route: Take the right src and dst addresses in ip_route_newports
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
5a0e3ad6 74#include <linux/slab.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
06ef921d 84#define MAX_STAT_DEPTH 32
19baf839 85
19baf839 86#define KEYLENGTH (8*sizeof(t_key))
19baf839 87
19baf839
RO
88typedef unsigned int t_key;
89
90#define T_TNODE 0
91#define T_LEAF 1
92#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
91b9a277
OJ
95#define IS_TNODE(n) (!(n->parent & T_LEAF))
96#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839 97
b299e4f0 98struct rt_trie_node {
91b9a277 99 unsigned long parent;
8d965444 100 t_key key;
19baf839
RO
101};
102
103struct leaf {
91b9a277 104 unsigned long parent;
8d965444 105 t_key key;
19baf839 106 struct hlist_head list;
2373ce1c 107 struct rcu_head rcu;
19baf839
RO
108};
109
110struct leaf_info {
111 struct hlist_node hlist;
2373ce1c 112 struct rcu_head rcu;
19baf839
RO
113 int plen;
114 struct list_head falh;
115};
116
117struct tnode {
91b9a277 118 unsigned long parent;
8d965444 119 t_key key;
112d8cfc
ED
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
e0f7cb8c 127 struct tnode *tnode_free;
15be75cd 128 };
b299e4f0 129 struct rt_trie_node *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
93672292 149 unsigned int prefixes;
06ef921d 150 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 151};
19baf839
RO
152
153struct trie {
b299e4f0 154 struct rt_trie_node *trie;
19baf839
RO
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157#endif
19baf839
RO
158};
159
b299e4f0
DM
160static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
161static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 162 int wasfull);
b299e4f0 163static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
164static struct tnode *inflate(struct trie *t, struct tnode *tn);
165static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
166/* tnodes to free after resize(); protected by RTNL */
167static struct tnode *tnode_free_head;
c3059477
JP
168static size_t tnode_free_size;
169
170/*
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
174 */
175static const int sync_pages = 128;
19baf839 176
e18b890b 177static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 178static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 179
b299e4f0 180static inline struct tnode *node_parent(struct rt_trie_node *node)
06801916 181{
b59cfbf7
ED
182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183}
184
b299e4f0 185static inline struct tnode *node_parent_rcu(struct rt_trie_node *node)
b59cfbf7
ED
186{
187 struct tnode *ret = node_parent(node);
06801916 188
a034ee3c 189 return rcu_dereference_rtnl(ret);
06801916
SH
190}
191
6440cc9e
SH
192/* Same as rcu_assign_pointer
193 * but that macro() assumes that value is a pointer.
194 */
b299e4f0 195static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
06801916 196{
6440cc9e
SH
197 smp_wmb();
198 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 199}
2373ce1c 200
b299e4f0 201static inline struct rt_trie_node *tnode_get_child(struct tnode *tn, unsigned int i)
b59cfbf7
ED
202{
203 BUG_ON(i >= 1U << tn->bits);
2373ce1c 204
b59cfbf7
ED
205 return tn->child[i];
206}
207
b299e4f0 208static inline struct rt_trie_node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 209{
b299e4f0 210 struct rt_trie_node *ret = tnode_get_child(tn, i);
19baf839 211
a034ee3c 212 return rcu_dereference_rtnl(ret);
19baf839
RO
213}
214
bb435b8d 215static inline int tnode_child_length(const struct tnode *tn)
19baf839 216{
91b9a277 217 return 1 << tn->bits;
19baf839
RO
218}
219
3b004569 220static inline t_key mask_pfx(t_key k, unsigned int l)
ab66b4a7
SH
221{
222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
223}
224
3b004569 225static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
19baf839 226{
91b9a277 227 if (offset < KEYLENGTH)
19baf839 228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 229 else
19baf839
RO
230 return 0;
231}
232
233static inline int tkey_equals(t_key a, t_key b)
234{
c877efb2 235 return a == b;
19baf839
RO
236}
237
238static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239{
c877efb2
SH
240 if (bits == 0 || offset >= KEYLENGTH)
241 return 1;
91b9a277
OJ
242 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 244}
19baf839
RO
245
246static inline int tkey_mismatch(t_key a, int offset, t_key b)
247{
248 t_key diff = a ^ b;
249 int i = offset;
250
c877efb2
SH
251 if (!diff)
252 return 0;
253 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
254 i++;
255 return i;
256}
257
19baf839 258/*
e905a9ed
YH
259 To understand this stuff, an understanding of keys and all their bits is
260 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
261 all of the bits in that key are significant.
262
263 Consider a node 'n' and its parent 'tp'.
264
e905a9ed
YH
265 If n is a leaf, every bit in its key is significant. Its presence is
266 necessitated by path compression, since during a tree traversal (when
267 searching for a leaf - unless we are doing an insertion) we will completely
268 ignore all skipped bits we encounter. Thus we need to verify, at the end of
269 a potentially successful search, that we have indeed been walking the
19baf839
RO
270 correct key path.
271
e905a9ed
YH
272 Note that we can never "miss" the correct key in the tree if present by
273 following the wrong path. Path compression ensures that segments of the key
274 that are the same for all keys with a given prefix are skipped, but the
275 skipped part *is* identical for each node in the subtrie below the skipped
276 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
277 call to tkey_sub_equals() in trie_insert().
278
e905a9ed 279 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
280 have many different meanings.
281
e905a9ed 282 Example:
19baf839
RO
283 _________________________________________________________________
284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285 -----------------------------------------------------------------
e905a9ed 286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
287
288 _________________________________________________________________
289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290 -----------------------------------------------------------------
291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
292
293 tp->pos = 7
294 tp->bits = 3
295 n->pos = 15
91b9a277 296 n->bits = 4
19baf839 297
e905a9ed
YH
298 First, let's just ignore the bits that come before the parent tp, that is
299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
300 not use them for anything.
301
302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 303 index into the parent's child array. That is, they will be used to find
19baf839
RO
304 'n' among tp's children.
305
306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307 for the node n.
308
e905a9ed 309 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
310 of the bits are really not needed or indeed known in n->key.
311
e905a9ed 312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 313 n's child array, and will of course be different for each child.
e905a9ed 314
c877efb2 315
19baf839
RO
316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317 at this point.
318
319*/
320
0c7770c7 321static inline void check_tnode(const struct tnode *tn)
19baf839 322{
0c7770c7 323 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
324}
325
f5026fab
DL
326static const int halve_threshold = 25;
327static const int inflate_threshold = 50;
345aa031 328static const int halve_threshold_root = 15;
80b71b80 329static const int inflate_threshold_root = 30;
2373ce1c
RO
330
331static void __alias_free_mem(struct rcu_head *head)
19baf839 332{
2373ce1c
RO
333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
335}
336
2373ce1c 337static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 338{
2373ce1c
RO
339 call_rcu(&fa->rcu, __alias_free_mem);
340}
91b9a277 341
2373ce1c
RO
342static void __leaf_free_rcu(struct rcu_head *head)
343{
bc3c8c1e
SH
344 struct leaf *l = container_of(head, struct leaf, rcu);
345 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 346}
91b9a277 347
387a5487
SH
348static inline void free_leaf(struct leaf *l)
349{
350 call_rcu_bh(&l->rcu, __leaf_free_rcu);
351}
352
2373ce1c 353static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 354{
2373ce1c 355 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
356}
357
2373ce1c 358static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 359{
2373ce1c 360 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
361}
362
8d965444 363static struct tnode *tnode_alloc(size_t size)
f0e36f8c 364{
2373ce1c 365 if (size <= PAGE_SIZE)
8d965444 366 return kzalloc(size, GFP_KERNEL);
15be75cd 367 else
7a1c8e5a 368 return vzalloc(size);
15be75cd 369}
2373ce1c 370
15be75cd
SH
371static void __tnode_vfree(struct work_struct *arg)
372{
373 struct tnode *tn = container_of(arg, struct tnode, work);
374 vfree(tn);
f0e36f8c
PM
375}
376
2373ce1c 377static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 378{
2373ce1c 379 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444 380 size_t size = sizeof(struct tnode) +
b299e4f0 381 (sizeof(struct rt_trie_node *) << tn->bits);
f0e36f8c
PM
382
383 if (size <= PAGE_SIZE)
384 kfree(tn);
15be75cd
SH
385 else {
386 INIT_WORK(&tn->work, __tnode_vfree);
387 schedule_work(&tn->work);
388 }
f0e36f8c
PM
389}
390
2373ce1c
RO
391static inline void tnode_free(struct tnode *tn)
392{
387a5487
SH
393 if (IS_LEAF(tn))
394 free_leaf((struct leaf *) tn);
395 else
550e29bc 396 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
397}
398
e0f7cb8c
JP
399static void tnode_free_safe(struct tnode *tn)
400{
401 BUG_ON(IS_LEAF(tn));
7b85576d
JP
402 tn->tnode_free = tnode_free_head;
403 tnode_free_head = tn;
c3059477 404 tnode_free_size += sizeof(struct tnode) +
b299e4f0 405 (sizeof(struct rt_trie_node *) << tn->bits);
e0f7cb8c
JP
406}
407
408static void tnode_free_flush(void)
409{
410 struct tnode *tn;
411
412 while ((tn = tnode_free_head)) {
413 tnode_free_head = tn->tnode_free;
414 tn->tnode_free = NULL;
415 tnode_free(tn);
416 }
c3059477
JP
417
418 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 tnode_free_size = 0;
420 synchronize_rcu();
421 }
e0f7cb8c
JP
422}
423
2373ce1c
RO
424static struct leaf *leaf_new(void)
425{
bc3c8c1e 426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
427 if (l) {
428 l->parent = T_LEAF;
429 INIT_HLIST_HEAD(&l->list);
430 }
431 return l;
432}
433
434static struct leaf_info *leaf_info_new(int plen)
435{
436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
437 if (li) {
438 li->plen = plen;
439 INIT_LIST_HEAD(&li->falh);
440 }
441 return li;
442}
443
a07f5f50 444static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 445{
b299e4f0 446 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
f0e36f8c 447 struct tnode *tn = tnode_alloc(sz);
19baf839 448
91b9a277 449 if (tn) {
2373ce1c 450 tn->parent = T_TNODE;
19baf839
RO
451 tn->pos = pos;
452 tn->bits = bits;
453 tn->key = key;
454 tn->full_children = 0;
455 tn->empty_children = 1<<bits;
456 }
c877efb2 457
a034ee3c 458 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
b299e4f0 459 sizeof(struct rt_trie_node) << bits);
19baf839
RO
460 return tn;
461}
462
19baf839
RO
463/*
464 * Check whether a tnode 'n' is "full", i.e. it is an internal node
465 * and no bits are skipped. See discussion in dyntree paper p. 6
466 */
467
b299e4f0 468static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
19baf839 469{
c877efb2 470 if (n == NULL || IS_LEAF(n))
19baf839
RO
471 return 0;
472
473 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
474}
475
a07f5f50 476static inline void put_child(struct trie *t, struct tnode *tn, int i,
b299e4f0 477 struct rt_trie_node *n)
19baf839
RO
478{
479 tnode_put_child_reorg(tn, i, n, -1);
480}
481
c877efb2 482 /*
19baf839
RO
483 * Add a child at position i overwriting the old value.
484 * Update the value of full_children and empty_children.
485 */
486
b299e4f0 487static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 488 int wasfull)
19baf839 489{
b299e4f0 490 struct rt_trie_node *chi = tn->child[i];
19baf839
RO
491 int isfull;
492
0c7770c7
SH
493 BUG_ON(i >= 1<<tn->bits);
494
19baf839
RO
495 /* update emptyChildren */
496 if (n == NULL && chi != NULL)
497 tn->empty_children++;
498 else if (n != NULL && chi == NULL)
499 tn->empty_children--;
c877efb2 500
19baf839 501 /* update fullChildren */
91b9a277 502 if (wasfull == -1)
19baf839
RO
503 wasfull = tnode_full(tn, chi);
504
505 isfull = tnode_full(tn, n);
c877efb2 506 if (wasfull && !isfull)
19baf839 507 tn->full_children--;
c877efb2 508 else if (!wasfull && isfull)
19baf839 509 tn->full_children++;
91b9a277 510
c877efb2 511 if (n)
06801916 512 node_set_parent(n, tn);
19baf839 513
2373ce1c 514 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
515}
516
80b71b80 517#define MAX_WORK 10
b299e4f0 518static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
519{
520 int i;
2f80b3c8 521 struct tnode *old_tn;
e6308be8
RO
522 int inflate_threshold_use;
523 int halve_threshold_use;
80b71b80 524 int max_work;
19baf839 525
e905a9ed 526 if (!tn)
19baf839
RO
527 return NULL;
528
0c7770c7
SH
529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 tn, inflate_threshold, halve_threshold);
19baf839
RO
531
532 /* No children */
533 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 534 tnode_free_safe(tn);
19baf839
RO
535 return NULL;
536 }
537 /* One child */
538 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 539 goto one_child;
c877efb2 540 /*
19baf839
RO
541 * Double as long as the resulting node has a number of
542 * nonempty nodes that are above the threshold.
543 */
544
545 /*
c877efb2
SH
546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 548 * Telecommunications, page 6:
c877efb2 549 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
550 * children in the *doubled* node is at least 'high'."
551 *
c877efb2
SH
552 * 'high' in this instance is the variable 'inflate_threshold'. It
553 * is expressed as a percentage, so we multiply it with
554 * tnode_child_length() and instead of multiplying by 2 (since the
555 * child array will be doubled by inflate()) and multiplying
556 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 557 * multiply the left-hand side by 50.
c877efb2
SH
558 *
559 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 * - tn->empty_children is of course the number of non-null children
561 * in the current node. tn->full_children is the number of "full"
19baf839 562 * children, that is non-null tnodes with a skip value of 0.
c877efb2 563 * All of those will be doubled in the resulting inflated tnode, so
19baf839 564 * we just count them one extra time here.
c877efb2 565 *
19baf839 566 * A clearer way to write this would be:
c877efb2 567 *
19baf839 568 * to_be_doubled = tn->full_children;
c877efb2 569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
570 * tn->full_children;
571 *
572 * new_child_length = tnode_child_length(tn) * 2;
573 *
c877efb2 574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
575 * new_child_length;
576 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
577 *
578 * ...and so on, tho it would mess up the while () loop.
579 *
19baf839
RO
580 * anyway,
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 * inflate_threshold
c877efb2 583 *
19baf839
RO
584 * avoid a division:
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 * inflate_threshold * new_child_length
c877efb2 587 *
19baf839 588 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 589 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 590 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 591 *
19baf839 592 * expand new_child_length:
c877efb2 593 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 594 * tn->full_children) >=
19baf839 595 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 596 *
19baf839 597 * shorten again:
c877efb2 598 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 599 * tn->empty_children) >= inflate_threshold *
19baf839 600 * tnode_child_length(tn)
c877efb2 601 *
19baf839
RO
602 */
603
604 check_tnode(tn);
c877efb2 605
e6308be8
RO
606 /* Keep root node larger */
607
b299e4f0 608 if (!node_parent((struct rt_trie_node *)tn)) {
80b71b80
JL
609 inflate_threshold_use = inflate_threshold_root;
610 halve_threshold_use = halve_threshold_root;
a034ee3c 611 } else {
e6308be8 612 inflate_threshold_use = inflate_threshold;
80b71b80
JL
613 halve_threshold_use = halve_threshold;
614 }
e6308be8 615
80b71b80
JL
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 621
2f80b3c8
RO
622 old_tn = tn;
623 tn = inflate(t, tn);
a07f5f50 624
2f80b3c8
RO
625 if (IS_ERR(tn)) {
626 tn = old_tn;
2f36895a
RO
627#ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629#endif
630 break;
631 }
19baf839
RO
632 }
633
634 check_tnode(tn);
635
80b71b80 636 /* Return if at least one inflate is run */
a034ee3c 637 if (max_work != MAX_WORK)
b299e4f0 638 return (struct rt_trie_node *) tn;
80b71b80 639
19baf839
RO
640 /*
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
643 */
2f36895a 644
80b71b80
JL
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
19baf839 647 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 648 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 649
2f80b3c8
RO
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
2f36895a
RO
654#ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656#endif
657 break;
658 }
659 }
19baf839 660
c877efb2 661
19baf839 662 /* Only one child remains */
80b71b80
JL
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664one_child:
19baf839 665 for (i = 0; i < tnode_child_length(tn); i++) {
b299e4f0 666 struct rt_trie_node *n;
19baf839 667
91b9a277 668 n = tn->child[i];
2373ce1c 669 if (!n)
91b9a277 670 continue;
91b9a277
OJ
671
672 /* compress one level */
673
06801916 674 node_set_parent(n, NULL);
e0f7cb8c 675 tnode_free_safe(tn);
91b9a277 676 return n;
19baf839 677 }
80b71b80 678 }
b299e4f0 679 return (struct rt_trie_node *) tn;
19baf839
RO
680}
681
2f80b3c8 682static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 683{
19baf839
RO
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
687
0c7770c7 688 pr_debug("In inflate\n");
19baf839
RO
689
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691
0c7770c7 692 if (!tn)
2f80b3c8 693 return ERR_PTR(-ENOMEM);
2f36895a
RO
694
695 /*
c877efb2
SH
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
699 * of tnode is ignored.
700 */
91b9a277
OJ
701
702 for (i = 0; i < olen; i++) {
a07f5f50 703 struct tnode *inode;
2f36895a 704
a07f5f50 705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
ab66b4a7 711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 712
2f36895a
RO
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
2f80b3c8
RO
715 if (!left)
716 goto nomem;
91b9a277 717
2f36895a
RO
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
720
e905a9ed 721 if (!right) {
2f80b3c8
RO
722 tnode_free(left);
723 goto nomem;
e905a9ed 724 }
2f36895a 725
b299e4f0
DM
726 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
727 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
2f36895a
RO
728 }
729 }
730
91b9a277 731 for (i = 0; i < olen; i++) {
c95aaf9a 732 struct tnode *inode;
b299e4f0 733 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
734 struct tnode *left, *right;
735 int size, j;
c877efb2 736
19baf839
RO
737 /* An empty child */
738 if (node == NULL)
739 continue;
740
741 /* A leaf or an internal node with skipped bits */
742
c877efb2 743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 744 tn->pos + tn->bits - 1) {
a07f5f50
SH
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
19baf839
RO
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
752 }
753
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
756
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
760
e0f7cb8c 761 tnode_free_safe(inode);
91b9a277 762 continue;
19baf839
RO
763 }
764
91b9a277
OJ
765 /* An internal node with more than two children */
766
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
782 */
19baf839 783
91b9a277
OJ
784 /* Use the old key, but set the new significant
785 * bit to zero.
786 */
2f36895a 787
91b9a277
OJ
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
2f36895a 790
91b9a277 791 BUG_ON(!left);
2f36895a 792
91b9a277
OJ
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
19baf839 795
91b9a277 796 BUG_ON(!right);
19baf839 797
91b9a277
OJ
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
19baf839 802 }
91b9a277
OJ
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
805
e0f7cb8c 806 tnode_free_safe(inode);
19baf839 807 }
e0f7cb8c 808 tnode_free_safe(oldtnode);
19baf839 809 return tn;
2f80b3c8
RO
810nomem:
811 {
812 int size = tnode_child_length(tn);
813 int j;
814
0c7770c7 815 for (j = 0; j < size; j++)
2f80b3c8
RO
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
818
819 tnode_free(tn);
0c7770c7 820
2f80b3c8
RO
821 return ERR_PTR(-ENOMEM);
822 }
19baf839
RO
823}
824
2f80b3c8 825static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
826{
827 struct tnode *oldtnode = tn;
b299e4f0 828 struct rt_trie_node *left, *right;
19baf839
RO
829 int i;
830 int olen = tnode_child_length(tn);
831
0c7770c7 832 pr_debug("In halve\n");
c877efb2
SH
833
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 835
2f80b3c8
RO
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
2f36895a
RO
838
839 /*
c877efb2
SH
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
843 * of tnode is ignored.
844 */
845
91b9a277 846 for (i = 0; i < olen; i += 2) {
2f36895a
RO
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
c877efb2 849
2f36895a 850 /* Two nonempty children */
0c7770c7 851 if (left && right) {
2f80b3c8 852 struct tnode *newn;
0c7770c7 853
2f80b3c8 854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
855
856 if (!newn)
2f80b3c8 857 goto nomem;
0c7770c7 858
b299e4f0 859 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
2f36895a 860 }
2f36895a 861
2f36895a 862 }
19baf839 863
91b9a277
OJ
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
866
19baf839
RO
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
c877efb2 869
19baf839
RO
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
91b9a277 875 continue;
0c7770c7 876 }
91b9a277
OJ
877
878 if (right == NULL) {
19baf839 879 put_child(t, tn, i/2, left);
91b9a277
OJ
880 continue;
881 }
c877efb2 882
19baf839 883 /* Two nonempty children */
91b9a277
OJ
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
91b9a277
OJ
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 889 }
e0f7cb8c 890 tnode_free_safe(oldtnode);
19baf839 891 return tn;
2f80b3c8
RO
892nomem:
893 {
894 int size = tnode_child_length(tn);
895 int j;
896
0c7770c7 897 for (j = 0; j < size; j++)
2f80b3c8
RO
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
900
901 tnode_free(tn);
0c7770c7 902
2f80b3c8
RO
903 return ERR_PTR(-ENOMEM);
904 }
19baf839
RO
905}
906
772cb712 907/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
908 via get_fa_head and dump */
909
772cb712 910static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 911{
772cb712 912 struct hlist_head *head = &l->list;
19baf839
RO
913 struct hlist_node *node;
914 struct leaf_info *li;
915
2373ce1c 916 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 917 if (li->plen == plen)
19baf839 918 return li;
91b9a277 919
19baf839
RO
920 return NULL;
921}
922
a07f5f50 923static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 924{
772cb712 925 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 926
91b9a277
OJ
927 if (!li)
928 return NULL;
c877efb2 929
91b9a277 930 return &li->falh;
19baf839
RO
931}
932
933static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934{
e905a9ed
YH
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
937
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
944
945 last = li;
946 }
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
951 }
19baf839
RO
952}
953
2373ce1c
RO
954/* rcu_read_lock needs to be hold by caller from readside */
955
19baf839
RO
956static struct leaf *
957fib_find_node(struct trie *t, u32 key)
958{
959 int pos;
960 struct tnode *tn;
b299e4f0 961 struct rt_trie_node *n;
19baf839
RO
962
963 pos = 0;
a034ee3c 964 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
965
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
91b9a277 968
19baf839 969 check_tnode(tn);
91b9a277 970
c877efb2 971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 972 pos = tn->pos + tn->bits;
a07f5f50
SH
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
91b9a277 977 } else
19baf839
RO
978 break;
979 }
980 /* Case we have found a leaf. Compare prefixes */
981
91b9a277
OJ
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
984
19baf839
RO
985 return NULL;
986}
987
7b85576d 988static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 989{
19baf839 990 int wasfull;
3ed18d76 991 t_key cindex, key;
06801916 992 struct tnode *tp;
19baf839 993
3ed18d76
RO
994 key = tn->key;
995
b299e4f0 996 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
19baf839
RO
997 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
999 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000
1001 tnode_put_child_reorg((struct tnode *)tp, cindex,
b299e4f0 1002 (struct rt_trie_node *)tn, wasfull);
91b9a277 1003
b299e4f0 1004 tp = node_parent((struct rt_trie_node *) tn);
008440e3 1005 if (!tp)
b299e4f0 1006 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
008440e3 1007
e0f7cb8c 1008 tnode_free_flush();
06801916 1009 if (!tp)
19baf839 1010 break;
06801916 1011 tn = tp;
19baf839 1012 }
06801916 1013
19baf839 1014 /* Handle last (top) tnode */
7b85576d 1015 if (IS_TNODE(tn))
a07f5f50 1016 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1017
b299e4f0 1018 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
7b85576d 1019 tnode_free_flush();
19baf839
RO
1020}
1021
2373ce1c
RO
1022/* only used from updater-side */
1023
fea86ad8 1024static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1025{
1026 int pos, newpos;
1027 struct tnode *tp = NULL, *tn = NULL;
b299e4f0 1028 struct rt_trie_node *n;
19baf839
RO
1029 struct leaf *l;
1030 int missbit;
c877efb2 1031 struct list_head *fa_head = NULL;
19baf839
RO
1032 struct leaf_info *li;
1033 t_key cindex;
1034
1035 pos = 0;
c877efb2 1036 n = t->trie;
19baf839 1037
c877efb2
SH
1038 /* If we point to NULL, stop. Either the tree is empty and we should
1039 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1040 * and we should just put our new leaf in that.
c877efb2
SH
1041 * If we point to a T_TNODE, check if it matches our key. Note that
1042 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1043 * not be the parent's 'pos'+'bits'!
1044 *
c877efb2 1045 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1046 * the index from our key, push the T_TNODE and walk the tree.
1047 *
1048 * If it doesn't, we have to replace it with a new T_TNODE.
1049 *
c877efb2
SH
1050 * If we point to a T_LEAF, it might or might not have the same key
1051 * as we do. If it does, just change the value, update the T_LEAF's
1052 * value, and return it.
19baf839
RO
1053 * If it doesn't, we need to replace it with a T_TNODE.
1054 */
1055
1056 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1057 tn = (struct tnode *) n;
91b9a277 1058
c877efb2 1059 check_tnode(tn);
91b9a277 1060
c877efb2 1061 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1062 tp = tn;
91b9a277 1063 pos = tn->pos + tn->bits;
a07f5f50
SH
1064 n = tnode_get_child(tn,
1065 tkey_extract_bits(key,
1066 tn->pos,
1067 tn->bits));
19baf839 1068
06801916 1069 BUG_ON(n && node_parent(n) != tn);
91b9a277 1070 } else
19baf839
RO
1071 break;
1072 }
1073
1074 /*
1075 * n ----> NULL, LEAF or TNODE
1076 *
c877efb2 1077 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1078 */
1079
91b9a277 1080 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1081
1082 /* Case 1: n is a leaf. Compare prefixes */
1083
c877efb2 1084 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1085 l = (struct leaf *) n;
19baf839 1086 li = leaf_info_new(plen);
91b9a277 1087
fea86ad8
SH
1088 if (!li)
1089 return NULL;
19baf839
RO
1090
1091 fa_head = &li->falh;
1092 insert_leaf_info(&l->list, li);
1093 goto done;
1094 }
19baf839
RO
1095 l = leaf_new();
1096
fea86ad8
SH
1097 if (!l)
1098 return NULL;
19baf839
RO
1099
1100 l->key = key;
1101 li = leaf_info_new(plen);
1102
c877efb2 1103 if (!li) {
387a5487 1104 free_leaf(l);
fea86ad8 1105 return NULL;
f835e471 1106 }
19baf839
RO
1107
1108 fa_head = &li->falh;
1109 insert_leaf_info(&l->list, li);
1110
19baf839 1111 if (t->trie && n == NULL) {
91b9a277 1112 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1113
b299e4f0 1114 node_set_parent((struct rt_trie_node *)l, tp);
19baf839 1115
91b9a277 1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
b299e4f0 1117 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
91b9a277
OJ
1118 } else {
1119 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1120 /*
1121 * Add a new tnode here
19baf839
RO
1122 * first tnode need some special handling
1123 */
1124
1125 if (tp)
91b9a277 1126 pos = tp->pos+tp->bits;
19baf839 1127 else
91b9a277
OJ
1128 pos = 0;
1129
c877efb2 1130 if (n) {
19baf839
RO
1131 newpos = tkey_mismatch(key, pos, n->key);
1132 tn = tnode_new(n->key, newpos, 1);
91b9a277 1133 } else {
19baf839 1134 newpos = 0;
c877efb2 1135 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1136 }
19baf839 1137
c877efb2 1138 if (!tn) {
f835e471 1139 free_leaf_info(li);
387a5487 1140 free_leaf(l);
fea86ad8 1141 return NULL;
91b9a277
OJ
1142 }
1143
b299e4f0 1144 node_set_parent((struct rt_trie_node *)tn, tp);
19baf839 1145
91b9a277 1146 missbit = tkey_extract_bits(key, newpos, 1);
b299e4f0 1147 put_child(t, tn, missbit, (struct rt_trie_node *)l);
19baf839
RO
1148 put_child(t, tn, 1-missbit, n);
1149
c877efb2 1150 if (tp) {
19baf839 1151 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50 1152 put_child(t, (struct tnode *)tp, cindex,
b299e4f0 1153 (struct rt_trie_node *)tn);
91b9a277 1154 } else {
b299e4f0 1155 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
19baf839
RO
1156 tp = tn;
1157 }
1158 }
91b9a277
OJ
1159
1160 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1161 pr_warning("fib_trie"
1162 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 tp, tp->pos, tp->bits, key, plen);
91b9a277 1164
19baf839 1165 /* Rebalance the trie */
2373ce1c 1166
7b85576d 1167 trie_rebalance(t, tp);
f835e471 1168done:
19baf839
RO
1169 return fa_head;
1170}
1171
d562f1f8
RO
1172/*
1173 * Caller must hold RTNL.
1174 */
16c6cf8b 1175int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1176{
1177 struct trie *t = (struct trie *) tb->tb_data;
1178 struct fib_alias *fa, *new_fa;
c877efb2 1179 struct list_head *fa_head = NULL;
19baf839 1180 struct fib_info *fi;
4e902c57
TG
1181 int plen = cfg->fc_dst_len;
1182 u8 tos = cfg->fc_tos;
19baf839
RO
1183 u32 key, mask;
1184 int err;
1185 struct leaf *l;
1186
1187 if (plen > 32)
1188 return -EINVAL;
1189
4e902c57 1190 key = ntohl(cfg->fc_dst);
19baf839 1191
2dfe55b4 1192 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1193
91b9a277 1194 mask = ntohl(inet_make_mask(plen));
19baf839 1195
c877efb2 1196 if (key & ~mask)
19baf839
RO
1197 return -EINVAL;
1198
1199 key = key & mask;
1200
4e902c57
TG
1201 fi = fib_create_info(cfg);
1202 if (IS_ERR(fi)) {
1203 err = PTR_ERR(fi);
19baf839 1204 goto err;
4e902c57 1205 }
19baf839
RO
1206
1207 l = fib_find_node(t, key);
c877efb2 1208 fa = NULL;
19baf839 1209
c877efb2 1210 if (l) {
19baf839
RO
1211 fa_head = get_fa_head(l, plen);
1212 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1213 }
1214
1215 /* Now fa, if non-NULL, points to the first fib alias
1216 * with the same keys [prefix,tos,priority], if such key already
1217 * exists or to the node before which we will insert new one.
1218 *
1219 * If fa is NULL, we will need to allocate a new one and
1220 * insert to the head of f.
1221 *
1222 * If f is NULL, no fib node matched the destination key
1223 * and we need to allocate a new one of those as well.
1224 */
1225
936f6f8e
JA
1226 if (fa && fa->fa_tos == tos &&
1227 fa->fa_info->fib_priority == fi->fib_priority) {
1228 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1229
1230 err = -EEXIST;
4e902c57 1231 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1232 goto out;
1233
936f6f8e
JA
1234 /* We have 2 goals:
1235 * 1. Find exact match for type, scope, fib_info to avoid
1236 * duplicate routes
1237 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1238 */
1239 fa_match = NULL;
1240 fa_first = fa;
1241 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1242 list_for_each_entry_continue(fa, fa_head, fa_list) {
1243 if (fa->fa_tos != tos)
1244 break;
1245 if (fa->fa_info->fib_priority != fi->fib_priority)
1246 break;
1247 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1248 fa->fa_info == fi) {
1249 fa_match = fa;
1250 break;
1251 }
1252 }
1253
4e902c57 1254 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1255 struct fib_info *fi_drop;
1256 u8 state;
1257
936f6f8e
JA
1258 fa = fa_first;
1259 if (fa_match) {
1260 if (fa == fa_match)
1261 err = 0;
6725033f 1262 goto out;
936f6f8e 1263 }
2373ce1c 1264 err = -ENOBUFS;
e94b1766 1265 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1266 if (new_fa == NULL)
1267 goto out;
19baf839
RO
1268
1269 fi_drop = fa->fa_info;
2373ce1c
RO
1270 new_fa->fa_tos = fa->fa_tos;
1271 new_fa->fa_info = fi;
4e902c57 1272 new_fa->fa_type = cfg->fc_type;
19baf839 1273 state = fa->fa_state;
936f6f8e 1274 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1275
2373ce1c
RO
1276 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1277 alias_free_mem_rcu(fa);
19baf839
RO
1278
1279 fib_release_info(fi_drop);
1280 if (state & FA_S_ACCESSED)
76e6ebfb 1281 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1282 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1283 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1284
91b9a277 1285 goto succeeded;
19baf839
RO
1286 }
1287 /* Error if we find a perfect match which
1288 * uses the same scope, type, and nexthop
1289 * information.
1290 */
936f6f8e
JA
1291 if (fa_match)
1292 goto out;
a07f5f50 1293
4e902c57 1294 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1295 fa = fa_first;
19baf839
RO
1296 }
1297 err = -ENOENT;
4e902c57 1298 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1299 goto out;
1300
1301 err = -ENOBUFS;
e94b1766 1302 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1303 if (new_fa == NULL)
1304 goto out;
1305
1306 new_fa->fa_info = fi;
1307 new_fa->fa_tos = tos;
4e902c57 1308 new_fa->fa_type = cfg->fc_type;
19baf839 1309 new_fa->fa_state = 0;
19baf839
RO
1310 /*
1311 * Insert new entry to the list.
1312 */
1313
c877efb2 1314 if (!fa_head) {
fea86ad8
SH
1315 fa_head = fib_insert_node(t, key, plen);
1316 if (unlikely(!fa_head)) {
1317 err = -ENOMEM;
f835e471 1318 goto out_free_new_fa;
fea86ad8 1319 }
f835e471 1320 }
19baf839 1321
2373ce1c
RO
1322 list_add_tail_rcu(&new_fa->fa_list,
1323 (fa ? &fa->fa_list : fa_head));
19baf839 1324
76e6ebfb 1325 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1326 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1327 &cfg->fc_nlinfo, 0);
19baf839
RO
1328succeeded:
1329 return 0;
f835e471
RO
1330
1331out_free_new_fa:
1332 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1333out:
1334 fib_release_info(fi);
91b9a277 1335err:
19baf839
RO
1336 return err;
1337}
1338
772cb712 1339/* should be called with rcu_read_lock */
5b470441 1340static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
22bd5b9b 1341 t_key key, const struct flowi4 *flp,
ebc0ffae 1342 struct fib_result *res, int fib_flags)
19baf839 1343{
19baf839
RO
1344 struct leaf_info *li;
1345 struct hlist_head *hhead = &l->list;
1346 struct hlist_node *node;
c877efb2 1347
2373ce1c 1348 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
3be0686b 1349 struct fib_alias *fa;
a07f5f50
SH
1350 int plen = li->plen;
1351 __be32 mask = inet_make_mask(plen);
1352
888454c5 1353 if (l->key != (key & ntohl(mask)))
19baf839
RO
1354 continue;
1355
3be0686b
DM
1356 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1357 struct fib_info *fi = fa->fa_info;
1358 int nhsel, err;
a07f5f50 1359
22bd5b9b 1360 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
3be0686b 1361 continue;
37e826c5 1362 if (fa->fa_info->fib_scope < flp->flowi4_scope)
3be0686b
DM
1363 continue;
1364 fib_alias_accessed(fa);
1365 err = fib_props[fa->fa_type].error;
1366 if (err) {
19baf839 1367#ifdef CONFIG_IP_FIB_TRIE_STATS
3be0686b
DM
1368 t->stats.semantic_match_miss++;
1369#endif
1370 return 1;
1371 }
1372 if (fi->fib_flags & RTNH_F_DEAD)
1373 continue;
1374 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1375 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1376
1377 if (nh->nh_flags & RTNH_F_DEAD)
1378 continue;
22bd5b9b 1379 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
3be0686b
DM
1380 continue;
1381
1382#ifdef CONFIG_IP_FIB_TRIE_STATS
1383 t->stats.semantic_match_passed++;
1384#endif
1385 res->prefixlen = plen;
1386 res->nh_sel = nhsel;
1387 res->type = fa->fa_type;
37e826c5 1388 res->scope = fa->fa_info->fib_scope;
3be0686b
DM
1389 res->fi = fi;
1390 res->table = tb;
1391 res->fa_head = &li->falh;
1392 if (!(fib_flags & FIB_LOOKUP_NOREF))
1393 atomic_inc(&res->fi->fib_clntref);
1394 return 0;
1395 }
1396 }
1397
1398#ifdef CONFIG_IP_FIB_TRIE_STATS
1399 t->stats.semantic_match_miss++;
19baf839 1400#endif
19baf839 1401 }
a07f5f50 1402
2e655571 1403 return 1;
19baf839
RO
1404}
1405
22bd5b9b 1406int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1407 struct fib_result *res, int fib_flags)
19baf839
RO
1408{
1409 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1410 int ret;
b299e4f0 1411 struct rt_trie_node *n;
19baf839 1412 struct tnode *pn;
3b004569 1413 unsigned int pos, bits;
22bd5b9b 1414 t_key key = ntohl(flp->daddr);
3b004569 1415 unsigned int chopped_off;
19baf839 1416 t_key cindex = 0;
3b004569 1417 unsigned int current_prefix_length = KEYLENGTH;
91b9a277 1418 struct tnode *cn;
874ffa8f 1419 t_key pref_mismatch;
91b9a277 1420
2373ce1c 1421 rcu_read_lock();
91b9a277 1422
2373ce1c 1423 n = rcu_dereference(t->trie);
c877efb2 1424 if (!n)
19baf839
RO
1425 goto failed;
1426
1427#ifdef CONFIG_IP_FIB_TRIE_STATS
1428 t->stats.gets++;
1429#endif
1430
1431 /* Just a leaf? */
1432 if (IS_LEAF(n)) {
5b470441 1433 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1434 goto found;
19baf839 1435 }
a07f5f50 1436
19baf839
RO
1437 pn = (struct tnode *) n;
1438 chopped_off = 0;
c877efb2 1439
91b9a277 1440 while (pn) {
19baf839
RO
1441 pos = pn->pos;
1442 bits = pn->bits;
1443
c877efb2 1444 if (!chopped_off)
ab66b4a7
SH
1445 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1446 pos, bits);
19baf839 1447
b902e573 1448 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1449
1450 if (n == NULL) {
1451#ifdef CONFIG_IP_FIB_TRIE_STATS
1452 t->stats.null_node_hit++;
1453#endif
1454 goto backtrace;
1455 }
1456
91b9a277 1457 if (IS_LEAF(n)) {
5b470441 1458 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1459 if (ret > 0)
91b9a277 1460 goto backtrace;
a07f5f50 1461 goto found;
91b9a277
OJ
1462 }
1463
91b9a277 1464 cn = (struct tnode *)n;
19baf839 1465
91b9a277
OJ
1466 /*
1467 * It's a tnode, and we can do some extra checks here if we
1468 * like, to avoid descending into a dead-end branch.
1469 * This tnode is in the parent's child array at index
1470 * key[p_pos..p_pos+p_bits] but potentially with some bits
1471 * chopped off, so in reality the index may be just a
1472 * subprefix, padded with zero at the end.
1473 * We can also take a look at any skipped bits in this
1474 * tnode - everything up to p_pos is supposed to be ok,
1475 * and the non-chopped bits of the index (se previous
1476 * paragraph) are also guaranteed ok, but the rest is
1477 * considered unknown.
1478 *
1479 * The skipped bits are key[pos+bits..cn->pos].
1480 */
19baf839 1481
91b9a277
OJ
1482 /* If current_prefix_length < pos+bits, we are already doing
1483 * actual prefix matching, which means everything from
1484 * pos+(bits-chopped_off) onward must be zero along some
1485 * branch of this subtree - otherwise there is *no* valid
1486 * prefix present. Here we can only check the skipped
1487 * bits. Remember, since we have already indexed into the
1488 * parent's child array, we know that the bits we chopped of
1489 * *are* zero.
1490 */
19baf839 1491
a07f5f50
SH
1492 /* NOTA BENE: Checking only skipped bits
1493 for the new node here */
19baf839 1494
91b9a277
OJ
1495 if (current_prefix_length < pos+bits) {
1496 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1497 cn->pos - current_prefix_length)
1498 || !(cn->child[0]))
91b9a277
OJ
1499 goto backtrace;
1500 }
19baf839 1501
91b9a277
OJ
1502 /*
1503 * If chopped_off=0, the index is fully validated and we
1504 * only need to look at the skipped bits for this, the new,
1505 * tnode. What we actually want to do is to find out if
1506 * these skipped bits match our key perfectly, or if we will
1507 * have to count on finding a matching prefix further down,
1508 * because if we do, we would like to have some way of
1509 * verifying the existence of such a prefix at this point.
1510 */
19baf839 1511
91b9a277
OJ
1512 /* The only thing we can do at this point is to verify that
1513 * any such matching prefix can indeed be a prefix to our
1514 * key, and if the bits in the node we are inspecting that
1515 * do not match our key are not ZERO, this cannot be true.
1516 * Thus, find out where there is a mismatch (before cn->pos)
1517 * and verify that all the mismatching bits are zero in the
1518 * new tnode's key.
1519 */
19baf839 1520
a07f5f50
SH
1521 /*
1522 * Note: We aren't very concerned about the piece of
1523 * the key that precede pn->pos+pn->bits, since these
1524 * have already been checked. The bits after cn->pos
1525 * aren't checked since these are by definition
1526 * "unknown" at this point. Thus, what we want to see
1527 * is if we are about to enter the "prefix matching"
1528 * state, and in that case verify that the skipped
1529 * bits that will prevail throughout this subtree are
1530 * zero, as they have to be if we are to find a
1531 * matching prefix.
91b9a277
OJ
1532 */
1533
874ffa8f 1534 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1535
a07f5f50
SH
1536 /*
1537 * In short: If skipped bits in this node do not match
1538 * the search key, enter the "prefix matching"
1539 * state.directly.
91b9a277
OJ
1540 */
1541 if (pref_mismatch) {
874ffa8f 1542 int mp = KEYLENGTH - fls(pref_mismatch);
91b9a277 1543
874ffa8f 1544 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1545 goto backtrace;
1546
1547 if (current_prefix_length >= cn->pos)
1548 current_prefix_length = mp;
c877efb2 1549 }
a07f5f50 1550
91b9a277
OJ
1551 pn = (struct tnode *)n; /* Descend */
1552 chopped_off = 0;
1553 continue;
1554
19baf839
RO
1555backtrace:
1556 chopped_off++;
1557
1558 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1559 while ((chopped_off <= pn->bits)
1560 && !(cindex & (1<<(chopped_off-1))))
19baf839 1561 chopped_off++;
19baf839
RO
1562
1563 /* Decrease current_... with bits chopped off */
1564 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1565 current_prefix_length = pn->pos + pn->bits
1566 - chopped_off;
91b9a277 1567
19baf839 1568 /*
c877efb2 1569 * Either we do the actual chop off according or if we have
19baf839
RO
1570 * chopped off all bits in this tnode walk up to our parent.
1571 */
1572
91b9a277 1573 if (chopped_off <= pn->bits) {
19baf839 1574 cindex &= ~(1 << (chopped_off-1));
91b9a277 1575 } else {
b299e4f0 1576 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
06801916 1577 if (!parent)
19baf839 1578 goto failed;
91b9a277 1579
19baf839 1580 /* Get Child's index */
06801916
SH
1581 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1582 pn = parent;
19baf839
RO
1583 chopped_off = 0;
1584
1585#ifdef CONFIG_IP_FIB_TRIE_STATS
1586 t->stats.backtrack++;
1587#endif
1588 goto backtrace;
c877efb2 1589 }
19baf839
RO
1590 }
1591failed:
c877efb2 1592 ret = 1;
19baf839 1593found:
2373ce1c 1594 rcu_read_unlock();
19baf839
RO
1595 return ret;
1596}
1597
9195bef7
SH
1598/*
1599 * Remove the leaf and return parent.
1600 */
1601static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1602{
b299e4f0 1603 struct tnode *tp = node_parent((struct rt_trie_node *) l);
c877efb2 1604
9195bef7 1605 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1606
c877efb2 1607 if (tp) {
9195bef7 1608 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1609 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1610 trie_rebalance(t, tp);
91b9a277 1611 } else
2373ce1c 1612 rcu_assign_pointer(t->trie, NULL);
19baf839 1613
387a5487 1614 free_leaf(l);
19baf839
RO
1615}
1616
d562f1f8
RO
1617/*
1618 * Caller must hold RTNL.
1619 */
16c6cf8b 1620int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1621{
1622 struct trie *t = (struct trie *) tb->tb_data;
1623 u32 key, mask;
4e902c57
TG
1624 int plen = cfg->fc_dst_len;
1625 u8 tos = cfg->fc_tos;
19baf839
RO
1626 struct fib_alias *fa, *fa_to_delete;
1627 struct list_head *fa_head;
1628 struct leaf *l;
91b9a277
OJ
1629 struct leaf_info *li;
1630
c877efb2 1631 if (plen > 32)
19baf839
RO
1632 return -EINVAL;
1633
4e902c57 1634 key = ntohl(cfg->fc_dst);
91b9a277 1635 mask = ntohl(inet_make_mask(plen));
19baf839 1636
c877efb2 1637 if (key & ~mask)
19baf839
RO
1638 return -EINVAL;
1639
1640 key = key & mask;
1641 l = fib_find_node(t, key);
1642
c877efb2 1643 if (!l)
19baf839
RO
1644 return -ESRCH;
1645
1646 fa_head = get_fa_head(l, plen);
1647 fa = fib_find_alias(fa_head, tos, 0);
1648
1649 if (!fa)
1650 return -ESRCH;
1651
0c7770c7 1652 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1653
1654 fa_to_delete = NULL;
936f6f8e
JA
1655 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1656 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1657 struct fib_info *fi = fa->fa_info;
1658
1659 if (fa->fa_tos != tos)
1660 break;
1661
4e902c57
TG
1662 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1663 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1664 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1665 (!cfg->fc_prefsrc ||
1666 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1667 (!cfg->fc_protocol ||
1668 fi->fib_protocol == cfg->fc_protocol) &&
1669 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1670 fa_to_delete = fa;
1671 break;
1672 }
1673 }
1674
91b9a277
OJ
1675 if (!fa_to_delete)
1676 return -ESRCH;
19baf839 1677
91b9a277 1678 fa = fa_to_delete;
4e902c57 1679 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1680 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1681
1682 l = fib_find_node(t, key);
772cb712 1683 li = find_leaf_info(l, plen);
19baf839 1684
2373ce1c 1685 list_del_rcu(&fa->fa_list);
19baf839 1686
91b9a277 1687 if (list_empty(fa_head)) {
2373ce1c 1688 hlist_del_rcu(&li->hlist);
91b9a277 1689 free_leaf_info(li);
2373ce1c 1690 }
19baf839 1691
91b9a277 1692 if (hlist_empty(&l->list))
9195bef7 1693 trie_leaf_remove(t, l);
19baf839 1694
91b9a277 1695 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1696 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1697
2373ce1c
RO
1698 fib_release_info(fa->fa_info);
1699 alias_free_mem_rcu(fa);
91b9a277 1700 return 0;
19baf839
RO
1701}
1702
ef3660ce 1703static int trie_flush_list(struct list_head *head)
19baf839
RO
1704{
1705 struct fib_alias *fa, *fa_node;
1706 int found = 0;
1707
1708 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1709 struct fib_info *fi = fa->fa_info;
19baf839 1710
2373ce1c
RO
1711 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1712 list_del_rcu(&fa->fa_list);
1713 fib_release_info(fa->fa_info);
1714 alias_free_mem_rcu(fa);
19baf839
RO
1715 found++;
1716 }
1717 }
1718 return found;
1719}
1720
ef3660ce 1721static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1722{
1723 int found = 0;
1724 struct hlist_head *lih = &l->list;
1725 struct hlist_node *node, *tmp;
1726 struct leaf_info *li = NULL;
1727
1728 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1729 found += trie_flush_list(&li->falh);
19baf839
RO
1730
1731 if (list_empty(&li->falh)) {
2373ce1c 1732 hlist_del_rcu(&li->hlist);
19baf839
RO
1733 free_leaf_info(li);
1734 }
1735 }
1736 return found;
1737}
1738
82cfbb00
SH
1739/*
1740 * Scan for the next right leaf starting at node p->child[idx]
1741 * Since we have back pointer, no recursion necessary.
1742 */
b299e4f0 1743static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
19baf839 1744{
82cfbb00
SH
1745 do {
1746 t_key idx;
c877efb2 1747
c877efb2 1748 if (c)
82cfbb00 1749 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1750 else
82cfbb00 1751 idx = 0;
2373ce1c 1752
82cfbb00
SH
1753 while (idx < 1u << p->bits) {
1754 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1755 if (!c)
91b9a277
OJ
1756 continue;
1757
82cfbb00
SH
1758 if (IS_LEAF(c)) {
1759 prefetch(p->child[idx]);
1760 return (struct leaf *) c;
19baf839 1761 }
82cfbb00
SH
1762
1763 /* Rescan start scanning in new node */
1764 p = (struct tnode *) c;
1765 idx = 0;
19baf839 1766 }
82cfbb00
SH
1767
1768 /* Node empty, walk back up to parent */
b299e4f0 1769 c = (struct rt_trie_node *) p;
a034ee3c 1770 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1771
1772 return NULL; /* Root of trie */
1773}
1774
82cfbb00
SH
1775static struct leaf *trie_firstleaf(struct trie *t)
1776{
a034ee3c 1777 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1778
1779 if (!n)
1780 return NULL;
1781
1782 if (IS_LEAF(n)) /* trie is just a leaf */
1783 return (struct leaf *) n;
1784
1785 return leaf_walk_rcu(n, NULL);
1786}
1787
1788static struct leaf *trie_nextleaf(struct leaf *l)
1789{
b299e4f0 1790 struct rt_trie_node *c = (struct rt_trie_node *) l;
b902e573 1791 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1792
1793 if (!p)
1794 return NULL; /* trie with just one leaf */
1795
1796 return leaf_walk_rcu(p, c);
19baf839
RO
1797}
1798
71d67e66
SH
1799static struct leaf *trie_leafindex(struct trie *t, int index)
1800{
1801 struct leaf *l = trie_firstleaf(t);
1802
ec28cf73 1803 while (l && index-- > 0)
71d67e66 1804 l = trie_nextleaf(l);
ec28cf73 1805
71d67e66
SH
1806 return l;
1807}
1808
1809
d562f1f8
RO
1810/*
1811 * Caller must hold RTNL.
1812 */
16c6cf8b 1813int fib_table_flush(struct fib_table *tb)
19baf839
RO
1814{
1815 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1816 struct leaf *l, *ll = NULL;
82cfbb00 1817 int found = 0;
19baf839 1818
82cfbb00 1819 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1820 found += trie_flush_leaf(l);
19baf839
RO
1821
1822 if (ll && hlist_empty(&ll->list))
9195bef7 1823 trie_leaf_remove(t, ll);
19baf839
RO
1824 ll = l;
1825 }
1826
1827 if (ll && hlist_empty(&ll->list))
9195bef7 1828 trie_leaf_remove(t, ll);
19baf839 1829
0c7770c7 1830 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1831 return found;
1832}
1833
4aa2c466
PE
1834void fib_free_table(struct fib_table *tb)
1835{
1836 kfree(tb);
1837}
1838
a07f5f50
SH
1839static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1840 struct fib_table *tb,
19baf839
RO
1841 struct sk_buff *skb, struct netlink_callback *cb)
1842{
1843 int i, s_i;
1844 struct fib_alias *fa;
32ab5f80 1845 __be32 xkey = htonl(key);
19baf839 1846
71d67e66 1847 s_i = cb->args[5];
19baf839
RO
1848 i = 0;
1849
2373ce1c
RO
1850 /* rcu_read_lock is hold by caller */
1851
1852 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1853 if (i < s_i) {
1854 i++;
1855 continue;
1856 }
19baf839
RO
1857
1858 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1859 cb->nlh->nlmsg_seq,
1860 RTM_NEWROUTE,
1861 tb->tb_id,
1862 fa->fa_type,
be403ea1 1863 xkey,
19baf839
RO
1864 plen,
1865 fa->fa_tos,
64347f78 1866 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1867 cb->args[5] = i;
19baf839 1868 return -1;
91b9a277 1869 }
19baf839
RO
1870 i++;
1871 }
71d67e66 1872 cb->args[5] = i;
19baf839
RO
1873 return skb->len;
1874}
1875
a88ee229
SH
1876static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1877 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1878{
a88ee229
SH
1879 struct leaf_info *li;
1880 struct hlist_node *node;
1881 int i, s_i;
19baf839 1882
71d67e66 1883 s_i = cb->args[4];
a88ee229 1884 i = 0;
19baf839 1885
a88ee229
SH
1886 /* rcu_read_lock is hold by caller */
1887 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1888 if (i < s_i) {
1889 i++;
19baf839 1890 continue;
a88ee229 1891 }
91b9a277 1892
a88ee229 1893 if (i > s_i)
71d67e66 1894 cb->args[5] = 0;
19baf839 1895
a88ee229 1896 if (list_empty(&li->falh))
19baf839
RO
1897 continue;
1898
a88ee229 1899 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1900 cb->args[4] = i;
19baf839
RO
1901 return -1;
1902 }
a88ee229 1903 i++;
19baf839 1904 }
a88ee229 1905
71d67e66 1906 cb->args[4] = i;
19baf839
RO
1907 return skb->len;
1908}
1909
16c6cf8b
SH
1910int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1911 struct netlink_callback *cb)
19baf839 1912{
a88ee229 1913 struct leaf *l;
19baf839 1914 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1915 t_key key = cb->args[2];
71d67e66 1916 int count = cb->args[3];
19baf839 1917
2373ce1c 1918 rcu_read_lock();
d5ce8a0e
SH
1919 /* Dump starting at last key.
1920 * Note: 0.0.0.0/0 (ie default) is first key.
1921 */
71d67e66 1922 if (count == 0)
d5ce8a0e
SH
1923 l = trie_firstleaf(t);
1924 else {
71d67e66
SH
1925 /* Normally, continue from last key, but if that is missing
1926 * fallback to using slow rescan
1927 */
d5ce8a0e 1928 l = fib_find_node(t, key);
71d67e66
SH
1929 if (!l)
1930 l = trie_leafindex(t, count);
d5ce8a0e 1931 }
a88ee229 1932
d5ce8a0e
SH
1933 while (l) {
1934 cb->args[2] = l->key;
a88ee229 1935 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1936 cb->args[3] = count;
a88ee229 1937 rcu_read_unlock();
a88ee229 1938 return -1;
19baf839 1939 }
d5ce8a0e 1940
71d67e66 1941 ++count;
d5ce8a0e 1942 l = trie_nextleaf(l);
71d67e66
SH
1943 memset(&cb->args[4], 0,
1944 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1945 }
71d67e66 1946 cb->args[3] = count;
2373ce1c 1947 rcu_read_unlock();
a88ee229 1948
19baf839 1949 return skb->len;
19baf839
RO
1950}
1951
5348ba85 1952void __init fib_trie_init(void)
7f9b8052 1953{
a07f5f50
SH
1954 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1955 sizeof(struct fib_alias),
bc3c8c1e
SH
1956 0, SLAB_PANIC, NULL);
1957
1958 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1959 max(sizeof(struct leaf),
1960 sizeof(struct leaf_info)),
1961 0, SLAB_PANIC, NULL);
7f9b8052 1962}
19baf839 1963
7f9b8052 1964
5348ba85 1965struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1966{
1967 struct fib_table *tb;
1968 struct trie *t;
1969
19baf839
RO
1970 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1971 GFP_KERNEL);
1972 if (tb == NULL)
1973 return NULL;
1974
1975 tb->tb_id = id;
971b893e 1976 tb->tb_default = -1;
19baf839
RO
1977
1978 t = (struct trie *) tb->tb_data;
c28a1cf4 1979 memset(t, 0, sizeof(*t));
19baf839 1980
19baf839 1981 if (id == RT_TABLE_LOCAL)
a07f5f50 1982 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
1983
1984 return tb;
1985}
1986
cb7b593c
SH
1987#ifdef CONFIG_PROC_FS
1988/* Depth first Trie walk iterator */
1989struct fib_trie_iter {
1c340b2f 1990 struct seq_net_private p;
3d3b2d25 1991 struct fib_table *tb;
cb7b593c 1992 struct tnode *tnode;
a034ee3c
ED
1993 unsigned int index;
1994 unsigned int depth;
cb7b593c 1995};
19baf839 1996
b299e4f0 1997static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1998{
cb7b593c 1999 struct tnode *tn = iter->tnode;
a034ee3c 2000 unsigned int cindex = iter->index;
cb7b593c 2001 struct tnode *p;
19baf839 2002
6640e697
EB
2003 /* A single entry routing table */
2004 if (!tn)
2005 return NULL;
2006
cb7b593c
SH
2007 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2008 iter->tnode, iter->index, iter->depth);
2009rescan:
2010 while (cindex < (1<<tn->bits)) {
b299e4f0 2011 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2012
cb7b593c
SH
2013 if (n) {
2014 if (IS_LEAF(n)) {
2015 iter->tnode = tn;
2016 iter->index = cindex + 1;
2017 } else {
2018 /* push down one level */
2019 iter->tnode = (struct tnode *) n;
2020 iter->index = 0;
2021 ++iter->depth;
2022 }
2023 return n;
2024 }
19baf839 2025
cb7b593c
SH
2026 ++cindex;
2027 }
91b9a277 2028
cb7b593c 2029 /* Current node exhausted, pop back up */
b299e4f0 2030 p = node_parent_rcu((struct rt_trie_node *)tn);
cb7b593c
SH
2031 if (p) {
2032 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2033 tn = p;
2034 --iter->depth;
2035 goto rescan;
19baf839 2036 }
cb7b593c
SH
2037
2038 /* got root? */
2039 return NULL;
19baf839
RO
2040}
2041
b299e4f0 2042static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 2043 struct trie *t)
19baf839 2044{
b299e4f0 2045 struct rt_trie_node *n;
5ddf0eb2 2046
132adf54 2047 if (!t)
5ddf0eb2
RO
2048 return NULL;
2049
2050 n = rcu_dereference(t->trie);
3d3b2d25 2051 if (!n)
5ddf0eb2 2052 return NULL;
19baf839 2053
3d3b2d25
SH
2054 if (IS_TNODE(n)) {
2055 iter->tnode = (struct tnode *) n;
2056 iter->index = 0;
2057 iter->depth = 1;
2058 } else {
2059 iter->tnode = NULL;
2060 iter->index = 0;
2061 iter->depth = 0;
91b9a277 2062 }
3d3b2d25
SH
2063
2064 return n;
cb7b593c 2065}
91b9a277 2066
cb7b593c
SH
2067static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2068{
b299e4f0 2069 struct rt_trie_node *n;
cb7b593c 2070 struct fib_trie_iter iter;
91b9a277 2071
cb7b593c 2072 memset(s, 0, sizeof(*s));
91b9a277 2073
cb7b593c 2074 rcu_read_lock();
3d3b2d25 2075 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2076 if (IS_LEAF(n)) {
93672292
SH
2077 struct leaf *l = (struct leaf *)n;
2078 struct leaf_info *li;
2079 struct hlist_node *tmp;
2080
cb7b593c
SH
2081 s->leaves++;
2082 s->totdepth += iter.depth;
2083 if (iter.depth > s->maxdepth)
2084 s->maxdepth = iter.depth;
93672292
SH
2085
2086 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2087 ++s->prefixes;
cb7b593c
SH
2088 } else {
2089 const struct tnode *tn = (const struct tnode *) n;
2090 int i;
2091
2092 s->tnodes++;
132adf54 2093 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2094 s->nodesizes[tn->bits]++;
2095
cb7b593c
SH
2096 for (i = 0; i < (1<<tn->bits); i++)
2097 if (!tn->child[i])
2098 s->nullpointers++;
19baf839 2099 }
19baf839 2100 }
2373ce1c 2101 rcu_read_unlock();
19baf839
RO
2102}
2103
cb7b593c
SH
2104/*
2105 * This outputs /proc/net/fib_triestats
2106 */
2107static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2108{
a034ee3c 2109 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2110
cb7b593c
SH
2111 if (stat->leaves)
2112 avdepth = stat->totdepth*100 / stat->leaves;
2113 else
2114 avdepth = 0;
91b9a277 2115
a07f5f50
SH
2116 seq_printf(seq, "\tAver depth: %u.%02d\n",
2117 avdepth / 100, avdepth % 100);
cb7b593c 2118 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2119
cb7b593c 2120 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2121 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2122
2123 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2124 bytes += sizeof(struct leaf_info) * stat->prefixes;
2125
187b5188 2126 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2127 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2128
06ef921d
RO
2129 max = MAX_STAT_DEPTH;
2130 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2131 max--;
19baf839 2132
cb7b593c
SH
2133 pointers = 0;
2134 for (i = 1; i <= max; i++)
2135 if (stat->nodesizes[i] != 0) {
187b5188 2136 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2137 pointers += (1<<i) * stat->nodesizes[i];
2138 }
2139 seq_putc(seq, '\n');
187b5188 2140 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2141
b299e4f0 2142 bytes += sizeof(struct rt_trie_node *) * pointers;
187b5188
SH
2143 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2144 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2145}
2373ce1c 2146
cb7b593c 2147#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2148static void trie_show_usage(struct seq_file *seq,
2149 const struct trie_use_stats *stats)
2150{
2151 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2152 seq_printf(seq, "gets = %u\n", stats->gets);
2153 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2154 seq_printf(seq, "semantic match passed = %u\n",
2155 stats->semantic_match_passed);
2156 seq_printf(seq, "semantic match miss = %u\n",
2157 stats->semantic_match_miss);
2158 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2159 seq_printf(seq, "skipped node resize = %u\n\n",
2160 stats->resize_node_skipped);
cb7b593c 2161}
66a2f7fd
SH
2162#endif /* CONFIG_IP_FIB_TRIE_STATS */
2163
3d3b2d25 2164static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2165{
3d3b2d25
SH
2166 if (tb->tb_id == RT_TABLE_LOCAL)
2167 seq_puts(seq, "Local:\n");
2168 else if (tb->tb_id == RT_TABLE_MAIN)
2169 seq_puts(seq, "Main:\n");
2170 else
2171 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2172}
19baf839 2173
3d3b2d25 2174
cb7b593c
SH
2175static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2176{
1c340b2f 2177 struct net *net = (struct net *)seq->private;
3d3b2d25 2178 unsigned int h;
877a9bff 2179
d717a9a6 2180 seq_printf(seq,
a07f5f50
SH
2181 "Basic info: size of leaf:"
2182 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2183 sizeof(struct leaf), sizeof(struct tnode));
2184
3d3b2d25
SH
2185 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2186 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2187 struct hlist_node *node;
2188 struct fib_table *tb;
2189
2190 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2191 struct trie *t = (struct trie *) tb->tb_data;
2192 struct trie_stat stat;
877a9bff 2193
3d3b2d25
SH
2194 if (!t)
2195 continue;
2196
2197 fib_table_print(seq, tb);
2198
2199 trie_collect_stats(t, &stat);
2200 trie_show_stats(seq, &stat);
2201#ifdef CONFIG_IP_FIB_TRIE_STATS
2202 trie_show_usage(seq, &t->stats);
2203#endif
2204 }
2205 }
19baf839 2206
cb7b593c 2207 return 0;
19baf839
RO
2208}
2209
cb7b593c 2210static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2211{
de05c557 2212 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2213}
2214
9a32144e 2215static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2216 .owner = THIS_MODULE,
2217 .open = fib_triestat_seq_open,
2218 .read = seq_read,
2219 .llseek = seq_lseek,
b6fcbdb4 2220 .release = single_release_net,
cb7b593c
SH
2221};
2222
b299e4f0 2223static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2224{
1218854a
YH
2225 struct fib_trie_iter *iter = seq->private;
2226 struct net *net = seq_file_net(seq);
cb7b593c 2227 loff_t idx = 0;
3d3b2d25 2228 unsigned int h;
cb7b593c 2229
3d3b2d25
SH
2230 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2231 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2232 struct hlist_node *node;
2233 struct fib_table *tb;
cb7b593c 2234
3d3b2d25 2235 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
b299e4f0 2236 struct rt_trie_node *n;
3d3b2d25
SH
2237
2238 for (n = fib_trie_get_first(iter,
2239 (struct trie *) tb->tb_data);
2240 n; n = fib_trie_get_next(iter))
2241 if (pos == idx++) {
2242 iter->tb = tb;
2243 return n;
2244 }
2245 }
cb7b593c 2246 }
3d3b2d25 2247
19baf839
RO
2248 return NULL;
2249}
2250
cb7b593c 2251static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2252 __acquires(RCU)
19baf839 2253{
cb7b593c 2254 rcu_read_lock();
1218854a 2255 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2256}
2257
cb7b593c 2258static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2259{
cb7b593c 2260 struct fib_trie_iter *iter = seq->private;
1218854a 2261 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2262 struct fib_table *tb = iter->tb;
2263 struct hlist_node *tb_node;
2264 unsigned int h;
b299e4f0 2265 struct rt_trie_node *n;
cb7b593c 2266
19baf839 2267 ++*pos;
3d3b2d25
SH
2268 /* next node in same table */
2269 n = fib_trie_get_next(iter);
2270 if (n)
2271 return n;
19baf839 2272
3d3b2d25
SH
2273 /* walk rest of this hash chain */
2274 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2275 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2276 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2277 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2278 if (n)
2279 goto found;
2280 }
19baf839 2281
3d3b2d25
SH
2282 /* new hash chain */
2283 while (++h < FIB_TABLE_HASHSZ) {
2284 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2285 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2286 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2287 if (n)
2288 goto found;
2289 }
2290 }
cb7b593c 2291 return NULL;
3d3b2d25
SH
2292
2293found:
2294 iter->tb = tb;
2295 return n;
cb7b593c 2296}
19baf839 2297
cb7b593c 2298static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2299 __releases(RCU)
19baf839 2300{
cb7b593c
SH
2301 rcu_read_unlock();
2302}
91b9a277 2303
cb7b593c
SH
2304static void seq_indent(struct seq_file *seq, int n)
2305{
a034ee3c
ED
2306 while (n-- > 0)
2307 seq_puts(seq, " ");
cb7b593c 2308}
19baf839 2309
28d36e37 2310static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2311{
132adf54 2312 switch (s) {
cb7b593c
SH
2313 case RT_SCOPE_UNIVERSE: return "universe";
2314 case RT_SCOPE_SITE: return "site";
2315 case RT_SCOPE_LINK: return "link";
2316 case RT_SCOPE_HOST: return "host";
2317 case RT_SCOPE_NOWHERE: return "nowhere";
2318 default:
28d36e37 2319 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2320 return buf;
2321 }
2322}
19baf839 2323
36cbd3dc 2324static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2325 [RTN_UNSPEC] = "UNSPEC",
2326 [RTN_UNICAST] = "UNICAST",
2327 [RTN_LOCAL] = "LOCAL",
2328 [RTN_BROADCAST] = "BROADCAST",
2329 [RTN_ANYCAST] = "ANYCAST",
2330 [RTN_MULTICAST] = "MULTICAST",
2331 [RTN_BLACKHOLE] = "BLACKHOLE",
2332 [RTN_UNREACHABLE] = "UNREACHABLE",
2333 [RTN_PROHIBIT] = "PROHIBIT",
2334 [RTN_THROW] = "THROW",
2335 [RTN_NAT] = "NAT",
2336 [RTN_XRESOLVE] = "XRESOLVE",
2337};
19baf839 2338
a034ee3c 2339static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2340{
cb7b593c
SH
2341 if (t < __RTN_MAX && rtn_type_names[t])
2342 return rtn_type_names[t];
28d36e37 2343 snprintf(buf, len, "type %u", t);
cb7b593c 2344 return buf;
19baf839
RO
2345}
2346
cb7b593c
SH
2347/* Pretty print the trie */
2348static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2349{
cb7b593c 2350 const struct fib_trie_iter *iter = seq->private;
b299e4f0 2351 struct rt_trie_node *n = v;
c877efb2 2352
3d3b2d25
SH
2353 if (!node_parent_rcu(n))
2354 fib_table_print(seq, iter->tb);
095b8501 2355
cb7b593c
SH
2356 if (IS_TNODE(n)) {
2357 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2358 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2359
1d25cd6c 2360 seq_indent(seq, iter->depth-1);
673d57e7
HH
2361 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2362 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2363 tn->empty_children);
e905a9ed 2364
cb7b593c
SH
2365 } else {
2366 struct leaf *l = (struct leaf *) n;
1328042e
SH
2367 struct leaf_info *li;
2368 struct hlist_node *node;
32ab5f80 2369 __be32 val = htonl(l->key);
cb7b593c
SH
2370
2371 seq_indent(seq, iter->depth);
673d57e7 2372 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2373
2374 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2375 struct fib_alias *fa;
2376
2377 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2378 char buf1[32], buf2[32];
2379
2380 seq_indent(seq, iter->depth+1);
2381 seq_printf(seq, " /%d %s %s", li->plen,
2382 rtn_scope(buf1, sizeof(buf1),
37e826c5 2383 fa->fa_info->fib_scope),
1328042e
SH
2384 rtn_type(buf2, sizeof(buf2),
2385 fa->fa_type));
2386 if (fa->fa_tos)
b9c4d82a 2387 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2388 seq_putc(seq, '\n');
cb7b593c
SH
2389 }
2390 }
19baf839 2391 }
cb7b593c 2392
19baf839
RO
2393 return 0;
2394}
2395
f690808e 2396static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2397 .start = fib_trie_seq_start,
2398 .next = fib_trie_seq_next,
2399 .stop = fib_trie_seq_stop,
2400 .show = fib_trie_seq_show,
19baf839
RO
2401};
2402
cb7b593c 2403static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2404{
1c340b2f
DL
2405 return seq_open_net(inode, file, &fib_trie_seq_ops,
2406 sizeof(struct fib_trie_iter));
19baf839
RO
2407}
2408
9a32144e 2409static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2410 .owner = THIS_MODULE,
2411 .open = fib_trie_seq_open,
2412 .read = seq_read,
2413 .llseek = seq_lseek,
1c340b2f 2414 .release = seq_release_net,
19baf839
RO
2415};
2416
8315f5d8
SH
2417struct fib_route_iter {
2418 struct seq_net_private p;
2419 struct trie *main_trie;
2420 loff_t pos;
2421 t_key key;
2422};
2423
2424static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2425{
2426 struct leaf *l = NULL;
2427 struct trie *t = iter->main_trie;
2428
2429 /* use cache location of last found key */
2430 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2431 pos -= iter->pos;
2432 else {
2433 iter->pos = 0;
2434 l = trie_firstleaf(t);
2435 }
2436
2437 while (l && pos-- > 0) {
2438 iter->pos++;
2439 l = trie_nextleaf(l);
2440 }
2441
2442 if (l)
2443 iter->key = pos; /* remember it */
2444 else
2445 iter->pos = 0; /* forget it */
2446
2447 return l;
2448}
2449
2450static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2451 __acquires(RCU)
2452{
2453 struct fib_route_iter *iter = seq->private;
2454 struct fib_table *tb;
2455
2456 rcu_read_lock();
1218854a 2457 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2458 if (!tb)
2459 return NULL;
2460
2461 iter->main_trie = (struct trie *) tb->tb_data;
2462 if (*pos == 0)
2463 return SEQ_START_TOKEN;
2464 else
2465 return fib_route_get_idx(iter, *pos - 1);
2466}
2467
2468static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2469{
2470 struct fib_route_iter *iter = seq->private;
2471 struct leaf *l = v;
2472
2473 ++*pos;
2474 if (v == SEQ_START_TOKEN) {
2475 iter->pos = 0;
2476 l = trie_firstleaf(iter->main_trie);
2477 } else {
2478 iter->pos++;
2479 l = trie_nextleaf(l);
2480 }
2481
2482 if (l)
2483 iter->key = l->key;
2484 else
2485 iter->pos = 0;
2486 return l;
2487}
2488
2489static void fib_route_seq_stop(struct seq_file *seq, void *v)
2490 __releases(RCU)
2491{
2492 rcu_read_unlock();
2493}
2494
a034ee3c 2495static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2496{
a034ee3c 2497 unsigned int flags = 0;
19baf839 2498
a034ee3c
ED
2499 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2500 flags = RTF_REJECT;
cb7b593c
SH
2501 if (fi && fi->fib_nh->nh_gw)
2502 flags |= RTF_GATEWAY;
32ab5f80 2503 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2504 flags |= RTF_HOST;
2505 flags |= RTF_UP;
2506 return flags;
19baf839
RO
2507}
2508
cb7b593c
SH
2509/*
2510 * This outputs /proc/net/route.
2511 * The format of the file is not supposed to be changed
a034ee3c 2512 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2513 * legacy utilities
2514 */
2515static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2516{
cb7b593c 2517 struct leaf *l = v;
1328042e
SH
2518 struct leaf_info *li;
2519 struct hlist_node *node;
19baf839 2520
cb7b593c
SH
2521 if (v == SEQ_START_TOKEN) {
2522 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2523 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2524 "\tWindow\tIRTT");
2525 return 0;
2526 }
19baf839 2527
1328042e 2528 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2529 struct fib_alias *fa;
32ab5f80 2530 __be32 mask, prefix;
91b9a277 2531
cb7b593c
SH
2532 mask = inet_make_mask(li->plen);
2533 prefix = htonl(l->key);
19baf839 2534
cb7b593c 2535 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2536 const struct fib_info *fi = fa->fa_info;
a034ee3c 2537 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2538 int len;
19baf839 2539
cb7b593c
SH
2540 if (fa->fa_type == RTN_BROADCAST
2541 || fa->fa_type == RTN_MULTICAST)
2542 continue;
19baf839 2543
cb7b593c 2544 if (fi)
5e659e4c
PE
2545 seq_printf(seq,
2546 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2547 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2548 fi->fib_dev ? fi->fib_dev->name : "*",
2549 prefix,
2550 fi->fib_nh->nh_gw, flags, 0, 0,
2551 fi->fib_priority,
2552 mask,
a07f5f50
SH
2553 (fi->fib_advmss ?
2554 fi->fib_advmss + 40 : 0),
cb7b593c 2555 fi->fib_window,
5e659e4c 2556 fi->fib_rtt >> 3, &len);
cb7b593c 2557 else
5e659e4c
PE
2558 seq_printf(seq,
2559 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2560 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2561 prefix, 0, flags, 0, 0, 0,
5e659e4c 2562 mask, 0, 0, 0, &len);
19baf839 2563
5e659e4c 2564 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2565 }
19baf839
RO
2566 }
2567
2568 return 0;
2569}
2570
f690808e 2571static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2572 .start = fib_route_seq_start,
2573 .next = fib_route_seq_next,
2574 .stop = fib_route_seq_stop,
cb7b593c 2575 .show = fib_route_seq_show,
19baf839
RO
2576};
2577
cb7b593c 2578static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2579{
1c340b2f 2580 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2581 sizeof(struct fib_route_iter));
19baf839
RO
2582}
2583
9a32144e 2584static const struct file_operations fib_route_fops = {
cb7b593c
SH
2585 .owner = THIS_MODULE,
2586 .open = fib_route_seq_open,
2587 .read = seq_read,
2588 .llseek = seq_lseek,
1c340b2f 2589 .release = seq_release_net,
19baf839
RO
2590};
2591
61a02653 2592int __net_init fib_proc_init(struct net *net)
19baf839 2593{
61a02653 2594 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2595 goto out1;
2596
61a02653
DL
2597 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2598 &fib_triestat_fops))
cb7b593c
SH
2599 goto out2;
2600
61a02653 2601 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2602 goto out3;
2603
19baf839 2604 return 0;
cb7b593c
SH
2605
2606out3:
61a02653 2607 proc_net_remove(net, "fib_triestat");
cb7b593c 2608out2:
61a02653 2609 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2610out1:
2611 return -ENOMEM;
19baf839
RO
2612}
2613
61a02653 2614void __net_exit fib_proc_exit(struct net *net)
19baf839 2615{
61a02653
DL
2616 proc_net_remove(net, "fib_trie");
2617 proc_net_remove(net, "fib_triestat");
2618 proc_net_remove(net, "route");
19baf839
RO
2619}
2620
2621#endif /* CONFIG_PROC_FS */
This page took 0.819952 seconds and 5 git commands to generate.