Merge ../bleed-2.6
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 */
45
772cb712 46#define VERSION "0.404"
19baf839
RO
47
48#include <linux/config.h>
49#include <asm/uaccess.h>
50#include <asm/system.h>
51#include <asm/bitops.h>
52#include <linux/types.h>
53#include <linux/kernel.h>
54#include <linux/sched.h>
55#include <linux/mm.h>
56#include <linux/string.h>
57#include <linux/socket.h>
58#include <linux/sockios.h>
59#include <linux/errno.h>
60#include <linux/in.h>
61#include <linux/inet.h>
62#include <linux/netdevice.h>
63#include <linux/if_arp.h>
64#include <linux/proc_fs.h>
2373ce1c 65#include <linux/rcupdate.h>
19baf839
RO
66#include <linux/skbuff.h>
67#include <linux/netlink.h>
68#include <linux/init.h>
69#include <linux/list.h>
70#include <net/ip.h>
71#include <net/protocol.h>
72#include <net/route.h>
73#include <net/tcp.h>
74#include <net/sock.h>
75#include <net/ip_fib.h>
76#include "fib_lookup.h"
77
78#undef CONFIG_IP_FIB_TRIE_STATS
79#define MAX_CHILDS 16384
80
19baf839
RO
81#define KEYLENGTH (8*sizeof(t_key))
82#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
83#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
84
19baf839
RO
85typedef unsigned int t_key;
86
87#define T_TNODE 0
88#define T_LEAF 1
89#define NODE_TYPE_MASK 0x1UL
91b9a277 90#define NODE_PARENT(node) \
2373ce1c
RO
91 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
92
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95#define NODE_SET_PARENT(node, ptr) \
96 rcu_assign_pointer((node)->parent, \
97 ((unsigned long)(ptr)) | NODE_TYPE(node))
91b9a277
OJ
98
99#define IS_TNODE(n) (!(n->parent & T_LEAF))
100#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
101
102struct node {
91b9a277
OJ
103 t_key key;
104 unsigned long parent;
19baf839
RO
105};
106
107struct leaf {
91b9a277
OJ
108 t_key key;
109 unsigned long parent;
19baf839 110 struct hlist_head list;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112};
113
114struct leaf_info {
115 struct hlist_node hlist;
2373ce1c 116 struct rcu_head rcu;
19baf839
RO
117 int plen;
118 struct list_head falh;
119};
120
121struct tnode {
91b9a277
OJ
122 t_key key;
123 unsigned long parent;
124 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
125 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
126 unsigned short full_children; /* KEYLENGTH bits needed */
127 unsigned short empty_children; /* KEYLENGTH bits needed */
2373ce1c 128 struct rcu_head rcu;
91b9a277 129 struct node *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int nodesizes[MAX_CHILDS];
c877efb2 150};
19baf839
RO
151
152struct trie {
91b9a277 153 struct node *trie;
19baf839
RO
154#ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156#endif
91b9a277 157 int size;
19baf839
RO
158 unsigned int revision;
159};
160
19baf839
RO
161static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
162static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
19baf839 163static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
164static struct tnode *inflate(struct trie *t, struct tnode *tn);
165static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 166static void tnode_free(struct tnode *tn);
19baf839 167
ba89966c 168static kmem_cache_t *fn_alias_kmem __read_mostly;
19baf839
RO
169static struct trie *trie_local = NULL, *trie_main = NULL;
170
2373ce1c
RO
171
172/* rcu_read_lock needs to be hold by caller from readside */
173
c877efb2 174static inline struct node *tnode_get_child(struct tnode *tn, int i)
19baf839 175{
91b9a277 176 BUG_ON(i >= 1 << tn->bits);
19baf839 177
2373ce1c 178 return rcu_dereference(tn->child[i]);
19baf839
RO
179}
180
bb435b8d 181static inline int tnode_child_length(const struct tnode *tn)
19baf839 182{
91b9a277 183 return 1 << tn->bits;
19baf839
RO
184}
185
19baf839
RO
186static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
187{
91b9a277 188 if (offset < KEYLENGTH)
19baf839 189 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 190 else
19baf839
RO
191 return 0;
192}
193
194static inline int tkey_equals(t_key a, t_key b)
195{
c877efb2 196 return a == b;
19baf839
RO
197}
198
199static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
200{
c877efb2
SH
201 if (bits == 0 || offset >= KEYLENGTH)
202 return 1;
91b9a277
OJ
203 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
204 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 205}
19baf839
RO
206
207static inline int tkey_mismatch(t_key a, int offset, t_key b)
208{
209 t_key diff = a ^ b;
210 int i = offset;
211
c877efb2
SH
212 if (!diff)
213 return 0;
214 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
215 i++;
216 return i;
217}
218
19baf839
RO
219/*
220 To understand this stuff, an understanding of keys and all their bits is
221 necessary. Every node in the trie has a key associated with it, but not
222 all of the bits in that key are significant.
223
224 Consider a node 'n' and its parent 'tp'.
225
226 If n is a leaf, every bit in its key is significant. Its presence is
772cb712 227 necessitated by path compression, since during a tree traversal (when
19baf839
RO
228 searching for a leaf - unless we are doing an insertion) we will completely
229 ignore all skipped bits we encounter. Thus we need to verify, at the end of
230 a potentially successful search, that we have indeed been walking the
231 correct key path.
232
233 Note that we can never "miss" the correct key in the tree if present by
234 following the wrong path. Path compression ensures that segments of the key
235 that are the same for all keys with a given prefix are skipped, but the
236 skipped part *is* identical for each node in the subtrie below the skipped
237 bit! trie_insert() in this implementation takes care of that - note the
238 call to tkey_sub_equals() in trie_insert().
239
240 if n is an internal node - a 'tnode' here, the various parts of its key
241 have many different meanings.
242
243 Example:
244 _________________________________________________________________
245 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
246 -----------------------------------------------------------------
247 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
248
249 _________________________________________________________________
250 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
251 -----------------------------------------------------------------
252 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
253
254 tp->pos = 7
255 tp->bits = 3
256 n->pos = 15
91b9a277 257 n->bits = 4
19baf839
RO
258
259 First, let's just ignore the bits that come before the parent tp, that is
260 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
261 not use them for anything.
262
263 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
264 index into the parent's child array. That is, they will be used to find
265 'n' among tp's children.
266
267 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
268 for the node n.
269
270 All the bits we have seen so far are significant to the node n. The rest
271 of the bits are really not needed or indeed known in n->key.
272
273 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
274 n's child array, and will of course be different for each child.
275
c877efb2 276
19baf839
RO
277 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
278 at this point.
279
280*/
281
0c7770c7 282static inline void check_tnode(const struct tnode *tn)
19baf839 283{
0c7770c7 284 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
285}
286
287static int halve_threshold = 25;
288static int inflate_threshold = 50;
e6308be8
RO
289static int halve_threshold_root = 15;
290static int inflate_threshold_root = 25;
19baf839 291
2373ce1c
RO
292
293static void __alias_free_mem(struct rcu_head *head)
19baf839 294{
2373ce1c
RO
295 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
296 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
297}
298
2373ce1c 299static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 300{
2373ce1c
RO
301 call_rcu(&fa->rcu, __alias_free_mem);
302}
91b9a277 303
2373ce1c
RO
304static void __leaf_free_rcu(struct rcu_head *head)
305{
306 kfree(container_of(head, struct leaf, rcu));
307}
91b9a277 308
2373ce1c
RO
309static inline void free_leaf(struct leaf *leaf)
310{
311 call_rcu(&leaf->rcu, __leaf_free_rcu);
19baf839
RO
312}
313
2373ce1c 314static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 315{
2373ce1c 316 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
317}
318
2373ce1c 319static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 320{
2373ce1c 321 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
322}
323
f0e36f8c
PM
324static struct tnode *tnode_alloc(unsigned int size)
325{
2373ce1c
RO
326 struct page *pages;
327
328 if (size <= PAGE_SIZE)
329 return kcalloc(size, 1, GFP_KERNEL);
330
331 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
332 if (!pages)
333 return NULL;
334
335 return page_address(pages);
f0e36f8c
PM
336}
337
2373ce1c 338static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 339{
2373ce1c 340 struct tnode *tn = container_of(head, struct tnode, rcu);
f0e36f8c 341 unsigned int size = sizeof(struct tnode) +
2373ce1c 342 (1 << tn->bits) * sizeof(struct node *);
f0e36f8c
PM
343
344 if (size <= PAGE_SIZE)
345 kfree(tn);
346 else
347 free_pages((unsigned long)tn, get_order(size));
348}
349
2373ce1c
RO
350static inline void tnode_free(struct tnode *tn)
351{
352 call_rcu(&tn->rcu, __tnode_free_rcu);
353}
354
355static struct leaf *leaf_new(void)
356{
357 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
358 if (l) {
359 l->parent = T_LEAF;
360 INIT_HLIST_HEAD(&l->list);
361 }
362 return l;
363}
364
365static struct leaf_info *leaf_info_new(int plen)
366{
367 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
368 if (li) {
369 li->plen = plen;
370 INIT_LIST_HEAD(&li->falh);
371 }
372 return li;
373}
374
19baf839
RO
375static struct tnode* tnode_new(t_key key, int pos, int bits)
376{
377 int nchildren = 1<<bits;
378 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
f0e36f8c 379 struct tnode *tn = tnode_alloc(sz);
19baf839 380
91b9a277 381 if (tn) {
19baf839 382 memset(tn, 0, sz);
2373ce1c 383 tn->parent = T_TNODE;
19baf839
RO
384 tn->pos = pos;
385 tn->bits = bits;
386 tn->key = key;
387 tn->full_children = 0;
388 tn->empty_children = 1<<bits;
389 }
c877efb2 390
0c7770c7
SH
391 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
392 (unsigned int) (sizeof(struct node) * 1<<bits));
19baf839
RO
393 return tn;
394}
395
19baf839
RO
396/*
397 * Check whether a tnode 'n' is "full", i.e. it is an internal node
398 * and no bits are skipped. See discussion in dyntree paper p. 6
399 */
400
bb435b8d 401static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 402{
c877efb2 403 if (n == NULL || IS_LEAF(n))
19baf839
RO
404 return 0;
405
406 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
407}
408
c877efb2 409static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
19baf839
RO
410{
411 tnode_put_child_reorg(tn, i, n, -1);
412}
413
c877efb2 414 /*
19baf839
RO
415 * Add a child at position i overwriting the old value.
416 * Update the value of full_children and empty_children.
417 */
418
c877efb2 419static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
19baf839 420{
2373ce1c 421 struct node *chi = tn->child[i];
19baf839
RO
422 int isfull;
423
0c7770c7
SH
424 BUG_ON(i >= 1<<tn->bits);
425
19baf839
RO
426
427 /* update emptyChildren */
428 if (n == NULL && chi != NULL)
429 tn->empty_children++;
430 else if (n != NULL && chi == NULL)
431 tn->empty_children--;
c877efb2 432
19baf839 433 /* update fullChildren */
91b9a277 434 if (wasfull == -1)
19baf839
RO
435 wasfull = tnode_full(tn, chi);
436
437 isfull = tnode_full(tn, n);
c877efb2 438 if (wasfull && !isfull)
19baf839 439 tn->full_children--;
c877efb2 440 else if (!wasfull && isfull)
19baf839 441 tn->full_children++;
91b9a277 442
c877efb2
SH
443 if (n)
444 NODE_SET_PARENT(n, tn);
19baf839 445
2373ce1c 446 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
447}
448
c877efb2 449static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
450{
451 int i;
2f36895a 452 int err = 0;
2f80b3c8 453 struct tnode *old_tn;
e6308be8
RO
454 int inflate_threshold_use;
455 int halve_threshold_use;
19baf839
RO
456
457 if (!tn)
458 return NULL;
459
0c7770c7
SH
460 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
461 tn, inflate_threshold, halve_threshold);
19baf839
RO
462
463 /* No children */
464 if (tn->empty_children == tnode_child_length(tn)) {
465 tnode_free(tn);
466 return NULL;
467 }
468 /* One child */
469 if (tn->empty_children == tnode_child_length(tn) - 1)
470 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 471 struct node *n;
19baf839 472
91b9a277 473 n = tn->child[i];
2373ce1c 474 if (!n)
91b9a277 475 continue;
91b9a277
OJ
476
477 /* compress one level */
2373ce1c 478 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
479 tnode_free(tn);
480 return n;
19baf839 481 }
c877efb2 482 /*
19baf839
RO
483 * Double as long as the resulting node has a number of
484 * nonempty nodes that are above the threshold.
485 */
486
487 /*
c877efb2
SH
488 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
489 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 490 * Telecommunications, page 6:
c877efb2 491 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
492 * children in the *doubled* node is at least 'high'."
493 *
c877efb2
SH
494 * 'high' in this instance is the variable 'inflate_threshold'. It
495 * is expressed as a percentage, so we multiply it with
496 * tnode_child_length() and instead of multiplying by 2 (since the
497 * child array will be doubled by inflate()) and multiplying
498 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 499 * multiply the left-hand side by 50.
c877efb2
SH
500 *
501 * The left-hand side may look a bit weird: tnode_child_length(tn)
502 * - tn->empty_children is of course the number of non-null children
503 * in the current node. tn->full_children is the number of "full"
19baf839 504 * children, that is non-null tnodes with a skip value of 0.
c877efb2 505 * All of those will be doubled in the resulting inflated tnode, so
19baf839 506 * we just count them one extra time here.
c877efb2 507 *
19baf839 508 * A clearer way to write this would be:
c877efb2 509 *
19baf839 510 * to_be_doubled = tn->full_children;
c877efb2 511 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
512 * tn->full_children;
513 *
514 * new_child_length = tnode_child_length(tn) * 2;
515 *
c877efb2 516 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
517 * new_child_length;
518 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
519 *
520 * ...and so on, tho it would mess up the while () loop.
521 *
19baf839
RO
522 * anyway,
523 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
524 * inflate_threshold
c877efb2 525 *
19baf839
RO
526 * avoid a division:
527 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
528 * inflate_threshold * new_child_length
c877efb2 529 *
19baf839 530 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 531 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 532 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 533 *
19baf839 534 * expand new_child_length:
c877efb2 535 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 536 * tn->full_children) >=
19baf839 537 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 538 *
19baf839 539 * shorten again:
c877efb2 540 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 541 * tn->empty_children) >= inflate_threshold *
19baf839 542 * tnode_child_length(tn)
c877efb2 543 *
19baf839
RO
544 */
545
546 check_tnode(tn);
c877efb2 547
e6308be8
RO
548 /* Keep root node larger */
549
550 if(!tn->parent)
551 inflate_threshold_use = inflate_threshold_root;
552 else
553 inflate_threshold_use = inflate_threshold;
554
2f36895a 555 err = 0;
19baf839
RO
556 while ((tn->full_children > 0 &&
557 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
e6308be8 558 inflate_threshold_use * tnode_child_length(tn))) {
19baf839 559
2f80b3c8
RO
560 old_tn = tn;
561 tn = inflate(t, tn);
562 if (IS_ERR(tn)) {
563 tn = old_tn;
2f36895a
RO
564#ifdef CONFIG_IP_FIB_TRIE_STATS
565 t->stats.resize_node_skipped++;
566#endif
567 break;
568 }
19baf839
RO
569 }
570
571 check_tnode(tn);
572
573 /*
574 * Halve as long as the number of empty children in this
575 * node is above threshold.
576 */
2f36895a 577
e6308be8
RO
578
579 /* Keep root node larger */
580
581 if(!tn->parent)
582 halve_threshold_use = halve_threshold_root;
583 else
584 halve_threshold_use = halve_threshold;
585
2f36895a 586 err = 0;
19baf839
RO
587 while (tn->bits > 1 &&
588 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 589 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 590
2f80b3c8
RO
591 old_tn = tn;
592 tn = halve(t, tn);
593 if (IS_ERR(tn)) {
594 tn = old_tn;
2f36895a
RO
595#ifdef CONFIG_IP_FIB_TRIE_STATS
596 t->stats.resize_node_skipped++;
597#endif
598 break;
599 }
600 }
19baf839 601
c877efb2 602
19baf839 603 /* Only one child remains */
19baf839
RO
604 if (tn->empty_children == tnode_child_length(tn) - 1)
605 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 606 struct node *n;
19baf839 607
91b9a277 608 n = tn->child[i];
2373ce1c 609 if (!n)
91b9a277 610 continue;
91b9a277
OJ
611
612 /* compress one level */
613
2373ce1c 614 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
615 tnode_free(tn);
616 return n;
19baf839
RO
617 }
618
619 return (struct node *) tn;
620}
621
2f80b3c8 622static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839
RO
623{
624 struct tnode *inode;
625 struct tnode *oldtnode = tn;
626 int olen = tnode_child_length(tn);
627 int i;
628
0c7770c7 629 pr_debug("In inflate\n");
19baf839
RO
630
631 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
632
0c7770c7 633 if (!tn)
2f80b3c8 634 return ERR_PTR(-ENOMEM);
2f36895a
RO
635
636 /*
c877efb2
SH
637 * Preallocate and store tnodes before the actual work so we
638 * don't get into an inconsistent state if memory allocation
639 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
640 * of tnode is ignored.
641 */
91b9a277
OJ
642
643 for (i = 0; i < olen; i++) {
2f36895a
RO
644 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
645
646 if (inode &&
647 IS_TNODE(inode) &&
648 inode->pos == oldtnode->pos + oldtnode->bits &&
649 inode->bits > 1) {
650 struct tnode *left, *right;
2f36895a 651 t_key m = TKEY_GET_MASK(inode->pos, 1);
c877efb2 652
2f36895a
RO
653 left = tnode_new(inode->key&(~m), inode->pos + 1,
654 inode->bits - 1);
2f80b3c8
RO
655 if (!left)
656 goto nomem;
91b9a277 657
2f36895a
RO
658 right = tnode_new(inode->key|m, inode->pos + 1,
659 inode->bits - 1);
660
2f80b3c8
RO
661 if (!right) {
662 tnode_free(left);
663 goto nomem;
664 }
2f36895a
RO
665
666 put_child(t, tn, 2*i, (struct node *) left);
667 put_child(t, tn, 2*i+1, (struct node *) right);
668 }
669 }
670
91b9a277 671 for (i = 0; i < olen; i++) {
19baf839 672 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
673 struct tnode *left, *right;
674 int size, j;
c877efb2 675
19baf839
RO
676 /* An empty child */
677 if (node == NULL)
678 continue;
679
680 /* A leaf or an internal node with skipped bits */
681
c877efb2 682 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 683 tn->pos + tn->bits - 1) {
c877efb2 684 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
19baf839
RO
685 1) == 0)
686 put_child(t, tn, 2*i, node);
687 else
688 put_child(t, tn, 2*i+1, node);
689 continue;
690 }
691
692 /* An internal node with two children */
693 inode = (struct tnode *) node;
694
695 if (inode->bits == 1) {
696 put_child(t, tn, 2*i, inode->child[0]);
697 put_child(t, tn, 2*i+1, inode->child[1]);
698
699 tnode_free(inode);
91b9a277 700 continue;
19baf839
RO
701 }
702
91b9a277
OJ
703 /* An internal node with more than two children */
704
705 /* We will replace this node 'inode' with two new
706 * ones, 'left' and 'right', each with half of the
707 * original children. The two new nodes will have
708 * a position one bit further down the key and this
709 * means that the "significant" part of their keys
710 * (see the discussion near the top of this file)
711 * will differ by one bit, which will be "0" in
712 * left's key and "1" in right's key. Since we are
713 * moving the key position by one step, the bit that
714 * we are moving away from - the bit at position
715 * (inode->pos) - is the one that will differ between
716 * left and right. So... we synthesize that bit in the
717 * two new keys.
718 * The mask 'm' below will be a single "one" bit at
719 * the position (inode->pos)
720 */
19baf839 721
91b9a277
OJ
722 /* Use the old key, but set the new significant
723 * bit to zero.
724 */
2f36895a 725
91b9a277
OJ
726 left = (struct tnode *) tnode_get_child(tn, 2*i);
727 put_child(t, tn, 2*i, NULL);
2f36895a 728
91b9a277 729 BUG_ON(!left);
2f36895a 730
91b9a277
OJ
731 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
732 put_child(t, tn, 2*i+1, NULL);
19baf839 733
91b9a277 734 BUG_ON(!right);
19baf839 735
91b9a277
OJ
736 size = tnode_child_length(left);
737 for (j = 0; j < size; j++) {
738 put_child(t, left, j, inode->child[j]);
739 put_child(t, right, j, inode->child[j + size]);
19baf839 740 }
91b9a277
OJ
741 put_child(t, tn, 2*i, resize(t, left));
742 put_child(t, tn, 2*i+1, resize(t, right));
743
744 tnode_free(inode);
19baf839
RO
745 }
746 tnode_free(oldtnode);
747 return tn;
2f80b3c8
RO
748nomem:
749 {
750 int size = tnode_child_length(tn);
751 int j;
752
0c7770c7 753 for (j = 0; j < size; j++)
2f80b3c8
RO
754 if (tn->child[j])
755 tnode_free((struct tnode *)tn->child[j]);
756
757 tnode_free(tn);
0c7770c7 758
2f80b3c8
RO
759 return ERR_PTR(-ENOMEM);
760 }
19baf839
RO
761}
762
2f80b3c8 763static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
764{
765 struct tnode *oldtnode = tn;
766 struct node *left, *right;
767 int i;
768 int olen = tnode_child_length(tn);
769
0c7770c7 770 pr_debug("In halve\n");
c877efb2
SH
771
772 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 773
2f80b3c8
RO
774 if (!tn)
775 return ERR_PTR(-ENOMEM);
2f36895a
RO
776
777 /*
c877efb2
SH
778 * Preallocate and store tnodes before the actual work so we
779 * don't get into an inconsistent state if memory allocation
780 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
781 * of tnode is ignored.
782 */
783
91b9a277 784 for (i = 0; i < olen; i += 2) {
2f36895a
RO
785 left = tnode_get_child(oldtnode, i);
786 right = tnode_get_child(oldtnode, i+1);
c877efb2 787
2f36895a 788 /* Two nonempty children */
0c7770c7 789 if (left && right) {
2f80b3c8 790 struct tnode *newn;
0c7770c7 791
2f80b3c8 792 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
793
794 if (!newn)
2f80b3c8 795 goto nomem;
0c7770c7 796
2f80b3c8 797 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 798 }
2f36895a 799
2f36895a 800 }
19baf839 801
91b9a277
OJ
802 for (i = 0; i < olen; i += 2) {
803 struct tnode *newBinNode;
804
19baf839
RO
805 left = tnode_get_child(oldtnode, i);
806 right = tnode_get_child(oldtnode, i+1);
c877efb2 807
19baf839
RO
808 /* At least one of the children is empty */
809 if (left == NULL) {
810 if (right == NULL) /* Both are empty */
811 continue;
812 put_child(t, tn, i/2, right);
91b9a277 813 continue;
0c7770c7 814 }
91b9a277
OJ
815
816 if (right == NULL) {
19baf839 817 put_child(t, tn, i/2, left);
91b9a277
OJ
818 continue;
819 }
c877efb2 820
19baf839 821 /* Two nonempty children */
91b9a277
OJ
822 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
823 put_child(t, tn, i/2, NULL);
91b9a277
OJ
824 put_child(t, newBinNode, 0, left);
825 put_child(t, newBinNode, 1, right);
826 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
827 }
828 tnode_free(oldtnode);
829 return tn;
2f80b3c8
RO
830nomem:
831 {
832 int size = tnode_child_length(tn);
833 int j;
834
0c7770c7 835 for (j = 0; j < size; j++)
2f80b3c8
RO
836 if (tn->child[j])
837 tnode_free((struct tnode *)tn->child[j]);
838
839 tnode_free(tn);
0c7770c7 840
2f80b3c8
RO
841 return ERR_PTR(-ENOMEM);
842 }
19baf839
RO
843}
844
91b9a277 845static void trie_init(struct trie *t)
19baf839 846{
91b9a277
OJ
847 if (!t)
848 return;
849
850 t->size = 0;
2373ce1c 851 rcu_assign_pointer(t->trie, NULL);
91b9a277 852 t->revision = 0;
19baf839 853#ifdef CONFIG_IP_FIB_TRIE_STATS
91b9a277 854 memset(&t->stats, 0, sizeof(struct trie_use_stats));
19baf839 855#endif
19baf839
RO
856}
857
772cb712 858/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
859 via get_fa_head and dump */
860
772cb712 861static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 862{
772cb712 863 struct hlist_head *head = &l->list;
19baf839
RO
864 struct hlist_node *node;
865 struct leaf_info *li;
866
2373ce1c 867 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 868 if (li->plen == plen)
19baf839 869 return li;
91b9a277 870
19baf839
RO
871 return NULL;
872}
873
874static inline struct list_head * get_fa_head(struct leaf *l, int plen)
875{
772cb712 876 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 877
91b9a277
OJ
878 if (!li)
879 return NULL;
c877efb2 880
91b9a277 881 return &li->falh;
19baf839
RO
882}
883
884static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
885{
2373ce1c
RO
886 struct leaf_info *li = NULL, *last = NULL;
887 struct hlist_node *node;
888
889 if (hlist_empty(head)) {
890 hlist_add_head_rcu(&new->hlist, head);
891 } else {
892 hlist_for_each_entry(li, node, head, hlist) {
893 if (new->plen > li->plen)
894 break;
895
896 last = li;
897 }
898 if (last)
899 hlist_add_after_rcu(&last->hlist, &new->hlist);
900 else
901 hlist_add_before_rcu(&new->hlist, &li->hlist);
902 }
19baf839
RO
903}
904
2373ce1c
RO
905/* rcu_read_lock needs to be hold by caller from readside */
906
19baf839
RO
907static struct leaf *
908fib_find_node(struct trie *t, u32 key)
909{
910 int pos;
911 struct tnode *tn;
912 struct node *n;
913
914 pos = 0;
2373ce1c 915 n = rcu_dereference(t->trie);
19baf839
RO
916
917 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
918 tn = (struct tnode *) n;
91b9a277 919
19baf839 920 check_tnode(tn);
91b9a277 921
c877efb2 922 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 923 pos = tn->pos + tn->bits;
19baf839 924 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
91b9a277 925 } else
19baf839
RO
926 break;
927 }
928 /* Case we have found a leaf. Compare prefixes */
929
91b9a277
OJ
930 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
931 return (struct leaf *)n;
932
19baf839
RO
933 return NULL;
934}
935
936static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
937{
19baf839
RO
938 int wasfull;
939 t_key cindex, key;
940 struct tnode *tp = NULL;
941
19baf839 942 key = tn->key;
19baf839
RO
943
944 while (tn != NULL && NODE_PARENT(tn) != NULL) {
19baf839
RO
945
946 tp = NODE_PARENT(tn);
947 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
948 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
949 tn = (struct tnode *) resize (t, (struct tnode *)tn);
950 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
91b9a277 951
c877efb2 952 if (!NODE_PARENT(tn))
19baf839
RO
953 break;
954
955 tn = NODE_PARENT(tn);
956 }
957 /* Handle last (top) tnode */
c877efb2 958 if (IS_TNODE(tn))
19baf839
RO
959 tn = (struct tnode*) resize(t, (struct tnode *)tn);
960
961 return (struct node*) tn;
962}
963
2373ce1c
RO
964/* only used from updater-side */
965
f835e471
RO
966static struct list_head *
967fib_insert_node(struct trie *t, int *err, u32 key, int plen)
19baf839
RO
968{
969 int pos, newpos;
970 struct tnode *tp = NULL, *tn = NULL;
971 struct node *n;
972 struct leaf *l;
973 int missbit;
c877efb2 974 struct list_head *fa_head = NULL;
19baf839
RO
975 struct leaf_info *li;
976 t_key cindex;
977
978 pos = 0;
c877efb2 979 n = t->trie;
19baf839 980
c877efb2
SH
981 /* If we point to NULL, stop. Either the tree is empty and we should
982 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 983 * and we should just put our new leaf in that.
c877efb2
SH
984 * If we point to a T_TNODE, check if it matches our key. Note that
985 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
986 * not be the parent's 'pos'+'bits'!
987 *
c877efb2 988 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
989 * the index from our key, push the T_TNODE and walk the tree.
990 *
991 * If it doesn't, we have to replace it with a new T_TNODE.
992 *
c877efb2
SH
993 * If we point to a T_LEAF, it might or might not have the same key
994 * as we do. If it does, just change the value, update the T_LEAF's
995 * value, and return it.
19baf839
RO
996 * If it doesn't, we need to replace it with a T_TNODE.
997 */
998
999 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1000 tn = (struct tnode *) n;
91b9a277 1001
c877efb2 1002 check_tnode(tn);
91b9a277 1003
c877efb2 1004 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1005 tp = tn;
91b9a277 1006 pos = tn->pos + tn->bits;
19baf839
RO
1007 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1008
0c7770c7 1009 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 1010 } else
19baf839
RO
1011 break;
1012 }
1013
1014 /*
1015 * n ----> NULL, LEAF or TNODE
1016 *
c877efb2 1017 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1018 */
1019
91b9a277 1020 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1021
1022 /* Case 1: n is a leaf. Compare prefixes */
1023
c877efb2 1024 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
91b9a277
OJ
1025 struct leaf *l = (struct leaf *) n;
1026
19baf839 1027 li = leaf_info_new(plen);
91b9a277 1028
c877efb2 1029 if (!li) {
f835e471
RO
1030 *err = -ENOMEM;
1031 goto err;
1032 }
19baf839
RO
1033
1034 fa_head = &li->falh;
1035 insert_leaf_info(&l->list, li);
1036 goto done;
1037 }
1038 t->size++;
1039 l = leaf_new();
1040
c877efb2 1041 if (!l) {
f835e471
RO
1042 *err = -ENOMEM;
1043 goto err;
1044 }
19baf839
RO
1045
1046 l->key = key;
1047 li = leaf_info_new(plen);
1048
c877efb2 1049 if (!li) {
f835e471
RO
1050 tnode_free((struct tnode *) l);
1051 *err = -ENOMEM;
1052 goto err;
1053 }
19baf839
RO
1054
1055 fa_head = &li->falh;
1056 insert_leaf_info(&l->list, li);
1057
19baf839 1058 if (t->trie && n == NULL) {
91b9a277 1059 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839
RO
1060
1061 NODE_SET_PARENT(l, tp);
19baf839 1062
91b9a277
OJ
1063 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1064 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1065 } else {
1066 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1067 /*
1068 * Add a new tnode here
19baf839
RO
1069 * first tnode need some special handling
1070 */
1071
1072 if (tp)
91b9a277 1073 pos = tp->pos+tp->bits;
19baf839 1074 else
91b9a277
OJ
1075 pos = 0;
1076
c877efb2 1077 if (n) {
19baf839
RO
1078 newpos = tkey_mismatch(key, pos, n->key);
1079 tn = tnode_new(n->key, newpos, 1);
91b9a277 1080 } else {
19baf839 1081 newpos = 0;
c877efb2 1082 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1083 }
19baf839 1084
c877efb2 1085 if (!tn) {
f835e471
RO
1086 free_leaf_info(li);
1087 tnode_free((struct tnode *) l);
1088 *err = -ENOMEM;
1089 goto err;
91b9a277
OJ
1090 }
1091
19baf839
RO
1092 NODE_SET_PARENT(tn, tp);
1093
91b9a277 1094 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1095 put_child(t, tn, missbit, (struct node *)l);
1096 put_child(t, tn, 1-missbit, n);
1097
c877efb2 1098 if (tp) {
19baf839
RO
1099 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1100 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
91b9a277 1101 } else {
2373ce1c 1102 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
19baf839
RO
1103 tp = tn;
1104 }
1105 }
91b9a277
OJ
1106
1107 if (tp && tp->pos + tp->bits > 32)
78c6671a 1108 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
19baf839 1109 tp, tp->pos, tp->bits, key, plen);
91b9a277 1110
19baf839 1111 /* Rebalance the trie */
2373ce1c
RO
1112
1113 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471
RO
1114done:
1115 t->revision++;
91b9a277 1116err:
19baf839
RO
1117 return fa_head;
1118}
1119
1120static int
1121fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1122 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1123{
1124 struct trie *t = (struct trie *) tb->tb_data;
1125 struct fib_alias *fa, *new_fa;
c877efb2 1126 struct list_head *fa_head = NULL;
19baf839
RO
1127 struct fib_info *fi;
1128 int plen = r->rtm_dst_len;
1129 int type = r->rtm_type;
1130 u8 tos = r->rtm_tos;
1131 u32 key, mask;
1132 int err;
1133 struct leaf *l;
1134
1135 if (plen > 32)
1136 return -EINVAL;
1137
1138 key = 0;
c877efb2 1139 if (rta->rta_dst)
19baf839
RO
1140 memcpy(&key, rta->rta_dst, 4);
1141
1142 key = ntohl(key);
1143
0c7770c7 1144 pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
19baf839 1145
91b9a277 1146 mask = ntohl(inet_make_mask(plen));
19baf839 1147
c877efb2 1148 if (key & ~mask)
19baf839
RO
1149 return -EINVAL;
1150
1151 key = key & mask;
1152
91b9a277
OJ
1153 fi = fib_create_info(r, rta, nlhdr, &err);
1154
1155 if (!fi)
19baf839
RO
1156 goto err;
1157
1158 l = fib_find_node(t, key);
c877efb2 1159 fa = NULL;
19baf839 1160
c877efb2 1161 if (l) {
19baf839
RO
1162 fa_head = get_fa_head(l, plen);
1163 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1164 }
1165
1166 /* Now fa, if non-NULL, points to the first fib alias
1167 * with the same keys [prefix,tos,priority], if such key already
1168 * exists or to the node before which we will insert new one.
1169 *
1170 * If fa is NULL, we will need to allocate a new one and
1171 * insert to the head of f.
1172 *
1173 * If f is NULL, no fib node matched the destination key
1174 * and we need to allocate a new one of those as well.
1175 */
1176
91b9a277 1177 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
19baf839
RO
1178 struct fib_alias *fa_orig;
1179
1180 err = -EEXIST;
1181 if (nlhdr->nlmsg_flags & NLM_F_EXCL)
1182 goto out;
1183
1184 if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
1185 struct fib_info *fi_drop;
1186 u8 state;
1187
2373ce1c
RO
1188 err = -ENOBUFS;
1189 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1190 if (new_fa == NULL)
1191 goto out;
19baf839
RO
1192
1193 fi_drop = fa->fa_info;
2373ce1c
RO
1194 new_fa->fa_tos = fa->fa_tos;
1195 new_fa->fa_info = fi;
1196 new_fa->fa_type = type;
1197 new_fa->fa_scope = r->rtm_scope;
19baf839 1198 state = fa->fa_state;
2373ce1c 1199 new_fa->fa_state &= ~FA_S_ACCESSED;
19baf839 1200
2373ce1c
RO
1201 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1202 alias_free_mem_rcu(fa);
19baf839
RO
1203
1204 fib_release_info(fi_drop);
1205 if (state & FA_S_ACCESSED)
91b9a277 1206 rt_cache_flush(-1);
19baf839 1207
91b9a277 1208 goto succeeded;
19baf839
RO
1209 }
1210 /* Error if we find a perfect match which
1211 * uses the same scope, type, and nexthop
1212 * information.
1213 */
1214 fa_orig = fa;
1215 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1216 if (fa->fa_tos != tos)
1217 break;
1218 if (fa->fa_info->fib_priority != fi->fib_priority)
1219 break;
1220 if (fa->fa_type == type &&
1221 fa->fa_scope == r->rtm_scope &&
1222 fa->fa_info == fi) {
1223 goto out;
1224 }
1225 }
1226 if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
1227 fa = fa_orig;
1228 }
1229 err = -ENOENT;
91b9a277 1230 if (!(nlhdr->nlmsg_flags & NLM_F_CREATE))
19baf839
RO
1231 goto out;
1232
1233 err = -ENOBUFS;
1234 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1235 if (new_fa == NULL)
1236 goto out;
1237
1238 new_fa->fa_info = fi;
1239 new_fa->fa_tos = tos;
1240 new_fa->fa_type = type;
1241 new_fa->fa_scope = r->rtm_scope;
1242 new_fa->fa_state = 0;
19baf839
RO
1243 /*
1244 * Insert new entry to the list.
1245 */
1246
c877efb2 1247 if (!fa_head) {
f835e471
RO
1248 fa_head = fib_insert_node(t, &err, key, plen);
1249 err = 0;
c877efb2 1250 if (err)
f835e471
RO
1251 goto out_free_new_fa;
1252 }
19baf839 1253
2373ce1c
RO
1254 list_add_tail_rcu(&new_fa->fa_list,
1255 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1256
1257 rt_cache_flush(-1);
1258 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
1259succeeded:
1260 return 0;
f835e471
RO
1261
1262out_free_new_fa:
1263 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1264out:
1265 fib_release_info(fi);
91b9a277 1266err:
19baf839
RO
1267 return err;
1268}
1269
2373ce1c 1270
772cb712 1271/* should be called with rcu_read_lock */
0c7770c7
SH
1272static inline int check_leaf(struct trie *t, struct leaf *l,
1273 t_key key, int *plen, const struct flowi *flp,
06c74270 1274 struct fib_result *res)
19baf839 1275{
06c74270 1276 int err, i;
19baf839
RO
1277 t_key mask;
1278 struct leaf_info *li;
1279 struct hlist_head *hhead = &l->list;
1280 struct hlist_node *node;
c877efb2 1281
2373ce1c 1282 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
19baf839
RO
1283 i = li->plen;
1284 mask = ntohl(inet_make_mask(i));
c877efb2 1285 if (l->key != (key & mask))
19baf839
RO
1286 continue;
1287
06c74270 1288 if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) {
19baf839
RO
1289 *plen = i;
1290#ifdef CONFIG_IP_FIB_TRIE_STATS
1291 t->stats.semantic_match_passed++;
1292#endif
06c74270 1293 return err;
19baf839
RO
1294 }
1295#ifdef CONFIG_IP_FIB_TRIE_STATS
1296 t->stats.semantic_match_miss++;
1297#endif
1298 }
06c74270 1299 return 1;
19baf839
RO
1300}
1301
1302static int
1303fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1304{
1305 struct trie *t = (struct trie *) tb->tb_data;
1306 int plen, ret = 0;
1307 struct node *n;
1308 struct tnode *pn;
1309 int pos, bits;
91b9a277 1310 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1311 int chopped_off;
1312 t_key cindex = 0;
1313 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1314 struct tnode *cn;
1315 t_key node_prefix, key_prefix, pref_mismatch;
1316 int mp;
1317
2373ce1c 1318 rcu_read_lock();
91b9a277 1319
2373ce1c 1320 n = rcu_dereference(t->trie);
c877efb2 1321 if (!n)
19baf839
RO
1322 goto failed;
1323
1324#ifdef CONFIG_IP_FIB_TRIE_STATS
1325 t->stats.gets++;
1326#endif
1327
1328 /* Just a leaf? */
1329 if (IS_LEAF(n)) {
06c74270 1330 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
19baf839
RO
1331 goto found;
1332 goto failed;
1333 }
1334 pn = (struct tnode *) n;
1335 chopped_off = 0;
c877efb2 1336
91b9a277 1337 while (pn) {
19baf839
RO
1338 pos = pn->pos;
1339 bits = pn->bits;
1340
c877efb2 1341 if (!chopped_off)
19baf839
RO
1342 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1343
1344 n = tnode_get_child(pn, cindex);
1345
1346 if (n == NULL) {
1347#ifdef CONFIG_IP_FIB_TRIE_STATS
1348 t->stats.null_node_hit++;
1349#endif
1350 goto backtrace;
1351 }
1352
91b9a277
OJ
1353 if (IS_LEAF(n)) {
1354 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1355 goto found;
1356 else
1357 goto backtrace;
1358 }
1359
19baf839
RO
1360#define HL_OPTIMIZE
1361#ifdef HL_OPTIMIZE
91b9a277 1362 cn = (struct tnode *)n;
19baf839 1363
91b9a277
OJ
1364 /*
1365 * It's a tnode, and we can do some extra checks here if we
1366 * like, to avoid descending into a dead-end branch.
1367 * This tnode is in the parent's child array at index
1368 * key[p_pos..p_pos+p_bits] but potentially with some bits
1369 * chopped off, so in reality the index may be just a
1370 * subprefix, padded with zero at the end.
1371 * We can also take a look at any skipped bits in this
1372 * tnode - everything up to p_pos is supposed to be ok,
1373 * and the non-chopped bits of the index (se previous
1374 * paragraph) are also guaranteed ok, but the rest is
1375 * considered unknown.
1376 *
1377 * The skipped bits are key[pos+bits..cn->pos].
1378 */
19baf839 1379
91b9a277
OJ
1380 /* If current_prefix_length < pos+bits, we are already doing
1381 * actual prefix matching, which means everything from
1382 * pos+(bits-chopped_off) onward must be zero along some
1383 * branch of this subtree - otherwise there is *no* valid
1384 * prefix present. Here we can only check the skipped
1385 * bits. Remember, since we have already indexed into the
1386 * parent's child array, we know that the bits we chopped of
1387 * *are* zero.
1388 */
19baf839 1389
91b9a277 1390 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
19baf839 1391
91b9a277
OJ
1392 if (current_prefix_length < pos+bits) {
1393 if (tkey_extract_bits(cn->key, current_prefix_length,
1394 cn->pos - current_prefix_length) != 0 ||
1395 !(cn->child[0]))
1396 goto backtrace;
1397 }
19baf839 1398
91b9a277
OJ
1399 /*
1400 * If chopped_off=0, the index is fully validated and we
1401 * only need to look at the skipped bits for this, the new,
1402 * tnode. What we actually want to do is to find out if
1403 * these skipped bits match our key perfectly, or if we will
1404 * have to count on finding a matching prefix further down,
1405 * because if we do, we would like to have some way of
1406 * verifying the existence of such a prefix at this point.
1407 */
19baf839 1408
91b9a277
OJ
1409 /* The only thing we can do at this point is to verify that
1410 * any such matching prefix can indeed be a prefix to our
1411 * key, and if the bits in the node we are inspecting that
1412 * do not match our key are not ZERO, this cannot be true.
1413 * Thus, find out where there is a mismatch (before cn->pos)
1414 * and verify that all the mismatching bits are zero in the
1415 * new tnode's key.
1416 */
19baf839 1417
91b9a277
OJ
1418 /* Note: We aren't very concerned about the piece of the key
1419 * that precede pn->pos+pn->bits, since these have already been
1420 * checked. The bits after cn->pos aren't checked since these are
1421 * by definition "unknown" at this point. Thus, what we want to
1422 * see is if we are about to enter the "prefix matching" state,
1423 * and in that case verify that the skipped bits that will prevail
1424 * throughout this subtree are zero, as they have to be if we are
1425 * to find a matching prefix.
1426 */
1427
1428 node_prefix = MASK_PFX(cn->key, cn->pos);
1429 key_prefix = MASK_PFX(key, cn->pos);
1430 pref_mismatch = key_prefix^node_prefix;
1431 mp = 0;
1432
1433 /* In short: If skipped bits in this node do not match the search
1434 * key, enter the "prefix matching" state.directly.
1435 */
1436 if (pref_mismatch) {
1437 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1438 mp++;
1439 pref_mismatch = pref_mismatch <<1;
1440 }
1441 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1442
1443 if (key_prefix != 0)
1444 goto backtrace;
1445
1446 if (current_prefix_length >= cn->pos)
1447 current_prefix_length = mp;
c877efb2 1448 }
91b9a277
OJ
1449#endif
1450 pn = (struct tnode *)n; /* Descend */
1451 chopped_off = 0;
1452 continue;
1453
19baf839
RO
1454backtrace:
1455 chopped_off++;
1456
1457 /* As zero don't change the child key (cindex) */
91b9a277 1458 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
19baf839 1459 chopped_off++;
19baf839
RO
1460
1461 /* Decrease current_... with bits chopped off */
1462 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1463 current_prefix_length = pn->pos + pn->bits - chopped_off;
91b9a277 1464
19baf839 1465 /*
c877efb2 1466 * Either we do the actual chop off according or if we have
19baf839
RO
1467 * chopped off all bits in this tnode walk up to our parent.
1468 */
1469
91b9a277 1470 if (chopped_off <= pn->bits) {
19baf839 1471 cindex &= ~(1 << (chopped_off-1));
91b9a277 1472 } else {
c877efb2 1473 if (NODE_PARENT(pn) == NULL)
19baf839 1474 goto failed;
91b9a277 1475
19baf839
RO
1476 /* Get Child's index */
1477 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1478 pn = NODE_PARENT(pn);
1479 chopped_off = 0;
1480
1481#ifdef CONFIG_IP_FIB_TRIE_STATS
1482 t->stats.backtrack++;
1483#endif
1484 goto backtrace;
c877efb2 1485 }
19baf839
RO
1486 }
1487failed:
c877efb2 1488 ret = 1;
19baf839 1489found:
2373ce1c 1490 rcu_read_unlock();
19baf839
RO
1491 return ret;
1492}
1493
2373ce1c 1494/* only called from updater side */
19baf839
RO
1495static int trie_leaf_remove(struct trie *t, t_key key)
1496{
1497 t_key cindex;
1498 struct tnode *tp = NULL;
1499 struct node *n = t->trie;
1500 struct leaf *l;
1501
0c7770c7 1502 pr_debug("entering trie_leaf_remove(%p)\n", n);
19baf839
RO
1503
1504 /* Note that in the case skipped bits, those bits are *not* checked!
c877efb2 1505 * When we finish this, we will have NULL or a T_LEAF, and the
19baf839
RO
1506 * T_LEAF may or may not match our key.
1507 */
1508
91b9a277 1509 while (n != NULL && IS_TNODE(n)) {
19baf839
RO
1510 struct tnode *tn = (struct tnode *) n;
1511 check_tnode(tn);
1512 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1513
0c7770c7 1514 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 1515 }
19baf839
RO
1516 l = (struct leaf *) n;
1517
c877efb2 1518 if (!n || !tkey_equals(l->key, key))
19baf839 1519 return 0;
c877efb2
SH
1520
1521 /*
1522 * Key found.
1523 * Remove the leaf and rebalance the tree
19baf839
RO
1524 */
1525
1526 t->revision++;
1527 t->size--;
1528
2373ce1c 1529 preempt_disable();
19baf839
RO
1530 tp = NODE_PARENT(n);
1531 tnode_free((struct tnode *) n);
1532
c877efb2 1533 if (tp) {
19baf839
RO
1534 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1535 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1536 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1537 } else
2373ce1c
RO
1538 rcu_assign_pointer(t->trie, NULL);
1539 preempt_enable();
19baf839
RO
1540
1541 return 1;
1542}
1543
1544static int
1545fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
91b9a277 1546 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
19baf839
RO
1547{
1548 struct trie *t = (struct trie *) tb->tb_data;
1549 u32 key, mask;
1550 int plen = r->rtm_dst_len;
1551 u8 tos = r->rtm_tos;
1552 struct fib_alias *fa, *fa_to_delete;
1553 struct list_head *fa_head;
1554 struct leaf *l;
91b9a277
OJ
1555 struct leaf_info *li;
1556
19baf839 1557
c877efb2 1558 if (plen > 32)
19baf839
RO
1559 return -EINVAL;
1560
1561 key = 0;
c877efb2 1562 if (rta->rta_dst)
19baf839
RO
1563 memcpy(&key, rta->rta_dst, 4);
1564
1565 key = ntohl(key);
91b9a277 1566 mask = ntohl(inet_make_mask(plen));
19baf839 1567
c877efb2 1568 if (key & ~mask)
19baf839
RO
1569 return -EINVAL;
1570
1571 key = key & mask;
1572 l = fib_find_node(t, key);
1573
c877efb2 1574 if (!l)
19baf839
RO
1575 return -ESRCH;
1576
1577 fa_head = get_fa_head(l, plen);
1578 fa = fib_find_alias(fa_head, tos, 0);
1579
1580 if (!fa)
1581 return -ESRCH;
1582
0c7770c7 1583 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1584
1585 fa_to_delete = NULL;
1586 fa_head = fa->fa_list.prev;
2373ce1c 1587
19baf839
RO
1588 list_for_each_entry(fa, fa_head, fa_list) {
1589 struct fib_info *fi = fa->fa_info;
1590
1591 if (fa->fa_tos != tos)
1592 break;
1593
1594 if ((!r->rtm_type ||
1595 fa->fa_type == r->rtm_type) &&
1596 (r->rtm_scope == RT_SCOPE_NOWHERE ||
1597 fa->fa_scope == r->rtm_scope) &&
1598 (!r->rtm_protocol ||
1599 fi->fib_protocol == r->rtm_protocol) &&
1600 fib_nh_match(r, nlhdr, rta, fi) == 0) {
1601 fa_to_delete = fa;
1602 break;
1603 }
1604 }
1605
91b9a277
OJ
1606 if (!fa_to_delete)
1607 return -ESRCH;
19baf839 1608
91b9a277
OJ
1609 fa = fa_to_delete;
1610 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
1611
1612 l = fib_find_node(t, key);
772cb712 1613 li = find_leaf_info(l, plen);
19baf839 1614
2373ce1c 1615 list_del_rcu(&fa->fa_list);
19baf839 1616
91b9a277 1617 if (list_empty(fa_head)) {
2373ce1c 1618 hlist_del_rcu(&li->hlist);
91b9a277 1619 free_leaf_info(li);
2373ce1c 1620 }
19baf839 1621
91b9a277
OJ
1622 if (hlist_empty(&l->list))
1623 trie_leaf_remove(t, key);
19baf839 1624
91b9a277
OJ
1625 if (fa->fa_state & FA_S_ACCESSED)
1626 rt_cache_flush(-1);
19baf839 1627
2373ce1c
RO
1628 fib_release_info(fa->fa_info);
1629 alias_free_mem_rcu(fa);
91b9a277 1630 return 0;
19baf839
RO
1631}
1632
1633static int trie_flush_list(struct trie *t, struct list_head *head)
1634{
1635 struct fib_alias *fa, *fa_node;
1636 int found = 0;
1637
1638 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1639 struct fib_info *fi = fa->fa_info;
19baf839 1640
2373ce1c
RO
1641 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1642 list_del_rcu(&fa->fa_list);
1643 fib_release_info(fa->fa_info);
1644 alias_free_mem_rcu(fa);
19baf839
RO
1645 found++;
1646 }
1647 }
1648 return found;
1649}
1650
1651static int trie_flush_leaf(struct trie *t, struct leaf *l)
1652{
1653 int found = 0;
1654 struct hlist_head *lih = &l->list;
1655 struct hlist_node *node, *tmp;
1656 struct leaf_info *li = NULL;
1657
1658 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
19baf839
RO
1659 found += trie_flush_list(t, &li->falh);
1660
1661 if (list_empty(&li->falh)) {
2373ce1c 1662 hlist_del_rcu(&li->hlist);
19baf839
RO
1663 free_leaf_info(li);
1664 }
1665 }
1666 return found;
1667}
1668
2373ce1c
RO
1669/* rcu_read_lock needs to be hold by caller from readside */
1670
19baf839
RO
1671static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1672{
1673 struct node *c = (struct node *) thisleaf;
1674 struct tnode *p;
1675 int idx;
2373ce1c 1676 struct node *trie = rcu_dereference(t->trie);
19baf839 1677
c877efb2 1678 if (c == NULL) {
2373ce1c 1679 if (trie == NULL)
19baf839
RO
1680 return NULL;
1681
2373ce1c
RO
1682 if (IS_LEAF(trie)) /* trie w. just a leaf */
1683 return (struct leaf *) trie;
19baf839 1684
2373ce1c 1685 p = (struct tnode*) trie; /* Start */
91b9a277 1686 } else
19baf839 1687 p = (struct tnode *) NODE_PARENT(c);
c877efb2 1688
19baf839
RO
1689 while (p) {
1690 int pos, last;
1691
1692 /* Find the next child of the parent */
c877efb2
SH
1693 if (c)
1694 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1695 else
19baf839
RO
1696 pos = 0;
1697
1698 last = 1 << p->bits;
91b9a277 1699 for (idx = pos; idx < last ; idx++) {
2373ce1c
RO
1700 c = rcu_dereference(p->child[idx]);
1701
1702 if (!c)
91b9a277
OJ
1703 continue;
1704
1705 /* Decend if tnode */
2373ce1c
RO
1706 while (IS_TNODE(c)) {
1707 p = (struct tnode *) c;
1708 idx = 0;
91b9a277
OJ
1709
1710 /* Rightmost non-NULL branch */
1711 if (p && IS_TNODE(p))
2373ce1c
RO
1712 while (!(c = rcu_dereference(p->child[idx]))
1713 && idx < (1<<p->bits)) idx++;
91b9a277
OJ
1714
1715 /* Done with this tnode? */
2373ce1c 1716 if (idx >= (1 << p->bits) || !c)
91b9a277 1717 goto up;
19baf839 1718 }
2373ce1c 1719 return (struct leaf *) c;
19baf839
RO
1720 }
1721up:
1722 /* No more children go up one step */
91b9a277 1723 c = (struct node *) p;
19baf839
RO
1724 p = (struct tnode *) NODE_PARENT(p);
1725 }
1726 return NULL; /* Ready. Root of trie */
1727}
1728
1729static int fn_trie_flush(struct fib_table *tb)
1730{
1731 struct trie *t = (struct trie *) tb->tb_data;
1732 struct leaf *ll = NULL, *l = NULL;
1733 int found = 0, h;
1734
1735 t->revision++;
1736
91b9a277 1737 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1738 found += trie_flush_leaf(t, l);
1739
1740 if (ll && hlist_empty(&ll->list))
1741 trie_leaf_remove(t, ll->key);
1742 ll = l;
1743 }
1744
1745 if (ll && hlist_empty(&ll->list))
1746 trie_leaf_remove(t, ll->key);
1747
0c7770c7 1748 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1749 return found;
1750}
1751
91b9a277 1752static int trie_last_dflt = -1;
19baf839
RO
1753
1754static void
1755fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1756{
1757 struct trie *t = (struct trie *) tb->tb_data;
1758 int order, last_idx;
1759 struct fib_info *fi = NULL;
1760 struct fib_info *last_resort;
1761 struct fib_alias *fa = NULL;
1762 struct list_head *fa_head;
1763 struct leaf *l;
1764
1765 last_idx = -1;
1766 last_resort = NULL;
1767 order = -1;
1768
2373ce1c 1769 rcu_read_lock();
c877efb2 1770
19baf839 1771 l = fib_find_node(t, 0);
c877efb2 1772 if (!l)
19baf839
RO
1773 goto out;
1774
1775 fa_head = get_fa_head(l, 0);
c877efb2 1776 if (!fa_head)
19baf839
RO
1777 goto out;
1778
c877efb2 1779 if (list_empty(fa_head))
19baf839
RO
1780 goto out;
1781
2373ce1c 1782 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1783 struct fib_info *next_fi = fa->fa_info;
91b9a277 1784
19baf839
RO
1785 if (fa->fa_scope != res->scope ||
1786 fa->fa_type != RTN_UNICAST)
1787 continue;
91b9a277 1788
19baf839
RO
1789 if (next_fi->fib_priority > res->fi->fib_priority)
1790 break;
1791 if (!next_fi->fib_nh[0].nh_gw ||
1792 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1793 continue;
1794 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1795
19baf839
RO
1796 if (fi == NULL) {
1797 if (next_fi != res->fi)
1798 break;
1799 } else if (!fib_detect_death(fi, order, &last_resort,
1800 &last_idx, &trie_last_dflt)) {
1801 if (res->fi)
1802 fib_info_put(res->fi);
1803 res->fi = fi;
1804 atomic_inc(&fi->fib_clntref);
1805 trie_last_dflt = order;
1806 goto out;
1807 }
1808 fi = next_fi;
1809 order++;
1810 }
1811 if (order <= 0 || fi == NULL) {
1812 trie_last_dflt = -1;
1813 goto out;
1814 }
1815
1816 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1817 if (res->fi)
1818 fib_info_put(res->fi);
1819 res->fi = fi;
1820 atomic_inc(&fi->fib_clntref);
1821 trie_last_dflt = order;
1822 goto out;
1823 }
1824 if (last_idx >= 0) {
1825 if (res->fi)
1826 fib_info_put(res->fi);
1827 res->fi = last_resort;
1828 if (last_resort)
1829 atomic_inc(&last_resort->fib_clntref);
1830 }
1831 trie_last_dflt = last_idx;
1832 out:;
2373ce1c 1833 rcu_read_unlock();
19baf839
RO
1834}
1835
c877efb2 1836static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
19baf839
RO
1837 struct sk_buff *skb, struct netlink_callback *cb)
1838{
1839 int i, s_i;
1840 struct fib_alias *fa;
1841
91b9a277 1842 u32 xkey = htonl(key);
19baf839 1843
91b9a277 1844 s_i = cb->args[3];
19baf839
RO
1845 i = 0;
1846
2373ce1c
RO
1847 /* rcu_read_lock is hold by caller */
1848
1849 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1850 if (i < s_i) {
1851 i++;
1852 continue;
1853 }
78c6671a 1854 BUG_ON(!fa->fa_info);
19baf839
RO
1855
1856 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1857 cb->nlh->nlmsg_seq,
1858 RTM_NEWROUTE,
1859 tb->tb_id,
1860 fa->fa_type,
1861 fa->fa_scope,
1862 &xkey,
1863 plen,
1864 fa->fa_tos,
90f66914 1865 fa->fa_info, 0) < 0) {
19baf839
RO
1866 cb->args[3] = i;
1867 return -1;
91b9a277 1868 }
19baf839
RO
1869 i++;
1870 }
91b9a277 1871 cb->args[3] = i;
19baf839
RO
1872 return skb->len;
1873}
1874
c877efb2 1875static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
19baf839
RO
1876 struct netlink_callback *cb)
1877{
1878 int h, s_h;
1879 struct list_head *fa_head;
1880 struct leaf *l = NULL;
19baf839 1881
91b9a277 1882 s_h = cb->args[2];
19baf839 1883
91b9a277 1884 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1885 if (h < s_h)
1886 continue;
1887 if (h > s_h)
1888 memset(&cb->args[3], 0,
1889 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1890
1891 fa_head = get_fa_head(l, plen);
91b9a277 1892
c877efb2 1893 if (!fa_head)
19baf839
RO
1894 continue;
1895
c877efb2 1896 if (list_empty(fa_head))
19baf839
RO
1897 continue;
1898
1899 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
91b9a277 1900 cb->args[2] = h;
19baf839
RO
1901 return -1;
1902 }
1903 }
91b9a277 1904 cb->args[2] = h;
19baf839
RO
1905 return skb->len;
1906}
1907
1908static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1909{
1910 int m, s_m;
1911 struct trie *t = (struct trie *) tb->tb_data;
1912
1913 s_m = cb->args[1];
1914
2373ce1c 1915 rcu_read_lock();
91b9a277 1916 for (m = 0; m <= 32; m++) {
19baf839
RO
1917 if (m < s_m)
1918 continue;
1919 if (m > s_m)
1920 memset(&cb->args[2], 0,
91b9a277 1921 sizeof(cb->args) - 2*sizeof(cb->args[0]));
19baf839
RO
1922
1923 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1924 cb->args[1] = m;
1925 goto out;
1926 }
1927 }
2373ce1c 1928 rcu_read_unlock();
19baf839
RO
1929 cb->args[1] = m;
1930 return skb->len;
91b9a277 1931out:
2373ce1c 1932 rcu_read_unlock();
19baf839
RO
1933 return -1;
1934}
1935
1936/* Fix more generic FIB names for init later */
1937
1938#ifdef CONFIG_IP_MULTIPLE_TABLES
1939struct fib_table * fib_hash_init(int id)
1940#else
1941struct fib_table * __init fib_hash_init(int id)
1942#endif
1943{
1944 struct fib_table *tb;
1945 struct trie *t;
1946
1947 if (fn_alias_kmem == NULL)
1948 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1949 sizeof(struct fib_alias),
1950 0, SLAB_HWCACHE_ALIGN,
1951 NULL, NULL);
1952
1953 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1954 GFP_KERNEL);
1955 if (tb == NULL)
1956 return NULL;
1957
1958 tb->tb_id = id;
1959 tb->tb_lookup = fn_trie_lookup;
1960 tb->tb_insert = fn_trie_insert;
1961 tb->tb_delete = fn_trie_delete;
1962 tb->tb_flush = fn_trie_flush;
1963 tb->tb_select_default = fn_trie_select_default;
1964 tb->tb_dump = fn_trie_dump;
1965 memset(tb->tb_data, 0, sizeof(struct trie));
1966
1967 t = (struct trie *) tb->tb_data;
1968
1969 trie_init(t);
1970
c877efb2 1971 if (id == RT_TABLE_LOCAL)
91b9a277 1972 trie_local = t;
c877efb2 1973 else if (id == RT_TABLE_MAIN)
91b9a277 1974 trie_main = t;
19baf839
RO
1975
1976 if (id == RT_TABLE_LOCAL)
78c6671a 1977 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
1978
1979 return tb;
1980}
1981
cb7b593c
SH
1982#ifdef CONFIG_PROC_FS
1983/* Depth first Trie walk iterator */
1984struct fib_trie_iter {
1985 struct tnode *tnode;
1986 struct trie *trie;
1987 unsigned index;
1988 unsigned depth;
1989};
19baf839 1990
cb7b593c 1991static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1992{
cb7b593c
SH
1993 struct tnode *tn = iter->tnode;
1994 unsigned cindex = iter->index;
1995 struct tnode *p;
19baf839 1996
cb7b593c
SH
1997 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1998 iter->tnode, iter->index, iter->depth);
1999rescan:
2000 while (cindex < (1<<tn->bits)) {
2001 struct node *n = tnode_get_child(tn, cindex);
19baf839 2002
cb7b593c
SH
2003 if (n) {
2004 if (IS_LEAF(n)) {
2005 iter->tnode = tn;
2006 iter->index = cindex + 1;
2007 } else {
2008 /* push down one level */
2009 iter->tnode = (struct tnode *) n;
2010 iter->index = 0;
2011 ++iter->depth;
2012 }
2013 return n;
2014 }
19baf839 2015
cb7b593c
SH
2016 ++cindex;
2017 }
91b9a277 2018
cb7b593c
SH
2019 /* Current node exhausted, pop back up */
2020 p = NODE_PARENT(tn);
2021 if (p) {
2022 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2023 tn = p;
2024 --iter->depth;
2025 goto rescan;
19baf839 2026 }
cb7b593c
SH
2027
2028 /* got root? */
2029 return NULL;
19baf839
RO
2030}
2031
cb7b593c
SH
2032static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2033 struct trie *t)
19baf839 2034{
cb7b593c 2035 struct node *n = rcu_dereference(t->trie);
19baf839 2036
cb7b593c
SH
2037 if (n && IS_TNODE(n)) {
2038 iter->tnode = (struct tnode *) n;
2039 iter->trie = t;
2040 iter->index = 0;
1d25cd6c 2041 iter->depth = 1;
cb7b593c 2042 return n;
91b9a277 2043 }
cb7b593c
SH
2044 return NULL;
2045}
91b9a277 2046
cb7b593c
SH
2047static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2048{
2049 struct node *n;
2050 struct fib_trie_iter iter;
91b9a277 2051
cb7b593c 2052 memset(s, 0, sizeof(*s));
91b9a277 2053
cb7b593c
SH
2054 rcu_read_lock();
2055 for (n = fib_trie_get_first(&iter, t); n;
2056 n = fib_trie_get_next(&iter)) {
2057 if (IS_LEAF(n)) {
2058 s->leaves++;
2059 s->totdepth += iter.depth;
2060 if (iter.depth > s->maxdepth)
2061 s->maxdepth = iter.depth;
2062 } else {
2063 const struct tnode *tn = (const struct tnode *) n;
2064 int i;
2065
2066 s->tnodes++;
2067 s->nodesizes[tn->bits]++;
2068 for (i = 0; i < (1<<tn->bits); i++)
2069 if (!tn->child[i])
2070 s->nullpointers++;
19baf839 2071 }
19baf839 2072 }
2373ce1c 2073 rcu_read_unlock();
19baf839
RO
2074}
2075
cb7b593c
SH
2076/*
2077 * This outputs /proc/net/fib_triestats
2078 */
2079static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2080{
cb7b593c 2081 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2082
cb7b593c
SH
2083 if (stat->leaves)
2084 avdepth = stat->totdepth*100 / stat->leaves;
2085 else
2086 avdepth = 0;
91b9a277 2087
cb7b593c
SH
2088 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2089 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2090
cb7b593c 2091 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
91b9a277 2092
cb7b593c
SH
2093 bytes = sizeof(struct leaf) * stat->leaves;
2094 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2095 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2096
cb7b593c
SH
2097 max = MAX_CHILDS-1;
2098 while (max >= 0 && stat->nodesizes[max] == 0)
2099 max--;
19baf839 2100
cb7b593c
SH
2101 pointers = 0;
2102 for (i = 1; i <= max; i++)
2103 if (stat->nodesizes[i] != 0) {
2104 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2105 pointers += (1<<i) * stat->nodesizes[i];
2106 }
2107 seq_putc(seq, '\n');
2108 seq_printf(seq, "\tPointers: %d\n", pointers);
2373ce1c 2109
cb7b593c
SH
2110 bytes += sizeof(struct node *) * pointers;
2111 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2112 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2373ce1c 2113
cb7b593c
SH
2114#ifdef CONFIG_IP_FIB_TRIE_STATS
2115 seq_printf(seq, "Counters:\n---------\n");
2116 seq_printf(seq,"gets = %d\n", t->stats.gets);
2117 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2118 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2119 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2120 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2121 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2122#ifdef CLEAR_STATS
2123 memset(&(t->stats), 0, sizeof(t->stats));
2124#endif
2125#endif /* CONFIG_IP_FIB_TRIE_STATS */
2126}
19baf839 2127
cb7b593c
SH
2128static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2129{
2130 struct trie_stat *stat;
91b9a277 2131
cb7b593c
SH
2132 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2133 if (!stat)
2134 return -ENOMEM;
91b9a277 2135
cb7b593c
SH
2136 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2137 sizeof(struct leaf), sizeof(struct tnode));
91b9a277 2138
cb7b593c
SH
2139 if (trie_local) {
2140 seq_printf(seq, "Local:\n");
2141 trie_collect_stats(trie_local, stat);
2142 trie_show_stats(seq, stat);
2143 }
91b9a277 2144
cb7b593c
SH
2145 if (trie_main) {
2146 seq_printf(seq, "Main:\n");
2147 trie_collect_stats(trie_main, stat);
2148 trie_show_stats(seq, stat);
19baf839 2149 }
cb7b593c 2150 kfree(stat);
19baf839 2151
cb7b593c 2152 return 0;
19baf839
RO
2153}
2154
cb7b593c 2155static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2156{
cb7b593c 2157 return single_open(file, fib_triestat_seq_show, NULL);
19baf839
RO
2158}
2159
cb7b593c
SH
2160static struct file_operations fib_triestat_fops = {
2161 .owner = THIS_MODULE,
2162 .open = fib_triestat_seq_open,
2163 .read = seq_read,
2164 .llseek = seq_lseek,
2165 .release = single_release,
2166};
2167
2168static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2169 loff_t pos)
19baf839 2170{
cb7b593c
SH
2171 loff_t idx = 0;
2172 struct node *n;
2173
2174 for (n = fib_trie_get_first(iter, trie_local);
2175 n; ++idx, n = fib_trie_get_next(iter)) {
2176 if (pos == idx)
2177 return n;
2178 }
2179
2180 for (n = fib_trie_get_first(iter, trie_main);
2181 n; ++idx, n = fib_trie_get_next(iter)) {
2182 if (pos == idx)
2183 return n;
2184 }
19baf839
RO
2185 return NULL;
2186}
2187
cb7b593c 2188static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
19baf839 2189{
cb7b593c
SH
2190 rcu_read_lock();
2191 if (*pos == 0)
91b9a277 2192 return SEQ_START_TOKEN;
cb7b593c 2193 return fib_trie_get_idx(seq->private, *pos - 1);
19baf839
RO
2194}
2195
cb7b593c 2196static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2197{
cb7b593c
SH
2198 struct fib_trie_iter *iter = seq->private;
2199 void *l = v;
2200
19baf839 2201 ++*pos;
91b9a277 2202 if (v == SEQ_START_TOKEN)
cb7b593c 2203 return fib_trie_get_idx(iter, 0);
19baf839 2204
cb7b593c
SH
2205 v = fib_trie_get_next(iter);
2206 BUG_ON(v == l);
2207 if (v)
2208 return v;
19baf839 2209
cb7b593c
SH
2210 /* continue scan in next trie */
2211 if (iter->trie == trie_local)
2212 return fib_trie_get_first(iter, trie_main);
19baf839 2213
cb7b593c
SH
2214 return NULL;
2215}
19baf839 2216
cb7b593c 2217static void fib_trie_seq_stop(struct seq_file *seq, void *v)
19baf839 2218{
cb7b593c
SH
2219 rcu_read_unlock();
2220}
91b9a277 2221
cb7b593c
SH
2222static void seq_indent(struct seq_file *seq, int n)
2223{
2224 while (n-- > 0) seq_puts(seq, " ");
2225}
19baf839 2226
cb7b593c
SH
2227static inline const char *rtn_scope(enum rt_scope_t s)
2228{
2229 static char buf[32];
19baf839 2230
cb7b593c
SH
2231 switch(s) {
2232 case RT_SCOPE_UNIVERSE: return "universe";
2233 case RT_SCOPE_SITE: return "site";
2234 case RT_SCOPE_LINK: return "link";
2235 case RT_SCOPE_HOST: return "host";
2236 case RT_SCOPE_NOWHERE: return "nowhere";
2237 default:
2238 snprintf(buf, sizeof(buf), "scope=%d", s);
2239 return buf;
2240 }
2241}
19baf839 2242
cb7b593c
SH
2243static const char *rtn_type_names[__RTN_MAX] = {
2244 [RTN_UNSPEC] = "UNSPEC",
2245 [RTN_UNICAST] = "UNICAST",
2246 [RTN_LOCAL] = "LOCAL",
2247 [RTN_BROADCAST] = "BROADCAST",
2248 [RTN_ANYCAST] = "ANYCAST",
2249 [RTN_MULTICAST] = "MULTICAST",
2250 [RTN_BLACKHOLE] = "BLACKHOLE",
2251 [RTN_UNREACHABLE] = "UNREACHABLE",
2252 [RTN_PROHIBIT] = "PROHIBIT",
2253 [RTN_THROW] = "THROW",
2254 [RTN_NAT] = "NAT",
2255 [RTN_XRESOLVE] = "XRESOLVE",
2256};
19baf839 2257
cb7b593c
SH
2258static inline const char *rtn_type(unsigned t)
2259{
2260 static char buf[32];
19baf839 2261
cb7b593c
SH
2262 if (t < __RTN_MAX && rtn_type_names[t])
2263 return rtn_type_names[t];
2264 snprintf(buf, sizeof(buf), "type %d", t);
2265 return buf;
19baf839
RO
2266}
2267
cb7b593c
SH
2268/* Pretty print the trie */
2269static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2270{
cb7b593c
SH
2271 const struct fib_trie_iter *iter = seq->private;
2272 struct node *n = v;
c877efb2 2273
cb7b593c
SH
2274 if (v == SEQ_START_TOKEN)
2275 return 0;
19baf839 2276
cb7b593c
SH
2277 if (IS_TNODE(n)) {
2278 struct tnode *tn = (struct tnode *) n;
2279 t_key prf = ntohl(MASK_PFX(tn->key, tn->pos));
91b9a277 2280
cb7b593c
SH
2281 if (!NODE_PARENT(n)) {
2282 if (iter->trie == trie_local)
2283 seq_puts(seq, "<local>:\n");
2284 else
2285 seq_puts(seq, "<main>:\n");
1d25cd6c
RO
2286 }
2287 seq_indent(seq, iter->depth-1);
2288 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2289 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2290 tn->empty_children);
2291
cb7b593c
SH
2292 } else {
2293 struct leaf *l = (struct leaf *) n;
2294 int i;
2295 u32 val = ntohl(l->key);
2296
2297 seq_indent(seq, iter->depth);
2298 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2299 for (i = 32; i >= 0; i--) {
772cb712 2300 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c
SH
2301 if (li) {
2302 struct fib_alias *fa;
2303 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2304 seq_indent(seq, iter->depth+1);
2305 seq_printf(seq, " /%d %s %s", i,
2306 rtn_scope(fa->fa_scope),
2307 rtn_type(fa->fa_type));
2308 if (fa->fa_tos)
2309 seq_printf(seq, "tos =%d\n",
2310 fa->fa_tos);
2311 seq_putc(seq, '\n');
2312 }
2313 }
2314 }
19baf839 2315 }
cb7b593c 2316
19baf839
RO
2317 return 0;
2318}
2319
cb7b593c
SH
2320static struct seq_operations fib_trie_seq_ops = {
2321 .start = fib_trie_seq_start,
2322 .next = fib_trie_seq_next,
2323 .stop = fib_trie_seq_stop,
2324 .show = fib_trie_seq_show,
19baf839
RO
2325};
2326
cb7b593c 2327static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839
RO
2328{
2329 struct seq_file *seq;
2330 int rc = -ENOMEM;
cb7b593c 2331 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
19baf839 2332
cb7b593c
SH
2333 if (!s)
2334 goto out;
2335
2336 rc = seq_open(file, &fib_trie_seq_ops);
19baf839
RO
2337 if (rc)
2338 goto out_kfree;
2339
cb7b593c
SH
2340 seq = file->private_data;
2341 seq->private = s;
2342 memset(s, 0, sizeof(*s));
19baf839
RO
2343out:
2344 return rc;
2345out_kfree:
cb7b593c 2346 kfree(s);
19baf839
RO
2347 goto out;
2348}
2349
cb7b593c
SH
2350static struct file_operations fib_trie_fops = {
2351 .owner = THIS_MODULE,
2352 .open = fib_trie_seq_open,
2353 .read = seq_read,
2354 .llseek = seq_lseek,
c877efb2 2355 .release = seq_release_private,
19baf839
RO
2356};
2357
cb7b593c 2358static unsigned fib_flag_trans(int type, u32 mask, const struct fib_info *fi)
19baf839 2359{
cb7b593c
SH
2360 static unsigned type2flags[RTN_MAX + 1] = {
2361 [7] = RTF_REJECT, [8] = RTF_REJECT,
2362 };
2363 unsigned flags = type2flags[type];
19baf839 2364
cb7b593c
SH
2365 if (fi && fi->fib_nh->nh_gw)
2366 flags |= RTF_GATEWAY;
2367 if (mask == 0xFFFFFFFF)
2368 flags |= RTF_HOST;
2369 flags |= RTF_UP;
2370 return flags;
19baf839
RO
2371}
2372
cb7b593c
SH
2373/*
2374 * This outputs /proc/net/route.
2375 * The format of the file is not supposed to be changed
2376 * and needs to be same as fib_hash output to avoid breaking
2377 * legacy utilities
2378 */
2379static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2380{
cb7b593c
SH
2381 struct leaf *l = v;
2382 int i;
2383 char bf[128];
19baf839 2384
cb7b593c
SH
2385 if (v == SEQ_START_TOKEN) {
2386 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2387 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2388 "\tWindow\tIRTT");
2389 return 0;
2390 }
19baf839 2391
cb7b593c
SH
2392 if (IS_TNODE(l))
2393 return 0;
19baf839 2394
cb7b593c 2395 for (i=32; i>=0; i--) {
772cb712 2396 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c
SH
2397 struct fib_alias *fa;
2398 u32 mask, prefix;
91b9a277 2399
cb7b593c
SH
2400 if (!li)
2401 continue;
19baf839 2402
cb7b593c
SH
2403 mask = inet_make_mask(li->plen);
2404 prefix = htonl(l->key);
19baf839 2405
cb7b593c 2406 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2407 const struct fib_info *fi = fa->fa_info;
cb7b593c 2408 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2409
cb7b593c
SH
2410 if (fa->fa_type == RTN_BROADCAST
2411 || fa->fa_type == RTN_MULTICAST)
2412 continue;
19baf839 2413
cb7b593c
SH
2414 if (fi)
2415 snprintf(bf, sizeof(bf),
2416 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2417 fi->fib_dev ? fi->fib_dev->name : "*",
2418 prefix,
2419 fi->fib_nh->nh_gw, flags, 0, 0,
2420 fi->fib_priority,
2421 mask,
2422 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2423 fi->fib_window,
2424 fi->fib_rtt >> 3);
2425 else
2426 snprintf(bf, sizeof(bf),
2427 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2428 prefix, 0, flags, 0, 0, 0,
2429 mask, 0, 0, 0);
19baf839 2430
cb7b593c
SH
2431 seq_printf(seq, "%-127s\n", bf);
2432 }
19baf839
RO
2433 }
2434
2435 return 0;
2436}
2437
cb7b593c
SH
2438static struct seq_operations fib_route_seq_ops = {
2439 .start = fib_trie_seq_start,
2440 .next = fib_trie_seq_next,
2441 .stop = fib_trie_seq_stop,
2442 .show = fib_route_seq_show,
19baf839
RO
2443};
2444
cb7b593c 2445static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839
RO
2446{
2447 struct seq_file *seq;
2448 int rc = -ENOMEM;
cb7b593c 2449 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
19baf839 2450
cb7b593c
SH
2451 if (!s)
2452 goto out;
2453
2454 rc = seq_open(file, &fib_route_seq_ops);
19baf839
RO
2455 if (rc)
2456 goto out_kfree;
2457
cb7b593c
SH
2458 seq = file->private_data;
2459 seq->private = s;
2460 memset(s, 0, sizeof(*s));
19baf839
RO
2461out:
2462 return rc;
2463out_kfree:
cb7b593c 2464 kfree(s);
19baf839
RO
2465 goto out;
2466}
2467
cb7b593c
SH
2468static struct file_operations fib_route_fops = {
2469 .owner = THIS_MODULE,
2470 .open = fib_route_seq_open,
2471 .read = seq_read,
2472 .llseek = seq_lseek,
2473 .release = seq_release_private,
19baf839
RO
2474};
2475
2476int __init fib_proc_init(void)
2477{
cb7b593c
SH
2478 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2479 goto out1;
2480
2481 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2482 goto out2;
2483
2484 if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2485 goto out3;
2486
19baf839 2487 return 0;
cb7b593c
SH
2488
2489out3:
2490 proc_net_remove("fib_triestat");
2491out2:
2492 proc_net_remove("fib_trie");
2493out1:
2494 return -ENOMEM;
19baf839
RO
2495}
2496
2497void __init fib_proc_exit(void)
2498{
2499 proc_net_remove("fib_trie");
cb7b593c
SH
2500 proc_net_remove("fib_triestat");
2501 proc_net_remove("route");
19baf839
RO
2502}
2503
2504#endif /* CONFIG_PROC_FS */
This page took 0.197888 seconds and 5 git commands to generate.