bnx2x: Fix the behavior of ethtool when ONBOOT=no
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
05eee48c 51#define VERSION "0.408"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
457c4cbc 74#include <net/net_namespace.h>
19baf839
RO
75#include <net/ip.h>
76#include <net/protocol.h>
77#include <net/route.h>
78#include <net/tcp.h>
79#include <net/sock.h>
80#include <net/ip_fib.h>
81#include "fib_lookup.h"
82
06ef921d 83#define MAX_STAT_DEPTH 32
19baf839 84
19baf839 85#define KEYLENGTH (8*sizeof(t_key))
19baf839 86
19baf839
RO
87typedef unsigned int t_key;
88
89#define T_TNODE 0
90#define T_LEAF 1
91#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
92#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
91b9a277
OJ
94#define IS_TNODE(n) (!(n->parent & T_LEAF))
95#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
96
97struct node {
91b9a277 98 unsigned long parent;
8d965444 99 t_key key;
19baf839
RO
100};
101
102struct leaf {
91b9a277 103 unsigned long parent;
8d965444 104 t_key key;
19baf839 105 struct hlist_head list;
2373ce1c 106 struct rcu_head rcu;
19baf839
RO
107};
108
109struct leaf_info {
110 struct hlist_node hlist;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112 int plen;
113 struct list_head falh;
114};
115
116struct tnode {
91b9a277 117 unsigned long parent;
8d965444 118 t_key key;
112d8cfc
ED
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
e0f7cb8c 126 struct tnode *tnode_free;
15be75cd 127 };
91b9a277 128 struct node *child[0];
19baf839
RO
129};
130
131#ifdef CONFIG_IP_FIB_TRIE_STATS
132struct trie_use_stats {
133 unsigned int gets;
134 unsigned int backtrack;
135 unsigned int semantic_match_passed;
136 unsigned int semantic_match_miss;
137 unsigned int null_node_hit;
2f36895a 138 unsigned int resize_node_skipped;
19baf839
RO
139};
140#endif
141
142struct trie_stat {
143 unsigned int totdepth;
144 unsigned int maxdepth;
145 unsigned int tnodes;
146 unsigned int leaves;
147 unsigned int nullpointers;
93672292 148 unsigned int prefixes;
06ef921d 149 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 150};
19baf839
RO
151
152struct trie {
91b9a277 153 struct node *trie;
19baf839
RO
154#ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156#endif
19baf839
RO
157};
158
19baf839 159static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
160static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
161 int wasfull);
19baf839 162static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
163static struct tnode *inflate(struct trie *t, struct tnode *tn);
164static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
165/* tnodes to free after resize(); protected by RTNL */
166static struct tnode *tnode_free_head;
19baf839 167
e18b890b 168static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 169static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 170
06801916
SH
171static inline struct tnode *node_parent(struct node *node)
172{
b59cfbf7
ED
173 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
174}
175
176static inline struct tnode *node_parent_rcu(struct node *node)
177{
178 struct tnode *ret = node_parent(node);
06801916 179
06801916
SH
180 return rcu_dereference(ret);
181}
182
6440cc9e
SH
183/* Same as rcu_assign_pointer
184 * but that macro() assumes that value is a pointer.
185 */
06801916
SH
186static inline void node_set_parent(struct node *node, struct tnode *ptr)
187{
6440cc9e
SH
188 smp_wmb();
189 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 190}
2373ce1c 191
b59cfbf7
ED
192static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
193{
194 BUG_ON(i >= 1U << tn->bits);
2373ce1c 195
b59cfbf7
ED
196 return tn->child[i];
197}
198
199static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 200{
b59cfbf7 201 struct node *ret = tnode_get_child(tn, i);
19baf839 202
b59cfbf7 203 return rcu_dereference(ret);
19baf839
RO
204}
205
bb435b8d 206static inline int tnode_child_length(const struct tnode *tn)
19baf839 207{
91b9a277 208 return 1 << tn->bits;
19baf839
RO
209}
210
ab66b4a7
SH
211static inline t_key mask_pfx(t_key k, unsigned short l)
212{
213 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
214}
215
19baf839
RO
216static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
217{
91b9a277 218 if (offset < KEYLENGTH)
19baf839 219 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 220 else
19baf839
RO
221 return 0;
222}
223
224static inline int tkey_equals(t_key a, t_key b)
225{
c877efb2 226 return a == b;
19baf839
RO
227}
228
229static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
230{
c877efb2
SH
231 if (bits == 0 || offset >= KEYLENGTH)
232 return 1;
91b9a277
OJ
233 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
234 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 235}
19baf839
RO
236
237static inline int tkey_mismatch(t_key a, int offset, t_key b)
238{
239 t_key diff = a ^ b;
240 int i = offset;
241
c877efb2
SH
242 if (!diff)
243 return 0;
244 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
245 i++;
246 return i;
247}
248
19baf839 249/*
e905a9ed
YH
250 To understand this stuff, an understanding of keys and all their bits is
251 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
252 all of the bits in that key are significant.
253
254 Consider a node 'n' and its parent 'tp'.
255
e905a9ed
YH
256 If n is a leaf, every bit in its key is significant. Its presence is
257 necessitated by path compression, since during a tree traversal (when
258 searching for a leaf - unless we are doing an insertion) we will completely
259 ignore all skipped bits we encounter. Thus we need to verify, at the end of
260 a potentially successful search, that we have indeed been walking the
19baf839
RO
261 correct key path.
262
e905a9ed
YH
263 Note that we can never "miss" the correct key in the tree if present by
264 following the wrong path. Path compression ensures that segments of the key
265 that are the same for all keys with a given prefix are skipped, but the
266 skipped part *is* identical for each node in the subtrie below the skipped
267 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
268 call to tkey_sub_equals() in trie_insert().
269
e905a9ed 270 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
271 have many different meanings.
272
e905a9ed 273 Example:
19baf839
RO
274 _________________________________________________________________
275 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
276 -----------------------------------------------------------------
e905a9ed 277 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
278
279 _________________________________________________________________
280 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
281 -----------------------------------------------------------------
282 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
283
284 tp->pos = 7
285 tp->bits = 3
286 n->pos = 15
91b9a277 287 n->bits = 4
19baf839 288
e905a9ed
YH
289 First, let's just ignore the bits that come before the parent tp, that is
290 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
291 not use them for anything.
292
293 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 294 index into the parent's child array. That is, they will be used to find
19baf839
RO
295 'n' among tp's children.
296
297 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
298 for the node n.
299
e905a9ed 300 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
301 of the bits are really not needed or indeed known in n->key.
302
e905a9ed 303 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 304 n's child array, and will of course be different for each child.
e905a9ed 305
c877efb2 306
19baf839
RO
307 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
308 at this point.
309
310*/
311
0c7770c7 312static inline void check_tnode(const struct tnode *tn)
19baf839 313{
0c7770c7 314 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
315}
316
f5026fab
DL
317static const int halve_threshold = 25;
318static const int inflate_threshold = 50;
319static const int halve_threshold_root = 8;
320static const int inflate_threshold_root = 15;
19baf839 321
2373ce1c
RO
322
323static void __alias_free_mem(struct rcu_head *head)
19baf839 324{
2373ce1c
RO
325 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
326 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
327}
328
2373ce1c 329static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 330{
2373ce1c
RO
331 call_rcu(&fa->rcu, __alias_free_mem);
332}
91b9a277 333
2373ce1c
RO
334static void __leaf_free_rcu(struct rcu_head *head)
335{
bc3c8c1e
SH
336 struct leaf *l = container_of(head, struct leaf, rcu);
337 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 338}
91b9a277 339
387a5487
SH
340static inline void free_leaf(struct leaf *l)
341{
342 call_rcu_bh(&l->rcu, __leaf_free_rcu);
343}
344
2373ce1c 345static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 346{
2373ce1c 347 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
348}
349
2373ce1c 350static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 351{
2373ce1c 352 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
353}
354
8d965444 355static struct tnode *tnode_alloc(size_t size)
f0e36f8c 356{
2373ce1c 357 if (size <= PAGE_SIZE)
8d965444 358 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
359 else
360 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
361}
2373ce1c 362
15be75cd
SH
363static void __tnode_vfree(struct work_struct *arg)
364{
365 struct tnode *tn = container_of(arg, struct tnode, work);
366 vfree(tn);
f0e36f8c
PM
367}
368
2373ce1c 369static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 370{
2373ce1c 371 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
372 size_t size = sizeof(struct tnode) +
373 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
374
375 if (size <= PAGE_SIZE)
376 kfree(tn);
15be75cd
SH
377 else {
378 INIT_WORK(&tn->work, __tnode_vfree);
379 schedule_work(&tn->work);
380 }
f0e36f8c
PM
381}
382
2373ce1c
RO
383static inline void tnode_free(struct tnode *tn)
384{
387a5487
SH
385 if (IS_LEAF(tn))
386 free_leaf((struct leaf *) tn);
387 else
550e29bc 388 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
389}
390
e0f7cb8c
JP
391static void tnode_free_safe(struct tnode *tn)
392{
393 BUG_ON(IS_LEAF(tn));
7b85576d
JP
394 tn->tnode_free = tnode_free_head;
395 tnode_free_head = tn;
e0f7cb8c
JP
396}
397
398static void tnode_free_flush(void)
399{
400 struct tnode *tn;
401
402 while ((tn = tnode_free_head)) {
403 tnode_free_head = tn->tnode_free;
404 tn->tnode_free = NULL;
405 tnode_free(tn);
406 }
407}
408
2373ce1c
RO
409static struct leaf *leaf_new(void)
410{
bc3c8c1e 411 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
412 if (l) {
413 l->parent = T_LEAF;
414 INIT_HLIST_HEAD(&l->list);
415 }
416 return l;
417}
418
419static struct leaf_info *leaf_info_new(int plen)
420{
421 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
422 if (li) {
423 li->plen = plen;
424 INIT_LIST_HEAD(&li->falh);
425 }
426 return li;
427}
428
a07f5f50 429static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 430{
8d965444 431 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 432 struct tnode *tn = tnode_alloc(sz);
19baf839 433
91b9a277 434 if (tn) {
2373ce1c 435 tn->parent = T_TNODE;
19baf839
RO
436 tn->pos = pos;
437 tn->bits = bits;
438 tn->key = key;
439 tn->full_children = 0;
440 tn->empty_children = 1<<bits;
441 }
c877efb2 442
8d965444
ED
443 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
444 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
445 return tn;
446}
447
19baf839
RO
448/*
449 * Check whether a tnode 'n' is "full", i.e. it is an internal node
450 * and no bits are skipped. See discussion in dyntree paper p. 6
451 */
452
bb435b8d 453static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 454{
c877efb2 455 if (n == NULL || IS_LEAF(n))
19baf839
RO
456 return 0;
457
458 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
459}
460
a07f5f50
SH
461static inline void put_child(struct trie *t, struct tnode *tn, int i,
462 struct node *n)
19baf839
RO
463{
464 tnode_put_child_reorg(tn, i, n, -1);
465}
466
c877efb2 467 /*
19baf839
RO
468 * Add a child at position i overwriting the old value.
469 * Update the value of full_children and empty_children.
470 */
471
a07f5f50
SH
472static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
473 int wasfull)
19baf839 474{
2373ce1c 475 struct node *chi = tn->child[i];
19baf839
RO
476 int isfull;
477
0c7770c7
SH
478 BUG_ON(i >= 1<<tn->bits);
479
19baf839
RO
480 /* update emptyChildren */
481 if (n == NULL && chi != NULL)
482 tn->empty_children++;
483 else if (n != NULL && chi == NULL)
484 tn->empty_children--;
c877efb2 485
19baf839 486 /* update fullChildren */
91b9a277 487 if (wasfull == -1)
19baf839
RO
488 wasfull = tnode_full(tn, chi);
489
490 isfull = tnode_full(tn, n);
c877efb2 491 if (wasfull && !isfull)
19baf839 492 tn->full_children--;
c877efb2 493 else if (!wasfull && isfull)
19baf839 494 tn->full_children++;
91b9a277 495
c877efb2 496 if (n)
06801916 497 node_set_parent(n, tn);
19baf839 498
2373ce1c 499 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
500}
501
c877efb2 502static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
503{
504 int i;
2f36895a 505 int err = 0;
2f80b3c8 506 struct tnode *old_tn;
e6308be8
RO
507 int inflate_threshold_use;
508 int halve_threshold_use;
05eee48c 509 int max_resize;
19baf839 510
e905a9ed 511 if (!tn)
19baf839
RO
512 return NULL;
513
0c7770c7
SH
514 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
515 tn, inflate_threshold, halve_threshold);
19baf839
RO
516
517 /* No children */
518 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 519 tnode_free_safe(tn);
19baf839
RO
520 return NULL;
521 }
522 /* One child */
523 if (tn->empty_children == tnode_child_length(tn) - 1)
524 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 525 struct node *n;
19baf839 526
91b9a277 527 n = tn->child[i];
2373ce1c 528 if (!n)
91b9a277 529 continue;
91b9a277
OJ
530
531 /* compress one level */
06801916 532 node_set_parent(n, NULL);
e0f7cb8c 533 tnode_free_safe(tn);
91b9a277 534 return n;
19baf839 535 }
c877efb2 536 /*
19baf839
RO
537 * Double as long as the resulting node has a number of
538 * nonempty nodes that are above the threshold.
539 */
540
541 /*
c877efb2
SH
542 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
543 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 544 * Telecommunications, page 6:
c877efb2 545 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
546 * children in the *doubled* node is at least 'high'."
547 *
c877efb2
SH
548 * 'high' in this instance is the variable 'inflate_threshold'. It
549 * is expressed as a percentage, so we multiply it with
550 * tnode_child_length() and instead of multiplying by 2 (since the
551 * child array will be doubled by inflate()) and multiplying
552 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 553 * multiply the left-hand side by 50.
c877efb2
SH
554 *
555 * The left-hand side may look a bit weird: tnode_child_length(tn)
556 * - tn->empty_children is of course the number of non-null children
557 * in the current node. tn->full_children is the number of "full"
19baf839 558 * children, that is non-null tnodes with a skip value of 0.
c877efb2 559 * All of those will be doubled in the resulting inflated tnode, so
19baf839 560 * we just count them one extra time here.
c877efb2 561 *
19baf839 562 * A clearer way to write this would be:
c877efb2 563 *
19baf839 564 * to_be_doubled = tn->full_children;
c877efb2 565 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
566 * tn->full_children;
567 *
568 * new_child_length = tnode_child_length(tn) * 2;
569 *
c877efb2 570 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
571 * new_child_length;
572 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
573 *
574 * ...and so on, tho it would mess up the while () loop.
575 *
19baf839
RO
576 * anyway,
577 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
578 * inflate_threshold
c877efb2 579 *
19baf839
RO
580 * avoid a division:
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
582 * inflate_threshold * new_child_length
c877efb2 583 *
19baf839 584 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 585 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 586 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 587 *
19baf839 588 * expand new_child_length:
c877efb2 589 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 590 * tn->full_children) >=
19baf839 591 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 592 *
19baf839 593 * shorten again:
c877efb2 594 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 595 * tn->empty_children) >= inflate_threshold *
19baf839 596 * tnode_child_length(tn)
c877efb2 597 *
19baf839
RO
598 */
599
600 check_tnode(tn);
c877efb2 601
e6308be8
RO
602 /* Keep root node larger */
603
132adf54 604 if (!tn->parent)
e6308be8 605 inflate_threshold_use = inflate_threshold_root;
e905a9ed 606 else
e6308be8
RO
607 inflate_threshold_use = inflate_threshold;
608
2f36895a 609 err = 0;
05eee48c
RO
610 max_resize = 10;
611 while ((tn->full_children > 0 && max_resize-- &&
a07f5f50
SH
612 50 * (tn->full_children + tnode_child_length(tn)
613 - tn->empty_children)
614 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 615
2f80b3c8
RO
616 old_tn = tn;
617 tn = inflate(t, tn);
a07f5f50 618
2f80b3c8
RO
619 if (IS_ERR(tn)) {
620 tn = old_tn;
2f36895a
RO
621#ifdef CONFIG_IP_FIB_TRIE_STATS
622 t->stats.resize_node_skipped++;
623#endif
624 break;
625 }
19baf839
RO
626 }
627
05eee48c
RO
628 if (max_resize < 0) {
629 if (!tn->parent)
a07f5f50
SH
630 pr_warning("Fix inflate_threshold_root."
631 " Now=%d size=%d bits\n",
632 inflate_threshold_root, tn->bits);
05eee48c 633 else
a07f5f50
SH
634 pr_warning("Fix inflate_threshold."
635 " Now=%d size=%d bits\n",
636 inflate_threshold, tn->bits);
05eee48c
RO
637 }
638
19baf839
RO
639 check_tnode(tn);
640
641 /*
642 * Halve as long as the number of empty children in this
643 * node is above threshold.
644 */
2f36895a 645
e6308be8
RO
646
647 /* Keep root node larger */
648
132adf54 649 if (!tn->parent)
e6308be8 650 halve_threshold_use = halve_threshold_root;
e905a9ed 651 else
e6308be8
RO
652 halve_threshold_use = halve_threshold;
653
2f36895a 654 err = 0;
05eee48c
RO
655 max_resize = 10;
656 while (tn->bits > 1 && max_resize-- &&
19baf839 657 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 658 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 659
2f80b3c8
RO
660 old_tn = tn;
661 tn = halve(t, tn);
662 if (IS_ERR(tn)) {
663 tn = old_tn;
2f36895a
RO
664#ifdef CONFIG_IP_FIB_TRIE_STATS
665 t->stats.resize_node_skipped++;
666#endif
667 break;
668 }
669 }
19baf839 670
05eee48c
RO
671 if (max_resize < 0) {
672 if (!tn->parent)
a07f5f50
SH
673 pr_warning("Fix halve_threshold_root."
674 " Now=%d size=%d bits\n",
675 halve_threshold_root, tn->bits);
05eee48c 676 else
a07f5f50
SH
677 pr_warning("Fix halve_threshold."
678 " Now=%d size=%d bits\n",
679 halve_threshold, tn->bits);
05eee48c 680 }
c877efb2 681
19baf839 682 /* Only one child remains */
19baf839
RO
683 if (tn->empty_children == tnode_child_length(tn) - 1)
684 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 685 struct node *n;
19baf839 686
91b9a277 687 n = tn->child[i];
2373ce1c 688 if (!n)
91b9a277 689 continue;
91b9a277
OJ
690
691 /* compress one level */
692
06801916 693 node_set_parent(n, NULL);
e0f7cb8c 694 tnode_free_safe(tn);
91b9a277 695 return n;
19baf839
RO
696 }
697
698 return (struct node *) tn;
699}
700
2f80b3c8 701static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 702{
19baf839
RO
703 struct tnode *oldtnode = tn;
704 int olen = tnode_child_length(tn);
705 int i;
706
0c7770c7 707 pr_debug("In inflate\n");
19baf839
RO
708
709 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
710
0c7770c7 711 if (!tn)
2f80b3c8 712 return ERR_PTR(-ENOMEM);
2f36895a
RO
713
714 /*
c877efb2
SH
715 * Preallocate and store tnodes before the actual work so we
716 * don't get into an inconsistent state if memory allocation
717 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
718 * of tnode is ignored.
719 */
91b9a277
OJ
720
721 for (i = 0; i < olen; i++) {
a07f5f50 722 struct tnode *inode;
2f36895a 723
a07f5f50 724 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
725 if (inode &&
726 IS_TNODE(inode) &&
727 inode->pos == oldtnode->pos + oldtnode->bits &&
728 inode->bits > 1) {
729 struct tnode *left, *right;
ab66b4a7 730 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 731
2f36895a
RO
732 left = tnode_new(inode->key&(~m), inode->pos + 1,
733 inode->bits - 1);
2f80b3c8
RO
734 if (!left)
735 goto nomem;
91b9a277 736
2f36895a
RO
737 right = tnode_new(inode->key|m, inode->pos + 1,
738 inode->bits - 1);
739
e905a9ed 740 if (!right) {
2f80b3c8
RO
741 tnode_free(left);
742 goto nomem;
e905a9ed 743 }
2f36895a
RO
744
745 put_child(t, tn, 2*i, (struct node *) left);
746 put_child(t, tn, 2*i+1, (struct node *) right);
747 }
748 }
749
91b9a277 750 for (i = 0; i < olen; i++) {
c95aaf9a 751 struct tnode *inode;
19baf839 752 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
753 struct tnode *left, *right;
754 int size, j;
c877efb2 755
19baf839
RO
756 /* An empty child */
757 if (node == NULL)
758 continue;
759
760 /* A leaf or an internal node with skipped bits */
761
c877efb2 762 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 763 tn->pos + tn->bits - 1) {
a07f5f50
SH
764 if (tkey_extract_bits(node->key,
765 oldtnode->pos + oldtnode->bits,
766 1) == 0)
19baf839
RO
767 put_child(t, tn, 2*i, node);
768 else
769 put_child(t, tn, 2*i+1, node);
770 continue;
771 }
772
773 /* An internal node with two children */
774 inode = (struct tnode *) node;
775
776 if (inode->bits == 1) {
777 put_child(t, tn, 2*i, inode->child[0]);
778 put_child(t, tn, 2*i+1, inode->child[1]);
779
e0f7cb8c 780 tnode_free_safe(inode);
91b9a277 781 continue;
19baf839
RO
782 }
783
91b9a277
OJ
784 /* An internal node with more than two children */
785
786 /* We will replace this node 'inode' with two new
787 * ones, 'left' and 'right', each with half of the
788 * original children. The two new nodes will have
789 * a position one bit further down the key and this
790 * means that the "significant" part of their keys
791 * (see the discussion near the top of this file)
792 * will differ by one bit, which will be "0" in
793 * left's key and "1" in right's key. Since we are
794 * moving the key position by one step, the bit that
795 * we are moving away from - the bit at position
796 * (inode->pos) - is the one that will differ between
797 * left and right. So... we synthesize that bit in the
798 * two new keys.
799 * The mask 'm' below will be a single "one" bit at
800 * the position (inode->pos)
801 */
19baf839 802
91b9a277
OJ
803 /* Use the old key, but set the new significant
804 * bit to zero.
805 */
2f36895a 806
91b9a277
OJ
807 left = (struct tnode *) tnode_get_child(tn, 2*i);
808 put_child(t, tn, 2*i, NULL);
2f36895a 809
91b9a277 810 BUG_ON(!left);
2f36895a 811
91b9a277
OJ
812 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
813 put_child(t, tn, 2*i+1, NULL);
19baf839 814
91b9a277 815 BUG_ON(!right);
19baf839 816
91b9a277
OJ
817 size = tnode_child_length(left);
818 for (j = 0; j < size; j++) {
819 put_child(t, left, j, inode->child[j]);
820 put_child(t, right, j, inode->child[j + size]);
19baf839 821 }
91b9a277
OJ
822 put_child(t, tn, 2*i, resize(t, left));
823 put_child(t, tn, 2*i+1, resize(t, right));
824
e0f7cb8c 825 tnode_free_safe(inode);
19baf839 826 }
e0f7cb8c 827 tnode_free_safe(oldtnode);
19baf839 828 return tn;
2f80b3c8
RO
829nomem:
830 {
831 int size = tnode_child_length(tn);
832 int j;
833
0c7770c7 834 for (j = 0; j < size; j++)
2f80b3c8
RO
835 if (tn->child[j])
836 tnode_free((struct tnode *)tn->child[j]);
837
838 tnode_free(tn);
0c7770c7 839
2f80b3c8
RO
840 return ERR_PTR(-ENOMEM);
841 }
19baf839
RO
842}
843
2f80b3c8 844static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
845{
846 struct tnode *oldtnode = tn;
847 struct node *left, *right;
848 int i;
849 int olen = tnode_child_length(tn);
850
0c7770c7 851 pr_debug("In halve\n");
c877efb2
SH
852
853 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 854
2f80b3c8
RO
855 if (!tn)
856 return ERR_PTR(-ENOMEM);
2f36895a
RO
857
858 /*
c877efb2
SH
859 * Preallocate and store tnodes before the actual work so we
860 * don't get into an inconsistent state if memory allocation
861 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
862 * of tnode is ignored.
863 */
864
91b9a277 865 for (i = 0; i < olen; i += 2) {
2f36895a
RO
866 left = tnode_get_child(oldtnode, i);
867 right = tnode_get_child(oldtnode, i+1);
c877efb2 868
2f36895a 869 /* Two nonempty children */
0c7770c7 870 if (left && right) {
2f80b3c8 871 struct tnode *newn;
0c7770c7 872
2f80b3c8 873 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
874
875 if (!newn)
2f80b3c8 876 goto nomem;
0c7770c7 877
2f80b3c8 878 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 879 }
2f36895a 880
2f36895a 881 }
19baf839 882
91b9a277
OJ
883 for (i = 0; i < olen; i += 2) {
884 struct tnode *newBinNode;
885
19baf839
RO
886 left = tnode_get_child(oldtnode, i);
887 right = tnode_get_child(oldtnode, i+1);
c877efb2 888
19baf839
RO
889 /* At least one of the children is empty */
890 if (left == NULL) {
891 if (right == NULL) /* Both are empty */
892 continue;
893 put_child(t, tn, i/2, right);
91b9a277 894 continue;
0c7770c7 895 }
91b9a277
OJ
896
897 if (right == NULL) {
19baf839 898 put_child(t, tn, i/2, left);
91b9a277
OJ
899 continue;
900 }
c877efb2 901
19baf839 902 /* Two nonempty children */
91b9a277
OJ
903 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
904 put_child(t, tn, i/2, NULL);
91b9a277
OJ
905 put_child(t, newBinNode, 0, left);
906 put_child(t, newBinNode, 1, right);
907 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 908 }
e0f7cb8c 909 tnode_free_safe(oldtnode);
19baf839 910 return tn;
2f80b3c8
RO
911nomem:
912 {
913 int size = tnode_child_length(tn);
914 int j;
915
0c7770c7 916 for (j = 0; j < size; j++)
2f80b3c8
RO
917 if (tn->child[j])
918 tnode_free((struct tnode *)tn->child[j]);
919
920 tnode_free(tn);
0c7770c7 921
2f80b3c8
RO
922 return ERR_PTR(-ENOMEM);
923 }
19baf839
RO
924}
925
772cb712 926/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
927 via get_fa_head and dump */
928
772cb712 929static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 930{
772cb712 931 struct hlist_head *head = &l->list;
19baf839
RO
932 struct hlist_node *node;
933 struct leaf_info *li;
934
2373ce1c 935 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 936 if (li->plen == plen)
19baf839 937 return li;
91b9a277 938
19baf839
RO
939 return NULL;
940}
941
a07f5f50 942static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 943{
772cb712 944 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 945
91b9a277
OJ
946 if (!li)
947 return NULL;
c877efb2 948
91b9a277 949 return &li->falh;
19baf839
RO
950}
951
952static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
953{
e905a9ed
YH
954 struct leaf_info *li = NULL, *last = NULL;
955 struct hlist_node *node;
956
957 if (hlist_empty(head)) {
958 hlist_add_head_rcu(&new->hlist, head);
959 } else {
960 hlist_for_each_entry(li, node, head, hlist) {
961 if (new->plen > li->plen)
962 break;
963
964 last = li;
965 }
966 if (last)
967 hlist_add_after_rcu(&last->hlist, &new->hlist);
968 else
969 hlist_add_before_rcu(&new->hlist, &li->hlist);
970 }
19baf839
RO
971}
972
2373ce1c
RO
973/* rcu_read_lock needs to be hold by caller from readside */
974
19baf839
RO
975static struct leaf *
976fib_find_node(struct trie *t, u32 key)
977{
978 int pos;
979 struct tnode *tn;
980 struct node *n;
981
982 pos = 0;
2373ce1c 983 n = rcu_dereference(t->trie);
19baf839
RO
984
985 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
986 tn = (struct tnode *) n;
91b9a277 987
19baf839 988 check_tnode(tn);
91b9a277 989
c877efb2 990 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 991 pos = tn->pos + tn->bits;
a07f5f50
SH
992 n = tnode_get_child_rcu(tn,
993 tkey_extract_bits(key,
994 tn->pos,
995 tn->bits));
91b9a277 996 } else
19baf839
RO
997 break;
998 }
999 /* Case we have found a leaf. Compare prefixes */
1000
91b9a277
OJ
1001 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
1002 return (struct leaf *)n;
1003
19baf839
RO
1004 return NULL;
1005}
1006
7b85576d 1007static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 1008{
19baf839 1009 int wasfull;
3ed18d76 1010 t_key cindex, key;
06801916 1011 struct tnode *tp;
19baf839 1012
3ed18d76
RO
1013 key = tn->key;
1014
06801916 1015 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
1016 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1017 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
1018 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1019
1020 tnode_put_child_reorg((struct tnode *)tp, cindex,
1021 (struct node *)tn, wasfull);
91b9a277 1022
06801916 1023 tp = node_parent((struct node *) tn);
e0f7cb8c 1024 tnode_free_flush();
06801916 1025 if (!tp)
19baf839 1026 break;
06801916 1027 tn = tp;
19baf839 1028 }
06801916 1029
19baf839 1030 /* Handle last (top) tnode */
7b85576d 1031 if (IS_TNODE(tn))
a07f5f50 1032 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1033
7b85576d
JP
1034 rcu_assign_pointer(t->trie, (struct node *)tn);
1035 tnode_free_flush();
1036
1037 return;
19baf839
RO
1038}
1039
2373ce1c
RO
1040/* only used from updater-side */
1041
fea86ad8 1042static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1043{
1044 int pos, newpos;
1045 struct tnode *tp = NULL, *tn = NULL;
1046 struct node *n;
1047 struct leaf *l;
1048 int missbit;
c877efb2 1049 struct list_head *fa_head = NULL;
19baf839
RO
1050 struct leaf_info *li;
1051 t_key cindex;
1052
1053 pos = 0;
c877efb2 1054 n = t->trie;
19baf839 1055
c877efb2
SH
1056 /* If we point to NULL, stop. Either the tree is empty and we should
1057 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1058 * and we should just put our new leaf in that.
c877efb2
SH
1059 * If we point to a T_TNODE, check if it matches our key. Note that
1060 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1061 * not be the parent's 'pos'+'bits'!
1062 *
c877efb2 1063 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1064 * the index from our key, push the T_TNODE and walk the tree.
1065 *
1066 * If it doesn't, we have to replace it with a new T_TNODE.
1067 *
c877efb2
SH
1068 * If we point to a T_LEAF, it might or might not have the same key
1069 * as we do. If it does, just change the value, update the T_LEAF's
1070 * value, and return it.
19baf839
RO
1071 * If it doesn't, we need to replace it with a T_TNODE.
1072 */
1073
1074 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1075 tn = (struct tnode *) n;
91b9a277 1076
c877efb2 1077 check_tnode(tn);
91b9a277 1078
c877efb2 1079 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1080 tp = tn;
91b9a277 1081 pos = tn->pos + tn->bits;
a07f5f50
SH
1082 n = tnode_get_child(tn,
1083 tkey_extract_bits(key,
1084 tn->pos,
1085 tn->bits));
19baf839 1086
06801916 1087 BUG_ON(n && node_parent(n) != tn);
91b9a277 1088 } else
19baf839
RO
1089 break;
1090 }
1091
1092 /*
1093 * n ----> NULL, LEAF or TNODE
1094 *
c877efb2 1095 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1096 */
1097
91b9a277 1098 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1099
1100 /* Case 1: n is a leaf. Compare prefixes */
1101
c877efb2 1102 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1103 l = (struct leaf *) n;
19baf839 1104 li = leaf_info_new(plen);
91b9a277 1105
fea86ad8
SH
1106 if (!li)
1107 return NULL;
19baf839
RO
1108
1109 fa_head = &li->falh;
1110 insert_leaf_info(&l->list, li);
1111 goto done;
1112 }
19baf839
RO
1113 l = leaf_new();
1114
fea86ad8
SH
1115 if (!l)
1116 return NULL;
19baf839
RO
1117
1118 l->key = key;
1119 li = leaf_info_new(plen);
1120
c877efb2 1121 if (!li) {
387a5487 1122 free_leaf(l);
fea86ad8 1123 return NULL;
f835e471 1124 }
19baf839
RO
1125
1126 fa_head = &li->falh;
1127 insert_leaf_info(&l->list, li);
1128
19baf839 1129 if (t->trie && n == NULL) {
91b9a277 1130 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1131
06801916 1132 node_set_parent((struct node *)l, tp);
19baf839 1133
91b9a277
OJ
1134 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1135 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1136 } else {
1137 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1138 /*
1139 * Add a new tnode here
19baf839
RO
1140 * first tnode need some special handling
1141 */
1142
1143 if (tp)
91b9a277 1144 pos = tp->pos+tp->bits;
19baf839 1145 else
91b9a277
OJ
1146 pos = 0;
1147
c877efb2 1148 if (n) {
19baf839
RO
1149 newpos = tkey_mismatch(key, pos, n->key);
1150 tn = tnode_new(n->key, newpos, 1);
91b9a277 1151 } else {
19baf839 1152 newpos = 0;
c877efb2 1153 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1154 }
19baf839 1155
c877efb2 1156 if (!tn) {
f835e471 1157 free_leaf_info(li);
387a5487 1158 free_leaf(l);
fea86ad8 1159 return NULL;
91b9a277
OJ
1160 }
1161
06801916 1162 node_set_parent((struct node *)tn, tp);
19baf839 1163
91b9a277 1164 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1165 put_child(t, tn, missbit, (struct node *)l);
1166 put_child(t, tn, 1-missbit, n);
1167
c877efb2 1168 if (tp) {
19baf839 1169 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1170 put_child(t, (struct tnode *)tp, cindex,
1171 (struct node *)tn);
91b9a277 1172 } else {
a07f5f50 1173 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1174 tp = tn;
1175 }
1176 }
91b9a277
OJ
1177
1178 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1179 pr_warning("fib_trie"
1180 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1181 tp, tp->pos, tp->bits, key, plen);
91b9a277 1182
19baf839 1183 /* Rebalance the trie */
2373ce1c 1184
7b85576d 1185 trie_rebalance(t, tp);
f835e471 1186done:
19baf839
RO
1187 return fa_head;
1188}
1189
d562f1f8
RO
1190/*
1191 * Caller must hold RTNL.
1192 */
4e902c57 1193static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1194{
1195 struct trie *t = (struct trie *) tb->tb_data;
1196 struct fib_alias *fa, *new_fa;
c877efb2 1197 struct list_head *fa_head = NULL;
19baf839 1198 struct fib_info *fi;
4e902c57
TG
1199 int plen = cfg->fc_dst_len;
1200 u8 tos = cfg->fc_tos;
19baf839
RO
1201 u32 key, mask;
1202 int err;
1203 struct leaf *l;
1204
1205 if (plen > 32)
1206 return -EINVAL;
1207
4e902c57 1208 key = ntohl(cfg->fc_dst);
19baf839 1209
2dfe55b4 1210 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1211
91b9a277 1212 mask = ntohl(inet_make_mask(plen));
19baf839 1213
c877efb2 1214 if (key & ~mask)
19baf839
RO
1215 return -EINVAL;
1216
1217 key = key & mask;
1218
4e902c57
TG
1219 fi = fib_create_info(cfg);
1220 if (IS_ERR(fi)) {
1221 err = PTR_ERR(fi);
19baf839 1222 goto err;
4e902c57 1223 }
19baf839
RO
1224
1225 l = fib_find_node(t, key);
c877efb2 1226 fa = NULL;
19baf839 1227
c877efb2 1228 if (l) {
19baf839
RO
1229 fa_head = get_fa_head(l, plen);
1230 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1231 }
1232
1233 /* Now fa, if non-NULL, points to the first fib alias
1234 * with the same keys [prefix,tos,priority], if such key already
1235 * exists or to the node before which we will insert new one.
1236 *
1237 * If fa is NULL, we will need to allocate a new one and
1238 * insert to the head of f.
1239 *
1240 * If f is NULL, no fib node matched the destination key
1241 * and we need to allocate a new one of those as well.
1242 */
1243
936f6f8e
JA
1244 if (fa && fa->fa_tos == tos &&
1245 fa->fa_info->fib_priority == fi->fib_priority) {
1246 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1247
1248 err = -EEXIST;
4e902c57 1249 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1250 goto out;
1251
936f6f8e
JA
1252 /* We have 2 goals:
1253 * 1. Find exact match for type, scope, fib_info to avoid
1254 * duplicate routes
1255 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1256 */
1257 fa_match = NULL;
1258 fa_first = fa;
1259 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1260 list_for_each_entry_continue(fa, fa_head, fa_list) {
1261 if (fa->fa_tos != tos)
1262 break;
1263 if (fa->fa_info->fib_priority != fi->fib_priority)
1264 break;
1265 if (fa->fa_type == cfg->fc_type &&
1266 fa->fa_scope == cfg->fc_scope &&
1267 fa->fa_info == fi) {
1268 fa_match = fa;
1269 break;
1270 }
1271 }
1272
4e902c57 1273 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1274 struct fib_info *fi_drop;
1275 u8 state;
1276
936f6f8e
JA
1277 fa = fa_first;
1278 if (fa_match) {
1279 if (fa == fa_match)
1280 err = 0;
6725033f 1281 goto out;
936f6f8e 1282 }
2373ce1c 1283 err = -ENOBUFS;
e94b1766 1284 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1285 if (new_fa == NULL)
1286 goto out;
19baf839
RO
1287
1288 fi_drop = fa->fa_info;
2373ce1c
RO
1289 new_fa->fa_tos = fa->fa_tos;
1290 new_fa->fa_info = fi;
4e902c57
TG
1291 new_fa->fa_type = cfg->fc_type;
1292 new_fa->fa_scope = cfg->fc_scope;
19baf839 1293 state = fa->fa_state;
936f6f8e 1294 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1295
2373ce1c
RO
1296 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1297 alias_free_mem_rcu(fa);
19baf839
RO
1298
1299 fib_release_info(fi_drop);
1300 if (state & FA_S_ACCESSED)
76e6ebfb 1301 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1302 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1303 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1304
91b9a277 1305 goto succeeded;
19baf839
RO
1306 }
1307 /* Error if we find a perfect match which
1308 * uses the same scope, type, and nexthop
1309 * information.
1310 */
936f6f8e
JA
1311 if (fa_match)
1312 goto out;
a07f5f50 1313
4e902c57 1314 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1315 fa = fa_first;
19baf839
RO
1316 }
1317 err = -ENOENT;
4e902c57 1318 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1319 goto out;
1320
1321 err = -ENOBUFS;
e94b1766 1322 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1323 if (new_fa == NULL)
1324 goto out;
1325
1326 new_fa->fa_info = fi;
1327 new_fa->fa_tos = tos;
4e902c57
TG
1328 new_fa->fa_type = cfg->fc_type;
1329 new_fa->fa_scope = cfg->fc_scope;
19baf839 1330 new_fa->fa_state = 0;
19baf839
RO
1331 /*
1332 * Insert new entry to the list.
1333 */
1334
c877efb2 1335 if (!fa_head) {
fea86ad8
SH
1336 fa_head = fib_insert_node(t, key, plen);
1337 if (unlikely(!fa_head)) {
1338 err = -ENOMEM;
f835e471 1339 goto out_free_new_fa;
fea86ad8 1340 }
f835e471 1341 }
19baf839 1342
2373ce1c
RO
1343 list_add_tail_rcu(&new_fa->fa_list,
1344 (fa ? &fa->fa_list : fa_head));
19baf839 1345
76e6ebfb 1346 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1347 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1348 &cfg->fc_nlinfo, 0);
19baf839
RO
1349succeeded:
1350 return 0;
f835e471
RO
1351
1352out_free_new_fa:
1353 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1354out:
1355 fib_release_info(fi);
91b9a277 1356err:
19baf839
RO
1357 return err;
1358}
1359
772cb712 1360/* should be called with rcu_read_lock */
a07f5f50
SH
1361static int check_leaf(struct trie *t, struct leaf *l,
1362 t_key key, const struct flowi *flp,
1363 struct fib_result *res)
19baf839 1364{
19baf839
RO
1365 struct leaf_info *li;
1366 struct hlist_head *hhead = &l->list;
1367 struct hlist_node *node;
c877efb2 1368
2373ce1c 1369 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1370 int err;
1371 int plen = li->plen;
1372 __be32 mask = inet_make_mask(plen);
1373
888454c5 1374 if (l->key != (key & ntohl(mask)))
19baf839
RO
1375 continue;
1376
e204a345 1377 err = fib_semantic_match(&li->falh, flp, res, plen);
a07f5f50 1378
19baf839 1379#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1380 if (err <= 0)
19baf839 1381 t->stats.semantic_match_passed++;
a07f5f50
SH
1382 else
1383 t->stats.semantic_match_miss++;
19baf839 1384#endif
a07f5f50 1385 if (err <= 0)
2e655571 1386 return err;
19baf839 1387 }
a07f5f50 1388
2e655571 1389 return 1;
19baf839
RO
1390}
1391
a07f5f50
SH
1392static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1393 struct fib_result *res)
19baf839
RO
1394{
1395 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1396 int ret;
19baf839
RO
1397 struct node *n;
1398 struct tnode *pn;
1399 int pos, bits;
91b9a277 1400 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1401 int chopped_off;
1402 t_key cindex = 0;
1403 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1404 struct tnode *cn;
1405 t_key node_prefix, key_prefix, pref_mismatch;
1406 int mp;
1407
2373ce1c 1408 rcu_read_lock();
91b9a277 1409
2373ce1c 1410 n = rcu_dereference(t->trie);
c877efb2 1411 if (!n)
19baf839
RO
1412 goto failed;
1413
1414#ifdef CONFIG_IP_FIB_TRIE_STATS
1415 t->stats.gets++;
1416#endif
1417
1418 /* Just a leaf? */
1419 if (IS_LEAF(n)) {
2e655571 1420 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
a07f5f50 1421 goto found;
19baf839 1422 }
a07f5f50 1423
19baf839
RO
1424 pn = (struct tnode *) n;
1425 chopped_off = 0;
c877efb2 1426
91b9a277 1427 while (pn) {
19baf839
RO
1428 pos = pn->pos;
1429 bits = pn->bits;
1430
c877efb2 1431 if (!chopped_off)
ab66b4a7
SH
1432 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1433 pos, bits);
19baf839
RO
1434
1435 n = tnode_get_child(pn, cindex);
1436
1437 if (n == NULL) {
1438#ifdef CONFIG_IP_FIB_TRIE_STATS
1439 t->stats.null_node_hit++;
1440#endif
1441 goto backtrace;
1442 }
1443
91b9a277 1444 if (IS_LEAF(n)) {
2e655571
BH
1445 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1446 if (ret > 0)
91b9a277 1447 goto backtrace;
a07f5f50 1448 goto found;
91b9a277
OJ
1449 }
1450
91b9a277 1451 cn = (struct tnode *)n;
19baf839 1452
91b9a277
OJ
1453 /*
1454 * It's a tnode, and we can do some extra checks here if we
1455 * like, to avoid descending into a dead-end branch.
1456 * This tnode is in the parent's child array at index
1457 * key[p_pos..p_pos+p_bits] but potentially with some bits
1458 * chopped off, so in reality the index may be just a
1459 * subprefix, padded with zero at the end.
1460 * We can also take a look at any skipped bits in this
1461 * tnode - everything up to p_pos is supposed to be ok,
1462 * and the non-chopped bits of the index (se previous
1463 * paragraph) are also guaranteed ok, but the rest is
1464 * considered unknown.
1465 *
1466 * The skipped bits are key[pos+bits..cn->pos].
1467 */
19baf839 1468
91b9a277
OJ
1469 /* If current_prefix_length < pos+bits, we are already doing
1470 * actual prefix matching, which means everything from
1471 * pos+(bits-chopped_off) onward must be zero along some
1472 * branch of this subtree - otherwise there is *no* valid
1473 * prefix present. Here we can only check the skipped
1474 * bits. Remember, since we have already indexed into the
1475 * parent's child array, we know that the bits we chopped of
1476 * *are* zero.
1477 */
19baf839 1478
a07f5f50
SH
1479 /* NOTA BENE: Checking only skipped bits
1480 for the new node here */
19baf839 1481
91b9a277
OJ
1482 if (current_prefix_length < pos+bits) {
1483 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1484 cn->pos - current_prefix_length)
1485 || !(cn->child[0]))
91b9a277
OJ
1486 goto backtrace;
1487 }
19baf839 1488
91b9a277
OJ
1489 /*
1490 * If chopped_off=0, the index is fully validated and we
1491 * only need to look at the skipped bits for this, the new,
1492 * tnode. What we actually want to do is to find out if
1493 * these skipped bits match our key perfectly, or if we will
1494 * have to count on finding a matching prefix further down,
1495 * because if we do, we would like to have some way of
1496 * verifying the existence of such a prefix at this point.
1497 */
19baf839 1498
91b9a277
OJ
1499 /* The only thing we can do at this point is to verify that
1500 * any such matching prefix can indeed be a prefix to our
1501 * key, and if the bits in the node we are inspecting that
1502 * do not match our key are not ZERO, this cannot be true.
1503 * Thus, find out where there is a mismatch (before cn->pos)
1504 * and verify that all the mismatching bits are zero in the
1505 * new tnode's key.
1506 */
19baf839 1507
a07f5f50
SH
1508 /*
1509 * Note: We aren't very concerned about the piece of
1510 * the key that precede pn->pos+pn->bits, since these
1511 * have already been checked. The bits after cn->pos
1512 * aren't checked since these are by definition
1513 * "unknown" at this point. Thus, what we want to see
1514 * is if we are about to enter the "prefix matching"
1515 * state, and in that case verify that the skipped
1516 * bits that will prevail throughout this subtree are
1517 * zero, as they have to be if we are to find a
1518 * matching prefix.
91b9a277
OJ
1519 */
1520
ab66b4a7
SH
1521 node_prefix = mask_pfx(cn->key, cn->pos);
1522 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1523 pref_mismatch = key_prefix^node_prefix;
1524 mp = 0;
1525
a07f5f50
SH
1526 /*
1527 * In short: If skipped bits in this node do not match
1528 * the search key, enter the "prefix matching"
1529 * state.directly.
91b9a277
OJ
1530 */
1531 if (pref_mismatch) {
1532 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1533 mp++;
a07f5f50 1534 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1535 }
1536 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1537
1538 if (key_prefix != 0)
1539 goto backtrace;
1540
1541 if (current_prefix_length >= cn->pos)
1542 current_prefix_length = mp;
c877efb2 1543 }
a07f5f50 1544
91b9a277
OJ
1545 pn = (struct tnode *)n; /* Descend */
1546 chopped_off = 0;
1547 continue;
1548
19baf839
RO
1549backtrace:
1550 chopped_off++;
1551
1552 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1553 while ((chopped_off <= pn->bits)
1554 && !(cindex & (1<<(chopped_off-1))))
19baf839 1555 chopped_off++;
19baf839
RO
1556
1557 /* Decrease current_... with bits chopped off */
1558 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1559 current_prefix_length = pn->pos + pn->bits
1560 - chopped_off;
91b9a277 1561
19baf839 1562 /*
c877efb2 1563 * Either we do the actual chop off according or if we have
19baf839
RO
1564 * chopped off all bits in this tnode walk up to our parent.
1565 */
1566
91b9a277 1567 if (chopped_off <= pn->bits) {
19baf839 1568 cindex &= ~(1 << (chopped_off-1));
91b9a277 1569 } else {
06801916
SH
1570 struct tnode *parent = node_parent((struct node *) pn);
1571 if (!parent)
19baf839 1572 goto failed;
91b9a277 1573
19baf839 1574 /* Get Child's index */
06801916
SH
1575 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1576 pn = parent;
19baf839
RO
1577 chopped_off = 0;
1578
1579#ifdef CONFIG_IP_FIB_TRIE_STATS
1580 t->stats.backtrack++;
1581#endif
1582 goto backtrace;
c877efb2 1583 }
19baf839
RO
1584 }
1585failed:
c877efb2 1586 ret = 1;
19baf839 1587found:
2373ce1c 1588 rcu_read_unlock();
19baf839
RO
1589 return ret;
1590}
1591
9195bef7
SH
1592/*
1593 * Remove the leaf and return parent.
1594 */
1595static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1596{
9195bef7 1597 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1598
9195bef7 1599 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1600
c877efb2 1601 if (tp) {
9195bef7 1602 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1603 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1604 trie_rebalance(t, tp);
91b9a277 1605 } else
2373ce1c 1606 rcu_assign_pointer(t->trie, NULL);
19baf839 1607
387a5487 1608 free_leaf(l);
19baf839
RO
1609}
1610
d562f1f8
RO
1611/*
1612 * Caller must hold RTNL.
1613 */
4e902c57 1614static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1615{
1616 struct trie *t = (struct trie *) tb->tb_data;
1617 u32 key, mask;
4e902c57
TG
1618 int plen = cfg->fc_dst_len;
1619 u8 tos = cfg->fc_tos;
19baf839
RO
1620 struct fib_alias *fa, *fa_to_delete;
1621 struct list_head *fa_head;
1622 struct leaf *l;
91b9a277
OJ
1623 struct leaf_info *li;
1624
c877efb2 1625 if (plen > 32)
19baf839
RO
1626 return -EINVAL;
1627
4e902c57 1628 key = ntohl(cfg->fc_dst);
91b9a277 1629 mask = ntohl(inet_make_mask(plen));
19baf839 1630
c877efb2 1631 if (key & ~mask)
19baf839
RO
1632 return -EINVAL;
1633
1634 key = key & mask;
1635 l = fib_find_node(t, key);
1636
c877efb2 1637 if (!l)
19baf839
RO
1638 return -ESRCH;
1639
1640 fa_head = get_fa_head(l, plen);
1641 fa = fib_find_alias(fa_head, tos, 0);
1642
1643 if (!fa)
1644 return -ESRCH;
1645
0c7770c7 1646 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1647
1648 fa_to_delete = NULL;
936f6f8e
JA
1649 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1650 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1651 struct fib_info *fi = fa->fa_info;
1652
1653 if (fa->fa_tos != tos)
1654 break;
1655
4e902c57
TG
1656 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1657 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1658 fa->fa_scope == cfg->fc_scope) &&
1659 (!cfg->fc_protocol ||
1660 fi->fib_protocol == cfg->fc_protocol) &&
1661 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1662 fa_to_delete = fa;
1663 break;
1664 }
1665 }
1666
91b9a277
OJ
1667 if (!fa_to_delete)
1668 return -ESRCH;
19baf839 1669
91b9a277 1670 fa = fa_to_delete;
4e902c57 1671 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1672 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1673
1674 l = fib_find_node(t, key);
772cb712 1675 li = find_leaf_info(l, plen);
19baf839 1676
2373ce1c 1677 list_del_rcu(&fa->fa_list);
19baf839 1678
91b9a277 1679 if (list_empty(fa_head)) {
2373ce1c 1680 hlist_del_rcu(&li->hlist);
91b9a277 1681 free_leaf_info(li);
2373ce1c 1682 }
19baf839 1683
91b9a277 1684 if (hlist_empty(&l->list))
9195bef7 1685 trie_leaf_remove(t, l);
19baf839 1686
91b9a277 1687 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1688 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1689
2373ce1c
RO
1690 fib_release_info(fa->fa_info);
1691 alias_free_mem_rcu(fa);
91b9a277 1692 return 0;
19baf839
RO
1693}
1694
ef3660ce 1695static int trie_flush_list(struct list_head *head)
19baf839
RO
1696{
1697 struct fib_alias *fa, *fa_node;
1698 int found = 0;
1699
1700 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1701 struct fib_info *fi = fa->fa_info;
19baf839 1702
2373ce1c
RO
1703 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1704 list_del_rcu(&fa->fa_list);
1705 fib_release_info(fa->fa_info);
1706 alias_free_mem_rcu(fa);
19baf839
RO
1707 found++;
1708 }
1709 }
1710 return found;
1711}
1712
ef3660ce 1713static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1714{
1715 int found = 0;
1716 struct hlist_head *lih = &l->list;
1717 struct hlist_node *node, *tmp;
1718 struct leaf_info *li = NULL;
1719
1720 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1721 found += trie_flush_list(&li->falh);
19baf839
RO
1722
1723 if (list_empty(&li->falh)) {
2373ce1c 1724 hlist_del_rcu(&li->hlist);
19baf839
RO
1725 free_leaf_info(li);
1726 }
1727 }
1728 return found;
1729}
1730
82cfbb00
SH
1731/*
1732 * Scan for the next right leaf starting at node p->child[idx]
1733 * Since we have back pointer, no recursion necessary.
1734 */
1735static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1736{
82cfbb00
SH
1737 do {
1738 t_key idx;
c877efb2 1739
c877efb2 1740 if (c)
82cfbb00 1741 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1742 else
82cfbb00 1743 idx = 0;
2373ce1c 1744
82cfbb00
SH
1745 while (idx < 1u << p->bits) {
1746 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1747 if (!c)
91b9a277
OJ
1748 continue;
1749
82cfbb00
SH
1750 if (IS_LEAF(c)) {
1751 prefetch(p->child[idx]);
1752 return (struct leaf *) c;
19baf839 1753 }
82cfbb00
SH
1754
1755 /* Rescan start scanning in new node */
1756 p = (struct tnode *) c;
1757 idx = 0;
19baf839 1758 }
82cfbb00
SH
1759
1760 /* Node empty, walk back up to parent */
91b9a277 1761 c = (struct node *) p;
82cfbb00
SH
1762 } while ( (p = node_parent_rcu(c)) != NULL);
1763
1764 return NULL; /* Root of trie */
1765}
1766
82cfbb00
SH
1767static struct leaf *trie_firstleaf(struct trie *t)
1768{
1769 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1770
1771 if (!n)
1772 return NULL;
1773
1774 if (IS_LEAF(n)) /* trie is just a leaf */
1775 return (struct leaf *) n;
1776
1777 return leaf_walk_rcu(n, NULL);
1778}
1779
1780static struct leaf *trie_nextleaf(struct leaf *l)
1781{
1782 struct node *c = (struct node *) l;
1783 struct tnode *p = node_parent(c);
1784
1785 if (!p)
1786 return NULL; /* trie with just one leaf */
1787
1788 return leaf_walk_rcu(p, c);
19baf839
RO
1789}
1790
71d67e66
SH
1791static struct leaf *trie_leafindex(struct trie *t, int index)
1792{
1793 struct leaf *l = trie_firstleaf(t);
1794
ec28cf73 1795 while (l && index-- > 0)
71d67e66 1796 l = trie_nextleaf(l);
ec28cf73 1797
71d67e66
SH
1798 return l;
1799}
1800
1801
d562f1f8
RO
1802/*
1803 * Caller must hold RTNL.
1804 */
19baf839
RO
1805static int fn_trie_flush(struct fib_table *tb)
1806{
1807 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1808 struct leaf *l, *ll = NULL;
82cfbb00 1809 int found = 0;
19baf839 1810
82cfbb00 1811 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1812 found += trie_flush_leaf(l);
19baf839
RO
1813
1814 if (ll && hlist_empty(&ll->list))
9195bef7 1815 trie_leaf_remove(t, ll);
19baf839
RO
1816 ll = l;
1817 }
1818
1819 if (ll && hlist_empty(&ll->list))
9195bef7 1820 trie_leaf_remove(t, ll);
19baf839 1821
0c7770c7 1822 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1823 return found;
1824}
1825
a07f5f50
SH
1826static void fn_trie_select_default(struct fib_table *tb,
1827 const struct flowi *flp,
1828 struct fib_result *res)
19baf839
RO
1829{
1830 struct trie *t = (struct trie *) tb->tb_data;
1831 int order, last_idx;
1832 struct fib_info *fi = NULL;
1833 struct fib_info *last_resort;
1834 struct fib_alias *fa = NULL;
1835 struct list_head *fa_head;
1836 struct leaf *l;
1837
1838 last_idx = -1;
1839 last_resort = NULL;
1840 order = -1;
1841
2373ce1c 1842 rcu_read_lock();
c877efb2 1843
19baf839 1844 l = fib_find_node(t, 0);
c877efb2 1845 if (!l)
19baf839
RO
1846 goto out;
1847
1848 fa_head = get_fa_head(l, 0);
c877efb2 1849 if (!fa_head)
19baf839
RO
1850 goto out;
1851
c877efb2 1852 if (list_empty(fa_head))
19baf839
RO
1853 goto out;
1854
2373ce1c 1855 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1856 struct fib_info *next_fi = fa->fa_info;
91b9a277 1857
19baf839
RO
1858 if (fa->fa_scope != res->scope ||
1859 fa->fa_type != RTN_UNICAST)
1860 continue;
91b9a277 1861
19baf839
RO
1862 if (next_fi->fib_priority > res->fi->fib_priority)
1863 break;
1864 if (!next_fi->fib_nh[0].nh_gw ||
1865 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1866 continue;
1867 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1868
19baf839
RO
1869 if (fi == NULL) {
1870 if (next_fi != res->fi)
1871 break;
1872 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1873 &last_idx, tb->tb_default)) {
a2bbe682 1874 fib_result_assign(res, fi);
971b893e 1875 tb->tb_default = order;
19baf839
RO
1876 goto out;
1877 }
1878 fi = next_fi;
1879 order++;
1880 }
1881 if (order <= 0 || fi == NULL) {
971b893e 1882 tb->tb_default = -1;
19baf839
RO
1883 goto out;
1884 }
1885
971b893e
DL
1886 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1887 tb->tb_default)) {
a2bbe682 1888 fib_result_assign(res, fi);
971b893e 1889 tb->tb_default = order;
19baf839
RO
1890 goto out;
1891 }
a2bbe682
DL
1892 if (last_idx >= 0)
1893 fib_result_assign(res, last_resort);
971b893e
DL
1894 tb->tb_default = last_idx;
1895out:
2373ce1c 1896 rcu_read_unlock();
19baf839
RO
1897}
1898
a07f5f50
SH
1899static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1900 struct fib_table *tb,
19baf839
RO
1901 struct sk_buff *skb, struct netlink_callback *cb)
1902{
1903 int i, s_i;
1904 struct fib_alias *fa;
32ab5f80 1905 __be32 xkey = htonl(key);
19baf839 1906
71d67e66 1907 s_i = cb->args[5];
19baf839
RO
1908 i = 0;
1909
2373ce1c
RO
1910 /* rcu_read_lock is hold by caller */
1911
1912 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1913 if (i < s_i) {
1914 i++;
1915 continue;
1916 }
19baf839
RO
1917
1918 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1919 cb->nlh->nlmsg_seq,
1920 RTM_NEWROUTE,
1921 tb->tb_id,
1922 fa->fa_type,
1923 fa->fa_scope,
be403ea1 1924 xkey,
19baf839
RO
1925 plen,
1926 fa->fa_tos,
64347f78 1927 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1928 cb->args[5] = i;
19baf839 1929 return -1;
91b9a277 1930 }
19baf839
RO
1931 i++;
1932 }
71d67e66 1933 cb->args[5] = i;
19baf839
RO
1934 return skb->len;
1935}
1936
a88ee229
SH
1937static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1938 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1939{
a88ee229
SH
1940 struct leaf_info *li;
1941 struct hlist_node *node;
1942 int i, s_i;
19baf839 1943
71d67e66 1944 s_i = cb->args[4];
a88ee229 1945 i = 0;
19baf839 1946
a88ee229
SH
1947 /* rcu_read_lock is hold by caller */
1948 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1949 if (i < s_i) {
1950 i++;
19baf839 1951 continue;
a88ee229 1952 }
91b9a277 1953
a88ee229 1954 if (i > s_i)
71d67e66 1955 cb->args[5] = 0;
19baf839 1956
a88ee229 1957 if (list_empty(&li->falh))
19baf839
RO
1958 continue;
1959
a88ee229 1960 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1961 cb->args[4] = i;
19baf839
RO
1962 return -1;
1963 }
a88ee229 1964 i++;
19baf839 1965 }
a88ee229 1966
71d67e66 1967 cb->args[4] = i;
19baf839
RO
1968 return skb->len;
1969}
1970
a07f5f50
SH
1971static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1972 struct netlink_callback *cb)
19baf839 1973{
a88ee229 1974 struct leaf *l;
19baf839 1975 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1976 t_key key = cb->args[2];
71d67e66 1977 int count = cb->args[3];
19baf839 1978
2373ce1c 1979 rcu_read_lock();
d5ce8a0e
SH
1980 /* Dump starting at last key.
1981 * Note: 0.0.0.0/0 (ie default) is first key.
1982 */
71d67e66 1983 if (count == 0)
d5ce8a0e
SH
1984 l = trie_firstleaf(t);
1985 else {
71d67e66
SH
1986 /* Normally, continue from last key, but if that is missing
1987 * fallback to using slow rescan
1988 */
d5ce8a0e 1989 l = fib_find_node(t, key);
71d67e66
SH
1990 if (!l)
1991 l = trie_leafindex(t, count);
d5ce8a0e 1992 }
a88ee229 1993
d5ce8a0e
SH
1994 while (l) {
1995 cb->args[2] = l->key;
a88ee229 1996 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1997 cb->args[3] = count;
a88ee229 1998 rcu_read_unlock();
a88ee229 1999 return -1;
19baf839 2000 }
d5ce8a0e 2001
71d67e66 2002 ++count;
d5ce8a0e 2003 l = trie_nextleaf(l);
71d67e66
SH
2004 memset(&cb->args[4], 0,
2005 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 2006 }
71d67e66 2007 cb->args[3] = count;
2373ce1c 2008 rcu_read_unlock();
a88ee229 2009
19baf839 2010 return skb->len;
19baf839
RO
2011}
2012
7f9b8052
SH
2013void __init fib_hash_init(void)
2014{
a07f5f50
SH
2015 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2016 sizeof(struct fib_alias),
bc3c8c1e
SH
2017 0, SLAB_PANIC, NULL);
2018
2019 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2020 max(sizeof(struct leaf),
2021 sizeof(struct leaf_info)),
2022 0, SLAB_PANIC, NULL);
7f9b8052 2023}
19baf839 2024
7f9b8052
SH
2025
2026/* Fix more generic FIB names for init later */
2027struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2028{
2029 struct fib_table *tb;
2030 struct trie *t;
2031
19baf839
RO
2032 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2033 GFP_KERNEL);
2034 if (tb == NULL)
2035 return NULL;
2036
2037 tb->tb_id = id;
971b893e 2038 tb->tb_default = -1;
19baf839
RO
2039 tb->tb_lookup = fn_trie_lookup;
2040 tb->tb_insert = fn_trie_insert;
2041 tb->tb_delete = fn_trie_delete;
2042 tb->tb_flush = fn_trie_flush;
2043 tb->tb_select_default = fn_trie_select_default;
2044 tb->tb_dump = fn_trie_dump;
19baf839
RO
2045
2046 t = (struct trie *) tb->tb_data;
c28a1cf4 2047 memset(t, 0, sizeof(*t));
19baf839 2048
19baf839 2049 if (id == RT_TABLE_LOCAL)
a07f5f50 2050 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2051
2052 return tb;
2053}
2054
cb7b593c
SH
2055#ifdef CONFIG_PROC_FS
2056/* Depth first Trie walk iterator */
2057struct fib_trie_iter {
1c340b2f 2058 struct seq_net_private p;
3d3b2d25 2059 struct fib_table *tb;
cb7b593c 2060 struct tnode *tnode;
cb7b593c
SH
2061 unsigned index;
2062 unsigned depth;
2063};
19baf839 2064
cb7b593c 2065static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2066{
cb7b593c
SH
2067 struct tnode *tn = iter->tnode;
2068 unsigned cindex = iter->index;
2069 struct tnode *p;
19baf839 2070
6640e697
EB
2071 /* A single entry routing table */
2072 if (!tn)
2073 return NULL;
2074
cb7b593c
SH
2075 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2076 iter->tnode, iter->index, iter->depth);
2077rescan:
2078 while (cindex < (1<<tn->bits)) {
b59cfbf7 2079 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2080
cb7b593c
SH
2081 if (n) {
2082 if (IS_LEAF(n)) {
2083 iter->tnode = tn;
2084 iter->index = cindex + 1;
2085 } else {
2086 /* push down one level */
2087 iter->tnode = (struct tnode *) n;
2088 iter->index = 0;
2089 ++iter->depth;
2090 }
2091 return n;
2092 }
19baf839 2093
cb7b593c
SH
2094 ++cindex;
2095 }
91b9a277 2096
cb7b593c 2097 /* Current node exhausted, pop back up */
b59cfbf7 2098 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2099 if (p) {
2100 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2101 tn = p;
2102 --iter->depth;
2103 goto rescan;
19baf839 2104 }
cb7b593c
SH
2105
2106 /* got root? */
2107 return NULL;
19baf839
RO
2108}
2109
cb7b593c
SH
2110static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2111 struct trie *t)
19baf839 2112{
3d3b2d25 2113 struct node *n;
5ddf0eb2 2114
132adf54 2115 if (!t)
5ddf0eb2
RO
2116 return NULL;
2117
2118 n = rcu_dereference(t->trie);
3d3b2d25 2119 if (!n)
5ddf0eb2 2120 return NULL;
19baf839 2121
3d3b2d25
SH
2122 if (IS_TNODE(n)) {
2123 iter->tnode = (struct tnode *) n;
2124 iter->index = 0;
2125 iter->depth = 1;
2126 } else {
2127 iter->tnode = NULL;
2128 iter->index = 0;
2129 iter->depth = 0;
91b9a277 2130 }
3d3b2d25
SH
2131
2132 return n;
cb7b593c 2133}
91b9a277 2134
cb7b593c
SH
2135static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2136{
2137 struct node *n;
2138 struct fib_trie_iter iter;
91b9a277 2139
cb7b593c 2140 memset(s, 0, sizeof(*s));
91b9a277 2141
cb7b593c 2142 rcu_read_lock();
3d3b2d25 2143 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2144 if (IS_LEAF(n)) {
93672292
SH
2145 struct leaf *l = (struct leaf *)n;
2146 struct leaf_info *li;
2147 struct hlist_node *tmp;
2148
cb7b593c
SH
2149 s->leaves++;
2150 s->totdepth += iter.depth;
2151 if (iter.depth > s->maxdepth)
2152 s->maxdepth = iter.depth;
93672292
SH
2153
2154 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2155 ++s->prefixes;
cb7b593c
SH
2156 } else {
2157 const struct tnode *tn = (const struct tnode *) n;
2158 int i;
2159
2160 s->tnodes++;
132adf54 2161 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2162 s->nodesizes[tn->bits]++;
2163
cb7b593c
SH
2164 for (i = 0; i < (1<<tn->bits); i++)
2165 if (!tn->child[i])
2166 s->nullpointers++;
19baf839 2167 }
19baf839 2168 }
2373ce1c 2169 rcu_read_unlock();
19baf839
RO
2170}
2171
cb7b593c
SH
2172/*
2173 * This outputs /proc/net/fib_triestats
2174 */
2175static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2176{
cb7b593c 2177 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2178
cb7b593c
SH
2179 if (stat->leaves)
2180 avdepth = stat->totdepth*100 / stat->leaves;
2181 else
2182 avdepth = 0;
91b9a277 2183
a07f5f50
SH
2184 seq_printf(seq, "\tAver depth: %u.%02d\n",
2185 avdepth / 100, avdepth % 100);
cb7b593c 2186 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2187
cb7b593c 2188 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2189 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2190
2191 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2192 bytes += sizeof(struct leaf_info) * stat->prefixes;
2193
187b5188 2194 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2195 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2196
06ef921d
RO
2197 max = MAX_STAT_DEPTH;
2198 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2199 max--;
19baf839 2200
cb7b593c
SH
2201 pointers = 0;
2202 for (i = 1; i <= max; i++)
2203 if (stat->nodesizes[i] != 0) {
187b5188 2204 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2205 pointers += (1<<i) * stat->nodesizes[i];
2206 }
2207 seq_putc(seq, '\n');
187b5188 2208 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2209
cb7b593c 2210 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2211 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2212 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2213}
2373ce1c 2214
cb7b593c 2215#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2216static void trie_show_usage(struct seq_file *seq,
2217 const struct trie_use_stats *stats)
2218{
2219 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2220 seq_printf(seq, "gets = %u\n", stats->gets);
2221 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2222 seq_printf(seq, "semantic match passed = %u\n",
2223 stats->semantic_match_passed);
2224 seq_printf(seq, "semantic match miss = %u\n",
2225 stats->semantic_match_miss);
2226 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2227 seq_printf(seq, "skipped node resize = %u\n\n",
2228 stats->resize_node_skipped);
cb7b593c 2229}
66a2f7fd
SH
2230#endif /* CONFIG_IP_FIB_TRIE_STATS */
2231
3d3b2d25 2232static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2233{
3d3b2d25
SH
2234 if (tb->tb_id == RT_TABLE_LOCAL)
2235 seq_puts(seq, "Local:\n");
2236 else if (tb->tb_id == RT_TABLE_MAIN)
2237 seq_puts(seq, "Main:\n");
2238 else
2239 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2240}
19baf839 2241
3d3b2d25 2242
cb7b593c
SH
2243static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2244{
1c340b2f 2245 struct net *net = (struct net *)seq->private;
3d3b2d25 2246 unsigned int h;
877a9bff 2247
d717a9a6 2248 seq_printf(seq,
a07f5f50
SH
2249 "Basic info: size of leaf:"
2250 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2251 sizeof(struct leaf), sizeof(struct tnode));
2252
3d3b2d25
SH
2253 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2254 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2255 struct hlist_node *node;
2256 struct fib_table *tb;
2257
2258 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2259 struct trie *t = (struct trie *) tb->tb_data;
2260 struct trie_stat stat;
877a9bff 2261
3d3b2d25
SH
2262 if (!t)
2263 continue;
2264
2265 fib_table_print(seq, tb);
2266
2267 trie_collect_stats(t, &stat);
2268 trie_show_stats(seq, &stat);
2269#ifdef CONFIG_IP_FIB_TRIE_STATS
2270 trie_show_usage(seq, &t->stats);
2271#endif
2272 }
2273 }
19baf839 2274
cb7b593c 2275 return 0;
19baf839
RO
2276}
2277
cb7b593c 2278static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2279{
de05c557 2280 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2281}
2282
9a32144e 2283static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2284 .owner = THIS_MODULE,
2285 .open = fib_triestat_seq_open,
2286 .read = seq_read,
2287 .llseek = seq_lseek,
b6fcbdb4 2288 .release = single_release_net,
cb7b593c
SH
2289};
2290
1218854a 2291static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2292{
1218854a
YH
2293 struct fib_trie_iter *iter = seq->private;
2294 struct net *net = seq_file_net(seq);
cb7b593c 2295 loff_t idx = 0;
3d3b2d25 2296 unsigned int h;
cb7b593c 2297
3d3b2d25
SH
2298 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2299 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2300 struct hlist_node *node;
2301 struct fib_table *tb;
cb7b593c 2302
3d3b2d25
SH
2303 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2304 struct node *n;
2305
2306 for (n = fib_trie_get_first(iter,
2307 (struct trie *) tb->tb_data);
2308 n; n = fib_trie_get_next(iter))
2309 if (pos == idx++) {
2310 iter->tb = tb;
2311 return n;
2312 }
2313 }
cb7b593c 2314 }
3d3b2d25 2315
19baf839
RO
2316 return NULL;
2317}
2318
cb7b593c 2319static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2320 __acquires(RCU)
19baf839 2321{
cb7b593c 2322 rcu_read_lock();
1218854a 2323 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2324}
2325
cb7b593c 2326static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2327{
cb7b593c 2328 struct fib_trie_iter *iter = seq->private;
1218854a 2329 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2330 struct fib_table *tb = iter->tb;
2331 struct hlist_node *tb_node;
2332 unsigned int h;
2333 struct node *n;
cb7b593c 2334
19baf839 2335 ++*pos;
3d3b2d25
SH
2336 /* next node in same table */
2337 n = fib_trie_get_next(iter);
2338 if (n)
2339 return n;
19baf839 2340
3d3b2d25
SH
2341 /* walk rest of this hash chain */
2342 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2343 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2344 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2345 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2346 if (n)
2347 goto found;
2348 }
19baf839 2349
3d3b2d25
SH
2350 /* new hash chain */
2351 while (++h < FIB_TABLE_HASHSZ) {
2352 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2353 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2354 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2355 if (n)
2356 goto found;
2357 }
2358 }
cb7b593c 2359 return NULL;
3d3b2d25
SH
2360
2361found:
2362 iter->tb = tb;
2363 return n;
cb7b593c 2364}
19baf839 2365
cb7b593c 2366static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2367 __releases(RCU)
19baf839 2368{
cb7b593c
SH
2369 rcu_read_unlock();
2370}
91b9a277 2371
cb7b593c
SH
2372static void seq_indent(struct seq_file *seq, int n)
2373{
2374 while (n-- > 0) seq_puts(seq, " ");
2375}
19baf839 2376
28d36e37 2377static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2378{
132adf54 2379 switch (s) {
cb7b593c
SH
2380 case RT_SCOPE_UNIVERSE: return "universe";
2381 case RT_SCOPE_SITE: return "site";
2382 case RT_SCOPE_LINK: return "link";
2383 case RT_SCOPE_HOST: return "host";
2384 case RT_SCOPE_NOWHERE: return "nowhere";
2385 default:
28d36e37 2386 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2387 return buf;
2388 }
2389}
19baf839 2390
cb7b593c
SH
2391static const char *rtn_type_names[__RTN_MAX] = {
2392 [RTN_UNSPEC] = "UNSPEC",
2393 [RTN_UNICAST] = "UNICAST",
2394 [RTN_LOCAL] = "LOCAL",
2395 [RTN_BROADCAST] = "BROADCAST",
2396 [RTN_ANYCAST] = "ANYCAST",
2397 [RTN_MULTICAST] = "MULTICAST",
2398 [RTN_BLACKHOLE] = "BLACKHOLE",
2399 [RTN_UNREACHABLE] = "UNREACHABLE",
2400 [RTN_PROHIBIT] = "PROHIBIT",
2401 [RTN_THROW] = "THROW",
2402 [RTN_NAT] = "NAT",
2403 [RTN_XRESOLVE] = "XRESOLVE",
2404};
19baf839 2405
28d36e37 2406static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2407{
cb7b593c
SH
2408 if (t < __RTN_MAX && rtn_type_names[t])
2409 return rtn_type_names[t];
28d36e37 2410 snprintf(buf, len, "type %u", t);
cb7b593c 2411 return buf;
19baf839
RO
2412}
2413
cb7b593c
SH
2414/* Pretty print the trie */
2415static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2416{
cb7b593c
SH
2417 const struct fib_trie_iter *iter = seq->private;
2418 struct node *n = v;
c877efb2 2419
3d3b2d25
SH
2420 if (!node_parent_rcu(n))
2421 fib_table_print(seq, iter->tb);
095b8501 2422
cb7b593c
SH
2423 if (IS_TNODE(n)) {
2424 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2425 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2426
1d25cd6c 2427 seq_indent(seq, iter->depth-1);
673d57e7
HH
2428 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2429 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2430 tn->empty_children);
e905a9ed 2431
cb7b593c
SH
2432 } else {
2433 struct leaf *l = (struct leaf *) n;
1328042e
SH
2434 struct leaf_info *li;
2435 struct hlist_node *node;
32ab5f80 2436 __be32 val = htonl(l->key);
cb7b593c
SH
2437
2438 seq_indent(seq, iter->depth);
673d57e7 2439 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2440
2441 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2442 struct fib_alias *fa;
2443
2444 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2445 char buf1[32], buf2[32];
2446
2447 seq_indent(seq, iter->depth+1);
2448 seq_printf(seq, " /%d %s %s", li->plen,
2449 rtn_scope(buf1, sizeof(buf1),
2450 fa->fa_scope),
2451 rtn_type(buf2, sizeof(buf2),
2452 fa->fa_type));
2453 if (fa->fa_tos)
b9c4d82a 2454 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2455 seq_putc(seq, '\n');
cb7b593c
SH
2456 }
2457 }
19baf839 2458 }
cb7b593c 2459
19baf839
RO
2460 return 0;
2461}
2462
f690808e 2463static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2464 .start = fib_trie_seq_start,
2465 .next = fib_trie_seq_next,
2466 .stop = fib_trie_seq_stop,
2467 .show = fib_trie_seq_show,
19baf839
RO
2468};
2469
cb7b593c 2470static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2471{
1c340b2f
DL
2472 return seq_open_net(inode, file, &fib_trie_seq_ops,
2473 sizeof(struct fib_trie_iter));
19baf839
RO
2474}
2475
9a32144e 2476static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2477 .owner = THIS_MODULE,
2478 .open = fib_trie_seq_open,
2479 .read = seq_read,
2480 .llseek = seq_lseek,
1c340b2f 2481 .release = seq_release_net,
19baf839
RO
2482};
2483
8315f5d8
SH
2484struct fib_route_iter {
2485 struct seq_net_private p;
2486 struct trie *main_trie;
2487 loff_t pos;
2488 t_key key;
2489};
2490
2491static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2492{
2493 struct leaf *l = NULL;
2494 struct trie *t = iter->main_trie;
2495
2496 /* use cache location of last found key */
2497 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2498 pos -= iter->pos;
2499 else {
2500 iter->pos = 0;
2501 l = trie_firstleaf(t);
2502 }
2503
2504 while (l && pos-- > 0) {
2505 iter->pos++;
2506 l = trie_nextleaf(l);
2507 }
2508
2509 if (l)
2510 iter->key = pos; /* remember it */
2511 else
2512 iter->pos = 0; /* forget it */
2513
2514 return l;
2515}
2516
2517static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2518 __acquires(RCU)
2519{
2520 struct fib_route_iter *iter = seq->private;
2521 struct fib_table *tb;
2522
2523 rcu_read_lock();
1218854a 2524 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2525 if (!tb)
2526 return NULL;
2527
2528 iter->main_trie = (struct trie *) tb->tb_data;
2529 if (*pos == 0)
2530 return SEQ_START_TOKEN;
2531 else
2532 return fib_route_get_idx(iter, *pos - 1);
2533}
2534
2535static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2536{
2537 struct fib_route_iter *iter = seq->private;
2538 struct leaf *l = v;
2539
2540 ++*pos;
2541 if (v == SEQ_START_TOKEN) {
2542 iter->pos = 0;
2543 l = trie_firstleaf(iter->main_trie);
2544 } else {
2545 iter->pos++;
2546 l = trie_nextleaf(l);
2547 }
2548
2549 if (l)
2550 iter->key = l->key;
2551 else
2552 iter->pos = 0;
2553 return l;
2554}
2555
2556static void fib_route_seq_stop(struct seq_file *seq, void *v)
2557 __releases(RCU)
2558{
2559 rcu_read_unlock();
2560}
2561
32ab5f80 2562static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2563{
cb7b593c
SH
2564 static unsigned type2flags[RTN_MAX + 1] = {
2565 [7] = RTF_REJECT, [8] = RTF_REJECT,
2566 };
2567 unsigned flags = type2flags[type];
19baf839 2568
cb7b593c
SH
2569 if (fi && fi->fib_nh->nh_gw)
2570 flags |= RTF_GATEWAY;
32ab5f80 2571 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2572 flags |= RTF_HOST;
2573 flags |= RTF_UP;
2574 return flags;
19baf839
RO
2575}
2576
cb7b593c
SH
2577/*
2578 * This outputs /proc/net/route.
2579 * The format of the file is not supposed to be changed
2580 * and needs to be same as fib_hash output to avoid breaking
2581 * legacy utilities
2582 */
2583static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2584{
cb7b593c 2585 struct leaf *l = v;
1328042e
SH
2586 struct leaf_info *li;
2587 struct hlist_node *node;
19baf839 2588
cb7b593c
SH
2589 if (v == SEQ_START_TOKEN) {
2590 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2591 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2592 "\tWindow\tIRTT");
2593 return 0;
2594 }
19baf839 2595
1328042e 2596 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2597 struct fib_alias *fa;
32ab5f80 2598 __be32 mask, prefix;
91b9a277 2599
cb7b593c
SH
2600 mask = inet_make_mask(li->plen);
2601 prefix = htonl(l->key);
19baf839 2602
cb7b593c 2603 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2604 const struct fib_info *fi = fa->fa_info;
cb7b593c 2605 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2606 int len;
19baf839 2607
cb7b593c
SH
2608 if (fa->fa_type == RTN_BROADCAST
2609 || fa->fa_type == RTN_MULTICAST)
2610 continue;
19baf839 2611
cb7b593c 2612 if (fi)
5e659e4c
PE
2613 seq_printf(seq,
2614 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2615 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2616 fi->fib_dev ? fi->fib_dev->name : "*",
2617 prefix,
2618 fi->fib_nh->nh_gw, flags, 0, 0,
2619 fi->fib_priority,
2620 mask,
a07f5f50
SH
2621 (fi->fib_advmss ?
2622 fi->fib_advmss + 40 : 0),
cb7b593c 2623 fi->fib_window,
5e659e4c 2624 fi->fib_rtt >> 3, &len);
cb7b593c 2625 else
5e659e4c
PE
2626 seq_printf(seq,
2627 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2628 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2629 prefix, 0, flags, 0, 0, 0,
5e659e4c 2630 mask, 0, 0, 0, &len);
19baf839 2631
5e659e4c 2632 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2633 }
19baf839
RO
2634 }
2635
2636 return 0;
2637}
2638
f690808e 2639static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2640 .start = fib_route_seq_start,
2641 .next = fib_route_seq_next,
2642 .stop = fib_route_seq_stop,
cb7b593c 2643 .show = fib_route_seq_show,
19baf839
RO
2644};
2645
cb7b593c 2646static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2647{
1c340b2f 2648 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2649 sizeof(struct fib_route_iter));
19baf839
RO
2650}
2651
9a32144e 2652static const struct file_operations fib_route_fops = {
cb7b593c
SH
2653 .owner = THIS_MODULE,
2654 .open = fib_route_seq_open,
2655 .read = seq_read,
2656 .llseek = seq_lseek,
1c340b2f 2657 .release = seq_release_net,
19baf839
RO
2658};
2659
61a02653 2660int __net_init fib_proc_init(struct net *net)
19baf839 2661{
61a02653 2662 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2663 goto out1;
2664
61a02653
DL
2665 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2666 &fib_triestat_fops))
cb7b593c
SH
2667 goto out2;
2668
61a02653 2669 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2670 goto out3;
2671
19baf839 2672 return 0;
cb7b593c
SH
2673
2674out3:
61a02653 2675 proc_net_remove(net, "fib_triestat");
cb7b593c 2676out2:
61a02653 2677 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2678out1:
2679 return -ENOMEM;
19baf839
RO
2680}
2681
61a02653 2682void __net_exit fib_proc_exit(struct net *net)
19baf839 2683{
61a02653
DL
2684 proc_net_remove(net, "fib_trie");
2685 proc_net_remove(net, "fib_triestat");
2686 proc_net_remove(net, "route");
19baf839
RO
2687}
2688
2689#endif /* CONFIG_PROC_FS */
This page took 0.638401 seconds and 5 git commands to generate.