Merge branch 'davem-next' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
05eee48c 51#define VERSION "0.408"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
457c4cbc 74#include <net/net_namespace.h>
19baf839
RO
75#include <net/ip.h>
76#include <net/protocol.h>
77#include <net/route.h>
78#include <net/tcp.h>
79#include <net/sock.h>
80#include <net/ip_fib.h>
81#include "fib_lookup.h"
82
06ef921d 83#define MAX_STAT_DEPTH 32
19baf839 84
19baf839 85#define KEYLENGTH (8*sizeof(t_key))
19baf839 86
19baf839
RO
87typedef unsigned int t_key;
88
89#define T_TNODE 0
90#define T_LEAF 1
91#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
92#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
91b9a277
OJ
94#define IS_TNODE(n) (!(n->parent & T_LEAF))
95#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
96
97struct node {
91b9a277 98 unsigned long parent;
8d965444 99 t_key key;
19baf839
RO
100};
101
102struct leaf {
91b9a277 103 unsigned long parent;
8d965444 104 t_key key;
19baf839 105 struct hlist_head list;
2373ce1c 106 struct rcu_head rcu;
19baf839
RO
107};
108
109struct leaf_info {
110 struct hlist_node hlist;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112 int plen;
113 struct list_head falh;
114};
115
116struct tnode {
91b9a277 117 unsigned long parent;
8d965444 118 t_key key;
112d8cfc
ED
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 };
91b9a277 127 struct node *child[0];
19baf839
RO
128};
129
130#ifdef CONFIG_IP_FIB_TRIE_STATS
131struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
2f36895a 137 unsigned int resize_node_skipped;
19baf839
RO
138};
139#endif
140
141struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
93672292 147 unsigned int prefixes;
06ef921d 148 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 149};
19baf839
RO
150
151struct trie {
91b9a277 152 struct node *trie;
19baf839
RO
153#ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats;
155#endif
19baf839
RO
156};
157
19baf839 158static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
159static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
160 int wasfull);
19baf839 161static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
162static struct tnode *inflate(struct trie *t, struct tnode *tn);
163static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 164
e18b890b 165static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 166static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 167
06801916
SH
168static inline struct tnode *node_parent(struct node *node)
169{
b59cfbf7
ED
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171}
172
173static inline struct tnode *node_parent_rcu(struct node *node)
174{
175 struct tnode *ret = node_parent(node);
06801916 176
06801916
SH
177 return rcu_dereference(ret);
178}
179
6440cc9e
SH
180/* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
182 */
06801916
SH
183static inline void node_set_parent(struct node *node, struct tnode *ptr)
184{
6440cc9e
SH
185 smp_wmb();
186 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 187}
2373ce1c 188
b59cfbf7
ED
189static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
190{
191 BUG_ON(i >= 1U << tn->bits);
2373ce1c 192
b59cfbf7
ED
193 return tn->child[i];
194}
195
196static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 197{
b59cfbf7 198 struct node *ret = tnode_get_child(tn, i);
19baf839 199
b59cfbf7 200 return rcu_dereference(ret);
19baf839
RO
201}
202
bb435b8d 203static inline int tnode_child_length(const struct tnode *tn)
19baf839 204{
91b9a277 205 return 1 << tn->bits;
19baf839
RO
206}
207
ab66b4a7
SH
208static inline t_key mask_pfx(t_key k, unsigned short l)
209{
210 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
211}
212
19baf839
RO
213static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
214{
91b9a277 215 if (offset < KEYLENGTH)
19baf839 216 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 217 else
19baf839
RO
218 return 0;
219}
220
221static inline int tkey_equals(t_key a, t_key b)
222{
c877efb2 223 return a == b;
19baf839
RO
224}
225
226static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
227{
c877efb2
SH
228 if (bits == 0 || offset >= KEYLENGTH)
229 return 1;
91b9a277
OJ
230 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
231 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 232}
19baf839
RO
233
234static inline int tkey_mismatch(t_key a, int offset, t_key b)
235{
236 t_key diff = a ^ b;
237 int i = offset;
238
c877efb2
SH
239 if (!diff)
240 return 0;
241 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
242 i++;
243 return i;
244}
245
19baf839 246/*
e905a9ed
YH
247 To understand this stuff, an understanding of keys and all their bits is
248 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
249 all of the bits in that key are significant.
250
251 Consider a node 'n' and its parent 'tp'.
252
e905a9ed
YH
253 If n is a leaf, every bit in its key is significant. Its presence is
254 necessitated by path compression, since during a tree traversal (when
255 searching for a leaf - unless we are doing an insertion) we will completely
256 ignore all skipped bits we encounter. Thus we need to verify, at the end of
257 a potentially successful search, that we have indeed been walking the
19baf839
RO
258 correct key path.
259
e905a9ed
YH
260 Note that we can never "miss" the correct key in the tree if present by
261 following the wrong path. Path compression ensures that segments of the key
262 that are the same for all keys with a given prefix are skipped, but the
263 skipped part *is* identical for each node in the subtrie below the skipped
264 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
265 call to tkey_sub_equals() in trie_insert().
266
e905a9ed 267 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
268 have many different meanings.
269
e905a9ed 270 Example:
19baf839
RO
271 _________________________________________________________________
272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273 -----------------------------------------------------------------
e905a9ed 274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
275
276 _________________________________________________________________
277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278 -----------------------------------------------------------------
279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
280
281 tp->pos = 7
282 tp->bits = 3
283 n->pos = 15
91b9a277 284 n->bits = 4
19baf839 285
e905a9ed
YH
286 First, let's just ignore the bits that come before the parent tp, that is
287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
288 not use them for anything.
289
290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 291 index into the parent's child array. That is, they will be used to find
19baf839
RO
292 'n' among tp's children.
293
294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
295 for the node n.
296
e905a9ed 297 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
298 of the bits are really not needed or indeed known in n->key.
299
e905a9ed 300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 301 n's child array, and will of course be different for each child.
e905a9ed 302
c877efb2 303
19baf839
RO
304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
305 at this point.
306
307*/
308
0c7770c7 309static inline void check_tnode(const struct tnode *tn)
19baf839 310{
0c7770c7 311 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
312}
313
f5026fab
DL
314static const int halve_threshold = 25;
315static const int inflate_threshold = 50;
316static const int halve_threshold_root = 8;
317static const int inflate_threshold_root = 15;
19baf839 318
2373ce1c
RO
319
320static void __alias_free_mem(struct rcu_head *head)
19baf839 321{
2373ce1c
RO
322 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
323 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
324}
325
2373ce1c 326static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 327{
2373ce1c
RO
328 call_rcu(&fa->rcu, __alias_free_mem);
329}
91b9a277 330
2373ce1c
RO
331static void __leaf_free_rcu(struct rcu_head *head)
332{
bc3c8c1e
SH
333 struct leaf *l = container_of(head, struct leaf, rcu);
334 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 335}
91b9a277 336
387a5487
SH
337static inline void free_leaf(struct leaf *l)
338{
339 call_rcu_bh(&l->rcu, __leaf_free_rcu);
340}
341
2373ce1c 342static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 343{
2373ce1c 344 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
345}
346
2373ce1c 347static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 348{
2373ce1c 349 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
350}
351
8d965444 352static struct tnode *tnode_alloc(size_t size)
f0e36f8c 353{
2373ce1c 354 if (size <= PAGE_SIZE)
8d965444 355 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
356 else
357 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
358}
2373ce1c 359
15be75cd
SH
360static void __tnode_vfree(struct work_struct *arg)
361{
362 struct tnode *tn = container_of(arg, struct tnode, work);
363 vfree(tn);
f0e36f8c
PM
364}
365
2373ce1c 366static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 367{
2373ce1c 368 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
369 size_t size = sizeof(struct tnode) +
370 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
371
372 if (size <= PAGE_SIZE)
373 kfree(tn);
15be75cd
SH
374 else {
375 INIT_WORK(&tn->work, __tnode_vfree);
376 schedule_work(&tn->work);
377 }
f0e36f8c
PM
378}
379
2373ce1c
RO
380static inline void tnode_free(struct tnode *tn)
381{
387a5487
SH
382 if (IS_LEAF(tn))
383 free_leaf((struct leaf *) tn);
384 else
550e29bc 385 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
386}
387
388static struct leaf *leaf_new(void)
389{
bc3c8c1e 390 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
391 if (l) {
392 l->parent = T_LEAF;
393 INIT_HLIST_HEAD(&l->list);
394 }
395 return l;
396}
397
398static struct leaf_info *leaf_info_new(int plen)
399{
400 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
401 if (li) {
402 li->plen = plen;
403 INIT_LIST_HEAD(&li->falh);
404 }
405 return li;
406}
407
a07f5f50 408static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 409{
8d965444 410 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 411 struct tnode *tn = tnode_alloc(sz);
19baf839 412
91b9a277 413 if (tn) {
2373ce1c 414 tn->parent = T_TNODE;
19baf839
RO
415 tn->pos = pos;
416 tn->bits = bits;
417 tn->key = key;
418 tn->full_children = 0;
419 tn->empty_children = 1<<bits;
420 }
c877efb2 421
8d965444
ED
422 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
423 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
424 return tn;
425}
426
19baf839
RO
427/*
428 * Check whether a tnode 'n' is "full", i.e. it is an internal node
429 * and no bits are skipped. See discussion in dyntree paper p. 6
430 */
431
bb435b8d 432static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 433{
c877efb2 434 if (n == NULL || IS_LEAF(n))
19baf839
RO
435 return 0;
436
437 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
438}
439
a07f5f50
SH
440static inline void put_child(struct trie *t, struct tnode *tn, int i,
441 struct node *n)
19baf839
RO
442{
443 tnode_put_child_reorg(tn, i, n, -1);
444}
445
c877efb2 446 /*
19baf839
RO
447 * Add a child at position i overwriting the old value.
448 * Update the value of full_children and empty_children.
449 */
450
a07f5f50
SH
451static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
452 int wasfull)
19baf839 453{
2373ce1c 454 struct node *chi = tn->child[i];
19baf839
RO
455 int isfull;
456
0c7770c7
SH
457 BUG_ON(i >= 1<<tn->bits);
458
19baf839
RO
459 /* update emptyChildren */
460 if (n == NULL && chi != NULL)
461 tn->empty_children++;
462 else if (n != NULL && chi == NULL)
463 tn->empty_children--;
c877efb2 464
19baf839 465 /* update fullChildren */
91b9a277 466 if (wasfull == -1)
19baf839
RO
467 wasfull = tnode_full(tn, chi);
468
469 isfull = tnode_full(tn, n);
c877efb2 470 if (wasfull && !isfull)
19baf839 471 tn->full_children--;
c877efb2 472 else if (!wasfull && isfull)
19baf839 473 tn->full_children++;
91b9a277 474
c877efb2 475 if (n)
06801916 476 node_set_parent(n, tn);
19baf839 477
2373ce1c 478 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
479}
480
c877efb2 481static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
482{
483 int i;
2f36895a 484 int err = 0;
2f80b3c8 485 struct tnode *old_tn;
e6308be8
RO
486 int inflate_threshold_use;
487 int halve_threshold_use;
05eee48c 488 int max_resize;
19baf839 489
e905a9ed 490 if (!tn)
19baf839
RO
491 return NULL;
492
0c7770c7
SH
493 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
494 tn, inflate_threshold, halve_threshold);
19baf839
RO
495
496 /* No children */
497 if (tn->empty_children == tnode_child_length(tn)) {
498 tnode_free(tn);
499 return NULL;
500 }
501 /* One child */
502 if (tn->empty_children == tnode_child_length(tn) - 1)
503 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 504 struct node *n;
19baf839 505
91b9a277 506 n = tn->child[i];
2373ce1c 507 if (!n)
91b9a277 508 continue;
91b9a277
OJ
509
510 /* compress one level */
06801916 511 node_set_parent(n, NULL);
91b9a277
OJ
512 tnode_free(tn);
513 return n;
19baf839 514 }
c877efb2 515 /*
19baf839
RO
516 * Double as long as the resulting node has a number of
517 * nonempty nodes that are above the threshold.
518 */
519
520 /*
c877efb2
SH
521 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
522 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 523 * Telecommunications, page 6:
c877efb2 524 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
525 * children in the *doubled* node is at least 'high'."
526 *
c877efb2
SH
527 * 'high' in this instance is the variable 'inflate_threshold'. It
528 * is expressed as a percentage, so we multiply it with
529 * tnode_child_length() and instead of multiplying by 2 (since the
530 * child array will be doubled by inflate()) and multiplying
531 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 532 * multiply the left-hand side by 50.
c877efb2
SH
533 *
534 * The left-hand side may look a bit weird: tnode_child_length(tn)
535 * - tn->empty_children is of course the number of non-null children
536 * in the current node. tn->full_children is the number of "full"
19baf839 537 * children, that is non-null tnodes with a skip value of 0.
c877efb2 538 * All of those will be doubled in the resulting inflated tnode, so
19baf839 539 * we just count them one extra time here.
c877efb2 540 *
19baf839 541 * A clearer way to write this would be:
c877efb2 542 *
19baf839 543 * to_be_doubled = tn->full_children;
c877efb2 544 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
545 * tn->full_children;
546 *
547 * new_child_length = tnode_child_length(tn) * 2;
548 *
c877efb2 549 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
550 * new_child_length;
551 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
552 *
553 * ...and so on, tho it would mess up the while () loop.
554 *
19baf839
RO
555 * anyway,
556 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
557 * inflate_threshold
c877efb2 558 *
19baf839
RO
559 * avoid a division:
560 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
561 * inflate_threshold * new_child_length
c877efb2 562 *
19baf839 563 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 564 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 565 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 566 *
19baf839 567 * expand new_child_length:
c877efb2 568 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 569 * tn->full_children) >=
19baf839 570 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 571 *
19baf839 572 * shorten again:
c877efb2 573 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 574 * tn->empty_children) >= inflate_threshold *
19baf839 575 * tnode_child_length(tn)
c877efb2 576 *
19baf839
RO
577 */
578
579 check_tnode(tn);
c877efb2 580
e6308be8
RO
581 /* Keep root node larger */
582
132adf54 583 if (!tn->parent)
e6308be8 584 inflate_threshold_use = inflate_threshold_root;
e905a9ed 585 else
e6308be8
RO
586 inflate_threshold_use = inflate_threshold;
587
2f36895a 588 err = 0;
05eee48c
RO
589 max_resize = 10;
590 while ((tn->full_children > 0 && max_resize-- &&
a07f5f50
SH
591 50 * (tn->full_children + tnode_child_length(tn)
592 - tn->empty_children)
593 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 594
2f80b3c8
RO
595 old_tn = tn;
596 tn = inflate(t, tn);
a07f5f50 597
2f80b3c8
RO
598 if (IS_ERR(tn)) {
599 tn = old_tn;
2f36895a
RO
600#ifdef CONFIG_IP_FIB_TRIE_STATS
601 t->stats.resize_node_skipped++;
602#endif
603 break;
604 }
19baf839
RO
605 }
606
05eee48c
RO
607 if (max_resize < 0) {
608 if (!tn->parent)
a07f5f50
SH
609 pr_warning("Fix inflate_threshold_root."
610 " Now=%d size=%d bits\n",
611 inflate_threshold_root, tn->bits);
05eee48c 612 else
a07f5f50
SH
613 pr_warning("Fix inflate_threshold."
614 " Now=%d size=%d bits\n",
615 inflate_threshold, tn->bits);
05eee48c
RO
616 }
617
19baf839
RO
618 check_tnode(tn);
619
620 /*
621 * Halve as long as the number of empty children in this
622 * node is above threshold.
623 */
2f36895a 624
e6308be8
RO
625
626 /* Keep root node larger */
627
132adf54 628 if (!tn->parent)
e6308be8 629 halve_threshold_use = halve_threshold_root;
e905a9ed 630 else
e6308be8
RO
631 halve_threshold_use = halve_threshold;
632
2f36895a 633 err = 0;
05eee48c
RO
634 max_resize = 10;
635 while (tn->bits > 1 && max_resize-- &&
19baf839 636 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 637 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 638
2f80b3c8
RO
639 old_tn = tn;
640 tn = halve(t, tn);
641 if (IS_ERR(tn)) {
642 tn = old_tn;
2f36895a
RO
643#ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645#endif
646 break;
647 }
648 }
19baf839 649
05eee48c
RO
650 if (max_resize < 0) {
651 if (!tn->parent)
a07f5f50
SH
652 pr_warning("Fix halve_threshold_root."
653 " Now=%d size=%d bits\n",
654 halve_threshold_root, tn->bits);
05eee48c 655 else
a07f5f50
SH
656 pr_warning("Fix halve_threshold."
657 " Now=%d size=%d bits\n",
658 halve_threshold, tn->bits);
05eee48c 659 }
c877efb2 660
19baf839 661 /* Only one child remains */
19baf839
RO
662 if (tn->empty_children == tnode_child_length(tn) - 1)
663 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 664 struct node *n;
19baf839 665
91b9a277 666 n = tn->child[i];
2373ce1c 667 if (!n)
91b9a277 668 continue;
91b9a277
OJ
669
670 /* compress one level */
671
06801916 672 node_set_parent(n, NULL);
91b9a277
OJ
673 tnode_free(tn);
674 return n;
19baf839
RO
675 }
676
677 return (struct node *) tn;
678}
679
2f80b3c8 680static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 681{
19baf839
RO
682 struct tnode *oldtnode = tn;
683 int olen = tnode_child_length(tn);
684 int i;
685
0c7770c7 686 pr_debug("In inflate\n");
19baf839
RO
687
688 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
689
0c7770c7 690 if (!tn)
2f80b3c8 691 return ERR_PTR(-ENOMEM);
2f36895a
RO
692
693 /*
c877efb2
SH
694 * Preallocate and store tnodes before the actual work so we
695 * don't get into an inconsistent state if memory allocation
696 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
697 * of tnode is ignored.
698 */
91b9a277
OJ
699
700 for (i = 0; i < olen; i++) {
a07f5f50 701 struct tnode *inode;
2f36895a 702
a07f5f50 703 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
704 if (inode &&
705 IS_TNODE(inode) &&
706 inode->pos == oldtnode->pos + oldtnode->bits &&
707 inode->bits > 1) {
708 struct tnode *left, *right;
ab66b4a7 709 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 710
2f36895a
RO
711 left = tnode_new(inode->key&(~m), inode->pos + 1,
712 inode->bits - 1);
2f80b3c8
RO
713 if (!left)
714 goto nomem;
91b9a277 715
2f36895a
RO
716 right = tnode_new(inode->key|m, inode->pos + 1,
717 inode->bits - 1);
718
e905a9ed 719 if (!right) {
2f80b3c8
RO
720 tnode_free(left);
721 goto nomem;
e905a9ed 722 }
2f36895a
RO
723
724 put_child(t, tn, 2*i, (struct node *) left);
725 put_child(t, tn, 2*i+1, (struct node *) right);
726 }
727 }
728
91b9a277 729 for (i = 0; i < olen; i++) {
c95aaf9a 730 struct tnode *inode;
19baf839 731 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
732 struct tnode *left, *right;
733 int size, j;
c877efb2 734
19baf839
RO
735 /* An empty child */
736 if (node == NULL)
737 continue;
738
739 /* A leaf or an internal node with skipped bits */
740
c877efb2 741 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 742 tn->pos + tn->bits - 1) {
a07f5f50
SH
743 if (tkey_extract_bits(node->key,
744 oldtnode->pos + oldtnode->bits,
745 1) == 0)
19baf839
RO
746 put_child(t, tn, 2*i, node);
747 else
748 put_child(t, tn, 2*i+1, node);
749 continue;
750 }
751
752 /* An internal node with two children */
753 inode = (struct tnode *) node;
754
755 if (inode->bits == 1) {
756 put_child(t, tn, 2*i, inode->child[0]);
757 put_child(t, tn, 2*i+1, inode->child[1]);
758
759 tnode_free(inode);
91b9a277 760 continue;
19baf839
RO
761 }
762
91b9a277
OJ
763 /* An internal node with more than two children */
764
765 /* We will replace this node 'inode' with two new
766 * ones, 'left' and 'right', each with half of the
767 * original children. The two new nodes will have
768 * a position one bit further down the key and this
769 * means that the "significant" part of their keys
770 * (see the discussion near the top of this file)
771 * will differ by one bit, which will be "0" in
772 * left's key and "1" in right's key. Since we are
773 * moving the key position by one step, the bit that
774 * we are moving away from - the bit at position
775 * (inode->pos) - is the one that will differ between
776 * left and right. So... we synthesize that bit in the
777 * two new keys.
778 * The mask 'm' below will be a single "one" bit at
779 * the position (inode->pos)
780 */
19baf839 781
91b9a277
OJ
782 /* Use the old key, but set the new significant
783 * bit to zero.
784 */
2f36895a 785
91b9a277
OJ
786 left = (struct tnode *) tnode_get_child(tn, 2*i);
787 put_child(t, tn, 2*i, NULL);
2f36895a 788
91b9a277 789 BUG_ON(!left);
2f36895a 790
91b9a277
OJ
791 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
792 put_child(t, tn, 2*i+1, NULL);
19baf839 793
91b9a277 794 BUG_ON(!right);
19baf839 795
91b9a277
OJ
796 size = tnode_child_length(left);
797 for (j = 0; j < size; j++) {
798 put_child(t, left, j, inode->child[j]);
799 put_child(t, right, j, inode->child[j + size]);
19baf839 800 }
91b9a277
OJ
801 put_child(t, tn, 2*i, resize(t, left));
802 put_child(t, tn, 2*i+1, resize(t, right));
803
804 tnode_free(inode);
19baf839
RO
805 }
806 tnode_free(oldtnode);
807 return tn;
2f80b3c8
RO
808nomem:
809 {
810 int size = tnode_child_length(tn);
811 int j;
812
0c7770c7 813 for (j = 0; j < size; j++)
2f80b3c8
RO
814 if (tn->child[j])
815 tnode_free((struct tnode *)tn->child[j]);
816
817 tnode_free(tn);
0c7770c7 818
2f80b3c8
RO
819 return ERR_PTR(-ENOMEM);
820 }
19baf839
RO
821}
822
2f80b3c8 823static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
824{
825 struct tnode *oldtnode = tn;
826 struct node *left, *right;
827 int i;
828 int olen = tnode_child_length(tn);
829
0c7770c7 830 pr_debug("In halve\n");
c877efb2
SH
831
832 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 833
2f80b3c8
RO
834 if (!tn)
835 return ERR_PTR(-ENOMEM);
2f36895a
RO
836
837 /*
c877efb2
SH
838 * Preallocate and store tnodes before the actual work so we
839 * don't get into an inconsistent state if memory allocation
840 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
841 * of tnode is ignored.
842 */
843
91b9a277 844 for (i = 0; i < olen; i += 2) {
2f36895a
RO
845 left = tnode_get_child(oldtnode, i);
846 right = tnode_get_child(oldtnode, i+1);
c877efb2 847
2f36895a 848 /* Two nonempty children */
0c7770c7 849 if (left && right) {
2f80b3c8 850 struct tnode *newn;
0c7770c7 851
2f80b3c8 852 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
853
854 if (!newn)
2f80b3c8 855 goto nomem;
0c7770c7 856
2f80b3c8 857 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 858 }
2f36895a 859
2f36895a 860 }
19baf839 861
91b9a277
OJ
862 for (i = 0; i < olen; i += 2) {
863 struct tnode *newBinNode;
864
19baf839
RO
865 left = tnode_get_child(oldtnode, i);
866 right = tnode_get_child(oldtnode, i+1);
c877efb2 867
19baf839
RO
868 /* At least one of the children is empty */
869 if (left == NULL) {
870 if (right == NULL) /* Both are empty */
871 continue;
872 put_child(t, tn, i/2, right);
91b9a277 873 continue;
0c7770c7 874 }
91b9a277
OJ
875
876 if (right == NULL) {
19baf839 877 put_child(t, tn, i/2, left);
91b9a277
OJ
878 continue;
879 }
c877efb2 880
19baf839 881 /* Two nonempty children */
91b9a277
OJ
882 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
883 put_child(t, tn, i/2, NULL);
91b9a277
OJ
884 put_child(t, newBinNode, 0, left);
885 put_child(t, newBinNode, 1, right);
886 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
887 }
888 tnode_free(oldtnode);
889 return tn;
2f80b3c8
RO
890nomem:
891 {
892 int size = tnode_child_length(tn);
893 int j;
894
0c7770c7 895 for (j = 0; j < size; j++)
2f80b3c8
RO
896 if (tn->child[j])
897 tnode_free((struct tnode *)tn->child[j]);
898
899 tnode_free(tn);
0c7770c7 900
2f80b3c8
RO
901 return ERR_PTR(-ENOMEM);
902 }
19baf839
RO
903}
904
772cb712 905/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
906 via get_fa_head and dump */
907
772cb712 908static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 909{
772cb712 910 struct hlist_head *head = &l->list;
19baf839
RO
911 struct hlist_node *node;
912 struct leaf_info *li;
913
2373ce1c 914 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 915 if (li->plen == plen)
19baf839 916 return li;
91b9a277 917
19baf839
RO
918 return NULL;
919}
920
a07f5f50 921static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 922{
772cb712 923 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 924
91b9a277
OJ
925 if (!li)
926 return NULL;
c877efb2 927
91b9a277 928 return &li->falh;
19baf839
RO
929}
930
931static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
932{
e905a9ed
YH
933 struct leaf_info *li = NULL, *last = NULL;
934 struct hlist_node *node;
935
936 if (hlist_empty(head)) {
937 hlist_add_head_rcu(&new->hlist, head);
938 } else {
939 hlist_for_each_entry(li, node, head, hlist) {
940 if (new->plen > li->plen)
941 break;
942
943 last = li;
944 }
945 if (last)
946 hlist_add_after_rcu(&last->hlist, &new->hlist);
947 else
948 hlist_add_before_rcu(&new->hlist, &li->hlist);
949 }
19baf839
RO
950}
951
2373ce1c
RO
952/* rcu_read_lock needs to be hold by caller from readside */
953
19baf839
RO
954static struct leaf *
955fib_find_node(struct trie *t, u32 key)
956{
957 int pos;
958 struct tnode *tn;
959 struct node *n;
960
961 pos = 0;
2373ce1c 962 n = rcu_dereference(t->trie);
19baf839
RO
963
964 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
965 tn = (struct tnode *) n;
91b9a277 966
19baf839 967 check_tnode(tn);
91b9a277 968
c877efb2 969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 970 pos = tn->pos + tn->bits;
a07f5f50
SH
971 n = tnode_get_child_rcu(tn,
972 tkey_extract_bits(key,
973 tn->pos,
974 tn->bits));
91b9a277 975 } else
19baf839
RO
976 break;
977 }
978 /* Case we have found a leaf. Compare prefixes */
979
91b9a277
OJ
980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
981 return (struct leaf *)n;
982
19baf839
RO
983 return NULL;
984}
985
986static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
987{
19baf839 988 int wasfull;
06801916
SH
989 t_key cindex, key = tn->key;
990 struct tnode *tp;
19baf839 991
06801916 992 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
993 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
994 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
995 tn = (struct tnode *) resize(t, (struct tnode *)tn);
996
997 tnode_put_child_reorg((struct tnode *)tp, cindex,
998 (struct node *)tn, wasfull);
91b9a277 999
06801916
SH
1000 tp = node_parent((struct node *) tn);
1001 if (!tp)
19baf839 1002 break;
06801916 1003 tn = tp;
19baf839 1004 }
06801916 1005
19baf839 1006 /* Handle last (top) tnode */
c877efb2 1007 if (IS_TNODE(tn))
a07f5f50 1008 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1009
a07f5f50 1010 return (struct node *)tn;
19baf839
RO
1011}
1012
2373ce1c
RO
1013/* only used from updater-side */
1014
fea86ad8 1015static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1016{
1017 int pos, newpos;
1018 struct tnode *tp = NULL, *tn = NULL;
1019 struct node *n;
1020 struct leaf *l;
1021 int missbit;
c877efb2 1022 struct list_head *fa_head = NULL;
19baf839
RO
1023 struct leaf_info *li;
1024 t_key cindex;
1025
1026 pos = 0;
c877efb2 1027 n = t->trie;
19baf839 1028
c877efb2
SH
1029 /* If we point to NULL, stop. Either the tree is empty and we should
1030 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1031 * and we should just put our new leaf in that.
c877efb2
SH
1032 * If we point to a T_TNODE, check if it matches our key. Note that
1033 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1034 * not be the parent's 'pos'+'bits'!
1035 *
c877efb2 1036 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1037 * the index from our key, push the T_TNODE and walk the tree.
1038 *
1039 * If it doesn't, we have to replace it with a new T_TNODE.
1040 *
c877efb2
SH
1041 * If we point to a T_LEAF, it might or might not have the same key
1042 * as we do. If it does, just change the value, update the T_LEAF's
1043 * value, and return it.
19baf839
RO
1044 * If it doesn't, we need to replace it with a T_TNODE.
1045 */
1046
1047 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1048 tn = (struct tnode *) n;
91b9a277 1049
c877efb2 1050 check_tnode(tn);
91b9a277 1051
c877efb2 1052 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1053 tp = tn;
91b9a277 1054 pos = tn->pos + tn->bits;
a07f5f50
SH
1055 n = tnode_get_child(tn,
1056 tkey_extract_bits(key,
1057 tn->pos,
1058 tn->bits));
19baf839 1059
06801916 1060 BUG_ON(n && node_parent(n) != tn);
91b9a277 1061 } else
19baf839
RO
1062 break;
1063 }
1064
1065 /*
1066 * n ----> NULL, LEAF or TNODE
1067 *
c877efb2 1068 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1069 */
1070
91b9a277 1071 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1072
1073 /* Case 1: n is a leaf. Compare prefixes */
1074
c877efb2 1075 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1076 l = (struct leaf *) n;
19baf839 1077 li = leaf_info_new(plen);
91b9a277 1078
fea86ad8
SH
1079 if (!li)
1080 return NULL;
19baf839
RO
1081
1082 fa_head = &li->falh;
1083 insert_leaf_info(&l->list, li);
1084 goto done;
1085 }
19baf839
RO
1086 l = leaf_new();
1087
fea86ad8
SH
1088 if (!l)
1089 return NULL;
19baf839
RO
1090
1091 l->key = key;
1092 li = leaf_info_new(plen);
1093
c877efb2 1094 if (!li) {
387a5487 1095 free_leaf(l);
fea86ad8 1096 return NULL;
f835e471 1097 }
19baf839
RO
1098
1099 fa_head = &li->falh;
1100 insert_leaf_info(&l->list, li);
1101
19baf839 1102 if (t->trie && n == NULL) {
91b9a277 1103 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1104
06801916 1105 node_set_parent((struct node *)l, tp);
19baf839 1106
91b9a277
OJ
1107 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1108 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1109 } else {
1110 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1111 /*
1112 * Add a new tnode here
19baf839
RO
1113 * first tnode need some special handling
1114 */
1115
1116 if (tp)
91b9a277 1117 pos = tp->pos+tp->bits;
19baf839 1118 else
91b9a277
OJ
1119 pos = 0;
1120
c877efb2 1121 if (n) {
19baf839
RO
1122 newpos = tkey_mismatch(key, pos, n->key);
1123 tn = tnode_new(n->key, newpos, 1);
91b9a277 1124 } else {
19baf839 1125 newpos = 0;
c877efb2 1126 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1127 }
19baf839 1128
c877efb2 1129 if (!tn) {
f835e471 1130 free_leaf_info(li);
387a5487 1131 free_leaf(l);
fea86ad8 1132 return NULL;
91b9a277
OJ
1133 }
1134
06801916 1135 node_set_parent((struct node *)tn, tp);
19baf839 1136
91b9a277 1137 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1138 put_child(t, tn, missbit, (struct node *)l);
1139 put_child(t, tn, 1-missbit, n);
1140
c877efb2 1141 if (tp) {
19baf839 1142 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1143 put_child(t, (struct tnode *)tp, cindex,
1144 (struct node *)tn);
91b9a277 1145 } else {
a07f5f50 1146 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1147 tp = tn;
1148 }
1149 }
91b9a277
OJ
1150
1151 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1152 pr_warning("fib_trie"
1153 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1154 tp, tp->pos, tp->bits, key, plen);
91b9a277 1155
19baf839 1156 /* Rebalance the trie */
2373ce1c
RO
1157
1158 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471 1159done:
19baf839
RO
1160 return fa_head;
1161}
1162
d562f1f8
RO
1163/*
1164 * Caller must hold RTNL.
1165 */
4e902c57 1166static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1167{
1168 struct trie *t = (struct trie *) tb->tb_data;
1169 struct fib_alias *fa, *new_fa;
c877efb2 1170 struct list_head *fa_head = NULL;
19baf839 1171 struct fib_info *fi;
4e902c57
TG
1172 int plen = cfg->fc_dst_len;
1173 u8 tos = cfg->fc_tos;
19baf839
RO
1174 u32 key, mask;
1175 int err;
1176 struct leaf *l;
1177
1178 if (plen > 32)
1179 return -EINVAL;
1180
4e902c57 1181 key = ntohl(cfg->fc_dst);
19baf839 1182
2dfe55b4 1183 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1184
91b9a277 1185 mask = ntohl(inet_make_mask(plen));
19baf839 1186
c877efb2 1187 if (key & ~mask)
19baf839
RO
1188 return -EINVAL;
1189
1190 key = key & mask;
1191
4e902c57
TG
1192 fi = fib_create_info(cfg);
1193 if (IS_ERR(fi)) {
1194 err = PTR_ERR(fi);
19baf839 1195 goto err;
4e902c57 1196 }
19baf839
RO
1197
1198 l = fib_find_node(t, key);
c877efb2 1199 fa = NULL;
19baf839 1200
c877efb2 1201 if (l) {
19baf839
RO
1202 fa_head = get_fa_head(l, plen);
1203 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1204 }
1205
1206 /* Now fa, if non-NULL, points to the first fib alias
1207 * with the same keys [prefix,tos,priority], if such key already
1208 * exists or to the node before which we will insert new one.
1209 *
1210 * If fa is NULL, we will need to allocate a new one and
1211 * insert to the head of f.
1212 *
1213 * If f is NULL, no fib node matched the destination key
1214 * and we need to allocate a new one of those as well.
1215 */
1216
936f6f8e
JA
1217 if (fa && fa->fa_tos == tos &&
1218 fa->fa_info->fib_priority == fi->fib_priority) {
1219 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1220
1221 err = -EEXIST;
4e902c57 1222 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1223 goto out;
1224
936f6f8e
JA
1225 /* We have 2 goals:
1226 * 1. Find exact match for type, scope, fib_info to avoid
1227 * duplicate routes
1228 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1229 */
1230 fa_match = NULL;
1231 fa_first = fa;
1232 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1233 list_for_each_entry_continue(fa, fa_head, fa_list) {
1234 if (fa->fa_tos != tos)
1235 break;
1236 if (fa->fa_info->fib_priority != fi->fib_priority)
1237 break;
1238 if (fa->fa_type == cfg->fc_type &&
1239 fa->fa_scope == cfg->fc_scope &&
1240 fa->fa_info == fi) {
1241 fa_match = fa;
1242 break;
1243 }
1244 }
1245
4e902c57 1246 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1247 struct fib_info *fi_drop;
1248 u8 state;
1249
936f6f8e
JA
1250 fa = fa_first;
1251 if (fa_match) {
1252 if (fa == fa_match)
1253 err = 0;
6725033f 1254 goto out;
936f6f8e 1255 }
2373ce1c 1256 err = -ENOBUFS;
e94b1766 1257 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1258 if (new_fa == NULL)
1259 goto out;
19baf839
RO
1260
1261 fi_drop = fa->fa_info;
2373ce1c
RO
1262 new_fa->fa_tos = fa->fa_tos;
1263 new_fa->fa_info = fi;
4e902c57
TG
1264 new_fa->fa_type = cfg->fc_type;
1265 new_fa->fa_scope = cfg->fc_scope;
19baf839 1266 state = fa->fa_state;
936f6f8e 1267 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1268
2373ce1c
RO
1269 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1270 alias_free_mem_rcu(fa);
19baf839
RO
1271
1272 fib_release_info(fi_drop);
1273 if (state & FA_S_ACCESSED)
91b9a277 1274 rt_cache_flush(-1);
b8f55831
MK
1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1276 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1277
91b9a277 1278 goto succeeded;
19baf839
RO
1279 }
1280 /* Error if we find a perfect match which
1281 * uses the same scope, type, and nexthop
1282 * information.
1283 */
936f6f8e
JA
1284 if (fa_match)
1285 goto out;
a07f5f50 1286
4e902c57 1287 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1288 fa = fa_first;
19baf839
RO
1289 }
1290 err = -ENOENT;
4e902c57 1291 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1292 goto out;
1293
1294 err = -ENOBUFS;
e94b1766 1295 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1296 if (new_fa == NULL)
1297 goto out;
1298
1299 new_fa->fa_info = fi;
1300 new_fa->fa_tos = tos;
4e902c57
TG
1301 new_fa->fa_type = cfg->fc_type;
1302 new_fa->fa_scope = cfg->fc_scope;
19baf839 1303 new_fa->fa_state = 0;
19baf839
RO
1304 /*
1305 * Insert new entry to the list.
1306 */
1307
c877efb2 1308 if (!fa_head) {
fea86ad8
SH
1309 fa_head = fib_insert_node(t, key, plen);
1310 if (unlikely(!fa_head)) {
1311 err = -ENOMEM;
f835e471 1312 goto out_free_new_fa;
fea86ad8 1313 }
f835e471 1314 }
19baf839 1315
2373ce1c
RO
1316 list_add_tail_rcu(&new_fa->fa_list,
1317 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1318
1319 rt_cache_flush(-1);
4e902c57 1320 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1321 &cfg->fc_nlinfo, 0);
19baf839
RO
1322succeeded:
1323 return 0;
f835e471
RO
1324
1325out_free_new_fa:
1326 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1327out:
1328 fib_release_info(fi);
91b9a277 1329err:
19baf839
RO
1330 return err;
1331}
1332
772cb712 1333/* should be called with rcu_read_lock */
a07f5f50
SH
1334static int check_leaf(struct trie *t, struct leaf *l,
1335 t_key key, const struct flowi *flp,
1336 struct fib_result *res)
19baf839 1337{
19baf839
RO
1338 struct leaf_info *li;
1339 struct hlist_head *hhead = &l->list;
1340 struct hlist_node *node;
c877efb2 1341
2373ce1c 1342 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1343 int err;
1344 int plen = li->plen;
1345 __be32 mask = inet_make_mask(plen);
1346
888454c5 1347 if (l->key != (key & ntohl(mask)))
19baf839
RO
1348 continue;
1349
a07f5f50
SH
1350 err = fib_semantic_match(&li->falh, flp, res,
1351 htonl(l->key), mask, plen);
1352
19baf839 1353#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1354 if (err <= 0)
19baf839 1355 t->stats.semantic_match_passed++;
a07f5f50
SH
1356 else
1357 t->stats.semantic_match_miss++;
19baf839 1358#endif
a07f5f50
SH
1359 if (err <= 0)
1360 return plen;
19baf839 1361 }
a07f5f50
SH
1362
1363 return -1;
19baf839
RO
1364}
1365
a07f5f50
SH
1366static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1367 struct fib_result *res)
19baf839
RO
1368{
1369 struct trie *t = (struct trie *) tb->tb_data;
1370 int plen, ret = 0;
1371 struct node *n;
1372 struct tnode *pn;
1373 int pos, bits;
91b9a277 1374 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1375 int chopped_off;
1376 t_key cindex = 0;
1377 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1378 struct tnode *cn;
1379 t_key node_prefix, key_prefix, pref_mismatch;
1380 int mp;
1381
2373ce1c 1382 rcu_read_lock();
91b9a277 1383
2373ce1c 1384 n = rcu_dereference(t->trie);
c877efb2 1385 if (!n)
19baf839
RO
1386 goto failed;
1387
1388#ifdef CONFIG_IP_FIB_TRIE_STATS
1389 t->stats.gets++;
1390#endif
1391
1392 /* Just a leaf? */
1393 if (IS_LEAF(n)) {
a07f5f50
SH
1394 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1395 if (plen < 0)
1396 goto failed;
1397 ret = 0;
1398 goto found;
19baf839 1399 }
a07f5f50 1400
19baf839
RO
1401 pn = (struct tnode *) n;
1402 chopped_off = 0;
c877efb2 1403
91b9a277 1404 while (pn) {
19baf839
RO
1405 pos = pn->pos;
1406 bits = pn->bits;
1407
c877efb2 1408 if (!chopped_off)
ab66b4a7
SH
1409 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1410 pos, bits);
19baf839
RO
1411
1412 n = tnode_get_child(pn, cindex);
1413
1414 if (n == NULL) {
1415#ifdef CONFIG_IP_FIB_TRIE_STATS
1416 t->stats.null_node_hit++;
1417#endif
1418 goto backtrace;
1419 }
1420
91b9a277 1421 if (IS_LEAF(n)) {
a07f5f50
SH
1422 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1423 if (plen < 0)
91b9a277 1424 goto backtrace;
a07f5f50
SH
1425
1426 ret = 0;
1427 goto found;
91b9a277
OJ
1428 }
1429
91b9a277 1430 cn = (struct tnode *)n;
19baf839 1431
91b9a277
OJ
1432 /*
1433 * It's a tnode, and we can do some extra checks here if we
1434 * like, to avoid descending into a dead-end branch.
1435 * This tnode is in the parent's child array at index
1436 * key[p_pos..p_pos+p_bits] but potentially with some bits
1437 * chopped off, so in reality the index may be just a
1438 * subprefix, padded with zero at the end.
1439 * We can also take a look at any skipped bits in this
1440 * tnode - everything up to p_pos is supposed to be ok,
1441 * and the non-chopped bits of the index (se previous
1442 * paragraph) are also guaranteed ok, but the rest is
1443 * considered unknown.
1444 *
1445 * The skipped bits are key[pos+bits..cn->pos].
1446 */
19baf839 1447
91b9a277
OJ
1448 /* If current_prefix_length < pos+bits, we are already doing
1449 * actual prefix matching, which means everything from
1450 * pos+(bits-chopped_off) onward must be zero along some
1451 * branch of this subtree - otherwise there is *no* valid
1452 * prefix present. Here we can only check the skipped
1453 * bits. Remember, since we have already indexed into the
1454 * parent's child array, we know that the bits we chopped of
1455 * *are* zero.
1456 */
19baf839 1457
a07f5f50
SH
1458 /* NOTA BENE: Checking only skipped bits
1459 for the new node here */
19baf839 1460
91b9a277
OJ
1461 if (current_prefix_length < pos+bits) {
1462 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1463 cn->pos - current_prefix_length)
1464 || !(cn->child[0]))
91b9a277
OJ
1465 goto backtrace;
1466 }
19baf839 1467
91b9a277
OJ
1468 /*
1469 * If chopped_off=0, the index is fully validated and we
1470 * only need to look at the skipped bits for this, the new,
1471 * tnode. What we actually want to do is to find out if
1472 * these skipped bits match our key perfectly, or if we will
1473 * have to count on finding a matching prefix further down,
1474 * because if we do, we would like to have some way of
1475 * verifying the existence of such a prefix at this point.
1476 */
19baf839 1477
91b9a277
OJ
1478 /* The only thing we can do at this point is to verify that
1479 * any such matching prefix can indeed be a prefix to our
1480 * key, and if the bits in the node we are inspecting that
1481 * do not match our key are not ZERO, this cannot be true.
1482 * Thus, find out where there is a mismatch (before cn->pos)
1483 * and verify that all the mismatching bits are zero in the
1484 * new tnode's key.
1485 */
19baf839 1486
a07f5f50
SH
1487 /*
1488 * Note: We aren't very concerned about the piece of
1489 * the key that precede pn->pos+pn->bits, since these
1490 * have already been checked. The bits after cn->pos
1491 * aren't checked since these are by definition
1492 * "unknown" at this point. Thus, what we want to see
1493 * is if we are about to enter the "prefix matching"
1494 * state, and in that case verify that the skipped
1495 * bits that will prevail throughout this subtree are
1496 * zero, as they have to be if we are to find a
1497 * matching prefix.
91b9a277
OJ
1498 */
1499
ab66b4a7
SH
1500 node_prefix = mask_pfx(cn->key, cn->pos);
1501 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1502 pref_mismatch = key_prefix^node_prefix;
1503 mp = 0;
1504
a07f5f50
SH
1505 /*
1506 * In short: If skipped bits in this node do not match
1507 * the search key, enter the "prefix matching"
1508 * state.directly.
91b9a277
OJ
1509 */
1510 if (pref_mismatch) {
1511 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1512 mp++;
a07f5f50 1513 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1514 }
1515 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1516
1517 if (key_prefix != 0)
1518 goto backtrace;
1519
1520 if (current_prefix_length >= cn->pos)
1521 current_prefix_length = mp;
c877efb2 1522 }
a07f5f50 1523
91b9a277
OJ
1524 pn = (struct tnode *)n; /* Descend */
1525 chopped_off = 0;
1526 continue;
1527
19baf839
RO
1528backtrace:
1529 chopped_off++;
1530
1531 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1532 while ((chopped_off <= pn->bits)
1533 && !(cindex & (1<<(chopped_off-1))))
19baf839 1534 chopped_off++;
19baf839
RO
1535
1536 /* Decrease current_... with bits chopped off */
1537 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1538 current_prefix_length = pn->pos + pn->bits
1539 - chopped_off;
91b9a277 1540
19baf839 1541 /*
c877efb2 1542 * Either we do the actual chop off according or if we have
19baf839
RO
1543 * chopped off all bits in this tnode walk up to our parent.
1544 */
1545
91b9a277 1546 if (chopped_off <= pn->bits) {
19baf839 1547 cindex &= ~(1 << (chopped_off-1));
91b9a277 1548 } else {
06801916
SH
1549 struct tnode *parent = node_parent((struct node *) pn);
1550 if (!parent)
19baf839 1551 goto failed;
91b9a277 1552
19baf839 1553 /* Get Child's index */
06801916
SH
1554 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1555 pn = parent;
19baf839
RO
1556 chopped_off = 0;
1557
1558#ifdef CONFIG_IP_FIB_TRIE_STATS
1559 t->stats.backtrack++;
1560#endif
1561 goto backtrace;
c877efb2 1562 }
19baf839
RO
1563 }
1564failed:
c877efb2 1565 ret = 1;
19baf839 1566found:
2373ce1c 1567 rcu_read_unlock();
19baf839
RO
1568 return ret;
1569}
1570
9195bef7
SH
1571/*
1572 * Remove the leaf and return parent.
1573 */
1574static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1575{
9195bef7 1576 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1577
9195bef7 1578 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1579
c877efb2 1580 if (tp) {
9195bef7 1581 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1582 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1583 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1584 } else
2373ce1c 1585 rcu_assign_pointer(t->trie, NULL);
19baf839 1586
387a5487 1587 free_leaf(l);
19baf839
RO
1588}
1589
d562f1f8
RO
1590/*
1591 * Caller must hold RTNL.
1592 */
4e902c57 1593static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1594{
1595 struct trie *t = (struct trie *) tb->tb_data;
1596 u32 key, mask;
4e902c57
TG
1597 int plen = cfg->fc_dst_len;
1598 u8 tos = cfg->fc_tos;
19baf839
RO
1599 struct fib_alias *fa, *fa_to_delete;
1600 struct list_head *fa_head;
1601 struct leaf *l;
91b9a277
OJ
1602 struct leaf_info *li;
1603
c877efb2 1604 if (plen > 32)
19baf839
RO
1605 return -EINVAL;
1606
4e902c57 1607 key = ntohl(cfg->fc_dst);
91b9a277 1608 mask = ntohl(inet_make_mask(plen));
19baf839 1609
c877efb2 1610 if (key & ~mask)
19baf839
RO
1611 return -EINVAL;
1612
1613 key = key & mask;
1614 l = fib_find_node(t, key);
1615
c877efb2 1616 if (!l)
19baf839
RO
1617 return -ESRCH;
1618
1619 fa_head = get_fa_head(l, plen);
1620 fa = fib_find_alias(fa_head, tos, 0);
1621
1622 if (!fa)
1623 return -ESRCH;
1624
0c7770c7 1625 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1626
1627 fa_to_delete = NULL;
936f6f8e
JA
1628 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1629 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1630 struct fib_info *fi = fa->fa_info;
1631
1632 if (fa->fa_tos != tos)
1633 break;
1634
4e902c57
TG
1635 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1636 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1637 fa->fa_scope == cfg->fc_scope) &&
1638 (!cfg->fc_protocol ||
1639 fi->fib_protocol == cfg->fc_protocol) &&
1640 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1641 fa_to_delete = fa;
1642 break;
1643 }
1644 }
1645
91b9a277
OJ
1646 if (!fa_to_delete)
1647 return -ESRCH;
19baf839 1648
91b9a277 1649 fa = fa_to_delete;
4e902c57 1650 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1651 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1652
1653 l = fib_find_node(t, key);
772cb712 1654 li = find_leaf_info(l, plen);
19baf839 1655
2373ce1c 1656 list_del_rcu(&fa->fa_list);
19baf839 1657
91b9a277 1658 if (list_empty(fa_head)) {
2373ce1c 1659 hlist_del_rcu(&li->hlist);
91b9a277 1660 free_leaf_info(li);
2373ce1c 1661 }
19baf839 1662
91b9a277 1663 if (hlist_empty(&l->list))
9195bef7 1664 trie_leaf_remove(t, l);
19baf839 1665
91b9a277
OJ
1666 if (fa->fa_state & FA_S_ACCESSED)
1667 rt_cache_flush(-1);
19baf839 1668
2373ce1c
RO
1669 fib_release_info(fa->fa_info);
1670 alias_free_mem_rcu(fa);
91b9a277 1671 return 0;
19baf839
RO
1672}
1673
ef3660ce 1674static int trie_flush_list(struct list_head *head)
19baf839
RO
1675{
1676 struct fib_alias *fa, *fa_node;
1677 int found = 0;
1678
1679 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1680 struct fib_info *fi = fa->fa_info;
19baf839 1681
2373ce1c
RO
1682 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1683 list_del_rcu(&fa->fa_list);
1684 fib_release_info(fa->fa_info);
1685 alias_free_mem_rcu(fa);
19baf839
RO
1686 found++;
1687 }
1688 }
1689 return found;
1690}
1691
ef3660ce 1692static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1693{
1694 int found = 0;
1695 struct hlist_head *lih = &l->list;
1696 struct hlist_node *node, *tmp;
1697 struct leaf_info *li = NULL;
1698
1699 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1700 found += trie_flush_list(&li->falh);
19baf839
RO
1701
1702 if (list_empty(&li->falh)) {
2373ce1c 1703 hlist_del_rcu(&li->hlist);
19baf839
RO
1704 free_leaf_info(li);
1705 }
1706 }
1707 return found;
1708}
1709
82cfbb00
SH
1710/*
1711 * Scan for the next right leaf starting at node p->child[idx]
1712 * Since we have back pointer, no recursion necessary.
1713 */
1714static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1715{
82cfbb00
SH
1716 do {
1717 t_key idx;
c877efb2 1718
c877efb2 1719 if (c)
82cfbb00 1720 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1721 else
82cfbb00 1722 idx = 0;
2373ce1c 1723
82cfbb00
SH
1724 while (idx < 1u << p->bits) {
1725 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1726 if (!c)
91b9a277
OJ
1727 continue;
1728
82cfbb00
SH
1729 if (IS_LEAF(c)) {
1730 prefetch(p->child[idx]);
1731 return (struct leaf *) c;
19baf839 1732 }
82cfbb00
SH
1733
1734 /* Rescan start scanning in new node */
1735 p = (struct tnode *) c;
1736 idx = 0;
19baf839 1737 }
82cfbb00
SH
1738
1739 /* Node empty, walk back up to parent */
91b9a277 1740 c = (struct node *) p;
82cfbb00
SH
1741 } while ( (p = node_parent_rcu(c)) != NULL);
1742
1743 return NULL; /* Root of trie */
1744}
1745
82cfbb00
SH
1746static struct leaf *trie_firstleaf(struct trie *t)
1747{
1748 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1749
1750 if (!n)
1751 return NULL;
1752
1753 if (IS_LEAF(n)) /* trie is just a leaf */
1754 return (struct leaf *) n;
1755
1756 return leaf_walk_rcu(n, NULL);
1757}
1758
1759static struct leaf *trie_nextleaf(struct leaf *l)
1760{
1761 struct node *c = (struct node *) l;
1762 struct tnode *p = node_parent(c);
1763
1764 if (!p)
1765 return NULL; /* trie with just one leaf */
1766
1767 return leaf_walk_rcu(p, c);
19baf839
RO
1768}
1769
71d67e66
SH
1770static struct leaf *trie_leafindex(struct trie *t, int index)
1771{
1772 struct leaf *l = trie_firstleaf(t);
1773
ec28cf73 1774 while (l && index-- > 0)
71d67e66 1775 l = trie_nextleaf(l);
ec28cf73 1776
71d67e66
SH
1777 return l;
1778}
1779
1780
d562f1f8
RO
1781/*
1782 * Caller must hold RTNL.
1783 */
19baf839
RO
1784static int fn_trie_flush(struct fib_table *tb)
1785{
1786 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1787 struct leaf *l, *ll = NULL;
82cfbb00 1788 int found = 0;
19baf839 1789
82cfbb00 1790 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1791 found += trie_flush_leaf(l);
19baf839
RO
1792
1793 if (ll && hlist_empty(&ll->list))
9195bef7 1794 trie_leaf_remove(t, ll);
19baf839
RO
1795 ll = l;
1796 }
1797
1798 if (ll && hlist_empty(&ll->list))
9195bef7 1799 trie_leaf_remove(t, ll);
19baf839 1800
0c7770c7 1801 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1802 return found;
1803}
1804
a07f5f50
SH
1805static void fn_trie_select_default(struct fib_table *tb,
1806 const struct flowi *flp,
1807 struct fib_result *res)
19baf839
RO
1808{
1809 struct trie *t = (struct trie *) tb->tb_data;
1810 int order, last_idx;
1811 struct fib_info *fi = NULL;
1812 struct fib_info *last_resort;
1813 struct fib_alias *fa = NULL;
1814 struct list_head *fa_head;
1815 struct leaf *l;
1816
1817 last_idx = -1;
1818 last_resort = NULL;
1819 order = -1;
1820
2373ce1c 1821 rcu_read_lock();
c877efb2 1822
19baf839 1823 l = fib_find_node(t, 0);
c877efb2 1824 if (!l)
19baf839
RO
1825 goto out;
1826
1827 fa_head = get_fa_head(l, 0);
c877efb2 1828 if (!fa_head)
19baf839
RO
1829 goto out;
1830
c877efb2 1831 if (list_empty(fa_head))
19baf839
RO
1832 goto out;
1833
2373ce1c 1834 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1835 struct fib_info *next_fi = fa->fa_info;
91b9a277 1836
19baf839
RO
1837 if (fa->fa_scope != res->scope ||
1838 fa->fa_type != RTN_UNICAST)
1839 continue;
91b9a277 1840
19baf839
RO
1841 if (next_fi->fib_priority > res->fi->fib_priority)
1842 break;
1843 if (!next_fi->fib_nh[0].nh_gw ||
1844 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1845 continue;
1846 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1847
19baf839
RO
1848 if (fi == NULL) {
1849 if (next_fi != res->fi)
1850 break;
1851 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1852 &last_idx, tb->tb_default)) {
a2bbe682 1853 fib_result_assign(res, fi);
971b893e 1854 tb->tb_default = order;
19baf839
RO
1855 goto out;
1856 }
1857 fi = next_fi;
1858 order++;
1859 }
1860 if (order <= 0 || fi == NULL) {
971b893e 1861 tb->tb_default = -1;
19baf839
RO
1862 goto out;
1863 }
1864
971b893e
DL
1865 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1866 tb->tb_default)) {
a2bbe682 1867 fib_result_assign(res, fi);
971b893e 1868 tb->tb_default = order;
19baf839
RO
1869 goto out;
1870 }
a2bbe682
DL
1871 if (last_idx >= 0)
1872 fib_result_assign(res, last_resort);
971b893e
DL
1873 tb->tb_default = last_idx;
1874out:
2373ce1c 1875 rcu_read_unlock();
19baf839
RO
1876}
1877
a07f5f50
SH
1878static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1879 struct fib_table *tb,
19baf839
RO
1880 struct sk_buff *skb, struct netlink_callback *cb)
1881{
1882 int i, s_i;
1883 struct fib_alias *fa;
32ab5f80 1884 __be32 xkey = htonl(key);
19baf839 1885
71d67e66 1886 s_i = cb->args[5];
19baf839
RO
1887 i = 0;
1888
2373ce1c
RO
1889 /* rcu_read_lock is hold by caller */
1890
1891 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1892 if (i < s_i) {
1893 i++;
1894 continue;
1895 }
19baf839
RO
1896
1897 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1898 cb->nlh->nlmsg_seq,
1899 RTM_NEWROUTE,
1900 tb->tb_id,
1901 fa->fa_type,
1902 fa->fa_scope,
be403ea1 1903 xkey,
19baf839
RO
1904 plen,
1905 fa->fa_tos,
64347f78 1906 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1907 cb->args[5] = i;
19baf839 1908 return -1;
91b9a277 1909 }
19baf839
RO
1910 i++;
1911 }
71d67e66 1912 cb->args[5] = i;
19baf839
RO
1913 return skb->len;
1914}
1915
a88ee229
SH
1916static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1917 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1918{
a88ee229
SH
1919 struct leaf_info *li;
1920 struct hlist_node *node;
1921 int i, s_i;
19baf839 1922
71d67e66 1923 s_i = cb->args[4];
a88ee229 1924 i = 0;
19baf839 1925
a88ee229
SH
1926 /* rcu_read_lock is hold by caller */
1927 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1928 if (i < s_i) {
1929 i++;
19baf839 1930 continue;
a88ee229 1931 }
91b9a277 1932
a88ee229 1933 if (i > s_i)
71d67e66 1934 cb->args[5] = 0;
19baf839 1935
a88ee229 1936 if (list_empty(&li->falh))
19baf839
RO
1937 continue;
1938
a88ee229 1939 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1940 cb->args[4] = i;
19baf839
RO
1941 return -1;
1942 }
a88ee229 1943 i++;
19baf839 1944 }
a88ee229 1945
71d67e66 1946 cb->args[4] = i;
19baf839
RO
1947 return skb->len;
1948}
1949
a07f5f50
SH
1950static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1951 struct netlink_callback *cb)
19baf839 1952{
a88ee229 1953 struct leaf *l;
19baf839 1954 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1955 t_key key = cb->args[2];
71d67e66 1956 int count = cb->args[3];
19baf839 1957
2373ce1c 1958 rcu_read_lock();
d5ce8a0e
SH
1959 /* Dump starting at last key.
1960 * Note: 0.0.0.0/0 (ie default) is first key.
1961 */
71d67e66 1962 if (count == 0)
d5ce8a0e
SH
1963 l = trie_firstleaf(t);
1964 else {
71d67e66
SH
1965 /* Normally, continue from last key, but if that is missing
1966 * fallback to using slow rescan
1967 */
d5ce8a0e 1968 l = fib_find_node(t, key);
71d67e66
SH
1969 if (!l)
1970 l = trie_leafindex(t, count);
d5ce8a0e 1971 }
a88ee229 1972
d5ce8a0e
SH
1973 while (l) {
1974 cb->args[2] = l->key;
a88ee229 1975 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1976 cb->args[3] = count;
a88ee229 1977 rcu_read_unlock();
a88ee229 1978 return -1;
19baf839 1979 }
d5ce8a0e 1980
71d67e66 1981 ++count;
d5ce8a0e 1982 l = trie_nextleaf(l);
71d67e66
SH
1983 memset(&cb->args[4], 0,
1984 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1985 }
71d67e66 1986 cb->args[3] = count;
2373ce1c 1987 rcu_read_unlock();
a88ee229 1988
19baf839 1989 return skb->len;
19baf839
RO
1990}
1991
7f9b8052
SH
1992void __init fib_hash_init(void)
1993{
a07f5f50
SH
1994 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1995 sizeof(struct fib_alias),
bc3c8c1e
SH
1996 0, SLAB_PANIC, NULL);
1997
1998 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1999 max(sizeof(struct leaf),
2000 sizeof(struct leaf_info)),
2001 0, SLAB_PANIC, NULL);
7f9b8052 2002}
19baf839 2003
7f9b8052
SH
2004
2005/* Fix more generic FIB names for init later */
2006struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2007{
2008 struct fib_table *tb;
2009 struct trie *t;
2010
19baf839
RO
2011 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2012 GFP_KERNEL);
2013 if (tb == NULL)
2014 return NULL;
2015
2016 tb->tb_id = id;
971b893e 2017 tb->tb_default = -1;
19baf839
RO
2018 tb->tb_lookup = fn_trie_lookup;
2019 tb->tb_insert = fn_trie_insert;
2020 tb->tb_delete = fn_trie_delete;
2021 tb->tb_flush = fn_trie_flush;
2022 tb->tb_select_default = fn_trie_select_default;
2023 tb->tb_dump = fn_trie_dump;
19baf839
RO
2024
2025 t = (struct trie *) tb->tb_data;
c28a1cf4 2026 memset(t, 0, sizeof(*t));
19baf839 2027
19baf839 2028 if (id == RT_TABLE_LOCAL)
a07f5f50 2029 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2030
2031 return tb;
2032}
2033
cb7b593c
SH
2034#ifdef CONFIG_PROC_FS
2035/* Depth first Trie walk iterator */
2036struct fib_trie_iter {
1c340b2f 2037 struct seq_net_private p;
3d3b2d25 2038 struct fib_table *tb;
cb7b593c 2039 struct tnode *tnode;
cb7b593c
SH
2040 unsigned index;
2041 unsigned depth;
2042};
19baf839 2043
cb7b593c 2044static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2045{
cb7b593c
SH
2046 struct tnode *tn = iter->tnode;
2047 unsigned cindex = iter->index;
2048 struct tnode *p;
19baf839 2049
6640e697
EB
2050 /* A single entry routing table */
2051 if (!tn)
2052 return NULL;
2053
cb7b593c
SH
2054 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2055 iter->tnode, iter->index, iter->depth);
2056rescan:
2057 while (cindex < (1<<tn->bits)) {
b59cfbf7 2058 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2059
cb7b593c
SH
2060 if (n) {
2061 if (IS_LEAF(n)) {
2062 iter->tnode = tn;
2063 iter->index = cindex + 1;
2064 } else {
2065 /* push down one level */
2066 iter->tnode = (struct tnode *) n;
2067 iter->index = 0;
2068 ++iter->depth;
2069 }
2070 return n;
2071 }
19baf839 2072
cb7b593c
SH
2073 ++cindex;
2074 }
91b9a277 2075
cb7b593c 2076 /* Current node exhausted, pop back up */
b59cfbf7 2077 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2078 if (p) {
2079 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2080 tn = p;
2081 --iter->depth;
2082 goto rescan;
19baf839 2083 }
cb7b593c
SH
2084
2085 /* got root? */
2086 return NULL;
19baf839
RO
2087}
2088
cb7b593c
SH
2089static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2090 struct trie *t)
19baf839 2091{
3d3b2d25 2092 struct node *n;
5ddf0eb2 2093
132adf54 2094 if (!t)
5ddf0eb2
RO
2095 return NULL;
2096
2097 n = rcu_dereference(t->trie);
3d3b2d25 2098 if (!n)
5ddf0eb2 2099 return NULL;
19baf839 2100
3d3b2d25
SH
2101 if (IS_TNODE(n)) {
2102 iter->tnode = (struct tnode *) n;
2103 iter->index = 0;
2104 iter->depth = 1;
2105 } else {
2106 iter->tnode = NULL;
2107 iter->index = 0;
2108 iter->depth = 0;
91b9a277 2109 }
3d3b2d25
SH
2110
2111 return n;
cb7b593c 2112}
91b9a277 2113
cb7b593c
SH
2114static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2115{
2116 struct node *n;
2117 struct fib_trie_iter iter;
91b9a277 2118
cb7b593c 2119 memset(s, 0, sizeof(*s));
91b9a277 2120
cb7b593c 2121 rcu_read_lock();
3d3b2d25 2122 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2123 if (IS_LEAF(n)) {
93672292
SH
2124 struct leaf *l = (struct leaf *)n;
2125 struct leaf_info *li;
2126 struct hlist_node *tmp;
2127
cb7b593c
SH
2128 s->leaves++;
2129 s->totdepth += iter.depth;
2130 if (iter.depth > s->maxdepth)
2131 s->maxdepth = iter.depth;
93672292
SH
2132
2133 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2134 ++s->prefixes;
cb7b593c
SH
2135 } else {
2136 const struct tnode *tn = (const struct tnode *) n;
2137 int i;
2138
2139 s->tnodes++;
132adf54 2140 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2141 s->nodesizes[tn->bits]++;
2142
cb7b593c
SH
2143 for (i = 0; i < (1<<tn->bits); i++)
2144 if (!tn->child[i])
2145 s->nullpointers++;
19baf839 2146 }
19baf839 2147 }
2373ce1c 2148 rcu_read_unlock();
19baf839
RO
2149}
2150
cb7b593c
SH
2151/*
2152 * This outputs /proc/net/fib_triestats
2153 */
2154static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2155{
cb7b593c 2156 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2157
cb7b593c
SH
2158 if (stat->leaves)
2159 avdepth = stat->totdepth*100 / stat->leaves;
2160 else
2161 avdepth = 0;
91b9a277 2162
a07f5f50
SH
2163 seq_printf(seq, "\tAver depth: %u.%02d\n",
2164 avdepth / 100, avdepth % 100);
cb7b593c 2165 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2166
cb7b593c 2167 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2168 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2169
2170 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2171 bytes += sizeof(struct leaf_info) * stat->prefixes;
2172
187b5188 2173 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2174 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2175
06ef921d
RO
2176 max = MAX_STAT_DEPTH;
2177 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2178 max--;
19baf839 2179
cb7b593c
SH
2180 pointers = 0;
2181 for (i = 1; i <= max; i++)
2182 if (stat->nodesizes[i] != 0) {
187b5188 2183 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2184 pointers += (1<<i) * stat->nodesizes[i];
2185 }
2186 seq_putc(seq, '\n');
187b5188 2187 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2188
cb7b593c 2189 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2190 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2191 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2192}
2373ce1c 2193
cb7b593c 2194#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2195static void trie_show_usage(struct seq_file *seq,
2196 const struct trie_use_stats *stats)
2197{
2198 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2199 seq_printf(seq, "gets = %u\n", stats->gets);
2200 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2201 seq_printf(seq, "semantic match passed = %u\n",
2202 stats->semantic_match_passed);
2203 seq_printf(seq, "semantic match miss = %u\n",
2204 stats->semantic_match_miss);
2205 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2206 seq_printf(seq, "skipped node resize = %u\n\n",
2207 stats->resize_node_skipped);
cb7b593c 2208}
66a2f7fd
SH
2209#endif /* CONFIG_IP_FIB_TRIE_STATS */
2210
3d3b2d25 2211static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2212{
3d3b2d25
SH
2213 if (tb->tb_id == RT_TABLE_LOCAL)
2214 seq_puts(seq, "Local:\n");
2215 else if (tb->tb_id == RT_TABLE_MAIN)
2216 seq_puts(seq, "Main:\n");
2217 else
2218 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2219}
19baf839 2220
3d3b2d25 2221
cb7b593c
SH
2222static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2223{
1c340b2f 2224 struct net *net = (struct net *)seq->private;
3d3b2d25 2225 unsigned int h;
877a9bff 2226
d717a9a6 2227 seq_printf(seq,
a07f5f50
SH
2228 "Basic info: size of leaf:"
2229 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2230 sizeof(struct leaf), sizeof(struct tnode));
2231
3d3b2d25
SH
2232 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2233 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2234 struct hlist_node *node;
2235 struct fib_table *tb;
2236
2237 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2238 struct trie *t = (struct trie *) tb->tb_data;
2239 struct trie_stat stat;
877a9bff 2240
3d3b2d25
SH
2241 if (!t)
2242 continue;
2243
2244 fib_table_print(seq, tb);
2245
2246 trie_collect_stats(t, &stat);
2247 trie_show_stats(seq, &stat);
2248#ifdef CONFIG_IP_FIB_TRIE_STATS
2249 trie_show_usage(seq, &t->stats);
2250#endif
2251 }
2252 }
19baf839 2253
cb7b593c 2254 return 0;
19baf839
RO
2255}
2256
cb7b593c 2257static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2258{
1c340b2f
DL
2259 int err;
2260 struct net *net;
2261
2262 net = get_proc_net(inode);
2263 if (net == NULL)
2264 return -ENXIO;
2265 err = single_open(file, fib_triestat_seq_show, net);
2266 if (err < 0) {
2267 put_net(net);
2268 return err;
2269 }
2270 return 0;
2271}
2272
2273static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2274{
2275 struct seq_file *seq = f->private_data;
2276 put_net(seq->private);
2277 return single_release(ino, f);
19baf839
RO
2278}
2279
9a32144e 2280static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2281 .owner = THIS_MODULE,
2282 .open = fib_triestat_seq_open,
2283 .read = seq_read,
2284 .llseek = seq_lseek,
1c340b2f 2285 .release = fib_triestat_seq_release,
cb7b593c
SH
2286};
2287
1218854a 2288static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2289{
1218854a
YH
2290 struct fib_trie_iter *iter = seq->private;
2291 struct net *net = seq_file_net(seq);
cb7b593c 2292 loff_t idx = 0;
3d3b2d25 2293 unsigned int h;
cb7b593c 2294
3d3b2d25
SH
2295 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2296 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2297 struct hlist_node *node;
2298 struct fib_table *tb;
cb7b593c 2299
3d3b2d25
SH
2300 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2301 struct node *n;
2302
2303 for (n = fib_trie_get_first(iter,
2304 (struct trie *) tb->tb_data);
2305 n; n = fib_trie_get_next(iter))
2306 if (pos == idx++) {
2307 iter->tb = tb;
2308 return n;
2309 }
2310 }
cb7b593c 2311 }
3d3b2d25 2312
19baf839
RO
2313 return NULL;
2314}
2315
cb7b593c 2316static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2317 __acquires(RCU)
19baf839 2318{
cb7b593c 2319 rcu_read_lock();
1218854a 2320 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2321}
2322
cb7b593c 2323static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2324{
cb7b593c 2325 struct fib_trie_iter *iter = seq->private;
1218854a 2326 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2327 struct fib_table *tb = iter->tb;
2328 struct hlist_node *tb_node;
2329 unsigned int h;
2330 struct node *n;
cb7b593c 2331
19baf839 2332 ++*pos;
3d3b2d25
SH
2333 /* next node in same table */
2334 n = fib_trie_get_next(iter);
2335 if (n)
2336 return n;
19baf839 2337
3d3b2d25
SH
2338 /* walk rest of this hash chain */
2339 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2340 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2341 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2342 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2343 if (n)
2344 goto found;
2345 }
19baf839 2346
3d3b2d25
SH
2347 /* new hash chain */
2348 while (++h < FIB_TABLE_HASHSZ) {
2349 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2350 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2351 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2352 if (n)
2353 goto found;
2354 }
2355 }
cb7b593c 2356 return NULL;
3d3b2d25
SH
2357
2358found:
2359 iter->tb = tb;
2360 return n;
cb7b593c 2361}
19baf839 2362
cb7b593c 2363static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2364 __releases(RCU)
19baf839 2365{
cb7b593c
SH
2366 rcu_read_unlock();
2367}
91b9a277 2368
cb7b593c
SH
2369static void seq_indent(struct seq_file *seq, int n)
2370{
2371 while (n-- > 0) seq_puts(seq, " ");
2372}
19baf839 2373
28d36e37 2374static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2375{
132adf54 2376 switch (s) {
cb7b593c
SH
2377 case RT_SCOPE_UNIVERSE: return "universe";
2378 case RT_SCOPE_SITE: return "site";
2379 case RT_SCOPE_LINK: return "link";
2380 case RT_SCOPE_HOST: return "host";
2381 case RT_SCOPE_NOWHERE: return "nowhere";
2382 default:
28d36e37 2383 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2384 return buf;
2385 }
2386}
19baf839 2387
cb7b593c
SH
2388static const char *rtn_type_names[__RTN_MAX] = {
2389 [RTN_UNSPEC] = "UNSPEC",
2390 [RTN_UNICAST] = "UNICAST",
2391 [RTN_LOCAL] = "LOCAL",
2392 [RTN_BROADCAST] = "BROADCAST",
2393 [RTN_ANYCAST] = "ANYCAST",
2394 [RTN_MULTICAST] = "MULTICAST",
2395 [RTN_BLACKHOLE] = "BLACKHOLE",
2396 [RTN_UNREACHABLE] = "UNREACHABLE",
2397 [RTN_PROHIBIT] = "PROHIBIT",
2398 [RTN_THROW] = "THROW",
2399 [RTN_NAT] = "NAT",
2400 [RTN_XRESOLVE] = "XRESOLVE",
2401};
19baf839 2402
28d36e37 2403static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2404{
cb7b593c
SH
2405 if (t < __RTN_MAX && rtn_type_names[t])
2406 return rtn_type_names[t];
28d36e37 2407 snprintf(buf, len, "type %u", t);
cb7b593c 2408 return buf;
19baf839
RO
2409}
2410
cb7b593c
SH
2411/* Pretty print the trie */
2412static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2413{
cb7b593c
SH
2414 const struct fib_trie_iter *iter = seq->private;
2415 struct node *n = v;
c877efb2 2416
3d3b2d25
SH
2417 if (!node_parent_rcu(n))
2418 fib_table_print(seq, iter->tb);
095b8501 2419
cb7b593c
SH
2420 if (IS_TNODE(n)) {
2421 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2422 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2423
1d25cd6c 2424 seq_indent(seq, iter->depth-1);
a7d632b6 2425 seq_printf(seq, " +-- " NIPQUAD_FMT "/%d %d %d %d\n",
e905a9ed 2426 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
1d25cd6c 2427 tn->empty_children);
e905a9ed 2428
cb7b593c
SH
2429 } else {
2430 struct leaf *l = (struct leaf *) n;
1328042e
SH
2431 struct leaf_info *li;
2432 struct hlist_node *node;
32ab5f80 2433 __be32 val = htonl(l->key);
cb7b593c
SH
2434
2435 seq_indent(seq, iter->depth);
a7d632b6 2436 seq_printf(seq, " |-- " NIPQUAD_FMT "\n", NIPQUAD(val));
1328042e
SH
2437
2438 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2439 struct fib_alias *fa;
2440
2441 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2442 char buf1[32], buf2[32];
2443
2444 seq_indent(seq, iter->depth+1);
2445 seq_printf(seq, " /%d %s %s", li->plen,
2446 rtn_scope(buf1, sizeof(buf1),
2447 fa->fa_scope),
2448 rtn_type(buf2, sizeof(buf2),
2449 fa->fa_type));
2450 if (fa->fa_tos)
b9c4d82a 2451 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2452 seq_putc(seq, '\n');
cb7b593c
SH
2453 }
2454 }
19baf839 2455 }
cb7b593c 2456
19baf839
RO
2457 return 0;
2458}
2459
f690808e 2460static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2461 .start = fib_trie_seq_start,
2462 .next = fib_trie_seq_next,
2463 .stop = fib_trie_seq_stop,
2464 .show = fib_trie_seq_show,
19baf839
RO
2465};
2466
cb7b593c 2467static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2468{
1c340b2f
DL
2469 return seq_open_net(inode, file, &fib_trie_seq_ops,
2470 sizeof(struct fib_trie_iter));
19baf839
RO
2471}
2472
9a32144e 2473static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2474 .owner = THIS_MODULE,
2475 .open = fib_trie_seq_open,
2476 .read = seq_read,
2477 .llseek = seq_lseek,
1c340b2f 2478 .release = seq_release_net,
19baf839
RO
2479};
2480
8315f5d8
SH
2481struct fib_route_iter {
2482 struct seq_net_private p;
2483 struct trie *main_trie;
2484 loff_t pos;
2485 t_key key;
2486};
2487
2488static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2489{
2490 struct leaf *l = NULL;
2491 struct trie *t = iter->main_trie;
2492
2493 /* use cache location of last found key */
2494 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2495 pos -= iter->pos;
2496 else {
2497 iter->pos = 0;
2498 l = trie_firstleaf(t);
2499 }
2500
2501 while (l && pos-- > 0) {
2502 iter->pos++;
2503 l = trie_nextleaf(l);
2504 }
2505
2506 if (l)
2507 iter->key = pos; /* remember it */
2508 else
2509 iter->pos = 0; /* forget it */
2510
2511 return l;
2512}
2513
2514static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2515 __acquires(RCU)
2516{
2517 struct fib_route_iter *iter = seq->private;
2518 struct fib_table *tb;
2519
2520 rcu_read_lock();
1218854a 2521 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2522 if (!tb)
2523 return NULL;
2524
2525 iter->main_trie = (struct trie *) tb->tb_data;
2526 if (*pos == 0)
2527 return SEQ_START_TOKEN;
2528 else
2529 return fib_route_get_idx(iter, *pos - 1);
2530}
2531
2532static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2533{
2534 struct fib_route_iter *iter = seq->private;
2535 struct leaf *l = v;
2536
2537 ++*pos;
2538 if (v == SEQ_START_TOKEN) {
2539 iter->pos = 0;
2540 l = trie_firstleaf(iter->main_trie);
2541 } else {
2542 iter->pos++;
2543 l = trie_nextleaf(l);
2544 }
2545
2546 if (l)
2547 iter->key = l->key;
2548 else
2549 iter->pos = 0;
2550 return l;
2551}
2552
2553static void fib_route_seq_stop(struct seq_file *seq, void *v)
2554 __releases(RCU)
2555{
2556 rcu_read_unlock();
2557}
2558
32ab5f80 2559static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2560{
cb7b593c
SH
2561 static unsigned type2flags[RTN_MAX + 1] = {
2562 [7] = RTF_REJECT, [8] = RTF_REJECT,
2563 };
2564 unsigned flags = type2flags[type];
19baf839 2565
cb7b593c
SH
2566 if (fi && fi->fib_nh->nh_gw)
2567 flags |= RTF_GATEWAY;
32ab5f80 2568 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2569 flags |= RTF_HOST;
2570 flags |= RTF_UP;
2571 return flags;
19baf839
RO
2572}
2573
cb7b593c
SH
2574/*
2575 * This outputs /proc/net/route.
2576 * The format of the file is not supposed to be changed
2577 * and needs to be same as fib_hash output to avoid breaking
2578 * legacy utilities
2579 */
2580static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2581{
cb7b593c 2582 struct leaf *l = v;
1328042e
SH
2583 struct leaf_info *li;
2584 struct hlist_node *node;
19baf839 2585
cb7b593c
SH
2586 if (v == SEQ_START_TOKEN) {
2587 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2588 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2589 "\tWindow\tIRTT");
2590 return 0;
2591 }
19baf839 2592
1328042e 2593 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2594 struct fib_alias *fa;
32ab5f80 2595 __be32 mask, prefix;
91b9a277 2596
cb7b593c
SH
2597 mask = inet_make_mask(li->plen);
2598 prefix = htonl(l->key);
19baf839 2599
cb7b593c 2600 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2601 const struct fib_info *fi = fa->fa_info;
cb7b593c 2602 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2603 int len;
19baf839 2604
cb7b593c
SH
2605 if (fa->fa_type == RTN_BROADCAST
2606 || fa->fa_type == RTN_MULTICAST)
2607 continue;
19baf839 2608
cb7b593c 2609 if (fi)
5e659e4c
PE
2610 seq_printf(seq,
2611 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2612 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2613 fi->fib_dev ? fi->fib_dev->name : "*",
2614 prefix,
2615 fi->fib_nh->nh_gw, flags, 0, 0,
2616 fi->fib_priority,
2617 mask,
a07f5f50
SH
2618 (fi->fib_advmss ?
2619 fi->fib_advmss + 40 : 0),
cb7b593c 2620 fi->fib_window,
5e659e4c 2621 fi->fib_rtt >> 3, &len);
cb7b593c 2622 else
5e659e4c
PE
2623 seq_printf(seq,
2624 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2625 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2626 prefix, 0, flags, 0, 0, 0,
5e659e4c 2627 mask, 0, 0, 0, &len);
19baf839 2628
5e659e4c 2629 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2630 }
19baf839
RO
2631 }
2632
2633 return 0;
2634}
2635
f690808e 2636static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2637 .start = fib_route_seq_start,
2638 .next = fib_route_seq_next,
2639 .stop = fib_route_seq_stop,
cb7b593c 2640 .show = fib_route_seq_show,
19baf839
RO
2641};
2642
cb7b593c 2643static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2644{
1c340b2f 2645 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2646 sizeof(struct fib_route_iter));
19baf839
RO
2647}
2648
9a32144e 2649static const struct file_operations fib_route_fops = {
cb7b593c
SH
2650 .owner = THIS_MODULE,
2651 .open = fib_route_seq_open,
2652 .read = seq_read,
2653 .llseek = seq_lseek,
1c340b2f 2654 .release = seq_release_net,
19baf839
RO
2655};
2656
61a02653 2657int __net_init fib_proc_init(struct net *net)
19baf839 2658{
61a02653 2659 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2660 goto out1;
2661
61a02653
DL
2662 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2663 &fib_triestat_fops))
cb7b593c
SH
2664 goto out2;
2665
61a02653 2666 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2667 goto out3;
2668
19baf839 2669 return 0;
cb7b593c
SH
2670
2671out3:
61a02653 2672 proc_net_remove(net, "fib_triestat");
cb7b593c 2673out2:
61a02653 2674 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2675out1:
2676 return -ENOMEM;
19baf839
RO
2677}
2678
61a02653 2679void __net_exit fib_proc_exit(struct net *net)
19baf839 2680{
61a02653
DL
2681 proc_net_remove(net, "fib_trie");
2682 proc_net_remove(net, "fib_triestat");
2683 proc_net_remove(net, "route");
19baf839
RO
2684}
2685
2686#endif /* CONFIG_PROC_FS */
This page took 0.973426 seconds and 5 git commands to generate.