net/ethernet: ks8851_mll mac address configuration support added
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
70c71606 74#include <linux/prefetch.h>
bc3b2d7f 75#include <linux/export.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
19baf839 87#define KEYLENGTH (8*sizeof(t_key))
19baf839 88
19baf839
RO
89typedef unsigned int t_key;
90
91#define T_TNODE 0
92#define T_LEAF 1
93#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
94#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
91b9a277
OJ
96#define IS_TNODE(n) (!(n->parent & T_LEAF))
97#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839 98
b299e4f0 99struct rt_trie_node {
91b9a277 100 unsigned long parent;
8d965444 101 t_key key;
19baf839
RO
102};
103
104struct leaf {
91b9a277 105 unsigned long parent;
8d965444 106 t_key key;
19baf839 107 struct hlist_head list;
2373ce1c 108 struct rcu_head rcu;
19baf839
RO
109};
110
111struct leaf_info {
112 struct hlist_node hlist;
113 int plen;
5c74501f 114 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
19baf839 115 struct list_head falh;
5c74501f 116 struct rcu_head rcu;
19baf839
RO
117};
118
119struct tnode {
91b9a277 120 unsigned long parent;
8d965444 121 t_key key;
112d8cfc
ED
122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
124 unsigned int full_children; /* KEYLENGTH bits needed */
125 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
126 union {
127 struct rcu_head rcu;
128 struct work_struct work;
e0f7cb8c 129 struct tnode *tnode_free;
15be75cd 130 };
0a5c0475 131 struct rt_trie_node __rcu *child[0];
19baf839
RO
132};
133
134#ifdef CONFIG_IP_FIB_TRIE_STATS
135struct trie_use_stats {
136 unsigned int gets;
137 unsigned int backtrack;
138 unsigned int semantic_match_passed;
139 unsigned int semantic_match_miss;
140 unsigned int null_node_hit;
2f36895a 141 unsigned int resize_node_skipped;
19baf839
RO
142};
143#endif
144
145struct trie_stat {
146 unsigned int totdepth;
147 unsigned int maxdepth;
148 unsigned int tnodes;
149 unsigned int leaves;
150 unsigned int nullpointers;
93672292 151 unsigned int prefixes;
06ef921d 152 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 153};
19baf839
RO
154
155struct trie {
0a5c0475 156 struct rt_trie_node __rcu *trie;
19baf839
RO
157#ifdef CONFIG_IP_FIB_TRIE_STATS
158 struct trie_use_stats stats;
159#endif
19baf839
RO
160};
161
b299e4f0
DM
162static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
163static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 164 int wasfull);
b299e4f0 165static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
166static struct tnode *inflate(struct trie *t, struct tnode *tn);
167static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
168/* tnodes to free after resize(); protected by RTNL */
169static struct tnode *tnode_free_head;
c3059477
JP
170static size_t tnode_free_size;
171
172/*
173 * synchronize_rcu after call_rcu for that many pages; it should be especially
174 * useful before resizing the root node with PREEMPT_NONE configs; the value was
175 * obtained experimentally, aiming to avoid visible slowdown.
176 */
177static const int sync_pages = 128;
19baf839 178
e18b890b 179static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 180static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 181
0a5c0475
ED
182/*
183 * caller must hold RTNL
184 */
185static inline struct tnode *node_parent(const struct rt_trie_node *node)
06801916 186{
0a5c0475
ED
187 unsigned long parent;
188
189 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
190
191 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
b59cfbf7
ED
192}
193
0a5c0475
ED
194/*
195 * caller must hold RCU read lock or RTNL
196 */
197static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
b59cfbf7 198{
0a5c0475
ED
199 unsigned long parent;
200
201 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
202 lockdep_rtnl_is_held());
06801916 203
0a5c0475 204 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
06801916
SH
205}
206
cf778b00 207/* Same as rcu_assign_pointer
6440cc9e
SH
208 * but that macro() assumes that value is a pointer.
209 */
b299e4f0 210static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
06801916 211{
6440cc9e
SH
212 smp_wmb();
213 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 214}
2373ce1c 215
0a5c0475
ED
216/*
217 * caller must hold RTNL
218 */
219static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
b59cfbf7
ED
220{
221 BUG_ON(i >= 1U << tn->bits);
2373ce1c 222
0a5c0475 223 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
224}
225
0a5c0475
ED
226/*
227 * caller must hold RCU read lock or RTNL
228 */
229static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
19baf839 230{
0a5c0475 231 BUG_ON(i >= 1U << tn->bits);
19baf839 232
0a5c0475 233 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
234}
235
bb435b8d 236static inline int tnode_child_length(const struct tnode *tn)
19baf839 237{
91b9a277 238 return 1 << tn->bits;
19baf839
RO
239}
240
3b004569 241static inline t_key mask_pfx(t_key k, unsigned int l)
ab66b4a7
SH
242{
243 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
244}
245
3b004569 246static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
19baf839 247{
91b9a277 248 if (offset < KEYLENGTH)
19baf839 249 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 250 else
19baf839
RO
251 return 0;
252}
253
254static inline int tkey_equals(t_key a, t_key b)
255{
c877efb2 256 return a == b;
19baf839
RO
257}
258
259static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
260{
c877efb2
SH
261 if (bits == 0 || offset >= KEYLENGTH)
262 return 1;
91b9a277
OJ
263 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
264 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 265}
19baf839
RO
266
267static inline int tkey_mismatch(t_key a, int offset, t_key b)
268{
269 t_key diff = a ^ b;
270 int i = offset;
271
c877efb2
SH
272 if (!diff)
273 return 0;
274 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
275 i++;
276 return i;
277}
278
19baf839 279/*
e905a9ed
YH
280 To understand this stuff, an understanding of keys and all their bits is
281 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
282 all of the bits in that key are significant.
283
284 Consider a node 'n' and its parent 'tp'.
285
e905a9ed
YH
286 If n is a leaf, every bit in its key is significant. Its presence is
287 necessitated by path compression, since during a tree traversal (when
288 searching for a leaf - unless we are doing an insertion) we will completely
289 ignore all skipped bits we encounter. Thus we need to verify, at the end of
290 a potentially successful search, that we have indeed been walking the
19baf839
RO
291 correct key path.
292
e905a9ed
YH
293 Note that we can never "miss" the correct key in the tree if present by
294 following the wrong path. Path compression ensures that segments of the key
295 that are the same for all keys with a given prefix are skipped, but the
296 skipped part *is* identical for each node in the subtrie below the skipped
297 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
298 call to tkey_sub_equals() in trie_insert().
299
e905a9ed 300 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
301 have many different meanings.
302
e905a9ed 303 Example:
19baf839
RO
304 _________________________________________________________________
305 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
306 -----------------------------------------------------------------
e905a9ed 307 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
308
309 _________________________________________________________________
310 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
311 -----------------------------------------------------------------
312 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
313
314 tp->pos = 7
315 tp->bits = 3
316 n->pos = 15
91b9a277 317 n->bits = 4
19baf839 318
e905a9ed
YH
319 First, let's just ignore the bits that come before the parent tp, that is
320 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
321 not use them for anything.
322
323 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 324 index into the parent's child array. That is, they will be used to find
19baf839
RO
325 'n' among tp's children.
326
327 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
328 for the node n.
329
e905a9ed 330 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
331 of the bits are really not needed or indeed known in n->key.
332
e905a9ed 333 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 334 n's child array, and will of course be different for each child.
e905a9ed 335
c877efb2 336
19baf839
RO
337 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
338 at this point.
339
340*/
341
0c7770c7 342static inline void check_tnode(const struct tnode *tn)
19baf839 343{
0c7770c7 344 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
345}
346
f5026fab
DL
347static const int halve_threshold = 25;
348static const int inflate_threshold = 50;
345aa031 349static const int halve_threshold_root = 15;
80b71b80 350static const int inflate_threshold_root = 30;
2373ce1c
RO
351
352static void __alias_free_mem(struct rcu_head *head)
19baf839 353{
2373ce1c
RO
354 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
355 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
356}
357
2373ce1c 358static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 359{
2373ce1c
RO
360 call_rcu(&fa->rcu, __alias_free_mem);
361}
91b9a277 362
2373ce1c
RO
363static void __leaf_free_rcu(struct rcu_head *head)
364{
bc3c8c1e
SH
365 struct leaf *l = container_of(head, struct leaf, rcu);
366 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 367}
91b9a277 368
387a5487
SH
369static inline void free_leaf(struct leaf *l)
370{
371 call_rcu_bh(&l->rcu, __leaf_free_rcu);
372}
373
2373ce1c 374static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 375{
bceb0f45 376 kfree_rcu(leaf, rcu);
19baf839
RO
377}
378
8d965444 379static struct tnode *tnode_alloc(size_t size)
f0e36f8c 380{
2373ce1c 381 if (size <= PAGE_SIZE)
8d965444 382 return kzalloc(size, GFP_KERNEL);
15be75cd 383 else
7a1c8e5a 384 return vzalloc(size);
15be75cd 385}
2373ce1c 386
15be75cd
SH
387static void __tnode_vfree(struct work_struct *arg)
388{
389 struct tnode *tn = container_of(arg, struct tnode, work);
390 vfree(tn);
f0e36f8c
PM
391}
392
2373ce1c 393static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 394{
2373ce1c 395 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444 396 size_t size = sizeof(struct tnode) +
b299e4f0 397 (sizeof(struct rt_trie_node *) << tn->bits);
f0e36f8c
PM
398
399 if (size <= PAGE_SIZE)
400 kfree(tn);
15be75cd
SH
401 else {
402 INIT_WORK(&tn->work, __tnode_vfree);
403 schedule_work(&tn->work);
404 }
f0e36f8c
PM
405}
406
2373ce1c
RO
407static inline void tnode_free(struct tnode *tn)
408{
387a5487
SH
409 if (IS_LEAF(tn))
410 free_leaf((struct leaf *) tn);
411 else
550e29bc 412 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
413}
414
e0f7cb8c
JP
415static void tnode_free_safe(struct tnode *tn)
416{
417 BUG_ON(IS_LEAF(tn));
7b85576d
JP
418 tn->tnode_free = tnode_free_head;
419 tnode_free_head = tn;
c3059477 420 tnode_free_size += sizeof(struct tnode) +
b299e4f0 421 (sizeof(struct rt_trie_node *) << tn->bits);
e0f7cb8c
JP
422}
423
424static void tnode_free_flush(void)
425{
426 struct tnode *tn;
427
428 while ((tn = tnode_free_head)) {
429 tnode_free_head = tn->tnode_free;
430 tn->tnode_free = NULL;
431 tnode_free(tn);
432 }
c3059477
JP
433
434 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
435 tnode_free_size = 0;
436 synchronize_rcu();
437 }
e0f7cb8c
JP
438}
439
2373ce1c
RO
440static struct leaf *leaf_new(void)
441{
bc3c8c1e 442 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
443 if (l) {
444 l->parent = T_LEAF;
445 INIT_HLIST_HEAD(&l->list);
446 }
447 return l;
448}
449
450static struct leaf_info *leaf_info_new(int plen)
451{
452 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
453 if (li) {
454 li->plen = plen;
5c74501f 455 li->mask_plen = ntohl(inet_make_mask(plen));
2373ce1c
RO
456 INIT_LIST_HEAD(&li->falh);
457 }
458 return li;
459}
460
a07f5f50 461static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 462{
b299e4f0 463 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
f0e36f8c 464 struct tnode *tn = tnode_alloc(sz);
19baf839 465
91b9a277 466 if (tn) {
2373ce1c 467 tn->parent = T_TNODE;
19baf839
RO
468 tn->pos = pos;
469 tn->bits = bits;
470 tn->key = key;
471 tn->full_children = 0;
472 tn->empty_children = 1<<bits;
473 }
c877efb2 474
a034ee3c 475 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
b299e4f0 476 sizeof(struct rt_trie_node) << bits);
19baf839
RO
477 return tn;
478}
479
19baf839
RO
480/*
481 * Check whether a tnode 'n' is "full", i.e. it is an internal node
482 * and no bits are skipped. See discussion in dyntree paper p. 6
483 */
484
b299e4f0 485static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
19baf839 486{
c877efb2 487 if (n == NULL || IS_LEAF(n))
19baf839
RO
488 return 0;
489
490 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
491}
492
a07f5f50 493static inline void put_child(struct trie *t, struct tnode *tn, int i,
b299e4f0 494 struct rt_trie_node *n)
19baf839
RO
495{
496 tnode_put_child_reorg(tn, i, n, -1);
497}
498
c877efb2 499 /*
19baf839
RO
500 * Add a child at position i overwriting the old value.
501 * Update the value of full_children and empty_children.
502 */
503
b299e4f0 504static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 505 int wasfull)
19baf839 506{
0a5c0475 507 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
19baf839
RO
508 int isfull;
509
0c7770c7
SH
510 BUG_ON(i >= 1<<tn->bits);
511
19baf839
RO
512 /* update emptyChildren */
513 if (n == NULL && chi != NULL)
514 tn->empty_children++;
515 else if (n != NULL && chi == NULL)
516 tn->empty_children--;
c877efb2 517
19baf839 518 /* update fullChildren */
91b9a277 519 if (wasfull == -1)
19baf839
RO
520 wasfull = tnode_full(tn, chi);
521
522 isfull = tnode_full(tn, n);
c877efb2 523 if (wasfull && !isfull)
19baf839 524 tn->full_children--;
c877efb2 525 else if (!wasfull && isfull)
19baf839 526 tn->full_children++;
91b9a277 527
c877efb2 528 if (n)
06801916 529 node_set_parent(n, tn);
19baf839 530
cf778b00 531 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
532}
533
80b71b80 534#define MAX_WORK 10
b299e4f0 535static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
536{
537 int i;
2f80b3c8 538 struct tnode *old_tn;
e6308be8
RO
539 int inflate_threshold_use;
540 int halve_threshold_use;
80b71b80 541 int max_work;
19baf839 542
e905a9ed 543 if (!tn)
19baf839
RO
544 return NULL;
545
0c7770c7
SH
546 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
547 tn, inflate_threshold, halve_threshold);
19baf839
RO
548
549 /* No children */
550 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 551 tnode_free_safe(tn);
19baf839
RO
552 return NULL;
553 }
554 /* One child */
555 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 556 goto one_child;
c877efb2 557 /*
19baf839
RO
558 * Double as long as the resulting node has a number of
559 * nonempty nodes that are above the threshold.
560 */
561
562 /*
c877efb2
SH
563 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
564 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 565 * Telecommunications, page 6:
c877efb2 566 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
567 * children in the *doubled* node is at least 'high'."
568 *
c877efb2
SH
569 * 'high' in this instance is the variable 'inflate_threshold'. It
570 * is expressed as a percentage, so we multiply it with
571 * tnode_child_length() and instead of multiplying by 2 (since the
572 * child array will be doubled by inflate()) and multiplying
573 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 574 * multiply the left-hand side by 50.
c877efb2
SH
575 *
576 * The left-hand side may look a bit weird: tnode_child_length(tn)
577 * - tn->empty_children is of course the number of non-null children
578 * in the current node. tn->full_children is the number of "full"
19baf839 579 * children, that is non-null tnodes with a skip value of 0.
c877efb2 580 * All of those will be doubled in the resulting inflated tnode, so
19baf839 581 * we just count them one extra time here.
c877efb2 582 *
19baf839 583 * A clearer way to write this would be:
c877efb2 584 *
19baf839 585 * to_be_doubled = tn->full_children;
c877efb2 586 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
587 * tn->full_children;
588 *
589 * new_child_length = tnode_child_length(tn) * 2;
590 *
c877efb2 591 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
592 * new_child_length;
593 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
594 *
595 * ...and so on, tho it would mess up the while () loop.
596 *
19baf839
RO
597 * anyway,
598 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
599 * inflate_threshold
c877efb2 600 *
19baf839
RO
601 * avoid a division:
602 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
603 * inflate_threshold * new_child_length
c877efb2 604 *
19baf839 605 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 606 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 607 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 608 *
19baf839 609 * expand new_child_length:
c877efb2 610 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 611 * tn->full_children) >=
19baf839 612 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 613 *
19baf839 614 * shorten again:
c877efb2 615 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 616 * tn->empty_children) >= inflate_threshold *
19baf839 617 * tnode_child_length(tn)
c877efb2 618 *
19baf839
RO
619 */
620
621 check_tnode(tn);
c877efb2 622
e6308be8
RO
623 /* Keep root node larger */
624
b299e4f0 625 if (!node_parent((struct rt_trie_node *)tn)) {
80b71b80
JL
626 inflate_threshold_use = inflate_threshold_root;
627 halve_threshold_use = halve_threshold_root;
a034ee3c 628 } else {
e6308be8 629 inflate_threshold_use = inflate_threshold;
80b71b80
JL
630 halve_threshold_use = halve_threshold;
631 }
e6308be8 632
80b71b80
JL
633 max_work = MAX_WORK;
634 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
635 50 * (tn->full_children + tnode_child_length(tn)
636 - tn->empty_children)
637 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 638
2f80b3c8
RO
639 old_tn = tn;
640 tn = inflate(t, tn);
a07f5f50 641
2f80b3c8
RO
642 if (IS_ERR(tn)) {
643 tn = old_tn;
2f36895a
RO
644#ifdef CONFIG_IP_FIB_TRIE_STATS
645 t->stats.resize_node_skipped++;
646#endif
647 break;
648 }
19baf839
RO
649 }
650
651 check_tnode(tn);
652
80b71b80 653 /* Return if at least one inflate is run */
a034ee3c 654 if (max_work != MAX_WORK)
b299e4f0 655 return (struct rt_trie_node *) tn;
80b71b80 656
19baf839
RO
657 /*
658 * Halve as long as the number of empty children in this
659 * node is above threshold.
660 */
2f36895a 661
80b71b80
JL
662 max_work = MAX_WORK;
663 while (tn->bits > 1 && max_work-- &&
19baf839 664 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 665 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 666
2f80b3c8
RO
667 old_tn = tn;
668 tn = halve(t, tn);
669 if (IS_ERR(tn)) {
670 tn = old_tn;
2f36895a
RO
671#ifdef CONFIG_IP_FIB_TRIE_STATS
672 t->stats.resize_node_skipped++;
673#endif
674 break;
675 }
676 }
19baf839 677
c877efb2 678
19baf839 679 /* Only one child remains */
80b71b80
JL
680 if (tn->empty_children == tnode_child_length(tn) - 1) {
681one_child:
19baf839 682 for (i = 0; i < tnode_child_length(tn); i++) {
b299e4f0 683 struct rt_trie_node *n;
19baf839 684
0a5c0475 685 n = rtnl_dereference(tn->child[i]);
2373ce1c 686 if (!n)
91b9a277 687 continue;
91b9a277
OJ
688
689 /* compress one level */
690
06801916 691 node_set_parent(n, NULL);
e0f7cb8c 692 tnode_free_safe(tn);
91b9a277 693 return n;
19baf839 694 }
80b71b80 695 }
b299e4f0 696 return (struct rt_trie_node *) tn;
19baf839
RO
697}
698
0a5c0475
ED
699
700static void tnode_clean_free(struct tnode *tn)
701{
702 int i;
703 struct tnode *tofree;
704
705 for (i = 0; i < tnode_child_length(tn); i++) {
706 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
707 if (tofree)
708 tnode_free(tofree);
709 }
710 tnode_free(tn);
711}
712
2f80b3c8 713static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 714{
19baf839
RO
715 struct tnode *oldtnode = tn;
716 int olen = tnode_child_length(tn);
717 int i;
718
0c7770c7 719 pr_debug("In inflate\n");
19baf839
RO
720
721 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
722
0c7770c7 723 if (!tn)
2f80b3c8 724 return ERR_PTR(-ENOMEM);
2f36895a
RO
725
726 /*
c877efb2
SH
727 * Preallocate and store tnodes before the actual work so we
728 * don't get into an inconsistent state if memory allocation
729 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
730 * of tnode is ignored.
731 */
91b9a277
OJ
732
733 for (i = 0; i < olen; i++) {
a07f5f50 734 struct tnode *inode;
2f36895a 735
a07f5f50 736 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
737 if (inode &&
738 IS_TNODE(inode) &&
739 inode->pos == oldtnode->pos + oldtnode->bits &&
740 inode->bits > 1) {
741 struct tnode *left, *right;
ab66b4a7 742 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 743
2f36895a
RO
744 left = tnode_new(inode->key&(~m), inode->pos + 1,
745 inode->bits - 1);
2f80b3c8
RO
746 if (!left)
747 goto nomem;
91b9a277 748
2f36895a
RO
749 right = tnode_new(inode->key|m, inode->pos + 1,
750 inode->bits - 1);
751
e905a9ed 752 if (!right) {
2f80b3c8
RO
753 tnode_free(left);
754 goto nomem;
e905a9ed 755 }
2f36895a 756
b299e4f0
DM
757 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
758 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
2f36895a
RO
759 }
760 }
761
91b9a277 762 for (i = 0; i < olen; i++) {
c95aaf9a 763 struct tnode *inode;
b299e4f0 764 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
765 struct tnode *left, *right;
766 int size, j;
c877efb2 767
19baf839
RO
768 /* An empty child */
769 if (node == NULL)
770 continue;
771
772 /* A leaf or an internal node with skipped bits */
773
c877efb2 774 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 775 tn->pos + tn->bits - 1) {
a07f5f50
SH
776 if (tkey_extract_bits(node->key,
777 oldtnode->pos + oldtnode->bits,
778 1) == 0)
19baf839
RO
779 put_child(t, tn, 2*i, node);
780 else
781 put_child(t, tn, 2*i+1, node);
782 continue;
783 }
784
785 /* An internal node with two children */
786 inode = (struct tnode *) node;
787
788 if (inode->bits == 1) {
0a5c0475
ED
789 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
790 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
19baf839 791
e0f7cb8c 792 tnode_free_safe(inode);
91b9a277 793 continue;
19baf839
RO
794 }
795
91b9a277
OJ
796 /* An internal node with more than two children */
797
798 /* We will replace this node 'inode' with two new
799 * ones, 'left' and 'right', each with half of the
800 * original children. The two new nodes will have
801 * a position one bit further down the key and this
802 * means that the "significant" part of their keys
803 * (see the discussion near the top of this file)
804 * will differ by one bit, which will be "0" in
805 * left's key and "1" in right's key. Since we are
806 * moving the key position by one step, the bit that
807 * we are moving away from - the bit at position
808 * (inode->pos) - is the one that will differ between
809 * left and right. So... we synthesize that bit in the
810 * two new keys.
811 * The mask 'm' below will be a single "one" bit at
812 * the position (inode->pos)
813 */
19baf839 814
91b9a277
OJ
815 /* Use the old key, but set the new significant
816 * bit to zero.
817 */
2f36895a 818
91b9a277
OJ
819 left = (struct tnode *) tnode_get_child(tn, 2*i);
820 put_child(t, tn, 2*i, NULL);
2f36895a 821
91b9a277 822 BUG_ON(!left);
2f36895a 823
91b9a277
OJ
824 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
825 put_child(t, tn, 2*i+1, NULL);
19baf839 826
91b9a277 827 BUG_ON(!right);
19baf839 828
91b9a277
OJ
829 size = tnode_child_length(left);
830 for (j = 0; j < size; j++) {
0a5c0475
ED
831 put_child(t, left, j, rtnl_dereference(inode->child[j]));
832 put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
19baf839 833 }
91b9a277
OJ
834 put_child(t, tn, 2*i, resize(t, left));
835 put_child(t, tn, 2*i+1, resize(t, right));
836
e0f7cb8c 837 tnode_free_safe(inode);
19baf839 838 }
e0f7cb8c 839 tnode_free_safe(oldtnode);
19baf839 840 return tn;
2f80b3c8 841nomem:
0a5c0475
ED
842 tnode_clean_free(tn);
843 return ERR_PTR(-ENOMEM);
19baf839
RO
844}
845
2f80b3c8 846static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
847{
848 struct tnode *oldtnode = tn;
b299e4f0 849 struct rt_trie_node *left, *right;
19baf839
RO
850 int i;
851 int olen = tnode_child_length(tn);
852
0c7770c7 853 pr_debug("In halve\n");
c877efb2
SH
854
855 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 856
2f80b3c8
RO
857 if (!tn)
858 return ERR_PTR(-ENOMEM);
2f36895a
RO
859
860 /*
c877efb2
SH
861 * Preallocate and store tnodes before the actual work so we
862 * don't get into an inconsistent state if memory allocation
863 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
864 * of tnode is ignored.
865 */
866
91b9a277 867 for (i = 0; i < olen; i += 2) {
2f36895a
RO
868 left = tnode_get_child(oldtnode, i);
869 right = tnode_get_child(oldtnode, i+1);
c877efb2 870
2f36895a 871 /* Two nonempty children */
0c7770c7 872 if (left && right) {
2f80b3c8 873 struct tnode *newn;
0c7770c7 874
2f80b3c8 875 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
876
877 if (!newn)
2f80b3c8 878 goto nomem;
0c7770c7 879
b299e4f0 880 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
2f36895a 881 }
2f36895a 882
2f36895a 883 }
19baf839 884
91b9a277
OJ
885 for (i = 0; i < olen; i += 2) {
886 struct tnode *newBinNode;
887
19baf839
RO
888 left = tnode_get_child(oldtnode, i);
889 right = tnode_get_child(oldtnode, i+1);
c877efb2 890
19baf839
RO
891 /* At least one of the children is empty */
892 if (left == NULL) {
893 if (right == NULL) /* Both are empty */
894 continue;
895 put_child(t, tn, i/2, right);
91b9a277 896 continue;
0c7770c7 897 }
91b9a277
OJ
898
899 if (right == NULL) {
19baf839 900 put_child(t, tn, i/2, left);
91b9a277
OJ
901 continue;
902 }
c877efb2 903
19baf839 904 /* Two nonempty children */
91b9a277
OJ
905 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
906 put_child(t, tn, i/2, NULL);
91b9a277
OJ
907 put_child(t, newBinNode, 0, left);
908 put_child(t, newBinNode, 1, right);
909 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 910 }
e0f7cb8c 911 tnode_free_safe(oldtnode);
19baf839 912 return tn;
2f80b3c8 913nomem:
0a5c0475
ED
914 tnode_clean_free(tn);
915 return ERR_PTR(-ENOMEM);
19baf839
RO
916}
917
772cb712 918/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
919 via get_fa_head and dump */
920
772cb712 921static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 922{
772cb712 923 struct hlist_head *head = &l->list;
19baf839
RO
924 struct hlist_node *node;
925 struct leaf_info *li;
926
2373ce1c 927 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 928 if (li->plen == plen)
19baf839 929 return li;
91b9a277 930
19baf839
RO
931 return NULL;
932}
933
a07f5f50 934static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 935{
772cb712 936 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 937
91b9a277
OJ
938 if (!li)
939 return NULL;
c877efb2 940
91b9a277 941 return &li->falh;
19baf839
RO
942}
943
944static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
945{
e905a9ed
YH
946 struct leaf_info *li = NULL, *last = NULL;
947 struct hlist_node *node;
948
949 if (hlist_empty(head)) {
950 hlist_add_head_rcu(&new->hlist, head);
951 } else {
952 hlist_for_each_entry(li, node, head, hlist) {
953 if (new->plen > li->plen)
954 break;
955
956 last = li;
957 }
958 if (last)
959 hlist_add_after_rcu(&last->hlist, &new->hlist);
960 else
961 hlist_add_before_rcu(&new->hlist, &li->hlist);
962 }
19baf839
RO
963}
964
2373ce1c
RO
965/* rcu_read_lock needs to be hold by caller from readside */
966
19baf839
RO
967static struct leaf *
968fib_find_node(struct trie *t, u32 key)
969{
970 int pos;
971 struct tnode *tn;
b299e4f0 972 struct rt_trie_node *n;
19baf839
RO
973
974 pos = 0;
a034ee3c 975 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
976
977 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
978 tn = (struct tnode *) n;
91b9a277 979
19baf839 980 check_tnode(tn);
91b9a277 981
c877efb2 982 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 983 pos = tn->pos + tn->bits;
a07f5f50
SH
984 n = tnode_get_child_rcu(tn,
985 tkey_extract_bits(key,
986 tn->pos,
987 tn->bits));
91b9a277 988 } else
19baf839
RO
989 break;
990 }
991 /* Case we have found a leaf. Compare prefixes */
992
91b9a277
OJ
993 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
994 return (struct leaf *)n;
995
19baf839
RO
996 return NULL;
997}
998
7b85576d 999static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 1000{
19baf839 1001 int wasfull;
3ed18d76 1002 t_key cindex, key;
06801916 1003 struct tnode *tp;
19baf839 1004
3ed18d76
RO
1005 key = tn->key;
1006
b299e4f0 1007 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
19baf839
RO
1008 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1009 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
1010 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1011
1012 tnode_put_child_reorg((struct tnode *)tp, cindex,
b299e4f0 1013 (struct rt_trie_node *)tn, wasfull);
91b9a277 1014
b299e4f0 1015 tp = node_parent((struct rt_trie_node *) tn);
008440e3 1016 if (!tp)
cf778b00 1017 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
008440e3 1018
e0f7cb8c 1019 tnode_free_flush();
06801916 1020 if (!tp)
19baf839 1021 break;
06801916 1022 tn = tp;
19baf839 1023 }
06801916 1024
19baf839 1025 /* Handle last (top) tnode */
7b85576d 1026 if (IS_TNODE(tn))
a07f5f50 1027 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1028
cf778b00 1029 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
7b85576d 1030 tnode_free_flush();
19baf839
RO
1031}
1032
2373ce1c
RO
1033/* only used from updater-side */
1034
fea86ad8 1035static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1036{
1037 int pos, newpos;
1038 struct tnode *tp = NULL, *tn = NULL;
b299e4f0 1039 struct rt_trie_node *n;
19baf839
RO
1040 struct leaf *l;
1041 int missbit;
c877efb2 1042 struct list_head *fa_head = NULL;
19baf839
RO
1043 struct leaf_info *li;
1044 t_key cindex;
1045
1046 pos = 0;
0a5c0475 1047 n = rtnl_dereference(t->trie);
19baf839 1048
c877efb2
SH
1049 /* If we point to NULL, stop. Either the tree is empty and we should
1050 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1051 * and we should just put our new leaf in that.
c877efb2
SH
1052 * If we point to a T_TNODE, check if it matches our key. Note that
1053 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1054 * not be the parent's 'pos'+'bits'!
1055 *
c877efb2 1056 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1057 * the index from our key, push the T_TNODE and walk the tree.
1058 *
1059 * If it doesn't, we have to replace it with a new T_TNODE.
1060 *
c877efb2
SH
1061 * If we point to a T_LEAF, it might or might not have the same key
1062 * as we do. If it does, just change the value, update the T_LEAF's
1063 * value, and return it.
19baf839
RO
1064 * If it doesn't, we need to replace it with a T_TNODE.
1065 */
1066
1067 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1068 tn = (struct tnode *) n;
91b9a277 1069
c877efb2 1070 check_tnode(tn);
91b9a277 1071
c877efb2 1072 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1073 tp = tn;
91b9a277 1074 pos = tn->pos + tn->bits;
a07f5f50
SH
1075 n = tnode_get_child(tn,
1076 tkey_extract_bits(key,
1077 tn->pos,
1078 tn->bits));
19baf839 1079
06801916 1080 BUG_ON(n && node_parent(n) != tn);
91b9a277 1081 } else
19baf839
RO
1082 break;
1083 }
1084
1085 /*
1086 * n ----> NULL, LEAF or TNODE
1087 *
c877efb2 1088 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1089 */
1090
91b9a277 1091 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1092
1093 /* Case 1: n is a leaf. Compare prefixes */
1094
c877efb2 1095 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1096 l = (struct leaf *) n;
19baf839 1097 li = leaf_info_new(plen);
91b9a277 1098
fea86ad8
SH
1099 if (!li)
1100 return NULL;
19baf839
RO
1101
1102 fa_head = &li->falh;
1103 insert_leaf_info(&l->list, li);
1104 goto done;
1105 }
19baf839
RO
1106 l = leaf_new();
1107
fea86ad8
SH
1108 if (!l)
1109 return NULL;
19baf839
RO
1110
1111 l->key = key;
1112 li = leaf_info_new(plen);
1113
c877efb2 1114 if (!li) {
387a5487 1115 free_leaf(l);
fea86ad8 1116 return NULL;
f835e471 1117 }
19baf839
RO
1118
1119 fa_head = &li->falh;
1120 insert_leaf_info(&l->list, li);
1121
19baf839 1122 if (t->trie && n == NULL) {
91b9a277 1123 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1124
b299e4f0 1125 node_set_parent((struct rt_trie_node *)l, tp);
19baf839 1126
91b9a277 1127 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
b299e4f0 1128 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
91b9a277
OJ
1129 } else {
1130 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1131 /*
1132 * Add a new tnode here
19baf839
RO
1133 * first tnode need some special handling
1134 */
1135
1136 if (tp)
91b9a277 1137 pos = tp->pos+tp->bits;
19baf839 1138 else
91b9a277
OJ
1139 pos = 0;
1140
c877efb2 1141 if (n) {
19baf839
RO
1142 newpos = tkey_mismatch(key, pos, n->key);
1143 tn = tnode_new(n->key, newpos, 1);
91b9a277 1144 } else {
19baf839 1145 newpos = 0;
c877efb2 1146 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1147 }
19baf839 1148
c877efb2 1149 if (!tn) {
f835e471 1150 free_leaf_info(li);
387a5487 1151 free_leaf(l);
fea86ad8 1152 return NULL;
91b9a277
OJ
1153 }
1154
b299e4f0 1155 node_set_parent((struct rt_trie_node *)tn, tp);
19baf839 1156
91b9a277 1157 missbit = tkey_extract_bits(key, newpos, 1);
b299e4f0 1158 put_child(t, tn, missbit, (struct rt_trie_node *)l);
19baf839
RO
1159 put_child(t, tn, 1-missbit, n);
1160
c877efb2 1161 if (tp) {
19baf839 1162 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50 1163 put_child(t, (struct tnode *)tp, cindex,
b299e4f0 1164 (struct rt_trie_node *)tn);
91b9a277 1165 } else {
cf778b00 1166 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
19baf839
RO
1167 tp = tn;
1168 }
1169 }
91b9a277
OJ
1170
1171 if (tp && tp->pos + tp->bits > 32)
058bd4d2
JP
1172 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1173 tp, tp->pos, tp->bits, key, plen);
91b9a277 1174
19baf839 1175 /* Rebalance the trie */
2373ce1c 1176
7b85576d 1177 trie_rebalance(t, tp);
f835e471 1178done:
19baf839
RO
1179 return fa_head;
1180}
1181
d562f1f8
RO
1182/*
1183 * Caller must hold RTNL.
1184 */
16c6cf8b 1185int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1186{
1187 struct trie *t = (struct trie *) tb->tb_data;
1188 struct fib_alias *fa, *new_fa;
c877efb2 1189 struct list_head *fa_head = NULL;
19baf839 1190 struct fib_info *fi;
4e902c57
TG
1191 int plen = cfg->fc_dst_len;
1192 u8 tos = cfg->fc_tos;
19baf839
RO
1193 u32 key, mask;
1194 int err;
1195 struct leaf *l;
1196
1197 if (plen > 32)
1198 return -EINVAL;
1199
4e902c57 1200 key = ntohl(cfg->fc_dst);
19baf839 1201
2dfe55b4 1202 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1203
91b9a277 1204 mask = ntohl(inet_make_mask(plen));
19baf839 1205
c877efb2 1206 if (key & ~mask)
19baf839
RO
1207 return -EINVAL;
1208
1209 key = key & mask;
1210
4e902c57
TG
1211 fi = fib_create_info(cfg);
1212 if (IS_ERR(fi)) {
1213 err = PTR_ERR(fi);
19baf839 1214 goto err;
4e902c57 1215 }
19baf839
RO
1216
1217 l = fib_find_node(t, key);
c877efb2 1218 fa = NULL;
19baf839 1219
c877efb2 1220 if (l) {
19baf839
RO
1221 fa_head = get_fa_head(l, plen);
1222 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1223 }
1224
1225 /* Now fa, if non-NULL, points to the first fib alias
1226 * with the same keys [prefix,tos,priority], if such key already
1227 * exists or to the node before which we will insert new one.
1228 *
1229 * If fa is NULL, we will need to allocate a new one and
1230 * insert to the head of f.
1231 *
1232 * If f is NULL, no fib node matched the destination key
1233 * and we need to allocate a new one of those as well.
1234 */
1235
936f6f8e
JA
1236 if (fa && fa->fa_tos == tos &&
1237 fa->fa_info->fib_priority == fi->fib_priority) {
1238 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1239
1240 err = -EEXIST;
4e902c57 1241 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1242 goto out;
1243
936f6f8e
JA
1244 /* We have 2 goals:
1245 * 1. Find exact match for type, scope, fib_info to avoid
1246 * duplicate routes
1247 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1248 */
1249 fa_match = NULL;
1250 fa_first = fa;
1251 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1252 list_for_each_entry_continue(fa, fa_head, fa_list) {
1253 if (fa->fa_tos != tos)
1254 break;
1255 if (fa->fa_info->fib_priority != fi->fib_priority)
1256 break;
1257 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1258 fa->fa_info == fi) {
1259 fa_match = fa;
1260 break;
1261 }
1262 }
1263
4e902c57 1264 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1265 struct fib_info *fi_drop;
1266 u8 state;
1267
936f6f8e
JA
1268 fa = fa_first;
1269 if (fa_match) {
1270 if (fa == fa_match)
1271 err = 0;
6725033f 1272 goto out;
936f6f8e 1273 }
2373ce1c 1274 err = -ENOBUFS;
e94b1766 1275 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1276 if (new_fa == NULL)
1277 goto out;
19baf839
RO
1278
1279 fi_drop = fa->fa_info;
2373ce1c
RO
1280 new_fa->fa_tos = fa->fa_tos;
1281 new_fa->fa_info = fi;
4e902c57 1282 new_fa->fa_type = cfg->fc_type;
19baf839 1283 state = fa->fa_state;
936f6f8e 1284 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1285
2373ce1c
RO
1286 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1287 alias_free_mem_rcu(fa);
19baf839
RO
1288
1289 fib_release_info(fi_drop);
1290 if (state & FA_S_ACCESSED)
76e6ebfb 1291 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1292 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1293 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1294
91b9a277 1295 goto succeeded;
19baf839
RO
1296 }
1297 /* Error if we find a perfect match which
1298 * uses the same scope, type, and nexthop
1299 * information.
1300 */
936f6f8e
JA
1301 if (fa_match)
1302 goto out;
a07f5f50 1303
4e902c57 1304 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1305 fa = fa_first;
19baf839
RO
1306 }
1307 err = -ENOENT;
4e902c57 1308 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1309 goto out;
1310
1311 err = -ENOBUFS;
e94b1766 1312 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1313 if (new_fa == NULL)
1314 goto out;
1315
1316 new_fa->fa_info = fi;
1317 new_fa->fa_tos = tos;
4e902c57 1318 new_fa->fa_type = cfg->fc_type;
19baf839 1319 new_fa->fa_state = 0;
19baf839
RO
1320 /*
1321 * Insert new entry to the list.
1322 */
1323
c877efb2 1324 if (!fa_head) {
fea86ad8
SH
1325 fa_head = fib_insert_node(t, key, plen);
1326 if (unlikely(!fa_head)) {
1327 err = -ENOMEM;
f835e471 1328 goto out_free_new_fa;
fea86ad8 1329 }
f835e471 1330 }
19baf839 1331
21d8c49e
DM
1332 if (!plen)
1333 tb->tb_num_default++;
1334
2373ce1c
RO
1335 list_add_tail_rcu(&new_fa->fa_list,
1336 (fa ? &fa->fa_list : fa_head));
19baf839 1337
76e6ebfb 1338 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1339 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1340 &cfg->fc_nlinfo, 0);
19baf839
RO
1341succeeded:
1342 return 0;
f835e471
RO
1343
1344out_free_new_fa:
1345 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1346out:
1347 fib_release_info(fi);
91b9a277 1348err:
19baf839
RO
1349 return err;
1350}
1351
772cb712 1352/* should be called with rcu_read_lock */
5b470441 1353static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
22bd5b9b 1354 t_key key, const struct flowi4 *flp,
ebc0ffae 1355 struct fib_result *res, int fib_flags)
19baf839 1356{
19baf839
RO
1357 struct leaf_info *li;
1358 struct hlist_head *hhead = &l->list;
1359 struct hlist_node *node;
c877efb2 1360
2373ce1c 1361 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
3be0686b 1362 struct fib_alias *fa;
a07f5f50 1363
5c74501f 1364 if (l->key != (key & li->mask_plen))
19baf839
RO
1365 continue;
1366
3be0686b
DM
1367 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1368 struct fib_info *fi = fa->fa_info;
1369 int nhsel, err;
a07f5f50 1370
22bd5b9b 1371 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
3be0686b 1372 continue;
dccd9ecc
DM
1373 if (fi->fib_dead)
1374 continue;
37e826c5 1375 if (fa->fa_info->fib_scope < flp->flowi4_scope)
3be0686b
DM
1376 continue;
1377 fib_alias_accessed(fa);
1378 err = fib_props[fa->fa_type].error;
1379 if (err) {
19baf839 1380#ifdef CONFIG_IP_FIB_TRIE_STATS
1fbc7843 1381 t->stats.semantic_match_passed++;
3be0686b 1382#endif
1fbc7843 1383 return err;
3be0686b
DM
1384 }
1385 if (fi->fib_flags & RTNH_F_DEAD)
1386 continue;
1387 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1388 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1389
1390 if (nh->nh_flags & RTNH_F_DEAD)
1391 continue;
22bd5b9b 1392 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
3be0686b
DM
1393 continue;
1394
1395#ifdef CONFIG_IP_FIB_TRIE_STATS
1396 t->stats.semantic_match_passed++;
1397#endif
5c74501f 1398 res->prefixlen = li->plen;
3be0686b
DM
1399 res->nh_sel = nhsel;
1400 res->type = fa->fa_type;
37e826c5 1401 res->scope = fa->fa_info->fib_scope;
3be0686b
DM
1402 res->fi = fi;
1403 res->table = tb;
1404 res->fa_head = &li->falh;
1405 if (!(fib_flags & FIB_LOOKUP_NOREF))
5c74501f 1406 atomic_inc(&fi->fib_clntref);
3be0686b
DM
1407 return 0;
1408 }
1409 }
1410
1411#ifdef CONFIG_IP_FIB_TRIE_STATS
1412 t->stats.semantic_match_miss++;
19baf839 1413#endif
19baf839 1414 }
a07f5f50 1415
2e655571 1416 return 1;
19baf839
RO
1417}
1418
22bd5b9b 1419int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1420 struct fib_result *res, int fib_flags)
19baf839
RO
1421{
1422 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1423 int ret;
b299e4f0 1424 struct rt_trie_node *n;
19baf839 1425 struct tnode *pn;
3b004569 1426 unsigned int pos, bits;
22bd5b9b 1427 t_key key = ntohl(flp->daddr);
3b004569 1428 unsigned int chopped_off;
19baf839 1429 t_key cindex = 0;
3b004569 1430 unsigned int current_prefix_length = KEYLENGTH;
91b9a277 1431 struct tnode *cn;
874ffa8f 1432 t_key pref_mismatch;
91b9a277 1433
2373ce1c 1434 rcu_read_lock();
91b9a277 1435
2373ce1c 1436 n = rcu_dereference(t->trie);
c877efb2 1437 if (!n)
19baf839
RO
1438 goto failed;
1439
1440#ifdef CONFIG_IP_FIB_TRIE_STATS
1441 t->stats.gets++;
1442#endif
1443
1444 /* Just a leaf? */
1445 if (IS_LEAF(n)) {
5b470441 1446 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1447 goto found;
19baf839 1448 }
a07f5f50 1449
19baf839
RO
1450 pn = (struct tnode *) n;
1451 chopped_off = 0;
c877efb2 1452
91b9a277 1453 while (pn) {
19baf839
RO
1454 pos = pn->pos;
1455 bits = pn->bits;
1456
c877efb2 1457 if (!chopped_off)
ab66b4a7
SH
1458 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1459 pos, bits);
19baf839 1460
b902e573 1461 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1462
1463 if (n == NULL) {
1464#ifdef CONFIG_IP_FIB_TRIE_STATS
1465 t->stats.null_node_hit++;
1466#endif
1467 goto backtrace;
1468 }
1469
91b9a277 1470 if (IS_LEAF(n)) {
5b470441 1471 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1472 if (ret > 0)
91b9a277 1473 goto backtrace;
a07f5f50 1474 goto found;
91b9a277
OJ
1475 }
1476
91b9a277 1477 cn = (struct tnode *)n;
19baf839 1478
91b9a277
OJ
1479 /*
1480 * It's a tnode, and we can do some extra checks here if we
1481 * like, to avoid descending into a dead-end branch.
1482 * This tnode is in the parent's child array at index
1483 * key[p_pos..p_pos+p_bits] but potentially with some bits
1484 * chopped off, so in reality the index may be just a
1485 * subprefix, padded with zero at the end.
1486 * We can also take a look at any skipped bits in this
1487 * tnode - everything up to p_pos is supposed to be ok,
1488 * and the non-chopped bits of the index (se previous
1489 * paragraph) are also guaranteed ok, but the rest is
1490 * considered unknown.
1491 *
1492 * The skipped bits are key[pos+bits..cn->pos].
1493 */
19baf839 1494
91b9a277
OJ
1495 /* If current_prefix_length < pos+bits, we are already doing
1496 * actual prefix matching, which means everything from
1497 * pos+(bits-chopped_off) onward must be zero along some
1498 * branch of this subtree - otherwise there is *no* valid
1499 * prefix present. Here we can only check the skipped
1500 * bits. Remember, since we have already indexed into the
1501 * parent's child array, we know that the bits we chopped of
1502 * *are* zero.
1503 */
19baf839 1504
a07f5f50
SH
1505 /* NOTA BENE: Checking only skipped bits
1506 for the new node here */
19baf839 1507
91b9a277
OJ
1508 if (current_prefix_length < pos+bits) {
1509 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1510 cn->pos - current_prefix_length)
1511 || !(cn->child[0]))
91b9a277
OJ
1512 goto backtrace;
1513 }
19baf839 1514
91b9a277
OJ
1515 /*
1516 * If chopped_off=0, the index is fully validated and we
1517 * only need to look at the skipped bits for this, the new,
1518 * tnode. What we actually want to do is to find out if
1519 * these skipped bits match our key perfectly, or if we will
1520 * have to count on finding a matching prefix further down,
1521 * because if we do, we would like to have some way of
1522 * verifying the existence of such a prefix at this point.
1523 */
19baf839 1524
91b9a277
OJ
1525 /* The only thing we can do at this point is to verify that
1526 * any such matching prefix can indeed be a prefix to our
1527 * key, and if the bits in the node we are inspecting that
1528 * do not match our key are not ZERO, this cannot be true.
1529 * Thus, find out where there is a mismatch (before cn->pos)
1530 * and verify that all the mismatching bits are zero in the
1531 * new tnode's key.
1532 */
19baf839 1533
a07f5f50
SH
1534 /*
1535 * Note: We aren't very concerned about the piece of
1536 * the key that precede pn->pos+pn->bits, since these
1537 * have already been checked. The bits after cn->pos
1538 * aren't checked since these are by definition
1539 * "unknown" at this point. Thus, what we want to see
1540 * is if we are about to enter the "prefix matching"
1541 * state, and in that case verify that the skipped
1542 * bits that will prevail throughout this subtree are
1543 * zero, as they have to be if we are to find a
1544 * matching prefix.
91b9a277
OJ
1545 */
1546
874ffa8f 1547 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1548
a07f5f50
SH
1549 /*
1550 * In short: If skipped bits in this node do not match
1551 * the search key, enter the "prefix matching"
1552 * state.directly.
91b9a277
OJ
1553 */
1554 if (pref_mismatch) {
874ffa8f 1555 int mp = KEYLENGTH - fls(pref_mismatch);
91b9a277 1556
874ffa8f 1557 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1558 goto backtrace;
1559
1560 if (current_prefix_length >= cn->pos)
1561 current_prefix_length = mp;
c877efb2 1562 }
a07f5f50 1563
91b9a277
OJ
1564 pn = (struct tnode *)n; /* Descend */
1565 chopped_off = 0;
1566 continue;
1567
19baf839
RO
1568backtrace:
1569 chopped_off++;
1570
1571 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1572 while ((chopped_off <= pn->bits)
1573 && !(cindex & (1<<(chopped_off-1))))
19baf839 1574 chopped_off++;
19baf839
RO
1575
1576 /* Decrease current_... with bits chopped off */
1577 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1578 current_prefix_length = pn->pos + pn->bits
1579 - chopped_off;
91b9a277 1580
19baf839 1581 /*
c877efb2 1582 * Either we do the actual chop off according or if we have
19baf839
RO
1583 * chopped off all bits in this tnode walk up to our parent.
1584 */
1585
91b9a277 1586 if (chopped_off <= pn->bits) {
19baf839 1587 cindex &= ~(1 << (chopped_off-1));
91b9a277 1588 } else {
b299e4f0 1589 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
06801916 1590 if (!parent)
19baf839 1591 goto failed;
91b9a277 1592
19baf839 1593 /* Get Child's index */
06801916
SH
1594 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1595 pn = parent;
19baf839
RO
1596 chopped_off = 0;
1597
1598#ifdef CONFIG_IP_FIB_TRIE_STATS
1599 t->stats.backtrack++;
1600#endif
1601 goto backtrace;
c877efb2 1602 }
19baf839
RO
1603 }
1604failed:
c877efb2 1605 ret = 1;
19baf839 1606found:
2373ce1c 1607 rcu_read_unlock();
19baf839
RO
1608 return ret;
1609}
6fc01438 1610EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1611
9195bef7
SH
1612/*
1613 * Remove the leaf and return parent.
1614 */
1615static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1616{
b299e4f0 1617 struct tnode *tp = node_parent((struct rt_trie_node *) l);
c877efb2 1618
9195bef7 1619 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1620
c877efb2 1621 if (tp) {
9195bef7 1622 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1623 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1624 trie_rebalance(t, tp);
91b9a277 1625 } else
a9b3cd7f 1626 RCU_INIT_POINTER(t->trie, NULL);
19baf839 1627
387a5487 1628 free_leaf(l);
19baf839
RO
1629}
1630
d562f1f8
RO
1631/*
1632 * Caller must hold RTNL.
1633 */
16c6cf8b 1634int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1635{
1636 struct trie *t = (struct trie *) tb->tb_data;
1637 u32 key, mask;
4e902c57
TG
1638 int plen = cfg->fc_dst_len;
1639 u8 tos = cfg->fc_tos;
19baf839
RO
1640 struct fib_alias *fa, *fa_to_delete;
1641 struct list_head *fa_head;
1642 struct leaf *l;
91b9a277
OJ
1643 struct leaf_info *li;
1644
c877efb2 1645 if (plen > 32)
19baf839
RO
1646 return -EINVAL;
1647
4e902c57 1648 key = ntohl(cfg->fc_dst);
91b9a277 1649 mask = ntohl(inet_make_mask(plen));
19baf839 1650
c877efb2 1651 if (key & ~mask)
19baf839
RO
1652 return -EINVAL;
1653
1654 key = key & mask;
1655 l = fib_find_node(t, key);
1656
c877efb2 1657 if (!l)
19baf839
RO
1658 return -ESRCH;
1659
1660 fa_head = get_fa_head(l, plen);
1661 fa = fib_find_alias(fa_head, tos, 0);
1662
1663 if (!fa)
1664 return -ESRCH;
1665
0c7770c7 1666 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1667
1668 fa_to_delete = NULL;
936f6f8e
JA
1669 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1670 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1671 struct fib_info *fi = fa->fa_info;
1672
1673 if (fa->fa_tos != tos)
1674 break;
1675
4e902c57
TG
1676 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1677 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1678 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1679 (!cfg->fc_prefsrc ||
1680 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1681 (!cfg->fc_protocol ||
1682 fi->fib_protocol == cfg->fc_protocol) &&
1683 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1684 fa_to_delete = fa;
1685 break;
1686 }
1687 }
1688
91b9a277
OJ
1689 if (!fa_to_delete)
1690 return -ESRCH;
19baf839 1691
91b9a277 1692 fa = fa_to_delete;
4e902c57 1693 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1694 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1695
1696 l = fib_find_node(t, key);
772cb712 1697 li = find_leaf_info(l, plen);
19baf839 1698
2373ce1c 1699 list_del_rcu(&fa->fa_list);
19baf839 1700
21d8c49e
DM
1701 if (!plen)
1702 tb->tb_num_default--;
1703
91b9a277 1704 if (list_empty(fa_head)) {
2373ce1c 1705 hlist_del_rcu(&li->hlist);
91b9a277 1706 free_leaf_info(li);
2373ce1c 1707 }
19baf839 1708
91b9a277 1709 if (hlist_empty(&l->list))
9195bef7 1710 trie_leaf_remove(t, l);
19baf839 1711
91b9a277 1712 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1713 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1714
2373ce1c
RO
1715 fib_release_info(fa->fa_info);
1716 alias_free_mem_rcu(fa);
91b9a277 1717 return 0;
19baf839
RO
1718}
1719
ef3660ce 1720static int trie_flush_list(struct list_head *head)
19baf839
RO
1721{
1722 struct fib_alias *fa, *fa_node;
1723 int found = 0;
1724
1725 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1726 struct fib_info *fi = fa->fa_info;
19baf839 1727
2373ce1c
RO
1728 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1729 list_del_rcu(&fa->fa_list);
1730 fib_release_info(fa->fa_info);
1731 alias_free_mem_rcu(fa);
19baf839
RO
1732 found++;
1733 }
1734 }
1735 return found;
1736}
1737
ef3660ce 1738static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1739{
1740 int found = 0;
1741 struct hlist_head *lih = &l->list;
1742 struct hlist_node *node, *tmp;
1743 struct leaf_info *li = NULL;
1744
1745 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1746 found += trie_flush_list(&li->falh);
19baf839
RO
1747
1748 if (list_empty(&li->falh)) {
2373ce1c 1749 hlist_del_rcu(&li->hlist);
19baf839
RO
1750 free_leaf_info(li);
1751 }
1752 }
1753 return found;
1754}
1755
82cfbb00
SH
1756/*
1757 * Scan for the next right leaf starting at node p->child[idx]
1758 * Since we have back pointer, no recursion necessary.
1759 */
b299e4f0 1760static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
19baf839 1761{
82cfbb00
SH
1762 do {
1763 t_key idx;
c877efb2 1764
c877efb2 1765 if (c)
82cfbb00 1766 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1767 else
82cfbb00 1768 idx = 0;
2373ce1c 1769
82cfbb00
SH
1770 while (idx < 1u << p->bits) {
1771 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1772 if (!c)
91b9a277
OJ
1773 continue;
1774
82cfbb00 1775 if (IS_LEAF(c)) {
0a5c0475 1776 prefetch(rcu_dereference_rtnl(p->child[idx]));
82cfbb00 1777 return (struct leaf *) c;
19baf839 1778 }
82cfbb00
SH
1779
1780 /* Rescan start scanning in new node */
1781 p = (struct tnode *) c;
1782 idx = 0;
19baf839 1783 }
82cfbb00
SH
1784
1785 /* Node empty, walk back up to parent */
b299e4f0 1786 c = (struct rt_trie_node *) p;
a034ee3c 1787 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1788
1789 return NULL; /* Root of trie */
1790}
1791
82cfbb00
SH
1792static struct leaf *trie_firstleaf(struct trie *t)
1793{
a034ee3c 1794 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1795
1796 if (!n)
1797 return NULL;
1798
1799 if (IS_LEAF(n)) /* trie is just a leaf */
1800 return (struct leaf *) n;
1801
1802 return leaf_walk_rcu(n, NULL);
1803}
1804
1805static struct leaf *trie_nextleaf(struct leaf *l)
1806{
b299e4f0 1807 struct rt_trie_node *c = (struct rt_trie_node *) l;
b902e573 1808 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1809
1810 if (!p)
1811 return NULL; /* trie with just one leaf */
1812
1813 return leaf_walk_rcu(p, c);
19baf839
RO
1814}
1815
71d67e66
SH
1816static struct leaf *trie_leafindex(struct trie *t, int index)
1817{
1818 struct leaf *l = trie_firstleaf(t);
1819
ec28cf73 1820 while (l && index-- > 0)
71d67e66 1821 l = trie_nextleaf(l);
ec28cf73 1822
71d67e66
SH
1823 return l;
1824}
1825
1826
d562f1f8
RO
1827/*
1828 * Caller must hold RTNL.
1829 */
16c6cf8b 1830int fib_table_flush(struct fib_table *tb)
19baf839
RO
1831{
1832 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1833 struct leaf *l, *ll = NULL;
82cfbb00 1834 int found = 0;
19baf839 1835
82cfbb00 1836 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1837 found += trie_flush_leaf(l);
19baf839
RO
1838
1839 if (ll && hlist_empty(&ll->list))
9195bef7 1840 trie_leaf_remove(t, ll);
19baf839
RO
1841 ll = l;
1842 }
1843
1844 if (ll && hlist_empty(&ll->list))
9195bef7 1845 trie_leaf_remove(t, ll);
19baf839 1846
0c7770c7 1847 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1848 return found;
1849}
1850
4aa2c466
PE
1851void fib_free_table(struct fib_table *tb)
1852{
1853 kfree(tb);
1854}
1855
a07f5f50
SH
1856static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1857 struct fib_table *tb,
19baf839
RO
1858 struct sk_buff *skb, struct netlink_callback *cb)
1859{
1860 int i, s_i;
1861 struct fib_alias *fa;
32ab5f80 1862 __be32 xkey = htonl(key);
19baf839 1863
71d67e66 1864 s_i = cb->args[5];
19baf839
RO
1865 i = 0;
1866
2373ce1c
RO
1867 /* rcu_read_lock is hold by caller */
1868
1869 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1870 if (i < s_i) {
1871 i++;
1872 continue;
1873 }
19baf839
RO
1874
1875 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1876 cb->nlh->nlmsg_seq,
1877 RTM_NEWROUTE,
1878 tb->tb_id,
1879 fa->fa_type,
be403ea1 1880 xkey,
19baf839
RO
1881 plen,
1882 fa->fa_tos,
64347f78 1883 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1884 cb->args[5] = i;
19baf839 1885 return -1;
91b9a277 1886 }
19baf839
RO
1887 i++;
1888 }
71d67e66 1889 cb->args[5] = i;
19baf839
RO
1890 return skb->len;
1891}
1892
a88ee229
SH
1893static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1894 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1895{
a88ee229
SH
1896 struct leaf_info *li;
1897 struct hlist_node *node;
1898 int i, s_i;
19baf839 1899
71d67e66 1900 s_i = cb->args[4];
a88ee229 1901 i = 0;
19baf839 1902
a88ee229
SH
1903 /* rcu_read_lock is hold by caller */
1904 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1905 if (i < s_i) {
1906 i++;
19baf839 1907 continue;
a88ee229 1908 }
91b9a277 1909
a88ee229 1910 if (i > s_i)
71d67e66 1911 cb->args[5] = 0;
19baf839 1912
a88ee229 1913 if (list_empty(&li->falh))
19baf839
RO
1914 continue;
1915
a88ee229 1916 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1917 cb->args[4] = i;
19baf839
RO
1918 return -1;
1919 }
a88ee229 1920 i++;
19baf839 1921 }
a88ee229 1922
71d67e66 1923 cb->args[4] = i;
19baf839
RO
1924 return skb->len;
1925}
1926
16c6cf8b
SH
1927int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1928 struct netlink_callback *cb)
19baf839 1929{
a88ee229 1930 struct leaf *l;
19baf839 1931 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1932 t_key key = cb->args[2];
71d67e66 1933 int count = cb->args[3];
19baf839 1934
2373ce1c 1935 rcu_read_lock();
d5ce8a0e
SH
1936 /* Dump starting at last key.
1937 * Note: 0.0.0.0/0 (ie default) is first key.
1938 */
71d67e66 1939 if (count == 0)
d5ce8a0e
SH
1940 l = trie_firstleaf(t);
1941 else {
71d67e66
SH
1942 /* Normally, continue from last key, but if that is missing
1943 * fallback to using slow rescan
1944 */
d5ce8a0e 1945 l = fib_find_node(t, key);
71d67e66
SH
1946 if (!l)
1947 l = trie_leafindex(t, count);
d5ce8a0e 1948 }
a88ee229 1949
d5ce8a0e
SH
1950 while (l) {
1951 cb->args[2] = l->key;
a88ee229 1952 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1953 cb->args[3] = count;
a88ee229 1954 rcu_read_unlock();
a88ee229 1955 return -1;
19baf839 1956 }
d5ce8a0e 1957
71d67e66 1958 ++count;
d5ce8a0e 1959 l = trie_nextleaf(l);
71d67e66
SH
1960 memset(&cb->args[4], 0,
1961 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1962 }
71d67e66 1963 cb->args[3] = count;
2373ce1c 1964 rcu_read_unlock();
a88ee229 1965
19baf839 1966 return skb->len;
19baf839
RO
1967}
1968
5348ba85 1969void __init fib_trie_init(void)
7f9b8052 1970{
a07f5f50
SH
1971 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1972 sizeof(struct fib_alias),
bc3c8c1e
SH
1973 0, SLAB_PANIC, NULL);
1974
1975 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1976 max(sizeof(struct leaf),
1977 sizeof(struct leaf_info)),
1978 0, SLAB_PANIC, NULL);
7f9b8052 1979}
19baf839 1980
7f9b8052 1981
5348ba85 1982struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1983{
1984 struct fib_table *tb;
1985 struct trie *t;
1986
19baf839
RO
1987 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1988 GFP_KERNEL);
1989 if (tb == NULL)
1990 return NULL;
1991
1992 tb->tb_id = id;
971b893e 1993 tb->tb_default = -1;
21d8c49e 1994 tb->tb_num_default = 0;
19baf839
RO
1995
1996 t = (struct trie *) tb->tb_data;
c28a1cf4 1997 memset(t, 0, sizeof(*t));
19baf839 1998
19baf839
RO
1999 return tb;
2000}
2001
cb7b593c
SH
2002#ifdef CONFIG_PROC_FS
2003/* Depth first Trie walk iterator */
2004struct fib_trie_iter {
1c340b2f 2005 struct seq_net_private p;
3d3b2d25 2006 struct fib_table *tb;
cb7b593c 2007 struct tnode *tnode;
a034ee3c
ED
2008 unsigned int index;
2009 unsigned int depth;
cb7b593c 2010};
19baf839 2011
b299e4f0 2012static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2013{
cb7b593c 2014 struct tnode *tn = iter->tnode;
a034ee3c 2015 unsigned int cindex = iter->index;
cb7b593c 2016 struct tnode *p;
19baf839 2017
6640e697
EB
2018 /* A single entry routing table */
2019 if (!tn)
2020 return NULL;
2021
cb7b593c
SH
2022 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2023 iter->tnode, iter->index, iter->depth);
2024rescan:
2025 while (cindex < (1<<tn->bits)) {
b299e4f0 2026 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2027
cb7b593c
SH
2028 if (n) {
2029 if (IS_LEAF(n)) {
2030 iter->tnode = tn;
2031 iter->index = cindex + 1;
2032 } else {
2033 /* push down one level */
2034 iter->tnode = (struct tnode *) n;
2035 iter->index = 0;
2036 ++iter->depth;
2037 }
2038 return n;
2039 }
19baf839 2040
cb7b593c
SH
2041 ++cindex;
2042 }
91b9a277 2043
cb7b593c 2044 /* Current node exhausted, pop back up */
b299e4f0 2045 p = node_parent_rcu((struct rt_trie_node *)tn);
cb7b593c
SH
2046 if (p) {
2047 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2048 tn = p;
2049 --iter->depth;
2050 goto rescan;
19baf839 2051 }
cb7b593c
SH
2052
2053 /* got root? */
2054 return NULL;
19baf839
RO
2055}
2056
b299e4f0 2057static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 2058 struct trie *t)
19baf839 2059{
b299e4f0 2060 struct rt_trie_node *n;
5ddf0eb2 2061
132adf54 2062 if (!t)
5ddf0eb2
RO
2063 return NULL;
2064
2065 n = rcu_dereference(t->trie);
3d3b2d25 2066 if (!n)
5ddf0eb2 2067 return NULL;
19baf839 2068
3d3b2d25
SH
2069 if (IS_TNODE(n)) {
2070 iter->tnode = (struct tnode *) n;
2071 iter->index = 0;
2072 iter->depth = 1;
2073 } else {
2074 iter->tnode = NULL;
2075 iter->index = 0;
2076 iter->depth = 0;
91b9a277 2077 }
3d3b2d25
SH
2078
2079 return n;
cb7b593c 2080}
91b9a277 2081
cb7b593c
SH
2082static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2083{
b299e4f0 2084 struct rt_trie_node *n;
cb7b593c 2085 struct fib_trie_iter iter;
91b9a277 2086
cb7b593c 2087 memset(s, 0, sizeof(*s));
91b9a277 2088
cb7b593c 2089 rcu_read_lock();
3d3b2d25 2090 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2091 if (IS_LEAF(n)) {
93672292
SH
2092 struct leaf *l = (struct leaf *)n;
2093 struct leaf_info *li;
2094 struct hlist_node *tmp;
2095
cb7b593c
SH
2096 s->leaves++;
2097 s->totdepth += iter.depth;
2098 if (iter.depth > s->maxdepth)
2099 s->maxdepth = iter.depth;
93672292
SH
2100
2101 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2102 ++s->prefixes;
cb7b593c
SH
2103 } else {
2104 const struct tnode *tn = (const struct tnode *) n;
2105 int i;
2106
2107 s->tnodes++;
132adf54 2108 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2109 s->nodesizes[tn->bits]++;
2110
cb7b593c
SH
2111 for (i = 0; i < (1<<tn->bits); i++)
2112 if (!tn->child[i])
2113 s->nullpointers++;
19baf839 2114 }
19baf839 2115 }
2373ce1c 2116 rcu_read_unlock();
19baf839
RO
2117}
2118
cb7b593c
SH
2119/*
2120 * This outputs /proc/net/fib_triestats
2121 */
2122static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2123{
a034ee3c 2124 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2125
cb7b593c
SH
2126 if (stat->leaves)
2127 avdepth = stat->totdepth*100 / stat->leaves;
2128 else
2129 avdepth = 0;
91b9a277 2130
a07f5f50
SH
2131 seq_printf(seq, "\tAver depth: %u.%02d\n",
2132 avdepth / 100, avdepth % 100);
cb7b593c 2133 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2134
cb7b593c 2135 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2136 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2137
2138 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2139 bytes += sizeof(struct leaf_info) * stat->prefixes;
2140
187b5188 2141 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2142 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2143
06ef921d
RO
2144 max = MAX_STAT_DEPTH;
2145 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2146 max--;
19baf839 2147
cb7b593c
SH
2148 pointers = 0;
2149 for (i = 1; i <= max; i++)
2150 if (stat->nodesizes[i] != 0) {
187b5188 2151 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2152 pointers += (1<<i) * stat->nodesizes[i];
2153 }
2154 seq_putc(seq, '\n');
187b5188 2155 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2156
b299e4f0 2157 bytes += sizeof(struct rt_trie_node *) * pointers;
187b5188
SH
2158 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2159 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2160}
2373ce1c 2161
cb7b593c 2162#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2163static void trie_show_usage(struct seq_file *seq,
2164 const struct trie_use_stats *stats)
2165{
2166 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2167 seq_printf(seq, "gets = %u\n", stats->gets);
2168 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2169 seq_printf(seq, "semantic match passed = %u\n",
2170 stats->semantic_match_passed);
2171 seq_printf(seq, "semantic match miss = %u\n",
2172 stats->semantic_match_miss);
2173 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2174 seq_printf(seq, "skipped node resize = %u\n\n",
2175 stats->resize_node_skipped);
cb7b593c 2176}
66a2f7fd
SH
2177#endif /* CONFIG_IP_FIB_TRIE_STATS */
2178
3d3b2d25 2179static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2180{
3d3b2d25
SH
2181 if (tb->tb_id == RT_TABLE_LOCAL)
2182 seq_puts(seq, "Local:\n");
2183 else if (tb->tb_id == RT_TABLE_MAIN)
2184 seq_puts(seq, "Main:\n");
2185 else
2186 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2187}
19baf839 2188
3d3b2d25 2189
cb7b593c
SH
2190static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2191{
1c340b2f 2192 struct net *net = (struct net *)seq->private;
3d3b2d25 2193 unsigned int h;
877a9bff 2194
d717a9a6 2195 seq_printf(seq,
a07f5f50
SH
2196 "Basic info: size of leaf:"
2197 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2198 sizeof(struct leaf), sizeof(struct tnode));
2199
3d3b2d25
SH
2200 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2201 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2202 struct hlist_node *node;
2203 struct fib_table *tb;
2204
2205 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2206 struct trie *t = (struct trie *) tb->tb_data;
2207 struct trie_stat stat;
877a9bff 2208
3d3b2d25
SH
2209 if (!t)
2210 continue;
2211
2212 fib_table_print(seq, tb);
2213
2214 trie_collect_stats(t, &stat);
2215 trie_show_stats(seq, &stat);
2216#ifdef CONFIG_IP_FIB_TRIE_STATS
2217 trie_show_usage(seq, &t->stats);
2218#endif
2219 }
2220 }
19baf839 2221
cb7b593c 2222 return 0;
19baf839
RO
2223}
2224
cb7b593c 2225static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2226{
de05c557 2227 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2228}
2229
9a32144e 2230static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2231 .owner = THIS_MODULE,
2232 .open = fib_triestat_seq_open,
2233 .read = seq_read,
2234 .llseek = seq_lseek,
b6fcbdb4 2235 .release = single_release_net,
cb7b593c
SH
2236};
2237
b299e4f0 2238static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2239{
1218854a
YH
2240 struct fib_trie_iter *iter = seq->private;
2241 struct net *net = seq_file_net(seq);
cb7b593c 2242 loff_t idx = 0;
3d3b2d25 2243 unsigned int h;
cb7b593c 2244
3d3b2d25
SH
2245 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2246 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2247 struct hlist_node *node;
2248 struct fib_table *tb;
cb7b593c 2249
3d3b2d25 2250 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
b299e4f0 2251 struct rt_trie_node *n;
3d3b2d25
SH
2252
2253 for (n = fib_trie_get_first(iter,
2254 (struct trie *) tb->tb_data);
2255 n; n = fib_trie_get_next(iter))
2256 if (pos == idx++) {
2257 iter->tb = tb;
2258 return n;
2259 }
2260 }
cb7b593c 2261 }
3d3b2d25 2262
19baf839
RO
2263 return NULL;
2264}
2265
cb7b593c 2266static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2267 __acquires(RCU)
19baf839 2268{
cb7b593c 2269 rcu_read_lock();
1218854a 2270 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2271}
2272
cb7b593c 2273static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2274{
cb7b593c 2275 struct fib_trie_iter *iter = seq->private;
1218854a 2276 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2277 struct fib_table *tb = iter->tb;
2278 struct hlist_node *tb_node;
2279 unsigned int h;
b299e4f0 2280 struct rt_trie_node *n;
cb7b593c 2281
19baf839 2282 ++*pos;
3d3b2d25
SH
2283 /* next node in same table */
2284 n = fib_trie_get_next(iter);
2285 if (n)
2286 return n;
19baf839 2287
3d3b2d25
SH
2288 /* walk rest of this hash chain */
2289 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2290 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2291 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2292 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2293 if (n)
2294 goto found;
2295 }
19baf839 2296
3d3b2d25
SH
2297 /* new hash chain */
2298 while (++h < FIB_TABLE_HASHSZ) {
2299 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2300 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2301 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2302 if (n)
2303 goto found;
2304 }
2305 }
cb7b593c 2306 return NULL;
3d3b2d25
SH
2307
2308found:
2309 iter->tb = tb;
2310 return n;
cb7b593c 2311}
19baf839 2312
cb7b593c 2313static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2314 __releases(RCU)
19baf839 2315{
cb7b593c
SH
2316 rcu_read_unlock();
2317}
91b9a277 2318
cb7b593c
SH
2319static void seq_indent(struct seq_file *seq, int n)
2320{
a034ee3c
ED
2321 while (n-- > 0)
2322 seq_puts(seq, " ");
cb7b593c 2323}
19baf839 2324
28d36e37 2325static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2326{
132adf54 2327 switch (s) {
cb7b593c
SH
2328 case RT_SCOPE_UNIVERSE: return "universe";
2329 case RT_SCOPE_SITE: return "site";
2330 case RT_SCOPE_LINK: return "link";
2331 case RT_SCOPE_HOST: return "host";
2332 case RT_SCOPE_NOWHERE: return "nowhere";
2333 default:
28d36e37 2334 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2335 return buf;
2336 }
2337}
19baf839 2338
36cbd3dc 2339static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2340 [RTN_UNSPEC] = "UNSPEC",
2341 [RTN_UNICAST] = "UNICAST",
2342 [RTN_LOCAL] = "LOCAL",
2343 [RTN_BROADCAST] = "BROADCAST",
2344 [RTN_ANYCAST] = "ANYCAST",
2345 [RTN_MULTICAST] = "MULTICAST",
2346 [RTN_BLACKHOLE] = "BLACKHOLE",
2347 [RTN_UNREACHABLE] = "UNREACHABLE",
2348 [RTN_PROHIBIT] = "PROHIBIT",
2349 [RTN_THROW] = "THROW",
2350 [RTN_NAT] = "NAT",
2351 [RTN_XRESOLVE] = "XRESOLVE",
2352};
19baf839 2353
a034ee3c 2354static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2355{
cb7b593c
SH
2356 if (t < __RTN_MAX && rtn_type_names[t])
2357 return rtn_type_names[t];
28d36e37 2358 snprintf(buf, len, "type %u", t);
cb7b593c 2359 return buf;
19baf839
RO
2360}
2361
cb7b593c
SH
2362/* Pretty print the trie */
2363static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2364{
cb7b593c 2365 const struct fib_trie_iter *iter = seq->private;
b299e4f0 2366 struct rt_trie_node *n = v;
c877efb2 2367
3d3b2d25
SH
2368 if (!node_parent_rcu(n))
2369 fib_table_print(seq, iter->tb);
095b8501 2370
cb7b593c
SH
2371 if (IS_TNODE(n)) {
2372 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2373 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2374
1d25cd6c 2375 seq_indent(seq, iter->depth-1);
673d57e7
HH
2376 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2377 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2378 tn->empty_children);
e905a9ed 2379
cb7b593c
SH
2380 } else {
2381 struct leaf *l = (struct leaf *) n;
1328042e
SH
2382 struct leaf_info *li;
2383 struct hlist_node *node;
32ab5f80 2384 __be32 val = htonl(l->key);
cb7b593c
SH
2385
2386 seq_indent(seq, iter->depth);
673d57e7 2387 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2388
2389 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2390 struct fib_alias *fa;
2391
2392 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2393 char buf1[32], buf2[32];
2394
2395 seq_indent(seq, iter->depth+1);
2396 seq_printf(seq, " /%d %s %s", li->plen,
2397 rtn_scope(buf1, sizeof(buf1),
37e826c5 2398 fa->fa_info->fib_scope),
1328042e
SH
2399 rtn_type(buf2, sizeof(buf2),
2400 fa->fa_type));
2401 if (fa->fa_tos)
b9c4d82a 2402 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2403 seq_putc(seq, '\n');
cb7b593c
SH
2404 }
2405 }
19baf839 2406 }
cb7b593c 2407
19baf839
RO
2408 return 0;
2409}
2410
f690808e 2411static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2412 .start = fib_trie_seq_start,
2413 .next = fib_trie_seq_next,
2414 .stop = fib_trie_seq_stop,
2415 .show = fib_trie_seq_show,
19baf839
RO
2416};
2417
cb7b593c 2418static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2419{
1c340b2f
DL
2420 return seq_open_net(inode, file, &fib_trie_seq_ops,
2421 sizeof(struct fib_trie_iter));
19baf839
RO
2422}
2423
9a32144e 2424static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2425 .owner = THIS_MODULE,
2426 .open = fib_trie_seq_open,
2427 .read = seq_read,
2428 .llseek = seq_lseek,
1c340b2f 2429 .release = seq_release_net,
19baf839
RO
2430};
2431
8315f5d8
SH
2432struct fib_route_iter {
2433 struct seq_net_private p;
2434 struct trie *main_trie;
2435 loff_t pos;
2436 t_key key;
2437};
2438
2439static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2440{
2441 struct leaf *l = NULL;
2442 struct trie *t = iter->main_trie;
2443
2444 /* use cache location of last found key */
2445 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2446 pos -= iter->pos;
2447 else {
2448 iter->pos = 0;
2449 l = trie_firstleaf(t);
2450 }
2451
2452 while (l && pos-- > 0) {
2453 iter->pos++;
2454 l = trie_nextleaf(l);
2455 }
2456
2457 if (l)
2458 iter->key = pos; /* remember it */
2459 else
2460 iter->pos = 0; /* forget it */
2461
2462 return l;
2463}
2464
2465static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2466 __acquires(RCU)
2467{
2468 struct fib_route_iter *iter = seq->private;
2469 struct fib_table *tb;
2470
2471 rcu_read_lock();
1218854a 2472 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2473 if (!tb)
2474 return NULL;
2475
2476 iter->main_trie = (struct trie *) tb->tb_data;
2477 if (*pos == 0)
2478 return SEQ_START_TOKEN;
2479 else
2480 return fib_route_get_idx(iter, *pos - 1);
2481}
2482
2483static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2484{
2485 struct fib_route_iter *iter = seq->private;
2486 struct leaf *l = v;
2487
2488 ++*pos;
2489 if (v == SEQ_START_TOKEN) {
2490 iter->pos = 0;
2491 l = trie_firstleaf(iter->main_trie);
2492 } else {
2493 iter->pos++;
2494 l = trie_nextleaf(l);
2495 }
2496
2497 if (l)
2498 iter->key = l->key;
2499 else
2500 iter->pos = 0;
2501 return l;
2502}
2503
2504static void fib_route_seq_stop(struct seq_file *seq, void *v)
2505 __releases(RCU)
2506{
2507 rcu_read_unlock();
2508}
2509
a034ee3c 2510static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2511{
a034ee3c 2512 unsigned int flags = 0;
19baf839 2513
a034ee3c
ED
2514 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2515 flags = RTF_REJECT;
cb7b593c
SH
2516 if (fi && fi->fib_nh->nh_gw)
2517 flags |= RTF_GATEWAY;
32ab5f80 2518 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2519 flags |= RTF_HOST;
2520 flags |= RTF_UP;
2521 return flags;
19baf839
RO
2522}
2523
cb7b593c
SH
2524/*
2525 * This outputs /proc/net/route.
2526 * The format of the file is not supposed to be changed
a034ee3c 2527 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2528 * legacy utilities
2529 */
2530static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2531{
cb7b593c 2532 struct leaf *l = v;
1328042e
SH
2533 struct leaf_info *li;
2534 struct hlist_node *node;
19baf839 2535
cb7b593c
SH
2536 if (v == SEQ_START_TOKEN) {
2537 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2538 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2539 "\tWindow\tIRTT");
2540 return 0;
2541 }
19baf839 2542
1328042e 2543 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2544 struct fib_alias *fa;
32ab5f80 2545 __be32 mask, prefix;
91b9a277 2546
cb7b593c
SH
2547 mask = inet_make_mask(li->plen);
2548 prefix = htonl(l->key);
19baf839 2549
cb7b593c 2550 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2551 const struct fib_info *fi = fa->fa_info;
a034ee3c 2552 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2553 int len;
19baf839 2554
cb7b593c
SH
2555 if (fa->fa_type == RTN_BROADCAST
2556 || fa->fa_type == RTN_MULTICAST)
2557 continue;
19baf839 2558
cb7b593c 2559 if (fi)
5e659e4c
PE
2560 seq_printf(seq,
2561 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2562 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2563 fi->fib_dev ? fi->fib_dev->name : "*",
2564 prefix,
2565 fi->fib_nh->nh_gw, flags, 0, 0,
2566 fi->fib_priority,
2567 mask,
a07f5f50
SH
2568 (fi->fib_advmss ?
2569 fi->fib_advmss + 40 : 0),
cb7b593c 2570 fi->fib_window,
5e659e4c 2571 fi->fib_rtt >> 3, &len);
cb7b593c 2572 else
5e659e4c
PE
2573 seq_printf(seq,
2574 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2575 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2576 prefix, 0, flags, 0, 0, 0,
5e659e4c 2577 mask, 0, 0, 0, &len);
19baf839 2578
5e659e4c 2579 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2580 }
19baf839
RO
2581 }
2582
2583 return 0;
2584}
2585
f690808e 2586static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2587 .start = fib_route_seq_start,
2588 .next = fib_route_seq_next,
2589 .stop = fib_route_seq_stop,
cb7b593c 2590 .show = fib_route_seq_show,
19baf839
RO
2591};
2592
cb7b593c 2593static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2594{
1c340b2f 2595 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2596 sizeof(struct fib_route_iter));
19baf839
RO
2597}
2598
9a32144e 2599static const struct file_operations fib_route_fops = {
cb7b593c
SH
2600 .owner = THIS_MODULE,
2601 .open = fib_route_seq_open,
2602 .read = seq_read,
2603 .llseek = seq_lseek,
1c340b2f 2604 .release = seq_release_net,
19baf839
RO
2605};
2606
61a02653 2607int __net_init fib_proc_init(struct net *net)
19baf839 2608{
61a02653 2609 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2610 goto out1;
2611
61a02653
DL
2612 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2613 &fib_triestat_fops))
cb7b593c
SH
2614 goto out2;
2615
61a02653 2616 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2617 goto out3;
2618
19baf839 2619 return 0;
cb7b593c
SH
2620
2621out3:
61a02653 2622 proc_net_remove(net, "fib_triestat");
cb7b593c 2623out2:
61a02653 2624 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2625out1:
2626 return -ENOMEM;
19baf839
RO
2627}
2628
61a02653 2629void __net_exit fib_proc_exit(struct net *net)
19baf839 2630{
61a02653
DL
2631 proc_net_remove(net, "fib_trie");
2632 proc_net_remove(net, "fib_triestat");
2633 proc_net_remove(net, "route");
19baf839
RO
2634}
2635
2636#endif /* CONFIG_PROC_FS */
This page took 0.865575 seconds and 5 git commands to generate.