bnx2x: Change to driver version 1.72.10-0
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
5a0e3ad6 74#include <linux/slab.h>
70c71606 75#include <linux/prefetch.h>
bc3b2d7f 76#include <linux/export.h>
457c4cbc 77#include <net/net_namespace.h>
19baf839
RO
78#include <net/ip.h>
79#include <net/protocol.h>
80#include <net/route.h>
81#include <net/tcp.h>
82#include <net/sock.h>
83#include <net/ip_fib.h>
84#include "fib_lookup.h"
85
06ef921d 86#define MAX_STAT_DEPTH 32
19baf839 87
19baf839 88#define KEYLENGTH (8*sizeof(t_key))
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
92#define T_TNODE 0
93#define T_LEAF 1
94#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
95#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
96
91b9a277
OJ
97#define IS_TNODE(n) (!(n->parent & T_LEAF))
98#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839 99
b299e4f0 100struct rt_trie_node {
91b9a277 101 unsigned long parent;
8d965444 102 t_key key;
19baf839
RO
103};
104
105struct leaf {
91b9a277 106 unsigned long parent;
8d965444 107 t_key key;
19baf839 108 struct hlist_head list;
2373ce1c 109 struct rcu_head rcu;
19baf839
RO
110};
111
112struct leaf_info {
113 struct hlist_node hlist;
114 int plen;
5c74501f 115 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
19baf839 116 struct list_head falh;
5c74501f 117 struct rcu_head rcu;
19baf839
RO
118};
119
120struct tnode {
91b9a277 121 unsigned long parent;
8d965444 122 t_key key;
112d8cfc
ED
123 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
124 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
125 unsigned int full_children; /* KEYLENGTH bits needed */
126 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
127 union {
128 struct rcu_head rcu;
129 struct work_struct work;
e0f7cb8c 130 struct tnode *tnode_free;
15be75cd 131 };
0a5c0475 132 struct rt_trie_node __rcu *child[0];
19baf839
RO
133};
134
135#ifdef CONFIG_IP_FIB_TRIE_STATS
136struct trie_use_stats {
137 unsigned int gets;
138 unsigned int backtrack;
139 unsigned int semantic_match_passed;
140 unsigned int semantic_match_miss;
141 unsigned int null_node_hit;
2f36895a 142 unsigned int resize_node_skipped;
19baf839
RO
143};
144#endif
145
146struct trie_stat {
147 unsigned int totdepth;
148 unsigned int maxdepth;
149 unsigned int tnodes;
150 unsigned int leaves;
151 unsigned int nullpointers;
93672292 152 unsigned int prefixes;
06ef921d 153 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 154};
19baf839
RO
155
156struct trie {
0a5c0475 157 struct rt_trie_node __rcu *trie;
19baf839
RO
158#ifdef CONFIG_IP_FIB_TRIE_STATS
159 struct trie_use_stats stats;
160#endif
19baf839
RO
161};
162
b299e4f0
DM
163static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
164static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 165 int wasfull);
b299e4f0 166static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
167static struct tnode *inflate(struct trie *t, struct tnode *tn);
168static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
169/* tnodes to free after resize(); protected by RTNL */
170static struct tnode *tnode_free_head;
c3059477
JP
171static size_t tnode_free_size;
172
173/*
174 * synchronize_rcu after call_rcu for that many pages; it should be especially
175 * useful before resizing the root node with PREEMPT_NONE configs; the value was
176 * obtained experimentally, aiming to avoid visible slowdown.
177 */
178static const int sync_pages = 128;
19baf839 179
e18b890b 180static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 181static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 182
0a5c0475
ED
183/*
184 * caller must hold RTNL
185 */
186static inline struct tnode *node_parent(const struct rt_trie_node *node)
06801916 187{
0a5c0475
ED
188 unsigned long parent;
189
190 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
191
192 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
b59cfbf7
ED
193}
194
0a5c0475
ED
195/*
196 * caller must hold RCU read lock or RTNL
197 */
198static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
b59cfbf7 199{
0a5c0475
ED
200 unsigned long parent;
201
202 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
203 lockdep_rtnl_is_held());
06801916 204
0a5c0475 205 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
06801916
SH
206}
207
cf778b00 208/* Same as rcu_assign_pointer
6440cc9e
SH
209 * but that macro() assumes that value is a pointer.
210 */
b299e4f0 211static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
06801916 212{
6440cc9e
SH
213 smp_wmb();
214 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 215}
2373ce1c 216
0a5c0475
ED
217/*
218 * caller must hold RTNL
219 */
220static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
b59cfbf7
ED
221{
222 BUG_ON(i >= 1U << tn->bits);
2373ce1c 223
0a5c0475 224 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
225}
226
0a5c0475
ED
227/*
228 * caller must hold RCU read lock or RTNL
229 */
230static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
19baf839 231{
0a5c0475 232 BUG_ON(i >= 1U << tn->bits);
19baf839 233
0a5c0475 234 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
235}
236
bb435b8d 237static inline int tnode_child_length(const struct tnode *tn)
19baf839 238{
91b9a277 239 return 1 << tn->bits;
19baf839
RO
240}
241
3b004569 242static inline t_key mask_pfx(t_key k, unsigned int l)
ab66b4a7
SH
243{
244 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
245}
246
3b004569 247static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
19baf839 248{
91b9a277 249 if (offset < KEYLENGTH)
19baf839 250 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 251 else
19baf839
RO
252 return 0;
253}
254
255static inline int tkey_equals(t_key a, t_key b)
256{
c877efb2 257 return a == b;
19baf839
RO
258}
259
260static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
261{
c877efb2
SH
262 if (bits == 0 || offset >= KEYLENGTH)
263 return 1;
91b9a277
OJ
264 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
265 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 266}
19baf839
RO
267
268static inline int tkey_mismatch(t_key a, int offset, t_key b)
269{
270 t_key diff = a ^ b;
271 int i = offset;
272
c877efb2
SH
273 if (!diff)
274 return 0;
275 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
276 i++;
277 return i;
278}
279
19baf839 280/*
e905a9ed
YH
281 To understand this stuff, an understanding of keys and all their bits is
282 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
283 all of the bits in that key are significant.
284
285 Consider a node 'n' and its parent 'tp'.
286
e905a9ed
YH
287 If n is a leaf, every bit in its key is significant. Its presence is
288 necessitated by path compression, since during a tree traversal (when
289 searching for a leaf - unless we are doing an insertion) we will completely
290 ignore all skipped bits we encounter. Thus we need to verify, at the end of
291 a potentially successful search, that we have indeed been walking the
19baf839
RO
292 correct key path.
293
e905a9ed
YH
294 Note that we can never "miss" the correct key in the tree if present by
295 following the wrong path. Path compression ensures that segments of the key
296 that are the same for all keys with a given prefix are skipped, but the
297 skipped part *is* identical for each node in the subtrie below the skipped
298 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
299 call to tkey_sub_equals() in trie_insert().
300
e905a9ed 301 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
302 have many different meanings.
303
e905a9ed 304 Example:
19baf839
RO
305 _________________________________________________________________
306 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
307 -----------------------------------------------------------------
e905a9ed 308 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
309
310 _________________________________________________________________
311 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
312 -----------------------------------------------------------------
313 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
314
315 tp->pos = 7
316 tp->bits = 3
317 n->pos = 15
91b9a277 318 n->bits = 4
19baf839 319
e905a9ed
YH
320 First, let's just ignore the bits that come before the parent tp, that is
321 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
322 not use them for anything.
323
324 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 325 index into the parent's child array. That is, they will be used to find
19baf839
RO
326 'n' among tp's children.
327
328 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
329 for the node n.
330
e905a9ed 331 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
332 of the bits are really not needed or indeed known in n->key.
333
e905a9ed 334 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 335 n's child array, and will of course be different for each child.
e905a9ed 336
c877efb2 337
19baf839
RO
338 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
339 at this point.
340
341*/
342
0c7770c7 343static inline void check_tnode(const struct tnode *tn)
19baf839 344{
0c7770c7 345 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
346}
347
f5026fab
DL
348static const int halve_threshold = 25;
349static const int inflate_threshold = 50;
345aa031 350static const int halve_threshold_root = 15;
80b71b80 351static const int inflate_threshold_root = 30;
2373ce1c
RO
352
353static void __alias_free_mem(struct rcu_head *head)
19baf839 354{
2373ce1c
RO
355 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
356 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
357}
358
2373ce1c 359static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 360{
2373ce1c
RO
361 call_rcu(&fa->rcu, __alias_free_mem);
362}
91b9a277 363
2373ce1c
RO
364static void __leaf_free_rcu(struct rcu_head *head)
365{
bc3c8c1e
SH
366 struct leaf *l = container_of(head, struct leaf, rcu);
367 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 368}
91b9a277 369
387a5487
SH
370static inline void free_leaf(struct leaf *l)
371{
372 call_rcu_bh(&l->rcu, __leaf_free_rcu);
373}
374
2373ce1c 375static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 376{
bceb0f45 377 kfree_rcu(leaf, rcu);
19baf839
RO
378}
379
8d965444 380static struct tnode *tnode_alloc(size_t size)
f0e36f8c 381{
2373ce1c 382 if (size <= PAGE_SIZE)
8d965444 383 return kzalloc(size, GFP_KERNEL);
15be75cd 384 else
7a1c8e5a 385 return vzalloc(size);
15be75cd 386}
2373ce1c 387
15be75cd
SH
388static void __tnode_vfree(struct work_struct *arg)
389{
390 struct tnode *tn = container_of(arg, struct tnode, work);
391 vfree(tn);
f0e36f8c
PM
392}
393
2373ce1c 394static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 395{
2373ce1c 396 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444 397 size_t size = sizeof(struct tnode) +
b299e4f0 398 (sizeof(struct rt_trie_node *) << tn->bits);
f0e36f8c
PM
399
400 if (size <= PAGE_SIZE)
401 kfree(tn);
15be75cd
SH
402 else {
403 INIT_WORK(&tn->work, __tnode_vfree);
404 schedule_work(&tn->work);
405 }
f0e36f8c
PM
406}
407
2373ce1c
RO
408static inline void tnode_free(struct tnode *tn)
409{
387a5487
SH
410 if (IS_LEAF(tn))
411 free_leaf((struct leaf *) tn);
412 else
550e29bc 413 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
414}
415
e0f7cb8c
JP
416static void tnode_free_safe(struct tnode *tn)
417{
418 BUG_ON(IS_LEAF(tn));
7b85576d
JP
419 tn->tnode_free = tnode_free_head;
420 tnode_free_head = tn;
c3059477 421 tnode_free_size += sizeof(struct tnode) +
b299e4f0 422 (sizeof(struct rt_trie_node *) << tn->bits);
e0f7cb8c
JP
423}
424
425static void tnode_free_flush(void)
426{
427 struct tnode *tn;
428
429 while ((tn = tnode_free_head)) {
430 tnode_free_head = tn->tnode_free;
431 tn->tnode_free = NULL;
432 tnode_free(tn);
433 }
c3059477
JP
434
435 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
436 tnode_free_size = 0;
437 synchronize_rcu();
438 }
e0f7cb8c
JP
439}
440
2373ce1c
RO
441static struct leaf *leaf_new(void)
442{
bc3c8c1e 443 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
444 if (l) {
445 l->parent = T_LEAF;
446 INIT_HLIST_HEAD(&l->list);
447 }
448 return l;
449}
450
451static struct leaf_info *leaf_info_new(int plen)
452{
453 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
454 if (li) {
455 li->plen = plen;
5c74501f 456 li->mask_plen = ntohl(inet_make_mask(plen));
2373ce1c
RO
457 INIT_LIST_HEAD(&li->falh);
458 }
459 return li;
460}
461
a07f5f50 462static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 463{
b299e4f0 464 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
f0e36f8c 465 struct tnode *tn = tnode_alloc(sz);
19baf839 466
91b9a277 467 if (tn) {
2373ce1c 468 tn->parent = T_TNODE;
19baf839
RO
469 tn->pos = pos;
470 tn->bits = bits;
471 tn->key = key;
472 tn->full_children = 0;
473 tn->empty_children = 1<<bits;
474 }
c877efb2 475
a034ee3c 476 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
b299e4f0 477 sizeof(struct rt_trie_node) << bits);
19baf839
RO
478 return tn;
479}
480
19baf839
RO
481/*
482 * Check whether a tnode 'n' is "full", i.e. it is an internal node
483 * and no bits are skipped. See discussion in dyntree paper p. 6
484 */
485
b299e4f0 486static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
19baf839 487{
c877efb2 488 if (n == NULL || IS_LEAF(n))
19baf839
RO
489 return 0;
490
491 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
492}
493
a07f5f50 494static inline void put_child(struct trie *t, struct tnode *tn, int i,
b299e4f0 495 struct rt_trie_node *n)
19baf839
RO
496{
497 tnode_put_child_reorg(tn, i, n, -1);
498}
499
c877efb2 500 /*
19baf839
RO
501 * Add a child at position i overwriting the old value.
502 * Update the value of full_children and empty_children.
503 */
504
b299e4f0 505static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 506 int wasfull)
19baf839 507{
0a5c0475 508 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
19baf839
RO
509 int isfull;
510
0c7770c7
SH
511 BUG_ON(i >= 1<<tn->bits);
512
19baf839
RO
513 /* update emptyChildren */
514 if (n == NULL && chi != NULL)
515 tn->empty_children++;
516 else if (n != NULL && chi == NULL)
517 tn->empty_children--;
c877efb2 518
19baf839 519 /* update fullChildren */
91b9a277 520 if (wasfull == -1)
19baf839
RO
521 wasfull = tnode_full(tn, chi);
522
523 isfull = tnode_full(tn, n);
c877efb2 524 if (wasfull && !isfull)
19baf839 525 tn->full_children--;
c877efb2 526 else if (!wasfull && isfull)
19baf839 527 tn->full_children++;
91b9a277 528
c877efb2 529 if (n)
06801916 530 node_set_parent(n, tn);
19baf839 531
cf778b00 532 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
533}
534
80b71b80 535#define MAX_WORK 10
b299e4f0 536static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
537{
538 int i;
2f80b3c8 539 struct tnode *old_tn;
e6308be8
RO
540 int inflate_threshold_use;
541 int halve_threshold_use;
80b71b80 542 int max_work;
19baf839 543
e905a9ed 544 if (!tn)
19baf839
RO
545 return NULL;
546
0c7770c7
SH
547 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
548 tn, inflate_threshold, halve_threshold);
19baf839
RO
549
550 /* No children */
551 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 552 tnode_free_safe(tn);
19baf839
RO
553 return NULL;
554 }
555 /* One child */
556 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 557 goto one_child;
c877efb2 558 /*
19baf839
RO
559 * Double as long as the resulting node has a number of
560 * nonempty nodes that are above the threshold.
561 */
562
563 /*
c877efb2
SH
564 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
565 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 566 * Telecommunications, page 6:
c877efb2 567 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
568 * children in the *doubled* node is at least 'high'."
569 *
c877efb2
SH
570 * 'high' in this instance is the variable 'inflate_threshold'. It
571 * is expressed as a percentage, so we multiply it with
572 * tnode_child_length() and instead of multiplying by 2 (since the
573 * child array will be doubled by inflate()) and multiplying
574 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 575 * multiply the left-hand side by 50.
c877efb2
SH
576 *
577 * The left-hand side may look a bit weird: tnode_child_length(tn)
578 * - tn->empty_children is of course the number of non-null children
579 * in the current node. tn->full_children is the number of "full"
19baf839 580 * children, that is non-null tnodes with a skip value of 0.
c877efb2 581 * All of those will be doubled in the resulting inflated tnode, so
19baf839 582 * we just count them one extra time here.
c877efb2 583 *
19baf839 584 * A clearer way to write this would be:
c877efb2 585 *
19baf839 586 * to_be_doubled = tn->full_children;
c877efb2 587 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
588 * tn->full_children;
589 *
590 * new_child_length = tnode_child_length(tn) * 2;
591 *
c877efb2 592 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
593 * new_child_length;
594 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
595 *
596 * ...and so on, tho it would mess up the while () loop.
597 *
19baf839
RO
598 * anyway,
599 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
600 * inflate_threshold
c877efb2 601 *
19baf839
RO
602 * avoid a division:
603 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
604 * inflate_threshold * new_child_length
c877efb2 605 *
19baf839 606 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 607 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 608 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 609 *
19baf839 610 * expand new_child_length:
c877efb2 611 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 612 * tn->full_children) >=
19baf839 613 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 614 *
19baf839 615 * shorten again:
c877efb2 616 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 617 * tn->empty_children) >= inflate_threshold *
19baf839 618 * tnode_child_length(tn)
c877efb2 619 *
19baf839
RO
620 */
621
622 check_tnode(tn);
c877efb2 623
e6308be8
RO
624 /* Keep root node larger */
625
b299e4f0 626 if (!node_parent((struct rt_trie_node *)tn)) {
80b71b80
JL
627 inflate_threshold_use = inflate_threshold_root;
628 halve_threshold_use = halve_threshold_root;
a034ee3c 629 } else {
e6308be8 630 inflate_threshold_use = inflate_threshold;
80b71b80
JL
631 halve_threshold_use = halve_threshold;
632 }
e6308be8 633
80b71b80
JL
634 max_work = MAX_WORK;
635 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
636 50 * (tn->full_children + tnode_child_length(tn)
637 - tn->empty_children)
638 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 639
2f80b3c8
RO
640 old_tn = tn;
641 tn = inflate(t, tn);
a07f5f50 642
2f80b3c8
RO
643 if (IS_ERR(tn)) {
644 tn = old_tn;
2f36895a
RO
645#ifdef CONFIG_IP_FIB_TRIE_STATS
646 t->stats.resize_node_skipped++;
647#endif
648 break;
649 }
19baf839
RO
650 }
651
652 check_tnode(tn);
653
80b71b80 654 /* Return if at least one inflate is run */
a034ee3c 655 if (max_work != MAX_WORK)
b299e4f0 656 return (struct rt_trie_node *) tn;
80b71b80 657
19baf839
RO
658 /*
659 * Halve as long as the number of empty children in this
660 * node is above threshold.
661 */
2f36895a 662
80b71b80
JL
663 max_work = MAX_WORK;
664 while (tn->bits > 1 && max_work-- &&
19baf839 665 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 666 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 667
2f80b3c8
RO
668 old_tn = tn;
669 tn = halve(t, tn);
670 if (IS_ERR(tn)) {
671 tn = old_tn;
2f36895a
RO
672#ifdef CONFIG_IP_FIB_TRIE_STATS
673 t->stats.resize_node_skipped++;
674#endif
675 break;
676 }
677 }
19baf839 678
c877efb2 679
19baf839 680 /* Only one child remains */
80b71b80
JL
681 if (tn->empty_children == tnode_child_length(tn) - 1) {
682one_child:
19baf839 683 for (i = 0; i < tnode_child_length(tn); i++) {
b299e4f0 684 struct rt_trie_node *n;
19baf839 685
0a5c0475 686 n = rtnl_dereference(tn->child[i]);
2373ce1c 687 if (!n)
91b9a277 688 continue;
91b9a277
OJ
689
690 /* compress one level */
691
06801916 692 node_set_parent(n, NULL);
e0f7cb8c 693 tnode_free_safe(tn);
91b9a277 694 return n;
19baf839 695 }
80b71b80 696 }
b299e4f0 697 return (struct rt_trie_node *) tn;
19baf839
RO
698}
699
0a5c0475
ED
700
701static void tnode_clean_free(struct tnode *tn)
702{
703 int i;
704 struct tnode *tofree;
705
706 for (i = 0; i < tnode_child_length(tn); i++) {
707 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
708 if (tofree)
709 tnode_free(tofree);
710 }
711 tnode_free(tn);
712}
713
2f80b3c8 714static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 715{
19baf839
RO
716 struct tnode *oldtnode = tn;
717 int olen = tnode_child_length(tn);
718 int i;
719
0c7770c7 720 pr_debug("In inflate\n");
19baf839
RO
721
722 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
723
0c7770c7 724 if (!tn)
2f80b3c8 725 return ERR_PTR(-ENOMEM);
2f36895a
RO
726
727 /*
c877efb2
SH
728 * Preallocate and store tnodes before the actual work so we
729 * don't get into an inconsistent state if memory allocation
730 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
731 * of tnode is ignored.
732 */
91b9a277
OJ
733
734 for (i = 0; i < olen; i++) {
a07f5f50 735 struct tnode *inode;
2f36895a 736
a07f5f50 737 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
738 if (inode &&
739 IS_TNODE(inode) &&
740 inode->pos == oldtnode->pos + oldtnode->bits &&
741 inode->bits > 1) {
742 struct tnode *left, *right;
ab66b4a7 743 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 744
2f36895a
RO
745 left = tnode_new(inode->key&(~m), inode->pos + 1,
746 inode->bits - 1);
2f80b3c8
RO
747 if (!left)
748 goto nomem;
91b9a277 749
2f36895a
RO
750 right = tnode_new(inode->key|m, inode->pos + 1,
751 inode->bits - 1);
752
e905a9ed 753 if (!right) {
2f80b3c8
RO
754 tnode_free(left);
755 goto nomem;
e905a9ed 756 }
2f36895a 757
b299e4f0
DM
758 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
759 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
2f36895a
RO
760 }
761 }
762
91b9a277 763 for (i = 0; i < olen; i++) {
c95aaf9a 764 struct tnode *inode;
b299e4f0 765 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
766 struct tnode *left, *right;
767 int size, j;
c877efb2 768
19baf839
RO
769 /* An empty child */
770 if (node == NULL)
771 continue;
772
773 /* A leaf or an internal node with skipped bits */
774
c877efb2 775 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 776 tn->pos + tn->bits - 1) {
a07f5f50
SH
777 if (tkey_extract_bits(node->key,
778 oldtnode->pos + oldtnode->bits,
779 1) == 0)
19baf839
RO
780 put_child(t, tn, 2*i, node);
781 else
782 put_child(t, tn, 2*i+1, node);
783 continue;
784 }
785
786 /* An internal node with two children */
787 inode = (struct tnode *) node;
788
789 if (inode->bits == 1) {
0a5c0475
ED
790 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
791 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
19baf839 792
e0f7cb8c 793 tnode_free_safe(inode);
91b9a277 794 continue;
19baf839
RO
795 }
796
91b9a277
OJ
797 /* An internal node with more than two children */
798
799 /* We will replace this node 'inode' with two new
800 * ones, 'left' and 'right', each with half of the
801 * original children. The two new nodes will have
802 * a position one bit further down the key and this
803 * means that the "significant" part of their keys
804 * (see the discussion near the top of this file)
805 * will differ by one bit, which will be "0" in
806 * left's key and "1" in right's key. Since we are
807 * moving the key position by one step, the bit that
808 * we are moving away from - the bit at position
809 * (inode->pos) - is the one that will differ between
810 * left and right. So... we synthesize that bit in the
811 * two new keys.
812 * The mask 'm' below will be a single "one" bit at
813 * the position (inode->pos)
814 */
19baf839 815
91b9a277
OJ
816 /* Use the old key, but set the new significant
817 * bit to zero.
818 */
2f36895a 819
91b9a277
OJ
820 left = (struct tnode *) tnode_get_child(tn, 2*i);
821 put_child(t, tn, 2*i, NULL);
2f36895a 822
91b9a277 823 BUG_ON(!left);
2f36895a 824
91b9a277
OJ
825 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
826 put_child(t, tn, 2*i+1, NULL);
19baf839 827
91b9a277 828 BUG_ON(!right);
19baf839 829
91b9a277
OJ
830 size = tnode_child_length(left);
831 for (j = 0; j < size; j++) {
0a5c0475
ED
832 put_child(t, left, j, rtnl_dereference(inode->child[j]));
833 put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
19baf839 834 }
91b9a277
OJ
835 put_child(t, tn, 2*i, resize(t, left));
836 put_child(t, tn, 2*i+1, resize(t, right));
837
e0f7cb8c 838 tnode_free_safe(inode);
19baf839 839 }
e0f7cb8c 840 tnode_free_safe(oldtnode);
19baf839 841 return tn;
2f80b3c8 842nomem:
0a5c0475
ED
843 tnode_clean_free(tn);
844 return ERR_PTR(-ENOMEM);
19baf839
RO
845}
846
2f80b3c8 847static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
848{
849 struct tnode *oldtnode = tn;
b299e4f0 850 struct rt_trie_node *left, *right;
19baf839
RO
851 int i;
852 int olen = tnode_child_length(tn);
853
0c7770c7 854 pr_debug("In halve\n");
c877efb2
SH
855
856 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 857
2f80b3c8
RO
858 if (!tn)
859 return ERR_PTR(-ENOMEM);
2f36895a
RO
860
861 /*
c877efb2
SH
862 * Preallocate and store tnodes before the actual work so we
863 * don't get into an inconsistent state if memory allocation
864 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
865 * of tnode is ignored.
866 */
867
91b9a277 868 for (i = 0; i < olen; i += 2) {
2f36895a
RO
869 left = tnode_get_child(oldtnode, i);
870 right = tnode_get_child(oldtnode, i+1);
c877efb2 871
2f36895a 872 /* Two nonempty children */
0c7770c7 873 if (left && right) {
2f80b3c8 874 struct tnode *newn;
0c7770c7 875
2f80b3c8 876 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
877
878 if (!newn)
2f80b3c8 879 goto nomem;
0c7770c7 880
b299e4f0 881 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
2f36895a 882 }
2f36895a 883
2f36895a 884 }
19baf839 885
91b9a277
OJ
886 for (i = 0; i < olen; i += 2) {
887 struct tnode *newBinNode;
888
19baf839
RO
889 left = tnode_get_child(oldtnode, i);
890 right = tnode_get_child(oldtnode, i+1);
c877efb2 891
19baf839
RO
892 /* At least one of the children is empty */
893 if (left == NULL) {
894 if (right == NULL) /* Both are empty */
895 continue;
896 put_child(t, tn, i/2, right);
91b9a277 897 continue;
0c7770c7 898 }
91b9a277
OJ
899
900 if (right == NULL) {
19baf839 901 put_child(t, tn, i/2, left);
91b9a277
OJ
902 continue;
903 }
c877efb2 904
19baf839 905 /* Two nonempty children */
91b9a277
OJ
906 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
907 put_child(t, tn, i/2, NULL);
91b9a277
OJ
908 put_child(t, newBinNode, 0, left);
909 put_child(t, newBinNode, 1, right);
910 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 911 }
e0f7cb8c 912 tnode_free_safe(oldtnode);
19baf839 913 return tn;
2f80b3c8 914nomem:
0a5c0475
ED
915 tnode_clean_free(tn);
916 return ERR_PTR(-ENOMEM);
19baf839
RO
917}
918
772cb712 919/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
920 via get_fa_head and dump */
921
772cb712 922static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 923{
772cb712 924 struct hlist_head *head = &l->list;
19baf839
RO
925 struct hlist_node *node;
926 struct leaf_info *li;
927
2373ce1c 928 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 929 if (li->plen == plen)
19baf839 930 return li;
91b9a277 931
19baf839
RO
932 return NULL;
933}
934
a07f5f50 935static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 936{
772cb712 937 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 938
91b9a277
OJ
939 if (!li)
940 return NULL;
c877efb2 941
91b9a277 942 return &li->falh;
19baf839
RO
943}
944
945static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
946{
e905a9ed
YH
947 struct leaf_info *li = NULL, *last = NULL;
948 struct hlist_node *node;
949
950 if (hlist_empty(head)) {
951 hlist_add_head_rcu(&new->hlist, head);
952 } else {
953 hlist_for_each_entry(li, node, head, hlist) {
954 if (new->plen > li->plen)
955 break;
956
957 last = li;
958 }
959 if (last)
960 hlist_add_after_rcu(&last->hlist, &new->hlist);
961 else
962 hlist_add_before_rcu(&new->hlist, &li->hlist);
963 }
19baf839
RO
964}
965
2373ce1c
RO
966/* rcu_read_lock needs to be hold by caller from readside */
967
19baf839
RO
968static struct leaf *
969fib_find_node(struct trie *t, u32 key)
970{
971 int pos;
972 struct tnode *tn;
b299e4f0 973 struct rt_trie_node *n;
19baf839
RO
974
975 pos = 0;
a034ee3c 976 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
977
978 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
979 tn = (struct tnode *) n;
91b9a277 980
19baf839 981 check_tnode(tn);
91b9a277 982
c877efb2 983 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 984 pos = tn->pos + tn->bits;
a07f5f50
SH
985 n = tnode_get_child_rcu(tn,
986 tkey_extract_bits(key,
987 tn->pos,
988 tn->bits));
91b9a277 989 } else
19baf839
RO
990 break;
991 }
992 /* Case we have found a leaf. Compare prefixes */
993
91b9a277
OJ
994 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
995 return (struct leaf *)n;
996
19baf839
RO
997 return NULL;
998}
999
7b85576d 1000static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 1001{
19baf839 1002 int wasfull;
3ed18d76 1003 t_key cindex, key;
06801916 1004 struct tnode *tp;
19baf839 1005
3ed18d76
RO
1006 key = tn->key;
1007
b299e4f0 1008 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
19baf839
RO
1009 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1010 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
1011 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1012
1013 tnode_put_child_reorg((struct tnode *)tp, cindex,
b299e4f0 1014 (struct rt_trie_node *)tn, wasfull);
91b9a277 1015
b299e4f0 1016 tp = node_parent((struct rt_trie_node *) tn);
008440e3 1017 if (!tp)
cf778b00 1018 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
008440e3 1019
e0f7cb8c 1020 tnode_free_flush();
06801916 1021 if (!tp)
19baf839 1022 break;
06801916 1023 tn = tp;
19baf839 1024 }
06801916 1025
19baf839 1026 /* Handle last (top) tnode */
7b85576d 1027 if (IS_TNODE(tn))
a07f5f50 1028 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1029
cf778b00 1030 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
7b85576d 1031 tnode_free_flush();
19baf839
RO
1032}
1033
2373ce1c
RO
1034/* only used from updater-side */
1035
fea86ad8 1036static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1037{
1038 int pos, newpos;
1039 struct tnode *tp = NULL, *tn = NULL;
b299e4f0 1040 struct rt_trie_node *n;
19baf839
RO
1041 struct leaf *l;
1042 int missbit;
c877efb2 1043 struct list_head *fa_head = NULL;
19baf839
RO
1044 struct leaf_info *li;
1045 t_key cindex;
1046
1047 pos = 0;
0a5c0475 1048 n = rtnl_dereference(t->trie);
19baf839 1049
c877efb2
SH
1050 /* If we point to NULL, stop. Either the tree is empty and we should
1051 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1052 * and we should just put our new leaf in that.
c877efb2
SH
1053 * If we point to a T_TNODE, check if it matches our key. Note that
1054 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1055 * not be the parent's 'pos'+'bits'!
1056 *
c877efb2 1057 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1058 * the index from our key, push the T_TNODE and walk the tree.
1059 *
1060 * If it doesn't, we have to replace it with a new T_TNODE.
1061 *
c877efb2
SH
1062 * If we point to a T_LEAF, it might or might not have the same key
1063 * as we do. If it does, just change the value, update the T_LEAF's
1064 * value, and return it.
19baf839
RO
1065 * If it doesn't, we need to replace it with a T_TNODE.
1066 */
1067
1068 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1069 tn = (struct tnode *) n;
91b9a277 1070
c877efb2 1071 check_tnode(tn);
91b9a277 1072
c877efb2 1073 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1074 tp = tn;
91b9a277 1075 pos = tn->pos + tn->bits;
a07f5f50
SH
1076 n = tnode_get_child(tn,
1077 tkey_extract_bits(key,
1078 tn->pos,
1079 tn->bits));
19baf839 1080
06801916 1081 BUG_ON(n && node_parent(n) != tn);
91b9a277 1082 } else
19baf839
RO
1083 break;
1084 }
1085
1086 /*
1087 * n ----> NULL, LEAF or TNODE
1088 *
c877efb2 1089 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1090 */
1091
91b9a277 1092 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1093
1094 /* Case 1: n is a leaf. Compare prefixes */
1095
c877efb2 1096 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1097 l = (struct leaf *) n;
19baf839 1098 li = leaf_info_new(plen);
91b9a277 1099
fea86ad8
SH
1100 if (!li)
1101 return NULL;
19baf839
RO
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105 goto done;
1106 }
19baf839
RO
1107 l = leaf_new();
1108
fea86ad8
SH
1109 if (!l)
1110 return NULL;
19baf839
RO
1111
1112 l->key = key;
1113 li = leaf_info_new(plen);
1114
c877efb2 1115 if (!li) {
387a5487 1116 free_leaf(l);
fea86ad8 1117 return NULL;
f835e471 1118 }
19baf839
RO
1119
1120 fa_head = &li->falh;
1121 insert_leaf_info(&l->list, li);
1122
19baf839 1123 if (t->trie && n == NULL) {
91b9a277 1124 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1125
b299e4f0 1126 node_set_parent((struct rt_trie_node *)l, tp);
19baf839 1127
91b9a277 1128 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
b299e4f0 1129 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
91b9a277
OJ
1130 } else {
1131 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1132 /*
1133 * Add a new tnode here
19baf839
RO
1134 * first tnode need some special handling
1135 */
1136
1137 if (tp)
91b9a277 1138 pos = tp->pos+tp->bits;
19baf839 1139 else
91b9a277
OJ
1140 pos = 0;
1141
c877efb2 1142 if (n) {
19baf839
RO
1143 newpos = tkey_mismatch(key, pos, n->key);
1144 tn = tnode_new(n->key, newpos, 1);
91b9a277 1145 } else {
19baf839 1146 newpos = 0;
c877efb2 1147 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1148 }
19baf839 1149
c877efb2 1150 if (!tn) {
f835e471 1151 free_leaf_info(li);
387a5487 1152 free_leaf(l);
fea86ad8 1153 return NULL;
91b9a277
OJ
1154 }
1155
b299e4f0 1156 node_set_parent((struct rt_trie_node *)tn, tp);
19baf839 1157
91b9a277 1158 missbit = tkey_extract_bits(key, newpos, 1);
b299e4f0 1159 put_child(t, tn, missbit, (struct rt_trie_node *)l);
19baf839
RO
1160 put_child(t, tn, 1-missbit, n);
1161
c877efb2 1162 if (tp) {
19baf839 1163 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50 1164 put_child(t, (struct tnode *)tp, cindex,
b299e4f0 1165 (struct rt_trie_node *)tn);
91b9a277 1166 } else {
cf778b00 1167 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
19baf839
RO
1168 tp = tn;
1169 }
1170 }
91b9a277
OJ
1171
1172 if (tp && tp->pos + tp->bits > 32)
058bd4d2
JP
1173 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1174 tp, tp->pos, tp->bits, key, plen);
91b9a277 1175
19baf839 1176 /* Rebalance the trie */
2373ce1c 1177
7b85576d 1178 trie_rebalance(t, tp);
f835e471 1179done:
19baf839
RO
1180 return fa_head;
1181}
1182
d562f1f8
RO
1183/*
1184 * Caller must hold RTNL.
1185 */
16c6cf8b 1186int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1187{
1188 struct trie *t = (struct trie *) tb->tb_data;
1189 struct fib_alias *fa, *new_fa;
c877efb2 1190 struct list_head *fa_head = NULL;
19baf839 1191 struct fib_info *fi;
4e902c57
TG
1192 int plen = cfg->fc_dst_len;
1193 u8 tos = cfg->fc_tos;
19baf839
RO
1194 u32 key, mask;
1195 int err;
1196 struct leaf *l;
1197
1198 if (plen > 32)
1199 return -EINVAL;
1200
4e902c57 1201 key = ntohl(cfg->fc_dst);
19baf839 1202
2dfe55b4 1203 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1204
91b9a277 1205 mask = ntohl(inet_make_mask(plen));
19baf839 1206
c877efb2 1207 if (key & ~mask)
19baf839
RO
1208 return -EINVAL;
1209
1210 key = key & mask;
1211
4e902c57
TG
1212 fi = fib_create_info(cfg);
1213 if (IS_ERR(fi)) {
1214 err = PTR_ERR(fi);
19baf839 1215 goto err;
4e902c57 1216 }
19baf839
RO
1217
1218 l = fib_find_node(t, key);
c877efb2 1219 fa = NULL;
19baf839 1220
c877efb2 1221 if (l) {
19baf839
RO
1222 fa_head = get_fa_head(l, plen);
1223 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1224 }
1225
1226 /* Now fa, if non-NULL, points to the first fib alias
1227 * with the same keys [prefix,tos,priority], if such key already
1228 * exists or to the node before which we will insert new one.
1229 *
1230 * If fa is NULL, we will need to allocate a new one and
1231 * insert to the head of f.
1232 *
1233 * If f is NULL, no fib node matched the destination key
1234 * and we need to allocate a new one of those as well.
1235 */
1236
936f6f8e
JA
1237 if (fa && fa->fa_tos == tos &&
1238 fa->fa_info->fib_priority == fi->fib_priority) {
1239 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1240
1241 err = -EEXIST;
4e902c57 1242 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1243 goto out;
1244
936f6f8e
JA
1245 /* We have 2 goals:
1246 * 1. Find exact match for type, scope, fib_info to avoid
1247 * duplicate routes
1248 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1249 */
1250 fa_match = NULL;
1251 fa_first = fa;
1252 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1253 list_for_each_entry_continue(fa, fa_head, fa_list) {
1254 if (fa->fa_tos != tos)
1255 break;
1256 if (fa->fa_info->fib_priority != fi->fib_priority)
1257 break;
1258 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1259 fa->fa_info == fi) {
1260 fa_match = fa;
1261 break;
1262 }
1263 }
1264
4e902c57 1265 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1266 struct fib_info *fi_drop;
1267 u8 state;
1268
936f6f8e
JA
1269 fa = fa_first;
1270 if (fa_match) {
1271 if (fa == fa_match)
1272 err = 0;
6725033f 1273 goto out;
936f6f8e 1274 }
2373ce1c 1275 err = -ENOBUFS;
e94b1766 1276 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1277 if (new_fa == NULL)
1278 goto out;
19baf839
RO
1279
1280 fi_drop = fa->fa_info;
2373ce1c
RO
1281 new_fa->fa_tos = fa->fa_tos;
1282 new_fa->fa_info = fi;
4e902c57 1283 new_fa->fa_type = cfg->fc_type;
19baf839 1284 state = fa->fa_state;
936f6f8e 1285 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1286
2373ce1c
RO
1287 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1288 alias_free_mem_rcu(fa);
19baf839
RO
1289
1290 fib_release_info(fi_drop);
1291 if (state & FA_S_ACCESSED)
76e6ebfb 1292 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1293 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1294 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1295
91b9a277 1296 goto succeeded;
19baf839
RO
1297 }
1298 /* Error if we find a perfect match which
1299 * uses the same scope, type, and nexthop
1300 * information.
1301 */
936f6f8e
JA
1302 if (fa_match)
1303 goto out;
a07f5f50 1304
4e902c57 1305 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1306 fa = fa_first;
19baf839
RO
1307 }
1308 err = -ENOENT;
4e902c57 1309 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1310 goto out;
1311
1312 err = -ENOBUFS;
e94b1766 1313 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1314 if (new_fa == NULL)
1315 goto out;
1316
1317 new_fa->fa_info = fi;
1318 new_fa->fa_tos = tos;
4e902c57 1319 new_fa->fa_type = cfg->fc_type;
19baf839 1320 new_fa->fa_state = 0;
19baf839
RO
1321 /*
1322 * Insert new entry to the list.
1323 */
1324
c877efb2 1325 if (!fa_head) {
fea86ad8
SH
1326 fa_head = fib_insert_node(t, key, plen);
1327 if (unlikely(!fa_head)) {
1328 err = -ENOMEM;
f835e471 1329 goto out_free_new_fa;
fea86ad8 1330 }
f835e471 1331 }
19baf839 1332
21d8c49e
DM
1333 if (!plen)
1334 tb->tb_num_default++;
1335
2373ce1c
RO
1336 list_add_tail_rcu(&new_fa->fa_list,
1337 (fa ? &fa->fa_list : fa_head));
19baf839 1338
76e6ebfb 1339 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1340 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1341 &cfg->fc_nlinfo, 0);
19baf839
RO
1342succeeded:
1343 return 0;
f835e471
RO
1344
1345out_free_new_fa:
1346 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1347out:
1348 fib_release_info(fi);
91b9a277 1349err:
19baf839
RO
1350 return err;
1351}
1352
772cb712 1353/* should be called with rcu_read_lock */
5b470441 1354static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
22bd5b9b 1355 t_key key, const struct flowi4 *flp,
ebc0ffae 1356 struct fib_result *res, int fib_flags)
19baf839 1357{
19baf839
RO
1358 struct leaf_info *li;
1359 struct hlist_head *hhead = &l->list;
1360 struct hlist_node *node;
c877efb2 1361
2373ce1c 1362 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
3be0686b 1363 struct fib_alias *fa;
a07f5f50 1364
5c74501f 1365 if (l->key != (key & li->mask_plen))
19baf839
RO
1366 continue;
1367
3be0686b
DM
1368 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1369 struct fib_info *fi = fa->fa_info;
1370 int nhsel, err;
a07f5f50 1371
22bd5b9b 1372 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
3be0686b 1373 continue;
37e826c5 1374 if (fa->fa_info->fib_scope < flp->flowi4_scope)
3be0686b
DM
1375 continue;
1376 fib_alias_accessed(fa);
1377 err = fib_props[fa->fa_type].error;
1378 if (err) {
19baf839 1379#ifdef CONFIG_IP_FIB_TRIE_STATS
1fbc7843 1380 t->stats.semantic_match_passed++;
3be0686b 1381#endif
1fbc7843 1382 return err;
3be0686b
DM
1383 }
1384 if (fi->fib_flags & RTNH_F_DEAD)
1385 continue;
1386 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1387 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1388
1389 if (nh->nh_flags & RTNH_F_DEAD)
1390 continue;
22bd5b9b 1391 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
3be0686b
DM
1392 continue;
1393
1394#ifdef CONFIG_IP_FIB_TRIE_STATS
1395 t->stats.semantic_match_passed++;
1396#endif
5c74501f 1397 res->prefixlen = li->plen;
3be0686b
DM
1398 res->nh_sel = nhsel;
1399 res->type = fa->fa_type;
37e826c5 1400 res->scope = fa->fa_info->fib_scope;
3be0686b
DM
1401 res->fi = fi;
1402 res->table = tb;
1403 res->fa_head = &li->falh;
1404 if (!(fib_flags & FIB_LOOKUP_NOREF))
5c74501f 1405 atomic_inc(&fi->fib_clntref);
3be0686b
DM
1406 return 0;
1407 }
1408 }
1409
1410#ifdef CONFIG_IP_FIB_TRIE_STATS
1411 t->stats.semantic_match_miss++;
19baf839 1412#endif
19baf839 1413 }
a07f5f50 1414
2e655571 1415 return 1;
19baf839
RO
1416}
1417
22bd5b9b 1418int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1419 struct fib_result *res, int fib_flags)
19baf839
RO
1420{
1421 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1422 int ret;
b299e4f0 1423 struct rt_trie_node *n;
19baf839 1424 struct tnode *pn;
3b004569 1425 unsigned int pos, bits;
22bd5b9b 1426 t_key key = ntohl(flp->daddr);
3b004569 1427 unsigned int chopped_off;
19baf839 1428 t_key cindex = 0;
3b004569 1429 unsigned int current_prefix_length = KEYLENGTH;
91b9a277 1430 struct tnode *cn;
874ffa8f 1431 t_key pref_mismatch;
91b9a277 1432
2373ce1c 1433 rcu_read_lock();
91b9a277 1434
2373ce1c 1435 n = rcu_dereference(t->trie);
c877efb2 1436 if (!n)
19baf839
RO
1437 goto failed;
1438
1439#ifdef CONFIG_IP_FIB_TRIE_STATS
1440 t->stats.gets++;
1441#endif
1442
1443 /* Just a leaf? */
1444 if (IS_LEAF(n)) {
5b470441 1445 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1446 goto found;
19baf839 1447 }
a07f5f50 1448
19baf839
RO
1449 pn = (struct tnode *) n;
1450 chopped_off = 0;
c877efb2 1451
91b9a277 1452 while (pn) {
19baf839
RO
1453 pos = pn->pos;
1454 bits = pn->bits;
1455
c877efb2 1456 if (!chopped_off)
ab66b4a7
SH
1457 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1458 pos, bits);
19baf839 1459
b902e573 1460 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1461
1462 if (n == NULL) {
1463#ifdef CONFIG_IP_FIB_TRIE_STATS
1464 t->stats.null_node_hit++;
1465#endif
1466 goto backtrace;
1467 }
1468
91b9a277 1469 if (IS_LEAF(n)) {
5b470441 1470 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1471 if (ret > 0)
91b9a277 1472 goto backtrace;
a07f5f50 1473 goto found;
91b9a277
OJ
1474 }
1475
91b9a277 1476 cn = (struct tnode *)n;
19baf839 1477
91b9a277
OJ
1478 /*
1479 * It's a tnode, and we can do some extra checks here if we
1480 * like, to avoid descending into a dead-end branch.
1481 * This tnode is in the parent's child array at index
1482 * key[p_pos..p_pos+p_bits] but potentially with some bits
1483 * chopped off, so in reality the index may be just a
1484 * subprefix, padded with zero at the end.
1485 * We can also take a look at any skipped bits in this
1486 * tnode - everything up to p_pos is supposed to be ok,
1487 * and the non-chopped bits of the index (se previous
1488 * paragraph) are also guaranteed ok, but the rest is
1489 * considered unknown.
1490 *
1491 * The skipped bits are key[pos+bits..cn->pos].
1492 */
19baf839 1493
91b9a277
OJ
1494 /* If current_prefix_length < pos+bits, we are already doing
1495 * actual prefix matching, which means everything from
1496 * pos+(bits-chopped_off) onward must be zero along some
1497 * branch of this subtree - otherwise there is *no* valid
1498 * prefix present. Here we can only check the skipped
1499 * bits. Remember, since we have already indexed into the
1500 * parent's child array, we know that the bits we chopped of
1501 * *are* zero.
1502 */
19baf839 1503
a07f5f50
SH
1504 /* NOTA BENE: Checking only skipped bits
1505 for the new node here */
19baf839 1506
91b9a277
OJ
1507 if (current_prefix_length < pos+bits) {
1508 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1509 cn->pos - current_prefix_length)
1510 || !(cn->child[0]))
91b9a277
OJ
1511 goto backtrace;
1512 }
19baf839 1513
91b9a277
OJ
1514 /*
1515 * If chopped_off=0, the index is fully validated and we
1516 * only need to look at the skipped bits for this, the new,
1517 * tnode. What we actually want to do is to find out if
1518 * these skipped bits match our key perfectly, or if we will
1519 * have to count on finding a matching prefix further down,
1520 * because if we do, we would like to have some way of
1521 * verifying the existence of such a prefix at this point.
1522 */
19baf839 1523
91b9a277
OJ
1524 /* The only thing we can do at this point is to verify that
1525 * any such matching prefix can indeed be a prefix to our
1526 * key, and if the bits in the node we are inspecting that
1527 * do not match our key are not ZERO, this cannot be true.
1528 * Thus, find out where there is a mismatch (before cn->pos)
1529 * and verify that all the mismatching bits are zero in the
1530 * new tnode's key.
1531 */
19baf839 1532
a07f5f50
SH
1533 /*
1534 * Note: We aren't very concerned about the piece of
1535 * the key that precede pn->pos+pn->bits, since these
1536 * have already been checked. The bits after cn->pos
1537 * aren't checked since these are by definition
1538 * "unknown" at this point. Thus, what we want to see
1539 * is if we are about to enter the "prefix matching"
1540 * state, and in that case verify that the skipped
1541 * bits that will prevail throughout this subtree are
1542 * zero, as they have to be if we are to find a
1543 * matching prefix.
91b9a277
OJ
1544 */
1545
874ffa8f 1546 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1547
a07f5f50
SH
1548 /*
1549 * In short: If skipped bits in this node do not match
1550 * the search key, enter the "prefix matching"
1551 * state.directly.
91b9a277
OJ
1552 */
1553 if (pref_mismatch) {
874ffa8f 1554 int mp = KEYLENGTH - fls(pref_mismatch);
91b9a277 1555
874ffa8f 1556 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1557 goto backtrace;
1558
1559 if (current_prefix_length >= cn->pos)
1560 current_prefix_length = mp;
c877efb2 1561 }
a07f5f50 1562
91b9a277
OJ
1563 pn = (struct tnode *)n; /* Descend */
1564 chopped_off = 0;
1565 continue;
1566
19baf839
RO
1567backtrace:
1568 chopped_off++;
1569
1570 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1571 while ((chopped_off <= pn->bits)
1572 && !(cindex & (1<<(chopped_off-1))))
19baf839 1573 chopped_off++;
19baf839
RO
1574
1575 /* Decrease current_... with bits chopped off */
1576 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1577 current_prefix_length = pn->pos + pn->bits
1578 - chopped_off;
91b9a277 1579
19baf839 1580 /*
c877efb2 1581 * Either we do the actual chop off according or if we have
19baf839
RO
1582 * chopped off all bits in this tnode walk up to our parent.
1583 */
1584
91b9a277 1585 if (chopped_off <= pn->bits) {
19baf839 1586 cindex &= ~(1 << (chopped_off-1));
91b9a277 1587 } else {
b299e4f0 1588 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
06801916 1589 if (!parent)
19baf839 1590 goto failed;
91b9a277 1591
19baf839 1592 /* Get Child's index */
06801916
SH
1593 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1594 pn = parent;
19baf839
RO
1595 chopped_off = 0;
1596
1597#ifdef CONFIG_IP_FIB_TRIE_STATS
1598 t->stats.backtrack++;
1599#endif
1600 goto backtrace;
c877efb2 1601 }
19baf839
RO
1602 }
1603failed:
c877efb2 1604 ret = 1;
19baf839 1605found:
2373ce1c 1606 rcu_read_unlock();
19baf839
RO
1607 return ret;
1608}
6fc01438 1609EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1610
9195bef7
SH
1611/*
1612 * Remove the leaf and return parent.
1613 */
1614static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1615{
b299e4f0 1616 struct tnode *tp = node_parent((struct rt_trie_node *) l);
c877efb2 1617
9195bef7 1618 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1619
c877efb2 1620 if (tp) {
9195bef7 1621 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1622 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1623 trie_rebalance(t, tp);
91b9a277 1624 } else
a9b3cd7f 1625 RCU_INIT_POINTER(t->trie, NULL);
19baf839 1626
387a5487 1627 free_leaf(l);
19baf839
RO
1628}
1629
d562f1f8
RO
1630/*
1631 * Caller must hold RTNL.
1632 */
16c6cf8b 1633int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1634{
1635 struct trie *t = (struct trie *) tb->tb_data;
1636 u32 key, mask;
4e902c57
TG
1637 int plen = cfg->fc_dst_len;
1638 u8 tos = cfg->fc_tos;
19baf839
RO
1639 struct fib_alias *fa, *fa_to_delete;
1640 struct list_head *fa_head;
1641 struct leaf *l;
91b9a277
OJ
1642 struct leaf_info *li;
1643
c877efb2 1644 if (plen > 32)
19baf839
RO
1645 return -EINVAL;
1646
4e902c57 1647 key = ntohl(cfg->fc_dst);
91b9a277 1648 mask = ntohl(inet_make_mask(plen));
19baf839 1649
c877efb2 1650 if (key & ~mask)
19baf839
RO
1651 return -EINVAL;
1652
1653 key = key & mask;
1654 l = fib_find_node(t, key);
1655
c877efb2 1656 if (!l)
19baf839
RO
1657 return -ESRCH;
1658
1659 fa_head = get_fa_head(l, plen);
1660 fa = fib_find_alias(fa_head, tos, 0);
1661
1662 if (!fa)
1663 return -ESRCH;
1664
0c7770c7 1665 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1666
1667 fa_to_delete = NULL;
936f6f8e
JA
1668 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1669 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1670 struct fib_info *fi = fa->fa_info;
1671
1672 if (fa->fa_tos != tos)
1673 break;
1674
4e902c57
TG
1675 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1676 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1677 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1678 (!cfg->fc_prefsrc ||
1679 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1680 (!cfg->fc_protocol ||
1681 fi->fib_protocol == cfg->fc_protocol) &&
1682 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1683 fa_to_delete = fa;
1684 break;
1685 }
1686 }
1687
91b9a277
OJ
1688 if (!fa_to_delete)
1689 return -ESRCH;
19baf839 1690
91b9a277 1691 fa = fa_to_delete;
4e902c57 1692 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1693 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1694
1695 l = fib_find_node(t, key);
772cb712 1696 li = find_leaf_info(l, plen);
19baf839 1697
2373ce1c 1698 list_del_rcu(&fa->fa_list);
19baf839 1699
21d8c49e
DM
1700 if (!plen)
1701 tb->tb_num_default--;
1702
91b9a277 1703 if (list_empty(fa_head)) {
2373ce1c 1704 hlist_del_rcu(&li->hlist);
91b9a277 1705 free_leaf_info(li);
2373ce1c 1706 }
19baf839 1707
91b9a277 1708 if (hlist_empty(&l->list))
9195bef7 1709 trie_leaf_remove(t, l);
19baf839 1710
91b9a277 1711 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1712 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1713
2373ce1c
RO
1714 fib_release_info(fa->fa_info);
1715 alias_free_mem_rcu(fa);
91b9a277 1716 return 0;
19baf839
RO
1717}
1718
ef3660ce 1719static int trie_flush_list(struct list_head *head)
19baf839
RO
1720{
1721 struct fib_alias *fa, *fa_node;
1722 int found = 0;
1723
1724 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1725 struct fib_info *fi = fa->fa_info;
19baf839 1726
2373ce1c
RO
1727 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1728 list_del_rcu(&fa->fa_list);
1729 fib_release_info(fa->fa_info);
1730 alias_free_mem_rcu(fa);
19baf839
RO
1731 found++;
1732 }
1733 }
1734 return found;
1735}
1736
ef3660ce 1737static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1738{
1739 int found = 0;
1740 struct hlist_head *lih = &l->list;
1741 struct hlist_node *node, *tmp;
1742 struct leaf_info *li = NULL;
1743
1744 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1745 found += trie_flush_list(&li->falh);
19baf839
RO
1746
1747 if (list_empty(&li->falh)) {
2373ce1c 1748 hlist_del_rcu(&li->hlist);
19baf839
RO
1749 free_leaf_info(li);
1750 }
1751 }
1752 return found;
1753}
1754
82cfbb00
SH
1755/*
1756 * Scan for the next right leaf starting at node p->child[idx]
1757 * Since we have back pointer, no recursion necessary.
1758 */
b299e4f0 1759static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
19baf839 1760{
82cfbb00
SH
1761 do {
1762 t_key idx;
c877efb2 1763
c877efb2 1764 if (c)
82cfbb00 1765 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1766 else
82cfbb00 1767 idx = 0;
2373ce1c 1768
82cfbb00
SH
1769 while (idx < 1u << p->bits) {
1770 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1771 if (!c)
91b9a277
OJ
1772 continue;
1773
82cfbb00 1774 if (IS_LEAF(c)) {
0a5c0475 1775 prefetch(rcu_dereference_rtnl(p->child[idx]));
82cfbb00 1776 return (struct leaf *) c;
19baf839 1777 }
82cfbb00
SH
1778
1779 /* Rescan start scanning in new node */
1780 p = (struct tnode *) c;
1781 idx = 0;
19baf839 1782 }
82cfbb00
SH
1783
1784 /* Node empty, walk back up to parent */
b299e4f0 1785 c = (struct rt_trie_node *) p;
a034ee3c 1786 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1787
1788 return NULL; /* Root of trie */
1789}
1790
82cfbb00
SH
1791static struct leaf *trie_firstleaf(struct trie *t)
1792{
a034ee3c 1793 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1794
1795 if (!n)
1796 return NULL;
1797
1798 if (IS_LEAF(n)) /* trie is just a leaf */
1799 return (struct leaf *) n;
1800
1801 return leaf_walk_rcu(n, NULL);
1802}
1803
1804static struct leaf *trie_nextleaf(struct leaf *l)
1805{
b299e4f0 1806 struct rt_trie_node *c = (struct rt_trie_node *) l;
b902e573 1807 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1808
1809 if (!p)
1810 return NULL; /* trie with just one leaf */
1811
1812 return leaf_walk_rcu(p, c);
19baf839
RO
1813}
1814
71d67e66
SH
1815static struct leaf *trie_leafindex(struct trie *t, int index)
1816{
1817 struct leaf *l = trie_firstleaf(t);
1818
ec28cf73 1819 while (l && index-- > 0)
71d67e66 1820 l = trie_nextleaf(l);
ec28cf73 1821
71d67e66
SH
1822 return l;
1823}
1824
1825
d562f1f8
RO
1826/*
1827 * Caller must hold RTNL.
1828 */
16c6cf8b 1829int fib_table_flush(struct fib_table *tb)
19baf839
RO
1830{
1831 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1832 struct leaf *l, *ll = NULL;
82cfbb00 1833 int found = 0;
19baf839 1834
82cfbb00 1835 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1836 found += trie_flush_leaf(l);
19baf839
RO
1837
1838 if (ll && hlist_empty(&ll->list))
9195bef7 1839 trie_leaf_remove(t, ll);
19baf839
RO
1840 ll = l;
1841 }
1842
1843 if (ll && hlist_empty(&ll->list))
9195bef7 1844 trie_leaf_remove(t, ll);
19baf839 1845
0c7770c7 1846 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1847 return found;
1848}
1849
4aa2c466
PE
1850void fib_free_table(struct fib_table *tb)
1851{
1852 kfree(tb);
1853}
1854
a07f5f50
SH
1855static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1856 struct fib_table *tb,
19baf839
RO
1857 struct sk_buff *skb, struct netlink_callback *cb)
1858{
1859 int i, s_i;
1860 struct fib_alias *fa;
32ab5f80 1861 __be32 xkey = htonl(key);
19baf839 1862
71d67e66 1863 s_i = cb->args[5];
19baf839
RO
1864 i = 0;
1865
2373ce1c
RO
1866 /* rcu_read_lock is hold by caller */
1867
1868 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1869 if (i < s_i) {
1870 i++;
1871 continue;
1872 }
19baf839
RO
1873
1874 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1875 cb->nlh->nlmsg_seq,
1876 RTM_NEWROUTE,
1877 tb->tb_id,
1878 fa->fa_type,
be403ea1 1879 xkey,
19baf839
RO
1880 plen,
1881 fa->fa_tos,
64347f78 1882 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1883 cb->args[5] = i;
19baf839 1884 return -1;
91b9a277 1885 }
19baf839
RO
1886 i++;
1887 }
71d67e66 1888 cb->args[5] = i;
19baf839
RO
1889 return skb->len;
1890}
1891
a88ee229
SH
1892static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1893 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1894{
a88ee229
SH
1895 struct leaf_info *li;
1896 struct hlist_node *node;
1897 int i, s_i;
19baf839 1898
71d67e66 1899 s_i = cb->args[4];
a88ee229 1900 i = 0;
19baf839 1901
a88ee229
SH
1902 /* rcu_read_lock is hold by caller */
1903 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1904 if (i < s_i) {
1905 i++;
19baf839 1906 continue;
a88ee229 1907 }
91b9a277 1908
a88ee229 1909 if (i > s_i)
71d67e66 1910 cb->args[5] = 0;
19baf839 1911
a88ee229 1912 if (list_empty(&li->falh))
19baf839
RO
1913 continue;
1914
a88ee229 1915 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1916 cb->args[4] = i;
19baf839
RO
1917 return -1;
1918 }
a88ee229 1919 i++;
19baf839 1920 }
a88ee229 1921
71d67e66 1922 cb->args[4] = i;
19baf839
RO
1923 return skb->len;
1924}
1925
16c6cf8b
SH
1926int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1927 struct netlink_callback *cb)
19baf839 1928{
a88ee229 1929 struct leaf *l;
19baf839 1930 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1931 t_key key = cb->args[2];
71d67e66 1932 int count = cb->args[3];
19baf839 1933
2373ce1c 1934 rcu_read_lock();
d5ce8a0e
SH
1935 /* Dump starting at last key.
1936 * Note: 0.0.0.0/0 (ie default) is first key.
1937 */
71d67e66 1938 if (count == 0)
d5ce8a0e
SH
1939 l = trie_firstleaf(t);
1940 else {
71d67e66
SH
1941 /* Normally, continue from last key, but if that is missing
1942 * fallback to using slow rescan
1943 */
d5ce8a0e 1944 l = fib_find_node(t, key);
71d67e66
SH
1945 if (!l)
1946 l = trie_leafindex(t, count);
d5ce8a0e 1947 }
a88ee229 1948
d5ce8a0e
SH
1949 while (l) {
1950 cb->args[2] = l->key;
a88ee229 1951 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1952 cb->args[3] = count;
a88ee229 1953 rcu_read_unlock();
a88ee229 1954 return -1;
19baf839 1955 }
d5ce8a0e 1956
71d67e66 1957 ++count;
d5ce8a0e 1958 l = trie_nextleaf(l);
71d67e66
SH
1959 memset(&cb->args[4], 0,
1960 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1961 }
71d67e66 1962 cb->args[3] = count;
2373ce1c 1963 rcu_read_unlock();
a88ee229 1964
19baf839 1965 return skb->len;
19baf839
RO
1966}
1967
5348ba85 1968void __init fib_trie_init(void)
7f9b8052 1969{
a07f5f50
SH
1970 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1971 sizeof(struct fib_alias),
bc3c8c1e
SH
1972 0, SLAB_PANIC, NULL);
1973
1974 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1975 max(sizeof(struct leaf),
1976 sizeof(struct leaf_info)),
1977 0, SLAB_PANIC, NULL);
7f9b8052 1978}
19baf839 1979
7f9b8052 1980
5348ba85 1981struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1982{
1983 struct fib_table *tb;
1984 struct trie *t;
1985
19baf839
RO
1986 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1987 GFP_KERNEL);
1988 if (tb == NULL)
1989 return NULL;
1990
1991 tb->tb_id = id;
971b893e 1992 tb->tb_default = -1;
21d8c49e 1993 tb->tb_num_default = 0;
19baf839
RO
1994
1995 t = (struct trie *) tb->tb_data;
c28a1cf4 1996 memset(t, 0, sizeof(*t));
19baf839 1997
19baf839
RO
1998 return tb;
1999}
2000
cb7b593c
SH
2001#ifdef CONFIG_PROC_FS
2002/* Depth first Trie walk iterator */
2003struct fib_trie_iter {
1c340b2f 2004 struct seq_net_private p;
3d3b2d25 2005 struct fib_table *tb;
cb7b593c 2006 struct tnode *tnode;
a034ee3c
ED
2007 unsigned int index;
2008 unsigned int depth;
cb7b593c 2009};
19baf839 2010
b299e4f0 2011static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2012{
cb7b593c 2013 struct tnode *tn = iter->tnode;
a034ee3c 2014 unsigned int cindex = iter->index;
cb7b593c 2015 struct tnode *p;
19baf839 2016
6640e697
EB
2017 /* A single entry routing table */
2018 if (!tn)
2019 return NULL;
2020
cb7b593c
SH
2021 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2022 iter->tnode, iter->index, iter->depth);
2023rescan:
2024 while (cindex < (1<<tn->bits)) {
b299e4f0 2025 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2026
cb7b593c
SH
2027 if (n) {
2028 if (IS_LEAF(n)) {
2029 iter->tnode = tn;
2030 iter->index = cindex + 1;
2031 } else {
2032 /* push down one level */
2033 iter->tnode = (struct tnode *) n;
2034 iter->index = 0;
2035 ++iter->depth;
2036 }
2037 return n;
2038 }
19baf839 2039
cb7b593c
SH
2040 ++cindex;
2041 }
91b9a277 2042
cb7b593c 2043 /* Current node exhausted, pop back up */
b299e4f0 2044 p = node_parent_rcu((struct rt_trie_node *)tn);
cb7b593c
SH
2045 if (p) {
2046 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2047 tn = p;
2048 --iter->depth;
2049 goto rescan;
19baf839 2050 }
cb7b593c
SH
2051
2052 /* got root? */
2053 return NULL;
19baf839
RO
2054}
2055
b299e4f0 2056static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 2057 struct trie *t)
19baf839 2058{
b299e4f0 2059 struct rt_trie_node *n;
5ddf0eb2 2060
132adf54 2061 if (!t)
5ddf0eb2
RO
2062 return NULL;
2063
2064 n = rcu_dereference(t->trie);
3d3b2d25 2065 if (!n)
5ddf0eb2 2066 return NULL;
19baf839 2067
3d3b2d25
SH
2068 if (IS_TNODE(n)) {
2069 iter->tnode = (struct tnode *) n;
2070 iter->index = 0;
2071 iter->depth = 1;
2072 } else {
2073 iter->tnode = NULL;
2074 iter->index = 0;
2075 iter->depth = 0;
91b9a277 2076 }
3d3b2d25
SH
2077
2078 return n;
cb7b593c 2079}
91b9a277 2080
cb7b593c
SH
2081static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2082{
b299e4f0 2083 struct rt_trie_node *n;
cb7b593c 2084 struct fib_trie_iter iter;
91b9a277 2085
cb7b593c 2086 memset(s, 0, sizeof(*s));
91b9a277 2087
cb7b593c 2088 rcu_read_lock();
3d3b2d25 2089 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2090 if (IS_LEAF(n)) {
93672292
SH
2091 struct leaf *l = (struct leaf *)n;
2092 struct leaf_info *li;
2093 struct hlist_node *tmp;
2094
cb7b593c
SH
2095 s->leaves++;
2096 s->totdepth += iter.depth;
2097 if (iter.depth > s->maxdepth)
2098 s->maxdepth = iter.depth;
93672292
SH
2099
2100 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2101 ++s->prefixes;
cb7b593c
SH
2102 } else {
2103 const struct tnode *tn = (const struct tnode *) n;
2104 int i;
2105
2106 s->tnodes++;
132adf54 2107 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2108 s->nodesizes[tn->bits]++;
2109
cb7b593c
SH
2110 for (i = 0; i < (1<<tn->bits); i++)
2111 if (!tn->child[i])
2112 s->nullpointers++;
19baf839 2113 }
19baf839 2114 }
2373ce1c 2115 rcu_read_unlock();
19baf839
RO
2116}
2117
cb7b593c
SH
2118/*
2119 * This outputs /proc/net/fib_triestats
2120 */
2121static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2122{
a034ee3c 2123 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2124
cb7b593c
SH
2125 if (stat->leaves)
2126 avdepth = stat->totdepth*100 / stat->leaves;
2127 else
2128 avdepth = 0;
91b9a277 2129
a07f5f50
SH
2130 seq_printf(seq, "\tAver depth: %u.%02d\n",
2131 avdepth / 100, avdepth % 100);
cb7b593c 2132 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2133
cb7b593c 2134 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2135 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2136
2137 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2138 bytes += sizeof(struct leaf_info) * stat->prefixes;
2139
187b5188 2140 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2141 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2142
06ef921d
RO
2143 max = MAX_STAT_DEPTH;
2144 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2145 max--;
19baf839 2146
cb7b593c
SH
2147 pointers = 0;
2148 for (i = 1; i <= max; i++)
2149 if (stat->nodesizes[i] != 0) {
187b5188 2150 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2151 pointers += (1<<i) * stat->nodesizes[i];
2152 }
2153 seq_putc(seq, '\n');
187b5188 2154 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2155
b299e4f0 2156 bytes += sizeof(struct rt_trie_node *) * pointers;
187b5188
SH
2157 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2158 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2159}
2373ce1c 2160
cb7b593c 2161#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2162static void trie_show_usage(struct seq_file *seq,
2163 const struct trie_use_stats *stats)
2164{
2165 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2166 seq_printf(seq, "gets = %u\n", stats->gets);
2167 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2168 seq_printf(seq, "semantic match passed = %u\n",
2169 stats->semantic_match_passed);
2170 seq_printf(seq, "semantic match miss = %u\n",
2171 stats->semantic_match_miss);
2172 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2173 seq_printf(seq, "skipped node resize = %u\n\n",
2174 stats->resize_node_skipped);
cb7b593c 2175}
66a2f7fd
SH
2176#endif /* CONFIG_IP_FIB_TRIE_STATS */
2177
3d3b2d25 2178static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2179{
3d3b2d25
SH
2180 if (tb->tb_id == RT_TABLE_LOCAL)
2181 seq_puts(seq, "Local:\n");
2182 else if (tb->tb_id == RT_TABLE_MAIN)
2183 seq_puts(seq, "Main:\n");
2184 else
2185 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2186}
19baf839 2187
3d3b2d25 2188
cb7b593c
SH
2189static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2190{
1c340b2f 2191 struct net *net = (struct net *)seq->private;
3d3b2d25 2192 unsigned int h;
877a9bff 2193
d717a9a6 2194 seq_printf(seq,
a07f5f50
SH
2195 "Basic info: size of leaf:"
2196 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2197 sizeof(struct leaf), sizeof(struct tnode));
2198
3d3b2d25
SH
2199 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2200 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2201 struct hlist_node *node;
2202 struct fib_table *tb;
2203
2204 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2205 struct trie *t = (struct trie *) tb->tb_data;
2206 struct trie_stat stat;
877a9bff 2207
3d3b2d25
SH
2208 if (!t)
2209 continue;
2210
2211 fib_table_print(seq, tb);
2212
2213 trie_collect_stats(t, &stat);
2214 trie_show_stats(seq, &stat);
2215#ifdef CONFIG_IP_FIB_TRIE_STATS
2216 trie_show_usage(seq, &t->stats);
2217#endif
2218 }
2219 }
19baf839 2220
cb7b593c 2221 return 0;
19baf839
RO
2222}
2223
cb7b593c 2224static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2225{
de05c557 2226 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2227}
2228
9a32144e 2229static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2230 .owner = THIS_MODULE,
2231 .open = fib_triestat_seq_open,
2232 .read = seq_read,
2233 .llseek = seq_lseek,
b6fcbdb4 2234 .release = single_release_net,
cb7b593c
SH
2235};
2236
b299e4f0 2237static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2238{
1218854a
YH
2239 struct fib_trie_iter *iter = seq->private;
2240 struct net *net = seq_file_net(seq);
cb7b593c 2241 loff_t idx = 0;
3d3b2d25 2242 unsigned int h;
cb7b593c 2243
3d3b2d25
SH
2244 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2245 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2246 struct hlist_node *node;
2247 struct fib_table *tb;
cb7b593c 2248
3d3b2d25 2249 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
b299e4f0 2250 struct rt_trie_node *n;
3d3b2d25
SH
2251
2252 for (n = fib_trie_get_first(iter,
2253 (struct trie *) tb->tb_data);
2254 n; n = fib_trie_get_next(iter))
2255 if (pos == idx++) {
2256 iter->tb = tb;
2257 return n;
2258 }
2259 }
cb7b593c 2260 }
3d3b2d25 2261
19baf839
RO
2262 return NULL;
2263}
2264
cb7b593c 2265static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2266 __acquires(RCU)
19baf839 2267{
cb7b593c 2268 rcu_read_lock();
1218854a 2269 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2270}
2271
cb7b593c 2272static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2273{
cb7b593c 2274 struct fib_trie_iter *iter = seq->private;
1218854a 2275 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2276 struct fib_table *tb = iter->tb;
2277 struct hlist_node *tb_node;
2278 unsigned int h;
b299e4f0 2279 struct rt_trie_node *n;
cb7b593c 2280
19baf839 2281 ++*pos;
3d3b2d25
SH
2282 /* next node in same table */
2283 n = fib_trie_get_next(iter);
2284 if (n)
2285 return n;
19baf839 2286
3d3b2d25
SH
2287 /* walk rest of this hash chain */
2288 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2289 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2290 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2291 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2292 if (n)
2293 goto found;
2294 }
19baf839 2295
3d3b2d25
SH
2296 /* new hash chain */
2297 while (++h < FIB_TABLE_HASHSZ) {
2298 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2299 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2300 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2301 if (n)
2302 goto found;
2303 }
2304 }
cb7b593c 2305 return NULL;
3d3b2d25
SH
2306
2307found:
2308 iter->tb = tb;
2309 return n;
cb7b593c 2310}
19baf839 2311
cb7b593c 2312static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2313 __releases(RCU)
19baf839 2314{
cb7b593c
SH
2315 rcu_read_unlock();
2316}
91b9a277 2317
cb7b593c
SH
2318static void seq_indent(struct seq_file *seq, int n)
2319{
a034ee3c
ED
2320 while (n-- > 0)
2321 seq_puts(seq, " ");
cb7b593c 2322}
19baf839 2323
28d36e37 2324static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2325{
132adf54 2326 switch (s) {
cb7b593c
SH
2327 case RT_SCOPE_UNIVERSE: return "universe";
2328 case RT_SCOPE_SITE: return "site";
2329 case RT_SCOPE_LINK: return "link";
2330 case RT_SCOPE_HOST: return "host";
2331 case RT_SCOPE_NOWHERE: return "nowhere";
2332 default:
28d36e37 2333 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2334 return buf;
2335 }
2336}
19baf839 2337
36cbd3dc 2338static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2339 [RTN_UNSPEC] = "UNSPEC",
2340 [RTN_UNICAST] = "UNICAST",
2341 [RTN_LOCAL] = "LOCAL",
2342 [RTN_BROADCAST] = "BROADCAST",
2343 [RTN_ANYCAST] = "ANYCAST",
2344 [RTN_MULTICAST] = "MULTICAST",
2345 [RTN_BLACKHOLE] = "BLACKHOLE",
2346 [RTN_UNREACHABLE] = "UNREACHABLE",
2347 [RTN_PROHIBIT] = "PROHIBIT",
2348 [RTN_THROW] = "THROW",
2349 [RTN_NAT] = "NAT",
2350 [RTN_XRESOLVE] = "XRESOLVE",
2351};
19baf839 2352
a034ee3c 2353static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2354{
cb7b593c
SH
2355 if (t < __RTN_MAX && rtn_type_names[t])
2356 return rtn_type_names[t];
28d36e37 2357 snprintf(buf, len, "type %u", t);
cb7b593c 2358 return buf;
19baf839
RO
2359}
2360
cb7b593c
SH
2361/* Pretty print the trie */
2362static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2363{
cb7b593c 2364 const struct fib_trie_iter *iter = seq->private;
b299e4f0 2365 struct rt_trie_node *n = v;
c877efb2 2366
3d3b2d25
SH
2367 if (!node_parent_rcu(n))
2368 fib_table_print(seq, iter->tb);
095b8501 2369
cb7b593c
SH
2370 if (IS_TNODE(n)) {
2371 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2372 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2373
1d25cd6c 2374 seq_indent(seq, iter->depth-1);
673d57e7
HH
2375 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2376 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2377 tn->empty_children);
e905a9ed 2378
cb7b593c
SH
2379 } else {
2380 struct leaf *l = (struct leaf *) n;
1328042e
SH
2381 struct leaf_info *li;
2382 struct hlist_node *node;
32ab5f80 2383 __be32 val = htonl(l->key);
cb7b593c
SH
2384
2385 seq_indent(seq, iter->depth);
673d57e7 2386 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2387
2388 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2389 struct fib_alias *fa;
2390
2391 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2392 char buf1[32], buf2[32];
2393
2394 seq_indent(seq, iter->depth+1);
2395 seq_printf(seq, " /%d %s %s", li->plen,
2396 rtn_scope(buf1, sizeof(buf1),
37e826c5 2397 fa->fa_info->fib_scope),
1328042e
SH
2398 rtn_type(buf2, sizeof(buf2),
2399 fa->fa_type));
2400 if (fa->fa_tos)
b9c4d82a 2401 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2402 seq_putc(seq, '\n');
cb7b593c
SH
2403 }
2404 }
19baf839 2405 }
cb7b593c 2406
19baf839
RO
2407 return 0;
2408}
2409
f690808e 2410static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2411 .start = fib_trie_seq_start,
2412 .next = fib_trie_seq_next,
2413 .stop = fib_trie_seq_stop,
2414 .show = fib_trie_seq_show,
19baf839
RO
2415};
2416
cb7b593c 2417static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2418{
1c340b2f
DL
2419 return seq_open_net(inode, file, &fib_trie_seq_ops,
2420 sizeof(struct fib_trie_iter));
19baf839
RO
2421}
2422
9a32144e 2423static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2424 .owner = THIS_MODULE,
2425 .open = fib_trie_seq_open,
2426 .read = seq_read,
2427 .llseek = seq_lseek,
1c340b2f 2428 .release = seq_release_net,
19baf839
RO
2429};
2430
8315f5d8
SH
2431struct fib_route_iter {
2432 struct seq_net_private p;
2433 struct trie *main_trie;
2434 loff_t pos;
2435 t_key key;
2436};
2437
2438static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2439{
2440 struct leaf *l = NULL;
2441 struct trie *t = iter->main_trie;
2442
2443 /* use cache location of last found key */
2444 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2445 pos -= iter->pos;
2446 else {
2447 iter->pos = 0;
2448 l = trie_firstleaf(t);
2449 }
2450
2451 while (l && pos-- > 0) {
2452 iter->pos++;
2453 l = trie_nextleaf(l);
2454 }
2455
2456 if (l)
2457 iter->key = pos; /* remember it */
2458 else
2459 iter->pos = 0; /* forget it */
2460
2461 return l;
2462}
2463
2464static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2465 __acquires(RCU)
2466{
2467 struct fib_route_iter *iter = seq->private;
2468 struct fib_table *tb;
2469
2470 rcu_read_lock();
1218854a 2471 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2472 if (!tb)
2473 return NULL;
2474
2475 iter->main_trie = (struct trie *) tb->tb_data;
2476 if (*pos == 0)
2477 return SEQ_START_TOKEN;
2478 else
2479 return fib_route_get_idx(iter, *pos - 1);
2480}
2481
2482static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2483{
2484 struct fib_route_iter *iter = seq->private;
2485 struct leaf *l = v;
2486
2487 ++*pos;
2488 if (v == SEQ_START_TOKEN) {
2489 iter->pos = 0;
2490 l = trie_firstleaf(iter->main_trie);
2491 } else {
2492 iter->pos++;
2493 l = trie_nextleaf(l);
2494 }
2495
2496 if (l)
2497 iter->key = l->key;
2498 else
2499 iter->pos = 0;
2500 return l;
2501}
2502
2503static void fib_route_seq_stop(struct seq_file *seq, void *v)
2504 __releases(RCU)
2505{
2506 rcu_read_unlock();
2507}
2508
a034ee3c 2509static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2510{
a034ee3c 2511 unsigned int flags = 0;
19baf839 2512
a034ee3c
ED
2513 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2514 flags = RTF_REJECT;
cb7b593c
SH
2515 if (fi && fi->fib_nh->nh_gw)
2516 flags |= RTF_GATEWAY;
32ab5f80 2517 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2518 flags |= RTF_HOST;
2519 flags |= RTF_UP;
2520 return flags;
19baf839
RO
2521}
2522
cb7b593c
SH
2523/*
2524 * This outputs /proc/net/route.
2525 * The format of the file is not supposed to be changed
a034ee3c 2526 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2527 * legacy utilities
2528 */
2529static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2530{
cb7b593c 2531 struct leaf *l = v;
1328042e
SH
2532 struct leaf_info *li;
2533 struct hlist_node *node;
19baf839 2534
cb7b593c
SH
2535 if (v == SEQ_START_TOKEN) {
2536 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2537 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2538 "\tWindow\tIRTT");
2539 return 0;
2540 }
19baf839 2541
1328042e 2542 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2543 struct fib_alias *fa;
32ab5f80 2544 __be32 mask, prefix;
91b9a277 2545
cb7b593c
SH
2546 mask = inet_make_mask(li->plen);
2547 prefix = htonl(l->key);
19baf839 2548
cb7b593c 2549 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2550 const struct fib_info *fi = fa->fa_info;
a034ee3c 2551 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2552 int len;
19baf839 2553
cb7b593c
SH
2554 if (fa->fa_type == RTN_BROADCAST
2555 || fa->fa_type == RTN_MULTICAST)
2556 continue;
19baf839 2557
cb7b593c 2558 if (fi)
5e659e4c
PE
2559 seq_printf(seq,
2560 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2561 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2562 fi->fib_dev ? fi->fib_dev->name : "*",
2563 prefix,
2564 fi->fib_nh->nh_gw, flags, 0, 0,
2565 fi->fib_priority,
2566 mask,
a07f5f50
SH
2567 (fi->fib_advmss ?
2568 fi->fib_advmss + 40 : 0),
cb7b593c 2569 fi->fib_window,
5e659e4c 2570 fi->fib_rtt >> 3, &len);
cb7b593c 2571 else
5e659e4c
PE
2572 seq_printf(seq,
2573 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2574 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2575 prefix, 0, flags, 0, 0, 0,
5e659e4c 2576 mask, 0, 0, 0, &len);
19baf839 2577
5e659e4c 2578 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2579 }
19baf839
RO
2580 }
2581
2582 return 0;
2583}
2584
f690808e 2585static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2586 .start = fib_route_seq_start,
2587 .next = fib_route_seq_next,
2588 .stop = fib_route_seq_stop,
cb7b593c 2589 .show = fib_route_seq_show,
19baf839
RO
2590};
2591
cb7b593c 2592static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2593{
1c340b2f 2594 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2595 sizeof(struct fib_route_iter));
19baf839
RO
2596}
2597
9a32144e 2598static const struct file_operations fib_route_fops = {
cb7b593c
SH
2599 .owner = THIS_MODULE,
2600 .open = fib_route_seq_open,
2601 .read = seq_read,
2602 .llseek = seq_lseek,
1c340b2f 2603 .release = seq_release_net,
19baf839
RO
2604};
2605
61a02653 2606int __net_init fib_proc_init(struct net *net)
19baf839 2607{
61a02653 2608 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2609 goto out1;
2610
61a02653
DL
2611 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2612 &fib_triestat_fops))
cb7b593c
SH
2613 goto out2;
2614
61a02653 2615 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2616 goto out3;
2617
19baf839 2618 return 0;
cb7b593c
SH
2619
2620out3:
61a02653 2621 proc_net_remove(net, "fib_triestat");
cb7b593c 2622out2:
61a02653 2623 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2624out1:
2625 return -ENOMEM;
19baf839
RO
2626}
2627
61a02653 2628void __net_exit fib_proc_exit(struct net *net)
19baf839 2629{
61a02653
DL
2630 proc_net_remove(net, "fib_trie");
2631 proc_net_remove(net, "fib_triestat");
2632 proc_net_remove(net, "route");
19baf839
RO
2633}
2634
2635#endif /* CONFIG_PROC_FS */
This page took 0.947513 seconds and 5 git commands to generate.