfull)
19baf839 473 tn->full_children++;
91b9a277 474
c877efb2 475 if (n)
06801916 476 node_set_parent(n, tn);
19baf839 477
2373ce1c 478 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
479}
480
c877efb2 481static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
482{
483 int i;
2f36895a 484 int err = 0;
2f80b3c8 485 struct tnode *old_tn;
e6308be8
RO
486 int inflate_threshold_use;
487 int halve_threshold_use;
05eee48c 488 int max_resize;
19baf839 489
e905a9ed 490 if (!tn)
19baf839
RO
491 return NULL;
492
0c7770c7
SH
493 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
494 tn, inflate_threshold, halve_threshold);
19baf839
RO
495
496 /* No children */
497 if (tn->empty_children == tnode_child_length(tn)) {
498 tnode_free(tn);
499 return NULL;
500 }
501 /* One child */
502 if (tn->empty_children == tnode_child_length(tn) - 1)
503 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 504 struct node *n;
19baf839 505
91b9a277 506 n = tn->child[i];
2373ce1c 507 if (!n)
91b9a277 508 continue;
91b9a277
OJ
509
510 /* compress one level */
06801916 511 node_set_parent(n, NULL);
91b9a277
OJ
512 tnode_free(tn);
513 return n;
19baf839 514 }
c877efb2 515 /*
19baf839
RO
516 * Double as long as the resulting node has a number of
517 * nonempty nodes that are above the threshold.
518 */
519
520 /*
c877efb2
SH
521 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
522 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 523 * Telecommunications, page 6:
c877efb2 524 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
525 * children in the *doubled* node is at least 'high'."
526 *
c877efb2
SH
527 * 'high' in this instance is the variable 'inflate_threshold'. It
528 * is expressed as a percentage, so we multiply it with
529 * tnode_child_length() and instead of multiplying by 2 (since the
530 * child array will be doubled by inflate()) and multiplying
531 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 532 * multiply the left-hand side by 50.
c877efb2
SH
533 *
534 * The left-hand side may look a bit weird: tnode_child_length(tn)
535 * - tn->empty_children is of course the number of non-null children
536 * in the current node. tn->full_children is the number of "full"
19baf839 537 * children, that is non-null tnodes with a skip value of 0.
c877efb2 538 * All of those will be doubled in the resulting inflated tnode, so
19baf839 539 * we just count them one extra time here.
c877efb2 540 *
19baf839 541 * A clearer way to write this would be:
c877efb2 542 *
19baf839 543 * to_be_doubled = tn->full_children;
c877efb2 544 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
545 * tn->full_children;
546 *
547 * new_child_length = tnode_child_length(tn) * 2;
548 *
c877efb2 549 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
550 * new_child_length;
551 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
552 *
553 * ...and so on, tho it would mess up the while () loop.
554 *
19baf839
RO
555 * anyway,
556 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
557 * inflate_threshold
c877efb2 558 *
19baf839
RO
559 * avoid a division:
560 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
561 * inflate_threshold * new_child_length
c877efb2 562 *
19baf839 563 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 564 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 565 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 566 *
19baf839 567 * expand new_child_length:
c877efb2 568 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 569 * tn->full_children) >=
19baf839 570 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 571 *
19baf839 572 * shorten again:
c877efb2 573 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 574 * tn->empty_children) >= inflate_threshold *
19baf839 575 * tnode_child_length(tn)
c877efb2 576 *
19baf839
RO
577 */
578
579 check_tnode(tn);
c877efb2 580
e6308be8
RO
581 /* Keep root node larger */
582
132adf54 583 if (!tn->parent)
e6308be8 584 inflate_threshold_use = inflate_threshold_root;
e905a9ed 585 else
e6308be8
RO
586 inflate_threshold_use = inflate_threshold;
587
2f36895a 588 err = 0;
05eee48c
RO
589 max_resize = 10;
590 while ((tn->full_children > 0 && max_resize-- &&
a07f5f50
SH
591 50 * (tn->full_children + tnode_child_length(tn)
592 - tn->empty_children)
593 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 594
2f80b3c8
RO
595 old_tn = tn;
596 tn = inflate(t, tn);
a07f5f50 597
2f80b3c8
RO
598 if (IS_ERR(tn)) {
599 tn = old_tn;
2f36895a
RO
600#ifdef CONFIG_IP_FIB_TRIE_STATS
601 t->stats.resize_node_skipped++;
602#endif
603 break;
604 }
19baf839
RO
605 }
606
05eee48c
RO
607 if (max_resize < 0) {
608 if (!tn->parent)
a07f5f50
SH
609 pr_warning("Fix inflate_threshold_root."
610 " Now=%d size=%d bits\n",
611 inflate_threshold_root, tn->bits);
05eee48c 612 else
a07f5f50
SH
613 pr_warning("Fix inflate_threshold."
614 " Now=%d size=%d bits\n",
615 inflate_threshold, tn->bits);
05eee48c
RO
616 }
617
19baf839
RO
618 check_tnode(tn);
619
620 /*
621 * Halve as long as the number of empty children in this
622 * node is above threshold.
623 */
2f36895a 624
e6308be8
RO
625
626 /* Keep root node larger */
627
132adf54 628 if (!tn->parent)
e6308be8 629 halve_threshold_use = halve_threshold_root;
e905a9ed 630 else
e6308be8
RO
631 halve_threshold_use = halve_threshold;
632
2f36895a 633 err = 0;
05eee48c
RO
634 max_resize = 10;
635 while (tn->bits > 1 && max_resize-- &&
19baf839 636 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 637 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 638
2f80b3c8
RO
639 old_tn = tn;
640 tn = halve(t, tn);
641 if (IS_ERR(tn)) {
642 tn = old_tn;
2f36895a
RO
643#ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645#endif
646 break;
647 }
648 }
19baf839 649
05eee48c
RO
650 if (max_resize < 0) {
651 if (!tn->parent)
a07f5f50
SH
652 pr_warning("Fix halve_threshold_root."
653 " Now=%d size=%d bits\n",
654 halve_threshold_root, tn->bits);
05eee48c 655 else
a07f5f50
SH
656 pr_warning("Fix halve_threshold."
657 " Now=%d size=%d bits\n",
658 halve_threshold, tn->bits);
05eee48c 659 }
c877efb2 660
19baf839 661 /* Only one child remains */
19baf839
RO
662 if (tn->empty_children == tnode_child_length(tn) - 1)
663 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 664 struct node *n;
19baf839 665
91b9a277 666 n = tn->child[i];
2373ce1c 667 if (!n)
91b9a277 668 continue;
91b9a277
OJ
669
670 /* compress one level */
671
06801916 672 node_set_parent(n, NULL);
91b9a277
OJ
673 tnode_free(tn);
674 return n;
19baf839
RO
675 }
676
677 return (struct node *) tn;
678}
679
2f80b3c8 680static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 681{
19baf839
RO
682 struct tnode *oldtnode = tn;
683 int olen = tnode_child_length(tn);
684 int i;
685
0c7770c7 686 pr_debug("In inflate\n");
19baf839
RO
687
688 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
689
0c7770c7 690 if (!tn)
2f80b3c8 691 return ERR_PTR(-ENOMEM);
2f36895a
RO
692
693 /*
c877efb2
SH
694 * Preallocate and store tnodes before the actual work so we
695 * don't get into an inconsistent state if memory allocation
696 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
697 * of tnode is ignored.
698 */
91b9a277
OJ
699
700 for (i = 0; i < olen; i++) {
a07f5f50 701 struct tnode *inode;
2f36895a 702
a07f5f50 703 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
704 if (inode &&
705 IS_TNODE(inode) &&
706 inode->pos == oldtnode->pos + oldtnode->bits &&
707 inode->bits > 1) {
708 struct tnode *left, *right;
ab66b4a7 709 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 710
2f36895a
RO
711 left = tnode_new(inode->key&(~m), inode->pos + 1,
712 inode->bits - 1);
2f80b3c8
RO
713 if (!left)
714 goto nomem;
91b9a277 715
2f36895a
RO
716 right = tnode_new(inode->key|m, inode->pos + 1,
717 inode->bits - 1);
718
e905a9ed 719 if (!right) {
2f80b3c8
RO
720 tnode_free(left);
721 goto nomem;
e905a9ed 722 }
2f36895a
RO
723
724 put_child(t, tn, 2*i, (struct node *) left);
725 put_child(t, tn, 2*i+1, (struct node *) right);
726 }
727 }
728
91b9a277 729 for (i = 0; i < olen; i++) {
c95aaf9a 730 struct tnode *inode;
19baf839 731 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
732 struct tnode *left, *right;
733 int size, j;
c877efb2 734
19baf839
RO
735 /* An empty child */
736 if (node == NULL)
737 continue;
738
739 /* A leaf or an internal node with skipped bits */
740
c877efb2 741 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 742 tn->pos + tn->bits - 1) {
a07f5f50
SH
743 if (tkey_extract_bits(node->key,
744 oldtnode->pos + oldtnode->bits,
745 1) == 0)
19baf839
RO
746 put_child(t, tn, 2*i, node);
747 else
748 put_child(t, tn, 2*i+1, node);
749 continue;
750 }
751
752 /* An internal node with two children */
753 inode = (struct tnode *) node;
754
755 if (inode->bits == 1) {
756 put_child(t, tn, 2*i, inode->child[0]);
757 put_child(t, tn, 2*i+1, inode->child[1]);
758
759 tnode_free(inode);
91b9a277 760 continue;
19baf839
RO
761 }
762
91b9a277
OJ
763 /* An internal node with more than two children */
764
765 /* We will replace this node 'inode' with two new
766 * ones, 'left' and 'right', each with half of the
767 * original children. The two new nodes will have
768 * a position one bit further down the key and this
769 * means that the "significant" part of their keys
770 * (see the discussion near the top of this file)
771 * will differ by one bit, which will be "0" in
772 * left's key and "1" in right's key. Since we are
773 * moving the key position by one step, the bit that
774 * we are moving away from - the bit at position
775 * (inode->pos) - is the one that will differ between
776 * left and right. So... we synthesize that bit in the
777 * two new keys.
778 * The mask 'm' below will be a single "one" bit at
779 * the position (inode->pos)
780 */
19baf839 781
91b9a277
OJ
782 /* Use the old key, but set the new significant
783 * bit to zero.
784 */
2f36895a 785
91b9a277
OJ
786 left = (struct tnode *) tnode_get_child(tn, 2*i);
787 put_child(t, tn, 2*i, NULL);
2f36895a 788
91b9a277 789 BUG_ON(!left);
2f36895a 790
91b9a277
OJ
791 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
792 put_child(t, tn, 2*i+1, NULL);
19baf839 793
91b9a277 794 BUG_ON(!right);
19baf839 795
91b9a277
OJ
796 size = tnode_child_length(left);
797 for (j = 0; j < size; j++) {
798 put_child(t, left, j, inode->child[j]);
799 put_child(t, right, j, inode->child[j + size]);
19baf839 800 }
91b9a277
OJ
801 put_child(t, tn, 2*i, resize(t, left));
802 put_child(t, tn, 2*i+1, resize(t, right));
803
804 tnode_free(inode);
19baf839
RO
805 }
806 tnode_free(oldtnode);
807 return tn;
2f80b3c8
RO
808nomem:
809 {
810 int size = tnode_child_length(tn);
811 int j;
812
0c7770c7 813 for (j = 0; j < size; j++)
2f80b3c8
RO
814 if (tn->child[j])
815 tnode_free((struct tnode *)tn->child[j]);
816
817 tnode_free(tn);
0c7770c7 818
2f80b3c8
RO
819 return ERR_PTR(-ENOMEM);
820 }
19baf839
RO
821}
822
2f80b3c8 823static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
824{
825 struct tnode *oldtnode = tn;
826 struct node *left, *right;
827 int i;
828 int olen = tnode_child_length(tn);
829
0c7770c7 830 pr_debug("In halve\n");
c877efb2
SH
831
832 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 833
2f80b3c8
RO
834 if (!tn)
835 return ERR_PTR(-ENOMEM);
2f36895a
RO
836
837 /*
c877efb2
SH
838 * Preallocate and store tnodes before the actual work so we
839 * don't get into an inconsistent state if memory allocation
840 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
841 * of tnode is ignored.
842 */
843
91b9a277 844 for (i = 0; i < olen; i += 2) {
2f36895a
RO
845 left = tnode_get_child(oldtnode, i);
846 right = tnode_get_child(oldtnode, i+1);
c877efb2 847
2f36895a 848 /* Two nonempty children */
0c7770c7 849 if (left && right) {
2f80b3c8 850 struct tnode *newn;
0c7770c7 851
2f80b3c8 852 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
853
854 if (!newn)
2f80b3c8 855 goto nomem;
0c7770c7 856
2f80b3c8 857 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 858 }
2f36895a 859
2f36895a 860 }
19baf839 861
91b9a277
OJ
862 for (i = 0; i < olen; i += 2) {
863 struct tnode *newBinNode;
864
19baf839
RO
865 left = tnode_get_child(oldtnode, i);
866 right = tnode_get_child(oldtnode, i+1);
c877efb2 867
19baf839
RO
868 /* At least one of the children is empty */
869 if (left == NULL) {
870 if (right == NULL) /* Both are empty */
871 continue;
872 put_child(t, tn, i/2, right);
91b9a277 873 continue;
0c7770c7 874 }
91b9a277
OJ
875
876 if (right == NULL) {
19baf839 877 put_child(t, tn, i/2, left);
91b9a277
OJ
878 continue;
879 }
c877efb2 880
19baf839 881 /* Two nonempty children */
91b9a277
OJ
882 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
883 put_child(t, tn, i/2, NULL);
91b9a277
OJ
884 put_child(t, newBinNode, 0, left);
885 put_child(t, newBinNode, 1, right);
886 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
887 }
888 tnode_free(oldtnode);
889 return tn;
2f80b3c8
RO
890nomem:
891 {
892 int size = tnode_child_length(tn);
893 int j;
894
0c7770c7 895 for (j = 0; j < size; j++)
2f80b3c8
RO
896 if (tn->child[j])
897 tnode_free((struct tnode *)tn->child[j]);
898
899 tnode_free(tn);
0c7770c7 900
2f80b3c8
RO
901 return ERR_PTR(-ENOMEM);
902 }
19baf839
RO
903}
904
772cb712 905/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
906 via get_fa_head and dump */
907
772cb712 908static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 909{
772cb712 910 struct hlist_head *head = &l->list;
19baf839
RO
911 struct hlist_node *node;
912 struct leaf_info *li;
913
2373ce1c 914 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 915 if (li->plen == plen)
19baf839 916 return li;
91b9a277 917
19baf839
RO
918 return NULL;
919}
920
a07f5f50 921static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 922{
772cb712 923 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 924
91b9a277
OJ
925 if (!li)
926 return NULL;
c877efb2 927
91b9a277 928 return &li->falh;
19baf839
RO
929}
930
931static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
932{
e905a9ed
YH
933 struct leaf_info *li = NULL, *last = NULL;
934 struct hlist_node *node;
935
936 if (hlist_empty(head)) {
937 hlist_add_head_rcu(&new->hlist, head);
938 } else {
939 hlist_for_each_entry(li, node, head, hlist) {
940 if (new->plen > li->plen)
941 break;
942
943 last = li;
944 }
945 if (last)
946 hlist_add_after_rcu(&last->hlist, &new->hlist);
947 else
948 hlist_add_before_rcu(&new->hlist, &li->hlist);
949 }
19baf839
RO
950}
951
2373ce1c
RO
952/* rcu_read_lock needs to be hold by caller from readside */
953
19baf839
RO
954static struct leaf *
955fib_find_node(struct trie *t, u32 key)
956{
957 int pos;
958 struct tnode *tn;
959 struct node *n;
960
961 pos = 0;
2373ce1c 962 n = rcu_dereference(t->trie);
19baf839
RO
963
964 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
965 tn = (struct tnode *) n;
91b9a277 966
19baf839 967 check_tnode(tn);
91b9a277 968
c877efb2 969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 970 pos = tn->pos + tn->bits;
a07f5f50
SH
971 n = tnode_get_child_rcu(tn,
972 tkey_extract_bits(key,
973 tn->pos,
974 tn->bits));
91b9a277 975 } else
19baf839
RO
976 break;
977 }
978 /* Case we have found a leaf. Compare prefixes */
979
91b9a277
OJ
980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
981 return (struct leaf *)n;
982
19baf839
RO
983 return NULL;
984}
985
986static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
987{
19baf839 988 int wasfull;
3ed18d76 989 t_key cindex, key;
06801916 990 struct tnode *tp;
19baf839 991
3ed18d76
RO
992 preempt_disable();
993 key = tn->key;
994
06801916 995 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
996 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
997 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
998 tn = (struct tnode *) resize(t, (struct tnode *)tn);
999
1000 tnode_put_child_reorg((struct tnode *)tp, cindex,
1001 (struct node *)tn, wasfull);
91b9a277 1002
06801916
SH
1003 tp = node_parent((struct node *) tn);
1004 if (!tp)
19baf839 1005 break;
06801916 1006 tn = tp;
19baf839 1007 }
06801916 1008
19baf839 1009 /* Handle last (top) tnode */
c877efb2 1010 if (IS_TNODE(tn))
a07f5f50 1011 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1012
3ed18d76 1013 preempt_enable();
a07f5f50 1014 return (struct node *)tn;
19baf839
RO
1015}
1016
2373ce1c
RO
1017/* only used from updater-side */
1018
fea86ad8 1019static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1020{
1021 int pos, newpos;
1022 struct tnode *tp = NULL, *tn = NULL;
1023 struct node *n;
1024 struct leaf *l;
1025 int missbit;
c877efb2 1026 struct list_head *fa_head = NULL;
19baf839
RO
1027 struct leaf_info *li;
1028 t_key cindex;
1029
1030 pos = 0;
c877efb2 1031 n = t->trie;
19baf839 1032
c877efb2
SH
1033 /* If we point to NULL, stop. Either the tree is empty and we should
1034 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1035 * and we should just put our new leaf in that.
c877efb2
SH
1036 * If we point to a T_TNODE, check if it matches our key. Note that
1037 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1038 * not be the parent's 'pos'+'bits'!
1039 *
c877efb2 1040 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1041 * the index from our key, push the T_TNODE and walk the tree.
1042 *
1043 * If it doesn't, we have to replace it with a new T_TNODE.
1044 *
c877efb2
SH
1045 * If we point to a T_LEAF, it might or might not have the same key
1046 * as we do. If it does, just change the value, update the T_LEAF's
1047 * value, and return it.
19baf839
RO
1048 * If it doesn't, we need to replace it with a T_TNODE.
1049 */
1050
1051 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1052 tn = (struct tnode *) n;
91b9a277 1053
c877efb2 1054 check_tnode(tn);
91b9a277 1055
c877efb2 1056 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1057 tp = tn;
91b9a277 1058 pos = tn->pos + tn->bits;
a07f5f50
SH
1059 n = tnode_get_child(tn,
1060 tkey_extract_bits(key,
1061 tn->pos,
1062 tn->bits));
19baf839 1063
06801916 1064 BUG_ON(n && node_parent(n) != tn);
91b9a277 1065 } else
19baf839
RO
1066 break;
1067 }
1068
1069 /*
1070 * n ----> NULL, LEAF or TNODE
1071 *
c877efb2 1072 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1073 */
1074
91b9a277 1075 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1076
1077 /* Case 1: n is a leaf. Compare prefixes */
1078
c877efb2 1079 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1080 l = (struct leaf *) n;
19baf839 1081 li = leaf_info_new(plen);
91b9a277 1082
fea86ad8
SH
1083 if (!li)
1084 return NULL;
19baf839
RO
1085
1086 fa_head = &li->falh;
1087 insert_leaf_info(&l->list, li);
1088 goto done;
1089 }
19baf839
RO
1090 l = leaf_new();
1091
fea86ad8
SH
1092 if (!l)
1093 return NULL;
19baf839
RO
1094
1095 l->key = key;
1096 li = leaf_info_new(plen);
1097
c877efb2 1098 if (!li) {
387a5487 1099 free_leaf(l);
fea86ad8 1100 return NULL;
f835e471 1101 }
19baf839
RO
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105
19baf839 1106 if (t->trie && n == NULL) {
91b9a277 1107 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1108
06801916 1109 node_set_parent((struct node *)l, tp);
19baf839 1110
91b9a277
OJ
1111 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1112 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1113 } else {
1114 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1115 /*
1116 * Add a new tnode here
19baf839
RO
1117 * first tnode need some special handling
1118 */
1119
1120 if (tp)
91b9a277 1121 pos = tp->pos+tp->bits;
19baf839 1122 else
91b9a277
OJ
1123 pos = 0;
1124
c877efb2 1125 if (n) {
19baf839
RO
1126 newpos = tkey_mismatch(key, pos, n->key);
1127 tn = tnode_new(n->key, newpos, 1);
91b9a277 1128 } else {
19baf839 1129 newpos = 0;
c877efb2 1130 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1131 }
19baf839 1132
c877efb2 1133 if (!tn) {
f835e471 1134 free_leaf_info(li);
387a5487 1135 free_leaf(l);
fea86ad8 1136 return NULL;
91b9a277
OJ
1137 }
1138
06801916 1139 node_set_parent((struct node *)tn, tp);
19baf839 1140
91b9a277 1141 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1142 put_child(t, tn, missbit, (struct node *)l);
1143 put_child(t, tn, 1-missbit, n);
1144
c877efb2 1145 if (tp) {
19baf839 1146 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1147 put_child(t, (struct tnode *)tp, cindex,
1148 (struct node *)tn);
91b9a277 1149 } else {
a07f5f50 1150 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1151 tp = tn;
1152 }
1153 }
91b9a277
OJ
1154
1155 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1156 pr_warning("fib_trie"
1157 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1158 tp, tp->pos, tp->bits, key, plen);
91b9a277 1159
19baf839 1160 /* Rebalance the trie */
2373ce1c
RO
1161
1162 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471 1163done:
19baf839
RO
1164 return fa_head;
1165}
1166
d562f1f8
RO
1167/*
1168 * Caller must hold RTNL.
1169 */
4e902c57 1170static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1171{
1172 struct trie *t = (struct trie *) tb->tb_data;
1173 struct fib_alias *fa, *new_fa;
c877efb2 1174 struct list_head *fa_head = NULL;
19baf839 1175 struct fib_info *fi;
4e902c57
TG
1176 int plen = cfg->fc_dst_len;
1177 u8 tos = cfg->fc_tos;
19baf839
RO
1178 u32 key, mask;
1179 int err;
1180 struct leaf *l;
1181
1182 if (plen > 32)
1183 return -EINVAL;
1184
4e902c57 1185 key = ntohl(cfg->fc_dst);
19baf839 1186
2dfe55b4 1187 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1188
91b9a277 1189 mask = ntohl(inet_make_mask(plen));
19baf839 1190
c877efb2 1191 if (key & ~mask)
19baf839
RO
1192 return -EINVAL;
1193
1194 key = key & mask;
1195
4e902c57
TG
1196 fi = fib_create_info(cfg);
1197 if (IS_ERR(fi)) {
1198 err = PTR_ERR(fi);
19baf839 1199 goto err;
4e902c57 1200 }
19baf839
RO
1201
1202 l = fib_find_node(t, key);
c877efb2 1203 fa = NULL;
19baf839 1204
c877efb2 1205 if (l) {
19baf839
RO
1206 fa_head = get_fa_head(l, plen);
1207 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1208 }
1209
1210 /* Now fa, if non-NULL, points to the first fib alias
1211 * with the same keys [prefix,tos,priority], if such key already
1212 * exists or to the node before which we will insert new one.
1213 *
1214 * If fa is NULL, we will need to allocate a new one and
1215 * insert to the head of f.
1216 *
1217 * If f is NULL, no fib node matched the destination key
1218 * and we need to allocate a new one of those as well.
1219 */
1220
936f6f8e
JA
1221 if (fa && fa->fa_tos == tos &&
1222 fa->fa_info->fib_priority == fi->fib_priority) {
1223 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1224
1225 err = -EEXIST;
4e902c57 1226 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1227 goto out;
1228
936f6f8e
JA
1229 /* We have 2 goals:
1230 * 1. Find exact match for type, scope, fib_info to avoid
1231 * duplicate routes
1232 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1233 */
1234 fa_match = NULL;
1235 fa_first = fa;
1236 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1237 list_for_each_entry_continue(fa, fa_head, fa_list) {
1238 if (fa->fa_tos != tos)
1239 break;
1240 if (fa->fa_info->fib_priority != fi->fib_priority)
1241 break;
1242 if (fa->fa_type == cfg->fc_type &&
1243 fa->fa_scope == cfg->fc_scope &&
1244 fa->fa_info == fi) {
1245 fa_match = fa;
1246 break;
1247 }
1248 }
1249
4e902c57 1250 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1251 struct fib_info *fi_drop;
1252 u8 state;
1253
936f6f8e
JA
1254 fa = fa_first;
1255 if (fa_match) {
1256 if (fa == fa_match)
1257 err = 0;
6725033f 1258 goto out;
936f6f8e 1259 }
2373ce1c 1260 err = -ENOBUFS;
e94b1766 1261 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1262 if (new_fa == NULL)
1263 goto out;
19baf839
RO
1264
1265 fi_drop = fa->fa_info;
2373ce1c
RO
1266 new_fa->fa_tos = fa->fa_tos;
1267 new_fa->fa_info = fi;
4e902c57
TG
1268 new_fa->fa_type = cfg->fc_type;
1269 new_fa->fa_scope = cfg->fc_scope;
19baf839 1270 state = fa->fa_state;
936f6f8e 1271 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1272
2373ce1c
RO
1273 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1274 alias_free_mem_rcu(fa);
19baf839
RO
1275
1276 fib_release_info(fi_drop);
1277 if (state & FA_S_ACCESSED)
76e6ebfb 1278 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1279 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1280 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1281
91b9a277 1282 goto succeeded;
19baf839
RO
1283 }
1284 /* Error if we find a perfect match which
1285 * uses the same scope, type, and nexthop
1286 * information.
1287 */
936f6f8e
JA
1288 if (fa_match)
1289 goto out;
a07f5f50 1290
4e902c57 1291 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1292 fa = fa_first;
19baf839
RO
1293 }
1294 err = -ENOENT;
4e902c57 1295 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1296 goto out;
1297
1298 err = -ENOBUFS;
e94b1766 1299 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1300 if (new_fa == NULL)
1301 goto out;
1302
1303 new_fa->fa_info = fi;
1304 new_fa->fa_tos = tos;
4e902c57
TG
1305 new_fa->fa_type = cfg->fc_type;
1306 new_fa->fa_scope = cfg->fc_scope;
19baf839 1307 new_fa->fa_state = 0;
19baf839
RO
1308 /*
1309 * Insert new entry to the list.
1310 */
1311
c877efb2 1312 if (!fa_head) {
fea86ad8
SH
1313 fa_head = fib_insert_node(t, key, plen);
1314 if (unlikely(!fa_head)) {
1315 err = -ENOMEM;
f835e471 1316 goto out_free_new_fa;
fea86ad8 1317 }
f835e471 1318 }
19baf839 1319
2373ce1c
RO
1320 list_add_tail_rcu(&new_fa->fa_list,
1321 (fa ? &fa->fa_list : fa_head));
19baf839 1322
76e6ebfb 1323 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1324 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1325 &cfg->fc_nlinfo, 0);
19baf839
RO
1326succeeded:
1327 return 0;
f835e471
RO
1328
1329out_free_new_fa:
1330 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1331out:
1332 fib_release_info(fi);
91b9a277 1333err:
19baf839
RO
1334 return err;
1335}
1336
772cb712 1337/* should be called with rcu_read_lock */
a07f5f50
SH
1338static int check_leaf(struct trie *t, struct leaf *l,
1339 t_key key, const struct flowi *flp,
1340 struct fib_result *res)
19baf839 1341{
19baf839
RO
1342 struct leaf_info *li;
1343 struct hlist_head *hhead = &l->list;
1344 struct hlist_node *node;
c877efb2 1345
2373ce1c 1346 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1347 int err;
1348 int plen = li->plen;
1349 __be32 mask = inet_make_mask(plen);
1350
888454c5 1351 if (l->key != (key & ntohl(mask)))
19baf839
RO
1352 continue;
1353
e204a345 1354 err = fib_semantic_match(&li->falh, flp, res, plen);
a07f5f50 1355
19baf839 1356#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1357 if (err <= 0)
19baf839 1358 t->stats.semantic_match_passed++;
a07f5f50
SH
1359 else
1360 t->stats.semantic_match_miss++;
19baf839 1361#endif
a07f5f50 1362 if (err <= 0)
2e655571 1363 return err;
19baf839 1364 }
a07f5f50 1365
2e655571 1366 return 1;
19baf839
RO
1367}
1368
a07f5f50
SH
1369static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1370 struct fib_result *res)
19baf839
RO
1371{
1372 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1373 int ret;
19baf839
RO
1374 struct node *n;
1375 struct tnode *pn;
1376 int pos, bits;
91b9a277 1377 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1378 int chopped_off;
1379 t_key cindex = 0;
1380 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1381 struct tnode *cn;
1382 t_key node_prefix, key_prefix, pref_mismatch;
1383 int mp;
1384
2373ce1c 1385 rcu_read_lock();
91b9a277 1386
2373ce1c 1387 n = rcu_dereference(t->trie);
c877efb2 1388 if (!n)
19baf839
RO
1389 goto failed;
1390
1391#ifdef CONFIG_IP_FIB_TRIE_STATS
1392 t->stats.gets++;
1393#endif
1394
1395 /* Just a leaf? */
1396 if (IS_LEAF(n)) {
2e655571 1397 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
a07f5f50 1398 goto found;
19baf839 1399 }
a07f5f50 1400
19baf839
RO
1401 pn = (struct tnode *) n;
1402 chopped_off = 0;
c877efb2 1403
91b9a277 1404 while (pn) {
19baf839
RO
1405 pos = pn->pos;
1406 bits = pn->bits;
1407
c877efb2 1408 if (!chopped_off)
ab66b4a7
SH
1409 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1410 pos, bits);
19baf839
RO
1411
1412 n = tnode_get_child(pn, cindex);
1413
1414 if (n == NULL) {
1415#ifdef CONFIG_IP_FIB_TRIE_STATS
1416 t->stats.null_node_hit++;
1417#endif
1418 goto backtrace;
1419 }
1420
91b9a277 1421 if (IS_LEAF(n)) {
2e655571
BH
1422 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1423 if (ret > 0)
91b9a277 1424 goto backtrace;
a07f5f50 1425 goto found;
91b9a277
OJ
1426 }
1427
91b9a277 1428 cn = (struct tnode *)n;
19baf839 1429
91b9a277
OJ
1430 /*
1431 * It's a tnode, and we can do some extra checks here if we
1432 * like, to avoid descending into a dead-end branch.
1433 * This tnode is in the parent's child array at index
1434 * key[p_pos..p_pos+p_bits] but potentially with some bits
1435 * chopped off, so in reality the index may be just a
1436 * subprefix, padded with zero at the end.
1437 * We can also take a look at any skipped bits in this
1438 * tnode - everything up to p_pos is supposed to be ok,
1439 * and the non-chopped bits of the index (se previous
1440 * paragraph) are also guaranteed ok, but the rest is
1441 * considered unknown.
1442 *
1443 * The skipped bits are key[pos+bits..cn->pos].
1444 */
19baf839 1445
91b9a277
OJ
1446 /* If current_prefix_length < pos+bits, we are already doing
1447 * actual prefix matching, which means everything from
1448 * pos+(bits-chopped_off) onward must be zero along some
1449 * branch of this subtree - otherwise there is *no* valid
1450 * prefix present. Here we can only check the skipped
1451 * bits. Remember, since we have already indexed into the
1452 * parent's child array, we know that the bits we chopped of
1453 * *are* zero.
1454 */
19baf839 1455
a07f5f50
SH
1456 /* NOTA BENE: Checking only skipped bits
1457 for the new node here */
19baf839 1458
91b9a277
OJ
1459 if (current_prefix_length < pos+bits) {
1460 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1461 cn->pos - current_prefix_length)
1462 || !(cn->child[0]))
91b9a277
OJ
1463 goto backtrace;
1464 }
19baf839 1465
91b9a277
OJ
1466 /*
1467 * If chopped_off=0, the index is fully validated and we
1468 * only need to look at the skipped bits for this, the new,
1469 * tnode. What we actually want to do is to find out if
1470 * these skipped bits match our key perfectly, or if we will
1471 * have to count on finding a matching prefix further down,
1472 * because if we do, we would like to have some way of
1473 * verifying the existence of such a prefix at this point.
1474 */
19baf839 1475
91b9a277
OJ
1476 /* The only thing we can do at this point is to verify that
1477 * any such matching prefix can indeed be a prefix to our
1478 * key, and if the bits in the node we are inspecting that
1479 * do not match our key are not ZERO, this cannot be true.
1480 * Thus, find out where there is a mismatch (before cn->pos)
1481 * and verify that all the mismatching bits are zero in the
1482 * new tnode's key.
1483 */
19baf839 1484
a07f5f50
SH
1485 /*
1486 * Note: We aren't very concerned about the piece of
1487 * the key that precede pn->pos+pn->bits, since these
1488 * have already been checked. The bits after cn->pos
1489 * aren't checked since these are by definition
1490 * "unknown" at this point. Thus, what we want to see
1491 * is if we are about to enter the "prefix matching"
1492 * state, and in that case verify that the skipped
1493 * bits that will prevail throughout this subtree are
1494 * zero, as they have to be if we are to find a
1495 * matching prefix.
91b9a277
OJ
1496 */
1497
ab66b4a7
SH
1498 node_prefix = mask_pfx(cn->key, cn->pos);
1499 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1500 pref_mismatch = key_prefix^node_prefix;
1501 mp = 0;
1502
a07f5f50
SH
1503 /*
1504 * In short: If skipped bits in this node do not match
1505 * the search key, enter the "prefix matching"
1506 * state.directly.
91b9a277
OJ
1507 */
1508 if (pref_mismatch) {
1509 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1510 mp++;
a07f5f50 1511 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1512 }
1513 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1514
1515 if (key_prefix != 0)
1516 goto backtrace;
1517
1518 if (current_prefix_length >= cn->pos)
1519 current_prefix_length = mp;
c877efb2 1520 }
a07f5f50 1521
91b9a277
OJ
1522 pn = (struct tnode *)n; /* Descend */
1523 chopped_off = 0;
1524 continue;
1525
19baf839
RO
1526backtrace:
1527 chopped_off++;
1528
1529 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1530 while ((chopped_off <= pn->bits)
1531 && !(cindex & (1<<(chopped_off-1))))
19baf839 1532 chopped_off++;
19baf839
RO
1533
1534 /* Decrease current_... with bits chopped off */
1535 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1536 current_prefix_length = pn->pos + pn->bits
1537 - chopped_off;
91b9a277 1538
19baf839 1539 /*
c877efb2 1540 * Either we do the actual chop off according or if we have
19baf839
RO
1541 * chopped off all bits in this tnode walk up to our parent.
1542 */
1543
91b9a277 1544 if (chopped_off <= pn->bits) {
19baf839 1545 cindex &= ~(1 << (chopped_off-1));
91b9a277 1546 } else {
06801916
SH
1547 struct tnode *parent = node_parent((struct node *) pn);
1548 if (!parent)
19baf839 1549 goto failed;
91b9a277 1550
19baf839 1551 /* Get Child's index */
06801916
SH
1552 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1553 pn = parent;
19baf839
RO
1554 chopped_off = 0;
1555
1556#ifdef CONFIG_IP_FIB_TRIE_STATS
1557 t->stats.backtrack++;
1558#endif
1559 goto backtrace;
c877efb2 1560 }
19baf839
RO
1561 }
1562failed:
c877efb2 1563 ret = 1;
19baf839 1564found:
2373ce1c 1565 rcu_read_unlock();
19baf839
RO
1566 return ret;
1567}
1568
9195bef7
SH
1569/*
1570 * Remove the leaf and return parent.
1571 */
1572static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1573{
9195bef7 1574 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1575
9195bef7 1576 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1577
c877efb2 1578 if (tp) {
9195bef7 1579 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1580 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1581 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1582 } else
2373ce1c 1583 rcu_assign_pointer(t->trie, NULL);
19baf839 1584
387a5487 1585 free_leaf(l);
19baf839
RO
1586}
1587
d562f1f8
RO
1588/*
1589 * Caller must hold RTNL.
1590 */
4e902c57 1591static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1592{
1593 struct trie *t = (struct trie *) tb->tb_data;
1594 u32 key, mask;
4e902c57
TG
1595 int plen = cfg->fc_dst_len;
1596 u8 tos = cfg->fc_tos;
19baf839
RO
1597 struct fib_alias *fa, *fa_to_delete;
1598 struct list_head *fa_head;
1599 struct leaf *l;
91b9a277
OJ
1600 struct leaf_info *li;
1601
c877efb2 1602 if (plen > 32)
19baf839
RO
1603 return -EINVAL;
1604
4e902c57 1605 key = ntohl(cfg->fc_dst);
91b9a277 1606 mask = ntohl(inet_make_mask(plen));
19baf839 1607
c877efb2 1608 if (key & ~mask)
19baf839
RO
1609 return -EINVAL;
1610
1611 key = key & mask;
1612 l = fib_find_node(t, key);
1613
c877efb2 1614 if (!l)
19baf839
RO
1615 return -ESRCH;
1616
1617 fa_head = get_fa_head(l, plen);
1618 fa = fib_find_alias(fa_head, tos, 0);
1619
1620 if (!fa)
1621 return -ESRCH;
1622
0c7770c7 1623 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1624
1625 fa_to_delete = NULL;
936f6f8e
JA
1626 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1627 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1628 struct fib_info *fi = fa->fa_info;
1629
1630 if (fa->fa_tos != tos)
1631 break;
1632
4e902c57
TG
1633 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1634 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1635 fa->fa_scope == cfg->fc_scope) &&
1636 (!cfg->fc_protocol ||
1637 fi->fib_protocol == cfg->fc_protocol) &&
1638 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1639 fa_to_delete = fa;
1640 break;
1641 }
1642 }
1643
91b9a277
OJ
1644 if (!fa_to_delete)
1645 return -ESRCH;
19baf839 1646
91b9a277 1647 fa = fa_to_delete;
4e902c57 1648 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1649 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1650
1651 l = fib_find_node(t, key);
772cb712 1652 li = find_leaf_info(l, plen);
19baf839 1653
2373ce1c 1654 list_del_rcu(&fa->fa_list);
19baf839 1655
91b9a277 1656 if (list_empty(fa_head)) {
2373ce1c 1657 hlist_del_rcu(&li->hlist);
91b9a277 1658 free_leaf_info(li);
2373ce1c 1659 }
19baf839 1660
91b9a277 1661 if (hlist_empty(&l->list))
9195bef7 1662 trie_leaf_remove(t, l);
19baf839 1663
91b9a277 1664 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1665 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1666
2373ce1c
RO
1667 fib_release_info(fa->fa_info);
1668 alias_free_mem_rcu(fa);
91b9a277 1669 return 0;
19baf839
RO
1670}
1671
ef3660ce 1672static int trie_flush_list(struct list_head *head)
19baf839
RO
1673{
1674 struct fib_alias *fa, *fa_node;
1675 int found = 0;
1676
1677 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1678 struct fib_info *fi = fa->fa_info;
19baf839 1679
2373ce1c
RO
1680 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1681 list_del_rcu(&fa->fa_list);
1682 fib_release_info(fa->fa_info);
1683 alias_free_mem_rcu(fa);
19baf839
RO
1684 found++;
1685 }
1686 }
1687 return found;
1688}
1689
ef3660ce 1690static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1691{
1692 int found = 0;
1693 struct hlist_head *lih = &l->list;
1694 struct hlist_node *node, *tmp;
1695 struct leaf_info *li = NULL;
1696
1697 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1698 found += trie_flush_list(&li->falh);
19baf839
RO
1699
1700 if (list_empty(&li->falh)) {
2373ce1c 1701 hlist_del_rcu(&li->hlist);
19baf839
RO
1702 free_leaf_info(li);
1703 }
1704 }
1705 return found;
1706}
1707
82cfbb00
SH
1708/*
1709 * Scan for the next right leaf starting at node p->child[idx]
1710 * Since we have back pointer, no recursion necessary.
1711 */
1712static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1713{
82cfbb00
SH
1714 do {
1715 t_key idx;
c877efb2 1716
c877efb2 1717 if (c)
82cfbb00 1718 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1719 else
82cfbb00 1720 idx = 0;
2373ce1c 1721
82cfbb00
SH
1722 while (idx < 1u << p->bits) {
1723 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1724 if (!c)
91b9a277
OJ
1725 continue;
1726
82cfbb00
SH
1727 if (IS_LEAF(c)) {
1728 prefetch(p->child[idx]);
1729 return (struct leaf *) c;
19baf839 1730 }
82cfbb00
SH
1731
1732 /* Rescan start scanning in new node */
1733 p = (struct tnode *) c;
1734 idx = 0;
19baf839 1735 }
82cfbb00
SH
1736
1737 /* Node empty, walk back up to parent */
91b9a277 1738 c = (struct node *) p;
82cfbb00
SH
1739 } while ( (p = node_parent_rcu(c)) != NULL);
1740
1741 return NULL; /* Root of trie */
1742}
1743
82cfbb00
SH
1744static struct leaf *trie_firstleaf(struct trie *t)
1745{
1746 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1747
1748 if (!n)
1749 return NULL;
1750
1751 if (IS_LEAF(n)) /* trie is just a leaf */
1752 return (struct leaf *) n;
1753
1754 return leaf_walk_rcu(n, NULL);
1755}
1756
1757static struct leaf *trie_nextleaf(struct leaf *l)
1758{
1759 struct node *c = (struct node *) l;
1760 struct tnode *p = node_parent(c);
1761
1762 if (!p)
1763 return NULL; /* trie with just one leaf */
1764
1765 return leaf_walk_rcu(p, c);
19baf839
RO
1766}
1767
71d67e66
SH
1768static struct leaf *trie_leafindex(struct trie *t, int index)
1769{
1770 struct leaf *l = trie_firstleaf(t);
1771
ec28cf73 1772 while (l && index-- > 0)
71d67e66 1773 l = trie_nextleaf(l);
ec28cf73 1774
71d67e66
SH
1775 return l;
1776}
1777
1778
d562f1f8
RO
1779/*
1780 * Caller must hold RTNL.
1781 */
19baf839
RO
1782static int fn_trie_flush(struct fib_table *tb)
1783{
1784 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1785 struct leaf *l, *ll = NULL;
82cfbb00 1786 int found = 0;
19baf839 1787
82cfbb00 1788 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1789 found += trie_flush_leaf(l);
19baf839
RO
1790
1791 if (ll && hlist_empty(&ll->list))
9195bef7 1792 trie_leaf_remove(t, ll);
19baf839
RO
1793 ll = l;
1794 }
1795
1796 if (ll && hlist_empty(&ll->list))
9195bef7 1797 trie_leaf_remove(t, ll);
19baf839 1798
0c7770c7 1799 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1800 return found;
1801}
1802
a07f5f50
SH
1803static void fn_trie_select_default(struct fib_table *tb,
1804 const struct flowi *flp,
1805 struct fib_result *res)
19baf839
RO
1806{
1807 struct trie *t = (struct trie *) tb->tb_data;
1808 int order, last_idx;
1809 struct fib_info *fi = NULL;
1810 struct fib_info *last_resort;
1811 struct fib_alias *fa = NULL;
1812 struct list_head *fa_head;
1813 struct leaf *l;
1814
1815 last_idx = -1;
1816 last_resort = NULL;
1817 order = -1;
1818
2373ce1c 1819 rcu_read_lock();
c877efb2 1820
19baf839 1821 l = fib_find_node(t, 0);
c877efb2 1822 if (!l)
19baf839
RO
1823 goto out;
1824
1825 fa_head = get_fa_head(l, 0);
c877efb2 1826 if (!fa_head)
19baf839
RO
1827 goto out;
1828
c877efb2 1829 if (list_empty(fa_head))
19baf839
RO
1830 goto out;
1831
2373ce1c 1832 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1833 struct fib_info *next_fi = fa->fa_info;
91b9a277 1834
19baf839
RO
1835 if (fa->fa_scope != res->scope ||
1836 fa->fa_type != RTN_UNICAST)
1837 continue;
91b9a277 1838
19baf839
RO
1839 if (next_fi->fib_priority > res->fi->fib_priority)
1840 break;
1841 if (!next_fi->fib_nh[0].nh_gw ||
1842 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1843 continue;
1844 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1845
19baf839
RO
1846 if (fi == NULL) {
1847 if (next_fi != res->fi)
1848 break;
1849 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1850 &last_idx, tb->tb_default)) {
a2bbe682 1851 fib_result_assign(res, fi);
971b893e 1852 tb->tb_default = order;
19baf839
RO
1853 goto out;
1854 }
1855 fi = next_fi;
1856 order++;
1857 }
1858 if (order <= 0 || fi == NULL) {
971b893e 1859 tb->tb_default = -1;
19baf839
RO
1860 goto out;
1861 }
1862
971b893e
DL
1863 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1864 tb->tb_default)) {
a2bbe682 1865 fib_result_assign(res, fi);
971b893e 1866 tb->tb_default = order;
19baf839
RO
1867 goto out;
1868 }
a2bbe682
DL
1869 if (last_idx >= 0)
1870 fib_result_assign(res, last_resort);
971b893e
DL
1871 tb->tb_default = last_idx;
1872out:
2373ce1c 1873 rcu_read_unlock();
19baf839
RO
1874}
1875
a07f5f50
SH
1876static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1877 struct fib_table *tb,
19baf839
RO
1878 struct sk_buff *skb, struct netlink_callback *cb)
1879{
1880 int i, s_i;
1881 struct fib_alias *fa;
32ab5f80 1882 __be32 xkey = htonl(key);
19baf839 1883
71d67e66 1884 s_i = cb->args[5];
19baf839
RO
1885 i = 0;
1886
2373ce1c
RO
1887 /* rcu_read_lock is hold by caller */
1888
1889 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1890 if (i < s_i) {
1891 i++;
1892 continue;
1893 }
19baf839
RO
1894
1895 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1896 cb->nlh->nlmsg_seq,
1897 RTM_NEWROUTE,
1898 tb->tb_id,
1899 fa->fa_type,
1900 fa->fa_scope,
be403ea1 1901 xkey,
19baf839
RO
1902 plen,
1903 fa->fa_tos,
64347f78 1904 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1905 cb->args[5] = i;
19baf839 1906 return -1;
91b9a277 1907 }
19baf839
RO
1908 i++;
1909 }
71d67e66 1910 cb->args[5] = i;
19baf839
RO
1911 return skb->len;
1912}
1913
a88ee229
SH
1914static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1915 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1916{
a88ee229
SH
1917 struct leaf_info *li;
1918 struct hlist_node *node;
1919 int i, s_i;
19baf839 1920
71d67e66 1921 s_i = cb->args[4];
a88ee229 1922 i = 0;
19baf839 1923
a88ee229
SH
1924 /* rcu_read_lock is hold by caller */
1925 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1926 if (i < s_i) {
1927 i++;
19baf839 1928 continue;
a88ee229 1929 }
91b9a277 1930
a88ee229 1931 if (i > s_i)
71d67e66 1932 cb->args[5] = 0;
19baf839 1933
a88ee229 1934 if (list_empty(&li->falh))
19baf839
RO
1935 continue;
1936
a88ee229 1937 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1938 cb->args[4] = i;
19baf839
RO
1939 return -1;
1940 }
a88ee229 1941 i++;
19baf839 1942 }
a88ee229 1943
71d67e66 1944 cb->args[4] = i;
19baf839
RO
1945 return skb->len;
1946}
1947
a07f5f50
SH
1948static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1949 struct netlink_callback *cb)
19baf839 1950{
a88ee229 1951 struct leaf *l;
19baf839 1952 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1953 t_key key = cb->args[2];
71d67e66 1954 int count = cb->args[3];
19baf839 1955
2373ce1c 1956 rcu_read_lock();
d5ce8a0e
SH
1957 /* Dump starting at last key.
1958 * Note: 0.0.0.0/0 (ie default) is first key.
1959 */
71d67e66 1960 if (count == 0)
d5ce8a0e
SH
1961 l = trie_firstleaf(t);
1962 else {
71d67e66
SH
1963 /* Normally, continue from last key, but if that is missing
1964 * fallback to using slow rescan
1965 */
d5ce8a0e 1966 l = fib_find_node(t, key);
71d67e66
SH
1967 if (!l)
1968 l = trie_leafindex(t, count);
d5ce8a0e 1969 }
a88ee229 1970
d5ce8a0e
SH
1971 while (l) {
1972 cb->args[2] = l->key;
a88ee229 1973 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1974 cb->args[3] = count;
a88ee229 1975 rcu_read_unlock();
a88ee229 1976 return -1;
19baf839 1977 }
d5ce8a0e 1978
71d67e66 1979 ++count;
d5ce8a0e 1980 l = trie_nextleaf(l);
71d67e66
SH
1981 memset(&cb->args[4], 0,
1982 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1983 }
71d67e66 1984 cb->args[3] = count;
2373ce1c 1985 rcu_read_unlock();
a88ee229 1986
19baf839 1987 return skb->len;
19baf839
RO
1988}
1989
7f9b8052
SH
1990void __init fib_hash_init(void)
1991{
a07f5f50
SH
1992 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1993 sizeof(struct fib_alias),
bc3c8c1e
SH
1994 0, SLAB_PANIC, NULL);
1995
1996 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1997 max(sizeof(struct leaf),
1998 sizeof(struct leaf_info)),
1999 0, SLAB_PANIC, NULL);
7f9b8052 2000}
19baf839 2001
7f9b8052
SH
2002
2003/* Fix more generic FIB names for init later */
2004struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2005{
2006 struct fib_table *tb;
2007 struct trie *t;
2008
19baf839
RO
2009 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2010 GFP_KERNEL);
2011 if (tb == NULL)
2012 return NULL;
2013
2014 tb->tb_id = id;
971b893e 2015 tb->tb_default = -1;
19baf839
RO
2016 tb->tb_lookup = fn_trie_lookup;
2017 tb->tb_insert = fn_trie_insert;
2018 tb->tb_delete = fn_trie_delete;
2019 tb->tb_flush = fn_trie_flush;
2020 tb->tb_select_default = fn_trie_select_default;
2021 tb->tb_dump = fn_trie_dump;
19baf839
RO
2022
2023 t = (struct trie *) tb->tb_data;
c28a1cf4 2024 memset(t, 0, sizeof(*t));
19baf839 2025
19baf839 2026 if (id == RT_TABLE_LOCAL)
a07f5f50 2027 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2028
2029 return tb;
2030}
2031
cb7b593c
SH
2032#ifdef CONFIG_PROC_FS
2033/* Depth first Trie walk iterator */
2034struct fib_trie_iter {
1c340b2f 2035 struct seq_net_private p;
3d3b2d25 2036 struct fib_table *tb;
cb7b593c 2037 struct tnode *tnode;
cb7b593c
SH
2038 unsigned index;
2039 unsigned depth;
2040};
19baf839 2041
cb7b593c 2042static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2043{
cb7b593c
SH
2044 struct tnode *tn = iter->tnode;
2045 unsigned cindex = iter->index;
2046 struct tnode *p;
19baf839 2047
6640e697
EB
2048 /* A single entry routing table */
2049 if (!tn)
2050 return NULL;
2051
cb7b593c
SH
2052 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2053 iter->tnode, iter->index, iter->depth);
2054rescan:
2055 while (cindex < (1<<tn->bits)) {
b59cfbf7 2056 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2057
cb7b593c
SH
2058 if (n) {
2059 if (IS_LEAF(n)) {
2060 iter->tnode = tn;
2061 iter->index = cindex + 1;
2062 } else {
2063 /* push down one level */
2064 iter->tnode = (struct tnode *) n;
2065 iter->index = 0;
2066 ++iter->depth;
2067 }
2068 return n;
2069 }
19baf839 2070
cb7b593c
SH
2071 ++cindex;
2072 }
91b9a277 2073
cb7b593c 2074 /* Current node exhausted, pop back up */
b59cfbf7 2075 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2076 if (p) {
2077 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2078 tn = p;
2079 --iter->depth;
2080 goto rescan;
19baf839 2081 }
cb7b593c
SH
2082
2083 /* got root? */
2084 return NULL;
19baf839
RO
2085}
2086
cb7b593c
SH
2087static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2088 struct trie *t)
19baf839 2089{
3d3b2d25 2090 struct node *n;
5ddf0eb2 2091
132adf54 2092 if (!t)
5ddf0eb2
RO
2093 return NULL;
2094
2095 n = rcu_dereference(t->trie);
3d3b2d25 2096 if (!n)
5ddf0eb2 2097 return NULL;
19baf839 2098
3d3b2d25
SH
2099 if (IS_TNODE(n)) {
2100 iter->tnode = (struct tnode *) n;
2101 iter->index = 0;
2102 iter->depth = 1;
2103 } else {
2104 iter->tnode = NULL;
2105 iter->index = 0;
2106 iter->depth = 0;
91b9a277 2107 }
3d3b2d25
SH
2108
2109 return n;
cb7b593c 2110}
91b9a277 2111
cb7b593c
SH
2112static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2113{
2114 struct node *n;
2115 struct fib_trie_iter iter;
91b9a277 2116
cb7b593c 2117 memset(s, 0, sizeof(*s));
91b9a277 2118
cb7b593c 2119 rcu_read_lock();
3d3b2d25 2120 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2121 if (IS_LEAF(n)) {
93672292
SH
2122 struct leaf *l = (struct leaf *)n;
2123 struct leaf_info *li;
2124 struct hlist_node *tmp;
2125
cb7b593c
SH
2126 s->leaves++;
2127 s->totdepth += iter.depth;
2128 if (iter.depth > s->maxdepth)
2129 s->maxdepth = iter.depth;
93672292
SH
2130
2131 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2132 ++s->prefixes;
cb7b593c
SH
2133 } else {
2134 const struct tnode *tn = (const struct tnode *) n;
2135 int i;
2136
2137 s->tnodes++;
132adf54 2138 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2139 s->nodesizes[tn->bits]++;
2140
cb7b593c
SH
2141 for (i = 0; i < (1<<tn->bits); i++)
2142 if (!tn->child[i])
2143 s->nullpointers++;
19baf839 2144 }
19baf839 2145 }
2373ce1c 2146 rcu_read_unlock();
19baf839
RO
2147}
2148
cb7b593c
SH
2149/*
2150 * This outputs /proc/net/fib_triestats
2151 */
2152static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2153{
cb7b593c 2154 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2155
cb7b593c
SH
2156 if (stat->leaves)
2157 avdepth = stat->totdepth*100 / stat->leaves;
2158 else
2159 avdepth = 0;
91b9a277 2160
a07f5f50
SH
2161 seq_printf(seq, "\tAver depth: %u.%02d\n",
2162 avdepth / 100, avdepth % 100);
cb7b593c 2163 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2164
cb7b593c 2165 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2166 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2167
2168 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2169 bytes += sizeof(struct leaf_info) * stat->prefixes;
2170
187b5188 2171 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2172 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2173
06ef921d
RO
2174 max = MAX_STAT_DEPTH;
2175 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2176 max--;
19baf839 2177
cb7b593c
SH
2178 pointers = 0;
2179 for (i = 1; i <= max; i++)
2180 if (stat->nodesizes[i] != 0) {
187b5188 2181 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2182 pointers += (1<<i) * stat->nodesizes[i];
2183 }
2184 seq_putc(seq, '\n');
187b5188 2185 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2186
cb7b593c 2187 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2188 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2189 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2190}
2373ce1c 2191
cb7b593c 2192#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2193static void trie_show_usage(struct seq_file *seq,
2194 const struct trie_use_stats *stats)
2195{
2196 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2197 seq_printf(seq, "gets = %u\n", stats->gets);
2198 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2199 seq_printf(seq, "semantic match passed = %u\n",
2200 stats->semantic_match_passed);
2201 seq_printf(seq, "semantic match miss = %u\n",
2202 stats->semantic_match_miss);
2203 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2204 seq_printf(seq, "skipped node resize = %u\n\n",
2205 stats->resize_node_skipped);
cb7b593c 2206}
66a2f7fd
SH
2207#endif /* CONFIG_IP_FIB_TRIE_STATS */
2208
3d3b2d25 2209static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2210{
3d3b2d25
SH
2211 if (tb->tb_id == RT_TABLE_LOCAL)
2212 seq_puts(seq, "Local:\n");
2213 else if (tb->tb_id == RT_TABLE_MAIN)
2214 seq_puts(seq, "Main:\n");
2215 else
2216 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2217}
19baf839 2218
3d3b2d25 2219
cb7b593c
SH
2220static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2221{
1c340b2f 2222 struct net *net = (struct net *)seq->private;
3d3b2d25 2223 unsigned int h;
877a9bff 2224
d717a9a6 2225 seq_printf(seq,
a07f5f50
SH
2226 "Basic info: size of leaf:"
2227 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2228 sizeof(struct leaf), sizeof(struct tnode));
2229
3d3b2d25
SH
2230 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2231 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2232 struct hlist_node *node;
2233 struct fib_table *tb;
2234
2235 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2236 struct trie *t = (struct trie *) tb->tb_data;
2237 struct trie_stat stat;
877a9bff 2238
3d3b2d25
SH
2239 if (!t)
2240 continue;
2241
2242 fib_table_print(seq, tb);
2243
2244 trie_collect_stats(t, &stat);
2245 trie_show_stats(seq, &stat);
2246#ifdef CONFIG_IP_FIB_TRIE_STATS
2247 trie_show_usage(seq, &t->stats);
2248#endif
2249 }
2250 }
19baf839 2251
cb7b593c 2252 return 0;
19baf839
RO
2253}
2254
cb7b593c 2255static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2256{
de05c557 2257 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2258}
2259
9a32144e 2260static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2261 .owner = THIS_MODULE,
2262 .open = fib_triestat_seq_open,
2263 .read = seq_read,
2264 .llseek = seq_lseek,
b6fcbdb4 2265 .release = single_release_net,
cb7b593c
SH
2266};
2267
1218854a 2268static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2269{
1218854a
YH
2270 struct fib_trie_iter *iter = seq->private;
2271 struct net *net = seq_file_net(seq);
cb7b593c 2272 loff_t idx = 0;
3d3b2d25 2273 unsigned int h;
cb7b593c 2274
3d3b2d25
SH
2275 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2276 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2277 struct hlist_node *node;
2278 struct fib_table *tb;
cb7b593c 2279
3d3b2d25
SH
2280 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2281 struct node *n;
2282
2283 for (n = fib_trie_get_first(iter,
2284 (struct trie *) tb->tb_data);
2285 n; n = fib_trie_get_next(iter))
2286 if (pos == idx++) {
2287 iter->tb = tb;
2288 return n;
2289 }
2290 }
cb7b593c 2291 }
3d3b2d25 2292
19baf839
RO
2293 return NULL;
2294}
2295
cb7b593c 2296static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2297 __acquires(RCU)
19baf839 2298{
cb7b593c 2299 rcu_read_lock();
1218854a 2300 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2301}
2302
cb7b593c 2303static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2304{
cb7b593c 2305 struct fib_trie_iter *iter = seq->private;
1218854a 2306 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2307 struct fib_table *tb = iter->tb;
2308 struct hlist_node *tb_node;
2309 unsigned int h;
2310 struct node *n;
cb7b593c 2311
19baf839 2312 ++*pos;
3d3b2d25
SH
2313 /* next node in same table */
2314 n = fib_trie_get_next(iter);
2315 if (n)
2316 return n;
19baf839 2317
3d3b2d25
SH
2318 /* walk rest of this hash chain */
2319 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2320 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2321 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2322 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2323 if (n)
2324 goto found;
2325 }
19baf839 2326
3d3b2d25
SH
2327 /* new hash chain */
2328 while (++h < FIB_TABLE_HASHSZ) {
2329 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2330 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2331 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2332 if (n)
2333 goto found;
2334 }
2335 }
cb7b593c 2336 return NULL;
3d3b2d25
SH
2337
2338found:
2339 iter->tb = tb;
2340 return n;
cb7b593c 2341}
19baf839 2342
cb7b593c 2343static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2344 __releases(RCU)
19baf839 2345{
cb7b593c
SH
2346 rcu_read_unlock();
2347}
91b9a277 2348
cb7b593c
SH
2349static void seq_indent(struct seq_file *seq, int n)
2350{
2351 while (n-- > 0) seq_puts(seq, " ");
2352}
19baf839 2353
28d36e37 2354static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2355{
132adf54 2356 switch (s) {
cb7b593c
SH
2357 case RT_SCOPE_UNIVERSE: return "universe";
2358 case RT_SCOPE_SITE: return "site";
2359 case RT_SCOPE_LINK: return "link";
2360 case RT_SCOPE_HOST: return "host";
2361 case RT_SCOPE_NOWHERE: return "nowhere";
2362 default:
28d36e37 2363 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2364 return buf;
2365 }
2366}
19baf839 2367
cb7b593c
SH
2368static const char *rtn_type_names[__RTN_MAX] = {
2369 [RTN_UNSPEC] = "UNSPEC",
2370 [RTN_UNICAST] = "UNICAST",
2371 [RTN_LOCAL] = "LOCAL",
2372 [RTN_BROADCAST] = "BROADCAST",
2373 [RTN_ANYCAST] = "ANYCAST",
2374 [RTN_MULTICAST] = "MULTICAST",
2375 [RTN_BLACKHOLE] = "BLACKHOLE",
2376 [RTN_UNREACHABLE] = "UNREACHABLE",
2377 [RTN_PROHIBIT] = "PROHIBIT",
2378 [RTN_THROW] = "THROW",
2379 [RTN_NAT] = "NAT",
2380 [RTN_XRESOLVE] = "XRESOLVE",
2381};
19baf839 2382
28d36e37 2383static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2384{
cb7b593c
SH
2385 if (t < __RTN_MAX && rtn_type_names[t])
2386 return rtn_type_names[t];
28d36e37 2387 snprintf(buf, len, "type %u", t);
cb7b593c 2388 return buf;
19baf839
RO
2389}
2390
cb7b593c
SH
2391/* Pretty print the trie */
2392static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2393{
cb7b593c
SH
2394 const struct fib_trie_iter *iter = seq->private;
2395 struct node *n = v;
c877efb2 2396
3d3b2d25
SH
2397 if (!node_parent_rcu(n))
2398 fib_table_print(seq, iter->tb);
095b8501 2399
cb7b593c
SH
2400 if (IS_TNODE(n)) {
2401 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2402 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2403
1d25cd6c 2404 seq_indent(seq, iter->depth-1);
673d57e7
HH
2405 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2406 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2407 tn->empty_children);
e905a9ed 2408
cb7b593c
SH
2409 } else {
2410 struct leaf *l = (struct leaf *) n;
1328042e
SH
2411 struct leaf_info *li;
2412 struct hlist_node *node;
32ab5f80 2413 __be32 val = htonl(l->key);
cb7b593c
SH
2414
2415 seq_indent(seq, iter->depth);
673d57e7 2416 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2417
2418 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2419 struct fib_alias *fa;
2420
2421 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2422 char buf1[32], buf2[32];
2423
2424 seq_indent(seq, iter->depth+1);
2425 seq_printf(seq, " /%d %s %s", li->plen,
2426 rtn_scope(buf1, sizeof(buf1),
2427 fa->fa_scope),
2428 rtn_type(buf2, sizeof(buf2),
2429 fa->fa_type));
2430 if (fa->fa_tos)
b9c4d82a 2431 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2432 seq_putc(seq, '\n');
cb7b593c
SH
2433 }
2434 }
19baf839 2435 }
cb7b593c 2436
19baf839
RO
2437 return 0;
2438}
2439
f690808e 2440static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2441 .start = fib_trie_seq_start,
2442 .next = fib_trie_seq_next,
2443 .stop = fib_trie_seq_stop,
2444 .show = fib_trie_seq_show,
19baf839
RO
2445};
2446
cb7b593c 2447static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2448{
1c340b2f
DL
2449 return seq_open_net(inode, file, &fib_trie_seq_ops,
2450 sizeof(struct fib_trie_iter));
19baf839
RO
2451}
2452
9a32144e 2453static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2454 .owner = THIS_MODULE,
2455 .open = fib_trie_seq_open,
2456 .read = seq_read,
2457 .llseek = seq_lseek,
1c340b2f 2458 .release = seq_release_net,
19baf839
RO
2459};
2460
8315f5d8
SH
2461struct fib_route_iter {
2462 struct seq_net_private p;
2463 struct trie *main_trie;
2464 loff_t pos;
2465 t_key key;
2466};
2467
2468static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2469{
2470 struct leaf *l = NULL;
2471 struct trie *t = iter->main_trie;
2472
2473 /* use cache location of last found key */
2474 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2475 pos -= iter->pos;
2476 else {
2477 iter->pos = 0;
2478 l = trie_firstleaf(t);
2479 }
2480
2481 while (l && pos-- > 0) {
2482 iter->pos++;
2483 l = trie_nextleaf(l);
2484 }
2485
2486 if (l)
2487 iter->key = pos; /* remember it */
2488 else
2489 iter->pos = 0; /* forget it */
2490
2491 return l;
2492}
2493
2494static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2495 __acquires(RCU)
2496{
2497 struct fib_route_iter *iter = seq->private;
2498 struct fib_table *tb;
2499
2500 rcu_read_lock();
1218854a 2501 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2502 if (!tb)
2503 return NULL;
2504
2505 iter->main_trie = (struct trie *) tb->tb_data;
2506 if (*pos == 0)
2507 return SEQ_START_TOKEN;
2508 else
2509 return fib_route_get_idx(iter, *pos - 1);
2510}
2511
2512static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2513{
2514 struct fib_route_iter *iter = seq->private;
2515 struct leaf *l = v;
2516
2517 ++*pos;
2518 if (v == SEQ_START_TOKEN) {
2519 iter->pos = 0;
2520 l = trie_firstleaf(iter->main_trie);
2521 } else {
2522 iter->pos++;
2523 l = trie_nextleaf(l);
2524 }
2525
2526 if (l)
2527 iter->key = l->key;
2528 else
2529 iter->pos = 0;
2530 return l;
2531}
2532
2533static void fib_route_seq_stop(struct seq_file *seq, void *v)
2534 __releases(RCU)
2535{
2536 rcu_read_unlock();
2537}
2538
32ab5f80 2539static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2540{
cb7b593c
SH
2541 static unsigned type2flags[RTN_MAX + 1] = {
2542 [7] = RTF_REJECT, [8] = RTF_REJECT,
2543 };
2544 unsigned flags = type2flags[type];
19baf839 2545
cb7b593c
SH
2546 if (fi && fi->fib_nh->nh_gw)
2547 flags |= RTF_GATEWAY;
32ab5f80 2548 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2549 flags |= RTF_HOST;
2550 flags |= RTF_UP;
2551 return flags;
19baf839
RO
2552}
2553
cb7b593c
SH
2554/*
2555 * This outputs /proc/net/route.
2556 * The format of the file is not supposed to be changed
2557 * and needs to be same as fib_hash output to avoid breaking
2558 * legacy utilities
2559 */
2560static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2561{
cb7b593c 2562 struct leaf *l = v;
1328042e
SH
2563 struct leaf_info *li;
2564 struct hlist_node *node;
19baf839 2565
cb7b593c
SH
2566 if (v == SEQ_START_TOKEN) {
2567 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2568 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2569 "\tWindow\tIRTT");
2570 return 0;
2571 }
19baf839 2572
1328042e 2573 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2574 struct fib_alias *fa;
32ab5f80 2575 __be32 mask, prefix;
91b9a277 2576
cb7b593c
SH
2577 mask = inet_make_mask(li->plen);
2578 prefix = htonl(l->key);
19baf839 2579
cb7b593c 2580 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2581 const struct fib_info *fi = fa->fa_info;
cb7b593c 2582 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2583 int len;
19baf839 2584
cb7b593c
SH
2585 if (fa->fa_type == RTN_BROADCAST
2586 || fa->fa_type == RTN_MULTICAST)
2587 continue;
19baf839 2588
cb7b593c 2589 if (fi)
5e659e4c
PE
2590 seq_printf(seq,
2591 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2592 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2593 fi->fib_dev ? fi->fib_dev->name : "*",
2594 prefix,
2595 fi->fib_nh->nh_gw, flags, 0, 0,
2596 fi->fib_priority,
2597 mask,
a07f5f50
SH
2598 (fi->fib_advmss ?
2599 fi->fib_advmss + 40 : 0),
cb7b593c 2600 fi->fib_window,
5e659e4c 2601 fi->fib_rtt >> 3, &len);
cb7b593c 2602 else
5e659e4c
PE
2603 seq_printf(seq,
2604 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2605 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2606 prefix, 0, flags, 0, 0, 0,
5e659e4c 2607 mask, 0, 0, 0, &len);
19baf839 2608
5e659e4c 2609 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2610 }
19baf839
RO
2611 }
2612
2613 return 0;
2614}
2615
f690808e 2616static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2617 .start = fib_route_seq_start,
2618 .next = fib_route_seq_next,
2619 .stop = fib_route_seq_stop,
cb7b593c 2620 .show = fib_route_seq_show,
19baf839
RO
2621};
2622
cb7b593c 2623static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2624{
1c340b2f 2625 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2626 sizeof(struct fib_route_iter));
19baf839
RO
2627}
2628
9a32144e 2629static const struct file_operations fib_route_fops = {
cb7b593c
SH
2630 .owner = THIS_MODULE,
2631 .open = fib_route_seq_open,
2632 .read = seq_read,
2633 .llseek = seq_lseek,
1c340b2f 2634 .release = seq_release_net,
19baf839
RO
2635};
2636
61a02653 2637int __net_init fib_proc_init(struct net *net)
19baf839 2638{
61a02653 2639 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2640 goto out1;
2641
61a02653
DL
2642 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2643 &fib_triestat_fops))
cb7b593c
SH
2644 goto out2;
2645
61a02653 2646 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2647 goto out3;
2648
19baf839 2649 return 0;
cb7b593c
SH
2650
2651out3:
61a02653 2652 proc_net_remove(net, "fib_triestat");
cb7b593c 2653out2:
61a02653 2654 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2655out1:
2656 return -ENOMEM;
19baf839
RO
2657}
2658
61a02653 2659void __net_exit fib_proc_exit(struct net *net)
19baf839 2660{
61a02653
DL
2661 proc_net_remove(net, "fib_trie");
2662 proc_net_remove(net, "fib_triestat");
2663 proc_net_remove(net, "route");
19baf839
RO
2664}
2665
2666#endif /* CONFIG_PROC_FS */
This page took 0.709838 seconds and 5 git commands to generate.