ipv4: Remove fib_hash.
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
5a0e3ad6 74#include <linux/slab.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
06ef921d 84#define MAX_STAT_DEPTH 32
19baf839 85
19baf839 86#define KEYLENGTH (8*sizeof(t_key))
19baf839 87
19baf839
RO
88typedef unsigned int t_key;
89
90#define T_TNODE 0
91#define T_LEAF 1
92#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
91b9a277
OJ
95#define IS_TNODE(n) (!(n->parent & T_LEAF))
96#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
97
98struct node {
91b9a277 99 unsigned long parent;
8d965444 100 t_key key;
19baf839
RO
101};
102
103struct leaf {
91b9a277 104 unsigned long parent;
8d965444 105 t_key key;
19baf839 106 struct hlist_head list;
2373ce1c 107 struct rcu_head rcu;
19baf839
RO
108};
109
110struct leaf_info {
111 struct hlist_node hlist;
2373ce1c 112 struct rcu_head rcu;
19baf839
RO
113 int plen;
114 struct list_head falh;
115};
116
117struct tnode {
91b9a277 118 unsigned long parent;
8d965444 119 t_key key;
112d8cfc
ED
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
e0f7cb8c 127 struct tnode *tnode_free;
15be75cd 128 };
91b9a277 129 struct node *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
93672292 149 unsigned int prefixes;
06ef921d 150 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 151};
19baf839
RO
152
153struct trie {
91b9a277 154 struct node *trie;
19baf839
RO
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157#endif
19baf839
RO
158};
159
19baf839 160static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
161static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
162 int wasfull);
19baf839 163static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
164static struct tnode *inflate(struct trie *t, struct tnode *tn);
165static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
166/* tnodes to free after resize(); protected by RTNL */
167static struct tnode *tnode_free_head;
c3059477
JP
168static size_t tnode_free_size;
169
170/*
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
174 */
175static const int sync_pages = 128;
19baf839 176
e18b890b 177static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 178static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 179
06801916
SH
180static inline struct tnode *node_parent(struct node *node)
181{
b59cfbf7
ED
182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183}
184
185static inline struct tnode *node_parent_rcu(struct node *node)
186{
187 struct tnode *ret = node_parent(node);
06801916 188
a034ee3c 189 return rcu_dereference_rtnl(ret);
06801916
SH
190}
191
6440cc9e
SH
192/* Same as rcu_assign_pointer
193 * but that macro() assumes that value is a pointer.
194 */
06801916
SH
195static inline void node_set_parent(struct node *node, struct tnode *ptr)
196{
6440cc9e
SH
197 smp_wmb();
198 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 199}
2373ce1c 200
b59cfbf7
ED
201static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
202{
203 BUG_ON(i >= 1U << tn->bits);
2373ce1c 204
b59cfbf7
ED
205 return tn->child[i];
206}
207
208static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 209{
b59cfbf7 210 struct node *ret = tnode_get_child(tn, i);
19baf839 211
a034ee3c 212 return rcu_dereference_rtnl(ret);
19baf839
RO
213}
214
bb435b8d 215static inline int tnode_child_length(const struct tnode *tn)
19baf839 216{
91b9a277 217 return 1 << tn->bits;
19baf839
RO
218}
219
ab66b4a7
SH
220static inline t_key mask_pfx(t_key k, unsigned short l)
221{
222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
223}
224
19baf839
RO
225static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
226{
91b9a277 227 if (offset < KEYLENGTH)
19baf839 228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 229 else
19baf839
RO
230 return 0;
231}
232
233static inline int tkey_equals(t_key a, t_key b)
234{
c877efb2 235 return a == b;
19baf839
RO
236}
237
238static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239{
c877efb2
SH
240 if (bits == 0 || offset >= KEYLENGTH)
241 return 1;
91b9a277
OJ
242 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 244}
19baf839
RO
245
246static inline int tkey_mismatch(t_key a, int offset, t_key b)
247{
248 t_key diff = a ^ b;
249 int i = offset;
250
c877efb2
SH
251 if (!diff)
252 return 0;
253 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
254 i++;
255 return i;
256}
257
19baf839 258/*
e905a9ed
YH
259 To understand this stuff, an understanding of keys and all their bits is
260 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
261 all of the bits in that key are significant.
262
263 Consider a node 'n' and its parent 'tp'.
264
e905a9ed
YH
265 If n is a leaf, every bit in its key is significant. Its presence is
266 necessitated by path compression, since during a tree traversal (when
267 searching for a leaf - unless we are doing an insertion) we will completely
268 ignore all skipped bits we encounter. Thus we need to verify, at the end of
269 a potentially successful search, that we have indeed been walking the
19baf839
RO
270 correct key path.
271
e905a9ed
YH
272 Note that we can never "miss" the correct key in the tree if present by
273 following the wrong path. Path compression ensures that segments of the key
274 that are the same for all keys with a given prefix are skipped, but the
275 skipped part *is* identical for each node in the subtrie below the skipped
276 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
277 call to tkey_sub_equals() in trie_insert().
278
e905a9ed 279 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
280 have many different meanings.
281
e905a9ed 282 Example:
19baf839
RO
283 _________________________________________________________________
284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285 -----------------------------------------------------------------
e905a9ed 286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
287
288 _________________________________________________________________
289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290 -----------------------------------------------------------------
291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
292
293 tp->pos = 7
294 tp->bits = 3
295 n->pos = 15
91b9a277 296 n->bits = 4
19baf839 297
e905a9ed
YH
298 First, let's just ignore the bits that come before the parent tp, that is
299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
300 not use them for anything.
301
302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 303 index into the parent's child array. That is, they will be used to find
19baf839
RO
304 'n' among tp's children.
305
306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307 for the node n.
308
e905a9ed 309 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
310 of the bits are really not needed or indeed known in n->key.
311
e905a9ed 312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 313 n's child array, and will of course be different for each child.
e905a9ed 314
c877efb2 315
19baf839
RO
316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317 at this point.
318
319*/
320
0c7770c7 321static inline void check_tnode(const struct tnode *tn)
19baf839 322{
0c7770c7 323 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
324}
325
f5026fab
DL
326static const int halve_threshold = 25;
327static const int inflate_threshold = 50;
345aa031 328static const int halve_threshold_root = 15;
80b71b80 329static const int inflate_threshold_root = 30;
2373ce1c
RO
330
331static void __alias_free_mem(struct rcu_head *head)
19baf839 332{
2373ce1c
RO
333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
335}
336
2373ce1c 337static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 338{
2373ce1c
RO
339 call_rcu(&fa->rcu, __alias_free_mem);
340}
91b9a277 341
2373ce1c
RO
342static void __leaf_free_rcu(struct rcu_head *head)
343{
bc3c8c1e
SH
344 struct leaf *l = container_of(head, struct leaf, rcu);
345 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 346}
91b9a277 347
387a5487
SH
348static inline void free_leaf(struct leaf *l)
349{
350 call_rcu_bh(&l->rcu, __leaf_free_rcu);
351}
352
2373ce1c 353static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 354{
2373ce1c 355 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
356}
357
2373ce1c 358static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 359{
2373ce1c 360 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
361}
362
8d965444 363static struct tnode *tnode_alloc(size_t size)
f0e36f8c 364{
2373ce1c 365 if (size <= PAGE_SIZE)
8d965444 366 return kzalloc(size, GFP_KERNEL);
15be75cd 367 else
7a1c8e5a 368 return vzalloc(size);
15be75cd 369}
2373ce1c 370
15be75cd
SH
371static void __tnode_vfree(struct work_struct *arg)
372{
373 struct tnode *tn = container_of(arg, struct tnode, work);
374 vfree(tn);
f0e36f8c
PM
375}
376
2373ce1c 377static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 378{
2373ce1c 379 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
380 size_t size = sizeof(struct tnode) +
381 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
382
383 if (size <= PAGE_SIZE)
384 kfree(tn);
15be75cd
SH
385 else {
386 INIT_WORK(&tn->work, __tnode_vfree);
387 schedule_work(&tn->work);
388 }
f0e36f8c
PM
389}
390
2373ce1c
RO
391static inline void tnode_free(struct tnode *tn)
392{
387a5487
SH
393 if (IS_LEAF(tn))
394 free_leaf((struct leaf *) tn);
395 else
550e29bc 396 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
397}
398
e0f7cb8c
JP
399static void tnode_free_safe(struct tnode *tn)
400{
401 BUG_ON(IS_LEAF(tn));
7b85576d
JP
402 tn->tnode_free = tnode_free_head;
403 tnode_free_head = tn;
c3059477
JP
404 tnode_free_size += sizeof(struct tnode) +
405 (sizeof(struct node *) << tn->bits);
e0f7cb8c
JP
406}
407
408static void tnode_free_flush(void)
409{
410 struct tnode *tn;
411
412 while ((tn = tnode_free_head)) {
413 tnode_free_head = tn->tnode_free;
414 tn->tnode_free = NULL;
415 tnode_free(tn);
416 }
c3059477
JP
417
418 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 tnode_free_size = 0;
420 synchronize_rcu();
421 }
e0f7cb8c
JP
422}
423
2373ce1c
RO
424static struct leaf *leaf_new(void)
425{
bc3c8c1e 426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
427 if (l) {
428 l->parent = T_LEAF;
429 INIT_HLIST_HEAD(&l->list);
430 }
431 return l;
432}
433
434static struct leaf_info *leaf_info_new(int plen)
435{
436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
437 if (li) {
438 li->plen = plen;
439 INIT_LIST_HEAD(&li->falh);
440 }
441 return li;
442}
443
a07f5f50 444static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 445{
8d965444 446 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 447 struct tnode *tn = tnode_alloc(sz);
19baf839 448
91b9a277 449 if (tn) {
2373ce1c 450 tn->parent = T_TNODE;
19baf839
RO
451 tn->pos = pos;
452 tn->bits = bits;
453 tn->key = key;
454 tn->full_children = 0;
455 tn->empty_children = 1<<bits;
456 }
c877efb2 457
a034ee3c
ED
458 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
459 sizeof(struct node) << bits);
19baf839
RO
460 return tn;
461}
462
19baf839
RO
463/*
464 * Check whether a tnode 'n' is "full", i.e. it is an internal node
465 * and no bits are skipped. See discussion in dyntree paper p. 6
466 */
467
bb435b8d 468static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 469{
c877efb2 470 if (n == NULL || IS_LEAF(n))
19baf839
RO
471 return 0;
472
473 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
474}
475
a07f5f50
SH
476static inline void put_child(struct trie *t, struct tnode *tn, int i,
477 struct node *n)
19baf839
RO
478{
479 tnode_put_child_reorg(tn, i, n, -1);
480}
481
c877efb2 482 /*
19baf839
RO
483 * Add a child at position i overwriting the old value.
484 * Update the value of full_children and empty_children.
485 */
486
a07f5f50
SH
487static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
488 int wasfull)
19baf839 489{
2373ce1c 490 struct node *chi = tn->child[i];
19baf839
RO
491 int isfull;
492
0c7770c7
SH
493 BUG_ON(i >= 1<<tn->bits);
494
19baf839
RO
495 /* update emptyChildren */
496 if (n == NULL && chi != NULL)
497 tn->empty_children++;
498 else if (n != NULL && chi == NULL)
499 tn->empty_children--;
c877efb2 500
19baf839 501 /* update fullChildren */
91b9a277 502 if (wasfull == -1)
19baf839
RO
503 wasfull = tnode_full(tn, chi);
504
505 isfull = tnode_full(tn, n);
c877efb2 506 if (wasfull && !isfull)
19baf839 507 tn->full_children--;
c877efb2 508 else if (!wasfull && isfull)
19baf839 509 tn->full_children++;
91b9a277 510
c877efb2 511 if (n)
06801916 512 node_set_parent(n, tn);
19baf839 513
2373ce1c 514 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
515}
516
80b71b80 517#define MAX_WORK 10
c877efb2 518static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
519{
520 int i;
2f80b3c8 521 struct tnode *old_tn;
e6308be8
RO
522 int inflate_threshold_use;
523 int halve_threshold_use;
80b71b80 524 int max_work;
19baf839 525
e905a9ed 526 if (!tn)
19baf839
RO
527 return NULL;
528
0c7770c7
SH
529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 tn, inflate_threshold, halve_threshold);
19baf839
RO
531
532 /* No children */
533 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 534 tnode_free_safe(tn);
19baf839
RO
535 return NULL;
536 }
537 /* One child */
538 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 539 goto one_child;
c877efb2 540 /*
19baf839
RO
541 * Double as long as the resulting node has a number of
542 * nonempty nodes that are above the threshold.
543 */
544
545 /*
c877efb2
SH
546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 548 * Telecommunications, page 6:
c877efb2 549 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
550 * children in the *doubled* node is at least 'high'."
551 *
c877efb2
SH
552 * 'high' in this instance is the variable 'inflate_threshold'. It
553 * is expressed as a percentage, so we multiply it with
554 * tnode_child_length() and instead of multiplying by 2 (since the
555 * child array will be doubled by inflate()) and multiplying
556 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 557 * multiply the left-hand side by 50.
c877efb2
SH
558 *
559 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 * - tn->empty_children is of course the number of non-null children
561 * in the current node. tn->full_children is the number of "full"
19baf839 562 * children, that is non-null tnodes with a skip value of 0.
c877efb2 563 * All of those will be doubled in the resulting inflated tnode, so
19baf839 564 * we just count them one extra time here.
c877efb2 565 *
19baf839 566 * A clearer way to write this would be:
c877efb2 567 *
19baf839 568 * to_be_doubled = tn->full_children;
c877efb2 569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
570 * tn->full_children;
571 *
572 * new_child_length = tnode_child_length(tn) * 2;
573 *
c877efb2 574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
575 * new_child_length;
576 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
577 *
578 * ...and so on, tho it would mess up the while () loop.
579 *
19baf839
RO
580 * anyway,
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 * inflate_threshold
c877efb2 583 *
19baf839
RO
584 * avoid a division:
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 * inflate_threshold * new_child_length
c877efb2 587 *
19baf839 588 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 589 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 590 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 591 *
19baf839 592 * expand new_child_length:
c877efb2 593 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 594 * tn->full_children) >=
19baf839 595 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 596 *
19baf839 597 * shorten again:
c877efb2 598 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 599 * tn->empty_children) >= inflate_threshold *
19baf839 600 * tnode_child_length(tn)
c877efb2 601 *
19baf839
RO
602 */
603
604 check_tnode(tn);
c877efb2 605
e6308be8
RO
606 /* Keep root node larger */
607
a034ee3c 608 if (!node_parent((struct node *)tn)) {
80b71b80
JL
609 inflate_threshold_use = inflate_threshold_root;
610 halve_threshold_use = halve_threshold_root;
a034ee3c 611 } else {
e6308be8 612 inflate_threshold_use = inflate_threshold;
80b71b80
JL
613 halve_threshold_use = halve_threshold;
614 }
e6308be8 615
80b71b80
JL
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 621
2f80b3c8
RO
622 old_tn = tn;
623 tn = inflate(t, tn);
a07f5f50 624
2f80b3c8
RO
625 if (IS_ERR(tn)) {
626 tn = old_tn;
2f36895a
RO
627#ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629#endif
630 break;
631 }
19baf839
RO
632 }
633
634 check_tnode(tn);
635
80b71b80 636 /* Return if at least one inflate is run */
a034ee3c 637 if (max_work != MAX_WORK)
80b71b80
JL
638 return (struct node *) tn;
639
19baf839
RO
640 /*
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
643 */
2f36895a 644
80b71b80
JL
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
19baf839 647 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 648 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 649
2f80b3c8
RO
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
2f36895a
RO
654#ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656#endif
657 break;
658 }
659 }
19baf839 660
c877efb2 661
19baf839 662 /* Only one child remains */
80b71b80
JL
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664one_child:
19baf839 665 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 666 struct node *n;
19baf839 667
91b9a277 668 n = tn->child[i];
2373ce1c 669 if (!n)
91b9a277 670 continue;
91b9a277
OJ
671
672 /* compress one level */
673
06801916 674 node_set_parent(n, NULL);
e0f7cb8c 675 tnode_free_safe(tn);
91b9a277 676 return n;
19baf839 677 }
80b71b80 678 }
19baf839
RO
679 return (struct node *) tn;
680}
681
2f80b3c8 682static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 683{
19baf839
RO
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
687
0c7770c7 688 pr_debug("In inflate\n");
19baf839
RO
689
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691
0c7770c7 692 if (!tn)
2f80b3c8 693 return ERR_PTR(-ENOMEM);
2f36895a
RO
694
695 /*
c877efb2
SH
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
699 * of tnode is ignored.
700 */
91b9a277
OJ
701
702 for (i = 0; i < olen; i++) {
a07f5f50 703 struct tnode *inode;
2f36895a 704
a07f5f50 705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
ab66b4a7 711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 712
2f36895a
RO
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
2f80b3c8
RO
715 if (!left)
716 goto nomem;
91b9a277 717
2f36895a
RO
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
720
e905a9ed 721 if (!right) {
2f80b3c8
RO
722 tnode_free(left);
723 goto nomem;
e905a9ed 724 }
2f36895a
RO
725
726 put_child(t, tn, 2*i, (struct node *) left);
727 put_child(t, tn, 2*i+1, (struct node *) right);
728 }
729 }
730
91b9a277 731 for (i = 0; i < olen; i++) {
c95aaf9a 732 struct tnode *inode;
19baf839 733 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
734 struct tnode *left, *right;
735 int size, j;
c877efb2 736
19baf839
RO
737 /* An empty child */
738 if (node == NULL)
739 continue;
740
741 /* A leaf or an internal node with skipped bits */
742
c877efb2 743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 744 tn->pos + tn->bits - 1) {
a07f5f50
SH
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
19baf839
RO
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
752 }
753
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
756
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
760
e0f7cb8c 761 tnode_free_safe(inode);
91b9a277 762 continue;
19baf839
RO
763 }
764
91b9a277
OJ
765 /* An internal node with more than two children */
766
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
782 */
19baf839 783
91b9a277
OJ
784 /* Use the old key, but set the new significant
785 * bit to zero.
786 */
2f36895a 787
91b9a277
OJ
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
2f36895a 790
91b9a277 791 BUG_ON(!left);
2f36895a 792
91b9a277
OJ
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
19baf839 795
91b9a277 796 BUG_ON(!right);
19baf839 797
91b9a277
OJ
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
19baf839 802 }
91b9a277
OJ
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
805
e0f7cb8c 806 tnode_free_safe(inode);
19baf839 807 }
e0f7cb8c 808 tnode_free_safe(oldtnode);
19baf839 809 return tn;
2f80b3c8
RO
810nomem:
811 {
812 int size = tnode_child_length(tn);
813 int j;
814
0c7770c7 815 for (j = 0; j < size; j++)
2f80b3c8
RO
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
818
819 tnode_free(tn);
0c7770c7 820
2f80b3c8
RO
821 return ERR_PTR(-ENOMEM);
822 }
19baf839
RO
823}
824
2f80b3c8 825static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
826{
827 struct tnode *oldtnode = tn;
828 struct node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
831
0c7770c7 832 pr_debug("In halve\n");
c877efb2
SH
833
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 835
2f80b3c8
RO
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
2f36895a
RO
838
839 /*
c877efb2
SH
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
843 * of tnode is ignored.
844 */
845
91b9a277 846 for (i = 0; i < olen; i += 2) {
2f36895a
RO
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
c877efb2 849
2f36895a 850 /* Two nonempty children */
0c7770c7 851 if (left && right) {
2f80b3c8 852 struct tnode *newn;
0c7770c7 853
2f80b3c8 854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
855
856 if (!newn)
2f80b3c8 857 goto nomem;
0c7770c7 858
2f80b3c8 859 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 860 }
2f36895a 861
2f36895a 862 }
19baf839 863
91b9a277
OJ
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
866
19baf839
RO
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
c877efb2 869
19baf839
RO
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
91b9a277 875 continue;
0c7770c7 876 }
91b9a277
OJ
877
878 if (right == NULL) {
19baf839 879 put_child(t, tn, i/2, left);
91b9a277
OJ
880 continue;
881 }
c877efb2 882
19baf839 883 /* Two nonempty children */
91b9a277
OJ
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
91b9a277
OJ
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 889 }
e0f7cb8c 890 tnode_free_safe(oldtnode);
19baf839 891 return tn;
2f80b3c8
RO
892nomem:
893 {
894 int size = tnode_child_length(tn);
895 int j;
896
0c7770c7 897 for (j = 0; j < size; j++)
2f80b3c8
RO
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
900
901 tnode_free(tn);
0c7770c7 902
2f80b3c8
RO
903 return ERR_PTR(-ENOMEM);
904 }
19baf839
RO
905}
906
772cb712 907/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
908 via get_fa_head and dump */
909
772cb712 910static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 911{
772cb712 912 struct hlist_head *head = &l->list;
19baf839
RO
913 struct hlist_node *node;
914 struct leaf_info *li;
915
2373ce1c 916 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 917 if (li->plen == plen)
19baf839 918 return li;
91b9a277 919
19baf839
RO
920 return NULL;
921}
922
a07f5f50 923static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 924{
772cb712 925 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 926
91b9a277
OJ
927 if (!li)
928 return NULL;
c877efb2 929
91b9a277 930 return &li->falh;
19baf839
RO
931}
932
933static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934{
e905a9ed
YH
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
937
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
944
945 last = li;
946 }
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
951 }
19baf839
RO
952}
953
2373ce1c
RO
954/* rcu_read_lock needs to be hold by caller from readside */
955
19baf839
RO
956static struct leaf *
957fib_find_node(struct trie *t, u32 key)
958{
959 int pos;
960 struct tnode *tn;
961 struct node *n;
962
963 pos = 0;
a034ee3c 964 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
965
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
91b9a277 968
19baf839 969 check_tnode(tn);
91b9a277 970
c877efb2 971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 972 pos = tn->pos + tn->bits;
a07f5f50
SH
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
91b9a277 977 } else
19baf839
RO
978 break;
979 }
980 /* Case we have found a leaf. Compare prefixes */
981
91b9a277
OJ
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
984
19baf839
RO
985 return NULL;
986}
987
7b85576d 988static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 989{
19baf839 990 int wasfull;
3ed18d76 991 t_key cindex, key;
06801916 992 struct tnode *tp;
19baf839 993
3ed18d76
RO
994 key = tn->key;
995
06801916 996 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
997 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
999 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000
1001 tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 (struct node *)tn, wasfull);
91b9a277 1003
06801916 1004 tp = node_parent((struct node *) tn);
008440e3
JP
1005 if (!tp)
1006 rcu_assign_pointer(t->trie, (struct node *)tn);
1007
e0f7cb8c 1008 tnode_free_flush();
06801916 1009 if (!tp)
19baf839 1010 break;
06801916 1011 tn = tp;
19baf839 1012 }
06801916 1013
19baf839 1014 /* Handle last (top) tnode */
7b85576d 1015 if (IS_TNODE(tn))
a07f5f50 1016 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1017
7b85576d
JP
1018 rcu_assign_pointer(t->trie, (struct node *)tn);
1019 tnode_free_flush();
19baf839
RO
1020}
1021
2373ce1c
RO
1022/* only used from updater-side */
1023
fea86ad8 1024static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1025{
1026 int pos, newpos;
1027 struct tnode *tp = NULL, *tn = NULL;
1028 struct node *n;
1029 struct leaf *l;
1030 int missbit;
c877efb2 1031 struct list_head *fa_head = NULL;
19baf839
RO
1032 struct leaf_info *li;
1033 t_key cindex;
1034
1035 pos = 0;
c877efb2 1036 n = t->trie;
19baf839 1037
c877efb2
SH
1038 /* If we point to NULL, stop. Either the tree is empty and we should
1039 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1040 * and we should just put our new leaf in that.
c877efb2
SH
1041 * If we point to a T_TNODE, check if it matches our key. Note that
1042 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1043 * not be the parent's 'pos'+'bits'!
1044 *
c877efb2 1045 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1046 * the index from our key, push the T_TNODE and walk the tree.
1047 *
1048 * If it doesn't, we have to replace it with a new T_TNODE.
1049 *
c877efb2
SH
1050 * If we point to a T_LEAF, it might or might not have the same key
1051 * as we do. If it does, just change the value, update the T_LEAF's
1052 * value, and return it.
19baf839
RO
1053 * If it doesn't, we need to replace it with a T_TNODE.
1054 */
1055
1056 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1057 tn = (struct tnode *) n;
91b9a277 1058
c877efb2 1059 check_tnode(tn);
91b9a277 1060
c877efb2 1061 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1062 tp = tn;
91b9a277 1063 pos = tn->pos + tn->bits;
a07f5f50
SH
1064 n = tnode_get_child(tn,
1065 tkey_extract_bits(key,
1066 tn->pos,
1067 tn->bits));
19baf839 1068
06801916 1069 BUG_ON(n && node_parent(n) != tn);
91b9a277 1070 } else
19baf839
RO
1071 break;
1072 }
1073
1074 /*
1075 * n ----> NULL, LEAF or TNODE
1076 *
c877efb2 1077 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1078 */
1079
91b9a277 1080 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1081
1082 /* Case 1: n is a leaf. Compare prefixes */
1083
c877efb2 1084 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1085 l = (struct leaf *) n;
19baf839 1086 li = leaf_info_new(plen);
91b9a277 1087
fea86ad8
SH
1088 if (!li)
1089 return NULL;
19baf839
RO
1090
1091 fa_head = &li->falh;
1092 insert_leaf_info(&l->list, li);
1093 goto done;
1094 }
19baf839
RO
1095 l = leaf_new();
1096
fea86ad8
SH
1097 if (!l)
1098 return NULL;
19baf839
RO
1099
1100 l->key = key;
1101 li = leaf_info_new(plen);
1102
c877efb2 1103 if (!li) {
387a5487 1104 free_leaf(l);
fea86ad8 1105 return NULL;
f835e471 1106 }
19baf839
RO
1107
1108 fa_head = &li->falh;
1109 insert_leaf_info(&l->list, li);
1110
19baf839 1111 if (t->trie && n == NULL) {
91b9a277 1112 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1113
06801916 1114 node_set_parent((struct node *)l, tp);
19baf839 1115
91b9a277
OJ
1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1117 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1118 } else {
1119 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1120 /*
1121 * Add a new tnode here
19baf839
RO
1122 * first tnode need some special handling
1123 */
1124
1125 if (tp)
91b9a277 1126 pos = tp->pos+tp->bits;
19baf839 1127 else
91b9a277
OJ
1128 pos = 0;
1129
c877efb2 1130 if (n) {
19baf839
RO
1131 newpos = tkey_mismatch(key, pos, n->key);
1132 tn = tnode_new(n->key, newpos, 1);
91b9a277 1133 } else {
19baf839 1134 newpos = 0;
c877efb2 1135 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1136 }
19baf839 1137
c877efb2 1138 if (!tn) {
f835e471 1139 free_leaf_info(li);
387a5487 1140 free_leaf(l);
fea86ad8 1141 return NULL;
91b9a277
OJ
1142 }
1143
06801916 1144 node_set_parent((struct node *)tn, tp);
19baf839 1145
91b9a277 1146 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1147 put_child(t, tn, missbit, (struct node *)l);
1148 put_child(t, tn, 1-missbit, n);
1149
c877efb2 1150 if (tp) {
19baf839 1151 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1152 put_child(t, (struct tnode *)tp, cindex,
1153 (struct node *)tn);
91b9a277 1154 } else {
a07f5f50 1155 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1156 tp = tn;
1157 }
1158 }
91b9a277
OJ
1159
1160 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1161 pr_warning("fib_trie"
1162 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 tp, tp->pos, tp->bits, key, plen);
91b9a277 1164
19baf839 1165 /* Rebalance the trie */
2373ce1c 1166
7b85576d 1167 trie_rebalance(t, tp);
f835e471 1168done:
19baf839
RO
1169 return fa_head;
1170}
1171
d562f1f8
RO
1172/*
1173 * Caller must hold RTNL.
1174 */
16c6cf8b 1175int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1176{
1177 struct trie *t = (struct trie *) tb->tb_data;
1178 struct fib_alias *fa, *new_fa;
c877efb2 1179 struct list_head *fa_head = NULL;
19baf839 1180 struct fib_info *fi;
4e902c57
TG
1181 int plen = cfg->fc_dst_len;
1182 u8 tos = cfg->fc_tos;
19baf839
RO
1183 u32 key, mask;
1184 int err;
1185 struct leaf *l;
1186
1187 if (plen > 32)
1188 return -EINVAL;
1189
4e902c57 1190 key = ntohl(cfg->fc_dst);
19baf839 1191
2dfe55b4 1192 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1193
91b9a277 1194 mask = ntohl(inet_make_mask(plen));
19baf839 1195
c877efb2 1196 if (key & ~mask)
19baf839
RO
1197 return -EINVAL;
1198
1199 key = key & mask;
1200
4e902c57
TG
1201 fi = fib_create_info(cfg);
1202 if (IS_ERR(fi)) {
1203 err = PTR_ERR(fi);
19baf839 1204 goto err;
4e902c57 1205 }
19baf839
RO
1206
1207 l = fib_find_node(t, key);
c877efb2 1208 fa = NULL;
19baf839 1209
c877efb2 1210 if (l) {
19baf839
RO
1211 fa_head = get_fa_head(l, plen);
1212 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1213 }
1214
1215 /* Now fa, if non-NULL, points to the first fib alias
1216 * with the same keys [prefix,tos,priority], if such key already
1217 * exists or to the node before which we will insert new one.
1218 *
1219 * If fa is NULL, we will need to allocate a new one and
1220 * insert to the head of f.
1221 *
1222 * If f is NULL, no fib node matched the destination key
1223 * and we need to allocate a new one of those as well.
1224 */
1225
936f6f8e
JA
1226 if (fa && fa->fa_tos == tos &&
1227 fa->fa_info->fib_priority == fi->fib_priority) {
1228 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1229
1230 err = -EEXIST;
4e902c57 1231 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1232 goto out;
1233
936f6f8e
JA
1234 /* We have 2 goals:
1235 * 1. Find exact match for type, scope, fib_info to avoid
1236 * duplicate routes
1237 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1238 */
1239 fa_match = NULL;
1240 fa_first = fa;
1241 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1242 list_for_each_entry_continue(fa, fa_head, fa_list) {
1243 if (fa->fa_tos != tos)
1244 break;
1245 if (fa->fa_info->fib_priority != fi->fib_priority)
1246 break;
1247 if (fa->fa_type == cfg->fc_type &&
1248 fa->fa_scope == cfg->fc_scope &&
1249 fa->fa_info == fi) {
1250 fa_match = fa;
1251 break;
1252 }
1253 }
1254
4e902c57 1255 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1256 struct fib_info *fi_drop;
1257 u8 state;
1258
936f6f8e
JA
1259 fa = fa_first;
1260 if (fa_match) {
1261 if (fa == fa_match)
1262 err = 0;
6725033f 1263 goto out;
936f6f8e 1264 }
2373ce1c 1265 err = -ENOBUFS;
e94b1766 1266 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1267 if (new_fa == NULL)
1268 goto out;
19baf839
RO
1269
1270 fi_drop = fa->fa_info;
2373ce1c
RO
1271 new_fa->fa_tos = fa->fa_tos;
1272 new_fa->fa_info = fi;
4e902c57
TG
1273 new_fa->fa_type = cfg->fc_type;
1274 new_fa->fa_scope = cfg->fc_scope;
19baf839 1275 state = fa->fa_state;
936f6f8e 1276 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1277
2373ce1c
RO
1278 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1279 alias_free_mem_rcu(fa);
19baf839
RO
1280
1281 fib_release_info(fi_drop);
1282 if (state & FA_S_ACCESSED)
76e6ebfb 1283 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1286
91b9a277 1287 goto succeeded;
19baf839
RO
1288 }
1289 /* Error if we find a perfect match which
1290 * uses the same scope, type, and nexthop
1291 * information.
1292 */
936f6f8e
JA
1293 if (fa_match)
1294 goto out;
a07f5f50 1295
4e902c57 1296 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1297 fa = fa_first;
19baf839
RO
1298 }
1299 err = -ENOENT;
4e902c57 1300 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1301 goto out;
1302
1303 err = -ENOBUFS;
e94b1766 1304 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1305 if (new_fa == NULL)
1306 goto out;
1307
1308 new_fa->fa_info = fi;
1309 new_fa->fa_tos = tos;
4e902c57
TG
1310 new_fa->fa_type = cfg->fc_type;
1311 new_fa->fa_scope = cfg->fc_scope;
19baf839 1312 new_fa->fa_state = 0;
19baf839
RO
1313 /*
1314 * Insert new entry to the list.
1315 */
1316
c877efb2 1317 if (!fa_head) {
fea86ad8
SH
1318 fa_head = fib_insert_node(t, key, plen);
1319 if (unlikely(!fa_head)) {
1320 err = -ENOMEM;
f835e471 1321 goto out_free_new_fa;
fea86ad8 1322 }
f835e471 1323 }
19baf839 1324
2373ce1c
RO
1325 list_add_tail_rcu(&new_fa->fa_list,
1326 (fa ? &fa->fa_list : fa_head));
19baf839 1327
76e6ebfb 1328 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1329 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1330 &cfg->fc_nlinfo, 0);
19baf839
RO
1331succeeded:
1332 return 0;
f835e471
RO
1333
1334out_free_new_fa:
1335 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1336out:
1337 fib_release_info(fi);
91b9a277 1338err:
19baf839
RO
1339 return err;
1340}
1341
772cb712 1342/* should be called with rcu_read_lock */
5b470441 1343static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
a07f5f50 1344 t_key key, const struct flowi *flp,
ebc0ffae 1345 struct fib_result *res, int fib_flags)
19baf839 1346{
19baf839
RO
1347 struct leaf_info *li;
1348 struct hlist_head *hhead = &l->list;
1349 struct hlist_node *node;
c877efb2 1350
2373ce1c 1351 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1352 int err;
1353 int plen = li->plen;
1354 __be32 mask = inet_make_mask(plen);
1355
888454c5 1356 if (l->key != (key & ntohl(mask)))
19baf839
RO
1357 continue;
1358
5b470441 1359 err = fib_semantic_match(tb, &li->falh, flp, res, plen, fib_flags);
a07f5f50 1360
19baf839 1361#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1362 if (err <= 0)
19baf839 1363 t->stats.semantic_match_passed++;
a07f5f50
SH
1364 else
1365 t->stats.semantic_match_miss++;
19baf839 1366#endif
a07f5f50 1367 if (err <= 0)
2e655571 1368 return err;
19baf839 1369 }
a07f5f50 1370
2e655571 1371 return 1;
19baf839
RO
1372}
1373
16c6cf8b 1374int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
ebc0ffae 1375 struct fib_result *res, int fib_flags)
19baf839
RO
1376{
1377 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1378 int ret;
19baf839
RO
1379 struct node *n;
1380 struct tnode *pn;
1381 int pos, bits;
91b9a277 1382 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1383 int chopped_off;
1384 t_key cindex = 0;
1385 int current_prefix_length = KEYLENGTH;
91b9a277 1386 struct tnode *cn;
874ffa8f 1387 t_key pref_mismatch;
91b9a277 1388
2373ce1c 1389 rcu_read_lock();
91b9a277 1390
2373ce1c 1391 n = rcu_dereference(t->trie);
c877efb2 1392 if (!n)
19baf839
RO
1393 goto failed;
1394
1395#ifdef CONFIG_IP_FIB_TRIE_STATS
1396 t->stats.gets++;
1397#endif
1398
1399 /* Just a leaf? */
1400 if (IS_LEAF(n)) {
5b470441 1401 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1402 goto found;
19baf839 1403 }
a07f5f50 1404
19baf839
RO
1405 pn = (struct tnode *) n;
1406 chopped_off = 0;
c877efb2 1407
91b9a277 1408 while (pn) {
19baf839
RO
1409 pos = pn->pos;
1410 bits = pn->bits;
1411
c877efb2 1412 if (!chopped_off)
ab66b4a7
SH
1413 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1414 pos, bits);
19baf839 1415
b902e573 1416 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1417
1418 if (n == NULL) {
1419#ifdef CONFIG_IP_FIB_TRIE_STATS
1420 t->stats.null_node_hit++;
1421#endif
1422 goto backtrace;
1423 }
1424
91b9a277 1425 if (IS_LEAF(n)) {
5b470441 1426 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1427 if (ret > 0)
91b9a277 1428 goto backtrace;
a07f5f50 1429 goto found;
91b9a277
OJ
1430 }
1431
91b9a277 1432 cn = (struct tnode *)n;
19baf839 1433
91b9a277
OJ
1434 /*
1435 * It's a tnode, and we can do some extra checks here if we
1436 * like, to avoid descending into a dead-end branch.
1437 * This tnode is in the parent's child array at index
1438 * key[p_pos..p_pos+p_bits] but potentially with some bits
1439 * chopped off, so in reality the index may be just a
1440 * subprefix, padded with zero at the end.
1441 * We can also take a look at any skipped bits in this
1442 * tnode - everything up to p_pos is supposed to be ok,
1443 * and the non-chopped bits of the index (se previous
1444 * paragraph) are also guaranteed ok, but the rest is
1445 * considered unknown.
1446 *
1447 * The skipped bits are key[pos+bits..cn->pos].
1448 */
19baf839 1449
91b9a277
OJ
1450 /* If current_prefix_length < pos+bits, we are already doing
1451 * actual prefix matching, which means everything from
1452 * pos+(bits-chopped_off) onward must be zero along some
1453 * branch of this subtree - otherwise there is *no* valid
1454 * prefix present. Here we can only check the skipped
1455 * bits. Remember, since we have already indexed into the
1456 * parent's child array, we know that the bits we chopped of
1457 * *are* zero.
1458 */
19baf839 1459
a07f5f50
SH
1460 /* NOTA BENE: Checking only skipped bits
1461 for the new node here */
19baf839 1462
91b9a277
OJ
1463 if (current_prefix_length < pos+bits) {
1464 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1465 cn->pos - current_prefix_length)
1466 || !(cn->child[0]))
91b9a277
OJ
1467 goto backtrace;
1468 }
19baf839 1469
91b9a277
OJ
1470 /*
1471 * If chopped_off=0, the index is fully validated and we
1472 * only need to look at the skipped bits for this, the new,
1473 * tnode. What we actually want to do is to find out if
1474 * these skipped bits match our key perfectly, or if we will
1475 * have to count on finding a matching prefix further down,
1476 * because if we do, we would like to have some way of
1477 * verifying the existence of such a prefix at this point.
1478 */
19baf839 1479
91b9a277
OJ
1480 /* The only thing we can do at this point is to verify that
1481 * any such matching prefix can indeed be a prefix to our
1482 * key, and if the bits in the node we are inspecting that
1483 * do not match our key are not ZERO, this cannot be true.
1484 * Thus, find out where there is a mismatch (before cn->pos)
1485 * and verify that all the mismatching bits are zero in the
1486 * new tnode's key.
1487 */
19baf839 1488
a07f5f50
SH
1489 /*
1490 * Note: We aren't very concerned about the piece of
1491 * the key that precede pn->pos+pn->bits, since these
1492 * have already been checked. The bits after cn->pos
1493 * aren't checked since these are by definition
1494 * "unknown" at this point. Thus, what we want to see
1495 * is if we are about to enter the "prefix matching"
1496 * state, and in that case verify that the skipped
1497 * bits that will prevail throughout this subtree are
1498 * zero, as they have to be if we are to find a
1499 * matching prefix.
91b9a277
OJ
1500 */
1501
874ffa8f 1502 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1503
a07f5f50
SH
1504 /*
1505 * In short: If skipped bits in this node do not match
1506 * the search key, enter the "prefix matching"
1507 * state.directly.
91b9a277
OJ
1508 */
1509 if (pref_mismatch) {
874ffa8f 1510 int mp = KEYLENGTH - fls(pref_mismatch);
91b9a277 1511
874ffa8f 1512 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1513 goto backtrace;
1514
1515 if (current_prefix_length >= cn->pos)
1516 current_prefix_length = mp;
c877efb2 1517 }
a07f5f50 1518
91b9a277
OJ
1519 pn = (struct tnode *)n; /* Descend */
1520 chopped_off = 0;
1521 continue;
1522
19baf839
RO
1523backtrace:
1524 chopped_off++;
1525
1526 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1527 while ((chopped_off <= pn->bits)
1528 && !(cindex & (1<<(chopped_off-1))))
19baf839 1529 chopped_off++;
19baf839
RO
1530
1531 /* Decrease current_... with bits chopped off */
1532 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1533 current_prefix_length = pn->pos + pn->bits
1534 - chopped_off;
91b9a277 1535
19baf839 1536 /*
c877efb2 1537 * Either we do the actual chop off according or if we have
19baf839
RO
1538 * chopped off all bits in this tnode walk up to our parent.
1539 */
1540
91b9a277 1541 if (chopped_off <= pn->bits) {
19baf839 1542 cindex &= ~(1 << (chopped_off-1));
91b9a277 1543 } else {
b902e573 1544 struct tnode *parent = node_parent_rcu((struct node *) pn);
06801916 1545 if (!parent)
19baf839 1546 goto failed;
91b9a277 1547
19baf839 1548 /* Get Child's index */
06801916
SH
1549 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1550 pn = parent;
19baf839
RO
1551 chopped_off = 0;
1552
1553#ifdef CONFIG_IP_FIB_TRIE_STATS
1554 t->stats.backtrack++;
1555#endif
1556 goto backtrace;
c877efb2 1557 }
19baf839
RO
1558 }
1559failed:
c877efb2 1560 ret = 1;
19baf839 1561found:
2373ce1c 1562 rcu_read_unlock();
19baf839
RO
1563 return ret;
1564}
1565
9195bef7
SH
1566/*
1567 * Remove the leaf and return parent.
1568 */
1569static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1570{
9195bef7 1571 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1572
9195bef7 1573 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1574
c877efb2 1575 if (tp) {
9195bef7 1576 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1577 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1578 trie_rebalance(t, tp);
91b9a277 1579 } else
2373ce1c 1580 rcu_assign_pointer(t->trie, NULL);
19baf839 1581
387a5487 1582 free_leaf(l);
19baf839
RO
1583}
1584
d562f1f8
RO
1585/*
1586 * Caller must hold RTNL.
1587 */
16c6cf8b 1588int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1589{
1590 struct trie *t = (struct trie *) tb->tb_data;
1591 u32 key, mask;
4e902c57
TG
1592 int plen = cfg->fc_dst_len;
1593 u8 tos = cfg->fc_tos;
19baf839
RO
1594 struct fib_alias *fa, *fa_to_delete;
1595 struct list_head *fa_head;
1596 struct leaf *l;
91b9a277
OJ
1597 struct leaf_info *li;
1598
c877efb2 1599 if (plen > 32)
19baf839
RO
1600 return -EINVAL;
1601
4e902c57 1602 key = ntohl(cfg->fc_dst);
91b9a277 1603 mask = ntohl(inet_make_mask(plen));
19baf839 1604
c877efb2 1605 if (key & ~mask)
19baf839
RO
1606 return -EINVAL;
1607
1608 key = key & mask;
1609 l = fib_find_node(t, key);
1610
c877efb2 1611 if (!l)
19baf839
RO
1612 return -ESRCH;
1613
1614 fa_head = get_fa_head(l, plen);
1615 fa = fib_find_alias(fa_head, tos, 0);
1616
1617 if (!fa)
1618 return -ESRCH;
1619
0c7770c7 1620 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1621
1622 fa_to_delete = NULL;
936f6f8e
JA
1623 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1624 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1625 struct fib_info *fi = fa->fa_info;
1626
1627 if (fa->fa_tos != tos)
1628 break;
1629
4e902c57
TG
1630 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1631 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1632 fa->fa_scope == cfg->fc_scope) &&
1633 (!cfg->fc_protocol ||
1634 fi->fib_protocol == cfg->fc_protocol) &&
1635 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1636 fa_to_delete = fa;
1637 break;
1638 }
1639 }
1640
91b9a277
OJ
1641 if (!fa_to_delete)
1642 return -ESRCH;
19baf839 1643
91b9a277 1644 fa = fa_to_delete;
4e902c57 1645 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1646 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1647
1648 l = fib_find_node(t, key);
772cb712 1649 li = find_leaf_info(l, plen);
19baf839 1650
2373ce1c 1651 list_del_rcu(&fa->fa_list);
19baf839 1652
91b9a277 1653 if (list_empty(fa_head)) {
2373ce1c 1654 hlist_del_rcu(&li->hlist);
91b9a277 1655 free_leaf_info(li);
2373ce1c 1656 }
19baf839 1657
91b9a277 1658 if (hlist_empty(&l->list))
9195bef7 1659 trie_leaf_remove(t, l);
19baf839 1660
91b9a277 1661 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1662 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1663
2373ce1c
RO
1664 fib_release_info(fa->fa_info);
1665 alias_free_mem_rcu(fa);
91b9a277 1666 return 0;
19baf839
RO
1667}
1668
ef3660ce 1669static int trie_flush_list(struct list_head *head)
19baf839
RO
1670{
1671 struct fib_alias *fa, *fa_node;
1672 int found = 0;
1673
1674 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1675 struct fib_info *fi = fa->fa_info;
19baf839 1676
2373ce1c
RO
1677 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1678 list_del_rcu(&fa->fa_list);
1679 fib_release_info(fa->fa_info);
1680 alias_free_mem_rcu(fa);
19baf839
RO
1681 found++;
1682 }
1683 }
1684 return found;
1685}
1686
ef3660ce 1687static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1688{
1689 int found = 0;
1690 struct hlist_head *lih = &l->list;
1691 struct hlist_node *node, *tmp;
1692 struct leaf_info *li = NULL;
1693
1694 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1695 found += trie_flush_list(&li->falh);
19baf839
RO
1696
1697 if (list_empty(&li->falh)) {
2373ce1c 1698 hlist_del_rcu(&li->hlist);
19baf839
RO
1699 free_leaf_info(li);
1700 }
1701 }
1702 return found;
1703}
1704
82cfbb00
SH
1705/*
1706 * Scan for the next right leaf starting at node p->child[idx]
1707 * Since we have back pointer, no recursion necessary.
1708 */
1709static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1710{
82cfbb00
SH
1711 do {
1712 t_key idx;
c877efb2 1713
c877efb2 1714 if (c)
82cfbb00 1715 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1716 else
82cfbb00 1717 idx = 0;
2373ce1c 1718
82cfbb00
SH
1719 while (idx < 1u << p->bits) {
1720 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1721 if (!c)
91b9a277
OJ
1722 continue;
1723
82cfbb00
SH
1724 if (IS_LEAF(c)) {
1725 prefetch(p->child[idx]);
1726 return (struct leaf *) c;
19baf839 1727 }
82cfbb00
SH
1728
1729 /* Rescan start scanning in new node */
1730 p = (struct tnode *) c;
1731 idx = 0;
19baf839 1732 }
82cfbb00
SH
1733
1734 /* Node empty, walk back up to parent */
91b9a277 1735 c = (struct node *) p;
a034ee3c 1736 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1737
1738 return NULL; /* Root of trie */
1739}
1740
82cfbb00
SH
1741static struct leaf *trie_firstleaf(struct trie *t)
1742{
a034ee3c 1743 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1744
1745 if (!n)
1746 return NULL;
1747
1748 if (IS_LEAF(n)) /* trie is just a leaf */
1749 return (struct leaf *) n;
1750
1751 return leaf_walk_rcu(n, NULL);
1752}
1753
1754static struct leaf *trie_nextleaf(struct leaf *l)
1755{
1756 struct node *c = (struct node *) l;
b902e573 1757 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1758
1759 if (!p)
1760 return NULL; /* trie with just one leaf */
1761
1762 return leaf_walk_rcu(p, c);
19baf839
RO
1763}
1764
71d67e66
SH
1765static struct leaf *trie_leafindex(struct trie *t, int index)
1766{
1767 struct leaf *l = trie_firstleaf(t);
1768
ec28cf73 1769 while (l && index-- > 0)
71d67e66 1770 l = trie_nextleaf(l);
ec28cf73 1771
71d67e66
SH
1772 return l;
1773}
1774
1775
d562f1f8
RO
1776/*
1777 * Caller must hold RTNL.
1778 */
16c6cf8b 1779int fib_table_flush(struct fib_table *tb)
19baf839
RO
1780{
1781 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1782 struct leaf *l, *ll = NULL;
82cfbb00 1783 int found = 0;
19baf839 1784
82cfbb00 1785 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1786 found += trie_flush_leaf(l);
19baf839
RO
1787
1788 if (ll && hlist_empty(&ll->list))
9195bef7 1789 trie_leaf_remove(t, ll);
19baf839
RO
1790 ll = l;
1791 }
1792
1793 if (ll && hlist_empty(&ll->list))
9195bef7 1794 trie_leaf_remove(t, ll);
19baf839 1795
0c7770c7 1796 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1797 return found;
1798}
1799
4aa2c466
PE
1800void fib_free_table(struct fib_table *tb)
1801{
1802 kfree(tb);
1803}
1804
a07f5f50
SH
1805static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1806 struct fib_table *tb,
19baf839
RO
1807 struct sk_buff *skb, struct netlink_callback *cb)
1808{
1809 int i, s_i;
1810 struct fib_alias *fa;
32ab5f80 1811 __be32 xkey = htonl(key);
19baf839 1812
71d67e66 1813 s_i = cb->args[5];
19baf839
RO
1814 i = 0;
1815
2373ce1c
RO
1816 /* rcu_read_lock is hold by caller */
1817
1818 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1819 if (i < s_i) {
1820 i++;
1821 continue;
1822 }
19baf839
RO
1823
1824 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1825 cb->nlh->nlmsg_seq,
1826 RTM_NEWROUTE,
1827 tb->tb_id,
1828 fa->fa_type,
1829 fa->fa_scope,
be403ea1 1830 xkey,
19baf839
RO
1831 plen,
1832 fa->fa_tos,
64347f78 1833 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1834 cb->args[5] = i;
19baf839 1835 return -1;
91b9a277 1836 }
19baf839
RO
1837 i++;
1838 }
71d67e66 1839 cb->args[5] = i;
19baf839
RO
1840 return skb->len;
1841}
1842
a88ee229
SH
1843static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1844 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1845{
a88ee229
SH
1846 struct leaf_info *li;
1847 struct hlist_node *node;
1848 int i, s_i;
19baf839 1849
71d67e66 1850 s_i = cb->args[4];
a88ee229 1851 i = 0;
19baf839 1852
a88ee229
SH
1853 /* rcu_read_lock is hold by caller */
1854 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1855 if (i < s_i) {
1856 i++;
19baf839 1857 continue;
a88ee229 1858 }
91b9a277 1859
a88ee229 1860 if (i > s_i)
71d67e66 1861 cb->args[5] = 0;
19baf839 1862
a88ee229 1863 if (list_empty(&li->falh))
19baf839
RO
1864 continue;
1865
a88ee229 1866 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1867 cb->args[4] = i;
19baf839
RO
1868 return -1;
1869 }
a88ee229 1870 i++;
19baf839 1871 }
a88ee229 1872
71d67e66 1873 cb->args[4] = i;
19baf839
RO
1874 return skb->len;
1875}
1876
16c6cf8b
SH
1877int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1878 struct netlink_callback *cb)
19baf839 1879{
a88ee229 1880 struct leaf *l;
19baf839 1881 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1882 t_key key = cb->args[2];
71d67e66 1883 int count = cb->args[3];
19baf839 1884
2373ce1c 1885 rcu_read_lock();
d5ce8a0e
SH
1886 /* Dump starting at last key.
1887 * Note: 0.0.0.0/0 (ie default) is first key.
1888 */
71d67e66 1889 if (count == 0)
d5ce8a0e
SH
1890 l = trie_firstleaf(t);
1891 else {
71d67e66
SH
1892 /* Normally, continue from last key, but if that is missing
1893 * fallback to using slow rescan
1894 */
d5ce8a0e 1895 l = fib_find_node(t, key);
71d67e66
SH
1896 if (!l)
1897 l = trie_leafindex(t, count);
d5ce8a0e 1898 }
a88ee229 1899
d5ce8a0e
SH
1900 while (l) {
1901 cb->args[2] = l->key;
a88ee229 1902 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1903 cb->args[3] = count;
a88ee229 1904 rcu_read_unlock();
a88ee229 1905 return -1;
19baf839 1906 }
d5ce8a0e 1907
71d67e66 1908 ++count;
d5ce8a0e 1909 l = trie_nextleaf(l);
71d67e66
SH
1910 memset(&cb->args[4], 0,
1911 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1912 }
71d67e66 1913 cb->args[3] = count;
2373ce1c 1914 rcu_read_unlock();
a88ee229 1915
19baf839 1916 return skb->len;
19baf839
RO
1917}
1918
7f9b8052
SH
1919void __init fib_hash_init(void)
1920{
a07f5f50
SH
1921 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1922 sizeof(struct fib_alias),
bc3c8c1e
SH
1923 0, SLAB_PANIC, NULL);
1924
1925 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1926 max(sizeof(struct leaf),
1927 sizeof(struct leaf_info)),
1928 0, SLAB_PANIC, NULL);
7f9b8052 1929}
19baf839 1930
7f9b8052
SH
1931
1932/* Fix more generic FIB names for init later */
1933struct fib_table *fib_hash_table(u32 id)
19baf839
RO
1934{
1935 struct fib_table *tb;
1936 struct trie *t;
1937
19baf839
RO
1938 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1939 GFP_KERNEL);
1940 if (tb == NULL)
1941 return NULL;
1942
1943 tb->tb_id = id;
971b893e 1944 tb->tb_default = -1;
19baf839
RO
1945
1946 t = (struct trie *) tb->tb_data;
c28a1cf4 1947 memset(t, 0, sizeof(*t));
19baf839 1948
19baf839 1949 if (id == RT_TABLE_LOCAL)
a07f5f50 1950 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
1951
1952 return tb;
1953}
1954
cb7b593c
SH
1955#ifdef CONFIG_PROC_FS
1956/* Depth first Trie walk iterator */
1957struct fib_trie_iter {
1c340b2f 1958 struct seq_net_private p;
3d3b2d25 1959 struct fib_table *tb;
cb7b593c 1960 struct tnode *tnode;
a034ee3c
ED
1961 unsigned int index;
1962 unsigned int depth;
cb7b593c 1963};
19baf839 1964
cb7b593c 1965static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1966{
cb7b593c 1967 struct tnode *tn = iter->tnode;
a034ee3c 1968 unsigned int cindex = iter->index;
cb7b593c 1969 struct tnode *p;
19baf839 1970
6640e697
EB
1971 /* A single entry routing table */
1972 if (!tn)
1973 return NULL;
1974
cb7b593c
SH
1975 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1976 iter->tnode, iter->index, iter->depth);
1977rescan:
1978 while (cindex < (1<<tn->bits)) {
b59cfbf7 1979 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 1980
cb7b593c
SH
1981 if (n) {
1982 if (IS_LEAF(n)) {
1983 iter->tnode = tn;
1984 iter->index = cindex + 1;
1985 } else {
1986 /* push down one level */
1987 iter->tnode = (struct tnode *) n;
1988 iter->index = 0;
1989 ++iter->depth;
1990 }
1991 return n;
1992 }
19baf839 1993
cb7b593c
SH
1994 ++cindex;
1995 }
91b9a277 1996
cb7b593c 1997 /* Current node exhausted, pop back up */
b59cfbf7 1998 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
1999 if (p) {
2000 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2001 tn = p;
2002 --iter->depth;
2003 goto rescan;
19baf839 2004 }
cb7b593c
SH
2005
2006 /* got root? */
2007 return NULL;
19baf839
RO
2008}
2009
cb7b593c
SH
2010static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2011 struct trie *t)
19baf839 2012{
3d3b2d25 2013 struct node *n;
5ddf0eb2 2014
132adf54 2015 if (!t)
5ddf0eb2
RO
2016 return NULL;
2017
2018 n = rcu_dereference(t->trie);
3d3b2d25 2019 if (!n)
5ddf0eb2 2020 return NULL;
19baf839 2021
3d3b2d25
SH
2022 if (IS_TNODE(n)) {
2023 iter->tnode = (struct tnode *) n;
2024 iter->index = 0;
2025 iter->depth = 1;
2026 } else {
2027 iter->tnode = NULL;
2028 iter->index = 0;
2029 iter->depth = 0;
91b9a277 2030 }
3d3b2d25
SH
2031
2032 return n;
cb7b593c 2033}
91b9a277 2034
cb7b593c
SH
2035static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2036{
2037 struct node *n;
2038 struct fib_trie_iter iter;
91b9a277 2039
cb7b593c 2040 memset(s, 0, sizeof(*s));
91b9a277 2041
cb7b593c 2042 rcu_read_lock();
3d3b2d25 2043 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2044 if (IS_LEAF(n)) {
93672292
SH
2045 struct leaf *l = (struct leaf *)n;
2046 struct leaf_info *li;
2047 struct hlist_node *tmp;
2048
cb7b593c
SH
2049 s->leaves++;
2050 s->totdepth += iter.depth;
2051 if (iter.depth > s->maxdepth)
2052 s->maxdepth = iter.depth;
93672292
SH
2053
2054 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2055 ++s->prefixes;
cb7b593c
SH
2056 } else {
2057 const struct tnode *tn = (const struct tnode *) n;
2058 int i;
2059
2060 s->tnodes++;
132adf54 2061 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2062 s->nodesizes[tn->bits]++;
2063
cb7b593c
SH
2064 for (i = 0; i < (1<<tn->bits); i++)
2065 if (!tn->child[i])
2066 s->nullpointers++;
19baf839 2067 }
19baf839 2068 }
2373ce1c 2069 rcu_read_unlock();
19baf839
RO
2070}
2071
cb7b593c
SH
2072/*
2073 * This outputs /proc/net/fib_triestats
2074 */
2075static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2076{
a034ee3c 2077 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2078
cb7b593c
SH
2079 if (stat->leaves)
2080 avdepth = stat->totdepth*100 / stat->leaves;
2081 else
2082 avdepth = 0;
91b9a277 2083
a07f5f50
SH
2084 seq_printf(seq, "\tAver depth: %u.%02d\n",
2085 avdepth / 100, avdepth % 100);
cb7b593c 2086 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2087
cb7b593c 2088 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2089 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2090
2091 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2092 bytes += sizeof(struct leaf_info) * stat->prefixes;
2093
187b5188 2094 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2095 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2096
06ef921d
RO
2097 max = MAX_STAT_DEPTH;
2098 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2099 max--;
19baf839 2100
cb7b593c
SH
2101 pointers = 0;
2102 for (i = 1; i <= max; i++)
2103 if (stat->nodesizes[i] != 0) {
187b5188 2104 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2105 pointers += (1<<i) * stat->nodesizes[i];
2106 }
2107 seq_putc(seq, '\n');
187b5188 2108 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2109
cb7b593c 2110 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2111 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2112 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2113}
2373ce1c 2114
cb7b593c 2115#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2116static void trie_show_usage(struct seq_file *seq,
2117 const struct trie_use_stats *stats)
2118{
2119 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2120 seq_printf(seq, "gets = %u\n", stats->gets);
2121 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2122 seq_printf(seq, "semantic match passed = %u\n",
2123 stats->semantic_match_passed);
2124 seq_printf(seq, "semantic match miss = %u\n",
2125 stats->semantic_match_miss);
2126 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2127 seq_printf(seq, "skipped node resize = %u\n\n",
2128 stats->resize_node_skipped);
cb7b593c 2129}
66a2f7fd
SH
2130#endif /* CONFIG_IP_FIB_TRIE_STATS */
2131
3d3b2d25 2132static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2133{
3d3b2d25
SH
2134 if (tb->tb_id == RT_TABLE_LOCAL)
2135 seq_puts(seq, "Local:\n");
2136 else if (tb->tb_id == RT_TABLE_MAIN)
2137 seq_puts(seq, "Main:\n");
2138 else
2139 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2140}
19baf839 2141
3d3b2d25 2142
cb7b593c
SH
2143static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2144{
1c340b2f 2145 struct net *net = (struct net *)seq->private;
3d3b2d25 2146 unsigned int h;
877a9bff 2147
d717a9a6 2148 seq_printf(seq,
a07f5f50
SH
2149 "Basic info: size of leaf:"
2150 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2151 sizeof(struct leaf), sizeof(struct tnode));
2152
3d3b2d25
SH
2153 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2154 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2155 struct hlist_node *node;
2156 struct fib_table *tb;
2157
2158 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2159 struct trie *t = (struct trie *) tb->tb_data;
2160 struct trie_stat stat;
877a9bff 2161
3d3b2d25
SH
2162 if (!t)
2163 continue;
2164
2165 fib_table_print(seq, tb);
2166
2167 trie_collect_stats(t, &stat);
2168 trie_show_stats(seq, &stat);
2169#ifdef CONFIG_IP_FIB_TRIE_STATS
2170 trie_show_usage(seq, &t->stats);
2171#endif
2172 }
2173 }
19baf839 2174
cb7b593c 2175 return 0;
19baf839
RO
2176}
2177
cb7b593c 2178static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2179{
de05c557 2180 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2181}
2182
9a32144e 2183static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2184 .owner = THIS_MODULE,
2185 .open = fib_triestat_seq_open,
2186 .read = seq_read,
2187 .llseek = seq_lseek,
b6fcbdb4 2188 .release = single_release_net,
cb7b593c
SH
2189};
2190
1218854a 2191static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2192{
1218854a
YH
2193 struct fib_trie_iter *iter = seq->private;
2194 struct net *net = seq_file_net(seq);
cb7b593c 2195 loff_t idx = 0;
3d3b2d25 2196 unsigned int h;
cb7b593c 2197
3d3b2d25
SH
2198 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2199 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2200 struct hlist_node *node;
2201 struct fib_table *tb;
cb7b593c 2202
3d3b2d25
SH
2203 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2204 struct node *n;
2205
2206 for (n = fib_trie_get_first(iter,
2207 (struct trie *) tb->tb_data);
2208 n; n = fib_trie_get_next(iter))
2209 if (pos == idx++) {
2210 iter->tb = tb;
2211 return n;
2212 }
2213 }
cb7b593c 2214 }
3d3b2d25 2215
19baf839
RO
2216 return NULL;
2217}
2218
cb7b593c 2219static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2220 __acquires(RCU)
19baf839 2221{
cb7b593c 2222 rcu_read_lock();
1218854a 2223 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2224}
2225
cb7b593c 2226static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2227{
cb7b593c 2228 struct fib_trie_iter *iter = seq->private;
1218854a 2229 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2230 struct fib_table *tb = iter->tb;
2231 struct hlist_node *tb_node;
2232 unsigned int h;
2233 struct node *n;
cb7b593c 2234
19baf839 2235 ++*pos;
3d3b2d25
SH
2236 /* next node in same table */
2237 n = fib_trie_get_next(iter);
2238 if (n)
2239 return n;
19baf839 2240
3d3b2d25
SH
2241 /* walk rest of this hash chain */
2242 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2243 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2244 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2245 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2246 if (n)
2247 goto found;
2248 }
19baf839 2249
3d3b2d25
SH
2250 /* new hash chain */
2251 while (++h < FIB_TABLE_HASHSZ) {
2252 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2253 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2254 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2255 if (n)
2256 goto found;
2257 }
2258 }
cb7b593c 2259 return NULL;
3d3b2d25
SH
2260
2261found:
2262 iter->tb = tb;
2263 return n;
cb7b593c 2264}
19baf839 2265
cb7b593c 2266static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2267 __releases(RCU)
19baf839 2268{
cb7b593c
SH
2269 rcu_read_unlock();
2270}
91b9a277 2271
cb7b593c
SH
2272static void seq_indent(struct seq_file *seq, int n)
2273{
a034ee3c
ED
2274 while (n-- > 0)
2275 seq_puts(seq, " ");
cb7b593c 2276}
19baf839 2277
28d36e37 2278static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2279{
132adf54 2280 switch (s) {
cb7b593c
SH
2281 case RT_SCOPE_UNIVERSE: return "universe";
2282 case RT_SCOPE_SITE: return "site";
2283 case RT_SCOPE_LINK: return "link";
2284 case RT_SCOPE_HOST: return "host";
2285 case RT_SCOPE_NOWHERE: return "nowhere";
2286 default:
28d36e37 2287 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2288 return buf;
2289 }
2290}
19baf839 2291
36cbd3dc 2292static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2293 [RTN_UNSPEC] = "UNSPEC",
2294 [RTN_UNICAST] = "UNICAST",
2295 [RTN_LOCAL] = "LOCAL",
2296 [RTN_BROADCAST] = "BROADCAST",
2297 [RTN_ANYCAST] = "ANYCAST",
2298 [RTN_MULTICAST] = "MULTICAST",
2299 [RTN_BLACKHOLE] = "BLACKHOLE",
2300 [RTN_UNREACHABLE] = "UNREACHABLE",
2301 [RTN_PROHIBIT] = "PROHIBIT",
2302 [RTN_THROW] = "THROW",
2303 [RTN_NAT] = "NAT",
2304 [RTN_XRESOLVE] = "XRESOLVE",
2305};
19baf839 2306
a034ee3c 2307static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2308{
cb7b593c
SH
2309 if (t < __RTN_MAX && rtn_type_names[t])
2310 return rtn_type_names[t];
28d36e37 2311 snprintf(buf, len, "type %u", t);
cb7b593c 2312 return buf;
19baf839
RO
2313}
2314
cb7b593c
SH
2315/* Pretty print the trie */
2316static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2317{
cb7b593c
SH
2318 const struct fib_trie_iter *iter = seq->private;
2319 struct node *n = v;
c877efb2 2320
3d3b2d25
SH
2321 if (!node_parent_rcu(n))
2322 fib_table_print(seq, iter->tb);
095b8501 2323
cb7b593c
SH
2324 if (IS_TNODE(n)) {
2325 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2326 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2327
1d25cd6c 2328 seq_indent(seq, iter->depth-1);
673d57e7
HH
2329 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2330 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2331 tn->empty_children);
e905a9ed 2332
cb7b593c
SH
2333 } else {
2334 struct leaf *l = (struct leaf *) n;
1328042e
SH
2335 struct leaf_info *li;
2336 struct hlist_node *node;
32ab5f80 2337 __be32 val = htonl(l->key);
cb7b593c
SH
2338
2339 seq_indent(seq, iter->depth);
673d57e7 2340 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2341
2342 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2343 struct fib_alias *fa;
2344
2345 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2346 char buf1[32], buf2[32];
2347
2348 seq_indent(seq, iter->depth+1);
2349 seq_printf(seq, " /%d %s %s", li->plen,
2350 rtn_scope(buf1, sizeof(buf1),
2351 fa->fa_scope),
2352 rtn_type(buf2, sizeof(buf2),
2353 fa->fa_type));
2354 if (fa->fa_tos)
b9c4d82a 2355 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2356 seq_putc(seq, '\n');
cb7b593c
SH
2357 }
2358 }
19baf839 2359 }
cb7b593c 2360
19baf839
RO
2361 return 0;
2362}
2363
f690808e 2364static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2365 .start = fib_trie_seq_start,
2366 .next = fib_trie_seq_next,
2367 .stop = fib_trie_seq_stop,
2368 .show = fib_trie_seq_show,
19baf839
RO
2369};
2370
cb7b593c 2371static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2372{
1c340b2f
DL
2373 return seq_open_net(inode, file, &fib_trie_seq_ops,
2374 sizeof(struct fib_trie_iter));
19baf839
RO
2375}
2376
9a32144e 2377static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2378 .owner = THIS_MODULE,
2379 .open = fib_trie_seq_open,
2380 .read = seq_read,
2381 .llseek = seq_lseek,
1c340b2f 2382 .release = seq_release_net,
19baf839
RO
2383};
2384
8315f5d8
SH
2385struct fib_route_iter {
2386 struct seq_net_private p;
2387 struct trie *main_trie;
2388 loff_t pos;
2389 t_key key;
2390};
2391
2392static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2393{
2394 struct leaf *l = NULL;
2395 struct trie *t = iter->main_trie;
2396
2397 /* use cache location of last found key */
2398 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2399 pos -= iter->pos;
2400 else {
2401 iter->pos = 0;
2402 l = trie_firstleaf(t);
2403 }
2404
2405 while (l && pos-- > 0) {
2406 iter->pos++;
2407 l = trie_nextleaf(l);
2408 }
2409
2410 if (l)
2411 iter->key = pos; /* remember it */
2412 else
2413 iter->pos = 0; /* forget it */
2414
2415 return l;
2416}
2417
2418static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2419 __acquires(RCU)
2420{
2421 struct fib_route_iter *iter = seq->private;
2422 struct fib_table *tb;
2423
2424 rcu_read_lock();
1218854a 2425 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2426 if (!tb)
2427 return NULL;
2428
2429 iter->main_trie = (struct trie *) tb->tb_data;
2430 if (*pos == 0)
2431 return SEQ_START_TOKEN;
2432 else
2433 return fib_route_get_idx(iter, *pos - 1);
2434}
2435
2436static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2437{
2438 struct fib_route_iter *iter = seq->private;
2439 struct leaf *l = v;
2440
2441 ++*pos;
2442 if (v == SEQ_START_TOKEN) {
2443 iter->pos = 0;
2444 l = trie_firstleaf(iter->main_trie);
2445 } else {
2446 iter->pos++;
2447 l = trie_nextleaf(l);
2448 }
2449
2450 if (l)
2451 iter->key = l->key;
2452 else
2453 iter->pos = 0;
2454 return l;
2455}
2456
2457static void fib_route_seq_stop(struct seq_file *seq, void *v)
2458 __releases(RCU)
2459{
2460 rcu_read_unlock();
2461}
2462
a034ee3c 2463static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2464{
a034ee3c 2465 unsigned int flags = 0;
19baf839 2466
a034ee3c
ED
2467 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2468 flags = RTF_REJECT;
cb7b593c
SH
2469 if (fi && fi->fib_nh->nh_gw)
2470 flags |= RTF_GATEWAY;
32ab5f80 2471 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2472 flags |= RTF_HOST;
2473 flags |= RTF_UP;
2474 return flags;
19baf839
RO
2475}
2476
cb7b593c
SH
2477/*
2478 * This outputs /proc/net/route.
2479 * The format of the file is not supposed to be changed
a034ee3c 2480 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2481 * legacy utilities
2482 */
2483static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2484{
cb7b593c 2485 struct leaf *l = v;
1328042e
SH
2486 struct leaf_info *li;
2487 struct hlist_node *node;
19baf839 2488
cb7b593c
SH
2489 if (v == SEQ_START_TOKEN) {
2490 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2491 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2492 "\tWindow\tIRTT");
2493 return 0;
2494 }
19baf839 2495
1328042e 2496 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2497 struct fib_alias *fa;
32ab5f80 2498 __be32 mask, prefix;
91b9a277 2499
cb7b593c
SH
2500 mask = inet_make_mask(li->plen);
2501 prefix = htonl(l->key);
19baf839 2502
cb7b593c 2503 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2504 const struct fib_info *fi = fa->fa_info;
a034ee3c 2505 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2506 int len;
19baf839 2507
cb7b593c
SH
2508 if (fa->fa_type == RTN_BROADCAST
2509 || fa->fa_type == RTN_MULTICAST)
2510 continue;
19baf839 2511
cb7b593c 2512 if (fi)
5e659e4c
PE
2513 seq_printf(seq,
2514 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2515 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2516 fi->fib_dev ? fi->fib_dev->name : "*",
2517 prefix,
2518 fi->fib_nh->nh_gw, flags, 0, 0,
2519 fi->fib_priority,
2520 mask,
a07f5f50
SH
2521 (fi->fib_advmss ?
2522 fi->fib_advmss + 40 : 0),
cb7b593c 2523 fi->fib_window,
5e659e4c 2524 fi->fib_rtt >> 3, &len);
cb7b593c 2525 else
5e659e4c
PE
2526 seq_printf(seq,
2527 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2528 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2529 prefix, 0, flags, 0, 0, 0,
5e659e4c 2530 mask, 0, 0, 0, &len);
19baf839 2531
5e659e4c 2532 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2533 }
19baf839
RO
2534 }
2535
2536 return 0;
2537}
2538
f690808e 2539static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2540 .start = fib_route_seq_start,
2541 .next = fib_route_seq_next,
2542 .stop = fib_route_seq_stop,
cb7b593c 2543 .show = fib_route_seq_show,
19baf839
RO
2544};
2545
cb7b593c 2546static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2547{
1c340b2f 2548 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2549 sizeof(struct fib_route_iter));
19baf839
RO
2550}
2551
9a32144e 2552static const struct file_operations fib_route_fops = {
cb7b593c
SH
2553 .owner = THIS_MODULE,
2554 .open = fib_route_seq_open,
2555 .read = seq_read,
2556 .llseek = seq_lseek,
1c340b2f 2557 .release = seq_release_net,
19baf839
RO
2558};
2559
61a02653 2560int __net_init fib_proc_init(struct net *net)
19baf839 2561{
61a02653 2562 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2563 goto out1;
2564
61a02653
DL
2565 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2566 &fib_triestat_fops))
cb7b593c
SH
2567 goto out2;
2568
61a02653 2569 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2570 goto out3;
2571
19baf839 2572 return 0;
cb7b593c
SH
2573
2574out3:
61a02653 2575 proc_net_remove(net, "fib_triestat");
cb7b593c 2576out2:
61a02653 2577 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2578out1:
2579 return -ENOMEM;
19baf839
RO
2580}
2581
61a02653 2582void __net_exit fib_proc_exit(struct net *net)
19baf839 2583{
61a02653
DL
2584 proc_net_remove(net, "fib_trie");
2585 proc_net_remove(net, "fib_triestat");
2586 proc_net_remove(net, "route");
19baf839
RO
2587}
2588
2589#endif /* CONFIG_PROC_FS */
This page took 0.845014 seconds and 5 git commands to generate.