fib_trie: Use unsigned long for anything dealing with a shift by bits
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
06ef921d 84#define MAX_STAT_DEPTH 32
19baf839 85
19baf839 86#define KEYLENGTH (8*sizeof(t_key))
19baf839 87
19baf839
RO
88typedef unsigned int t_key;
89
64c9b6fb
AD
90#define IS_TNODE(n) ((n)->bits)
91#define IS_LEAF(n) (!(n)->bits)
2373ce1c 92
e9b44019 93#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
9f9e636d 94
64c9b6fb
AD
95struct tnode {
96 t_key key;
97 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
99 struct tnode __rcu *parent;
37fd30f2 100 struct rcu_head rcu;
adaf9816
AD
101 union {
102 /* The fields in this struct are valid if bits > 0 (TNODE) */
103 struct {
104 unsigned int full_children; /* KEYLENGTH bits needed */
105 unsigned int empty_children; /* KEYLENGTH bits needed */
106 struct tnode __rcu *child[0];
107 };
108 /* This list pointer if valid if bits == 0 (LEAF) */
109 struct hlist_head list;
110 };
19baf839
RO
111};
112
113struct leaf_info {
114 struct hlist_node hlist;
115 int plen;
5c74501f 116 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
19baf839 117 struct list_head falh;
5c74501f 118 struct rcu_head rcu;
19baf839
RO
119};
120
19baf839
RO
121#ifdef CONFIG_IP_FIB_TRIE_STATS
122struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
2f36895a 128 unsigned int resize_node_skipped;
19baf839
RO
129};
130#endif
131
132struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
93672292 138 unsigned int prefixes;
06ef921d 139 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 140};
19baf839
RO
141
142struct trie {
adaf9816 143 struct tnode __rcu *trie;
19baf839 144#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 145 struct trie_use_stats __percpu *stats;
19baf839 146#endif
19baf839
RO
147};
148
98293e8d
AD
149static void tnode_put_child_reorg(struct tnode *tn, unsigned long i,
150 struct tnode *n, int wasfull);
adaf9816 151static struct tnode *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
152static struct tnode *inflate(struct trie *t, struct tnode *tn);
153static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c 154/* tnodes to free after resize(); protected by RTNL */
37fd30f2 155static struct callback_head *tnode_free_head;
c3059477
JP
156static size_t tnode_free_size;
157
158/*
159 * synchronize_rcu after call_rcu for that many pages; it should be especially
160 * useful before resizing the root node with PREEMPT_NONE configs; the value was
161 * obtained experimentally, aiming to avoid visible slowdown.
162 */
163static const int sync_pages = 128;
19baf839 164
e18b890b 165static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 166static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 167
64c9b6fb
AD
168/* caller must hold RTNL */
169#define node_parent(n) rtnl_dereference((n)->parent)
0a5c0475 170
64c9b6fb
AD
171/* caller must hold RCU read lock or RTNL */
172#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
0a5c0475 173
64c9b6fb 174/* wrapper for rcu_assign_pointer */
adaf9816 175static inline void node_set_parent(struct tnode *n, struct tnode *tp)
b59cfbf7 176{
adaf9816
AD
177 if (n)
178 rcu_assign_pointer(n->parent, tp);
06801916
SH
179}
180
64c9b6fb
AD
181#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
182
183/* This provides us with the number of children in this node, in the case of a
184 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 185 */
98293e8d 186static inline unsigned long tnode_child_length(const struct tnode *tn)
06801916 187{
64c9b6fb 188 return (1ul << tn->bits) & ~(1ul);
06801916 189}
2373ce1c 190
98293e8d
AD
191/* caller must hold RTNL */
192static inline struct tnode *tnode_get_child(const struct tnode *tn,
193 unsigned long i)
b59cfbf7 194{
64c9b6fb 195 BUG_ON(i >= tnode_child_length(tn));
2373ce1c 196
0a5c0475 197 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
198}
199
98293e8d
AD
200/* caller must hold RCU read lock or RTNL */
201static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
202 unsigned long i)
19baf839 203{
64c9b6fb 204 BUG_ON(i >= tnode_child_length(tn));
19baf839 205
0a5c0475 206 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
207}
208
e9b44019
AD
209/* To understand this stuff, an understanding of keys and all their bits is
210 * necessary. Every node in the trie has a key associated with it, but not
211 * all of the bits in that key are significant.
212 *
213 * Consider a node 'n' and its parent 'tp'.
214 *
215 * If n is a leaf, every bit in its key is significant. Its presence is
216 * necessitated by path compression, since during a tree traversal (when
217 * searching for a leaf - unless we are doing an insertion) we will completely
218 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
219 * a potentially successful search, that we have indeed been walking the
220 * correct key path.
221 *
222 * Note that we can never "miss" the correct key in the tree if present by
223 * following the wrong path. Path compression ensures that segments of the key
224 * that are the same for all keys with a given prefix are skipped, but the
225 * skipped part *is* identical for each node in the subtrie below the skipped
226 * bit! trie_insert() in this implementation takes care of that.
227 *
228 * if n is an internal node - a 'tnode' here, the various parts of its key
229 * have many different meanings.
230 *
231 * Example:
232 * _________________________________________________________________
233 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
234 * -----------------------------------------------------------------
235 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
236 *
237 * _________________________________________________________________
238 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
239 * -----------------------------------------------------------------
240 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
241 *
242 * tp->pos = 22
243 * tp->bits = 3
244 * n->pos = 13
245 * n->bits = 4
246 *
247 * First, let's just ignore the bits that come before the parent tp, that is
248 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
249 * point we do not use them for anything.
250 *
251 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
252 * index into the parent's child array. That is, they will be used to find
253 * 'n' among tp's children.
254 *
255 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
256 * for the node n.
257 *
258 * All the bits we have seen so far are significant to the node n. The rest
259 * of the bits are really not needed or indeed known in n->key.
260 *
261 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
262 * n's child array, and will of course be different for each child.
263 *
264 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
265 * at this point.
266 */
19baf839 267
f5026fab
DL
268static const int halve_threshold = 25;
269static const int inflate_threshold = 50;
345aa031 270static const int halve_threshold_root = 15;
80b71b80 271static const int inflate_threshold_root = 30;
2373ce1c
RO
272
273static void __alias_free_mem(struct rcu_head *head)
19baf839 274{
2373ce1c
RO
275 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
276 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
277}
278
2373ce1c 279static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 280{
2373ce1c
RO
281 call_rcu(&fa->rcu, __alias_free_mem);
282}
91b9a277 283
37fd30f2 284#define TNODE_KMALLOC_MAX \
adaf9816 285 ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
91b9a277 286
37fd30f2 287static void __node_free_rcu(struct rcu_head *head)
387a5487 288{
adaf9816 289 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2
AD
290
291 if (IS_LEAF(n))
292 kmem_cache_free(trie_leaf_kmem, n);
293 else if (n->bits <= TNODE_KMALLOC_MAX)
294 kfree(n);
295 else
296 vfree(n);
387a5487
SH
297}
298
37fd30f2
AD
299#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
300
2373ce1c 301static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 302{
bceb0f45 303 kfree_rcu(leaf, rcu);
19baf839
RO
304}
305
8d965444 306static struct tnode *tnode_alloc(size_t size)
f0e36f8c 307{
2373ce1c 308 if (size <= PAGE_SIZE)
8d965444 309 return kzalloc(size, GFP_KERNEL);
15be75cd 310 else
7a1c8e5a 311 return vzalloc(size);
15be75cd 312}
2373ce1c 313
e0f7cb8c
JP
314static void tnode_free_safe(struct tnode *tn)
315{
316 BUG_ON(IS_LEAF(tn));
37fd30f2
AD
317 tn->rcu.next = tnode_free_head;
318 tnode_free_head = &tn->rcu;
e0f7cb8c
JP
319}
320
321static void tnode_free_flush(void)
322{
37fd30f2
AD
323 struct callback_head *head;
324
325 while ((head = tnode_free_head)) {
326 struct tnode *tn = container_of(head, struct tnode, rcu);
327
328 tnode_free_head = head->next;
329 tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
e0f7cb8c 330
37fd30f2 331 node_free(tn);
e0f7cb8c 332 }
c3059477
JP
333
334 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
335 tnode_free_size = 0;
336 synchronize_rcu();
337 }
e0f7cb8c
JP
338}
339
adaf9816 340static struct tnode *leaf_new(t_key key)
2373ce1c 341{
adaf9816 342 struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c 343 if (l) {
64c9b6fb
AD
344 l->parent = NULL;
345 /* set key and pos to reflect full key value
346 * any trailing zeros in the key should be ignored
347 * as the nodes are searched
348 */
349 l->key = key;
e9b44019 350 l->pos = 0;
64c9b6fb
AD
351 /* set bits to 0 indicating we are not a tnode */
352 l->bits = 0;
353
2373ce1c
RO
354 INIT_HLIST_HEAD(&l->list);
355 }
356 return l;
357}
358
359static struct leaf_info *leaf_info_new(int plen)
360{
361 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
362 if (li) {
363 li->plen = plen;
5c74501f 364 li->mask_plen = ntohl(inet_make_mask(plen));
2373ce1c
RO
365 INIT_LIST_HEAD(&li->falh);
366 }
367 return li;
368}
369
a07f5f50 370static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 371{
37fd30f2 372 size_t sz = offsetof(struct tnode, child[1 << bits]);
f0e36f8c 373 struct tnode *tn = tnode_alloc(sz);
64c9b6fb
AD
374 unsigned int shift = pos + bits;
375
376 /* verify bits and pos their msb bits clear and values are valid */
377 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 378
91b9a277 379 if (tn) {
64c9b6fb 380 tn->parent = NULL;
19baf839
RO
381 tn->pos = pos;
382 tn->bits = bits;
e9b44019 383 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
19baf839
RO
384 tn->full_children = 0;
385 tn->empty_children = 1<<bits;
386 }
c877efb2 387
a034ee3c 388 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
adaf9816 389 sizeof(struct tnode *) << bits);
19baf839
RO
390 return tn;
391}
392
e9b44019 393/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
394 * and no bits are skipped. See discussion in dyntree paper p. 6
395 */
adaf9816 396static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
19baf839 397{
e9b44019 398 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
399}
400
98293e8d 401static inline void put_child(struct tnode *tn, unsigned long i,
adaf9816 402 struct tnode *n)
19baf839
RO
403{
404 tnode_put_child_reorg(tn, i, n, -1);
405}
406
c877efb2 407 /*
19baf839
RO
408 * Add a child at position i overwriting the old value.
409 * Update the value of full_children and empty_children.
410 */
411
98293e8d
AD
412static void tnode_put_child_reorg(struct tnode *tn, unsigned long i,
413 struct tnode *n, int wasfull)
19baf839 414{
adaf9816 415 struct tnode *chi = rtnl_dereference(tn->child[i]);
19baf839
RO
416 int isfull;
417
98293e8d 418 BUG_ON(i >= tnode_child_length(tn));
0c7770c7 419
19baf839
RO
420 /* update emptyChildren */
421 if (n == NULL && chi != NULL)
422 tn->empty_children++;
423 else if (n != NULL && chi == NULL)
424 tn->empty_children--;
c877efb2 425
19baf839 426 /* update fullChildren */
91b9a277 427 if (wasfull == -1)
19baf839
RO
428 wasfull = tnode_full(tn, chi);
429
430 isfull = tnode_full(tn, n);
c877efb2 431 if (wasfull && !isfull)
19baf839 432 tn->full_children--;
c877efb2 433 else if (!wasfull && isfull)
19baf839 434 tn->full_children++;
91b9a277 435
64c9b6fb 436 node_set_parent(n, tn);
19baf839 437
cf778b00 438 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
439}
440
836a0123
AD
441static void put_child_root(struct tnode *tp, struct trie *t,
442 t_key key, struct tnode *n)
443{
444 if (tp)
445 put_child(tp, get_index(key, tp), n);
446 else
447 rcu_assign_pointer(t->trie, n);
448}
449
80b71b80 450#define MAX_WORK 10
adaf9816 451static struct tnode *resize(struct trie *t, struct tnode *tn)
19baf839 452{
adaf9816 453 struct tnode *old_tn, *n = NULL;
e6308be8
RO
454 int inflate_threshold_use;
455 int halve_threshold_use;
80b71b80 456 int max_work;
19baf839 457
e905a9ed 458 if (!tn)
19baf839
RO
459 return NULL;
460
0c7770c7
SH
461 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
462 tn, inflate_threshold, halve_threshold);
19baf839
RO
463
464 /* No children */
64c9b6fb
AD
465 if (tn->empty_children > (tnode_child_length(tn) - 1))
466 goto no_children;
467
19baf839 468 /* One child */
64c9b6fb 469 if (tn->empty_children == (tnode_child_length(tn) - 1))
80b71b80 470 goto one_child;
c877efb2 471 /*
19baf839
RO
472 * Double as long as the resulting node has a number of
473 * nonempty nodes that are above the threshold.
474 */
475
476 /*
c877efb2
SH
477 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
478 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 479 * Telecommunications, page 6:
c877efb2 480 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
481 * children in the *doubled* node is at least 'high'."
482 *
c877efb2
SH
483 * 'high' in this instance is the variable 'inflate_threshold'. It
484 * is expressed as a percentage, so we multiply it with
485 * tnode_child_length() and instead of multiplying by 2 (since the
486 * child array will be doubled by inflate()) and multiplying
487 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 488 * multiply the left-hand side by 50.
c877efb2
SH
489 *
490 * The left-hand side may look a bit weird: tnode_child_length(tn)
491 * - tn->empty_children is of course the number of non-null children
492 * in the current node. tn->full_children is the number of "full"
19baf839 493 * children, that is non-null tnodes with a skip value of 0.
c877efb2 494 * All of those will be doubled in the resulting inflated tnode, so
19baf839 495 * we just count them one extra time here.
c877efb2 496 *
19baf839 497 * A clearer way to write this would be:
c877efb2 498 *
19baf839 499 * to_be_doubled = tn->full_children;
c877efb2 500 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
501 * tn->full_children;
502 *
503 * new_child_length = tnode_child_length(tn) * 2;
504 *
c877efb2 505 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
506 * new_child_length;
507 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
508 *
509 * ...and so on, tho it would mess up the while () loop.
510 *
19baf839
RO
511 * anyway,
512 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
513 * inflate_threshold
c877efb2 514 *
19baf839
RO
515 * avoid a division:
516 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
517 * inflate_threshold * new_child_length
c877efb2 518 *
19baf839 519 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 520 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 521 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 522 *
19baf839 523 * expand new_child_length:
c877efb2 524 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 525 * tn->full_children) >=
19baf839 526 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 527 *
19baf839 528 * shorten again:
c877efb2 529 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 530 * tn->empty_children) >= inflate_threshold *
19baf839 531 * tnode_child_length(tn)
c877efb2 532 *
19baf839
RO
533 */
534
e6308be8
RO
535 /* Keep root node larger */
536
64c9b6fb 537 if (!node_parent(tn)) {
80b71b80
JL
538 inflate_threshold_use = inflate_threshold_root;
539 halve_threshold_use = halve_threshold_root;
a034ee3c 540 } else {
e6308be8 541 inflate_threshold_use = inflate_threshold;
80b71b80
JL
542 halve_threshold_use = halve_threshold;
543 }
e6308be8 544
80b71b80
JL
545 max_work = MAX_WORK;
546 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
547 50 * (tn->full_children + tnode_child_length(tn)
548 - tn->empty_children)
549 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 550
2f80b3c8
RO
551 old_tn = tn;
552 tn = inflate(t, tn);
a07f5f50 553
2f80b3c8
RO
554 if (IS_ERR(tn)) {
555 tn = old_tn;
2f36895a 556#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 557 this_cpu_inc(t->stats->resize_node_skipped);
2f36895a
RO
558#endif
559 break;
560 }
19baf839
RO
561 }
562
80b71b80 563 /* Return if at least one inflate is run */
a034ee3c 564 if (max_work != MAX_WORK)
adaf9816 565 return tn;
80b71b80 566
19baf839
RO
567 /*
568 * Halve as long as the number of empty children in this
569 * node is above threshold.
570 */
2f36895a 571
80b71b80
JL
572 max_work = MAX_WORK;
573 while (tn->bits > 1 && max_work-- &&
19baf839 574 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 575 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 576
2f80b3c8
RO
577 old_tn = tn;
578 tn = halve(t, tn);
579 if (IS_ERR(tn)) {
580 tn = old_tn;
2f36895a 581#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 582 this_cpu_inc(t->stats->resize_node_skipped);
2f36895a
RO
583#endif
584 break;
585 }
586 }
19baf839 587
c877efb2 588
19baf839 589 /* Only one child remains */
64c9b6fb
AD
590 if (tn->empty_children == (tnode_child_length(tn) - 1)) {
591 unsigned long i;
80b71b80 592one_child:
64c9b6fb
AD
593 for (i = tnode_child_length(tn); !n && i;)
594 n = tnode_get_child(tn, --i);
595no_children:
596 /* compress one level */
597 node_set_parent(n, NULL);
598 tnode_free_safe(tn);
599 return n;
80b71b80 600 }
adaf9816 601 return tn;
19baf839
RO
602}
603
0a5c0475
ED
604
605static void tnode_clean_free(struct tnode *tn)
606{
adaf9816 607 struct tnode *tofree;
98293e8d 608 unsigned long i;
0a5c0475
ED
609
610 for (i = 0; i < tnode_child_length(tn); i++) {
98293e8d 611 tofree = tnode_get_child(tn, i);
0a5c0475 612 if (tofree)
37fd30f2 613 node_free(tofree);
0a5c0475 614 }
37fd30f2 615 node_free(tn);
0a5c0475
ED
616}
617
adaf9816 618static struct tnode *inflate(struct trie *t, struct tnode *oldtnode)
19baf839 619{
98293e8d 620 unsigned long olen = tnode_child_length(oldtnode);
adaf9816 621 struct tnode *tn;
98293e8d 622 unsigned long i;
e9b44019 623 t_key m;
19baf839 624
0c7770c7 625 pr_debug("In inflate\n");
19baf839 626
e9b44019 627 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
19baf839 628
0c7770c7 629 if (!tn)
2f80b3c8 630 return ERR_PTR(-ENOMEM);
2f36895a
RO
631
632 /*
c877efb2
SH
633 * Preallocate and store tnodes before the actual work so we
634 * don't get into an inconsistent state if memory allocation
635 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
636 * of tnode is ignored.
637 */
e9b44019
AD
638 for (i = 0, m = 1u << tn->pos; i < olen; i++) {
639 struct tnode *inode = tnode_get_child(oldtnode, i);
91b9a277 640
e9b44019 641 if (tnode_full(oldtnode, inode) && (inode->bits > 1)) {
2f36895a 642 struct tnode *left, *right;
c877efb2 643
e9b44019 644 left = tnode_new(inode->key & ~m, inode->pos,
2f36895a 645 inode->bits - 1);
2f80b3c8
RO
646 if (!left)
647 goto nomem;
91b9a277 648
e9b44019 649 right = tnode_new(inode->key | m, inode->pos,
2f36895a
RO
650 inode->bits - 1);
651
e905a9ed 652 if (!right) {
37fd30f2 653 node_free(left);
2f80b3c8 654 goto nomem;
e905a9ed 655 }
2f36895a 656
adaf9816
AD
657 put_child(tn, 2*i, left);
658 put_child(tn, 2*i+1, right);
2f36895a
RO
659 }
660 }
661
91b9a277 662 for (i = 0; i < olen; i++) {
adaf9816 663 struct tnode *inode = tnode_get_child(oldtnode, i);
91b9a277 664 struct tnode *left, *right;
98293e8d 665 unsigned long size, j;
c877efb2 666
19baf839 667 /* An empty child */
adaf9816 668 if (inode == NULL)
19baf839
RO
669 continue;
670
671 /* A leaf or an internal node with skipped bits */
adaf9816 672 if (!tnode_full(oldtnode, inode)) {
e9b44019 673 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
674 continue;
675 }
676
677 /* An internal node with two children */
19baf839 678 if (inode->bits == 1) {
61648d91
LM
679 put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
680 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
19baf839 681
e0f7cb8c 682 tnode_free_safe(inode);
91b9a277 683 continue;
19baf839
RO
684 }
685
91b9a277
OJ
686 /* An internal node with more than two children */
687
688 /* We will replace this node 'inode' with two new
689 * ones, 'left' and 'right', each with half of the
690 * original children. The two new nodes will have
691 * a position one bit further down the key and this
692 * means that the "significant" part of their keys
693 * (see the discussion near the top of this file)
694 * will differ by one bit, which will be "0" in
695 * left's key and "1" in right's key. Since we are
696 * moving the key position by one step, the bit that
697 * we are moving away from - the bit at position
698 * (inode->pos) - is the one that will differ between
699 * left and right. So... we synthesize that bit in the
700 * two new keys.
701 * The mask 'm' below will be a single "one" bit at
702 * the position (inode->pos)
703 */
19baf839 704
91b9a277
OJ
705 /* Use the old key, but set the new significant
706 * bit to zero.
707 */
2f36895a 708
adaf9816 709 left = tnode_get_child(tn, 2*i);
61648d91 710 put_child(tn, 2*i, NULL);
2f36895a 711
91b9a277 712 BUG_ON(!left);
2f36895a 713
adaf9816 714 right = tnode_get_child(tn, 2*i+1);
61648d91 715 put_child(tn, 2*i+1, NULL);
19baf839 716
91b9a277 717 BUG_ON(!right);
19baf839 718
91b9a277
OJ
719 size = tnode_child_length(left);
720 for (j = 0; j < size; j++) {
61648d91
LM
721 put_child(left, j, rtnl_dereference(inode->child[j]));
722 put_child(right, j, rtnl_dereference(inode->child[j + size]));
19baf839 723 }
61648d91
LM
724 put_child(tn, 2*i, resize(t, left));
725 put_child(tn, 2*i+1, resize(t, right));
91b9a277 726
e0f7cb8c 727 tnode_free_safe(inode);
19baf839 728 }
e0f7cb8c 729 tnode_free_safe(oldtnode);
19baf839 730 return tn;
2f80b3c8 731nomem:
0a5c0475
ED
732 tnode_clean_free(tn);
733 return ERR_PTR(-ENOMEM);
19baf839
RO
734}
735
adaf9816 736static struct tnode *halve(struct trie *t, struct tnode *oldtnode)
19baf839 737{
98293e8d 738 unsigned long olen = tnode_child_length(oldtnode);
adaf9816 739 struct tnode *tn, *left, *right;
19baf839 740 int i;
19baf839 741
0c7770c7 742 pr_debug("In halve\n");
c877efb2 743
e9b44019 744 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
19baf839 745
2f80b3c8
RO
746 if (!tn)
747 return ERR_PTR(-ENOMEM);
2f36895a
RO
748
749 /*
c877efb2
SH
750 * Preallocate and store tnodes before the actual work so we
751 * don't get into an inconsistent state if memory allocation
752 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
753 * of tnode is ignored.
754 */
755
91b9a277 756 for (i = 0; i < olen; i += 2) {
2f36895a
RO
757 left = tnode_get_child(oldtnode, i);
758 right = tnode_get_child(oldtnode, i+1);
c877efb2 759
2f36895a 760 /* Two nonempty children */
0c7770c7 761 if (left && right) {
2f80b3c8 762 struct tnode *newn;
0c7770c7 763
e9b44019 764 newn = tnode_new(left->key, oldtnode->pos, 1);
0c7770c7
SH
765
766 if (!newn)
2f80b3c8 767 goto nomem;
0c7770c7 768
adaf9816 769 put_child(tn, i/2, newn);
2f36895a 770 }
2f36895a 771
2f36895a 772 }
19baf839 773
91b9a277
OJ
774 for (i = 0; i < olen; i += 2) {
775 struct tnode *newBinNode;
776
19baf839
RO
777 left = tnode_get_child(oldtnode, i);
778 right = tnode_get_child(oldtnode, i+1);
c877efb2 779
19baf839
RO
780 /* At least one of the children is empty */
781 if (left == NULL) {
782 if (right == NULL) /* Both are empty */
783 continue;
61648d91 784 put_child(tn, i/2, right);
91b9a277 785 continue;
0c7770c7 786 }
91b9a277
OJ
787
788 if (right == NULL) {
61648d91 789 put_child(tn, i/2, left);
91b9a277
OJ
790 continue;
791 }
c877efb2 792
19baf839 793 /* Two nonempty children */
adaf9816 794 newBinNode = tnode_get_child(tn, i/2);
61648d91
LM
795 put_child(tn, i/2, NULL);
796 put_child(newBinNode, 0, left);
797 put_child(newBinNode, 1, right);
798 put_child(tn, i/2, resize(t, newBinNode));
19baf839 799 }
e0f7cb8c 800 tnode_free_safe(oldtnode);
19baf839 801 return tn;
2f80b3c8 802nomem:
0a5c0475
ED
803 tnode_clean_free(tn);
804 return ERR_PTR(-ENOMEM);
19baf839
RO
805}
806
772cb712 807/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
808 via get_fa_head and dump */
809
adaf9816 810static struct leaf_info *find_leaf_info(struct tnode *l, int plen)
19baf839 811{
772cb712 812 struct hlist_head *head = &l->list;
19baf839
RO
813 struct leaf_info *li;
814
b67bfe0d 815 hlist_for_each_entry_rcu(li, head, hlist)
c877efb2 816 if (li->plen == plen)
19baf839 817 return li;
91b9a277 818
19baf839
RO
819 return NULL;
820}
821
adaf9816 822static inline struct list_head *get_fa_head(struct tnode *l, int plen)
19baf839 823{
772cb712 824 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 825
91b9a277
OJ
826 if (!li)
827 return NULL;
c877efb2 828
91b9a277 829 return &li->falh;
19baf839
RO
830}
831
832static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
833{
e905a9ed 834 struct leaf_info *li = NULL, *last = NULL;
e905a9ed
YH
835
836 if (hlist_empty(head)) {
837 hlist_add_head_rcu(&new->hlist, head);
838 } else {
b67bfe0d 839 hlist_for_each_entry(li, head, hlist) {
e905a9ed
YH
840 if (new->plen > li->plen)
841 break;
842
843 last = li;
844 }
845 if (last)
1d023284 846 hlist_add_behind_rcu(&new->hlist, &last->hlist);
e905a9ed
YH
847 else
848 hlist_add_before_rcu(&new->hlist, &li->hlist);
849 }
19baf839
RO
850}
851
2373ce1c 852/* rcu_read_lock needs to be hold by caller from readside */
adaf9816 853static struct tnode *fib_find_node(struct trie *t, u32 key)
19baf839 854{
adaf9816 855 struct tnode *n = rcu_dereference_rtnl(t->trie);
939afb06
AD
856
857 while (n) {
858 unsigned long index = get_index(key, n);
859
860 /* This bit of code is a bit tricky but it combines multiple
861 * checks into a single check. The prefix consists of the
862 * prefix plus zeros for the bits in the cindex. The index
863 * is the difference between the key and this value. From
864 * this we can actually derive several pieces of data.
865 * if !(index >> bits)
866 * we know the value is cindex
867 * else
868 * we have a mismatch in skip bits and failed
869 */
870 if (index >> n->bits)
871 return NULL;
872
873 /* we have found a leaf. Prefixes have already been compared */
874 if (IS_LEAF(n))
19baf839 875 break;
19baf839 876
939afb06
AD
877 n = rcu_dereference_rtnl(n->child[index]);
878 }
91b9a277 879
939afb06 880 return n;
19baf839
RO
881}
882
7b85576d 883static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 884{
19baf839 885 int wasfull;
3ed18d76 886 t_key cindex, key;
06801916 887 struct tnode *tp;
19baf839 888
3ed18d76
RO
889 key = tn->key;
890
64c9b6fb 891 while (tn != NULL && (tp = node_parent(tn)) != NULL) {
e9b44019 892 cindex = get_index(key, tp);
19baf839 893 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
adaf9816 894 tn = resize(t, tn);
a07f5f50 895
adaf9816 896 tnode_put_child_reorg(tp, cindex, tn, wasfull);
91b9a277 897
64c9b6fb 898 tp = node_parent(tn);
008440e3 899 if (!tp)
adaf9816 900 rcu_assign_pointer(t->trie, tn);
008440e3 901
e0f7cb8c 902 tnode_free_flush();
06801916 903 if (!tp)
19baf839 904 break;
06801916 905 tn = tp;
19baf839 906 }
06801916 907
19baf839 908 /* Handle last (top) tnode */
7b85576d 909 if (IS_TNODE(tn))
adaf9816 910 tn = resize(t, tn);
19baf839 911
adaf9816 912 rcu_assign_pointer(t->trie, tn);
7b85576d 913 tnode_free_flush();
19baf839
RO
914}
915
2373ce1c
RO
916/* only used from updater-side */
917
fea86ad8 918static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839 919{
c877efb2 920 struct list_head *fa_head = NULL;
836a0123 921 struct tnode *l, *n, *tp = NULL;
19baf839 922 struct leaf_info *li;
19baf839 923
836a0123
AD
924 li = leaf_info_new(plen);
925 if (!li)
926 return NULL;
927 fa_head = &li->falh;
928
0a5c0475 929 n = rtnl_dereference(t->trie);
19baf839 930
c877efb2
SH
931 /* If we point to NULL, stop. Either the tree is empty and we should
932 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 933 * and we should just put our new leaf in that.
19baf839 934 *
836a0123
AD
935 * If we hit a node with a key that does't match then we should stop
936 * and create a new tnode to replace that node and insert ourselves
937 * and the other node into the new tnode.
19baf839 938 */
836a0123
AD
939 while (n) {
940 unsigned long index = get_index(key, n);
19baf839 941
836a0123
AD
942 /* This bit of code is a bit tricky but it combines multiple
943 * checks into a single check. The prefix consists of the
944 * prefix plus zeros for the "bits" in the prefix. The index
945 * is the difference between the key and this value. From
946 * this we can actually derive several pieces of data.
947 * if !(index >> bits)
948 * we know the value is child index
949 * else
950 * we have a mismatch in skip bits and failed
951 */
952 if (index >> n->bits)
19baf839 953 break;
19baf839 954
836a0123
AD
955 /* we have found a leaf. Prefixes have already been compared */
956 if (IS_LEAF(n)) {
957 /* Case 1: n is a leaf, and prefixes match*/
958 insert_leaf_info(&n->list, li);
959 return fa_head;
960 }
19baf839 961
836a0123
AD
962 tp = n;
963 n = rcu_dereference_rtnl(n->child[index]);
19baf839 964 }
19baf839 965
836a0123
AD
966 l = leaf_new(key);
967 if (!l) {
968 free_leaf_info(li);
fea86ad8 969 return NULL;
f835e471 970 }
19baf839 971
19baf839
RO
972 insert_leaf_info(&l->list, li);
973
836a0123
AD
974 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
975 *
976 * Add a new tnode here
977 * first tnode need some special handling
978 * leaves us in position for handling as case 3
979 */
980 if (n) {
981 struct tnode *tn;
19baf839 982
e9b44019 983 tn = tnode_new(key, __fls(key ^ n->key), 1);
c877efb2 984 if (!tn) {
f835e471 985 free_leaf_info(li);
37fd30f2 986 node_free(l);
fea86ad8 987 return NULL;
91b9a277
OJ
988 }
989
836a0123
AD
990 /* initialize routes out of node */
991 NODE_INIT_PARENT(tn, tp);
992 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 993
836a0123
AD
994 /* start adding routes into the node */
995 put_child_root(tp, t, key, tn);
996 node_set_parent(n, tn);
e962f302 997
836a0123 998 /* parent now has a NULL spot where the leaf can go */
e962f302 999 tp = tn;
19baf839 1000 }
91b9a277 1001
836a0123
AD
1002 /* Case 3: n is NULL, and will just insert a new leaf */
1003 if (tp) {
1004 NODE_INIT_PARENT(l, tp);
1005 put_child(tp, get_index(key, tp), l);
1006 trie_rebalance(t, tp);
1007 } else {
1008 rcu_assign_pointer(t->trie, l);
1009 }
2373ce1c 1010
19baf839
RO
1011 return fa_head;
1012}
1013
d562f1f8
RO
1014/*
1015 * Caller must hold RTNL.
1016 */
16c6cf8b 1017int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1018{
1019 struct trie *t = (struct trie *) tb->tb_data;
1020 struct fib_alias *fa, *new_fa;
c877efb2 1021 struct list_head *fa_head = NULL;
19baf839 1022 struct fib_info *fi;
4e902c57
TG
1023 int plen = cfg->fc_dst_len;
1024 u8 tos = cfg->fc_tos;
19baf839
RO
1025 u32 key, mask;
1026 int err;
adaf9816 1027 struct tnode *l;
19baf839
RO
1028
1029 if (plen > 32)
1030 return -EINVAL;
1031
4e902c57 1032 key = ntohl(cfg->fc_dst);
19baf839 1033
2dfe55b4 1034 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1035
91b9a277 1036 mask = ntohl(inet_make_mask(plen));
19baf839 1037
c877efb2 1038 if (key & ~mask)
19baf839
RO
1039 return -EINVAL;
1040
1041 key = key & mask;
1042
4e902c57
TG
1043 fi = fib_create_info(cfg);
1044 if (IS_ERR(fi)) {
1045 err = PTR_ERR(fi);
19baf839 1046 goto err;
4e902c57 1047 }
19baf839
RO
1048
1049 l = fib_find_node(t, key);
c877efb2 1050 fa = NULL;
19baf839 1051
c877efb2 1052 if (l) {
19baf839
RO
1053 fa_head = get_fa_head(l, plen);
1054 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1055 }
1056
1057 /* Now fa, if non-NULL, points to the first fib alias
1058 * with the same keys [prefix,tos,priority], if such key already
1059 * exists or to the node before which we will insert new one.
1060 *
1061 * If fa is NULL, we will need to allocate a new one and
1062 * insert to the head of f.
1063 *
1064 * If f is NULL, no fib node matched the destination key
1065 * and we need to allocate a new one of those as well.
1066 */
1067
936f6f8e
JA
1068 if (fa && fa->fa_tos == tos &&
1069 fa->fa_info->fib_priority == fi->fib_priority) {
1070 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1071
1072 err = -EEXIST;
4e902c57 1073 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1074 goto out;
1075
936f6f8e
JA
1076 /* We have 2 goals:
1077 * 1. Find exact match for type, scope, fib_info to avoid
1078 * duplicate routes
1079 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1080 */
1081 fa_match = NULL;
1082 fa_first = fa;
1083 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1084 list_for_each_entry_continue(fa, fa_head, fa_list) {
1085 if (fa->fa_tos != tos)
1086 break;
1087 if (fa->fa_info->fib_priority != fi->fib_priority)
1088 break;
1089 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1090 fa->fa_info == fi) {
1091 fa_match = fa;
1092 break;
1093 }
1094 }
1095
4e902c57 1096 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1097 struct fib_info *fi_drop;
1098 u8 state;
1099
936f6f8e
JA
1100 fa = fa_first;
1101 if (fa_match) {
1102 if (fa == fa_match)
1103 err = 0;
6725033f 1104 goto out;
936f6f8e 1105 }
2373ce1c 1106 err = -ENOBUFS;
e94b1766 1107 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1108 if (new_fa == NULL)
1109 goto out;
19baf839
RO
1110
1111 fi_drop = fa->fa_info;
2373ce1c
RO
1112 new_fa->fa_tos = fa->fa_tos;
1113 new_fa->fa_info = fi;
4e902c57 1114 new_fa->fa_type = cfg->fc_type;
19baf839 1115 state = fa->fa_state;
936f6f8e 1116 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1117
2373ce1c
RO
1118 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1119 alias_free_mem_rcu(fa);
19baf839
RO
1120
1121 fib_release_info(fi_drop);
1122 if (state & FA_S_ACCESSED)
4ccfe6d4 1123 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1124 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1125 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1126
91b9a277 1127 goto succeeded;
19baf839
RO
1128 }
1129 /* Error if we find a perfect match which
1130 * uses the same scope, type, and nexthop
1131 * information.
1132 */
936f6f8e
JA
1133 if (fa_match)
1134 goto out;
a07f5f50 1135
4e902c57 1136 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1137 fa = fa_first;
19baf839
RO
1138 }
1139 err = -ENOENT;
4e902c57 1140 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1141 goto out;
1142
1143 err = -ENOBUFS;
e94b1766 1144 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1145 if (new_fa == NULL)
1146 goto out;
1147
1148 new_fa->fa_info = fi;
1149 new_fa->fa_tos = tos;
4e902c57 1150 new_fa->fa_type = cfg->fc_type;
19baf839 1151 new_fa->fa_state = 0;
19baf839
RO
1152 /*
1153 * Insert new entry to the list.
1154 */
1155
c877efb2 1156 if (!fa_head) {
fea86ad8
SH
1157 fa_head = fib_insert_node(t, key, plen);
1158 if (unlikely(!fa_head)) {
1159 err = -ENOMEM;
f835e471 1160 goto out_free_new_fa;
fea86ad8 1161 }
f835e471 1162 }
19baf839 1163
21d8c49e
DM
1164 if (!plen)
1165 tb->tb_num_default++;
1166
2373ce1c
RO
1167 list_add_tail_rcu(&new_fa->fa_list,
1168 (fa ? &fa->fa_list : fa_head));
19baf839 1169
4ccfe6d4 1170 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1171 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1172 &cfg->fc_nlinfo, 0);
19baf839
RO
1173succeeded:
1174 return 0;
f835e471
RO
1175
1176out_free_new_fa:
1177 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1178out:
1179 fib_release_info(fi);
91b9a277 1180err:
19baf839
RO
1181 return err;
1182}
1183
772cb712 1184/* should be called with rcu_read_lock */
adaf9816 1185static int check_leaf(struct fib_table *tb, struct trie *t, struct tnode *l,
22bd5b9b 1186 t_key key, const struct flowi4 *flp,
ebc0ffae 1187 struct fib_result *res, int fib_flags)
19baf839 1188{
19baf839
RO
1189 struct leaf_info *li;
1190 struct hlist_head *hhead = &l->list;
c877efb2 1191
b67bfe0d 1192 hlist_for_each_entry_rcu(li, hhead, hlist) {
3be0686b 1193 struct fib_alias *fa;
a07f5f50 1194
5c74501f 1195 if (l->key != (key & li->mask_plen))
19baf839
RO
1196 continue;
1197
3be0686b
DM
1198 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1199 struct fib_info *fi = fa->fa_info;
1200 int nhsel, err;
a07f5f50 1201
22bd5b9b 1202 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
3be0686b 1203 continue;
dccd9ecc
DM
1204 if (fi->fib_dead)
1205 continue;
37e826c5 1206 if (fa->fa_info->fib_scope < flp->flowi4_scope)
3be0686b
DM
1207 continue;
1208 fib_alias_accessed(fa);
1209 err = fib_props[fa->fa_type].error;
9f9e636d 1210 if (unlikely(err < 0)) {
19baf839 1211#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1212 this_cpu_inc(t->stats->semantic_match_passed);
3be0686b 1213#endif
1fbc7843 1214 return err;
3be0686b
DM
1215 }
1216 if (fi->fib_flags & RTNH_F_DEAD)
1217 continue;
1218 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1219 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1220
1221 if (nh->nh_flags & RTNH_F_DEAD)
1222 continue;
22bd5b9b 1223 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
3be0686b
DM
1224 continue;
1225
1226#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1227 this_cpu_inc(t->stats->semantic_match_passed);
3be0686b 1228#endif
5c74501f 1229 res->prefixlen = li->plen;
3be0686b
DM
1230 res->nh_sel = nhsel;
1231 res->type = fa->fa_type;
9f9e636d 1232 res->scope = fi->fib_scope;
3be0686b
DM
1233 res->fi = fi;
1234 res->table = tb;
1235 res->fa_head = &li->falh;
1236 if (!(fib_flags & FIB_LOOKUP_NOREF))
5c74501f 1237 atomic_inc(&fi->fib_clntref);
3be0686b
DM
1238 return 0;
1239 }
1240 }
1241
1242#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1243 this_cpu_inc(t->stats->semantic_match_miss);
19baf839 1244#endif
19baf839 1245 }
a07f5f50 1246
2e655571 1247 return 1;
19baf839
RO
1248}
1249
9f9e636d
AD
1250static inline t_key prefix_mismatch(t_key key, struct tnode *n)
1251{
1252 t_key prefix = n->key;
1253
1254 return (key ^ prefix) & (prefix | -prefix);
1255}
1256
22bd5b9b 1257int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1258 struct fib_result *res, int fib_flags)
19baf839 1259{
9f9e636d 1260 struct trie *t = (struct trie *)tb->tb_data;
8274a97a
AD
1261#ifdef CONFIG_IP_FIB_TRIE_STATS
1262 struct trie_use_stats __percpu *stats = t->stats;
1263#endif
9f9e636d
AD
1264 const t_key key = ntohl(flp->daddr);
1265 struct tnode *n, *pn;
1266 t_key cindex;
1267 int ret = 1;
91b9a277 1268
2373ce1c 1269 rcu_read_lock();
91b9a277 1270
2373ce1c 1271 n = rcu_dereference(t->trie);
c877efb2 1272 if (!n)
19baf839
RO
1273 goto failed;
1274
1275#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1276 this_cpu_inc(stats->gets);
19baf839
RO
1277#endif
1278
adaf9816 1279 pn = n;
9f9e636d
AD
1280 cindex = 0;
1281
1282 /* Step 1: Travel to the longest prefix match in the trie */
1283 for (;;) {
1284 unsigned long index = get_index(key, n);
1285
1286 /* This bit of code is a bit tricky but it combines multiple
1287 * checks into a single check. The prefix consists of the
1288 * prefix plus zeros for the "bits" in the prefix. The index
1289 * is the difference between the key and this value. From
1290 * this we can actually derive several pieces of data.
1291 * if !(index >> bits)
1292 * we know the value is child index
1293 * else
1294 * we have a mismatch in skip bits and failed
1295 */
1296 if (index >> n->bits)
1297 break;
19baf839 1298
9f9e636d
AD
1299 /* we have found a leaf. Prefixes have already been compared */
1300 if (IS_LEAF(n))
a07f5f50 1301 goto found;
19baf839 1302
9f9e636d
AD
1303 /* only record pn and cindex if we are going to be chopping
1304 * bits later. Otherwise we are just wasting cycles.
91b9a277 1305 */
9f9e636d
AD
1306 if (index) {
1307 pn = n;
1308 cindex = index;
91b9a277 1309 }
19baf839 1310
9f9e636d
AD
1311 n = rcu_dereference(n->child[index]);
1312 if (unlikely(!n))
1313 goto backtrace;
1314 }
19baf839 1315
9f9e636d
AD
1316 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1317 for (;;) {
1318 /* record the pointer where our next node pointer is stored */
1319 struct tnode __rcu **cptr = n->child;
19baf839 1320
9f9e636d
AD
1321 /* This test verifies that none of the bits that differ
1322 * between the key and the prefix exist in the region of
1323 * the lsb and higher in the prefix.
91b9a277 1324 */
9f9e636d
AD
1325 if (unlikely(prefix_mismatch(key, n)))
1326 goto backtrace;
91b9a277 1327
9f9e636d
AD
1328 /* exit out and process leaf */
1329 if (unlikely(IS_LEAF(n)))
1330 break;
91b9a277 1331
9f9e636d
AD
1332 /* Don't bother recording parent info. Since we are in
1333 * prefix match mode we will have to come back to wherever
1334 * we started this traversal anyway
91b9a277 1335 */
91b9a277 1336
9f9e636d 1337 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1338backtrace:
19baf839 1339#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1340 if (!n)
1341 this_cpu_inc(stats->null_node_hit);
19baf839 1342#endif
9f9e636d
AD
1343 /* If we are at cindex 0 there are no more bits for
1344 * us to strip at this level so we must ascend back
1345 * up one level to see if there are any more bits to
1346 * be stripped there.
1347 */
1348 while (!cindex) {
1349 t_key pkey = pn->key;
1350
1351 pn = node_parent_rcu(pn);
1352 if (unlikely(!pn))
1353 goto failed;
1354#ifdef CONFIG_IP_FIB_TRIE_STATS
1355 this_cpu_inc(stats->backtrack);
1356#endif
1357 /* Get Child's index */
1358 cindex = get_index(pkey, pn);
1359 }
1360
1361 /* strip the least significant bit from the cindex */
1362 cindex &= cindex - 1;
1363
1364 /* grab pointer for next child node */
1365 cptr = &pn->child[cindex];
c877efb2 1366 }
19baf839 1367 }
9f9e636d 1368
19baf839 1369found:
9f9e636d
AD
1370 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1371 ret = check_leaf(tb, t, n, key, flp, res, fib_flags);
1372 if (unlikely(ret > 0))
1373 goto backtrace;
1374failed:
2373ce1c 1375 rcu_read_unlock();
19baf839
RO
1376 return ret;
1377}
6fc01438 1378EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1379
9195bef7
SH
1380/*
1381 * Remove the leaf and return parent.
1382 */
adaf9816 1383static void trie_leaf_remove(struct trie *t, struct tnode *l)
19baf839 1384{
64c9b6fb 1385 struct tnode *tp = node_parent(l);
c877efb2 1386
9195bef7 1387 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1388
c877efb2 1389 if (tp) {
836a0123 1390 put_child(tp, get_index(l->key, tp), NULL);
7b85576d 1391 trie_rebalance(t, tp);
836a0123 1392 } else {
a9b3cd7f 1393 RCU_INIT_POINTER(t->trie, NULL);
836a0123 1394 }
19baf839 1395
37fd30f2 1396 node_free(l);
19baf839
RO
1397}
1398
d562f1f8
RO
1399/*
1400 * Caller must hold RTNL.
1401 */
16c6cf8b 1402int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1403{
1404 struct trie *t = (struct trie *) tb->tb_data;
1405 u32 key, mask;
4e902c57
TG
1406 int plen = cfg->fc_dst_len;
1407 u8 tos = cfg->fc_tos;
19baf839
RO
1408 struct fib_alias *fa, *fa_to_delete;
1409 struct list_head *fa_head;
adaf9816 1410 struct tnode *l;
91b9a277
OJ
1411 struct leaf_info *li;
1412
c877efb2 1413 if (plen > 32)
19baf839
RO
1414 return -EINVAL;
1415
4e902c57 1416 key = ntohl(cfg->fc_dst);
91b9a277 1417 mask = ntohl(inet_make_mask(plen));
19baf839 1418
c877efb2 1419 if (key & ~mask)
19baf839
RO
1420 return -EINVAL;
1421
1422 key = key & mask;
1423 l = fib_find_node(t, key);
1424
c877efb2 1425 if (!l)
19baf839
RO
1426 return -ESRCH;
1427
ad5b3102
IM
1428 li = find_leaf_info(l, plen);
1429
1430 if (!li)
1431 return -ESRCH;
1432
1433 fa_head = &li->falh;
19baf839
RO
1434 fa = fib_find_alias(fa_head, tos, 0);
1435
1436 if (!fa)
1437 return -ESRCH;
1438
0c7770c7 1439 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1440
1441 fa_to_delete = NULL;
936f6f8e
JA
1442 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1443 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1444 struct fib_info *fi = fa->fa_info;
1445
1446 if (fa->fa_tos != tos)
1447 break;
1448
4e902c57
TG
1449 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1450 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1451 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1452 (!cfg->fc_prefsrc ||
1453 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1454 (!cfg->fc_protocol ||
1455 fi->fib_protocol == cfg->fc_protocol) &&
1456 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1457 fa_to_delete = fa;
1458 break;
1459 }
1460 }
1461
91b9a277
OJ
1462 if (!fa_to_delete)
1463 return -ESRCH;
19baf839 1464
91b9a277 1465 fa = fa_to_delete;
4e902c57 1466 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1467 &cfg->fc_nlinfo, 0);
91b9a277 1468
2373ce1c 1469 list_del_rcu(&fa->fa_list);
19baf839 1470
21d8c49e
DM
1471 if (!plen)
1472 tb->tb_num_default--;
1473
91b9a277 1474 if (list_empty(fa_head)) {
2373ce1c 1475 hlist_del_rcu(&li->hlist);
91b9a277 1476 free_leaf_info(li);
2373ce1c 1477 }
19baf839 1478
91b9a277 1479 if (hlist_empty(&l->list))
9195bef7 1480 trie_leaf_remove(t, l);
19baf839 1481
91b9a277 1482 if (fa->fa_state & FA_S_ACCESSED)
4ccfe6d4 1483 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1484
2373ce1c
RO
1485 fib_release_info(fa->fa_info);
1486 alias_free_mem_rcu(fa);
91b9a277 1487 return 0;
19baf839
RO
1488}
1489
ef3660ce 1490static int trie_flush_list(struct list_head *head)
19baf839
RO
1491{
1492 struct fib_alias *fa, *fa_node;
1493 int found = 0;
1494
1495 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1496 struct fib_info *fi = fa->fa_info;
19baf839 1497
2373ce1c
RO
1498 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1499 list_del_rcu(&fa->fa_list);
1500 fib_release_info(fa->fa_info);
1501 alias_free_mem_rcu(fa);
19baf839
RO
1502 found++;
1503 }
1504 }
1505 return found;
1506}
1507
adaf9816 1508static int trie_flush_leaf(struct tnode *l)
19baf839
RO
1509{
1510 int found = 0;
1511 struct hlist_head *lih = &l->list;
b67bfe0d 1512 struct hlist_node *tmp;
19baf839
RO
1513 struct leaf_info *li = NULL;
1514
b67bfe0d 1515 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
ef3660ce 1516 found += trie_flush_list(&li->falh);
19baf839
RO
1517
1518 if (list_empty(&li->falh)) {
2373ce1c 1519 hlist_del_rcu(&li->hlist);
19baf839
RO
1520 free_leaf_info(li);
1521 }
1522 }
1523 return found;
1524}
1525
82cfbb00
SH
1526/*
1527 * Scan for the next right leaf starting at node p->child[idx]
1528 * Since we have back pointer, no recursion necessary.
1529 */
adaf9816 1530static struct tnode *leaf_walk_rcu(struct tnode *p, struct tnode *c)
19baf839 1531{
82cfbb00 1532 do {
98293e8d 1533 unsigned long idx = c ? idx = get_index(c->key, p) + 1 : 0;
2373ce1c 1534
98293e8d 1535 while (idx < tnode_child_length(p)) {
82cfbb00 1536 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1537 if (!c)
91b9a277
OJ
1538 continue;
1539
aab515d7 1540 if (IS_LEAF(c))
adaf9816 1541 return c;
82cfbb00
SH
1542
1543 /* Rescan start scanning in new node */
adaf9816 1544 p = c;
82cfbb00 1545 idx = 0;
19baf839 1546 }
82cfbb00
SH
1547
1548 /* Node empty, walk back up to parent */
adaf9816 1549 c = p;
a034ee3c 1550 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1551
1552 return NULL; /* Root of trie */
1553}
1554
adaf9816 1555static struct tnode *trie_firstleaf(struct trie *t)
82cfbb00 1556{
adaf9816 1557 struct tnode *n = rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1558
1559 if (!n)
1560 return NULL;
1561
1562 if (IS_LEAF(n)) /* trie is just a leaf */
adaf9816 1563 return n;
82cfbb00
SH
1564
1565 return leaf_walk_rcu(n, NULL);
1566}
1567
adaf9816 1568static struct tnode *trie_nextleaf(struct tnode *l)
82cfbb00 1569{
adaf9816 1570 struct tnode *p = node_parent_rcu(l);
82cfbb00
SH
1571
1572 if (!p)
1573 return NULL; /* trie with just one leaf */
1574
adaf9816 1575 return leaf_walk_rcu(p, l);
19baf839
RO
1576}
1577
adaf9816 1578static struct tnode *trie_leafindex(struct trie *t, int index)
71d67e66 1579{
adaf9816 1580 struct tnode *l = trie_firstleaf(t);
71d67e66 1581
ec28cf73 1582 while (l && index-- > 0)
71d67e66 1583 l = trie_nextleaf(l);
ec28cf73 1584
71d67e66
SH
1585 return l;
1586}
1587
1588
d562f1f8
RO
1589/*
1590 * Caller must hold RTNL.
1591 */
16c6cf8b 1592int fib_table_flush(struct fib_table *tb)
19baf839
RO
1593{
1594 struct trie *t = (struct trie *) tb->tb_data;
adaf9816 1595 struct tnode *l, *ll = NULL;
82cfbb00 1596 int found = 0;
19baf839 1597
82cfbb00 1598 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1599 found += trie_flush_leaf(l);
19baf839
RO
1600
1601 if (ll && hlist_empty(&ll->list))
9195bef7 1602 trie_leaf_remove(t, ll);
19baf839
RO
1603 ll = l;
1604 }
1605
1606 if (ll && hlist_empty(&ll->list))
9195bef7 1607 trie_leaf_remove(t, ll);
19baf839 1608
0c7770c7 1609 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1610 return found;
1611}
1612
4aa2c466
PE
1613void fib_free_table(struct fib_table *tb)
1614{
8274a97a
AD
1615#ifdef CONFIG_IP_FIB_TRIE_STATS
1616 struct trie *t = (struct trie *)tb->tb_data;
1617
1618 free_percpu(t->stats);
1619#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1620 kfree(tb);
1621}
1622
a07f5f50
SH
1623static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1624 struct fib_table *tb,
19baf839
RO
1625 struct sk_buff *skb, struct netlink_callback *cb)
1626{
1627 int i, s_i;
1628 struct fib_alias *fa;
32ab5f80 1629 __be32 xkey = htonl(key);
19baf839 1630
71d67e66 1631 s_i = cb->args[5];
19baf839
RO
1632 i = 0;
1633
2373ce1c
RO
1634 /* rcu_read_lock is hold by caller */
1635
1636 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1637 if (i < s_i) {
1638 i++;
1639 continue;
1640 }
19baf839 1641
15e47304 1642 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1643 cb->nlh->nlmsg_seq,
1644 RTM_NEWROUTE,
1645 tb->tb_id,
1646 fa->fa_type,
be403ea1 1647 xkey,
19baf839
RO
1648 plen,
1649 fa->fa_tos,
64347f78 1650 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1651 cb->args[5] = i;
19baf839 1652 return -1;
91b9a277 1653 }
19baf839
RO
1654 i++;
1655 }
71d67e66 1656 cb->args[5] = i;
19baf839
RO
1657 return skb->len;
1658}
1659
adaf9816 1660static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
a88ee229 1661 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1662{
a88ee229 1663 struct leaf_info *li;
a88ee229 1664 int i, s_i;
19baf839 1665
71d67e66 1666 s_i = cb->args[4];
a88ee229 1667 i = 0;
19baf839 1668
a88ee229 1669 /* rcu_read_lock is hold by caller */
b67bfe0d 1670 hlist_for_each_entry_rcu(li, &l->list, hlist) {
a88ee229
SH
1671 if (i < s_i) {
1672 i++;
19baf839 1673 continue;
a88ee229 1674 }
91b9a277 1675
a88ee229 1676 if (i > s_i)
71d67e66 1677 cb->args[5] = 0;
19baf839 1678
a88ee229 1679 if (list_empty(&li->falh))
19baf839
RO
1680 continue;
1681
a88ee229 1682 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1683 cb->args[4] = i;
19baf839
RO
1684 return -1;
1685 }
a88ee229 1686 i++;
19baf839 1687 }
a88ee229 1688
71d67e66 1689 cb->args[4] = i;
19baf839
RO
1690 return skb->len;
1691}
1692
16c6cf8b
SH
1693int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1694 struct netlink_callback *cb)
19baf839 1695{
adaf9816 1696 struct tnode *l;
19baf839 1697 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1698 t_key key = cb->args[2];
71d67e66 1699 int count = cb->args[3];
19baf839 1700
2373ce1c 1701 rcu_read_lock();
d5ce8a0e
SH
1702 /* Dump starting at last key.
1703 * Note: 0.0.0.0/0 (ie default) is first key.
1704 */
71d67e66 1705 if (count == 0)
d5ce8a0e
SH
1706 l = trie_firstleaf(t);
1707 else {
71d67e66
SH
1708 /* Normally, continue from last key, but if that is missing
1709 * fallback to using slow rescan
1710 */
d5ce8a0e 1711 l = fib_find_node(t, key);
71d67e66
SH
1712 if (!l)
1713 l = trie_leafindex(t, count);
d5ce8a0e 1714 }
a88ee229 1715
d5ce8a0e
SH
1716 while (l) {
1717 cb->args[2] = l->key;
a88ee229 1718 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1719 cb->args[3] = count;
a88ee229 1720 rcu_read_unlock();
a88ee229 1721 return -1;
19baf839 1722 }
d5ce8a0e 1723
71d67e66 1724 ++count;
d5ce8a0e 1725 l = trie_nextleaf(l);
71d67e66
SH
1726 memset(&cb->args[4], 0,
1727 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1728 }
71d67e66 1729 cb->args[3] = count;
2373ce1c 1730 rcu_read_unlock();
a88ee229 1731
19baf839 1732 return skb->len;
19baf839
RO
1733}
1734
5348ba85 1735void __init fib_trie_init(void)
7f9b8052 1736{
a07f5f50
SH
1737 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1738 sizeof(struct fib_alias),
bc3c8c1e
SH
1739 0, SLAB_PANIC, NULL);
1740
1741 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
adaf9816 1742 max(sizeof(struct tnode),
bc3c8c1e
SH
1743 sizeof(struct leaf_info)),
1744 0, SLAB_PANIC, NULL);
7f9b8052 1745}
19baf839 1746
7f9b8052 1747
5348ba85 1748struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1749{
1750 struct fib_table *tb;
1751 struct trie *t;
1752
19baf839
RO
1753 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1754 GFP_KERNEL);
1755 if (tb == NULL)
1756 return NULL;
1757
1758 tb->tb_id = id;
971b893e 1759 tb->tb_default = -1;
21d8c49e 1760 tb->tb_num_default = 0;
19baf839
RO
1761
1762 t = (struct trie *) tb->tb_data;
8274a97a
AD
1763 RCU_INIT_POINTER(t->trie, NULL);
1764#ifdef CONFIG_IP_FIB_TRIE_STATS
1765 t->stats = alloc_percpu(struct trie_use_stats);
1766 if (!t->stats) {
1767 kfree(tb);
1768 tb = NULL;
1769 }
1770#endif
19baf839 1771
19baf839
RO
1772 return tb;
1773}
1774
cb7b593c
SH
1775#ifdef CONFIG_PROC_FS
1776/* Depth first Trie walk iterator */
1777struct fib_trie_iter {
1c340b2f 1778 struct seq_net_private p;
3d3b2d25 1779 struct fib_table *tb;
cb7b593c 1780 struct tnode *tnode;
a034ee3c
ED
1781 unsigned int index;
1782 unsigned int depth;
cb7b593c 1783};
19baf839 1784
adaf9816 1785static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1786{
98293e8d 1787 unsigned long cindex = iter->index;
cb7b593c 1788 struct tnode *tn = iter->tnode;
cb7b593c 1789 struct tnode *p;
19baf839 1790
6640e697
EB
1791 /* A single entry routing table */
1792 if (!tn)
1793 return NULL;
1794
cb7b593c
SH
1795 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1796 iter->tnode, iter->index, iter->depth);
1797rescan:
98293e8d 1798 while (cindex < tnode_child_length(tn)) {
adaf9816 1799 struct tnode *n = tnode_get_child_rcu(tn, cindex);
19baf839 1800
cb7b593c
SH
1801 if (n) {
1802 if (IS_LEAF(n)) {
1803 iter->tnode = tn;
1804 iter->index = cindex + 1;
1805 } else {
1806 /* push down one level */
adaf9816 1807 iter->tnode = n;
cb7b593c
SH
1808 iter->index = 0;
1809 ++iter->depth;
1810 }
1811 return n;
1812 }
19baf839 1813
cb7b593c
SH
1814 ++cindex;
1815 }
91b9a277 1816
cb7b593c 1817 /* Current node exhausted, pop back up */
adaf9816 1818 p = node_parent_rcu(tn);
cb7b593c 1819 if (p) {
e9b44019 1820 cindex = get_index(tn->key, p) + 1;
cb7b593c
SH
1821 tn = p;
1822 --iter->depth;
1823 goto rescan;
19baf839 1824 }
cb7b593c
SH
1825
1826 /* got root? */
1827 return NULL;
19baf839
RO
1828}
1829
adaf9816 1830static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 1831 struct trie *t)
19baf839 1832{
adaf9816 1833 struct tnode *n;
5ddf0eb2 1834
132adf54 1835 if (!t)
5ddf0eb2
RO
1836 return NULL;
1837
1838 n = rcu_dereference(t->trie);
3d3b2d25 1839 if (!n)
5ddf0eb2 1840 return NULL;
19baf839 1841
3d3b2d25 1842 if (IS_TNODE(n)) {
adaf9816 1843 iter->tnode = n;
3d3b2d25
SH
1844 iter->index = 0;
1845 iter->depth = 1;
1846 } else {
1847 iter->tnode = NULL;
1848 iter->index = 0;
1849 iter->depth = 0;
91b9a277 1850 }
3d3b2d25
SH
1851
1852 return n;
cb7b593c 1853}
91b9a277 1854
cb7b593c
SH
1855static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1856{
adaf9816 1857 struct tnode *n;
cb7b593c 1858 struct fib_trie_iter iter;
91b9a277 1859
cb7b593c 1860 memset(s, 0, sizeof(*s));
91b9a277 1861
cb7b593c 1862 rcu_read_lock();
3d3b2d25 1863 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 1864 if (IS_LEAF(n)) {
93672292 1865 struct leaf_info *li;
93672292 1866
cb7b593c
SH
1867 s->leaves++;
1868 s->totdepth += iter.depth;
1869 if (iter.depth > s->maxdepth)
1870 s->maxdepth = iter.depth;
93672292 1871
adaf9816 1872 hlist_for_each_entry_rcu(li, &n->list, hlist)
93672292 1873 ++s->prefixes;
cb7b593c 1874 } else {
98293e8d 1875 unsigned long i;
cb7b593c
SH
1876
1877 s->tnodes++;
adaf9816
AD
1878 if (n->bits < MAX_STAT_DEPTH)
1879 s->nodesizes[n->bits]++;
06ef921d 1880
98293e8d 1881 for (i = 0; i < tnode_child_length(n); i++) {
adaf9816 1882 if (!rcu_access_pointer(n->child[i]))
cb7b593c 1883 s->nullpointers++;
98293e8d 1884 }
19baf839 1885 }
19baf839 1886 }
2373ce1c 1887 rcu_read_unlock();
19baf839
RO
1888}
1889
cb7b593c
SH
1890/*
1891 * This outputs /proc/net/fib_triestats
1892 */
1893static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 1894{
a034ee3c 1895 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 1896
cb7b593c
SH
1897 if (stat->leaves)
1898 avdepth = stat->totdepth*100 / stat->leaves;
1899 else
1900 avdepth = 0;
91b9a277 1901
a07f5f50
SH
1902 seq_printf(seq, "\tAver depth: %u.%02d\n",
1903 avdepth / 100, avdepth % 100);
cb7b593c 1904 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 1905
cb7b593c 1906 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
adaf9816 1907 bytes = sizeof(struct tnode) * stat->leaves;
93672292
SH
1908
1909 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
1910 bytes += sizeof(struct leaf_info) * stat->prefixes;
1911
187b5188 1912 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 1913 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 1914
06ef921d
RO
1915 max = MAX_STAT_DEPTH;
1916 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 1917 max--;
19baf839 1918
cb7b593c 1919 pointers = 0;
f585a991 1920 for (i = 1; i < max; i++)
cb7b593c 1921 if (stat->nodesizes[i] != 0) {
187b5188 1922 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
1923 pointers += (1<<i) * stat->nodesizes[i];
1924 }
1925 seq_putc(seq, '\n');
187b5188 1926 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 1927
adaf9816 1928 bytes += sizeof(struct tnode *) * pointers;
187b5188
SH
1929 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
1930 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 1931}
2373ce1c 1932
cb7b593c 1933#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 1934static void trie_show_usage(struct seq_file *seq,
8274a97a 1935 const struct trie_use_stats __percpu *stats)
66a2f7fd 1936{
8274a97a
AD
1937 struct trie_use_stats s = { 0 };
1938 int cpu;
1939
1940 /* loop through all of the CPUs and gather up the stats */
1941 for_each_possible_cpu(cpu) {
1942 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
1943
1944 s.gets += pcpu->gets;
1945 s.backtrack += pcpu->backtrack;
1946 s.semantic_match_passed += pcpu->semantic_match_passed;
1947 s.semantic_match_miss += pcpu->semantic_match_miss;
1948 s.null_node_hit += pcpu->null_node_hit;
1949 s.resize_node_skipped += pcpu->resize_node_skipped;
1950 }
1951
66a2f7fd 1952 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
1953 seq_printf(seq, "gets = %u\n", s.gets);
1954 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 1955 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
1956 s.semantic_match_passed);
1957 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
1958 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
1959 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 1960}
66a2f7fd
SH
1961#endif /* CONFIG_IP_FIB_TRIE_STATS */
1962
3d3b2d25 1963static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 1964{
3d3b2d25
SH
1965 if (tb->tb_id == RT_TABLE_LOCAL)
1966 seq_puts(seq, "Local:\n");
1967 else if (tb->tb_id == RT_TABLE_MAIN)
1968 seq_puts(seq, "Main:\n");
1969 else
1970 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 1971}
19baf839 1972
3d3b2d25 1973
cb7b593c
SH
1974static int fib_triestat_seq_show(struct seq_file *seq, void *v)
1975{
1c340b2f 1976 struct net *net = (struct net *)seq->private;
3d3b2d25 1977 unsigned int h;
877a9bff 1978
d717a9a6 1979 seq_printf(seq,
a07f5f50
SH
1980 "Basic info: size of leaf:"
1981 " %Zd bytes, size of tnode: %Zd bytes.\n",
adaf9816 1982 sizeof(struct tnode), sizeof(struct tnode));
d717a9a6 1983
3d3b2d25
SH
1984 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1985 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
1986 struct fib_table *tb;
1987
b67bfe0d 1988 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
1989 struct trie *t = (struct trie *) tb->tb_data;
1990 struct trie_stat stat;
877a9bff 1991
3d3b2d25
SH
1992 if (!t)
1993 continue;
1994
1995 fib_table_print(seq, tb);
1996
1997 trie_collect_stats(t, &stat);
1998 trie_show_stats(seq, &stat);
1999#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2000 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2001#endif
2002 }
2003 }
19baf839 2004
cb7b593c 2005 return 0;
19baf839
RO
2006}
2007
cb7b593c 2008static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2009{
de05c557 2010 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2011}
2012
9a32144e 2013static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2014 .owner = THIS_MODULE,
2015 .open = fib_triestat_seq_open,
2016 .read = seq_read,
2017 .llseek = seq_lseek,
b6fcbdb4 2018 .release = single_release_net,
cb7b593c
SH
2019};
2020
adaf9816 2021static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2022{
1218854a
YH
2023 struct fib_trie_iter *iter = seq->private;
2024 struct net *net = seq_file_net(seq);
cb7b593c 2025 loff_t idx = 0;
3d3b2d25 2026 unsigned int h;
cb7b593c 2027
3d3b2d25
SH
2028 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2029 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2030 struct fib_table *tb;
cb7b593c 2031
b67bfe0d 2032 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
adaf9816 2033 struct tnode *n;
3d3b2d25
SH
2034
2035 for (n = fib_trie_get_first(iter,
2036 (struct trie *) tb->tb_data);
2037 n; n = fib_trie_get_next(iter))
2038 if (pos == idx++) {
2039 iter->tb = tb;
2040 return n;
2041 }
2042 }
cb7b593c 2043 }
3d3b2d25 2044
19baf839
RO
2045 return NULL;
2046}
2047
cb7b593c 2048static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2049 __acquires(RCU)
19baf839 2050{
cb7b593c 2051 rcu_read_lock();
1218854a 2052 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2053}
2054
cb7b593c 2055static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2056{
cb7b593c 2057 struct fib_trie_iter *iter = seq->private;
1218854a 2058 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2059 struct fib_table *tb = iter->tb;
2060 struct hlist_node *tb_node;
2061 unsigned int h;
adaf9816 2062 struct tnode *n;
cb7b593c 2063
19baf839 2064 ++*pos;
3d3b2d25
SH
2065 /* next node in same table */
2066 n = fib_trie_get_next(iter);
2067 if (n)
2068 return n;
19baf839 2069
3d3b2d25
SH
2070 /* walk rest of this hash chain */
2071 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2072 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2073 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2074 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2075 if (n)
2076 goto found;
2077 }
19baf839 2078
3d3b2d25
SH
2079 /* new hash chain */
2080 while (++h < FIB_TABLE_HASHSZ) {
2081 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2082 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2083 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2084 if (n)
2085 goto found;
2086 }
2087 }
cb7b593c 2088 return NULL;
3d3b2d25
SH
2089
2090found:
2091 iter->tb = tb;
2092 return n;
cb7b593c 2093}
19baf839 2094
cb7b593c 2095static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2096 __releases(RCU)
19baf839 2097{
cb7b593c
SH
2098 rcu_read_unlock();
2099}
91b9a277 2100
cb7b593c
SH
2101static void seq_indent(struct seq_file *seq, int n)
2102{
a034ee3c
ED
2103 while (n-- > 0)
2104 seq_puts(seq, " ");
cb7b593c 2105}
19baf839 2106
28d36e37 2107static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2108{
132adf54 2109 switch (s) {
cb7b593c
SH
2110 case RT_SCOPE_UNIVERSE: return "universe";
2111 case RT_SCOPE_SITE: return "site";
2112 case RT_SCOPE_LINK: return "link";
2113 case RT_SCOPE_HOST: return "host";
2114 case RT_SCOPE_NOWHERE: return "nowhere";
2115 default:
28d36e37 2116 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2117 return buf;
2118 }
2119}
19baf839 2120
36cbd3dc 2121static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2122 [RTN_UNSPEC] = "UNSPEC",
2123 [RTN_UNICAST] = "UNICAST",
2124 [RTN_LOCAL] = "LOCAL",
2125 [RTN_BROADCAST] = "BROADCAST",
2126 [RTN_ANYCAST] = "ANYCAST",
2127 [RTN_MULTICAST] = "MULTICAST",
2128 [RTN_BLACKHOLE] = "BLACKHOLE",
2129 [RTN_UNREACHABLE] = "UNREACHABLE",
2130 [RTN_PROHIBIT] = "PROHIBIT",
2131 [RTN_THROW] = "THROW",
2132 [RTN_NAT] = "NAT",
2133 [RTN_XRESOLVE] = "XRESOLVE",
2134};
19baf839 2135
a034ee3c 2136static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2137{
cb7b593c
SH
2138 if (t < __RTN_MAX && rtn_type_names[t])
2139 return rtn_type_names[t];
28d36e37 2140 snprintf(buf, len, "type %u", t);
cb7b593c 2141 return buf;
19baf839
RO
2142}
2143
cb7b593c
SH
2144/* Pretty print the trie */
2145static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2146{
cb7b593c 2147 const struct fib_trie_iter *iter = seq->private;
adaf9816 2148 struct tnode *n = v;
c877efb2 2149
3d3b2d25
SH
2150 if (!node_parent_rcu(n))
2151 fib_table_print(seq, iter->tb);
095b8501 2152
cb7b593c 2153 if (IS_TNODE(n)) {
adaf9816 2154 __be32 prf = htonl(n->key);
91b9a277 2155
e9b44019
AD
2156 seq_indent(seq, iter->depth-1);
2157 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2158 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2159 n->full_children, n->empty_children);
cb7b593c 2160 } else {
1328042e 2161 struct leaf_info *li;
adaf9816 2162 __be32 val = htonl(n->key);
cb7b593c
SH
2163
2164 seq_indent(seq, iter->depth);
673d57e7 2165 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2166
adaf9816 2167 hlist_for_each_entry_rcu(li, &n->list, hlist) {
1328042e
SH
2168 struct fib_alias *fa;
2169
2170 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2171 char buf1[32], buf2[32];
2172
2173 seq_indent(seq, iter->depth+1);
2174 seq_printf(seq, " /%d %s %s", li->plen,
2175 rtn_scope(buf1, sizeof(buf1),
37e826c5 2176 fa->fa_info->fib_scope),
1328042e
SH
2177 rtn_type(buf2, sizeof(buf2),
2178 fa->fa_type));
2179 if (fa->fa_tos)
b9c4d82a 2180 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2181 seq_putc(seq, '\n');
cb7b593c
SH
2182 }
2183 }
19baf839 2184 }
cb7b593c 2185
19baf839
RO
2186 return 0;
2187}
2188
f690808e 2189static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2190 .start = fib_trie_seq_start,
2191 .next = fib_trie_seq_next,
2192 .stop = fib_trie_seq_stop,
2193 .show = fib_trie_seq_show,
19baf839
RO
2194};
2195
cb7b593c 2196static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2197{
1c340b2f
DL
2198 return seq_open_net(inode, file, &fib_trie_seq_ops,
2199 sizeof(struct fib_trie_iter));
19baf839
RO
2200}
2201
9a32144e 2202static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2203 .owner = THIS_MODULE,
2204 .open = fib_trie_seq_open,
2205 .read = seq_read,
2206 .llseek = seq_lseek,
1c340b2f 2207 .release = seq_release_net,
19baf839
RO
2208};
2209
8315f5d8
SH
2210struct fib_route_iter {
2211 struct seq_net_private p;
2212 struct trie *main_trie;
2213 loff_t pos;
2214 t_key key;
2215};
2216
adaf9816 2217static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
8315f5d8 2218{
adaf9816 2219 struct tnode *l = NULL;
8315f5d8
SH
2220 struct trie *t = iter->main_trie;
2221
2222 /* use cache location of last found key */
2223 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2224 pos -= iter->pos;
2225 else {
2226 iter->pos = 0;
2227 l = trie_firstleaf(t);
2228 }
2229
2230 while (l && pos-- > 0) {
2231 iter->pos++;
2232 l = trie_nextleaf(l);
2233 }
2234
2235 if (l)
2236 iter->key = pos; /* remember it */
2237 else
2238 iter->pos = 0; /* forget it */
2239
2240 return l;
2241}
2242
2243static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2244 __acquires(RCU)
2245{
2246 struct fib_route_iter *iter = seq->private;
2247 struct fib_table *tb;
2248
2249 rcu_read_lock();
1218854a 2250 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2251 if (!tb)
2252 return NULL;
2253
2254 iter->main_trie = (struct trie *) tb->tb_data;
2255 if (*pos == 0)
2256 return SEQ_START_TOKEN;
2257 else
2258 return fib_route_get_idx(iter, *pos - 1);
2259}
2260
2261static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2262{
2263 struct fib_route_iter *iter = seq->private;
adaf9816 2264 struct tnode *l = v;
8315f5d8
SH
2265
2266 ++*pos;
2267 if (v == SEQ_START_TOKEN) {
2268 iter->pos = 0;
2269 l = trie_firstleaf(iter->main_trie);
2270 } else {
2271 iter->pos++;
2272 l = trie_nextleaf(l);
2273 }
2274
2275 if (l)
2276 iter->key = l->key;
2277 else
2278 iter->pos = 0;
2279 return l;
2280}
2281
2282static void fib_route_seq_stop(struct seq_file *seq, void *v)
2283 __releases(RCU)
2284{
2285 rcu_read_unlock();
2286}
2287
a034ee3c 2288static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2289{
a034ee3c 2290 unsigned int flags = 0;
19baf839 2291
a034ee3c
ED
2292 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2293 flags = RTF_REJECT;
cb7b593c
SH
2294 if (fi && fi->fib_nh->nh_gw)
2295 flags |= RTF_GATEWAY;
32ab5f80 2296 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2297 flags |= RTF_HOST;
2298 flags |= RTF_UP;
2299 return flags;
19baf839
RO
2300}
2301
cb7b593c
SH
2302/*
2303 * This outputs /proc/net/route.
2304 * The format of the file is not supposed to be changed
a034ee3c 2305 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2306 * legacy utilities
2307 */
2308static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2309{
adaf9816 2310 struct tnode *l = v;
1328042e 2311 struct leaf_info *li;
19baf839 2312
cb7b593c
SH
2313 if (v == SEQ_START_TOKEN) {
2314 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2315 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2316 "\tWindow\tIRTT");
2317 return 0;
2318 }
19baf839 2319
b67bfe0d 2320 hlist_for_each_entry_rcu(li, &l->list, hlist) {
cb7b593c 2321 struct fib_alias *fa;
32ab5f80 2322 __be32 mask, prefix;
91b9a277 2323
cb7b593c
SH
2324 mask = inet_make_mask(li->plen);
2325 prefix = htonl(l->key);
19baf839 2326
cb7b593c 2327 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2328 const struct fib_info *fi = fa->fa_info;
a034ee3c 2329 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2330
cb7b593c
SH
2331 if (fa->fa_type == RTN_BROADCAST
2332 || fa->fa_type == RTN_MULTICAST)
2333 continue;
19baf839 2334
652586df
TH
2335 seq_setwidth(seq, 127);
2336
cb7b593c 2337 if (fi)
5e659e4c
PE
2338 seq_printf(seq,
2339 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
652586df 2340 "%d\t%08X\t%d\t%u\t%u",
cb7b593c
SH
2341 fi->fib_dev ? fi->fib_dev->name : "*",
2342 prefix,
2343 fi->fib_nh->nh_gw, flags, 0, 0,
2344 fi->fib_priority,
2345 mask,
a07f5f50
SH
2346 (fi->fib_advmss ?
2347 fi->fib_advmss + 40 : 0),
cb7b593c 2348 fi->fib_window,
652586df 2349 fi->fib_rtt >> 3);
cb7b593c 2350 else
5e659e4c
PE
2351 seq_printf(seq,
2352 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
652586df 2353 "%d\t%08X\t%d\t%u\t%u",
cb7b593c 2354 prefix, 0, flags, 0, 0, 0,
652586df 2355 mask, 0, 0, 0);
19baf839 2356
652586df 2357 seq_pad(seq, '\n');
cb7b593c 2358 }
19baf839
RO
2359 }
2360
2361 return 0;
2362}
2363
f690808e 2364static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2365 .start = fib_route_seq_start,
2366 .next = fib_route_seq_next,
2367 .stop = fib_route_seq_stop,
cb7b593c 2368 .show = fib_route_seq_show,
19baf839
RO
2369};
2370
cb7b593c 2371static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2372{
1c340b2f 2373 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2374 sizeof(struct fib_route_iter));
19baf839
RO
2375}
2376
9a32144e 2377static const struct file_operations fib_route_fops = {
cb7b593c
SH
2378 .owner = THIS_MODULE,
2379 .open = fib_route_seq_open,
2380 .read = seq_read,
2381 .llseek = seq_lseek,
1c340b2f 2382 .release = seq_release_net,
19baf839
RO
2383};
2384
61a02653 2385int __net_init fib_proc_init(struct net *net)
19baf839 2386{
d4beaa66 2387 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2388 goto out1;
2389
d4beaa66
G
2390 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2391 &fib_triestat_fops))
cb7b593c
SH
2392 goto out2;
2393
d4beaa66 2394 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2395 goto out3;
2396
19baf839 2397 return 0;
cb7b593c
SH
2398
2399out3:
ece31ffd 2400 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2401out2:
ece31ffd 2402 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2403out1:
2404 return -ENOMEM;
19baf839
RO
2405}
2406
61a02653 2407void __net_exit fib_proc_exit(struct net *net)
19baf839 2408{
ece31ffd
G
2409 remove_proc_entry("fib_trie", net->proc_net);
2410 remove_proc_entry("fib_triestat", net->proc_net);
2411 remove_proc_entry("route", net->proc_net);
19baf839
RO
2412}
2413
2414#endif /* CONFIG_PROC_FS */
This page took 1.011505 seconds and 5 git commands to generate.