net: macb: Fix multi queue support for xilinx ZynqMP
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
8e05fd71 82#include <net/switchdev.h>
19baf839
RO
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
95f60ea3
AD
87#define KEYLENGTH (8*sizeof(t_key))
88#define KEY_MAX ((t_key)~0)
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
64c9b6fb
AD
92#define IS_TNODE(n) ((n)->bits)
93#define IS_LEAF(n) (!(n)->bits)
2373ce1c 94
e9b44019 95#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
9f9e636d 96
64c9b6fb 97struct tnode {
41b489fd
AD
98 struct rcu_head rcu;
99
100 t_key empty_children; /* KEYLENGTH bits needed */
101 t_key full_children; /* KEYLENGTH bits needed */
102 struct tnode __rcu *parent;
103
64c9b6fb 104 t_key key;
64c9b6fb 105 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 106 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 107 unsigned char slen;
adaf9816 108 union {
41b489fd 109 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 110 struct hlist_head leaf;
41b489fd
AD
111 /* This array is valid if (pos | bits) > 0 (TNODE) */
112 struct tnode __rcu *tnode[0];
adaf9816 113 };
19baf839
RO
114};
115
41b489fd
AD
116#define TNODE_SIZE(n) offsetof(struct tnode, tnode[n])
117#define LEAF_SIZE TNODE_SIZE(1)
118
19baf839
RO
119#ifdef CONFIG_IP_FIB_TRIE_STATS
120struct trie_use_stats {
121 unsigned int gets;
122 unsigned int backtrack;
123 unsigned int semantic_match_passed;
124 unsigned int semantic_match_miss;
125 unsigned int null_node_hit;
2f36895a 126 unsigned int resize_node_skipped;
19baf839
RO
127};
128#endif
129
130struct trie_stat {
131 unsigned int totdepth;
132 unsigned int maxdepth;
133 unsigned int tnodes;
134 unsigned int leaves;
135 unsigned int nullpointers;
93672292 136 unsigned int prefixes;
06ef921d 137 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 138};
19baf839
RO
139
140struct trie {
adaf9816 141 struct tnode __rcu *trie;
19baf839 142#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 143 struct trie_use_stats __percpu *stats;
19baf839 144#endif
19baf839
RO
145};
146
ff181ed8 147static void resize(struct trie *t, struct tnode *tn);
c3059477
JP
148static size_t tnode_free_size;
149
150/*
151 * synchronize_rcu after call_rcu for that many pages; it should be especially
152 * useful before resizing the root node with PREEMPT_NONE configs; the value was
153 * obtained experimentally, aiming to avoid visible slowdown.
154 */
155static const int sync_pages = 128;
19baf839 156
e18b890b 157static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 158static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 159
64c9b6fb
AD
160/* caller must hold RTNL */
161#define node_parent(n) rtnl_dereference((n)->parent)
0a5c0475 162
64c9b6fb
AD
163/* caller must hold RCU read lock or RTNL */
164#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
0a5c0475 165
64c9b6fb 166/* wrapper for rcu_assign_pointer */
adaf9816 167static inline void node_set_parent(struct tnode *n, struct tnode *tp)
b59cfbf7 168{
adaf9816
AD
169 if (n)
170 rcu_assign_pointer(n->parent, tp);
06801916
SH
171}
172
64c9b6fb
AD
173#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
174
175/* This provides us with the number of children in this node, in the case of a
176 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 177 */
98293e8d 178static inline unsigned long tnode_child_length(const struct tnode *tn)
06801916 179{
64c9b6fb 180 return (1ul << tn->bits) & ~(1ul);
06801916 181}
2373ce1c 182
98293e8d
AD
183/* caller must hold RTNL */
184static inline struct tnode *tnode_get_child(const struct tnode *tn,
185 unsigned long i)
b59cfbf7 186{
41b489fd 187 return rtnl_dereference(tn->tnode[i]);
b59cfbf7
ED
188}
189
98293e8d
AD
190/* caller must hold RCU read lock or RTNL */
191static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
192 unsigned long i)
19baf839 193{
41b489fd 194 return rcu_dereference_rtnl(tn->tnode[i]);
19baf839
RO
195}
196
a7e53531
AD
197static inline struct fib_table *trie_get_table(struct trie *t)
198{
199 unsigned long *tb_data = (unsigned long *)t;
200
201 return container_of(tb_data, struct fib_table, tb_data[0]);
202}
203
e9b44019
AD
204/* To understand this stuff, an understanding of keys and all their bits is
205 * necessary. Every node in the trie has a key associated with it, but not
206 * all of the bits in that key are significant.
207 *
208 * Consider a node 'n' and its parent 'tp'.
209 *
210 * If n is a leaf, every bit in its key is significant. Its presence is
211 * necessitated by path compression, since during a tree traversal (when
212 * searching for a leaf - unless we are doing an insertion) we will completely
213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214 * a potentially successful search, that we have indeed been walking the
215 * correct key path.
216 *
217 * Note that we can never "miss" the correct key in the tree if present by
218 * following the wrong path. Path compression ensures that segments of the key
219 * that are the same for all keys with a given prefix are skipped, but the
220 * skipped part *is* identical for each node in the subtrie below the skipped
221 * bit! trie_insert() in this implementation takes care of that.
222 *
223 * if n is an internal node - a 'tnode' here, the various parts of its key
224 * have many different meanings.
225 *
226 * Example:
227 * _________________________________________________________________
228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229 * -----------------------------------------------------------------
230 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
231 *
232 * _________________________________________________________________
233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234 * -----------------------------------------------------------------
235 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
236 *
237 * tp->pos = 22
238 * tp->bits = 3
239 * n->pos = 13
240 * n->bits = 4
241 *
242 * First, let's just ignore the bits that come before the parent tp, that is
243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244 * point we do not use them for anything.
245 *
246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247 * index into the parent's child array. That is, they will be used to find
248 * 'n' among tp's children.
249 *
250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251 * for the node n.
252 *
253 * All the bits we have seen so far are significant to the node n. The rest
254 * of the bits are really not needed or indeed known in n->key.
255 *
256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257 * n's child array, and will of course be different for each child.
258 *
259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260 * at this point.
261 */
19baf839 262
f5026fab
DL
263static const int halve_threshold = 25;
264static const int inflate_threshold = 50;
345aa031 265static const int halve_threshold_root = 15;
80b71b80 266static const int inflate_threshold_root = 30;
2373ce1c
RO
267
268static void __alias_free_mem(struct rcu_head *head)
19baf839 269{
2373ce1c
RO
270 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
272}
273
2373ce1c 274static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 275{
2373ce1c
RO
276 call_rcu(&fa->rcu, __alias_free_mem);
277}
91b9a277 278
37fd30f2 279#define TNODE_KMALLOC_MAX \
41b489fd 280 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct tnode *))
1de3d87b
AD
281#define TNODE_VMALLOC_MAX \
282 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct tnode *))
91b9a277 283
37fd30f2 284static void __node_free_rcu(struct rcu_head *head)
387a5487 285{
adaf9816 286 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2
AD
287
288 if (IS_LEAF(n))
289 kmem_cache_free(trie_leaf_kmem, n);
290 else if (n->bits <= TNODE_KMALLOC_MAX)
291 kfree(n);
292 else
293 vfree(n);
387a5487
SH
294}
295
37fd30f2
AD
296#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
297
1de3d87b 298static struct tnode *tnode_alloc(int bits)
f0e36f8c 299{
1de3d87b
AD
300 size_t size;
301
302 /* verify bits is within bounds */
303 if (bits > TNODE_VMALLOC_MAX)
304 return NULL;
305
306 /* determine size and verify it is non-zero and didn't overflow */
307 size = TNODE_SIZE(1ul << bits);
308
2373ce1c 309 if (size <= PAGE_SIZE)
8d965444 310 return kzalloc(size, GFP_KERNEL);
15be75cd 311 else
7a1c8e5a 312 return vzalloc(size);
15be75cd 313}
2373ce1c 314
95f60ea3
AD
315static inline void empty_child_inc(struct tnode *n)
316{
317 ++n->empty_children ? : ++n->full_children;
318}
319
320static inline void empty_child_dec(struct tnode *n)
321{
322 n->empty_children-- ? : n->full_children--;
323}
324
d5d6487c 325static struct tnode *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 326{
adaf9816 327 struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c 328 if (l) {
64c9b6fb
AD
329 l->parent = NULL;
330 /* set key and pos to reflect full key value
331 * any trailing zeros in the key should be ignored
332 * as the nodes are searched
333 */
334 l->key = key;
d5d6487c 335 l->slen = fa->fa_slen;
e9b44019 336 l->pos = 0;
64c9b6fb
AD
337 /* set bits to 0 indicating we are not a tnode */
338 l->bits = 0;
339
d5d6487c 340 /* link leaf to fib alias */
79e5ad2c 341 INIT_HLIST_HEAD(&l->leaf);
d5d6487c 342 hlist_add_head(&fa->fa_list, &l->leaf);
2373ce1c
RO
343 }
344 return l;
345}
346
a07f5f50 347static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 348{
1de3d87b 349 struct tnode *tn = tnode_alloc(bits);
64c9b6fb
AD
350 unsigned int shift = pos + bits;
351
352 /* verify bits and pos their msb bits clear and values are valid */
353 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 354
91b9a277 355 if (tn) {
64c9b6fb 356 tn->parent = NULL;
5405afd1 357 tn->slen = pos;
19baf839
RO
358 tn->pos = pos;
359 tn->bits = bits;
e9b44019 360 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
95f60ea3
AD
361 if (bits == KEYLENGTH)
362 tn->full_children = 1;
363 else
364 tn->empty_children = 1ul << bits;
19baf839 365 }
c877efb2 366
41b489fd 367 pr_debug("AT %p s=%zu %zu\n", tn, TNODE_SIZE(0),
adaf9816 368 sizeof(struct tnode *) << bits);
19baf839
RO
369 return tn;
370}
371
e9b44019 372/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
373 * and no bits are skipped. See discussion in dyntree paper p. 6
374 */
adaf9816 375static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
19baf839 376{
e9b44019 377 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
378}
379
ff181ed8
AD
380/* Add a child at position i overwriting the old value.
381 * Update the value of full_children and empty_children.
382 */
383static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
19baf839 384{
21d1f11d 385 struct tnode *chi = tnode_get_child(tn, i);
ff181ed8 386 int isfull, wasfull;
19baf839 387
98293e8d 388 BUG_ON(i >= tnode_child_length(tn));
0c7770c7 389
95f60ea3 390 /* update emptyChildren, overflow into fullChildren */
19baf839 391 if (n == NULL && chi != NULL)
95f60ea3
AD
392 empty_child_inc(tn);
393 if (n != NULL && chi == NULL)
394 empty_child_dec(tn);
c877efb2 395
19baf839 396 /* update fullChildren */
ff181ed8 397 wasfull = tnode_full(tn, chi);
19baf839 398 isfull = tnode_full(tn, n);
ff181ed8 399
c877efb2 400 if (wasfull && !isfull)
19baf839 401 tn->full_children--;
c877efb2 402 else if (!wasfull && isfull)
19baf839 403 tn->full_children++;
91b9a277 404
5405afd1
AD
405 if (n && (tn->slen < n->slen))
406 tn->slen = n->slen;
407
41b489fd 408 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
409}
410
69fa57b1
AD
411static void update_children(struct tnode *tn)
412{
413 unsigned long i;
414
415 /* update all of the child parent pointers */
416 for (i = tnode_child_length(tn); i;) {
417 struct tnode *inode = tnode_get_child(tn, --i);
418
419 if (!inode)
420 continue;
421
422 /* Either update the children of a tnode that
423 * already belongs to us or update the child
424 * to point to ourselves.
425 */
426 if (node_parent(inode) == tn)
427 update_children(inode);
428 else
429 node_set_parent(inode, tn);
430 }
431}
432
433static inline void put_child_root(struct tnode *tp, struct trie *t,
434 t_key key, struct tnode *n)
836a0123
AD
435{
436 if (tp)
437 put_child(tp, get_index(key, tp), n);
438 else
439 rcu_assign_pointer(t->trie, n);
440}
441
fc86a93b 442static inline void tnode_free_init(struct tnode *tn)
0a5c0475 443{
fc86a93b
AD
444 tn->rcu.next = NULL;
445}
446
447static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
448{
449 n->rcu.next = tn->rcu.next;
450 tn->rcu.next = &n->rcu;
451}
0a5c0475 452
fc86a93b
AD
453static void tnode_free(struct tnode *tn)
454{
455 struct callback_head *head = &tn->rcu;
456
457 while (head) {
458 head = head->next;
41b489fd 459 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
460 node_free(tn);
461
462 tn = container_of(head, struct tnode, rcu);
463 }
464
465 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
466 tnode_free_size = 0;
467 synchronize_rcu();
0a5c0475 468 }
0a5c0475
ED
469}
470
69fa57b1
AD
471static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
472{
473 struct tnode *tp = node_parent(oldtnode);
474 unsigned long i;
475
476 /* setup the parent pointer out of and back into this node */
477 NODE_INIT_PARENT(tn, tp);
478 put_child_root(tp, t, tn->key, tn);
479
480 /* update all of the child parent pointers */
481 update_children(tn);
482
483 /* all pointers should be clean so we are done */
484 tnode_free(oldtnode);
485
486 /* resize children now that oldtnode is freed */
487 for (i = tnode_child_length(tn); i;) {
488 struct tnode *inode = tnode_get_child(tn, --i);
489
490 /* resize child node */
491 if (tnode_full(tn, inode))
492 resize(t, inode);
493 }
494}
495
ff181ed8 496static int inflate(struct trie *t, struct tnode *oldtnode)
19baf839 497{
69fa57b1
AD
498 struct tnode *tn;
499 unsigned long i;
e9b44019 500 t_key m;
19baf839 501
0c7770c7 502 pr_debug("In inflate\n");
19baf839 503
e9b44019 504 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 505 if (!tn)
ff181ed8 506 return -ENOMEM;
2f36895a 507
69fa57b1
AD
508 /* prepare oldtnode to be freed */
509 tnode_free_init(oldtnode);
510
12c081a5
AD
511 /* Assemble all of the pointers in our cluster, in this case that
512 * represents all of the pointers out of our allocated nodes that
513 * point to existing tnodes and the links between our allocated
514 * nodes.
2f36895a 515 */
12c081a5 516 for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
69fa57b1
AD
517 struct tnode *inode = tnode_get_child(oldtnode, --i);
518 struct tnode *node0, *node1;
519 unsigned long j, k;
c877efb2 520
19baf839 521 /* An empty child */
adaf9816 522 if (inode == NULL)
19baf839
RO
523 continue;
524
525 /* A leaf or an internal node with skipped bits */
adaf9816 526 if (!tnode_full(oldtnode, inode)) {
e9b44019 527 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
528 continue;
529 }
530
69fa57b1
AD
531 /* drop the node in the old tnode free list */
532 tnode_free_append(oldtnode, inode);
533
19baf839 534 /* An internal node with two children */
19baf839 535 if (inode->bits == 1) {
12c081a5
AD
536 put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
537 put_child(tn, 2 * i, tnode_get_child(inode, 0));
91b9a277 538 continue;
19baf839
RO
539 }
540
91b9a277 541 /* We will replace this node 'inode' with two new
12c081a5 542 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
543 * original children. The two new nodes will have
544 * a position one bit further down the key and this
545 * means that the "significant" part of their keys
546 * (see the discussion near the top of this file)
547 * will differ by one bit, which will be "0" in
12c081a5 548 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
549 * moving the key position by one step, the bit that
550 * we are moving away from - the bit at position
12c081a5
AD
551 * (tn->pos) - is the one that will differ between
552 * node0 and node1. So... we synthesize that bit in the
553 * two new keys.
91b9a277 554 */
12c081a5
AD
555 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
556 if (!node1)
557 goto nomem;
69fa57b1 558 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 559
69fa57b1 560 tnode_free_append(tn, node1);
12c081a5
AD
561 if (!node0)
562 goto nomem;
563 tnode_free_append(tn, node0);
564
565 /* populate child pointers in new nodes */
566 for (k = tnode_child_length(inode), j = k / 2; j;) {
567 put_child(node1, --j, tnode_get_child(inode, --k));
568 put_child(node0, j, tnode_get_child(inode, j));
569 put_child(node1, --j, tnode_get_child(inode, --k));
570 put_child(node0, j, tnode_get_child(inode, j));
571 }
19baf839 572
12c081a5
AD
573 /* link new nodes to parent */
574 NODE_INIT_PARENT(node1, tn);
575 NODE_INIT_PARENT(node0, tn);
2f36895a 576
12c081a5
AD
577 /* link parent to nodes */
578 put_child(tn, 2 * i + 1, node1);
579 put_child(tn, 2 * i, node0);
580 }
2f36895a 581
69fa57b1
AD
582 /* setup the parent pointers into and out of this node */
583 replace(t, oldtnode, tn);
12c081a5 584
ff181ed8 585 return 0;
2f80b3c8 586nomem:
fc86a93b
AD
587 /* all pointers should be clean so we are done */
588 tnode_free(tn);
ff181ed8 589 return -ENOMEM;
19baf839
RO
590}
591
ff181ed8 592static int halve(struct trie *t, struct tnode *oldtnode)
19baf839 593{
69fa57b1 594 struct tnode *tn;
12c081a5 595 unsigned long i;
19baf839 596
0c7770c7 597 pr_debug("In halve\n");
c877efb2 598
e9b44019 599 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 600 if (!tn)
ff181ed8 601 return -ENOMEM;
2f36895a 602
69fa57b1
AD
603 /* prepare oldtnode to be freed */
604 tnode_free_init(oldtnode);
605
12c081a5
AD
606 /* Assemble all of the pointers in our cluster, in this case that
607 * represents all of the pointers out of our allocated nodes that
608 * point to existing tnodes and the links between our allocated
609 * nodes.
2f36895a 610 */
12c081a5 611 for (i = tnode_child_length(oldtnode); i;) {
69fa57b1
AD
612 struct tnode *node1 = tnode_get_child(oldtnode, --i);
613 struct tnode *node0 = tnode_get_child(oldtnode, --i);
614 struct tnode *inode;
2f36895a 615
12c081a5
AD
616 /* At least one of the children is empty */
617 if (!node1 || !node0) {
618 put_child(tn, i / 2, node1 ? : node0);
619 continue;
620 }
c877efb2 621
2f36895a 622 /* Two nonempty children */
12c081a5
AD
623 inode = tnode_new(node0->key, oldtnode->pos, 1);
624 if (!inode) {
625 tnode_free(tn);
626 return -ENOMEM;
2f36895a 627 }
12c081a5 628 tnode_free_append(tn, inode);
2f36895a 629
12c081a5
AD
630 /* initialize pointers out of node */
631 put_child(inode, 1, node1);
632 put_child(inode, 0, node0);
633 NODE_INIT_PARENT(inode, tn);
634
635 /* link parent to node */
636 put_child(tn, i / 2, inode);
2f36895a 637 }
19baf839 638
69fa57b1
AD
639 /* setup the parent pointers into and out of this node */
640 replace(t, oldtnode, tn);
ff181ed8
AD
641
642 return 0;
19baf839
RO
643}
644
95f60ea3
AD
645static void collapse(struct trie *t, struct tnode *oldtnode)
646{
647 struct tnode *n, *tp;
648 unsigned long i;
649
650 /* scan the tnode looking for that one child that might still exist */
651 for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
652 n = tnode_get_child(oldtnode, --i);
653
654 /* compress one level */
655 tp = node_parent(oldtnode);
656 put_child_root(tp, t, oldtnode->key, n);
657 node_set_parent(n, tp);
658
659 /* drop dead node */
660 node_free(oldtnode);
661}
662
5405afd1
AD
663static unsigned char update_suffix(struct tnode *tn)
664{
665 unsigned char slen = tn->pos;
666 unsigned long stride, i;
667
668 /* search though the list of children looking for nodes that might
669 * have a suffix greater than the one we currently have. This is
670 * why we start with a stride of 2 since a stride of 1 would
671 * represent the nodes with suffix length equal to tn->pos
672 */
673 for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
674 struct tnode *n = tnode_get_child(tn, i);
675
676 if (!n || (n->slen <= slen))
677 continue;
678
679 /* update stride and slen based on new value */
680 stride <<= (n->slen - slen);
681 slen = n->slen;
682 i &= ~(stride - 1);
683
684 /* if slen covers all but the last bit we can stop here
685 * there will be nothing longer than that since only node
686 * 0 and 1 << (bits - 1) could have that as their suffix
687 * length.
688 */
689 if ((slen + 1) >= (tn->pos + tn->bits))
690 break;
691 }
692
693 tn->slen = slen;
694
695 return slen;
696}
697
f05a4819
AD
698/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
699 * the Helsinki University of Technology and Matti Tikkanen of Nokia
700 * Telecommunications, page 6:
701 * "A node is doubled if the ratio of non-empty children to all
702 * children in the *doubled* node is at least 'high'."
703 *
704 * 'high' in this instance is the variable 'inflate_threshold'. It
705 * is expressed as a percentage, so we multiply it with
706 * tnode_child_length() and instead of multiplying by 2 (since the
707 * child array will be doubled by inflate()) and multiplying
708 * the left-hand side by 100 (to handle the percentage thing) we
709 * multiply the left-hand side by 50.
710 *
711 * The left-hand side may look a bit weird: tnode_child_length(tn)
712 * - tn->empty_children is of course the number of non-null children
713 * in the current node. tn->full_children is the number of "full"
714 * children, that is non-null tnodes with a skip value of 0.
715 * All of those will be doubled in the resulting inflated tnode, so
716 * we just count them one extra time here.
717 *
718 * A clearer way to write this would be:
719 *
720 * to_be_doubled = tn->full_children;
721 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
722 * tn->full_children;
723 *
724 * new_child_length = tnode_child_length(tn) * 2;
725 *
726 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
727 * new_child_length;
728 * if (new_fill_factor >= inflate_threshold)
729 *
730 * ...and so on, tho it would mess up the while () loop.
731 *
732 * anyway,
733 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
734 * inflate_threshold
735 *
736 * avoid a division:
737 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
738 * inflate_threshold * new_child_length
739 *
740 * expand not_to_be_doubled and to_be_doubled, and shorten:
741 * 100 * (tnode_child_length(tn) - tn->empty_children +
742 * tn->full_children) >= inflate_threshold * new_child_length
743 *
744 * expand new_child_length:
745 * 100 * (tnode_child_length(tn) - tn->empty_children +
746 * tn->full_children) >=
747 * inflate_threshold * tnode_child_length(tn) * 2
748 *
749 * shorten again:
750 * 50 * (tn->full_children + tnode_child_length(tn) -
751 * tn->empty_children) >= inflate_threshold *
752 * tnode_child_length(tn)
753 *
754 */
ff181ed8 755static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
f05a4819
AD
756{
757 unsigned long used = tnode_child_length(tn);
758 unsigned long threshold = used;
759
760 /* Keep root node larger */
ff181ed8 761 threshold *= tp ? inflate_threshold : inflate_threshold_root;
f05a4819 762 used -= tn->empty_children;
95f60ea3 763 used += tn->full_children;
f05a4819 764
95f60ea3
AD
765 /* if bits == KEYLENGTH then pos = 0, and will fail below */
766
767 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
768}
769
ff181ed8 770static bool should_halve(const struct tnode *tp, const struct tnode *tn)
f05a4819
AD
771{
772 unsigned long used = tnode_child_length(tn);
773 unsigned long threshold = used;
774
775 /* Keep root node larger */
ff181ed8 776 threshold *= tp ? halve_threshold : halve_threshold_root;
f05a4819
AD
777 used -= tn->empty_children;
778
95f60ea3
AD
779 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
780
781 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
782}
783
784static bool should_collapse(const struct tnode *tn)
785{
786 unsigned long used = tnode_child_length(tn);
787
788 used -= tn->empty_children;
789
790 /* account for bits == KEYLENGTH case */
791 if ((tn->bits == KEYLENGTH) && tn->full_children)
792 used -= KEY_MAX;
793
794 /* One child or none, time to drop us from the trie */
795 return used < 2;
f05a4819
AD
796}
797
cf3637bb 798#define MAX_WORK 10
ff181ed8 799static void resize(struct trie *t, struct tnode *tn)
cf3637bb 800{
95f60ea3 801 struct tnode *tp = node_parent(tn);
ff181ed8 802 struct tnode __rcu **cptr;
a80e89d4 803 int max_work = MAX_WORK;
cf3637bb 804
cf3637bb
AD
805 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
806 tn, inflate_threshold, halve_threshold);
807
ff181ed8
AD
808 /* track the tnode via the pointer from the parent instead of
809 * doing it ourselves. This way we can let RCU fully do its
810 * thing without us interfering
811 */
41b489fd 812 cptr = tp ? &tp->tnode[get_index(tn->key, tp)] : &t->trie;
ff181ed8
AD
813 BUG_ON(tn != rtnl_dereference(*cptr));
814
f05a4819
AD
815 /* Double as long as the resulting node has a number of
816 * nonempty nodes that are above the threshold.
cf3637bb 817 */
a80e89d4 818 while (should_inflate(tp, tn) && max_work) {
ff181ed8 819 if (inflate(t, tn)) {
cf3637bb
AD
820#ifdef CONFIG_IP_FIB_TRIE_STATS
821 this_cpu_inc(t->stats->resize_node_skipped);
822#endif
823 break;
824 }
ff181ed8 825
a80e89d4 826 max_work--;
ff181ed8 827 tn = rtnl_dereference(*cptr);
cf3637bb
AD
828 }
829
830 /* Return if at least one inflate is run */
831 if (max_work != MAX_WORK)
ff181ed8 832 return;
cf3637bb 833
f05a4819 834 /* Halve as long as the number of empty children in this
cf3637bb
AD
835 * node is above threshold.
836 */
a80e89d4 837 while (should_halve(tp, tn) && max_work) {
ff181ed8 838 if (halve(t, tn)) {
cf3637bb
AD
839#ifdef CONFIG_IP_FIB_TRIE_STATS
840 this_cpu_inc(t->stats->resize_node_skipped);
841#endif
842 break;
843 }
cf3637bb 844
a80e89d4 845 max_work--;
ff181ed8
AD
846 tn = rtnl_dereference(*cptr);
847 }
cf3637bb
AD
848
849 /* Only one child remains */
95f60ea3
AD
850 if (should_collapse(tn)) {
851 collapse(t, tn);
5405afd1
AD
852 return;
853 }
854
855 /* Return if at least one deflate was run */
856 if (max_work != MAX_WORK)
857 return;
858
859 /* push the suffix length to the parent node */
860 if (tn->slen > tn->pos) {
861 unsigned char slen = update_suffix(tn);
862
863 if (tp && (slen > tp->slen))
864 tp->slen = slen;
cf3637bb 865 }
cf3637bb
AD
866}
867
d5d6487c 868static void leaf_pull_suffix(struct tnode *tp, struct tnode *l)
5405afd1 869{
5405afd1
AD
870 while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
871 if (update_suffix(tp) > l->slen)
872 break;
873 tp = node_parent(tp);
874 }
875}
876
d5d6487c 877static void leaf_push_suffix(struct tnode *tn, struct tnode *l)
19baf839 878{
5405afd1
AD
879 /* if this is a new leaf then tn will be NULL and we can sort
880 * out parent suffix lengths as a part of trie_rebalance
881 */
882 while (tn && (tn->slen < l->slen)) {
883 tn->slen = l->slen;
884 tn = node_parent(tn);
885 }
886}
887
2373ce1c 888/* rcu_read_lock needs to be hold by caller from readside */
d4a975e8 889static struct tnode *fib_find_node(struct trie *t, struct tnode **tn, u32 key)
19baf839 890{
d4a975e8 891 struct tnode *pn = NULL, *n = rcu_dereference_rtnl(t->trie);
939afb06
AD
892
893 while (n) {
894 unsigned long index = get_index(key, n);
895
896 /* This bit of code is a bit tricky but it combines multiple
897 * checks into a single check. The prefix consists of the
898 * prefix plus zeros for the bits in the cindex. The index
899 * is the difference between the key and this value. From
900 * this we can actually derive several pieces of data.
d4a975e8 901 * if (index >= (1ul << bits))
939afb06 902 * we have a mismatch in skip bits and failed
b3832117
AD
903 * else
904 * we know the value is cindex
d4a975e8
AD
905 *
906 * This check is safe even if bits == KEYLENGTH due to the
907 * fact that we can only allocate a node with 32 bits if a
908 * long is greater than 32 bits.
939afb06 909 */
d4a975e8
AD
910 if (index >= (1ul << n->bits)) {
911 n = NULL;
912 break;
913 }
939afb06
AD
914
915 /* we have found a leaf. Prefixes have already been compared */
916 if (IS_LEAF(n))
19baf839 917 break;
19baf839 918
d4a975e8 919 pn = n;
21d1f11d 920 n = tnode_get_child_rcu(n, index);
939afb06 921 }
91b9a277 922
d4a975e8
AD
923 *tn = pn;
924
939afb06 925 return n;
19baf839
RO
926}
927
02525368
AD
928/* Return the first fib alias matching TOS with
929 * priority less than or equal to PRIO.
930 */
79e5ad2c
AD
931static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
932 u8 tos, u32 prio)
02525368
AD
933{
934 struct fib_alias *fa;
935
936 if (!fah)
937 return NULL;
938
56315f9e 939 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
940 if (fa->fa_slen < slen)
941 continue;
942 if (fa->fa_slen != slen)
943 break;
02525368
AD
944 if (fa->fa_tos > tos)
945 continue;
946 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
947 return fa;
948 }
949
950 return NULL;
951}
952
7b85576d 953static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 954{
06801916 955 struct tnode *tp;
19baf839 956
d5d6487c
AD
957 while (tn) {
958 tp = node_parent(tn);
ff181ed8 959 resize(t, tn);
06801916 960 tn = tp;
19baf839 961 }
19baf839
RO
962}
963
2373ce1c 964/* only used from updater-side */
d5d6487c
AD
965static int fib_insert_node(struct trie *t, struct tnode *tp,
966 struct fib_alias *new, t_key key)
19baf839 967{
d5d6487c 968 struct tnode *n, *l;
19baf839 969
d5d6487c 970 l = leaf_new(key, new);
79e5ad2c 971 if (!l)
d5d6487c
AD
972 return -ENOMEM;
973
974 /* retrieve child from parent node */
975 if (tp)
976 n = tnode_get_child(tp, get_index(key, tp));
977 else
978 n = rcu_dereference_rtnl(t->trie);
19baf839 979
836a0123
AD
980 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
981 *
982 * Add a new tnode here
983 * first tnode need some special handling
984 * leaves us in position for handling as case 3
985 */
986 if (n) {
987 struct tnode *tn;
19baf839 988
e9b44019 989 tn = tnode_new(key, __fls(key ^ n->key), 1);
c877efb2 990 if (!tn) {
37fd30f2 991 node_free(l);
d5d6487c 992 return -ENOMEM;
91b9a277
OJ
993 }
994
836a0123
AD
995 /* initialize routes out of node */
996 NODE_INIT_PARENT(tn, tp);
997 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 998
836a0123
AD
999 /* start adding routes into the node */
1000 put_child_root(tp, t, key, tn);
1001 node_set_parent(n, tn);
e962f302 1002
836a0123 1003 /* parent now has a NULL spot where the leaf can go */
e962f302 1004 tp = tn;
19baf839 1005 }
91b9a277 1006
836a0123 1007 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c
AD
1008 NODE_INIT_PARENT(l, tp);
1009 put_child_root(tp, t, key, l);
1010 trie_rebalance(t, tp);
1011
1012 return 0;
1013}
1014
1015static int fib_insert_alias(struct trie *t, struct tnode *tp,
1016 struct tnode *l, struct fib_alias *new,
1017 struct fib_alias *fa, t_key key)
1018{
1019 if (!l)
1020 return fib_insert_node(t, tp, new, key);
1021
1022 if (fa) {
1023 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1024 } else {
d5d6487c
AD
1025 struct fib_alias *last;
1026
1027 hlist_for_each_entry(last, &l->leaf, fa_list) {
1028 if (new->fa_slen < last->fa_slen)
1029 break;
1030 fa = last;
1031 }
1032
1033 if (fa)
1034 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1035 else
1036 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1037 }
2373ce1c 1038
d5d6487c
AD
1039 /* if we added to the tail node then we need to update slen */
1040 if (l->slen < new->fa_slen) {
1041 l->slen = new->fa_slen;
1042 leaf_push_suffix(tp, l);
1043 }
1044
1045 return 0;
19baf839
RO
1046}
1047
d5d6487c 1048/* Caller must hold RTNL. */
16c6cf8b 1049int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1050{
d4a975e8 1051 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1052 struct fib_alias *fa, *new_fa;
d4a975e8 1053 struct tnode *l, *tp;
19baf839 1054 struct fib_info *fi;
79e5ad2c
AD
1055 u8 plen = cfg->fc_dst_len;
1056 u8 slen = KEYLENGTH - plen;
4e902c57 1057 u8 tos = cfg->fc_tos;
d4a975e8 1058 u32 key;
19baf839 1059 int err;
19baf839 1060
5786ec60 1061 if (plen > KEYLENGTH)
19baf839
RO
1062 return -EINVAL;
1063
4e902c57 1064 key = ntohl(cfg->fc_dst);
19baf839 1065
2dfe55b4 1066 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1067
d4a975e8 1068 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1069 return -EINVAL;
1070
4e902c57
TG
1071 fi = fib_create_info(cfg);
1072 if (IS_ERR(fi)) {
1073 err = PTR_ERR(fi);
19baf839 1074 goto err;
4e902c57 1075 }
19baf839 1076
d4a975e8 1077 l = fib_find_node(t, &tp, key);
79e5ad2c 1078 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
19baf839
RO
1079
1080 /* Now fa, if non-NULL, points to the first fib alias
1081 * with the same keys [prefix,tos,priority], if such key already
1082 * exists or to the node before which we will insert new one.
1083 *
1084 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1085 * insert to the tail of the section matching the suffix length
1086 * of the new alias.
19baf839
RO
1087 */
1088
936f6f8e
JA
1089 if (fa && fa->fa_tos == tos &&
1090 fa->fa_info->fib_priority == fi->fib_priority) {
1091 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1092
1093 err = -EEXIST;
4e902c57 1094 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1095 goto out;
1096
936f6f8e
JA
1097 /* We have 2 goals:
1098 * 1. Find exact match for type, scope, fib_info to avoid
1099 * duplicate routes
1100 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1101 */
1102 fa_match = NULL;
1103 fa_first = fa;
56315f9e 1104 hlist_for_each_entry_from(fa, fa_list) {
79e5ad2c 1105 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
936f6f8e
JA
1106 break;
1107 if (fa->fa_info->fib_priority != fi->fib_priority)
1108 break;
1109 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1110 fa->fa_info == fi) {
1111 fa_match = fa;
1112 break;
1113 }
1114 }
1115
4e902c57 1116 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1117 struct fib_info *fi_drop;
1118 u8 state;
1119
936f6f8e
JA
1120 fa = fa_first;
1121 if (fa_match) {
1122 if (fa == fa_match)
1123 err = 0;
6725033f 1124 goto out;
936f6f8e 1125 }
2373ce1c 1126 err = -ENOBUFS;
e94b1766 1127 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1128 if (new_fa == NULL)
1129 goto out;
19baf839
RO
1130
1131 fi_drop = fa->fa_info;
2373ce1c
RO
1132 new_fa->fa_tos = fa->fa_tos;
1133 new_fa->fa_info = fi;
4e902c57 1134 new_fa->fa_type = cfg->fc_type;
19baf839 1135 state = fa->fa_state;
936f6f8e 1136 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1137 new_fa->fa_slen = fa->fa_slen;
19baf839 1138
8e05fd71
SF
1139 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1140 new_fa->fa_tos,
1141 cfg->fc_type,
1142 tb->tb_id);
1143 if (err) {
1144 netdev_switch_fib_ipv4_abort(fi);
1145 kmem_cache_free(fn_alias_kmem, new_fa);
1146 goto out;
1147 }
1148
56315f9e 1149 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1150
2373ce1c 1151 alias_free_mem_rcu(fa);
19baf839
RO
1152
1153 fib_release_info(fi_drop);
1154 if (state & FA_S_ACCESSED)
4ccfe6d4 1155 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1156 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1157 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1158
91b9a277 1159 goto succeeded;
19baf839
RO
1160 }
1161 /* Error if we find a perfect match which
1162 * uses the same scope, type, and nexthop
1163 * information.
1164 */
936f6f8e
JA
1165 if (fa_match)
1166 goto out;
a07f5f50 1167
4e902c57 1168 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1169 fa = fa_first;
19baf839
RO
1170 }
1171 err = -ENOENT;
4e902c57 1172 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1173 goto out;
1174
1175 err = -ENOBUFS;
e94b1766 1176 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1177 if (new_fa == NULL)
1178 goto out;
1179
1180 new_fa->fa_info = fi;
1181 new_fa->fa_tos = tos;
4e902c57 1182 new_fa->fa_type = cfg->fc_type;
19baf839 1183 new_fa->fa_state = 0;
79e5ad2c 1184 new_fa->fa_slen = slen;
19baf839 1185
8e05fd71
SF
1186 /* (Optionally) offload fib entry to switch hardware. */
1187 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1188 cfg->fc_type, tb->tb_id);
1189 if (err) {
1190 netdev_switch_fib_ipv4_abort(fi);
1191 goto out_free_new_fa;
1192 }
1193
9b6ebad5 1194 /* Insert new entry to the list. */
d5d6487c
AD
1195 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1196 if (err)
8e05fd71 1197 goto out_sw_fib_del;
19baf839 1198
21d8c49e
DM
1199 if (!plen)
1200 tb->tb_num_default++;
1201
4ccfe6d4 1202 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1203 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1204 &cfg->fc_nlinfo, 0);
19baf839
RO
1205succeeded:
1206 return 0;
f835e471 1207
8e05fd71
SF
1208out_sw_fib_del:
1209 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1210out_free_new_fa:
1211 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1212out:
1213 fib_release_info(fi);
91b9a277 1214err:
19baf839
RO
1215 return err;
1216}
1217
9f9e636d
AD
1218static inline t_key prefix_mismatch(t_key key, struct tnode *n)
1219{
1220 t_key prefix = n->key;
1221
1222 return (key ^ prefix) & (prefix | -prefix);
1223}
1224
345e9b54 1225/* should be called with rcu_read_lock */
22bd5b9b 1226int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1227 struct fib_result *res, int fib_flags)
19baf839 1228{
9f9e636d 1229 struct trie *t = (struct trie *)tb->tb_data;
8274a97a
AD
1230#ifdef CONFIG_IP_FIB_TRIE_STATS
1231 struct trie_use_stats __percpu *stats = t->stats;
1232#endif
9f9e636d
AD
1233 const t_key key = ntohl(flp->daddr);
1234 struct tnode *n, *pn;
79e5ad2c 1235 struct fib_alias *fa;
71e8b67d 1236 unsigned long index;
9f9e636d 1237 t_key cindex;
91b9a277 1238
2373ce1c 1239 n = rcu_dereference(t->trie);
c877efb2 1240 if (!n)
345e9b54 1241 return -EAGAIN;
19baf839
RO
1242
1243#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1244 this_cpu_inc(stats->gets);
19baf839
RO
1245#endif
1246
adaf9816 1247 pn = n;
9f9e636d
AD
1248 cindex = 0;
1249
1250 /* Step 1: Travel to the longest prefix match in the trie */
1251 for (;;) {
71e8b67d 1252 index = get_index(key, n);
9f9e636d
AD
1253
1254 /* This bit of code is a bit tricky but it combines multiple
1255 * checks into a single check. The prefix consists of the
1256 * prefix plus zeros for the "bits" in the prefix. The index
1257 * is the difference between the key and this value. From
1258 * this we can actually derive several pieces of data.
71e8b67d 1259 * if (index >= (1ul << bits))
9f9e636d 1260 * we have a mismatch in skip bits and failed
b3832117
AD
1261 * else
1262 * we know the value is cindex
71e8b67d
AD
1263 *
1264 * This check is safe even if bits == KEYLENGTH due to the
1265 * fact that we can only allocate a node with 32 bits if a
1266 * long is greater than 32 bits.
9f9e636d 1267 */
71e8b67d 1268 if (index >= (1ul << n->bits))
9f9e636d 1269 break;
19baf839 1270
9f9e636d
AD
1271 /* we have found a leaf. Prefixes have already been compared */
1272 if (IS_LEAF(n))
a07f5f50 1273 goto found;
19baf839 1274
9f9e636d
AD
1275 /* only record pn and cindex if we are going to be chopping
1276 * bits later. Otherwise we are just wasting cycles.
91b9a277 1277 */
5405afd1 1278 if (n->slen > n->pos) {
9f9e636d
AD
1279 pn = n;
1280 cindex = index;
91b9a277 1281 }
19baf839 1282
21d1f11d 1283 n = tnode_get_child_rcu(n, index);
9f9e636d
AD
1284 if (unlikely(!n))
1285 goto backtrace;
1286 }
19baf839 1287
9f9e636d
AD
1288 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1289 for (;;) {
1290 /* record the pointer where our next node pointer is stored */
41b489fd 1291 struct tnode __rcu **cptr = n->tnode;
19baf839 1292
9f9e636d
AD
1293 /* This test verifies that none of the bits that differ
1294 * between the key and the prefix exist in the region of
1295 * the lsb and higher in the prefix.
91b9a277 1296 */
5405afd1 1297 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1298 goto backtrace;
91b9a277 1299
9f9e636d
AD
1300 /* exit out and process leaf */
1301 if (unlikely(IS_LEAF(n)))
1302 break;
91b9a277 1303
9f9e636d
AD
1304 /* Don't bother recording parent info. Since we are in
1305 * prefix match mode we will have to come back to wherever
1306 * we started this traversal anyway
91b9a277 1307 */
91b9a277 1308
9f9e636d 1309 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1310backtrace:
19baf839 1311#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1312 if (!n)
1313 this_cpu_inc(stats->null_node_hit);
19baf839 1314#endif
9f9e636d
AD
1315 /* If we are at cindex 0 there are no more bits for
1316 * us to strip at this level so we must ascend back
1317 * up one level to see if there are any more bits to
1318 * be stripped there.
1319 */
1320 while (!cindex) {
1321 t_key pkey = pn->key;
1322
1323 pn = node_parent_rcu(pn);
1324 if (unlikely(!pn))
345e9b54 1325 return -EAGAIN;
9f9e636d
AD
1326#ifdef CONFIG_IP_FIB_TRIE_STATS
1327 this_cpu_inc(stats->backtrack);
1328#endif
1329 /* Get Child's index */
1330 cindex = get_index(pkey, pn);
1331 }
1332
1333 /* strip the least significant bit from the cindex */
1334 cindex &= cindex - 1;
1335
1336 /* grab pointer for next child node */
41b489fd 1337 cptr = &pn->tnode[cindex];
c877efb2 1338 }
19baf839 1339 }
9f9e636d 1340
19baf839 1341found:
71e8b67d
AD
1342 /* this line carries forward the xor from earlier in the function */
1343 index = key ^ n->key;
1344
9f9e636d 1345 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1346 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1347 struct fib_info *fi = fa->fa_info;
1348 int nhsel, err;
345e9b54 1349
71e8b67d 1350 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1351 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1352 continue;
79e5ad2c
AD
1353 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1354 continue;
1355 if (fi->fib_dead)
1356 continue;
1357 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1358 continue;
1359 fib_alias_accessed(fa);
1360 err = fib_props[fa->fa_type].error;
1361 if (unlikely(err < 0)) {
345e9b54 1362#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1363 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1364#endif
79e5ad2c
AD
1365 return err;
1366 }
1367 if (fi->fib_flags & RTNH_F_DEAD)
1368 continue;
1369 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1370 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1371
1372 if (nh->nh_flags & RTNH_F_DEAD)
1373 continue;
1374 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1375 continue;
79e5ad2c
AD
1376
1377 if (!(fib_flags & FIB_LOOKUP_NOREF))
1378 atomic_inc(&fi->fib_clntref);
1379
1380 res->prefixlen = KEYLENGTH - fa->fa_slen;
1381 res->nh_sel = nhsel;
1382 res->type = fa->fa_type;
1383 res->scope = fi->fib_scope;
1384 res->fi = fi;
1385 res->table = tb;
1386 res->fa_head = &n->leaf;
345e9b54 1387#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1388 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1389#endif
79e5ad2c 1390 return err;
345e9b54 1391 }
9b6ebad5 1392 }
345e9b54 1393#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1394 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1395#endif
345e9b54 1396 goto backtrace;
19baf839 1397}
6fc01438 1398EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1399
d5d6487c
AD
1400static void fib_remove_alias(struct trie *t, struct tnode *tp,
1401 struct tnode *l, struct fib_alias *old)
1402{
1403 /* record the location of the previous list_info entry */
1404 struct hlist_node **pprev = old->fa_list.pprev;
1405 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1406
1407 /* remove the fib_alias from the list */
1408 hlist_del_rcu(&old->fa_list);
1409
1410 /* if we emptied the list this leaf will be freed and we can sort
1411 * out parent suffix lengths as a part of trie_rebalance
1412 */
1413 if (hlist_empty(&l->leaf)) {
1414 put_child_root(tp, t, l->key, NULL);
1415 node_free(l);
1416 trie_rebalance(t, tp);
1417 return;
1418 }
1419
1420 /* only access fa if it is pointing at the last valid hlist_node */
1421 if (*pprev)
1422 return;
1423
1424 /* update the trie with the latest suffix length */
1425 l->slen = fa->fa_slen;
1426 leaf_pull_suffix(tp, l);
1427}
1428
1429/* Caller must hold RTNL. */
16c6cf8b 1430int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1431{
1432 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1433 struct fib_alias *fa, *fa_to_delete;
d4a975e8 1434 struct tnode *l, *tp;
79e5ad2c 1435 u8 plen = cfg->fc_dst_len;
79e5ad2c 1436 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1437 u8 tos = cfg->fc_tos;
1438 u32 key;
91b9a277 1439
79e5ad2c 1440 if (plen > KEYLENGTH)
19baf839
RO
1441 return -EINVAL;
1442
4e902c57 1443 key = ntohl(cfg->fc_dst);
19baf839 1444
d4a975e8 1445 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1446 return -EINVAL;
1447
d4a975e8 1448 l = fib_find_node(t, &tp, key);
c877efb2 1449 if (!l)
19baf839
RO
1450 return -ESRCH;
1451
79e5ad2c 1452 fa = fib_find_alias(&l->leaf, slen, tos, 0);
19baf839
RO
1453 if (!fa)
1454 return -ESRCH;
1455
0c7770c7 1456 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1457
1458 fa_to_delete = NULL;
56315f9e 1459 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1460 struct fib_info *fi = fa->fa_info;
1461
79e5ad2c 1462 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
19baf839
RO
1463 break;
1464
4e902c57
TG
1465 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1466 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1467 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1468 (!cfg->fc_prefsrc ||
1469 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1470 (!cfg->fc_protocol ||
1471 fi->fib_protocol == cfg->fc_protocol) &&
1472 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1473 fa_to_delete = fa;
1474 break;
1475 }
1476 }
1477
91b9a277
OJ
1478 if (!fa_to_delete)
1479 return -ESRCH;
19baf839 1480
8e05fd71
SF
1481 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1482 cfg->fc_type, tb->tb_id);
1483
d5d6487c 1484 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1485 &cfg->fc_nlinfo, 0);
91b9a277 1486
21d8c49e
DM
1487 if (!plen)
1488 tb->tb_num_default--;
1489
d5d6487c 1490 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1491
d5d6487c 1492 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1493 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1494
d5d6487c
AD
1495 fib_release_info(fa_to_delete->fa_info);
1496 alias_free_mem_rcu(fa_to_delete);
91b9a277 1497 return 0;
19baf839
RO
1498}
1499
8be33e95
AD
1500/* Scan for the next leaf starting at the provided key value */
1501static struct tnode *leaf_walk_rcu(struct tnode **tn, t_key key)
19baf839 1502{
8be33e95
AD
1503 struct tnode *pn, *n = *tn;
1504 unsigned long cindex;
82cfbb00 1505
8be33e95
AD
1506 /* record parent node for backtracing */
1507 pn = n;
1508 cindex = n ? get_index(key, n) : 0;
82cfbb00 1509
8be33e95
AD
1510 /* this loop is meant to try and find the key in the trie */
1511 while (n) {
1512 unsigned long idx = get_index(key, n);
82cfbb00 1513
8be33e95
AD
1514 /* guarantee forward progress on the keys */
1515 if (IS_LEAF(n) && (n->key >= key))
1516 goto found;
1517 if (idx >= (1ul << n->bits))
1518 break;
82cfbb00 1519
8be33e95
AD
1520 /* record parent and next child index */
1521 pn = n;
1522 cindex = idx;
82cfbb00 1523
8be33e95
AD
1524 /* descend into the next child */
1525 n = tnode_get_child_rcu(pn, cindex++);
1526 }
82cfbb00 1527
8be33e95
AD
1528 /* this loop will search for the next leaf with a greater key */
1529 while (pn) {
1530 /* if we exhausted the parent node we will need to climb */
1531 if (cindex >= (1ul << pn->bits)) {
1532 t_key pkey = pn->key;
82cfbb00 1533
8be33e95
AD
1534 pn = node_parent_rcu(pn);
1535 if (!pn)
1536 break;
82cfbb00 1537
8be33e95
AD
1538 cindex = get_index(pkey, pn) + 1;
1539 continue;
1540 }
82cfbb00 1541
8be33e95
AD
1542 /* grab the next available node */
1543 n = tnode_get_child_rcu(pn, cindex++);
1544 if (!n)
1545 continue;
19baf839 1546
8be33e95
AD
1547 /* no need to compare keys since we bumped the index */
1548 if (IS_LEAF(n))
1549 goto found;
71d67e66 1550
8be33e95
AD
1551 /* Rescan start scanning in new node */
1552 pn = n;
1553 cindex = 0;
1554 }
ec28cf73 1555
8be33e95
AD
1556 *tn = pn;
1557 return NULL; /* Root of trie */
1558found:
1559 /* if we are at the limit for keys just return NULL for the tnode */
1560 *tn = (n->key == KEY_MAX) ? NULL : pn;
1561 return n;
71d67e66
SH
1562}
1563
104616e7
SF
1564/* Caller must hold RTNL */
1565void fib_table_flush_external(struct fib_table *tb)
1566{
1567 struct trie *t = (struct trie *)tb->tb_data;
1568 struct fib_alias *fa;
1569 struct tnode *n, *pn;
1570 unsigned long cindex;
104616e7
SF
1571
1572 n = rcu_dereference(t->trie);
1573 if (!n)
1574 return;
1575
1576 pn = NULL;
1577 cindex = 0;
1578
1579 while (IS_TNODE(n)) {
1580 /* record pn and cindex for leaf walking */
1581 pn = n;
1582 cindex = 1ul << n->bits;
1583backtrace:
1584 /* walk trie in reverse order */
1585 do {
1586 while (!(cindex--)) {
1587 t_key pkey = pn->key;
1588
1589 n = pn;
1590 pn = node_parent(n);
1591
1592 /* resize completed node */
1593 resize(t, n);
1594
1595 /* if we got the root we are done */
1596 if (!pn)
1597 return;
1598
1599 cindex = get_index(pkey, pn);
1600 }
1601
1602 /* grab the next available node */
1603 n = tnode_get_child(pn, cindex);
1604 } while (!n);
1605 }
1606
1607 hlist_for_each_entry(fa, &n->leaf, fa_list) {
1608 struct fib_info *fi = fa->fa_info;
1609
1610 if (fi && (fi->fib_flags & RTNH_F_EXTERNAL)) {
1611 netdev_switch_fib_ipv4_del(n->key,
1612 KEYLENGTH - fa->fa_slen,
1613 fi, fa->fa_tos,
1614 fa->fa_type, tb->tb_id);
1615 }
1616 }
1617
1618 /* if trie is leaf only loop is completed */
1619 if (pn)
1620 goto backtrace;
1621}
1622
8be33e95 1623/* Caller must hold RTNL. */
16c6cf8b 1624int fib_table_flush(struct fib_table *tb)
19baf839 1625{
7289e6dd
AD
1626 struct trie *t = (struct trie *)tb->tb_data;
1627 struct hlist_node *tmp;
1628 struct fib_alias *fa;
1629 struct tnode *n, *pn;
1630 unsigned long cindex;
1631 unsigned char slen;
82cfbb00 1632 int found = 0;
19baf839 1633
7289e6dd
AD
1634 n = rcu_dereference(t->trie);
1635 if (!n)
1636 goto flush_complete;
19baf839 1637
7289e6dd
AD
1638 pn = NULL;
1639 cindex = 0;
1640
1641 while (IS_TNODE(n)) {
1642 /* record pn and cindex for leaf walking */
1643 pn = n;
1644 cindex = 1ul << n->bits;
1645backtrace:
1646 /* walk trie in reverse order */
1647 do {
1648 while (!(cindex--)) {
1649 t_key pkey = pn->key;
1650
1651 n = pn;
1652 pn = node_parent(n);
1653
1654 /* resize completed node */
1655 resize(t, n);
1656
1657 /* if we got the root we are done */
1658 if (!pn)
1659 goto flush_complete;
1660
1661 cindex = get_index(pkey, pn);
1662 }
1663
1664 /* grab the next available node */
1665 n = tnode_get_child(pn, cindex);
1666 } while (!n);
1667 }
1668
1669 /* track slen in case any prefixes survive */
1670 slen = 0;
1671
1672 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1673 struct fib_info *fi = fa->fa_info;
1674
1675 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
8e05fd71
SF
1676 netdev_switch_fib_ipv4_del(n->key,
1677 KEYLENGTH - fa->fa_slen,
1678 fi, fa->fa_tos,
1679 fa->fa_type, tb->tb_id);
7289e6dd
AD
1680 hlist_del_rcu(&fa->fa_list);
1681 fib_release_info(fa->fa_info);
1682 alias_free_mem_rcu(fa);
1683 found++;
1684
1685 continue;
64c62723
AD
1686 }
1687
7289e6dd 1688 slen = fa->fa_slen;
19baf839
RO
1689 }
1690
7289e6dd
AD
1691 /* update leaf slen */
1692 n->slen = slen;
1693
1694 if (hlist_empty(&n->leaf)) {
1695 put_child_root(pn, t, n->key, NULL);
1696 node_free(n);
1697 } else {
d5d6487c 1698 leaf_pull_suffix(pn, n);
64c62723 1699 }
19baf839 1700
7289e6dd
AD
1701 /* if trie is leaf only loop is completed */
1702 if (pn)
1703 goto backtrace;
1704flush_complete:
0c7770c7 1705 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1706 return found;
1707}
1708
a7e53531 1709static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1710{
a7e53531 1711 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1712#ifdef CONFIG_IP_FIB_TRIE_STATS
1713 struct trie *t = (struct trie *)tb->tb_data;
1714
1715 free_percpu(t->stats);
1716#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1717 kfree(tb);
1718}
1719
a7e53531
AD
1720void fib_free_table(struct fib_table *tb)
1721{
1722 call_rcu(&tb->rcu, __trie_free_rcu);
1723}
1724
79e5ad2c
AD
1725static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
1726 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1727{
79e5ad2c 1728 __be32 xkey = htonl(l->key);
19baf839 1729 struct fib_alias *fa;
79e5ad2c 1730 int i, s_i;
19baf839 1731
79e5ad2c 1732 s_i = cb->args[4];
19baf839
RO
1733 i = 0;
1734
2373ce1c 1735 /* rcu_read_lock is hold by caller */
79e5ad2c 1736 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1737 if (i < s_i) {
1738 i++;
1739 continue;
1740 }
19baf839 1741
15e47304 1742 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1743 cb->nlh->nlmsg_seq,
1744 RTM_NEWROUTE,
1745 tb->tb_id,
1746 fa->fa_type,
be403ea1 1747 xkey,
9b6ebad5 1748 KEYLENGTH - fa->fa_slen,
19baf839 1749 fa->fa_tos,
64347f78 1750 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1751 cb->args[4] = i;
19baf839
RO
1752 return -1;
1753 }
a88ee229 1754 i++;
19baf839 1755 }
a88ee229 1756
71d67e66 1757 cb->args[4] = i;
19baf839
RO
1758 return skb->len;
1759}
1760
a7e53531 1761/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1762int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1763 struct netlink_callback *cb)
19baf839 1764{
8be33e95
AD
1765 struct trie *t = (struct trie *)tb->tb_data;
1766 struct tnode *l, *tp;
d5ce8a0e
SH
1767 /* Dump starting at last key.
1768 * Note: 0.0.0.0/0 (ie default) is first key.
1769 */
8be33e95
AD
1770 int count = cb->args[2];
1771 t_key key = cb->args[3];
a88ee229 1772
8be33e95
AD
1773 tp = rcu_dereference_rtnl(t->trie);
1774
1775 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1776 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1777 cb->args[3] = key;
1778 cb->args[2] = count;
a88ee229 1779 return -1;
19baf839 1780 }
d5ce8a0e 1781
71d67e66 1782 ++count;
8be33e95
AD
1783 key = l->key + 1;
1784
71d67e66
SH
1785 memset(&cb->args[4], 0,
1786 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1787
1788 /* stop loop if key wrapped back to 0 */
1789 if (key < l->key)
1790 break;
19baf839 1791 }
8be33e95 1792
8be33e95
AD
1793 cb->args[3] = key;
1794 cb->args[2] = count;
1795
19baf839 1796 return skb->len;
19baf839
RO
1797}
1798
5348ba85 1799void __init fib_trie_init(void)
7f9b8052 1800{
a07f5f50
SH
1801 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1802 sizeof(struct fib_alias),
bc3c8c1e
SH
1803 0, SLAB_PANIC, NULL);
1804
1805 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1806 LEAF_SIZE,
bc3c8c1e 1807 0, SLAB_PANIC, NULL);
7f9b8052 1808}
19baf839 1809
7f9b8052 1810
5348ba85 1811struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1812{
1813 struct fib_table *tb;
1814 struct trie *t;
1815
19baf839
RO
1816 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1817 GFP_KERNEL);
1818 if (tb == NULL)
1819 return NULL;
1820
1821 tb->tb_id = id;
971b893e 1822 tb->tb_default = -1;
21d8c49e 1823 tb->tb_num_default = 0;
19baf839
RO
1824
1825 t = (struct trie *) tb->tb_data;
8274a97a
AD
1826 RCU_INIT_POINTER(t->trie, NULL);
1827#ifdef CONFIG_IP_FIB_TRIE_STATS
1828 t->stats = alloc_percpu(struct trie_use_stats);
1829 if (!t->stats) {
1830 kfree(tb);
1831 tb = NULL;
1832 }
1833#endif
19baf839 1834
19baf839
RO
1835 return tb;
1836}
1837
cb7b593c
SH
1838#ifdef CONFIG_PROC_FS
1839/* Depth first Trie walk iterator */
1840struct fib_trie_iter {
1c340b2f 1841 struct seq_net_private p;
3d3b2d25 1842 struct fib_table *tb;
cb7b593c 1843 struct tnode *tnode;
a034ee3c
ED
1844 unsigned int index;
1845 unsigned int depth;
cb7b593c 1846};
19baf839 1847
adaf9816 1848static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1849{
98293e8d 1850 unsigned long cindex = iter->index;
cb7b593c 1851 struct tnode *tn = iter->tnode;
cb7b593c 1852 struct tnode *p;
19baf839 1853
6640e697
EB
1854 /* A single entry routing table */
1855 if (!tn)
1856 return NULL;
1857
cb7b593c
SH
1858 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1859 iter->tnode, iter->index, iter->depth);
1860rescan:
98293e8d 1861 while (cindex < tnode_child_length(tn)) {
adaf9816 1862 struct tnode *n = tnode_get_child_rcu(tn, cindex);
19baf839 1863
cb7b593c
SH
1864 if (n) {
1865 if (IS_LEAF(n)) {
1866 iter->tnode = tn;
1867 iter->index = cindex + 1;
1868 } else {
1869 /* push down one level */
adaf9816 1870 iter->tnode = n;
cb7b593c
SH
1871 iter->index = 0;
1872 ++iter->depth;
1873 }
1874 return n;
1875 }
19baf839 1876
cb7b593c
SH
1877 ++cindex;
1878 }
91b9a277 1879
cb7b593c 1880 /* Current node exhausted, pop back up */
adaf9816 1881 p = node_parent_rcu(tn);
cb7b593c 1882 if (p) {
e9b44019 1883 cindex = get_index(tn->key, p) + 1;
cb7b593c
SH
1884 tn = p;
1885 --iter->depth;
1886 goto rescan;
19baf839 1887 }
cb7b593c
SH
1888
1889 /* got root? */
1890 return NULL;
19baf839
RO
1891}
1892
adaf9816 1893static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 1894 struct trie *t)
19baf839 1895{
adaf9816 1896 struct tnode *n;
5ddf0eb2 1897
132adf54 1898 if (!t)
5ddf0eb2
RO
1899 return NULL;
1900
1901 n = rcu_dereference(t->trie);
3d3b2d25 1902 if (!n)
5ddf0eb2 1903 return NULL;
19baf839 1904
3d3b2d25 1905 if (IS_TNODE(n)) {
adaf9816 1906 iter->tnode = n;
3d3b2d25
SH
1907 iter->index = 0;
1908 iter->depth = 1;
1909 } else {
1910 iter->tnode = NULL;
1911 iter->index = 0;
1912 iter->depth = 0;
91b9a277 1913 }
3d3b2d25
SH
1914
1915 return n;
cb7b593c 1916}
91b9a277 1917
cb7b593c
SH
1918static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1919{
adaf9816 1920 struct tnode *n;
cb7b593c 1921 struct fib_trie_iter iter;
91b9a277 1922
cb7b593c 1923 memset(s, 0, sizeof(*s));
91b9a277 1924
cb7b593c 1925 rcu_read_lock();
3d3b2d25 1926 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 1927 if (IS_LEAF(n)) {
79e5ad2c 1928 struct fib_alias *fa;
93672292 1929
cb7b593c
SH
1930 s->leaves++;
1931 s->totdepth += iter.depth;
1932 if (iter.depth > s->maxdepth)
1933 s->maxdepth = iter.depth;
93672292 1934
79e5ad2c 1935 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 1936 ++s->prefixes;
cb7b593c 1937 } else {
cb7b593c 1938 s->tnodes++;
adaf9816
AD
1939 if (n->bits < MAX_STAT_DEPTH)
1940 s->nodesizes[n->bits]++;
30cfe7c9 1941 s->nullpointers += n->empty_children;
19baf839 1942 }
19baf839 1943 }
2373ce1c 1944 rcu_read_unlock();
19baf839
RO
1945}
1946
cb7b593c
SH
1947/*
1948 * This outputs /proc/net/fib_triestats
1949 */
1950static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 1951{
a034ee3c 1952 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 1953
cb7b593c
SH
1954 if (stat->leaves)
1955 avdepth = stat->totdepth*100 / stat->leaves;
1956 else
1957 avdepth = 0;
91b9a277 1958
a07f5f50
SH
1959 seq_printf(seq, "\tAver depth: %u.%02d\n",
1960 avdepth / 100, avdepth % 100);
cb7b593c 1961 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 1962
cb7b593c 1963 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 1964 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
1965
1966 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 1967 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 1968
187b5188 1969 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 1970 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 1971
06ef921d
RO
1972 max = MAX_STAT_DEPTH;
1973 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 1974 max--;
19baf839 1975
cb7b593c 1976 pointers = 0;
f585a991 1977 for (i = 1; i < max; i++)
cb7b593c 1978 if (stat->nodesizes[i] != 0) {
187b5188 1979 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
1980 pointers += (1<<i) * stat->nodesizes[i];
1981 }
1982 seq_putc(seq, '\n');
187b5188 1983 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 1984
adaf9816 1985 bytes += sizeof(struct tnode *) * pointers;
187b5188
SH
1986 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
1987 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 1988}
2373ce1c 1989
cb7b593c 1990#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 1991static void trie_show_usage(struct seq_file *seq,
8274a97a 1992 const struct trie_use_stats __percpu *stats)
66a2f7fd 1993{
8274a97a
AD
1994 struct trie_use_stats s = { 0 };
1995 int cpu;
1996
1997 /* loop through all of the CPUs and gather up the stats */
1998 for_each_possible_cpu(cpu) {
1999 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2000
2001 s.gets += pcpu->gets;
2002 s.backtrack += pcpu->backtrack;
2003 s.semantic_match_passed += pcpu->semantic_match_passed;
2004 s.semantic_match_miss += pcpu->semantic_match_miss;
2005 s.null_node_hit += pcpu->null_node_hit;
2006 s.resize_node_skipped += pcpu->resize_node_skipped;
2007 }
2008
66a2f7fd 2009 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2010 seq_printf(seq, "gets = %u\n", s.gets);
2011 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2012 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2013 s.semantic_match_passed);
2014 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2015 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2016 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2017}
66a2f7fd
SH
2018#endif /* CONFIG_IP_FIB_TRIE_STATS */
2019
3d3b2d25 2020static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2021{
3d3b2d25
SH
2022 if (tb->tb_id == RT_TABLE_LOCAL)
2023 seq_puts(seq, "Local:\n");
2024 else if (tb->tb_id == RT_TABLE_MAIN)
2025 seq_puts(seq, "Main:\n");
2026 else
2027 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2028}
19baf839 2029
3d3b2d25 2030
cb7b593c
SH
2031static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2032{
1c340b2f 2033 struct net *net = (struct net *)seq->private;
3d3b2d25 2034 unsigned int h;
877a9bff 2035
d717a9a6 2036 seq_printf(seq,
a07f5f50
SH
2037 "Basic info: size of leaf:"
2038 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2039 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2040
3d3b2d25
SH
2041 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2042 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2043 struct fib_table *tb;
2044
b67bfe0d 2045 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2046 struct trie *t = (struct trie *) tb->tb_data;
2047 struct trie_stat stat;
877a9bff 2048
3d3b2d25
SH
2049 if (!t)
2050 continue;
2051
2052 fib_table_print(seq, tb);
2053
2054 trie_collect_stats(t, &stat);
2055 trie_show_stats(seq, &stat);
2056#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2057 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2058#endif
2059 }
2060 }
19baf839 2061
cb7b593c 2062 return 0;
19baf839
RO
2063}
2064
cb7b593c 2065static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2066{
de05c557 2067 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2068}
2069
9a32144e 2070static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2071 .owner = THIS_MODULE,
2072 .open = fib_triestat_seq_open,
2073 .read = seq_read,
2074 .llseek = seq_lseek,
b6fcbdb4 2075 .release = single_release_net,
cb7b593c
SH
2076};
2077
adaf9816 2078static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2079{
1218854a
YH
2080 struct fib_trie_iter *iter = seq->private;
2081 struct net *net = seq_file_net(seq);
cb7b593c 2082 loff_t idx = 0;
3d3b2d25 2083 unsigned int h;
cb7b593c 2084
3d3b2d25
SH
2085 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2086 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2087 struct fib_table *tb;
cb7b593c 2088
b67bfe0d 2089 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
adaf9816 2090 struct tnode *n;
3d3b2d25
SH
2091
2092 for (n = fib_trie_get_first(iter,
2093 (struct trie *) tb->tb_data);
2094 n; n = fib_trie_get_next(iter))
2095 if (pos == idx++) {
2096 iter->tb = tb;
2097 return n;
2098 }
2099 }
cb7b593c 2100 }
3d3b2d25 2101
19baf839
RO
2102 return NULL;
2103}
2104
cb7b593c 2105static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2106 __acquires(RCU)
19baf839 2107{
cb7b593c 2108 rcu_read_lock();
1218854a 2109 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2110}
2111
cb7b593c 2112static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2113{
cb7b593c 2114 struct fib_trie_iter *iter = seq->private;
1218854a 2115 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2116 struct fib_table *tb = iter->tb;
2117 struct hlist_node *tb_node;
2118 unsigned int h;
adaf9816 2119 struct tnode *n;
cb7b593c 2120
19baf839 2121 ++*pos;
3d3b2d25
SH
2122 /* next node in same table */
2123 n = fib_trie_get_next(iter);
2124 if (n)
2125 return n;
19baf839 2126
3d3b2d25
SH
2127 /* walk rest of this hash chain */
2128 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2129 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2130 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2131 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2132 if (n)
2133 goto found;
2134 }
19baf839 2135
3d3b2d25
SH
2136 /* new hash chain */
2137 while (++h < FIB_TABLE_HASHSZ) {
2138 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2139 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2140 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2141 if (n)
2142 goto found;
2143 }
2144 }
cb7b593c 2145 return NULL;
3d3b2d25
SH
2146
2147found:
2148 iter->tb = tb;
2149 return n;
cb7b593c 2150}
19baf839 2151
cb7b593c 2152static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2153 __releases(RCU)
19baf839 2154{
cb7b593c
SH
2155 rcu_read_unlock();
2156}
91b9a277 2157
cb7b593c
SH
2158static void seq_indent(struct seq_file *seq, int n)
2159{
a034ee3c
ED
2160 while (n-- > 0)
2161 seq_puts(seq, " ");
cb7b593c 2162}
19baf839 2163
28d36e37 2164static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2165{
132adf54 2166 switch (s) {
cb7b593c
SH
2167 case RT_SCOPE_UNIVERSE: return "universe";
2168 case RT_SCOPE_SITE: return "site";
2169 case RT_SCOPE_LINK: return "link";
2170 case RT_SCOPE_HOST: return "host";
2171 case RT_SCOPE_NOWHERE: return "nowhere";
2172 default:
28d36e37 2173 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2174 return buf;
2175 }
2176}
19baf839 2177
36cbd3dc 2178static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2179 [RTN_UNSPEC] = "UNSPEC",
2180 [RTN_UNICAST] = "UNICAST",
2181 [RTN_LOCAL] = "LOCAL",
2182 [RTN_BROADCAST] = "BROADCAST",
2183 [RTN_ANYCAST] = "ANYCAST",
2184 [RTN_MULTICAST] = "MULTICAST",
2185 [RTN_BLACKHOLE] = "BLACKHOLE",
2186 [RTN_UNREACHABLE] = "UNREACHABLE",
2187 [RTN_PROHIBIT] = "PROHIBIT",
2188 [RTN_THROW] = "THROW",
2189 [RTN_NAT] = "NAT",
2190 [RTN_XRESOLVE] = "XRESOLVE",
2191};
19baf839 2192
a034ee3c 2193static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2194{
cb7b593c
SH
2195 if (t < __RTN_MAX && rtn_type_names[t])
2196 return rtn_type_names[t];
28d36e37 2197 snprintf(buf, len, "type %u", t);
cb7b593c 2198 return buf;
19baf839
RO
2199}
2200
cb7b593c
SH
2201/* Pretty print the trie */
2202static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2203{
cb7b593c 2204 const struct fib_trie_iter *iter = seq->private;
adaf9816 2205 struct tnode *n = v;
c877efb2 2206
3d3b2d25
SH
2207 if (!node_parent_rcu(n))
2208 fib_table_print(seq, iter->tb);
095b8501 2209
cb7b593c 2210 if (IS_TNODE(n)) {
adaf9816 2211 __be32 prf = htonl(n->key);
91b9a277 2212
e9b44019
AD
2213 seq_indent(seq, iter->depth-1);
2214 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2215 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2216 n->full_children, n->empty_children);
cb7b593c 2217 } else {
adaf9816 2218 __be32 val = htonl(n->key);
79e5ad2c 2219 struct fib_alias *fa;
cb7b593c
SH
2220
2221 seq_indent(seq, iter->depth);
673d57e7 2222 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2223
79e5ad2c
AD
2224 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2225 char buf1[32], buf2[32];
2226
2227 seq_indent(seq, iter->depth + 1);
2228 seq_printf(seq, " /%zu %s %s",
2229 KEYLENGTH - fa->fa_slen,
2230 rtn_scope(buf1, sizeof(buf1),
2231 fa->fa_info->fib_scope),
2232 rtn_type(buf2, sizeof(buf2),
2233 fa->fa_type));
2234 if (fa->fa_tos)
2235 seq_printf(seq, " tos=%d", fa->fa_tos);
2236 seq_putc(seq, '\n');
cb7b593c 2237 }
19baf839 2238 }
cb7b593c 2239
19baf839
RO
2240 return 0;
2241}
2242
f690808e 2243static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2244 .start = fib_trie_seq_start,
2245 .next = fib_trie_seq_next,
2246 .stop = fib_trie_seq_stop,
2247 .show = fib_trie_seq_show,
19baf839
RO
2248};
2249
cb7b593c 2250static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2251{
1c340b2f
DL
2252 return seq_open_net(inode, file, &fib_trie_seq_ops,
2253 sizeof(struct fib_trie_iter));
19baf839
RO
2254}
2255
9a32144e 2256static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2257 .owner = THIS_MODULE,
2258 .open = fib_trie_seq_open,
2259 .read = seq_read,
2260 .llseek = seq_lseek,
1c340b2f 2261 .release = seq_release_net,
19baf839
RO
2262};
2263
8315f5d8
SH
2264struct fib_route_iter {
2265 struct seq_net_private p;
8be33e95
AD
2266 struct fib_table *main_tb;
2267 struct tnode *tnode;
8315f5d8
SH
2268 loff_t pos;
2269 t_key key;
2270};
2271
adaf9816 2272static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
8315f5d8 2273{
8be33e95
AD
2274 struct fib_table *tb = iter->main_tb;
2275 struct tnode *l, **tp = &iter->tnode;
2276 struct trie *t;
2277 t_key key;
8315f5d8 2278
8be33e95
AD
2279 /* use cache location of next-to-find key */
2280 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2281 pos -= iter->pos;
8be33e95
AD
2282 key = iter->key;
2283 } else {
2284 t = (struct trie *)tb->tb_data;
2285 iter->tnode = rcu_dereference_rtnl(t->trie);
8315f5d8 2286 iter->pos = 0;
8be33e95 2287 key = 0;
8315f5d8
SH
2288 }
2289
8be33e95
AD
2290 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2291 key = l->key + 1;
8315f5d8 2292 iter->pos++;
8be33e95
AD
2293
2294 if (pos-- <= 0)
2295 break;
2296
2297 l = NULL;
2298
2299 /* handle unlikely case of a key wrap */
2300 if (!key)
2301 break;
8315f5d8
SH
2302 }
2303
2304 if (l)
8be33e95 2305 iter->key = key; /* remember it */
8315f5d8
SH
2306 else
2307 iter->pos = 0; /* forget it */
2308
2309 return l;
2310}
2311
2312static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2313 __acquires(RCU)
2314{
2315 struct fib_route_iter *iter = seq->private;
2316 struct fib_table *tb;
8be33e95 2317 struct trie *t;
8315f5d8
SH
2318
2319 rcu_read_lock();
8be33e95 2320
1218854a 2321 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2322 if (!tb)
2323 return NULL;
2324
8be33e95
AD
2325 iter->main_tb = tb;
2326
2327 if (*pos != 0)
2328 return fib_route_get_idx(iter, *pos);
2329
2330 t = (struct trie *)tb->tb_data;
2331 iter->tnode = rcu_dereference_rtnl(t->trie);
2332 iter->pos = 0;
2333 iter->key = 0;
2334
2335 return SEQ_START_TOKEN;
8315f5d8
SH
2336}
2337
2338static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2339{
2340 struct fib_route_iter *iter = seq->private;
8be33e95
AD
2341 struct tnode *l = NULL;
2342 t_key key = iter->key;
8315f5d8
SH
2343
2344 ++*pos;
8be33e95
AD
2345
2346 /* only allow key of 0 for start of sequence */
2347 if ((v == SEQ_START_TOKEN) || key)
2348 l = leaf_walk_rcu(&iter->tnode, key);
2349
2350 if (l) {
2351 iter->key = l->key + 1;
8315f5d8 2352 iter->pos++;
8be33e95
AD
2353 } else {
2354 iter->pos = 0;
8315f5d8
SH
2355 }
2356
8315f5d8
SH
2357 return l;
2358}
2359
2360static void fib_route_seq_stop(struct seq_file *seq, void *v)
2361 __releases(RCU)
2362{
2363 rcu_read_unlock();
2364}
2365
a034ee3c 2366static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2367{
a034ee3c 2368 unsigned int flags = 0;
19baf839 2369
a034ee3c
ED
2370 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2371 flags = RTF_REJECT;
cb7b593c
SH
2372 if (fi && fi->fib_nh->nh_gw)
2373 flags |= RTF_GATEWAY;
32ab5f80 2374 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2375 flags |= RTF_HOST;
2376 flags |= RTF_UP;
2377 return flags;
19baf839
RO
2378}
2379
cb7b593c
SH
2380/*
2381 * This outputs /proc/net/route.
2382 * The format of the file is not supposed to be changed
a034ee3c 2383 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2384 * legacy utilities
2385 */
2386static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2387{
79e5ad2c 2388 struct fib_alias *fa;
adaf9816 2389 struct tnode *l = v;
9b6ebad5 2390 __be32 prefix;
19baf839 2391
cb7b593c
SH
2392 if (v == SEQ_START_TOKEN) {
2393 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2394 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2395 "\tWindow\tIRTT");
2396 return 0;
2397 }
19baf839 2398
9b6ebad5
AD
2399 prefix = htonl(l->key);
2400
79e5ad2c
AD
2401 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2402 const struct fib_info *fi = fa->fa_info;
2403 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2404 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2405
79e5ad2c
AD
2406 if ((fa->fa_type == RTN_BROADCAST) ||
2407 (fa->fa_type == RTN_MULTICAST))
2408 continue;
19baf839 2409
79e5ad2c
AD
2410 seq_setwidth(seq, 127);
2411
2412 if (fi)
2413 seq_printf(seq,
2414 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2415 "%d\t%08X\t%d\t%u\t%u",
2416 fi->fib_dev ? fi->fib_dev->name : "*",
2417 prefix,
2418 fi->fib_nh->nh_gw, flags, 0, 0,
2419 fi->fib_priority,
2420 mask,
2421 (fi->fib_advmss ?
2422 fi->fib_advmss + 40 : 0),
2423 fi->fib_window,
2424 fi->fib_rtt >> 3);
2425 else
2426 seq_printf(seq,
2427 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2428 "%d\t%08X\t%d\t%u\t%u",
2429 prefix, 0, flags, 0, 0, 0,
2430 mask, 0, 0, 0);
19baf839 2431
79e5ad2c 2432 seq_pad(seq, '\n');
19baf839
RO
2433 }
2434
2435 return 0;
2436}
2437
f690808e 2438static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2439 .start = fib_route_seq_start,
2440 .next = fib_route_seq_next,
2441 .stop = fib_route_seq_stop,
cb7b593c 2442 .show = fib_route_seq_show,
19baf839
RO
2443};
2444
cb7b593c 2445static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2446{
1c340b2f 2447 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2448 sizeof(struct fib_route_iter));
19baf839
RO
2449}
2450
9a32144e 2451static const struct file_operations fib_route_fops = {
cb7b593c
SH
2452 .owner = THIS_MODULE,
2453 .open = fib_route_seq_open,
2454 .read = seq_read,
2455 .llseek = seq_lseek,
1c340b2f 2456 .release = seq_release_net,
19baf839
RO
2457};
2458
61a02653 2459int __net_init fib_proc_init(struct net *net)
19baf839 2460{
d4beaa66 2461 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2462 goto out1;
2463
d4beaa66
G
2464 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2465 &fib_triestat_fops))
cb7b593c
SH
2466 goto out2;
2467
d4beaa66 2468 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2469 goto out3;
2470
19baf839 2471 return 0;
cb7b593c
SH
2472
2473out3:
ece31ffd 2474 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2475out2:
ece31ffd 2476 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2477out1:
2478 return -ENOMEM;
19baf839
RO
2479}
2480
61a02653 2481void __net_exit fib_proc_exit(struct net *net)
19baf839 2482{
ece31ffd
G
2483 remove_proc_entry("fib_trie", net->proc_net);
2484 remove_proc_entry("fib_triestat", net->proc_net);
2485 remove_proc_entry("route", net->proc_net);
19baf839
RO
2486}
2487
2488#endif /* CONFIG_PROC_FS */
This page took 1.05586 seconds and 5 git commands to generate.