Merge branch 'oprofile-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
05eee48c 51#define VERSION "0.408"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
457c4cbc 74#include <net/net_namespace.h>
19baf839
RO
75#include <net/ip.h>
76#include <net/protocol.h>
77#include <net/route.h>
78#include <net/tcp.h>
79#include <net/sock.h>
80#include <net/ip_fib.h>
81#include "fib_lookup.h"
82
06ef921d 83#define MAX_STAT_DEPTH 32
19baf839 84
19baf839 85#define KEYLENGTH (8*sizeof(t_key))
19baf839 86
19baf839
RO
87typedef unsigned int t_key;
88
89#define T_TNODE 0
90#define T_LEAF 1
91#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
92#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
91b9a277
OJ
94#define IS_TNODE(n) (!(n->parent & T_LEAF))
95#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
96
97struct node {
91b9a277 98 unsigned long parent;
8d965444 99 t_key key;
19baf839
RO
100};
101
102struct leaf {
91b9a277 103 unsigned long parent;
8d965444 104 t_key key;
19baf839 105 struct hlist_head list;
2373ce1c 106 struct rcu_head rcu;
19baf839
RO
107};
108
109struct leaf_info {
110 struct hlist_node hlist;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112 int plen;
113 struct list_head falh;
114};
115
116struct tnode {
91b9a277 117 unsigned long parent;
8d965444 118 t_key key;
112d8cfc
ED
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 };
91b9a277 127 struct node *child[0];
19baf839
RO
128};
129
130#ifdef CONFIG_IP_FIB_TRIE_STATS
131struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
2f36895a 137 unsigned int resize_node_skipped;
19baf839
RO
138};
139#endif
140
141struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
93672292 147 unsigned int prefixes;
06ef921d 148 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 149};
19baf839
RO
150
151struct trie {
91b9a277 152 struct node *trie;
19baf839
RO
153#ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats;
155#endif
19baf839
RO
156};
157
19baf839 158static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
159static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
160 int wasfull);
19baf839 161static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
162static struct tnode *inflate(struct trie *t, struct tnode *tn);
163static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 164
e18b890b 165static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 166static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 167
06801916
SH
168static inline struct tnode *node_parent(struct node *node)
169{
b59cfbf7
ED
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171}
172
173static inline struct tnode *node_parent_rcu(struct node *node)
174{
175 struct tnode *ret = node_parent(node);
06801916 176
06801916
SH
177 return rcu_dereference(ret);
178}
179
6440cc9e
SH
180/* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
182 */
06801916
SH
183static inline void node_set_parent(struct node *node, struct tnode *ptr)
184{
6440cc9e
SH
185 smp_wmb();
186 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 187}
2373ce1c 188
b59cfbf7
ED
189static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
190{
191 BUG_ON(i >= 1U << tn->bits);
2373ce1c 192
b59cfbf7
ED
193 return tn->child[i];
194}
195
196static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 197{
b59cfbf7 198 struct node *ret = tnode_get_child(tn, i);
19baf839 199
b59cfbf7 200 return rcu_dereference(ret);
19baf839
RO
201}
202
bb435b8d 203static inline int tnode_child_length(const struct tnode *tn)
19baf839 204{
91b9a277 205 return 1 << tn->bits;
19baf839
RO
206}
207
ab66b4a7
SH
208static inline t_key mask_pfx(t_key k, unsigned short l)
209{
210 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
211}
212
19baf839
RO
213static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
214{
91b9a277 215 if (offset < KEYLENGTH)
19baf839 216 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 217 else
19baf839
RO
218 return 0;
219}
220
221static inline int tkey_equals(t_key a, t_key b)
222{
c877efb2 223 return a == b;
19baf839
RO
224}
225
226static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
227{
c877efb2
SH
228 if (bits == 0 || offset >= KEYLENGTH)
229 return 1;
91b9a277
OJ
230 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
231 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 232}
19baf839
RO
233
234static inline int tkey_mismatch(t_key a, int offset, t_key b)
235{
236 t_key diff = a ^ b;
237 int i = offset;
238
c877efb2
SH
239 if (!diff)
240 return 0;
241 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
242 i++;
243 return i;
244}
245
19baf839 246/*
e905a9ed
YH
247 To understand this stuff, an understanding of keys and all their bits is
248 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
249 all of the bits in that key are significant.
250
251 Consider a node 'n' and its parent 'tp'.
252
e905a9ed
YH
253 If n is a leaf, every bit in its key is significant. Its presence is
254 necessitated by path compression, since during a tree traversal (when
255 searching for a leaf - unless we are doing an insertion) we will completely
256 ignore all skipped bits we encounter. Thus we need to verify, at the end of
257 a potentially successful search, that we have indeed been walking the
19baf839
RO
258 correct key path.
259
e905a9ed
YH
260 Note that we can never "miss" the correct key in the tree if present by
261 following the wrong path. Path compression ensures that segments of the key
262 that are the same for all keys with a given prefix are skipped, but the
263 skipped part *is* identical for each node in the subtrie below the skipped
264 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
265 call to tkey_sub_equals() in trie_insert().
266
e905a9ed 267 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
268 have many different meanings.
269
e905a9ed 270 Example:
19baf839
RO
271 _________________________________________________________________
272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273 -----------------------------------------------------------------
e905a9ed 274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
275
276 _________________________________________________________________
277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278 -----------------------------------------------------------------
279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
280
281 tp->pos = 7
282 tp->bits = 3
283 n->pos = 15
91b9a277 284 n->bits = 4
19baf839 285
e905a9ed
YH
286 First, let's just ignore the bits that come before the parent tp, that is
287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
288 not use them for anything.
289
290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 291 index into the parent's child array. That is, they will be used to find
19baf839
RO
292 'n' among tp's children.
293
294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
295 for the node n.
296
e905a9ed 297 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
298 of the bits are really not needed or indeed known in n->key.
299
e905a9ed 300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 301 n's child array, and will of course be different for each child.
e905a9ed 302
c877efb2 303
19baf839
RO
304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
305 at this point.
306
307*/
308
0c7770c7 309static inline void check_tnode(const struct tnode *tn)
19baf839 310{
0c7770c7 311 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
312}
313
f5026fab
DL
314static const int halve_threshold = 25;
315static const int inflate_threshold = 50;
316static const int halve_threshold_root = 8;
317static const int inflate_threshold_root = 15;
19baf839 318
2373ce1c
RO
319
320static void __alias_free_mem(struct rcu_head *head)
19baf839 321{
2373ce1c
RO
322 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
323 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
324}
325
2373ce1c 326static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 327{
2373ce1c
RO
328 call_rcu(&fa->rcu, __alias_free_mem);
329}
91b9a277 330
2373ce1c
RO
331static void __leaf_free_rcu(struct rcu_head *head)
332{
bc3c8c1e
SH
333 struct leaf *l = container_of(head, struct leaf, rcu);
334 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 335}
91b9a277 336
387a5487
SH
337static inline void free_leaf(struct leaf *l)
338{
339 call_rcu_bh(&l->rcu, __leaf_free_rcu);
340}
341
2373ce1c 342static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 343{
2373ce1c 344 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
345}
346
2373ce1c 347static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 348{
2373ce1c 349 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
350}
351
8d965444 352static struct tnode *tnode_alloc(size_t size)
f0e36f8c 353{
2373ce1c 354 if (size <= PAGE_SIZE)
8d965444 355 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
356 else
357 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
358}
2373ce1c 359
15be75cd
SH
360static void __tnode_vfree(struct work_struct *arg)
361{
362 struct tnode *tn = container_of(arg, struct tnode, work);
363 vfree(tn);
f0e36f8c
PM
364}
365
2373ce1c 366static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 367{
2373ce1c 368 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
369 size_t size = sizeof(struct tnode) +
370 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
371
372 if (size <= PAGE_SIZE)
373 kfree(tn);
15be75cd
SH
374 else {
375 INIT_WORK(&tn->work, __tnode_vfree);
376 schedule_work(&tn->work);
377 }
f0e36f8c
PM
378}
379
2373ce1c
RO
380static inline void tnode_free(struct tnode *tn)
381{
387a5487
SH
382 if (IS_LEAF(tn))
383 free_leaf((struct leaf *) tn);
384 else
550e29bc 385 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
386}
387
388static struct leaf *leaf_new(void)
389{
bc3c8c1e 390 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
391 if (l) {
392 l->parent = T_LEAF;
393 INIT_HLIST_HEAD(&l->list);
394 }
395 return l;
396}
397
398static struct leaf_info *leaf_info_new(int plen)
399{
400 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
401 if (li) {
402 li->plen = plen;
403 INIT_LIST_HEAD(&li->falh);
404 }
405 return li;
406}
407
a07f5f50 408static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 409{
8d965444 410 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 411 struct tnode *tn = tnode_alloc(sz);
19baf839 412
91b9a277 413 if (tn) {
2373ce1c 414 tn->parent = T_TNODE;
19baf839
RO
415 tn->pos = pos;
416 tn->bits = bits;
417 tn->key = key;
418 tn->full_children = 0;
419 tn->empty_children = 1<<bits;
420 }
c877efb2 421
8d965444
ED
422 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
423 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
424 return tn;
425}
426
19baf839
RO
427/*
428 * Check whether a tnode 'n' is "full", i.e. it is an internal node
429 * and no bits are skipped. See discussion in dyntree paper p. 6
430 */
431
bb435b8d 432static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 433{
c877efb2 434 if (n == NULL || IS_LEAF(n))
19baf839
RO
435 return 0;
436
437 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
438}
439
a07f5f50
SH
440static inline void put_child(struct trie *t, struct tnode *tn, int i,
441 struct node *n)
19baf839
RO
442{
443 tnode_put_child_reorg(tn, i, n, -1);
444}
445
c877efb2 446 /*
19baf839
RO
447 * Add a child at position i overwriting the old value.
448 * Update the value of full_children and empty_children.
449 */
450
a07f5f50
SH
451static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
452 int wasfull)
19baf839 453{
2373ce1c 454 struct node *chi = tn->child[i];
19baf839
RO
455 int isfull;
456
0c7770c7
SH
457 BUG_ON(i >= 1<<tn->bits);
458
19baf839
RO
459 /* update emptyChildren */
460 if (n == NULL && chi != NULL)
461 tn->empty_children++;
462 else if (n != NULL && chi == NULL)
463 tn->empty_children--;
c877efb2 464
19baf839 465 /* update fullChildren */
91b9a277 466 if (wasfull == -1)
19baf839
RO
467 wasfull = tnode_full(tn, chi);
468
469 isfull = tnode_full(tn, n);
c877efb2 470 if (wasfull && !isfull)
19baf839 471 tn->full_children--;
c877efb2 472 else if (!wasfull && isfull)
19baf839 473 tn->full_children++;
91b9a277 474
c877efb2 475 if (n)
06801916 476 node_set_parent(n, tn);
19baf839 477
2373ce1c 478 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
479}
480
c877efb2 481static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
482{
483 int i;
2f36895a 484 int err = 0;
2f80b3c8 485 struct tnode *old_tn;
e6308be8
RO
486 int inflate_threshold_use;
487 int halve_threshold_use;
05eee48c 488 int max_resize;
19baf839 489
e905a9ed 490 if (!tn)
19baf839
RO
491 return NULL;
492
0c7770c7
SH
493 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
494 tn, inflate_threshold, halve_threshold);
19baf839
RO
495
496 /* No children */
497 if (tn->empty_children == tnode_child_length(tn)) {
498 tnode_free(tn);
499 return NULL;
500 }
501 /* One child */
502 if (tn->empty_children == tnode_child_length(tn) - 1)
503 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 504 struct node *n;
19baf839 505
91b9a277 506 n = tn->child[i];
2373ce1c 507 if (!n)
91b9a277 508 continue;
91b9a277
OJ
509
510 /* compress one level */
06801916 511 node_set_parent(n, NULL);
91b9a277
OJ
512 tnode_free(tn);
513 return n;
19baf839 514 }
c877efb2 515 /*
19baf839
RO
516 * Double as long as the resulting node has a number of
517 * nonempty nodes that are above the threshold.
518 */
519
520 /*
c877efb2
SH
521 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
522 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 523 * Telecommunications, page 6:
c877efb2 524 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
525 * children in the *doubled* node is at least 'high'."
526 *
c877efb2
SH
527 * 'high' in this instance is the variable 'inflate_threshold'. It
528 * is expressed as a percentage, so we multiply it with
529 * tnode_child_length() and instead of multiplying by 2 (since the
530 * child array will be doubled by inflate()) and multiplying
531 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 532 * multiply the left-hand side by 50.
c877efb2
SH
533 *
534 * The left-hand side may look a bit weird: tnode_child_length(tn)
535 * - tn->empty_children is of course the number of non-null children
536 * in the current node. tn->full_children is the number of "full"
19baf839 537 * children, that is non-null tnodes with a skip value of 0.
c877efb2 538 * All of those will be doubled in the resulting inflated tnode, so
19baf839 539 * we just count them one extra time here.
c877efb2 540 *
19baf839 541 * A clearer way to write this would be:
c877efb2 542 *
19baf839 543 * to_be_doubled = tn->full_children;
c877efb2 544 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
545 * tn->full_children;
546 *
547 * new_child_length = tnode_child_length(tn) * 2;
548 *
c877efb2 549 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
550 * new_child_length;
551 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
552 *
553 * ...and so on, tho it would mess up the while () loop.
554 *
19baf839
RO
555 * anyway,
556 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
557 * inflate_threshold
c877efb2 558 *
19baf839
RO
559 * avoid a division:
560 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
561 * inflate_threshold * new_child_length
c877efb2 562 *
19baf839 563 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 564 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 565 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 566 *
19baf839 567 * expand new_child_length:
c877efb2 568 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 569 * tn->full_children) >=
19baf839 570 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 571 *
19baf839 572 * shorten again:
c877efb2 573 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 574 * tn->empty_children) >= inflate_threshold *
19baf839 575 * tnode_child_length(tn)
c877efb2 576 *
19baf839
RO
577 */
578
579 check_tnode(tn);
c877efb2 580
e6308be8
RO
581 /* Keep root node larger */
582
132adf54 583 if (!tn->parent)
e6308be8 584 inflate_threshold_use = inflate_threshold_root;
e905a9ed 585 else
e6308be8
RO
586 inflate_threshold_use = inflate_threshold;
587
2f36895a 588 err = 0;
05eee48c
RO
589 max_resize = 10;
590 while ((tn->full_children > 0 && max_resize-- &&
a07f5f50
SH
591 50 * (tn->full_children + tnode_child_length(tn)
592 - tn->empty_children)
593 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 594
2f80b3c8
RO
595 old_tn = tn;
596 tn = inflate(t, tn);
a07f5f50 597
2f80b3c8
RO
598 if (IS_ERR(tn)) {
599 tn = old_tn;
2f36895a
RO
600#ifdef CONFIG_IP_FIB_TRIE_STATS
601 t->stats.resize_node_skipped++;
602#endif
603 break;
604 }
19baf839
RO
605 }
606
05eee48c
RO
607 if (max_resize < 0) {
608 if (!tn->parent)
a07f5f50
SH
609 pr_warning("Fix inflate_threshold_root."
610 " Now=%d size=%d bits\n",
611 inflate_threshold_root, tn->bits);
05eee48c 612 else
a07f5f50
SH
613 pr_warning("Fix inflate_threshold."
614 " Now=%d size=%d bits\n",
615 inflate_threshold, tn->bits);
05eee48c
RO
616 }
617
19baf839
RO
618 check_tnode(tn);
619
620 /*
621 * Halve as long as the number of empty children in this
622 * node is above threshold.
623 */
2f36895a 624
e6308be8
RO
625
626 /* Keep root node larger */
627
132adf54 628 if (!tn->parent)
e6308be8 629 halve_threshold_use = halve_threshold_root;
e905a9ed 630 else
e6308be8
RO
631 halve_threshold_use = halve_threshold;
632
2f36895a 633 err = 0;
05eee48c
RO
634 max_resize = 10;
635 while (tn->bits > 1 && max_resize-- &&
19baf839 636 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 637 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 638
2f80b3c8
RO
639 old_tn = tn;
640 tn = halve(t, tn);
641 if (IS_ERR(tn)) {
642 tn = old_tn;
2f36895a
RO
643#ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645#endif
646 break;
647 }
648 }
19baf839 649
05eee48c
RO
650 if (max_resize < 0) {
651 if (!tn->parent)
a07f5f50
SH
652 pr_warning("Fix halve_threshold_root."
653 " Now=%d size=%d bits\n",
654 halve_threshold_root, tn->bits);
05eee48c 655 else
a07f5f50
SH
656 pr_warning("Fix halve_threshold."
657 " Now=%d size=%d bits\n",
658 halve_threshold, tn->bits);
05eee48c 659 }
c877efb2 660
19baf839 661 /* Only one child remains */
19baf839
RO
662 if (tn->empty_children == tnode_child_length(tn) - 1)
663 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 664 struct node *n;
19baf839 665
91b9a277 666 n = tn->child[i];
2373ce1c 667 if (!n)
91b9a277 668 continue;
91b9a277
OJ
669
670 /* compress one level */
671
06801916 672 node_set_parent(n, NULL);
91b9a277
OJ
673 tnode_free(tn);
674 return n;
19baf839
RO
675 }
676
677 return (struct node *) tn;
678}
679
2f80b3c8 680static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 681{
19baf839
RO
682 struct tnode *oldtnode = tn;
683 int olen = tnode_child_length(tn);
684 int i;
685
0c7770c7 686 pr_debug("In inflate\n");
19baf839
RO
687
688 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
689
0c7770c7 690 if (!tn)
2f80b3c8 691 return ERR_PTR(-ENOMEM);
2f36895a
RO
692
693 /*
c877efb2
SH
694 * Preallocate and store tnodes before the actual work so we
695 * don't get into an inconsistent state if memory allocation
696 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
697 * of tnode is ignored.
698 */
91b9a277
OJ
699
700 for (i = 0; i < olen; i++) {
a07f5f50 701 struct tnode *inode;
2f36895a 702
a07f5f50 703 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
704 if (inode &&
705 IS_TNODE(inode) &&
706 inode->pos == oldtnode->pos + oldtnode->bits &&
707 inode->bits > 1) {
708 struct tnode *left, *right;
ab66b4a7 709 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 710
2f36895a
RO
711 left = tnode_new(inode->key&(~m), inode->pos + 1,
712 inode->bits - 1);
2f80b3c8
RO
713 if (!left)
714 goto nomem;
91b9a277 715
2f36895a
RO
716 right = tnode_new(inode->key|m, inode->pos + 1,
717 inode->bits - 1);
718
e905a9ed 719 if (!right) {
2f80b3c8
RO
720 tnode_free(left);
721 goto nomem;
e905a9ed 722 }
2f36895a
RO
723
724 put_child(t, tn, 2*i, (struct node *) left);
725 put_child(t, tn, 2*i+1, (struct node *) right);
726 }
727 }
728
91b9a277 729 for (i = 0; i < olen; i++) {
c95aaf9a 730 struct tnode *inode;
19baf839 731 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
732 struct tnode *left, *right;
733 int size, j;
c877efb2 734
19baf839
RO
735 /* An empty child */
736 if (node == NULL)
737 continue;
738
739 /* A leaf or an internal node with skipped bits */
740
c877efb2 741 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 742 tn->pos + tn->bits - 1) {
a07f5f50
SH
743 if (tkey_extract_bits(node->key,
744 oldtnode->pos + oldtnode->bits,
745 1) == 0)
19baf839
RO
746 put_child(t, tn, 2*i, node);
747 else
748 put_child(t, tn, 2*i+1, node);
749 continue;
750 }
751
752 /* An internal node with two children */
753 inode = (struct tnode *) node;
754
755 if (inode->bits == 1) {
756 put_child(t, tn, 2*i, inode->child[0]);
757 put_child(t, tn, 2*i+1, inode->child[1]);
758
759 tnode_free(inode);
91b9a277 760 continue;
19baf839
RO
761 }
762
91b9a277
OJ
763 /* An internal node with more than two children */
764
765 /* We will replace this node 'inode' with two new
766 * ones, 'left' and 'right', each with half of the
767 * original children. The two new nodes will have
768 * a position one bit further down the key and this
769 * means that the "significant" part of their keys
770 * (see the discussion near the top of this file)
771 * will differ by one bit, which will be "0" in
772 * left's key and "1" in right's key. Since we are
773 * moving the key position by one step, the bit that
774 * we are moving away from - the bit at position
775 * (inode->pos) - is the one that will differ between
776 * left and right. So... we synthesize that bit in the
777 * two new keys.
778 * The mask 'm' below will be a single "one" bit at
779 * the position (inode->pos)
780 */
19baf839 781
91b9a277
OJ
782 /* Use the old key, but set the new significant
783 * bit to zero.
784 */
2f36895a 785
91b9a277
OJ
786 left = (struct tnode *) tnode_get_child(tn, 2*i);
787 put_child(t, tn, 2*i, NULL);
2f36895a 788
91b9a277 789 BUG_ON(!left);
2f36895a 790
91b9a277
OJ
791 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
792 put_child(t, tn, 2*i+1, NULL);
19baf839 793
91b9a277 794 BUG_ON(!right);
19baf839 795
91b9a277
OJ
796 size = tnode_child_length(left);
797 for (j = 0; j < size; j++) {
798 put_child(t, left, j, inode->child[j]);
799 put_child(t, right, j, inode->child[j + size]);
19baf839 800 }
91b9a277
OJ
801 put_child(t, tn, 2*i, resize(t, left));
802 put_child(t, tn, 2*i+1, resize(t, right));
803
804 tnode_free(inode);
19baf839
RO
805 }
806 tnode_free(oldtnode);
807 return tn;
2f80b3c8
RO
808nomem:
809 {
810 int size = tnode_child_length(tn);
811 int j;
812
0c7770c7 813 for (j = 0; j < size; j++)
2f80b3c8
RO
814 if (tn->child[j])
815 tnode_free((struct tnode *)tn->child[j]);
816
817 tnode_free(tn);
0c7770c7 818
2f80b3c8
RO
819 return ERR_PTR(-ENOMEM);
820 }
19baf839
RO
821}
822
2f80b3c8 823static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
824{
825 struct tnode *oldtnode = tn;
826 struct node *left, *right;
827 int i;
828 int olen = tnode_child_length(tn);
829
0c7770c7 830 pr_debug("In halve\n");
c877efb2
SH
831
832 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 833
2f80b3c8
RO
834 if (!tn)
835 return ERR_PTR(-ENOMEM);
2f36895a
RO
836
837 /*
c877efb2
SH
838 * Preallocate and store tnodes before the actual work so we
839 * don't get into an inconsistent state if memory allocation
840 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
841 * of tnode is ignored.
842 */
843
91b9a277 844 for (i = 0; i < olen; i += 2) {
2f36895a
RO
845 left = tnode_get_child(oldtnode, i);
846 right = tnode_get_child(oldtnode, i+1);
c877efb2 847
2f36895a 848 /* Two nonempty children */
0c7770c7 849 if (left && right) {
2f80b3c8 850 struct tnode *newn;
0c7770c7 851
2f80b3c8 852 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
853
854 if (!newn)
2f80b3c8 855 goto nomem;
0c7770c7 856
2f80b3c8 857 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 858 }
2f36895a 859
2f36895a 860 }
19baf839 861
91b9a277
OJ
862 for (i = 0; i < olen; i += 2) {
863 struct tnode *newBinNode;
864
19baf839
RO
865 left = tnode_get_child(oldtnode, i);
866 right = tnode_get_child(oldtnode, i+1);
c877efb2 867
19baf839
RO
868 /* At least one of the children is empty */
869 if (left == NULL) {
870 if (right == NULL) /* Both are empty */
871 continue;
872 put_child(t, tn, i/2, right);
91b9a277 873 continue;
0c7770c7 874 }
91b9a277
OJ
875
876 if (right == NULL) {
19baf839 877 put_child(t, tn, i/2, left);
91b9a277
OJ
878 continue;
879 }
c877efb2 880
19baf839 881 /* Two nonempty children */
91b9a277
OJ
882 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
883 put_child(t, tn, i/2, NULL);
91b9a277
OJ
884 put_child(t, newBinNode, 0, left);
885 put_child(t, newBinNode, 1, right);
886 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
887 }
888 tnode_free(oldtnode);
889 return tn;
2f80b3c8
RO
890nomem:
891 {
892 int size = tnode_child_length(tn);
893 int j;
894
0c7770c7 895 for (j = 0; j < size; j++)
2f80b3c8
RO
896 if (tn->child[j])
897 tnode_free((struct tnode *)tn->child[j]);
898
899 tnode_free(tn);
0c7770c7 900
2f80b3c8
RO
901 return ERR_PTR(-ENOMEM);
902 }
19baf839
RO
903}
904
772cb712 905/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
906 via get_fa_head and dump */
907
772cb712 908static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 909{
772cb712 910 struct hlist_head *head = &l->list;
19baf839
RO
911 struct hlist_node *node;
912 struct leaf_info *li;
913
2373ce1c 914 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 915 if (li->plen == plen)
19baf839 916 return li;
91b9a277 917
19baf839
RO
918 return NULL;
919}
920
a07f5f50 921static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 922{
772cb712 923 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 924
91b9a277
OJ
925 if (!li)
926 return NULL;
c877efb2 927
91b9a277 928 return &li->falh;
19baf839
RO
929}
930
931static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
932{
e905a9ed
YH
933 struct leaf_info *li = NULL, *last = NULL;
934 struct hlist_node *node;
935
936 if (hlist_empty(head)) {
937 hlist_add_head_rcu(&new->hlist, head);
938 } else {
939 hlist_for_each_entry(li, node, head, hlist) {
940 if (new->plen > li->plen)
941 break;
942
943 last = li;
944 }
945 if (last)
946 hlist_add_after_rcu(&last->hlist, &new->hlist);
947 else
948 hlist_add_before_rcu(&new->hlist, &li->hlist);
949 }
19baf839
RO
950}
951
2373ce1c
RO
952/* rcu_read_lock needs to be hold by caller from readside */
953
19baf839
RO
954static struct leaf *
955fib_find_node(struct trie *t, u32 key)
956{
957 int pos;
958 struct tnode *tn;
959 struct node *n;
960
961 pos = 0;
2373ce1c 962 n = rcu_dereference(t->trie);
19baf839
RO
963
964 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
965 tn = (struct tnode *) n;
91b9a277 966
19baf839 967 check_tnode(tn);
91b9a277 968
c877efb2 969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 970 pos = tn->pos + tn->bits;
a07f5f50
SH
971 n = tnode_get_child_rcu(tn,
972 tkey_extract_bits(key,
973 tn->pos,
974 tn->bits));
91b9a277 975 } else
19baf839
RO
976 break;
977 }
978 /* Case we have found a leaf. Compare prefixes */
979
91b9a277
OJ
980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
981 return (struct leaf *)n;
982
19baf839
RO
983 return NULL;
984}
985
986static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
987{
19baf839 988 int wasfull;
3ed18d76 989 t_key cindex, key;
06801916 990 struct tnode *tp;
19baf839 991
3ed18d76
RO
992 preempt_disable();
993 key = tn->key;
994
06801916 995 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
996 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
997 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
998 tn = (struct tnode *) resize(t, (struct tnode *)tn);
999
1000 tnode_put_child_reorg((struct tnode *)tp, cindex,
1001 (struct node *)tn, wasfull);
91b9a277 1002
06801916
SH
1003 tp = node_parent((struct node *) tn);
1004 if (!tp)
19baf839 1005 break;
06801916 1006 tn = tp;
19baf839 1007 }
06801916 1008
19baf839 1009 /* Handle last (top) tnode */
c877efb2 1010 if (IS_TNODE(tn))
a07f5f50 1011 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1012
3ed18d76 1013 preempt_enable();
a07f5f50 1014 return (struct node *)tn;
19baf839
RO
1015}
1016
2373ce1c
RO
1017/* only used from updater-side */
1018
fea86ad8 1019static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1020{
1021 int pos, newpos;
1022 struct tnode *tp = NULL, *tn = NULL;
1023 struct node *n;
1024 struct leaf *l;
1025 int missbit;
c877efb2 1026 struct list_head *fa_head = NULL;
19baf839
RO
1027 struct leaf_info *li;
1028 t_key cindex;
1029
1030 pos = 0;
c877efb2 1031 n = t->trie;
19baf839 1032
c877efb2
SH
1033 /* If we point to NULL, stop. Either the tree is empty and we should
1034 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1035 * and we should just put our new leaf in that.
c877efb2
SH
1036 * If we point to a T_TNODE, check if it matches our key. Note that
1037 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1038 * not be the parent's 'pos'+'bits'!
1039 *
c877efb2 1040 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1041 * the index from our key, push the T_TNODE and walk the tree.
1042 *
1043 * If it doesn't, we have to replace it with a new T_TNODE.
1044 *
c877efb2
SH
1045 * If we point to a T_LEAF, it might or might not have the same key
1046 * as we do. If it does, just change the value, update the T_LEAF's
1047 * value, and return it.
19baf839
RO
1048 * If it doesn't, we need to replace it with a T_TNODE.
1049 */
1050
1051 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1052 tn = (struct tnode *) n;
91b9a277 1053
c877efb2 1054 check_tnode(tn);
91b9a277 1055
c877efb2 1056 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1057 tp = tn;
91b9a277 1058 pos = tn->pos + tn->bits;
a07f5f50
SH
1059 n = tnode_get_child(tn,
1060 tkey_extract_bits(key,
1061 tn->pos,
1062 tn->bits));
19baf839 1063
06801916 1064 BUG_ON(n && node_parent(n) != tn);
91b9a277 1065 } else
19baf839
RO
1066 break;
1067 }
1068
1069 /*
1070 * n ----> NULL, LEAF or TNODE
1071 *
c877efb2 1072 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1073 */
1074
91b9a277 1075 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1076
1077 /* Case 1: n is a leaf. Compare prefixes */
1078
c877efb2 1079 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1080 l = (struct leaf *) n;
19baf839 1081 li = leaf_info_new(plen);
91b9a277 1082
fea86ad8
SH
1083 if (!li)
1084 return NULL;
19baf839
RO
1085
1086 fa_head = &li->falh;
1087 insert_leaf_info(&l->list, li);
1088 goto done;
1089 }
19baf839
RO
1090 l = leaf_new();
1091
fea86ad8
SH
1092 if (!l)
1093 return NULL;
19baf839
RO
1094
1095 l->key = key;
1096 li = leaf_info_new(plen);
1097
c877efb2 1098 if (!li) {
387a5487 1099 free_leaf(l);
fea86ad8 1100 return NULL;
f835e471 1101 }
19baf839
RO
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105
19baf839 1106 if (t->trie && n == NULL) {
91b9a277 1107 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1108
06801916 1109 node_set_parent((struct node *)l, tp);
19baf839 1110
91b9a277
OJ
1111 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1112 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1113 } else {
1114 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1115 /*
1116 * Add a new tnode here
19baf839
RO
1117 * first tnode need some special handling
1118 */
1119
1120 if (tp)
91b9a277 1121 pos = tp->pos+tp->bits;
19baf839 1122 else
91b9a277
OJ
1123 pos = 0;
1124
c877efb2 1125 if (n) {
19baf839
RO
1126 newpos = tkey_mismatch(key, pos, n->key);
1127 tn = tnode_new(n->key, newpos, 1);
91b9a277 1128 } else {
19baf839 1129 newpos = 0;
c877efb2 1130 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1131 }
19baf839 1132
c877efb2 1133 if (!tn) {
f835e471 1134 free_leaf_info(li);
387a5487 1135 free_leaf(l);
fea86ad8 1136 return NULL;
91b9a277
OJ
1137 }
1138
06801916 1139 node_set_parent((struct node *)tn, tp);
19baf839 1140
91b9a277 1141 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1142 put_child(t, tn, missbit, (struct node *)l);
1143 put_child(t, tn, 1-missbit, n);
1144
c877efb2 1145 if (tp) {
19baf839 1146 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1147 put_child(t, (struct tnode *)tp, cindex,
1148 (struct node *)tn);
91b9a277 1149 } else {
a07f5f50 1150 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1151 tp = tn;
1152 }
1153 }
91b9a277
OJ
1154
1155 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1156 pr_warning("fib_trie"
1157 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1158 tp, tp->pos, tp->bits, key, plen);
91b9a277 1159
19baf839 1160 /* Rebalance the trie */
2373ce1c
RO
1161
1162 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471 1163done:
19baf839
RO
1164 return fa_head;
1165}
1166
d562f1f8
RO
1167/*
1168 * Caller must hold RTNL.
1169 */
4e902c57 1170static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1171{
1172 struct trie *t = (struct trie *) tb->tb_data;
1173 struct fib_alias *fa, *new_fa;
c877efb2 1174 struct list_head *fa_head = NULL;
19baf839 1175 struct fib_info *fi;
4e902c57
TG
1176 int plen = cfg->fc_dst_len;
1177 u8 tos = cfg->fc_tos;
19baf839
RO
1178 u32 key, mask;
1179 int err;
1180 struct leaf *l;
1181
1182 if (plen > 32)
1183 return -EINVAL;
1184
4e902c57 1185 key = ntohl(cfg->fc_dst);
19baf839 1186
2dfe55b4 1187 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1188
91b9a277 1189 mask = ntohl(inet_make_mask(plen));
19baf839 1190
c877efb2 1191 if (key & ~mask)
19baf839
RO
1192 return -EINVAL;
1193
1194 key = key & mask;
1195
4e902c57
TG
1196 fi = fib_create_info(cfg);
1197 if (IS_ERR(fi)) {
1198 err = PTR_ERR(fi);
19baf839 1199 goto err;
4e902c57 1200 }
19baf839
RO
1201
1202 l = fib_find_node(t, key);
c877efb2 1203 fa = NULL;
19baf839 1204
c877efb2 1205 if (l) {
19baf839
RO
1206 fa_head = get_fa_head(l, plen);
1207 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1208 }
1209
1210 /* Now fa, if non-NULL, points to the first fib alias
1211 * with the same keys [prefix,tos,priority], if such key already
1212 * exists or to the node before which we will insert new one.
1213 *
1214 * If fa is NULL, we will need to allocate a new one and
1215 * insert to the head of f.
1216 *
1217 * If f is NULL, no fib node matched the destination key
1218 * and we need to allocate a new one of those as well.
1219 */
1220
936f6f8e
JA
1221 if (fa && fa->fa_tos == tos &&
1222 fa->fa_info->fib_priority == fi->fib_priority) {
1223 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1224
1225 err = -EEXIST;
4e902c57 1226 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1227 goto out;
1228
936f6f8e
JA
1229 /* We have 2 goals:
1230 * 1. Find exact match for type, scope, fib_info to avoid
1231 * duplicate routes
1232 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1233 */
1234 fa_match = NULL;
1235 fa_first = fa;
1236 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1237 list_for_each_entry_continue(fa, fa_head, fa_list) {
1238 if (fa->fa_tos != tos)
1239 break;
1240 if (fa->fa_info->fib_priority != fi->fib_priority)
1241 break;
1242 if (fa->fa_type == cfg->fc_type &&
1243 fa->fa_scope == cfg->fc_scope &&
1244 fa->fa_info == fi) {
1245 fa_match = fa;
1246 break;
1247 }
1248 }
1249
4e902c57 1250 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1251 struct fib_info *fi_drop;
1252 u8 state;
1253
936f6f8e
JA
1254 fa = fa_first;
1255 if (fa_match) {
1256 if (fa == fa_match)
1257 err = 0;
6725033f 1258 goto out;
936f6f8e 1259 }
2373ce1c 1260 err = -ENOBUFS;
e94b1766 1261 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1262 if (new_fa == NULL)
1263 goto out;
19baf839
RO
1264
1265 fi_drop = fa->fa_info;
2373ce1c
RO
1266 new_fa->fa_tos = fa->fa_tos;
1267 new_fa->fa_info = fi;
4e902c57
TG
1268 new_fa->fa_type = cfg->fc_type;
1269 new_fa->fa_scope = cfg->fc_scope;
19baf839 1270 state = fa->fa_state;
936f6f8e 1271 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1272
2373ce1c
RO
1273 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1274 alias_free_mem_rcu(fa);
19baf839
RO
1275
1276 fib_release_info(fi_drop);
1277 if (state & FA_S_ACCESSED)
76e6ebfb 1278 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1279 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1280 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1281
91b9a277 1282 goto succeeded;
19baf839
RO
1283 }
1284 /* Error if we find a perfect match which
1285 * uses the same scope, type, and nexthop
1286 * information.
1287 */
936f6f8e
JA
1288 if (fa_match)
1289 goto out;
a07f5f50 1290
4e902c57 1291 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1292 fa = fa_first;
19baf839
RO
1293 }
1294 err = -ENOENT;
4e902c57 1295 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1296 goto out;
1297
1298 err = -ENOBUFS;
e94b1766 1299 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1300 if (new_fa == NULL)
1301 goto out;
1302
1303 new_fa->fa_info = fi;
1304 new_fa->fa_tos = tos;
4e902c57
TG
1305 new_fa->fa_type = cfg->fc_type;
1306 new_fa->fa_scope = cfg->fc_scope;
19baf839 1307 new_fa->fa_state = 0;
19baf839
RO
1308 /*
1309 * Insert new entry to the list.
1310 */
1311
c877efb2 1312 if (!fa_head) {
fea86ad8
SH
1313 fa_head = fib_insert_node(t, key, plen);
1314 if (unlikely(!fa_head)) {
1315 err = -ENOMEM;
f835e471 1316 goto out_free_new_fa;
fea86ad8 1317 }
f835e471 1318 }
19baf839 1319
2373ce1c
RO
1320 list_add_tail_rcu(&new_fa->fa_list,
1321 (fa ? &fa->fa_list : fa_head));
19baf839 1322
76e6ebfb 1323 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1324 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1325 &cfg->fc_nlinfo, 0);
19baf839
RO
1326succeeded:
1327 return 0;
f835e471
RO
1328
1329out_free_new_fa:
1330 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1331out:
1332 fib_release_info(fi);
91b9a277 1333err:
19baf839
RO
1334 return err;
1335}
1336
772cb712 1337/* should be called with rcu_read_lock */
a07f5f50
SH
1338static int check_leaf(struct trie *t, struct leaf *l,
1339 t_key key, const struct flowi *flp,
1340 struct fib_result *res)
19baf839 1341{
19baf839
RO
1342 struct leaf_info *li;
1343 struct hlist_head *hhead = &l->list;
1344 struct hlist_node *node;
c877efb2 1345
2373ce1c 1346 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1347 int err;
1348 int plen = li->plen;
1349 __be32 mask = inet_make_mask(plen);
1350
888454c5 1351 if (l->key != (key & ntohl(mask)))
19baf839
RO
1352 continue;
1353
a07f5f50
SH
1354 err = fib_semantic_match(&li->falh, flp, res,
1355 htonl(l->key), mask, plen);
1356
19baf839 1357#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1358 if (err <= 0)
19baf839 1359 t->stats.semantic_match_passed++;
a07f5f50
SH
1360 else
1361 t->stats.semantic_match_miss++;
19baf839 1362#endif
a07f5f50 1363 if (err <= 0)
2e655571 1364 return err;
19baf839 1365 }
a07f5f50 1366
2e655571 1367 return 1;
19baf839
RO
1368}
1369
a07f5f50
SH
1370static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1371 struct fib_result *res)
19baf839
RO
1372{
1373 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1374 int ret;
19baf839
RO
1375 struct node *n;
1376 struct tnode *pn;
1377 int pos, bits;
91b9a277 1378 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1379 int chopped_off;
1380 t_key cindex = 0;
1381 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1382 struct tnode *cn;
1383 t_key node_prefix, key_prefix, pref_mismatch;
1384 int mp;
1385
2373ce1c 1386 rcu_read_lock();
91b9a277 1387
2373ce1c 1388 n = rcu_dereference(t->trie);
c877efb2 1389 if (!n)
19baf839
RO
1390 goto failed;
1391
1392#ifdef CONFIG_IP_FIB_TRIE_STATS
1393 t->stats.gets++;
1394#endif
1395
1396 /* Just a leaf? */
1397 if (IS_LEAF(n)) {
2e655571 1398 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
a07f5f50 1399 goto found;
19baf839 1400 }
a07f5f50 1401
19baf839
RO
1402 pn = (struct tnode *) n;
1403 chopped_off = 0;
c877efb2 1404
91b9a277 1405 while (pn) {
19baf839
RO
1406 pos = pn->pos;
1407 bits = pn->bits;
1408
c877efb2 1409 if (!chopped_off)
ab66b4a7
SH
1410 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1411 pos, bits);
19baf839
RO
1412
1413 n = tnode_get_child(pn, cindex);
1414
1415 if (n == NULL) {
1416#ifdef CONFIG_IP_FIB_TRIE_STATS
1417 t->stats.null_node_hit++;
1418#endif
1419 goto backtrace;
1420 }
1421
91b9a277 1422 if (IS_LEAF(n)) {
2e655571
BH
1423 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1424 if (ret > 0)
91b9a277 1425 goto backtrace;
a07f5f50 1426 goto found;
91b9a277
OJ
1427 }
1428
91b9a277 1429 cn = (struct tnode *)n;
19baf839 1430
91b9a277
OJ
1431 /*
1432 * It's a tnode, and we can do some extra checks here if we
1433 * like, to avoid descending into a dead-end branch.
1434 * This tnode is in the parent's child array at index
1435 * key[p_pos..p_pos+p_bits] but potentially with some bits
1436 * chopped off, so in reality the index may be just a
1437 * subprefix, padded with zero at the end.
1438 * We can also take a look at any skipped bits in this
1439 * tnode - everything up to p_pos is supposed to be ok,
1440 * and the non-chopped bits of the index (se previous
1441 * paragraph) are also guaranteed ok, but the rest is
1442 * considered unknown.
1443 *
1444 * The skipped bits are key[pos+bits..cn->pos].
1445 */
19baf839 1446
91b9a277
OJ
1447 /* If current_prefix_length < pos+bits, we are already doing
1448 * actual prefix matching, which means everything from
1449 * pos+(bits-chopped_off) onward must be zero along some
1450 * branch of this subtree - otherwise there is *no* valid
1451 * prefix present. Here we can only check the skipped
1452 * bits. Remember, since we have already indexed into the
1453 * parent's child array, we know that the bits we chopped of
1454 * *are* zero.
1455 */
19baf839 1456
a07f5f50
SH
1457 /* NOTA BENE: Checking only skipped bits
1458 for the new node here */
19baf839 1459
91b9a277
OJ
1460 if (current_prefix_length < pos+bits) {
1461 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1462 cn->pos - current_prefix_length)
1463 || !(cn->child[0]))
91b9a277
OJ
1464 goto backtrace;
1465 }
19baf839 1466
91b9a277
OJ
1467 /*
1468 * If chopped_off=0, the index is fully validated and we
1469 * only need to look at the skipped bits for this, the new,
1470 * tnode. What we actually want to do is to find out if
1471 * these skipped bits match our key perfectly, or if we will
1472 * have to count on finding a matching prefix further down,
1473 * because if we do, we would like to have some way of
1474 * verifying the existence of such a prefix at this point.
1475 */
19baf839 1476
91b9a277
OJ
1477 /* The only thing we can do at this point is to verify that
1478 * any such matching prefix can indeed be a prefix to our
1479 * key, and if the bits in the node we are inspecting that
1480 * do not match our key are not ZERO, this cannot be true.
1481 * Thus, find out where there is a mismatch (before cn->pos)
1482 * and verify that all the mismatching bits are zero in the
1483 * new tnode's key.
1484 */
19baf839 1485
a07f5f50
SH
1486 /*
1487 * Note: We aren't very concerned about the piece of
1488 * the key that precede pn->pos+pn->bits, since these
1489 * have already been checked. The bits after cn->pos
1490 * aren't checked since these are by definition
1491 * "unknown" at this point. Thus, what we want to see
1492 * is if we are about to enter the "prefix matching"
1493 * state, and in that case verify that the skipped
1494 * bits that will prevail throughout this subtree are
1495 * zero, as they have to be if we are to find a
1496 * matching prefix.
91b9a277
OJ
1497 */
1498
ab66b4a7
SH
1499 node_prefix = mask_pfx(cn->key, cn->pos);
1500 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1501 pref_mismatch = key_prefix^node_prefix;
1502 mp = 0;
1503
a07f5f50
SH
1504 /*
1505 * In short: If skipped bits in this node do not match
1506 * the search key, enter the "prefix matching"
1507 * state.directly.
91b9a277
OJ
1508 */
1509 if (pref_mismatch) {
1510 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1511 mp++;
a07f5f50 1512 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1513 }
1514 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1515
1516 if (key_prefix != 0)
1517 goto backtrace;
1518
1519 if (current_prefix_length >= cn->pos)
1520 current_prefix_length = mp;
c877efb2 1521 }
a07f5f50 1522
91b9a277
OJ
1523 pn = (struct tnode *)n; /* Descend */
1524 chopped_off = 0;
1525 continue;
1526
19baf839
RO
1527backtrace:
1528 chopped_off++;
1529
1530 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1531 while ((chopped_off <= pn->bits)
1532 && !(cindex & (1<<(chopped_off-1))))
19baf839 1533 chopped_off++;
19baf839
RO
1534
1535 /* Decrease current_... with bits chopped off */
1536 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1537 current_prefix_length = pn->pos + pn->bits
1538 - chopped_off;
91b9a277 1539
19baf839 1540 /*
c877efb2 1541 * Either we do the actual chop off according or if we have
19baf839
RO
1542 * chopped off all bits in this tnode walk up to our parent.
1543 */
1544
91b9a277 1545 if (chopped_off <= pn->bits) {
19baf839 1546 cindex &= ~(1 << (chopped_off-1));
91b9a277 1547 } else {
06801916
SH
1548 struct tnode *parent = node_parent((struct node *) pn);
1549 if (!parent)
19baf839 1550 goto failed;
91b9a277 1551
19baf839 1552 /* Get Child's index */
06801916
SH
1553 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1554 pn = parent;
19baf839
RO
1555 chopped_off = 0;
1556
1557#ifdef CONFIG_IP_FIB_TRIE_STATS
1558 t->stats.backtrack++;
1559#endif
1560 goto backtrace;
c877efb2 1561 }
19baf839
RO
1562 }
1563failed:
c877efb2 1564 ret = 1;
19baf839 1565found:
2373ce1c 1566 rcu_read_unlock();
19baf839
RO
1567 return ret;
1568}
1569
9195bef7
SH
1570/*
1571 * Remove the leaf and return parent.
1572 */
1573static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1574{
9195bef7 1575 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1576
9195bef7 1577 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1578
c877efb2 1579 if (tp) {
9195bef7 1580 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1581 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1582 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1583 } else
2373ce1c 1584 rcu_assign_pointer(t->trie, NULL);
19baf839 1585
387a5487 1586 free_leaf(l);
19baf839
RO
1587}
1588
d562f1f8
RO
1589/*
1590 * Caller must hold RTNL.
1591 */
4e902c57 1592static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1593{
1594 struct trie *t = (struct trie *) tb->tb_data;
1595 u32 key, mask;
4e902c57
TG
1596 int plen = cfg->fc_dst_len;
1597 u8 tos = cfg->fc_tos;
19baf839
RO
1598 struct fib_alias *fa, *fa_to_delete;
1599 struct list_head *fa_head;
1600 struct leaf *l;
91b9a277
OJ
1601 struct leaf_info *li;
1602
c877efb2 1603 if (plen > 32)
19baf839
RO
1604 return -EINVAL;
1605
4e902c57 1606 key = ntohl(cfg->fc_dst);
91b9a277 1607 mask = ntohl(inet_make_mask(plen));
19baf839 1608
c877efb2 1609 if (key & ~mask)
19baf839
RO
1610 return -EINVAL;
1611
1612 key = key & mask;
1613 l = fib_find_node(t, key);
1614
c877efb2 1615 if (!l)
19baf839
RO
1616 return -ESRCH;
1617
1618 fa_head = get_fa_head(l, plen);
1619 fa = fib_find_alias(fa_head, tos, 0);
1620
1621 if (!fa)
1622 return -ESRCH;
1623
0c7770c7 1624 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1625
1626 fa_to_delete = NULL;
936f6f8e
JA
1627 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1628 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1629 struct fib_info *fi = fa->fa_info;
1630
1631 if (fa->fa_tos != tos)
1632 break;
1633
4e902c57
TG
1634 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1635 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1636 fa->fa_scope == cfg->fc_scope) &&
1637 (!cfg->fc_protocol ||
1638 fi->fib_protocol == cfg->fc_protocol) &&
1639 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1640 fa_to_delete = fa;
1641 break;
1642 }
1643 }
1644
91b9a277
OJ
1645 if (!fa_to_delete)
1646 return -ESRCH;
19baf839 1647
91b9a277 1648 fa = fa_to_delete;
4e902c57 1649 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1650 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1651
1652 l = fib_find_node(t, key);
772cb712 1653 li = find_leaf_info(l, plen);
19baf839 1654
2373ce1c 1655 list_del_rcu(&fa->fa_list);
19baf839 1656
91b9a277 1657 if (list_empty(fa_head)) {
2373ce1c 1658 hlist_del_rcu(&li->hlist);
91b9a277 1659 free_leaf_info(li);
2373ce1c 1660 }
19baf839 1661
91b9a277 1662 if (hlist_empty(&l->list))
9195bef7 1663 trie_leaf_remove(t, l);
19baf839 1664
91b9a277 1665 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1666 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1667
2373ce1c
RO
1668 fib_release_info(fa->fa_info);
1669 alias_free_mem_rcu(fa);
91b9a277 1670 return 0;
19baf839
RO
1671}
1672
ef3660ce 1673static int trie_flush_list(struct list_head *head)
19baf839
RO
1674{
1675 struct fib_alias *fa, *fa_node;
1676 int found = 0;
1677
1678 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1679 struct fib_info *fi = fa->fa_info;
19baf839 1680
2373ce1c
RO
1681 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1682 list_del_rcu(&fa->fa_list);
1683 fib_release_info(fa->fa_info);
1684 alias_free_mem_rcu(fa);
19baf839
RO
1685 found++;
1686 }
1687 }
1688 return found;
1689}
1690
ef3660ce 1691static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1692{
1693 int found = 0;
1694 struct hlist_head *lih = &l->list;
1695 struct hlist_node *node, *tmp;
1696 struct leaf_info *li = NULL;
1697
1698 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1699 found += trie_flush_list(&li->falh);
19baf839
RO
1700
1701 if (list_empty(&li->falh)) {
2373ce1c 1702 hlist_del_rcu(&li->hlist);
19baf839
RO
1703 free_leaf_info(li);
1704 }
1705 }
1706 return found;
1707}
1708
82cfbb00
SH
1709/*
1710 * Scan for the next right leaf starting at node p->child[idx]
1711 * Since we have back pointer, no recursion necessary.
1712 */
1713static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1714{
82cfbb00
SH
1715 do {
1716 t_key idx;
c877efb2 1717
c877efb2 1718 if (c)
82cfbb00 1719 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1720 else
82cfbb00 1721 idx = 0;
2373ce1c 1722
82cfbb00
SH
1723 while (idx < 1u << p->bits) {
1724 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1725 if (!c)
91b9a277
OJ
1726 continue;
1727
82cfbb00
SH
1728 if (IS_LEAF(c)) {
1729 prefetch(p->child[idx]);
1730 return (struct leaf *) c;
19baf839 1731 }
82cfbb00
SH
1732
1733 /* Rescan start scanning in new node */
1734 p = (struct tnode *) c;
1735 idx = 0;
19baf839 1736 }
82cfbb00
SH
1737
1738 /* Node empty, walk back up to parent */
91b9a277 1739 c = (struct node *) p;
82cfbb00
SH
1740 } while ( (p = node_parent_rcu(c)) != NULL);
1741
1742 return NULL; /* Root of trie */
1743}
1744
82cfbb00
SH
1745static struct leaf *trie_firstleaf(struct trie *t)
1746{
1747 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1748
1749 if (!n)
1750 return NULL;
1751
1752 if (IS_LEAF(n)) /* trie is just a leaf */
1753 return (struct leaf *) n;
1754
1755 return leaf_walk_rcu(n, NULL);
1756}
1757
1758static struct leaf *trie_nextleaf(struct leaf *l)
1759{
1760 struct node *c = (struct node *) l;
1761 struct tnode *p = node_parent(c);
1762
1763 if (!p)
1764 return NULL; /* trie with just one leaf */
1765
1766 return leaf_walk_rcu(p, c);
19baf839
RO
1767}
1768
71d67e66
SH
1769static struct leaf *trie_leafindex(struct trie *t, int index)
1770{
1771 struct leaf *l = trie_firstleaf(t);
1772
ec28cf73 1773 while (l && index-- > 0)
71d67e66 1774 l = trie_nextleaf(l);
ec28cf73 1775
71d67e66
SH
1776 return l;
1777}
1778
1779
d562f1f8
RO
1780/*
1781 * Caller must hold RTNL.
1782 */
19baf839
RO
1783static int fn_trie_flush(struct fib_table *tb)
1784{
1785 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1786 struct leaf *l, *ll = NULL;
82cfbb00 1787 int found = 0;
19baf839 1788
82cfbb00 1789 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1790 found += trie_flush_leaf(l);
19baf839
RO
1791
1792 if (ll && hlist_empty(&ll->list))
9195bef7 1793 trie_leaf_remove(t, ll);
19baf839
RO
1794 ll = l;
1795 }
1796
1797 if (ll && hlist_empty(&ll->list))
9195bef7 1798 trie_leaf_remove(t, ll);
19baf839 1799
0c7770c7 1800 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1801 return found;
1802}
1803
a07f5f50
SH
1804static void fn_trie_select_default(struct fib_table *tb,
1805 const struct flowi *flp,
1806 struct fib_result *res)
19baf839
RO
1807{
1808 struct trie *t = (struct trie *) tb->tb_data;
1809 int order, last_idx;
1810 struct fib_info *fi = NULL;
1811 struct fib_info *last_resort;
1812 struct fib_alias *fa = NULL;
1813 struct list_head *fa_head;
1814 struct leaf *l;
1815
1816 last_idx = -1;
1817 last_resort = NULL;
1818 order = -1;
1819
2373ce1c 1820 rcu_read_lock();
c877efb2 1821
19baf839 1822 l = fib_find_node(t, 0);
c877efb2 1823 if (!l)
19baf839
RO
1824 goto out;
1825
1826 fa_head = get_fa_head(l, 0);
c877efb2 1827 if (!fa_head)
19baf839
RO
1828 goto out;
1829
c877efb2 1830 if (list_empty(fa_head))
19baf839
RO
1831 goto out;
1832
2373ce1c 1833 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1834 struct fib_info *next_fi = fa->fa_info;
91b9a277 1835
19baf839
RO
1836 if (fa->fa_scope != res->scope ||
1837 fa->fa_type != RTN_UNICAST)
1838 continue;
91b9a277 1839
19baf839
RO
1840 if (next_fi->fib_priority > res->fi->fib_priority)
1841 break;
1842 if (!next_fi->fib_nh[0].nh_gw ||
1843 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1844 continue;
1845 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1846
19baf839
RO
1847 if (fi == NULL) {
1848 if (next_fi != res->fi)
1849 break;
1850 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1851 &last_idx, tb->tb_default)) {
a2bbe682 1852 fib_result_assign(res, fi);
971b893e 1853 tb->tb_default = order;
19baf839
RO
1854 goto out;
1855 }
1856 fi = next_fi;
1857 order++;
1858 }
1859 if (order <= 0 || fi == NULL) {
971b893e 1860 tb->tb_default = -1;
19baf839
RO
1861 goto out;
1862 }
1863
971b893e
DL
1864 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1865 tb->tb_default)) {
a2bbe682 1866 fib_result_assign(res, fi);
971b893e 1867 tb->tb_default = order;
19baf839
RO
1868 goto out;
1869 }
a2bbe682
DL
1870 if (last_idx >= 0)
1871 fib_result_assign(res, last_resort);
971b893e
DL
1872 tb->tb_default = last_idx;
1873out:
2373ce1c 1874 rcu_read_unlock();
19baf839
RO
1875}
1876
a07f5f50
SH
1877static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1878 struct fib_table *tb,
19baf839
RO
1879 struct sk_buff *skb, struct netlink_callback *cb)
1880{
1881 int i, s_i;
1882 struct fib_alias *fa;
32ab5f80 1883 __be32 xkey = htonl(key);
19baf839 1884
71d67e66 1885 s_i = cb->args[5];
19baf839
RO
1886 i = 0;
1887
2373ce1c
RO
1888 /* rcu_read_lock is hold by caller */
1889
1890 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1891 if (i < s_i) {
1892 i++;
1893 continue;
1894 }
19baf839
RO
1895
1896 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1897 cb->nlh->nlmsg_seq,
1898 RTM_NEWROUTE,
1899 tb->tb_id,
1900 fa->fa_type,
1901 fa->fa_scope,
be403ea1 1902 xkey,
19baf839
RO
1903 plen,
1904 fa->fa_tos,
64347f78 1905 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1906 cb->args[5] = i;
19baf839 1907 return -1;
91b9a277 1908 }
19baf839
RO
1909 i++;
1910 }
71d67e66 1911 cb->args[5] = i;
19baf839
RO
1912 return skb->len;
1913}
1914
a88ee229
SH
1915static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1916 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1917{
a88ee229
SH
1918 struct leaf_info *li;
1919 struct hlist_node *node;
1920 int i, s_i;
19baf839 1921
71d67e66 1922 s_i = cb->args[4];
a88ee229 1923 i = 0;
19baf839 1924
a88ee229
SH
1925 /* rcu_read_lock is hold by caller */
1926 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1927 if (i < s_i) {
1928 i++;
19baf839 1929 continue;
a88ee229 1930 }
91b9a277 1931
a88ee229 1932 if (i > s_i)
71d67e66 1933 cb->args[5] = 0;
19baf839 1934
a88ee229 1935 if (list_empty(&li->falh))
19baf839
RO
1936 continue;
1937
a88ee229 1938 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1939 cb->args[4] = i;
19baf839
RO
1940 return -1;
1941 }
a88ee229 1942 i++;
19baf839 1943 }
a88ee229 1944
71d67e66 1945 cb->args[4] = i;
19baf839
RO
1946 return skb->len;
1947}
1948
a07f5f50
SH
1949static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1950 struct netlink_callback *cb)
19baf839 1951{
a88ee229 1952 struct leaf *l;
19baf839 1953 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1954 t_key key = cb->args[2];
71d67e66 1955 int count = cb->args[3];
19baf839 1956
2373ce1c 1957 rcu_read_lock();
d5ce8a0e
SH
1958 /* Dump starting at last key.
1959 * Note: 0.0.0.0/0 (ie default) is first key.
1960 */
71d67e66 1961 if (count == 0)
d5ce8a0e
SH
1962 l = trie_firstleaf(t);
1963 else {
71d67e66
SH
1964 /* Normally, continue from last key, but if that is missing
1965 * fallback to using slow rescan
1966 */
d5ce8a0e 1967 l = fib_find_node(t, key);
71d67e66
SH
1968 if (!l)
1969 l = trie_leafindex(t, count);
d5ce8a0e 1970 }
a88ee229 1971
d5ce8a0e
SH
1972 while (l) {
1973 cb->args[2] = l->key;
a88ee229 1974 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1975 cb->args[3] = count;
a88ee229 1976 rcu_read_unlock();
a88ee229 1977 return -1;
19baf839 1978 }
d5ce8a0e 1979
71d67e66 1980 ++count;
d5ce8a0e 1981 l = trie_nextleaf(l);
71d67e66
SH
1982 memset(&cb->args[4], 0,
1983 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1984 }
71d67e66 1985 cb->args[3] = count;
2373ce1c 1986 rcu_read_unlock();
a88ee229 1987
19baf839 1988 return skb->len;
19baf839
RO
1989}
1990
7f9b8052
SH
1991void __init fib_hash_init(void)
1992{
a07f5f50
SH
1993 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1994 sizeof(struct fib_alias),
bc3c8c1e
SH
1995 0, SLAB_PANIC, NULL);
1996
1997 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1998 max(sizeof(struct leaf),
1999 sizeof(struct leaf_info)),
2000 0, SLAB_PANIC, NULL);
7f9b8052 2001}
19baf839 2002
7f9b8052
SH
2003
2004/* Fix more generic FIB names for init later */
2005struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2006{
2007 struct fib_table *tb;
2008 struct trie *t;
2009
19baf839
RO
2010 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2011 GFP_KERNEL);
2012 if (tb == NULL)
2013 return NULL;
2014
2015 tb->tb_id = id;
971b893e 2016 tb->tb_default = -1;
19baf839
RO
2017 tb->tb_lookup = fn_trie_lookup;
2018 tb->tb_insert = fn_trie_insert;
2019 tb->tb_delete = fn_trie_delete;
2020 tb->tb_flush = fn_trie_flush;
2021 tb->tb_select_default = fn_trie_select_default;
2022 tb->tb_dump = fn_trie_dump;
19baf839
RO
2023
2024 t = (struct trie *) tb->tb_data;
c28a1cf4 2025 memset(t, 0, sizeof(*t));
19baf839 2026
19baf839 2027 if (id == RT_TABLE_LOCAL)
a07f5f50 2028 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2029
2030 return tb;
2031}
2032
cb7b593c
SH
2033#ifdef CONFIG_PROC_FS
2034/* Depth first Trie walk iterator */
2035struct fib_trie_iter {
1c340b2f 2036 struct seq_net_private p;
3d3b2d25 2037 struct fib_table *tb;
cb7b593c 2038 struct tnode *tnode;
cb7b593c
SH
2039 unsigned index;
2040 unsigned depth;
2041};
19baf839 2042
cb7b593c 2043static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2044{
cb7b593c
SH
2045 struct tnode *tn = iter->tnode;
2046 unsigned cindex = iter->index;
2047 struct tnode *p;
19baf839 2048
6640e697
EB
2049 /* A single entry routing table */
2050 if (!tn)
2051 return NULL;
2052
cb7b593c
SH
2053 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2054 iter->tnode, iter->index, iter->depth);
2055rescan:
2056 while (cindex < (1<<tn->bits)) {
b59cfbf7 2057 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2058
cb7b593c
SH
2059 if (n) {
2060 if (IS_LEAF(n)) {
2061 iter->tnode = tn;
2062 iter->index = cindex + 1;
2063 } else {
2064 /* push down one level */
2065 iter->tnode = (struct tnode *) n;
2066 iter->index = 0;
2067 ++iter->depth;
2068 }
2069 return n;
2070 }
19baf839 2071
cb7b593c
SH
2072 ++cindex;
2073 }
91b9a277 2074
cb7b593c 2075 /* Current node exhausted, pop back up */
b59cfbf7 2076 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2077 if (p) {
2078 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2079 tn = p;
2080 --iter->depth;
2081 goto rescan;
19baf839 2082 }
cb7b593c
SH
2083
2084 /* got root? */
2085 return NULL;
19baf839
RO
2086}
2087
cb7b593c
SH
2088static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2089 struct trie *t)
19baf839 2090{
3d3b2d25 2091 struct node *n;
5ddf0eb2 2092
132adf54 2093 if (!t)
5ddf0eb2
RO
2094 return NULL;
2095
2096 n = rcu_dereference(t->trie);
3d3b2d25 2097 if (!n)
5ddf0eb2 2098 return NULL;
19baf839 2099
3d3b2d25
SH
2100 if (IS_TNODE(n)) {
2101 iter->tnode = (struct tnode *) n;
2102 iter->index = 0;
2103 iter->depth = 1;
2104 } else {
2105 iter->tnode = NULL;
2106 iter->index = 0;
2107 iter->depth = 0;
91b9a277 2108 }
3d3b2d25
SH
2109
2110 return n;
cb7b593c 2111}
91b9a277 2112
cb7b593c
SH
2113static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2114{
2115 struct node *n;
2116 struct fib_trie_iter iter;
91b9a277 2117
cb7b593c 2118 memset(s, 0, sizeof(*s));
91b9a277 2119
cb7b593c 2120 rcu_read_lock();
3d3b2d25 2121 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2122 if (IS_LEAF(n)) {
93672292
SH
2123 struct leaf *l = (struct leaf *)n;
2124 struct leaf_info *li;
2125 struct hlist_node *tmp;
2126
cb7b593c
SH
2127 s->leaves++;
2128 s->totdepth += iter.depth;
2129 if (iter.depth > s->maxdepth)
2130 s->maxdepth = iter.depth;
93672292
SH
2131
2132 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2133 ++s->prefixes;
cb7b593c
SH
2134 } else {
2135 const struct tnode *tn = (const struct tnode *) n;
2136 int i;
2137
2138 s->tnodes++;
132adf54 2139 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2140 s->nodesizes[tn->bits]++;
2141
cb7b593c
SH
2142 for (i = 0; i < (1<<tn->bits); i++)
2143 if (!tn->child[i])
2144 s->nullpointers++;
19baf839 2145 }
19baf839 2146 }
2373ce1c 2147 rcu_read_unlock();
19baf839
RO
2148}
2149
cb7b593c
SH
2150/*
2151 * This outputs /proc/net/fib_triestats
2152 */
2153static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2154{
cb7b593c 2155 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2156
cb7b593c
SH
2157 if (stat->leaves)
2158 avdepth = stat->totdepth*100 / stat->leaves;
2159 else
2160 avdepth = 0;
91b9a277 2161
a07f5f50
SH
2162 seq_printf(seq, "\tAver depth: %u.%02d\n",
2163 avdepth / 100, avdepth % 100);
cb7b593c 2164 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2165
cb7b593c 2166 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2167 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2168
2169 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2170 bytes += sizeof(struct leaf_info) * stat->prefixes;
2171
187b5188 2172 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2173 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2174
06ef921d
RO
2175 max = MAX_STAT_DEPTH;
2176 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2177 max--;
19baf839 2178
cb7b593c
SH
2179 pointers = 0;
2180 for (i = 1; i <= max; i++)
2181 if (stat->nodesizes[i] != 0) {
187b5188 2182 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2183 pointers += (1<<i) * stat->nodesizes[i];
2184 }
2185 seq_putc(seq, '\n');
187b5188 2186 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2187
cb7b593c 2188 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2189 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2190 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2191}
2373ce1c 2192
cb7b593c 2193#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2194static void trie_show_usage(struct seq_file *seq,
2195 const struct trie_use_stats *stats)
2196{
2197 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2198 seq_printf(seq, "gets = %u\n", stats->gets);
2199 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2200 seq_printf(seq, "semantic match passed = %u\n",
2201 stats->semantic_match_passed);
2202 seq_printf(seq, "semantic match miss = %u\n",
2203 stats->semantic_match_miss);
2204 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2205 seq_printf(seq, "skipped node resize = %u\n\n",
2206 stats->resize_node_skipped);
cb7b593c 2207}
66a2f7fd
SH
2208#endif /* CONFIG_IP_FIB_TRIE_STATS */
2209
3d3b2d25 2210static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2211{
3d3b2d25
SH
2212 if (tb->tb_id == RT_TABLE_LOCAL)
2213 seq_puts(seq, "Local:\n");
2214 else if (tb->tb_id == RT_TABLE_MAIN)
2215 seq_puts(seq, "Main:\n");
2216 else
2217 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2218}
19baf839 2219
3d3b2d25 2220
cb7b593c
SH
2221static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2222{
1c340b2f 2223 struct net *net = (struct net *)seq->private;
3d3b2d25 2224 unsigned int h;
877a9bff 2225
d717a9a6 2226 seq_printf(seq,
a07f5f50
SH
2227 "Basic info: size of leaf:"
2228 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2229 sizeof(struct leaf), sizeof(struct tnode));
2230
3d3b2d25
SH
2231 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2232 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2233 struct hlist_node *node;
2234 struct fib_table *tb;
2235
2236 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2237 struct trie *t = (struct trie *) tb->tb_data;
2238 struct trie_stat stat;
877a9bff 2239
3d3b2d25
SH
2240 if (!t)
2241 continue;
2242
2243 fib_table_print(seq, tb);
2244
2245 trie_collect_stats(t, &stat);
2246 trie_show_stats(seq, &stat);
2247#ifdef CONFIG_IP_FIB_TRIE_STATS
2248 trie_show_usage(seq, &t->stats);
2249#endif
2250 }
2251 }
19baf839 2252
cb7b593c 2253 return 0;
19baf839
RO
2254}
2255
cb7b593c 2256static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2257{
de05c557 2258 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2259}
2260
9a32144e 2261static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2262 .owner = THIS_MODULE,
2263 .open = fib_triestat_seq_open,
2264 .read = seq_read,
2265 .llseek = seq_lseek,
b6fcbdb4 2266 .release = single_release_net,
cb7b593c
SH
2267};
2268
1218854a 2269static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2270{
1218854a
YH
2271 struct fib_trie_iter *iter = seq->private;
2272 struct net *net = seq_file_net(seq);
cb7b593c 2273 loff_t idx = 0;
3d3b2d25 2274 unsigned int h;
cb7b593c 2275
3d3b2d25
SH
2276 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2277 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2278 struct hlist_node *node;
2279 struct fib_table *tb;
cb7b593c 2280
3d3b2d25
SH
2281 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2282 struct node *n;
2283
2284 for (n = fib_trie_get_first(iter,
2285 (struct trie *) tb->tb_data);
2286 n; n = fib_trie_get_next(iter))
2287 if (pos == idx++) {
2288 iter->tb = tb;
2289 return n;
2290 }
2291 }
cb7b593c 2292 }
3d3b2d25 2293
19baf839
RO
2294 return NULL;
2295}
2296
cb7b593c 2297static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2298 __acquires(RCU)
19baf839 2299{
cb7b593c 2300 rcu_read_lock();
1218854a 2301 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2302}
2303
cb7b593c 2304static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2305{
cb7b593c 2306 struct fib_trie_iter *iter = seq->private;
1218854a 2307 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2308 struct fib_table *tb = iter->tb;
2309 struct hlist_node *tb_node;
2310 unsigned int h;
2311 struct node *n;
cb7b593c 2312
19baf839 2313 ++*pos;
3d3b2d25
SH
2314 /* next node in same table */
2315 n = fib_trie_get_next(iter);
2316 if (n)
2317 return n;
19baf839 2318
3d3b2d25
SH
2319 /* walk rest of this hash chain */
2320 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2321 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2322 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2323 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2324 if (n)
2325 goto found;
2326 }
19baf839 2327
3d3b2d25
SH
2328 /* new hash chain */
2329 while (++h < FIB_TABLE_HASHSZ) {
2330 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2331 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2332 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2333 if (n)
2334 goto found;
2335 }
2336 }
cb7b593c 2337 return NULL;
3d3b2d25
SH
2338
2339found:
2340 iter->tb = tb;
2341 return n;
cb7b593c 2342}
19baf839 2343
cb7b593c 2344static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2345 __releases(RCU)
19baf839 2346{
cb7b593c
SH
2347 rcu_read_unlock();
2348}
91b9a277 2349
cb7b593c
SH
2350static void seq_indent(struct seq_file *seq, int n)
2351{
2352 while (n-- > 0) seq_puts(seq, " ");
2353}
19baf839 2354
28d36e37 2355static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2356{
132adf54 2357 switch (s) {
cb7b593c
SH
2358 case RT_SCOPE_UNIVERSE: return "universe";
2359 case RT_SCOPE_SITE: return "site";
2360 case RT_SCOPE_LINK: return "link";
2361 case RT_SCOPE_HOST: return "host";
2362 case RT_SCOPE_NOWHERE: return "nowhere";
2363 default:
28d36e37 2364 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2365 return buf;
2366 }
2367}
19baf839 2368
cb7b593c
SH
2369static const char *rtn_type_names[__RTN_MAX] = {
2370 [RTN_UNSPEC] = "UNSPEC",
2371 [RTN_UNICAST] = "UNICAST",
2372 [RTN_LOCAL] = "LOCAL",
2373 [RTN_BROADCAST] = "BROADCAST",
2374 [RTN_ANYCAST] = "ANYCAST",
2375 [RTN_MULTICAST] = "MULTICAST",
2376 [RTN_BLACKHOLE] = "BLACKHOLE",
2377 [RTN_UNREACHABLE] = "UNREACHABLE",
2378 [RTN_PROHIBIT] = "PROHIBIT",
2379 [RTN_THROW] = "THROW",
2380 [RTN_NAT] = "NAT",
2381 [RTN_XRESOLVE] = "XRESOLVE",
2382};
19baf839 2383
28d36e37 2384static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2385{
cb7b593c
SH
2386 if (t < __RTN_MAX && rtn_type_names[t])
2387 return rtn_type_names[t];
28d36e37 2388 snprintf(buf, len, "type %u", t);
cb7b593c 2389 return buf;
19baf839
RO
2390}
2391
cb7b593c
SH
2392/* Pretty print the trie */
2393static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2394{
cb7b593c
SH
2395 const struct fib_trie_iter *iter = seq->private;
2396 struct node *n = v;
c877efb2 2397
3d3b2d25
SH
2398 if (!node_parent_rcu(n))
2399 fib_table_print(seq, iter->tb);
095b8501 2400
cb7b593c
SH
2401 if (IS_TNODE(n)) {
2402 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2403 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2404
1d25cd6c 2405 seq_indent(seq, iter->depth-1);
673d57e7
HH
2406 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2407 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2408 tn->empty_children);
e905a9ed 2409
cb7b593c
SH
2410 } else {
2411 struct leaf *l = (struct leaf *) n;
1328042e
SH
2412 struct leaf_info *li;
2413 struct hlist_node *node;
32ab5f80 2414 __be32 val = htonl(l->key);
cb7b593c
SH
2415
2416 seq_indent(seq, iter->depth);
673d57e7 2417 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2418
2419 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2420 struct fib_alias *fa;
2421
2422 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2423 char buf1[32], buf2[32];
2424
2425 seq_indent(seq, iter->depth+1);
2426 seq_printf(seq, " /%d %s %s", li->plen,
2427 rtn_scope(buf1, sizeof(buf1),
2428 fa->fa_scope),
2429 rtn_type(buf2, sizeof(buf2),
2430 fa->fa_type));
2431 if (fa->fa_tos)
b9c4d82a 2432 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2433 seq_putc(seq, '\n');
cb7b593c
SH
2434 }
2435 }
19baf839 2436 }
cb7b593c 2437
19baf839
RO
2438 return 0;
2439}
2440
f690808e 2441static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2442 .start = fib_trie_seq_start,
2443 .next = fib_trie_seq_next,
2444 .stop = fib_trie_seq_stop,
2445 .show = fib_trie_seq_show,
19baf839
RO
2446};
2447
cb7b593c 2448static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2449{
1c340b2f
DL
2450 return seq_open_net(inode, file, &fib_trie_seq_ops,
2451 sizeof(struct fib_trie_iter));
19baf839
RO
2452}
2453
9a32144e 2454static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2455 .owner = THIS_MODULE,
2456 .open = fib_trie_seq_open,
2457 .read = seq_read,
2458 .llseek = seq_lseek,
1c340b2f 2459 .release = seq_release_net,
19baf839
RO
2460};
2461
8315f5d8
SH
2462struct fib_route_iter {
2463 struct seq_net_private p;
2464 struct trie *main_trie;
2465 loff_t pos;
2466 t_key key;
2467};
2468
2469static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2470{
2471 struct leaf *l = NULL;
2472 struct trie *t = iter->main_trie;
2473
2474 /* use cache location of last found key */
2475 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2476 pos -= iter->pos;
2477 else {
2478 iter->pos = 0;
2479 l = trie_firstleaf(t);
2480 }
2481
2482 while (l && pos-- > 0) {
2483 iter->pos++;
2484 l = trie_nextleaf(l);
2485 }
2486
2487 if (l)
2488 iter->key = pos; /* remember it */
2489 else
2490 iter->pos = 0; /* forget it */
2491
2492 return l;
2493}
2494
2495static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2496 __acquires(RCU)
2497{
2498 struct fib_route_iter *iter = seq->private;
2499 struct fib_table *tb;
2500
2501 rcu_read_lock();
1218854a 2502 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2503 if (!tb)
2504 return NULL;
2505
2506 iter->main_trie = (struct trie *) tb->tb_data;
2507 if (*pos == 0)
2508 return SEQ_START_TOKEN;
2509 else
2510 return fib_route_get_idx(iter, *pos - 1);
2511}
2512
2513static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2514{
2515 struct fib_route_iter *iter = seq->private;
2516 struct leaf *l = v;
2517
2518 ++*pos;
2519 if (v == SEQ_START_TOKEN) {
2520 iter->pos = 0;
2521 l = trie_firstleaf(iter->main_trie);
2522 } else {
2523 iter->pos++;
2524 l = trie_nextleaf(l);
2525 }
2526
2527 if (l)
2528 iter->key = l->key;
2529 else
2530 iter->pos = 0;
2531 return l;
2532}
2533
2534static void fib_route_seq_stop(struct seq_file *seq, void *v)
2535 __releases(RCU)
2536{
2537 rcu_read_unlock();
2538}
2539
32ab5f80 2540static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2541{
cb7b593c
SH
2542 static unsigned type2flags[RTN_MAX + 1] = {
2543 [7] = RTF_REJECT, [8] = RTF_REJECT,
2544 };
2545 unsigned flags = type2flags[type];
19baf839 2546
cb7b593c
SH
2547 if (fi && fi->fib_nh->nh_gw)
2548 flags |= RTF_GATEWAY;
32ab5f80 2549 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2550 flags |= RTF_HOST;
2551 flags |= RTF_UP;
2552 return flags;
19baf839
RO
2553}
2554
cb7b593c
SH
2555/*
2556 * This outputs /proc/net/route.
2557 * The format of the file is not supposed to be changed
2558 * and needs to be same as fib_hash output to avoid breaking
2559 * legacy utilities
2560 */
2561static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2562{
cb7b593c 2563 struct leaf *l = v;
1328042e
SH
2564 struct leaf_info *li;
2565 struct hlist_node *node;
19baf839 2566
cb7b593c
SH
2567 if (v == SEQ_START_TOKEN) {
2568 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2569 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2570 "\tWindow\tIRTT");
2571 return 0;
2572 }
19baf839 2573
1328042e 2574 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2575 struct fib_alias *fa;
32ab5f80 2576 __be32 mask, prefix;
91b9a277 2577
cb7b593c
SH
2578 mask = inet_make_mask(li->plen);
2579 prefix = htonl(l->key);
19baf839 2580
cb7b593c 2581 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2582 const struct fib_info *fi = fa->fa_info;
cb7b593c 2583 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2584 int len;
19baf839 2585
cb7b593c
SH
2586 if (fa->fa_type == RTN_BROADCAST
2587 || fa->fa_type == RTN_MULTICAST)
2588 continue;
19baf839 2589
cb7b593c 2590 if (fi)
5e659e4c
PE
2591 seq_printf(seq,
2592 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2593 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2594 fi->fib_dev ? fi->fib_dev->name : "*",
2595 prefix,
2596 fi->fib_nh->nh_gw, flags, 0, 0,
2597 fi->fib_priority,
2598 mask,
a07f5f50
SH
2599 (fi->fib_advmss ?
2600 fi->fib_advmss + 40 : 0),
cb7b593c 2601 fi->fib_window,
5e659e4c 2602 fi->fib_rtt >> 3, &len);
cb7b593c 2603 else
5e659e4c
PE
2604 seq_printf(seq,
2605 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2606 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2607 prefix, 0, flags, 0, 0, 0,
5e659e4c 2608 mask, 0, 0, 0, &len);
19baf839 2609
5e659e4c 2610 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2611 }
19baf839
RO
2612 }
2613
2614 return 0;
2615}
2616
f690808e 2617static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2618 .start = fib_route_seq_start,
2619 .next = fib_route_seq_next,
2620 .stop = fib_route_seq_stop,
cb7b593c 2621 .show = fib_route_seq_show,
19baf839
RO
2622};
2623
cb7b593c 2624static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2625{
1c340b2f 2626 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2627 sizeof(struct fib_route_iter));
19baf839
RO
2628}
2629
9a32144e 2630static const struct file_operations fib_route_fops = {
cb7b593c
SH
2631 .owner = THIS_MODULE,
2632 .open = fib_route_seq_open,
2633 .read = seq_read,
2634 .llseek = seq_lseek,
1c340b2f 2635 .release = seq_release_net,
19baf839
RO
2636};
2637
61a02653 2638int __net_init fib_proc_init(struct net *net)
19baf839 2639{
61a02653 2640 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2641 goto out1;
2642
61a02653
DL
2643 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2644 &fib_triestat_fops))
cb7b593c
SH
2645 goto out2;
2646
61a02653 2647 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2648 goto out3;
2649
19baf839 2650 return 0;
cb7b593c
SH
2651
2652out3:
61a02653 2653 proc_net_remove(net, "fib_triestat");
cb7b593c 2654out2:
61a02653 2655 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2656out1:
2657 return -ENOMEM;
19baf839
RO
2658}
2659
61a02653 2660void __net_exit fib_proc_exit(struct net *net)
19baf839 2661{
61a02653
DL
2662 proc_net_remove(net, "fib_trie");
2663 proc_net_remove(net, "fib_triestat");
2664 proc_net_remove(net, "route");
19baf839
RO
2665}
2666
2667#endif /* CONFIG_PROC_FS */
This page took 0.934323 seconds and 5 git commands to generate.