[IPV4] fib_trie: remove unneeded NULL check
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
fd966255
RO
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
19baf839
RO
51 */
52
05eee48c 53#define VERSION "0.408"
19baf839 54
19baf839
RO
55#include <asm/uaccess.h>
56#include <asm/system.h>
1977f032 57#include <linux/bitops.h>
19baf839
RO
58#include <linux/types.h>
59#include <linux/kernel.h>
19baf839
RO
60#include <linux/mm.h>
61#include <linux/string.h>
62#include <linux/socket.h>
63#include <linux/sockios.h>
64#include <linux/errno.h>
65#include <linux/in.h>
66#include <linux/inet.h>
cd8787ab 67#include <linux/inetdevice.h>
19baf839
RO
68#include <linux/netdevice.h>
69#include <linux/if_arp.h>
70#include <linux/proc_fs.h>
2373ce1c 71#include <linux/rcupdate.h>
19baf839
RO
72#include <linux/skbuff.h>
73#include <linux/netlink.h>
74#include <linux/init.h>
75#include <linux/list.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
19baf839 87#define KEYLENGTH (8*sizeof(t_key))
19baf839 88
19baf839
RO
89typedef unsigned int t_key;
90
91#define T_TNODE 0
92#define T_LEAF 1
93#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
94#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
91b9a277
OJ
96#define IS_TNODE(n) (!(n->parent & T_LEAF))
97#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
98
99struct node {
91b9a277 100 unsigned long parent;
8d965444 101 t_key key;
19baf839
RO
102};
103
104struct leaf {
91b9a277 105 unsigned long parent;
8d965444 106 t_key key;
19baf839 107 struct hlist_head list;
2373ce1c 108 struct rcu_head rcu;
19baf839
RO
109};
110
111struct leaf_info {
112 struct hlist_node hlist;
2373ce1c 113 struct rcu_head rcu;
19baf839
RO
114 int plen;
115 struct list_head falh;
116};
117
118struct tnode {
91b9a277 119 unsigned long parent;
8d965444 120 t_key key;
112d8cfc
ED
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
2373ce1c 125 struct rcu_head rcu;
91b9a277 126 struct node *child[0];
19baf839
RO
127};
128
129#ifdef CONFIG_IP_FIB_TRIE_STATS
130struct trie_use_stats {
131 unsigned int gets;
132 unsigned int backtrack;
133 unsigned int semantic_match_passed;
134 unsigned int semantic_match_miss;
135 unsigned int null_node_hit;
2f36895a 136 unsigned int resize_node_skipped;
19baf839
RO
137};
138#endif
139
140struct trie_stat {
141 unsigned int totdepth;
142 unsigned int maxdepth;
143 unsigned int tnodes;
144 unsigned int leaves;
145 unsigned int nullpointers;
93672292 146 unsigned int prefixes;
06ef921d 147 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 148};
19baf839
RO
149
150struct trie {
91b9a277 151 struct node *trie;
19baf839
RO
152#ifdef CONFIG_IP_FIB_TRIE_STATS
153 struct trie_use_stats stats;
154#endif
19baf839
RO
155};
156
19baf839 157static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
158static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
159 int wasfull);
19baf839 160static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
161static struct tnode *inflate(struct trie *t, struct tnode *tn);
162static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 163static void tnode_free(struct tnode *tn);
19baf839 164
e18b890b 165static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 166static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 167
06801916
SH
168static inline struct tnode *node_parent(struct node *node)
169{
b59cfbf7
ED
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171}
172
173static inline struct tnode *node_parent_rcu(struct node *node)
174{
175 struct tnode *ret = node_parent(node);
06801916 176
06801916
SH
177 return rcu_dereference(ret);
178}
179
180static inline void node_set_parent(struct node *node, struct tnode *ptr)
181{
182 rcu_assign_pointer(node->parent,
183 (unsigned long)ptr | NODE_TYPE(node));
184}
2373ce1c 185
b59cfbf7
ED
186static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
187{
188 BUG_ON(i >= 1U << tn->bits);
2373ce1c 189
b59cfbf7
ED
190 return tn->child[i];
191}
192
193static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 194{
b59cfbf7 195 struct node *ret = tnode_get_child(tn, i);
19baf839 196
b59cfbf7 197 return rcu_dereference(ret);
19baf839
RO
198}
199
bb435b8d 200static inline int tnode_child_length(const struct tnode *tn)
19baf839 201{
91b9a277 202 return 1 << tn->bits;
19baf839
RO
203}
204
ab66b4a7
SH
205static inline t_key mask_pfx(t_key k, unsigned short l)
206{
207 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
208}
209
19baf839
RO
210static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
211{
91b9a277 212 if (offset < KEYLENGTH)
19baf839 213 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 214 else
19baf839
RO
215 return 0;
216}
217
218static inline int tkey_equals(t_key a, t_key b)
219{
c877efb2 220 return a == b;
19baf839
RO
221}
222
223static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
224{
c877efb2
SH
225 if (bits == 0 || offset >= KEYLENGTH)
226 return 1;
91b9a277
OJ
227 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
228 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 229}
19baf839
RO
230
231static inline int tkey_mismatch(t_key a, int offset, t_key b)
232{
233 t_key diff = a ^ b;
234 int i = offset;
235
c877efb2
SH
236 if (!diff)
237 return 0;
238 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
239 i++;
240 return i;
241}
242
19baf839 243/*
e905a9ed
YH
244 To understand this stuff, an understanding of keys and all their bits is
245 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
246 all of the bits in that key are significant.
247
248 Consider a node 'n' and its parent 'tp'.
249
e905a9ed
YH
250 If n is a leaf, every bit in its key is significant. Its presence is
251 necessitated by path compression, since during a tree traversal (when
252 searching for a leaf - unless we are doing an insertion) we will completely
253 ignore all skipped bits we encounter. Thus we need to verify, at the end of
254 a potentially successful search, that we have indeed been walking the
19baf839
RO
255 correct key path.
256
e905a9ed
YH
257 Note that we can never "miss" the correct key in the tree if present by
258 following the wrong path. Path compression ensures that segments of the key
259 that are the same for all keys with a given prefix are skipped, but the
260 skipped part *is* identical for each node in the subtrie below the skipped
261 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
262 call to tkey_sub_equals() in trie_insert().
263
e905a9ed 264 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
265 have many different meanings.
266
e905a9ed 267 Example:
19baf839
RO
268 _________________________________________________________________
269 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
270 -----------------------------------------------------------------
e905a9ed 271 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
272
273 _________________________________________________________________
274 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
275 -----------------------------------------------------------------
276 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
277
278 tp->pos = 7
279 tp->bits = 3
280 n->pos = 15
91b9a277 281 n->bits = 4
19baf839 282
e905a9ed
YH
283 First, let's just ignore the bits that come before the parent tp, that is
284 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
285 not use them for anything.
286
287 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 288 index into the parent's child array. That is, they will be used to find
19baf839
RO
289 'n' among tp's children.
290
291 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
292 for the node n.
293
e905a9ed 294 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
295 of the bits are really not needed or indeed known in n->key.
296
e905a9ed 297 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 298 n's child array, and will of course be different for each child.
e905a9ed 299
c877efb2 300
19baf839
RO
301 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
302 at this point.
303
304*/
305
0c7770c7 306static inline void check_tnode(const struct tnode *tn)
19baf839 307{
0c7770c7 308 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
309}
310
f5026fab
DL
311static const int halve_threshold = 25;
312static const int inflate_threshold = 50;
313static const int halve_threshold_root = 8;
314static const int inflate_threshold_root = 15;
19baf839 315
2373ce1c
RO
316
317static void __alias_free_mem(struct rcu_head *head)
19baf839 318{
2373ce1c
RO
319 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
320 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
321}
322
2373ce1c 323static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 324{
2373ce1c
RO
325 call_rcu(&fa->rcu, __alias_free_mem);
326}
91b9a277 327
2373ce1c
RO
328static void __leaf_free_rcu(struct rcu_head *head)
329{
bc3c8c1e
SH
330 struct leaf *l = container_of(head, struct leaf, rcu);
331 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 332}
91b9a277 333
2373ce1c 334static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 335{
2373ce1c 336 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
337}
338
2373ce1c 339static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 340{
2373ce1c 341 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
342}
343
8d965444 344static struct tnode *tnode_alloc(size_t size)
f0e36f8c 345{
2373ce1c
RO
346 struct page *pages;
347
348 if (size <= PAGE_SIZE)
8d965444 349 return kzalloc(size, GFP_KERNEL);
2373ce1c
RO
350
351 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
352 if (!pages)
353 return NULL;
354
355 return page_address(pages);
f0e36f8c
PM
356}
357
2373ce1c 358static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 359{
2373ce1c 360 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
361 size_t size = sizeof(struct tnode) +
362 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
363
364 if (size <= PAGE_SIZE)
365 kfree(tn);
366 else
367 free_pages((unsigned long)tn, get_order(size));
368}
369
2373ce1c
RO
370static inline void tnode_free(struct tnode *tn)
371{
132adf54 372 if (IS_LEAF(tn)) {
550e29bc
RO
373 struct leaf *l = (struct leaf *) tn;
374 call_rcu_bh(&l->rcu, __leaf_free_rcu);
132adf54 375 } else
550e29bc 376 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
377}
378
379static struct leaf *leaf_new(void)
380{
bc3c8c1e 381 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
382 if (l) {
383 l->parent = T_LEAF;
384 INIT_HLIST_HEAD(&l->list);
385 }
386 return l;
387}
388
389static struct leaf_info *leaf_info_new(int plen)
390{
391 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
392 if (li) {
393 li->plen = plen;
394 INIT_LIST_HEAD(&li->falh);
395 }
396 return li;
397}
398
a07f5f50 399static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 400{
8d965444 401 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 402 struct tnode *tn = tnode_alloc(sz);
19baf839 403
91b9a277 404 if (tn) {
2373ce1c 405 tn->parent = T_TNODE;
19baf839
RO
406 tn->pos = pos;
407 tn->bits = bits;
408 tn->key = key;
409 tn->full_children = 0;
410 tn->empty_children = 1<<bits;
411 }
c877efb2 412
8d965444
ED
413 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
414 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
415 return tn;
416}
417
19baf839
RO
418/*
419 * Check whether a tnode 'n' is "full", i.e. it is an internal node
420 * and no bits are skipped. See discussion in dyntree paper p. 6
421 */
422
bb435b8d 423static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 424{
c877efb2 425 if (n == NULL || IS_LEAF(n))
19baf839
RO
426 return 0;
427
428 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
429}
430
a07f5f50
SH
431static inline void put_child(struct trie *t, struct tnode *tn, int i,
432 struct node *n)
19baf839
RO
433{
434 tnode_put_child_reorg(tn, i, n, -1);
435}
436
c877efb2 437 /*
19baf839
RO
438 * Add a child at position i overwriting the old value.
439 * Update the value of full_children and empty_children.
440 */
441
a07f5f50
SH
442static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
443 int wasfull)
19baf839 444{
2373ce1c 445 struct node *chi = tn->child[i];
19baf839
RO
446 int isfull;
447
0c7770c7
SH
448 BUG_ON(i >= 1<<tn->bits);
449
19baf839
RO
450 /* update emptyChildren */
451 if (n == NULL && chi != NULL)
452 tn->empty_children++;
453 else if (n != NULL && chi == NULL)
454 tn->empty_children--;
c877efb2 455
19baf839 456 /* update fullChildren */
91b9a277 457 if (wasfull == -1)
19baf839
RO
458 wasfull = tnode_full(tn, chi);
459
460 isfull = tnode_full(tn, n);
c877efb2 461 if (wasfull && !isfull)
19baf839 462 tn->full_children--;
c877efb2 463 else if (!wasfull && isfull)
19baf839 464 tn->full_children++;
91b9a277 465
c877efb2 466 if (n)
06801916 467 node_set_parent(n, tn);
19baf839 468
2373ce1c 469 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
470}
471
c877efb2 472static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
473{
474 int i;
2f36895a 475 int err = 0;
2f80b3c8 476 struct tnode *old_tn;
e6308be8
RO
477 int inflate_threshold_use;
478 int halve_threshold_use;
05eee48c 479 int max_resize;
19baf839 480
e905a9ed 481 if (!tn)
19baf839
RO
482 return NULL;
483
0c7770c7
SH
484 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
485 tn, inflate_threshold, halve_threshold);
19baf839
RO
486
487 /* No children */
488 if (tn->empty_children == tnode_child_length(tn)) {
489 tnode_free(tn);
490 return NULL;
491 }
492 /* One child */
493 if (tn->empty_children == tnode_child_length(tn) - 1)
494 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 495 struct node *n;
19baf839 496
91b9a277 497 n = tn->child[i];
2373ce1c 498 if (!n)
91b9a277 499 continue;
91b9a277
OJ
500
501 /* compress one level */
06801916 502 node_set_parent(n, NULL);
91b9a277
OJ
503 tnode_free(tn);
504 return n;
19baf839 505 }
c877efb2 506 /*
19baf839
RO
507 * Double as long as the resulting node has a number of
508 * nonempty nodes that are above the threshold.
509 */
510
511 /*
c877efb2
SH
512 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
513 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 514 * Telecommunications, page 6:
c877efb2 515 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
516 * children in the *doubled* node is at least 'high'."
517 *
c877efb2
SH
518 * 'high' in this instance is the variable 'inflate_threshold'. It
519 * is expressed as a percentage, so we multiply it with
520 * tnode_child_length() and instead of multiplying by 2 (since the
521 * child array will be doubled by inflate()) and multiplying
522 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 523 * multiply the left-hand side by 50.
c877efb2
SH
524 *
525 * The left-hand side may look a bit weird: tnode_child_length(tn)
526 * - tn->empty_children is of course the number of non-null children
527 * in the current node. tn->full_children is the number of "full"
19baf839 528 * children, that is non-null tnodes with a skip value of 0.
c877efb2 529 * All of those will be doubled in the resulting inflated tnode, so
19baf839 530 * we just count them one extra time here.
c877efb2 531 *
19baf839 532 * A clearer way to write this would be:
c877efb2 533 *
19baf839 534 * to_be_doubled = tn->full_children;
c877efb2 535 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
536 * tn->full_children;
537 *
538 * new_child_length = tnode_child_length(tn) * 2;
539 *
c877efb2 540 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
541 * new_child_length;
542 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
543 *
544 * ...and so on, tho it would mess up the while () loop.
545 *
19baf839
RO
546 * anyway,
547 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
548 * inflate_threshold
c877efb2 549 *
19baf839
RO
550 * avoid a division:
551 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
552 * inflate_threshold * new_child_length
c877efb2 553 *
19baf839 554 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 555 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 556 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 557 *
19baf839 558 * expand new_child_length:
c877efb2 559 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 560 * tn->full_children) >=
19baf839 561 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 562 *
19baf839 563 * shorten again:
c877efb2 564 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 565 * tn->empty_children) >= inflate_threshold *
19baf839 566 * tnode_child_length(tn)
c877efb2 567 *
19baf839
RO
568 */
569
570 check_tnode(tn);
c877efb2 571
e6308be8
RO
572 /* Keep root node larger */
573
132adf54 574 if (!tn->parent)
e6308be8 575 inflate_threshold_use = inflate_threshold_root;
e905a9ed 576 else
e6308be8
RO
577 inflate_threshold_use = inflate_threshold;
578
2f36895a 579 err = 0;
05eee48c
RO
580 max_resize = 10;
581 while ((tn->full_children > 0 && max_resize-- &&
a07f5f50
SH
582 50 * (tn->full_children + tnode_child_length(tn)
583 - tn->empty_children)
584 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 585
2f80b3c8
RO
586 old_tn = tn;
587 tn = inflate(t, tn);
a07f5f50 588
2f80b3c8
RO
589 if (IS_ERR(tn)) {
590 tn = old_tn;
2f36895a
RO
591#ifdef CONFIG_IP_FIB_TRIE_STATS
592 t->stats.resize_node_skipped++;
593#endif
594 break;
595 }
19baf839
RO
596 }
597
05eee48c
RO
598 if (max_resize < 0) {
599 if (!tn->parent)
a07f5f50
SH
600 pr_warning("Fix inflate_threshold_root."
601 " Now=%d size=%d bits\n",
602 inflate_threshold_root, tn->bits);
05eee48c 603 else
a07f5f50
SH
604 pr_warning("Fix inflate_threshold."
605 " Now=%d size=%d bits\n",
606 inflate_threshold, tn->bits);
05eee48c
RO
607 }
608
19baf839
RO
609 check_tnode(tn);
610
611 /*
612 * Halve as long as the number of empty children in this
613 * node is above threshold.
614 */
2f36895a 615
e6308be8
RO
616
617 /* Keep root node larger */
618
132adf54 619 if (!tn->parent)
e6308be8 620 halve_threshold_use = halve_threshold_root;
e905a9ed 621 else
e6308be8
RO
622 halve_threshold_use = halve_threshold;
623
2f36895a 624 err = 0;
05eee48c
RO
625 max_resize = 10;
626 while (tn->bits > 1 && max_resize-- &&
19baf839 627 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 628 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 629
2f80b3c8
RO
630 old_tn = tn;
631 tn = halve(t, tn);
632 if (IS_ERR(tn)) {
633 tn = old_tn;
2f36895a
RO
634#ifdef CONFIG_IP_FIB_TRIE_STATS
635 t->stats.resize_node_skipped++;
636#endif
637 break;
638 }
639 }
19baf839 640
05eee48c
RO
641 if (max_resize < 0) {
642 if (!tn->parent)
a07f5f50
SH
643 pr_warning("Fix halve_threshold_root."
644 " Now=%d size=%d bits\n",
645 halve_threshold_root, tn->bits);
05eee48c 646 else
a07f5f50
SH
647 pr_warning("Fix halve_threshold."
648 " Now=%d size=%d bits\n",
649 halve_threshold, tn->bits);
05eee48c 650 }
c877efb2 651
19baf839 652 /* Only one child remains */
19baf839
RO
653 if (tn->empty_children == tnode_child_length(tn) - 1)
654 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 655 struct node *n;
19baf839 656
91b9a277 657 n = tn->child[i];
2373ce1c 658 if (!n)
91b9a277 659 continue;
91b9a277
OJ
660
661 /* compress one level */
662
06801916 663 node_set_parent(n, NULL);
91b9a277
OJ
664 tnode_free(tn);
665 return n;
19baf839
RO
666 }
667
668 return (struct node *) tn;
669}
670
2f80b3c8 671static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 672{
19baf839
RO
673 struct tnode *oldtnode = tn;
674 int olen = tnode_child_length(tn);
675 int i;
676
0c7770c7 677 pr_debug("In inflate\n");
19baf839
RO
678
679 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
680
0c7770c7 681 if (!tn)
2f80b3c8 682 return ERR_PTR(-ENOMEM);
2f36895a
RO
683
684 /*
c877efb2
SH
685 * Preallocate and store tnodes before the actual work so we
686 * don't get into an inconsistent state if memory allocation
687 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
688 * of tnode is ignored.
689 */
91b9a277
OJ
690
691 for (i = 0; i < olen; i++) {
a07f5f50 692 struct tnode *inode;
2f36895a 693
a07f5f50 694 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
695 if (inode &&
696 IS_TNODE(inode) &&
697 inode->pos == oldtnode->pos + oldtnode->bits &&
698 inode->bits > 1) {
699 struct tnode *left, *right;
ab66b4a7 700 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 701
2f36895a
RO
702 left = tnode_new(inode->key&(~m), inode->pos + 1,
703 inode->bits - 1);
2f80b3c8
RO
704 if (!left)
705 goto nomem;
91b9a277 706
2f36895a
RO
707 right = tnode_new(inode->key|m, inode->pos + 1,
708 inode->bits - 1);
709
e905a9ed 710 if (!right) {
2f80b3c8
RO
711 tnode_free(left);
712 goto nomem;
e905a9ed 713 }
2f36895a
RO
714
715 put_child(t, tn, 2*i, (struct node *) left);
716 put_child(t, tn, 2*i+1, (struct node *) right);
717 }
718 }
719
91b9a277 720 for (i = 0; i < olen; i++) {
c95aaf9a 721 struct tnode *inode;
19baf839 722 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
723 struct tnode *left, *right;
724 int size, j;
c877efb2 725
19baf839
RO
726 /* An empty child */
727 if (node == NULL)
728 continue;
729
730 /* A leaf or an internal node with skipped bits */
731
c877efb2 732 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 733 tn->pos + tn->bits - 1) {
a07f5f50
SH
734 if (tkey_extract_bits(node->key,
735 oldtnode->pos + oldtnode->bits,
736 1) == 0)
19baf839
RO
737 put_child(t, tn, 2*i, node);
738 else
739 put_child(t, tn, 2*i+1, node);
740 continue;
741 }
742
743 /* An internal node with two children */
744 inode = (struct tnode *) node;
745
746 if (inode->bits == 1) {
747 put_child(t, tn, 2*i, inode->child[0]);
748 put_child(t, tn, 2*i+1, inode->child[1]);
749
750 tnode_free(inode);
91b9a277 751 continue;
19baf839
RO
752 }
753
91b9a277
OJ
754 /* An internal node with more than two children */
755
756 /* We will replace this node 'inode' with two new
757 * ones, 'left' and 'right', each with half of the
758 * original children. The two new nodes will have
759 * a position one bit further down the key and this
760 * means that the "significant" part of their keys
761 * (see the discussion near the top of this file)
762 * will differ by one bit, which will be "0" in
763 * left's key and "1" in right's key. Since we are
764 * moving the key position by one step, the bit that
765 * we are moving away from - the bit at position
766 * (inode->pos) - is the one that will differ between
767 * left and right. So... we synthesize that bit in the
768 * two new keys.
769 * The mask 'm' below will be a single "one" bit at
770 * the position (inode->pos)
771 */
19baf839 772
91b9a277
OJ
773 /* Use the old key, but set the new significant
774 * bit to zero.
775 */
2f36895a 776
91b9a277
OJ
777 left = (struct tnode *) tnode_get_child(tn, 2*i);
778 put_child(t, tn, 2*i, NULL);
2f36895a 779
91b9a277 780 BUG_ON(!left);
2f36895a 781
91b9a277
OJ
782 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
783 put_child(t, tn, 2*i+1, NULL);
19baf839 784
91b9a277 785 BUG_ON(!right);
19baf839 786
91b9a277
OJ
787 size = tnode_child_length(left);
788 for (j = 0; j < size; j++) {
789 put_child(t, left, j, inode->child[j]);
790 put_child(t, right, j, inode->child[j + size]);
19baf839 791 }
91b9a277
OJ
792 put_child(t, tn, 2*i, resize(t, left));
793 put_child(t, tn, 2*i+1, resize(t, right));
794
795 tnode_free(inode);
19baf839
RO
796 }
797 tnode_free(oldtnode);
798 return tn;
2f80b3c8
RO
799nomem:
800 {
801 int size = tnode_child_length(tn);
802 int j;
803
0c7770c7 804 for (j = 0; j < size; j++)
2f80b3c8
RO
805 if (tn->child[j])
806 tnode_free((struct tnode *)tn->child[j]);
807
808 tnode_free(tn);
0c7770c7 809
2f80b3c8
RO
810 return ERR_PTR(-ENOMEM);
811 }
19baf839
RO
812}
813
2f80b3c8 814static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
815{
816 struct tnode *oldtnode = tn;
817 struct node *left, *right;
818 int i;
819 int olen = tnode_child_length(tn);
820
0c7770c7 821 pr_debug("In halve\n");
c877efb2
SH
822
823 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 824
2f80b3c8
RO
825 if (!tn)
826 return ERR_PTR(-ENOMEM);
2f36895a
RO
827
828 /*
c877efb2
SH
829 * Preallocate and store tnodes before the actual work so we
830 * don't get into an inconsistent state if memory allocation
831 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
832 * of tnode is ignored.
833 */
834
91b9a277 835 for (i = 0; i < olen; i += 2) {
2f36895a
RO
836 left = tnode_get_child(oldtnode, i);
837 right = tnode_get_child(oldtnode, i+1);
c877efb2 838
2f36895a 839 /* Two nonempty children */
0c7770c7 840 if (left && right) {
2f80b3c8 841 struct tnode *newn;
0c7770c7 842
2f80b3c8 843 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
844
845 if (!newn)
2f80b3c8 846 goto nomem;
0c7770c7 847
2f80b3c8 848 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 849 }
2f36895a 850
2f36895a 851 }
19baf839 852
91b9a277
OJ
853 for (i = 0; i < olen; i += 2) {
854 struct tnode *newBinNode;
855
19baf839
RO
856 left = tnode_get_child(oldtnode, i);
857 right = tnode_get_child(oldtnode, i+1);
c877efb2 858
19baf839
RO
859 /* At least one of the children is empty */
860 if (left == NULL) {
861 if (right == NULL) /* Both are empty */
862 continue;
863 put_child(t, tn, i/2, right);
91b9a277 864 continue;
0c7770c7 865 }
91b9a277
OJ
866
867 if (right == NULL) {
19baf839 868 put_child(t, tn, i/2, left);
91b9a277
OJ
869 continue;
870 }
c877efb2 871
19baf839 872 /* Two nonempty children */
91b9a277
OJ
873 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
874 put_child(t, tn, i/2, NULL);
91b9a277
OJ
875 put_child(t, newBinNode, 0, left);
876 put_child(t, newBinNode, 1, right);
877 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
878 }
879 tnode_free(oldtnode);
880 return tn;
2f80b3c8
RO
881nomem:
882 {
883 int size = tnode_child_length(tn);
884 int j;
885
0c7770c7 886 for (j = 0; j < size; j++)
2f80b3c8
RO
887 if (tn->child[j])
888 tnode_free((struct tnode *)tn->child[j]);
889
890 tnode_free(tn);
0c7770c7 891
2f80b3c8
RO
892 return ERR_PTR(-ENOMEM);
893 }
19baf839
RO
894}
895
772cb712 896/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
897 via get_fa_head and dump */
898
772cb712 899static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 900{
772cb712 901 struct hlist_head *head = &l->list;
19baf839
RO
902 struct hlist_node *node;
903 struct leaf_info *li;
904
2373ce1c 905 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 906 if (li->plen == plen)
19baf839 907 return li;
91b9a277 908
19baf839
RO
909 return NULL;
910}
911
a07f5f50 912static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 913{
772cb712 914 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 915
91b9a277
OJ
916 if (!li)
917 return NULL;
c877efb2 918
91b9a277 919 return &li->falh;
19baf839
RO
920}
921
922static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
923{
e905a9ed
YH
924 struct leaf_info *li = NULL, *last = NULL;
925 struct hlist_node *node;
926
927 if (hlist_empty(head)) {
928 hlist_add_head_rcu(&new->hlist, head);
929 } else {
930 hlist_for_each_entry(li, node, head, hlist) {
931 if (new->plen > li->plen)
932 break;
933
934 last = li;
935 }
936 if (last)
937 hlist_add_after_rcu(&last->hlist, &new->hlist);
938 else
939 hlist_add_before_rcu(&new->hlist, &li->hlist);
940 }
19baf839
RO
941}
942
2373ce1c
RO
943/* rcu_read_lock needs to be hold by caller from readside */
944
19baf839
RO
945static struct leaf *
946fib_find_node(struct trie *t, u32 key)
947{
948 int pos;
949 struct tnode *tn;
950 struct node *n;
951
952 pos = 0;
2373ce1c 953 n = rcu_dereference(t->trie);
19baf839
RO
954
955 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
956 tn = (struct tnode *) n;
91b9a277 957
19baf839 958 check_tnode(tn);
91b9a277 959
c877efb2 960 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 961 pos = tn->pos + tn->bits;
a07f5f50
SH
962 n = tnode_get_child_rcu(tn,
963 tkey_extract_bits(key,
964 tn->pos,
965 tn->bits));
91b9a277 966 } else
19baf839
RO
967 break;
968 }
969 /* Case we have found a leaf. Compare prefixes */
970
91b9a277
OJ
971 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
972 return (struct leaf *)n;
973
19baf839
RO
974 return NULL;
975}
976
977static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
978{
19baf839 979 int wasfull;
06801916
SH
980 t_key cindex, key = tn->key;
981 struct tnode *tp;
19baf839 982
06801916 983 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
984 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
985 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
986 tn = (struct tnode *) resize(t, (struct tnode *)tn);
987
988 tnode_put_child_reorg((struct tnode *)tp, cindex,
989 (struct node *)tn, wasfull);
91b9a277 990
06801916
SH
991 tp = node_parent((struct node *) tn);
992 if (!tp)
19baf839 993 break;
06801916 994 tn = tp;
19baf839 995 }
06801916 996
19baf839 997 /* Handle last (top) tnode */
c877efb2 998 if (IS_TNODE(tn))
a07f5f50 999 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1000
a07f5f50 1001 return (struct node *)tn;
19baf839
RO
1002}
1003
2373ce1c
RO
1004/* only used from updater-side */
1005
fea86ad8 1006static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1007{
1008 int pos, newpos;
1009 struct tnode *tp = NULL, *tn = NULL;
1010 struct node *n;
1011 struct leaf *l;
1012 int missbit;
c877efb2 1013 struct list_head *fa_head = NULL;
19baf839
RO
1014 struct leaf_info *li;
1015 t_key cindex;
1016
1017 pos = 0;
c877efb2 1018 n = t->trie;
19baf839 1019
c877efb2
SH
1020 /* If we point to NULL, stop. Either the tree is empty and we should
1021 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1022 * and we should just put our new leaf in that.
c877efb2
SH
1023 * If we point to a T_TNODE, check if it matches our key. Note that
1024 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1025 * not be the parent's 'pos'+'bits'!
1026 *
c877efb2 1027 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1028 * the index from our key, push the T_TNODE and walk the tree.
1029 *
1030 * If it doesn't, we have to replace it with a new T_TNODE.
1031 *
c877efb2
SH
1032 * If we point to a T_LEAF, it might or might not have the same key
1033 * as we do. If it does, just change the value, update the T_LEAF's
1034 * value, and return it.
19baf839
RO
1035 * If it doesn't, we need to replace it with a T_TNODE.
1036 */
1037
1038 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1039 tn = (struct tnode *) n;
91b9a277 1040
c877efb2 1041 check_tnode(tn);
91b9a277 1042
c877efb2 1043 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1044 tp = tn;
91b9a277 1045 pos = tn->pos + tn->bits;
a07f5f50
SH
1046 n = tnode_get_child(tn,
1047 tkey_extract_bits(key,
1048 tn->pos,
1049 tn->bits));
19baf839 1050
06801916 1051 BUG_ON(n && node_parent(n) != tn);
91b9a277 1052 } else
19baf839
RO
1053 break;
1054 }
1055
1056 /*
1057 * n ----> NULL, LEAF or TNODE
1058 *
c877efb2 1059 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1060 */
1061
91b9a277 1062 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1063
1064 /* Case 1: n is a leaf. Compare prefixes */
1065
c877efb2 1066 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1067 l = (struct leaf *) n;
19baf839 1068 li = leaf_info_new(plen);
91b9a277 1069
fea86ad8
SH
1070 if (!li)
1071 return NULL;
19baf839
RO
1072
1073 fa_head = &li->falh;
1074 insert_leaf_info(&l->list, li);
1075 goto done;
1076 }
19baf839
RO
1077 l = leaf_new();
1078
fea86ad8
SH
1079 if (!l)
1080 return NULL;
19baf839
RO
1081
1082 l->key = key;
1083 li = leaf_info_new(plen);
1084
c877efb2 1085 if (!li) {
f835e471 1086 tnode_free((struct tnode *) l);
fea86ad8 1087 return NULL;
f835e471 1088 }
19baf839
RO
1089
1090 fa_head = &li->falh;
1091 insert_leaf_info(&l->list, li);
1092
19baf839 1093 if (t->trie && n == NULL) {
91b9a277 1094 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1095
06801916 1096 node_set_parent((struct node *)l, tp);
19baf839 1097
91b9a277
OJ
1098 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1099 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1100 } else {
1101 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1102 /*
1103 * Add a new tnode here
19baf839
RO
1104 * first tnode need some special handling
1105 */
1106
1107 if (tp)
91b9a277 1108 pos = tp->pos+tp->bits;
19baf839 1109 else
91b9a277
OJ
1110 pos = 0;
1111
c877efb2 1112 if (n) {
19baf839
RO
1113 newpos = tkey_mismatch(key, pos, n->key);
1114 tn = tnode_new(n->key, newpos, 1);
91b9a277 1115 } else {
19baf839 1116 newpos = 0;
c877efb2 1117 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1118 }
19baf839 1119
c877efb2 1120 if (!tn) {
f835e471
RO
1121 free_leaf_info(li);
1122 tnode_free((struct tnode *) l);
fea86ad8 1123 return NULL;
91b9a277
OJ
1124 }
1125
06801916 1126 node_set_parent((struct node *)tn, tp);
19baf839 1127
91b9a277 1128 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1129 put_child(t, tn, missbit, (struct node *)l);
1130 put_child(t, tn, 1-missbit, n);
1131
c877efb2 1132 if (tp) {
19baf839 1133 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1134 put_child(t, (struct tnode *)tp, cindex,
1135 (struct node *)tn);
91b9a277 1136 } else {
a07f5f50 1137 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1138 tp = tn;
1139 }
1140 }
91b9a277
OJ
1141
1142 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1143 pr_warning("fib_trie"
1144 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1145 tp, tp->pos, tp->bits, key, plen);
91b9a277 1146
19baf839 1147 /* Rebalance the trie */
2373ce1c
RO
1148
1149 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471 1150done:
19baf839
RO
1151 return fa_head;
1152}
1153
d562f1f8
RO
1154/*
1155 * Caller must hold RTNL.
1156 */
4e902c57 1157static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1158{
1159 struct trie *t = (struct trie *) tb->tb_data;
1160 struct fib_alias *fa, *new_fa;
c877efb2 1161 struct list_head *fa_head = NULL;
19baf839 1162 struct fib_info *fi;
4e902c57
TG
1163 int plen = cfg->fc_dst_len;
1164 u8 tos = cfg->fc_tos;
19baf839
RO
1165 u32 key, mask;
1166 int err;
1167 struct leaf *l;
1168
1169 if (plen > 32)
1170 return -EINVAL;
1171
4e902c57 1172 key = ntohl(cfg->fc_dst);
19baf839 1173
2dfe55b4 1174 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1175
91b9a277 1176 mask = ntohl(inet_make_mask(plen));
19baf839 1177
c877efb2 1178 if (key & ~mask)
19baf839
RO
1179 return -EINVAL;
1180
1181 key = key & mask;
1182
4e902c57
TG
1183 fi = fib_create_info(cfg);
1184 if (IS_ERR(fi)) {
1185 err = PTR_ERR(fi);
19baf839 1186 goto err;
4e902c57 1187 }
19baf839
RO
1188
1189 l = fib_find_node(t, key);
c877efb2 1190 fa = NULL;
19baf839 1191
c877efb2 1192 if (l) {
19baf839
RO
1193 fa_head = get_fa_head(l, plen);
1194 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1195 }
1196
1197 /* Now fa, if non-NULL, points to the first fib alias
1198 * with the same keys [prefix,tos,priority], if such key already
1199 * exists or to the node before which we will insert new one.
1200 *
1201 * If fa is NULL, we will need to allocate a new one and
1202 * insert to the head of f.
1203 *
1204 * If f is NULL, no fib node matched the destination key
1205 * and we need to allocate a new one of those as well.
1206 */
1207
91b9a277 1208 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
19baf839
RO
1209 struct fib_alias *fa_orig;
1210
1211 err = -EEXIST;
4e902c57 1212 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1213 goto out;
1214
4e902c57 1215 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1216 struct fib_info *fi_drop;
1217 u8 state;
1218
6725033f
JP
1219 if (fi->fib_treeref > 1)
1220 goto out;
1221
2373ce1c 1222 err = -ENOBUFS;
e94b1766 1223 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1224 if (new_fa == NULL)
1225 goto out;
19baf839
RO
1226
1227 fi_drop = fa->fa_info;
2373ce1c
RO
1228 new_fa->fa_tos = fa->fa_tos;
1229 new_fa->fa_info = fi;
4e902c57
TG
1230 new_fa->fa_type = cfg->fc_type;
1231 new_fa->fa_scope = cfg->fc_scope;
19baf839 1232 state = fa->fa_state;
2373ce1c 1233 new_fa->fa_state &= ~FA_S_ACCESSED;
19baf839 1234
2373ce1c
RO
1235 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1236 alias_free_mem_rcu(fa);
19baf839
RO
1237
1238 fib_release_info(fi_drop);
1239 if (state & FA_S_ACCESSED)
91b9a277 1240 rt_cache_flush(-1);
b8f55831
MK
1241 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1242 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1243
91b9a277 1244 goto succeeded;
19baf839
RO
1245 }
1246 /* Error if we find a perfect match which
1247 * uses the same scope, type, and nexthop
1248 * information.
1249 */
1250 fa_orig = fa;
1251 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1252 if (fa->fa_tos != tos)
1253 break;
1254 if (fa->fa_info->fib_priority != fi->fib_priority)
1255 break;
4e902c57
TG
1256 if (fa->fa_type == cfg->fc_type &&
1257 fa->fa_scope == cfg->fc_scope &&
a07f5f50 1258 fa->fa_info == fi)
19baf839 1259 goto out;
19baf839 1260 }
a07f5f50 1261
4e902c57 1262 if (!(cfg->fc_nlflags & NLM_F_APPEND))
19baf839
RO
1263 fa = fa_orig;
1264 }
1265 err = -ENOENT;
4e902c57 1266 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1267 goto out;
1268
1269 err = -ENOBUFS;
e94b1766 1270 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1271 if (new_fa == NULL)
1272 goto out;
1273
1274 new_fa->fa_info = fi;
1275 new_fa->fa_tos = tos;
4e902c57
TG
1276 new_fa->fa_type = cfg->fc_type;
1277 new_fa->fa_scope = cfg->fc_scope;
19baf839 1278 new_fa->fa_state = 0;
19baf839
RO
1279 /*
1280 * Insert new entry to the list.
1281 */
1282
c877efb2 1283 if (!fa_head) {
fea86ad8
SH
1284 fa_head = fib_insert_node(t, key, plen);
1285 if (unlikely(!fa_head)) {
1286 err = -ENOMEM;
f835e471 1287 goto out_free_new_fa;
fea86ad8 1288 }
f835e471 1289 }
19baf839 1290
2373ce1c
RO
1291 list_add_tail_rcu(&new_fa->fa_list,
1292 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1293
1294 rt_cache_flush(-1);
4e902c57 1295 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1296 &cfg->fc_nlinfo, 0);
19baf839
RO
1297succeeded:
1298 return 0;
f835e471
RO
1299
1300out_free_new_fa:
1301 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1302out:
1303 fib_release_info(fi);
91b9a277 1304err:
19baf839
RO
1305 return err;
1306}
1307
772cb712 1308/* should be called with rcu_read_lock */
a07f5f50
SH
1309static int check_leaf(struct trie *t, struct leaf *l,
1310 t_key key, const struct flowi *flp,
1311 struct fib_result *res)
19baf839 1312{
19baf839
RO
1313 struct leaf_info *li;
1314 struct hlist_head *hhead = &l->list;
1315 struct hlist_node *node;
c877efb2 1316
2373ce1c 1317 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1318 int err;
1319 int plen = li->plen;
1320 __be32 mask = inet_make_mask(plen);
1321
888454c5 1322 if (l->key != (key & ntohl(mask)))
19baf839
RO
1323 continue;
1324
a07f5f50
SH
1325 err = fib_semantic_match(&li->falh, flp, res,
1326 htonl(l->key), mask, plen);
1327
19baf839 1328#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1329 if (err <= 0)
19baf839 1330 t->stats.semantic_match_passed++;
a07f5f50
SH
1331 else
1332 t->stats.semantic_match_miss++;
19baf839 1333#endif
a07f5f50
SH
1334 if (err <= 0)
1335 return plen;
19baf839 1336 }
a07f5f50
SH
1337
1338 return -1;
19baf839
RO
1339}
1340
a07f5f50
SH
1341static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1342 struct fib_result *res)
19baf839
RO
1343{
1344 struct trie *t = (struct trie *) tb->tb_data;
1345 int plen, ret = 0;
1346 struct node *n;
1347 struct tnode *pn;
1348 int pos, bits;
91b9a277 1349 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1350 int chopped_off;
1351 t_key cindex = 0;
1352 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1353 struct tnode *cn;
1354 t_key node_prefix, key_prefix, pref_mismatch;
1355 int mp;
1356
2373ce1c 1357 rcu_read_lock();
91b9a277 1358
2373ce1c 1359 n = rcu_dereference(t->trie);
c877efb2 1360 if (!n)
19baf839
RO
1361 goto failed;
1362
1363#ifdef CONFIG_IP_FIB_TRIE_STATS
1364 t->stats.gets++;
1365#endif
1366
1367 /* Just a leaf? */
1368 if (IS_LEAF(n)) {
a07f5f50
SH
1369 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1370 if (plen < 0)
1371 goto failed;
1372 ret = 0;
1373 goto found;
19baf839 1374 }
a07f5f50 1375
19baf839
RO
1376 pn = (struct tnode *) n;
1377 chopped_off = 0;
c877efb2 1378
91b9a277 1379 while (pn) {
19baf839
RO
1380 pos = pn->pos;
1381 bits = pn->bits;
1382
c877efb2 1383 if (!chopped_off)
ab66b4a7
SH
1384 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1385 pos, bits);
19baf839
RO
1386
1387 n = tnode_get_child(pn, cindex);
1388
1389 if (n == NULL) {
1390#ifdef CONFIG_IP_FIB_TRIE_STATS
1391 t->stats.null_node_hit++;
1392#endif
1393 goto backtrace;
1394 }
1395
91b9a277 1396 if (IS_LEAF(n)) {
a07f5f50
SH
1397 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1398 if (plen < 0)
91b9a277 1399 goto backtrace;
a07f5f50
SH
1400
1401 ret = 0;
1402 goto found;
91b9a277
OJ
1403 }
1404
91b9a277 1405 cn = (struct tnode *)n;
19baf839 1406
91b9a277
OJ
1407 /*
1408 * It's a tnode, and we can do some extra checks here if we
1409 * like, to avoid descending into a dead-end branch.
1410 * This tnode is in the parent's child array at index
1411 * key[p_pos..p_pos+p_bits] but potentially with some bits
1412 * chopped off, so in reality the index may be just a
1413 * subprefix, padded with zero at the end.
1414 * We can also take a look at any skipped bits in this
1415 * tnode - everything up to p_pos is supposed to be ok,
1416 * and the non-chopped bits of the index (se previous
1417 * paragraph) are also guaranteed ok, but the rest is
1418 * considered unknown.
1419 *
1420 * The skipped bits are key[pos+bits..cn->pos].
1421 */
19baf839 1422
91b9a277
OJ
1423 /* If current_prefix_length < pos+bits, we are already doing
1424 * actual prefix matching, which means everything from
1425 * pos+(bits-chopped_off) onward must be zero along some
1426 * branch of this subtree - otherwise there is *no* valid
1427 * prefix present. Here we can only check the skipped
1428 * bits. Remember, since we have already indexed into the
1429 * parent's child array, we know that the bits we chopped of
1430 * *are* zero.
1431 */
19baf839 1432
a07f5f50
SH
1433 /* NOTA BENE: Checking only skipped bits
1434 for the new node here */
19baf839 1435
91b9a277
OJ
1436 if (current_prefix_length < pos+bits) {
1437 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1438 cn->pos - current_prefix_length)
1439 || !(cn->child[0]))
91b9a277
OJ
1440 goto backtrace;
1441 }
19baf839 1442
91b9a277
OJ
1443 /*
1444 * If chopped_off=0, the index is fully validated and we
1445 * only need to look at the skipped bits for this, the new,
1446 * tnode. What we actually want to do is to find out if
1447 * these skipped bits match our key perfectly, or if we will
1448 * have to count on finding a matching prefix further down,
1449 * because if we do, we would like to have some way of
1450 * verifying the existence of such a prefix at this point.
1451 */
19baf839 1452
91b9a277
OJ
1453 /* The only thing we can do at this point is to verify that
1454 * any such matching prefix can indeed be a prefix to our
1455 * key, and if the bits in the node we are inspecting that
1456 * do not match our key are not ZERO, this cannot be true.
1457 * Thus, find out where there is a mismatch (before cn->pos)
1458 * and verify that all the mismatching bits are zero in the
1459 * new tnode's key.
1460 */
19baf839 1461
a07f5f50
SH
1462 /*
1463 * Note: We aren't very concerned about the piece of
1464 * the key that precede pn->pos+pn->bits, since these
1465 * have already been checked. The bits after cn->pos
1466 * aren't checked since these are by definition
1467 * "unknown" at this point. Thus, what we want to see
1468 * is if we are about to enter the "prefix matching"
1469 * state, and in that case verify that the skipped
1470 * bits that will prevail throughout this subtree are
1471 * zero, as they have to be if we are to find a
1472 * matching prefix.
91b9a277
OJ
1473 */
1474
ab66b4a7
SH
1475 node_prefix = mask_pfx(cn->key, cn->pos);
1476 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1477 pref_mismatch = key_prefix^node_prefix;
1478 mp = 0;
1479
a07f5f50
SH
1480 /*
1481 * In short: If skipped bits in this node do not match
1482 * the search key, enter the "prefix matching"
1483 * state.directly.
91b9a277
OJ
1484 */
1485 if (pref_mismatch) {
1486 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1487 mp++;
a07f5f50 1488 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1489 }
1490 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1491
1492 if (key_prefix != 0)
1493 goto backtrace;
1494
1495 if (current_prefix_length >= cn->pos)
1496 current_prefix_length = mp;
c877efb2 1497 }
a07f5f50 1498
91b9a277
OJ
1499 pn = (struct tnode *)n; /* Descend */
1500 chopped_off = 0;
1501 continue;
1502
19baf839
RO
1503backtrace:
1504 chopped_off++;
1505
1506 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1507 while ((chopped_off <= pn->bits)
1508 && !(cindex & (1<<(chopped_off-1))))
19baf839 1509 chopped_off++;
19baf839
RO
1510
1511 /* Decrease current_... with bits chopped off */
1512 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1513 current_prefix_length = pn->pos + pn->bits
1514 - chopped_off;
91b9a277 1515
19baf839 1516 /*
c877efb2 1517 * Either we do the actual chop off according or if we have
19baf839
RO
1518 * chopped off all bits in this tnode walk up to our parent.
1519 */
1520
91b9a277 1521 if (chopped_off <= pn->bits) {
19baf839 1522 cindex &= ~(1 << (chopped_off-1));
91b9a277 1523 } else {
06801916
SH
1524 struct tnode *parent = node_parent((struct node *) pn);
1525 if (!parent)
19baf839 1526 goto failed;
91b9a277 1527
19baf839 1528 /* Get Child's index */
06801916
SH
1529 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1530 pn = parent;
19baf839
RO
1531 chopped_off = 0;
1532
1533#ifdef CONFIG_IP_FIB_TRIE_STATS
1534 t->stats.backtrack++;
1535#endif
1536 goto backtrace;
c877efb2 1537 }
19baf839
RO
1538 }
1539failed:
c877efb2 1540 ret = 1;
19baf839 1541found:
2373ce1c 1542 rcu_read_unlock();
19baf839
RO
1543 return ret;
1544}
1545
9195bef7
SH
1546/*
1547 * Remove the leaf and return parent.
1548 */
1549static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1550{
9195bef7 1551 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1552
9195bef7 1553 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1554
c877efb2 1555 if (tp) {
9195bef7 1556 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1557 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1558 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1559 } else
2373ce1c 1560 rcu_assign_pointer(t->trie, NULL);
19baf839 1561
9195bef7 1562 tnode_free((struct tnode *) l);
19baf839
RO
1563}
1564
d562f1f8
RO
1565/*
1566 * Caller must hold RTNL.
1567 */
4e902c57 1568static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1569{
1570 struct trie *t = (struct trie *) tb->tb_data;
1571 u32 key, mask;
4e902c57
TG
1572 int plen = cfg->fc_dst_len;
1573 u8 tos = cfg->fc_tos;
19baf839
RO
1574 struct fib_alias *fa, *fa_to_delete;
1575 struct list_head *fa_head;
1576 struct leaf *l;
91b9a277
OJ
1577 struct leaf_info *li;
1578
c877efb2 1579 if (plen > 32)
19baf839
RO
1580 return -EINVAL;
1581
4e902c57 1582 key = ntohl(cfg->fc_dst);
91b9a277 1583 mask = ntohl(inet_make_mask(plen));
19baf839 1584
c877efb2 1585 if (key & ~mask)
19baf839
RO
1586 return -EINVAL;
1587
1588 key = key & mask;
1589 l = fib_find_node(t, key);
1590
c877efb2 1591 if (!l)
19baf839
RO
1592 return -ESRCH;
1593
1594 fa_head = get_fa_head(l, plen);
1595 fa = fib_find_alias(fa_head, tos, 0);
1596
1597 if (!fa)
1598 return -ESRCH;
1599
0c7770c7 1600 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1601
1602 fa_to_delete = NULL;
1603 fa_head = fa->fa_list.prev;
2373ce1c 1604
19baf839
RO
1605 list_for_each_entry(fa, fa_head, fa_list) {
1606 struct fib_info *fi = fa->fa_info;
1607
1608 if (fa->fa_tos != tos)
1609 break;
1610
4e902c57
TG
1611 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1612 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1613 fa->fa_scope == cfg->fc_scope) &&
1614 (!cfg->fc_protocol ||
1615 fi->fib_protocol == cfg->fc_protocol) &&
1616 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1617 fa_to_delete = fa;
1618 break;
1619 }
1620 }
1621
91b9a277
OJ
1622 if (!fa_to_delete)
1623 return -ESRCH;
19baf839 1624
91b9a277 1625 fa = fa_to_delete;
4e902c57 1626 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1627 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1628
1629 l = fib_find_node(t, key);
772cb712 1630 li = find_leaf_info(l, plen);
19baf839 1631
2373ce1c 1632 list_del_rcu(&fa->fa_list);
19baf839 1633
91b9a277 1634 if (list_empty(fa_head)) {
2373ce1c 1635 hlist_del_rcu(&li->hlist);
91b9a277 1636 free_leaf_info(li);
2373ce1c 1637 }
19baf839 1638
91b9a277 1639 if (hlist_empty(&l->list))
9195bef7 1640 trie_leaf_remove(t, l);
19baf839 1641
91b9a277
OJ
1642 if (fa->fa_state & FA_S_ACCESSED)
1643 rt_cache_flush(-1);
19baf839 1644
2373ce1c
RO
1645 fib_release_info(fa->fa_info);
1646 alias_free_mem_rcu(fa);
91b9a277 1647 return 0;
19baf839
RO
1648}
1649
1650static int trie_flush_list(struct trie *t, struct list_head *head)
1651{
1652 struct fib_alias *fa, *fa_node;
1653 int found = 0;
1654
1655 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1656 struct fib_info *fi = fa->fa_info;
19baf839 1657
2373ce1c
RO
1658 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1659 list_del_rcu(&fa->fa_list);
1660 fib_release_info(fa->fa_info);
1661 alias_free_mem_rcu(fa);
19baf839
RO
1662 found++;
1663 }
1664 }
1665 return found;
1666}
1667
1668static int trie_flush_leaf(struct trie *t, struct leaf *l)
1669{
1670 int found = 0;
1671 struct hlist_head *lih = &l->list;
1672 struct hlist_node *node, *tmp;
1673 struct leaf_info *li = NULL;
1674
1675 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
19baf839
RO
1676 found += trie_flush_list(t, &li->falh);
1677
1678 if (list_empty(&li->falh)) {
2373ce1c 1679 hlist_del_rcu(&li->hlist);
19baf839
RO
1680 free_leaf_info(li);
1681 }
1682 }
1683 return found;
1684}
1685
82cfbb00
SH
1686/*
1687 * Scan for the next right leaf starting at node p->child[idx]
1688 * Since we have back pointer, no recursion necessary.
1689 */
1690static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1691{
82cfbb00
SH
1692 do {
1693 t_key idx;
c877efb2 1694
c877efb2 1695 if (c)
82cfbb00 1696 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1697 else
82cfbb00 1698 idx = 0;
2373ce1c 1699
82cfbb00
SH
1700 while (idx < 1u << p->bits) {
1701 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1702 if (!c)
91b9a277
OJ
1703 continue;
1704
82cfbb00
SH
1705 if (IS_LEAF(c)) {
1706 prefetch(p->child[idx]);
1707 return (struct leaf *) c;
19baf839 1708 }
82cfbb00
SH
1709
1710 /* Rescan start scanning in new node */
1711 p = (struct tnode *) c;
1712 idx = 0;
19baf839 1713 }
82cfbb00
SH
1714
1715 /* Node empty, walk back up to parent */
91b9a277 1716 c = (struct node *) p;
82cfbb00
SH
1717 } while ( (p = node_parent_rcu(c)) != NULL);
1718
1719 return NULL; /* Root of trie */
1720}
1721
82cfbb00
SH
1722static struct leaf *trie_firstleaf(struct trie *t)
1723{
1724 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1725
1726 if (!n)
1727 return NULL;
1728
1729 if (IS_LEAF(n)) /* trie is just a leaf */
1730 return (struct leaf *) n;
1731
1732 return leaf_walk_rcu(n, NULL);
1733}
1734
1735static struct leaf *trie_nextleaf(struct leaf *l)
1736{
1737 struct node *c = (struct node *) l;
1738 struct tnode *p = node_parent(c);
1739
1740 if (!p)
1741 return NULL; /* trie with just one leaf */
1742
1743 return leaf_walk_rcu(p, c);
19baf839
RO
1744}
1745
d562f1f8
RO
1746/*
1747 * Caller must hold RTNL.
1748 */
19baf839
RO
1749static int fn_trie_flush(struct fib_table *tb)
1750{
1751 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1752 struct leaf *l, *ll = NULL;
82cfbb00 1753 int found = 0;
19baf839 1754
82cfbb00 1755 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
19baf839
RO
1756 found += trie_flush_leaf(t, l);
1757
1758 if (ll && hlist_empty(&ll->list))
9195bef7 1759 trie_leaf_remove(t, ll);
19baf839
RO
1760 ll = l;
1761 }
1762
1763 if (ll && hlist_empty(&ll->list))
9195bef7 1764 trie_leaf_remove(t, ll);
19baf839 1765
0c7770c7 1766 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1767 return found;
1768}
1769
a07f5f50
SH
1770static void fn_trie_select_default(struct fib_table *tb,
1771 const struct flowi *flp,
1772 struct fib_result *res)
19baf839
RO
1773{
1774 struct trie *t = (struct trie *) tb->tb_data;
1775 int order, last_idx;
1776 struct fib_info *fi = NULL;
1777 struct fib_info *last_resort;
1778 struct fib_alias *fa = NULL;
1779 struct list_head *fa_head;
1780 struct leaf *l;
1781
1782 last_idx = -1;
1783 last_resort = NULL;
1784 order = -1;
1785
2373ce1c 1786 rcu_read_lock();
c877efb2 1787
19baf839 1788 l = fib_find_node(t, 0);
c877efb2 1789 if (!l)
19baf839
RO
1790 goto out;
1791
1792 fa_head = get_fa_head(l, 0);
c877efb2 1793 if (!fa_head)
19baf839
RO
1794 goto out;
1795
c877efb2 1796 if (list_empty(fa_head))
19baf839
RO
1797 goto out;
1798
2373ce1c 1799 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1800 struct fib_info *next_fi = fa->fa_info;
91b9a277 1801
19baf839
RO
1802 if (fa->fa_scope != res->scope ||
1803 fa->fa_type != RTN_UNICAST)
1804 continue;
91b9a277 1805
19baf839
RO
1806 if (next_fi->fib_priority > res->fi->fib_priority)
1807 break;
1808 if (!next_fi->fib_nh[0].nh_gw ||
1809 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1810 continue;
1811 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1812
19baf839
RO
1813 if (fi == NULL) {
1814 if (next_fi != res->fi)
1815 break;
1816 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1817 &last_idx, tb->tb_default)) {
a2bbe682 1818 fib_result_assign(res, fi);
971b893e 1819 tb->tb_default = order;
19baf839
RO
1820 goto out;
1821 }
1822 fi = next_fi;
1823 order++;
1824 }
1825 if (order <= 0 || fi == NULL) {
971b893e 1826 tb->tb_default = -1;
19baf839
RO
1827 goto out;
1828 }
1829
971b893e
DL
1830 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1831 tb->tb_default)) {
a2bbe682 1832 fib_result_assign(res, fi);
971b893e 1833 tb->tb_default = order;
19baf839
RO
1834 goto out;
1835 }
a2bbe682
DL
1836 if (last_idx >= 0)
1837 fib_result_assign(res, last_resort);
971b893e
DL
1838 tb->tb_default = last_idx;
1839out:
2373ce1c 1840 rcu_read_unlock();
19baf839
RO
1841}
1842
a07f5f50
SH
1843static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1844 struct fib_table *tb,
19baf839
RO
1845 struct sk_buff *skb, struct netlink_callback *cb)
1846{
1847 int i, s_i;
1848 struct fib_alias *fa;
32ab5f80 1849 __be32 xkey = htonl(key);
19baf839 1850
1af5a8c4 1851 s_i = cb->args[4];
19baf839
RO
1852 i = 0;
1853
2373ce1c
RO
1854 /* rcu_read_lock is hold by caller */
1855
1856 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1857 if (i < s_i) {
1858 i++;
1859 continue;
1860 }
19baf839
RO
1861
1862 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1863 cb->nlh->nlmsg_seq,
1864 RTM_NEWROUTE,
1865 tb->tb_id,
1866 fa->fa_type,
1867 fa->fa_scope,
be403ea1 1868 xkey,
19baf839
RO
1869 plen,
1870 fa->fa_tos,
64347f78 1871 fa->fa_info, NLM_F_MULTI) < 0) {
1af5a8c4 1872 cb->args[4] = i;
19baf839 1873 return -1;
91b9a277 1874 }
19baf839
RO
1875 i++;
1876 }
1af5a8c4 1877 cb->args[4] = i;
19baf839
RO
1878 return skb->len;
1879}
1880
a88ee229
SH
1881static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1882 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1883{
a88ee229
SH
1884 struct leaf_info *li;
1885 struct hlist_node *node;
1886 int i, s_i;
19baf839 1887
a88ee229
SH
1888 s_i = cb->args[3];
1889 i = 0;
19baf839 1890
a88ee229
SH
1891 /* rcu_read_lock is hold by caller */
1892 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1893 if (i < s_i) {
1894 i++;
19baf839 1895 continue;
a88ee229 1896 }
91b9a277 1897
a88ee229
SH
1898 if (i > s_i)
1899 cb->args[4] = 0;
19baf839 1900
a88ee229 1901 if (list_empty(&li->falh))
19baf839
RO
1902 continue;
1903
a88ee229
SH
1904 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1905 cb->args[3] = i;
19baf839
RO
1906 return -1;
1907 }
a88ee229 1908 i++;
19baf839 1909 }
a88ee229
SH
1910
1911 cb->args[3] = i;
19baf839
RO
1912 return skb->len;
1913}
1914
a07f5f50
SH
1915static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1916 struct netlink_callback *cb)
19baf839 1917{
a88ee229 1918 struct leaf *l;
19baf839 1919 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1920 t_key key = cb->args[2];
19baf839 1921
2373ce1c 1922 rcu_read_lock();
d5ce8a0e
SH
1923 /* Dump starting at last key.
1924 * Note: 0.0.0.0/0 (ie default) is first key.
1925 */
1926 if (!key)
1927 l = trie_firstleaf(t);
1928 else {
1929 l = fib_find_node(t, key);
1930 if (!l) {
1931 /* The table changed during the dump, rather than
1932 * giving partial data, just make application retry.
1933 */
1934 rcu_read_unlock();
1935 return -EBUSY;
a88ee229 1936 }
d5ce8a0e 1937 }
a88ee229 1938
d5ce8a0e
SH
1939 while (l) {
1940 cb->args[2] = l->key;
a88ee229
SH
1941 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1942 rcu_read_unlock();
a88ee229 1943 return -1;
19baf839 1944 }
d5ce8a0e
SH
1945
1946 l = trie_nextleaf(l);
1947 memset(&cb->args[3], 0,
1948 sizeof(cb->args) - 3*sizeof(cb->args[0]));
19baf839 1949 }
2373ce1c 1950 rcu_read_unlock();
a88ee229 1951
19baf839 1952 return skb->len;
19baf839
RO
1953}
1954
7f9b8052
SH
1955void __init fib_hash_init(void)
1956{
a07f5f50
SH
1957 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1958 sizeof(struct fib_alias),
bc3c8c1e
SH
1959 0, SLAB_PANIC, NULL);
1960
1961 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1962 max(sizeof(struct leaf),
1963 sizeof(struct leaf_info)),
1964 0, SLAB_PANIC, NULL);
7f9b8052 1965}
19baf839 1966
7f9b8052
SH
1967
1968/* Fix more generic FIB names for init later */
1969struct fib_table *fib_hash_table(u32 id)
19baf839
RO
1970{
1971 struct fib_table *tb;
1972 struct trie *t;
1973
19baf839
RO
1974 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1975 GFP_KERNEL);
1976 if (tb == NULL)
1977 return NULL;
1978
1979 tb->tb_id = id;
971b893e 1980 tb->tb_default = -1;
19baf839
RO
1981 tb->tb_lookup = fn_trie_lookup;
1982 tb->tb_insert = fn_trie_insert;
1983 tb->tb_delete = fn_trie_delete;
1984 tb->tb_flush = fn_trie_flush;
1985 tb->tb_select_default = fn_trie_select_default;
1986 tb->tb_dump = fn_trie_dump;
19baf839
RO
1987
1988 t = (struct trie *) tb->tb_data;
c28a1cf4 1989 memset(t, 0, sizeof(*t));
19baf839 1990
19baf839 1991 if (id == RT_TABLE_LOCAL)
a07f5f50 1992 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
1993
1994 return tb;
1995}
1996
cb7b593c
SH
1997#ifdef CONFIG_PROC_FS
1998/* Depth first Trie walk iterator */
1999struct fib_trie_iter {
1c340b2f 2000 struct seq_net_private p;
877a9bff 2001 struct trie *trie_local, *trie_main;
cb7b593c
SH
2002 struct tnode *tnode;
2003 struct trie *trie;
2004 unsigned index;
2005 unsigned depth;
2006};
19baf839 2007
cb7b593c 2008static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2009{
cb7b593c
SH
2010 struct tnode *tn = iter->tnode;
2011 unsigned cindex = iter->index;
2012 struct tnode *p;
19baf839 2013
6640e697
EB
2014 /* A single entry routing table */
2015 if (!tn)
2016 return NULL;
2017
cb7b593c
SH
2018 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2019 iter->tnode, iter->index, iter->depth);
2020rescan:
2021 while (cindex < (1<<tn->bits)) {
b59cfbf7 2022 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2023
cb7b593c
SH
2024 if (n) {
2025 if (IS_LEAF(n)) {
2026 iter->tnode = tn;
2027 iter->index = cindex + 1;
2028 } else {
2029 /* push down one level */
2030 iter->tnode = (struct tnode *) n;
2031 iter->index = 0;
2032 ++iter->depth;
2033 }
2034 return n;
2035 }
19baf839 2036
cb7b593c
SH
2037 ++cindex;
2038 }
91b9a277 2039
cb7b593c 2040 /* Current node exhausted, pop back up */
b59cfbf7 2041 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2042 if (p) {
2043 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2044 tn = p;
2045 --iter->depth;
2046 goto rescan;
19baf839 2047 }
cb7b593c
SH
2048
2049 /* got root? */
2050 return NULL;
19baf839
RO
2051}
2052
cb7b593c
SH
2053static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2054 struct trie *t)
19baf839 2055{
5ddf0eb2
RO
2056 struct node *n ;
2057
132adf54 2058 if (!t)
5ddf0eb2
RO
2059 return NULL;
2060
2061 n = rcu_dereference(t->trie);
2062
132adf54 2063 if (!iter)
5ddf0eb2 2064 return NULL;
19baf839 2065
6640e697
EB
2066 if (n) {
2067 if (IS_TNODE(n)) {
2068 iter->tnode = (struct tnode *) n;
2069 iter->trie = t;
2070 iter->index = 0;
2071 iter->depth = 1;
2072 } else {
2073 iter->tnode = NULL;
2074 iter->trie = t;
2075 iter->index = 0;
2076 iter->depth = 0;
2077 }
cb7b593c 2078 return n;
91b9a277 2079 }
cb7b593c
SH
2080 return NULL;
2081}
91b9a277 2082
cb7b593c
SH
2083static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2084{
2085 struct node *n;
2086 struct fib_trie_iter iter;
91b9a277 2087
cb7b593c 2088 memset(s, 0, sizeof(*s));
91b9a277 2089
cb7b593c
SH
2090 rcu_read_lock();
2091 for (n = fib_trie_get_first(&iter, t); n;
2092 n = fib_trie_get_next(&iter)) {
2093 if (IS_LEAF(n)) {
93672292
SH
2094 struct leaf *l = (struct leaf *)n;
2095 struct leaf_info *li;
2096 struct hlist_node *tmp;
2097
cb7b593c
SH
2098 s->leaves++;
2099 s->totdepth += iter.depth;
2100 if (iter.depth > s->maxdepth)
2101 s->maxdepth = iter.depth;
93672292
SH
2102
2103 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2104 ++s->prefixes;
cb7b593c
SH
2105 } else {
2106 const struct tnode *tn = (const struct tnode *) n;
2107 int i;
2108
2109 s->tnodes++;
132adf54 2110 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2111 s->nodesizes[tn->bits]++;
2112
cb7b593c
SH
2113 for (i = 0; i < (1<<tn->bits); i++)
2114 if (!tn->child[i])
2115 s->nullpointers++;
19baf839 2116 }
19baf839 2117 }
2373ce1c 2118 rcu_read_unlock();
19baf839
RO
2119}
2120
cb7b593c
SH
2121/*
2122 * This outputs /proc/net/fib_triestats
2123 */
2124static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2125{
cb7b593c 2126 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2127
cb7b593c
SH
2128 if (stat->leaves)
2129 avdepth = stat->totdepth*100 / stat->leaves;
2130 else
2131 avdepth = 0;
91b9a277 2132
a07f5f50
SH
2133 seq_printf(seq, "\tAver depth: %u.%02d\n",
2134 avdepth / 100, avdepth % 100);
cb7b593c 2135 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2136
cb7b593c 2137 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2138 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2139
2140 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2141 bytes += sizeof(struct leaf_info) * stat->prefixes;
2142
187b5188 2143 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2144 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2145
06ef921d
RO
2146 max = MAX_STAT_DEPTH;
2147 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2148 max--;
19baf839 2149
cb7b593c
SH
2150 pointers = 0;
2151 for (i = 1; i <= max; i++)
2152 if (stat->nodesizes[i] != 0) {
187b5188 2153 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2154 pointers += (1<<i) * stat->nodesizes[i];
2155 }
2156 seq_putc(seq, '\n');
187b5188 2157 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2158
cb7b593c 2159 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2160 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2161 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2162}
2373ce1c 2163
cb7b593c 2164#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2165static void trie_show_usage(struct seq_file *seq,
2166 const struct trie_use_stats *stats)
2167{
2168 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2169 seq_printf(seq, "gets = %u\n", stats->gets);
2170 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2171 seq_printf(seq, "semantic match passed = %u\n",
2172 stats->semantic_match_passed);
2173 seq_printf(seq, "semantic match miss = %u\n",
2174 stats->semantic_match_miss);
2175 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2176 seq_printf(seq, "skipped node resize = %u\n\n",
2177 stats->resize_node_skipped);
cb7b593c 2178}
66a2f7fd
SH
2179#endif /* CONFIG_IP_FIB_TRIE_STATS */
2180
a07f5f50
SH
2181static void fib_trie_show(struct seq_file *seq, const char *name,
2182 struct trie *trie)
d717a9a6
SH
2183{
2184 struct trie_stat stat;
2185
d717a9a6 2186 trie_collect_stats(trie, &stat);
93672292 2187 seq_printf(seq, "%s:\n", name);
d717a9a6
SH
2188 trie_show_stats(seq, &stat);
2189#ifdef CONFIG_IP_FIB_TRIE_STATS
2190 trie_show_usage(seq, &trie->stats);
2191#endif
2192}
19baf839 2193
cb7b593c
SH
2194static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2195{
1c340b2f 2196 struct net *net = (struct net *)seq->private;
877a9bff
EB
2197 struct fib_table *tb;
2198
d717a9a6 2199 seq_printf(seq,
a07f5f50
SH
2200 "Basic info: size of leaf:"
2201 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2202 sizeof(struct leaf), sizeof(struct tnode));
2203
1c340b2f 2204 tb = fib_get_table(net, RT_TABLE_LOCAL);
877a9bff 2205 if (tb)
d717a9a6 2206 fib_trie_show(seq, "Local", (struct trie *) tb->tb_data);
877a9bff 2207
1c340b2f 2208 tb = fib_get_table(net, RT_TABLE_MAIN);
877a9bff 2209 if (tb)
d717a9a6 2210 fib_trie_show(seq, "Main", (struct trie *) tb->tb_data);
19baf839 2211
cb7b593c 2212 return 0;
19baf839
RO
2213}
2214
cb7b593c 2215static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2216{
1c340b2f
DL
2217 int err;
2218 struct net *net;
2219
2220 net = get_proc_net(inode);
2221 if (net == NULL)
2222 return -ENXIO;
2223 err = single_open(file, fib_triestat_seq_show, net);
2224 if (err < 0) {
2225 put_net(net);
2226 return err;
2227 }
2228 return 0;
2229}
2230
2231static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2232{
2233 struct seq_file *seq = f->private_data;
2234 put_net(seq->private);
2235 return single_release(ino, f);
19baf839
RO
2236}
2237
9a32144e 2238static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2239 .owner = THIS_MODULE,
2240 .open = fib_triestat_seq_open,
2241 .read = seq_read,
2242 .llseek = seq_lseek,
1c340b2f 2243 .release = fib_triestat_seq_release,
cb7b593c
SH
2244};
2245
2246static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2247 loff_t pos)
19baf839 2248{
cb7b593c
SH
2249 loff_t idx = 0;
2250 struct node *n;
2251
877a9bff 2252 for (n = fib_trie_get_first(iter, iter->trie_local);
cb7b593c
SH
2253 n; ++idx, n = fib_trie_get_next(iter)) {
2254 if (pos == idx)
2255 return n;
2256 }
2257
877a9bff 2258 for (n = fib_trie_get_first(iter, iter->trie_main);
cb7b593c
SH
2259 n; ++idx, n = fib_trie_get_next(iter)) {
2260 if (pos == idx)
2261 return n;
2262 }
19baf839
RO
2263 return NULL;
2264}
2265
cb7b593c 2266static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2267 __acquires(RCU)
19baf839 2268{
877a9bff
EB
2269 struct fib_trie_iter *iter = seq->private;
2270 struct fib_table *tb;
2271
2272 if (!iter->trie_local) {
1c340b2f 2273 tb = fib_get_table(iter->p.net, RT_TABLE_LOCAL);
877a9bff
EB
2274 if (tb)
2275 iter->trie_local = (struct trie *) tb->tb_data;
2276 }
2277 if (!iter->trie_main) {
1c340b2f 2278 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
877a9bff
EB
2279 if (tb)
2280 iter->trie_main = (struct trie *) tb->tb_data;
2281 }
cb7b593c
SH
2282 rcu_read_lock();
2283 if (*pos == 0)
91b9a277 2284 return SEQ_START_TOKEN;
877a9bff 2285 return fib_trie_get_idx(iter, *pos - 1);
19baf839
RO
2286}
2287
cb7b593c 2288static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2289{
cb7b593c
SH
2290 struct fib_trie_iter *iter = seq->private;
2291 void *l = v;
2292
19baf839 2293 ++*pos;
91b9a277 2294 if (v == SEQ_START_TOKEN)
cb7b593c 2295 return fib_trie_get_idx(iter, 0);
19baf839 2296
cb7b593c
SH
2297 v = fib_trie_get_next(iter);
2298 BUG_ON(v == l);
2299 if (v)
2300 return v;
19baf839 2301
cb7b593c 2302 /* continue scan in next trie */
877a9bff
EB
2303 if (iter->trie == iter->trie_local)
2304 return fib_trie_get_first(iter, iter->trie_main);
19baf839 2305
cb7b593c
SH
2306 return NULL;
2307}
19baf839 2308
cb7b593c 2309static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2310 __releases(RCU)
19baf839 2311{
cb7b593c
SH
2312 rcu_read_unlock();
2313}
91b9a277 2314
cb7b593c
SH
2315static void seq_indent(struct seq_file *seq, int n)
2316{
2317 while (n-- > 0) seq_puts(seq, " ");
2318}
19baf839 2319
28d36e37 2320static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2321{
132adf54 2322 switch (s) {
cb7b593c
SH
2323 case RT_SCOPE_UNIVERSE: return "universe";
2324 case RT_SCOPE_SITE: return "site";
2325 case RT_SCOPE_LINK: return "link";
2326 case RT_SCOPE_HOST: return "host";
2327 case RT_SCOPE_NOWHERE: return "nowhere";
2328 default:
28d36e37 2329 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2330 return buf;
2331 }
2332}
19baf839 2333
cb7b593c
SH
2334static const char *rtn_type_names[__RTN_MAX] = {
2335 [RTN_UNSPEC] = "UNSPEC",
2336 [RTN_UNICAST] = "UNICAST",
2337 [RTN_LOCAL] = "LOCAL",
2338 [RTN_BROADCAST] = "BROADCAST",
2339 [RTN_ANYCAST] = "ANYCAST",
2340 [RTN_MULTICAST] = "MULTICAST",
2341 [RTN_BLACKHOLE] = "BLACKHOLE",
2342 [RTN_UNREACHABLE] = "UNREACHABLE",
2343 [RTN_PROHIBIT] = "PROHIBIT",
2344 [RTN_THROW] = "THROW",
2345 [RTN_NAT] = "NAT",
2346 [RTN_XRESOLVE] = "XRESOLVE",
2347};
19baf839 2348
28d36e37 2349static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2350{
cb7b593c
SH
2351 if (t < __RTN_MAX && rtn_type_names[t])
2352 return rtn_type_names[t];
28d36e37 2353 snprintf(buf, len, "type %u", t);
cb7b593c 2354 return buf;
19baf839
RO
2355}
2356
cb7b593c
SH
2357/* Pretty print the trie */
2358static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2359{
cb7b593c
SH
2360 const struct fib_trie_iter *iter = seq->private;
2361 struct node *n = v;
c877efb2 2362
cb7b593c
SH
2363 if (v == SEQ_START_TOKEN)
2364 return 0;
19baf839 2365
b59cfbf7 2366 if (!node_parent_rcu(n)) {
877a9bff 2367 if (iter->trie == iter->trie_local)
095b8501
RO
2368 seq_puts(seq, "<local>:\n");
2369 else
2370 seq_puts(seq, "<main>:\n");
2371 }
2372
cb7b593c
SH
2373 if (IS_TNODE(n)) {
2374 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2375 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2376
1d25cd6c
RO
2377 seq_indent(seq, iter->depth-1);
2378 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
e905a9ed 2379 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
1d25cd6c 2380 tn->empty_children);
e905a9ed 2381
cb7b593c
SH
2382 } else {
2383 struct leaf *l = (struct leaf *) n;
1328042e
SH
2384 struct leaf_info *li;
2385 struct hlist_node *node;
32ab5f80 2386 __be32 val = htonl(l->key);
cb7b593c
SH
2387
2388 seq_indent(seq, iter->depth);
2389 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
1328042e
SH
2390
2391 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2392 struct fib_alias *fa;
2393
2394 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2395 char buf1[32], buf2[32];
2396
2397 seq_indent(seq, iter->depth+1);
2398 seq_printf(seq, " /%d %s %s", li->plen,
2399 rtn_scope(buf1, sizeof(buf1),
2400 fa->fa_scope),
2401 rtn_type(buf2, sizeof(buf2),
2402 fa->fa_type));
2403 if (fa->fa_tos)
2404 seq_printf(seq, "tos =%d\n",
2405 fa->fa_tos);
2406 seq_putc(seq, '\n');
cb7b593c
SH
2407 }
2408 }
19baf839 2409 }
cb7b593c 2410
19baf839
RO
2411 return 0;
2412}
2413
f690808e 2414static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2415 .start = fib_trie_seq_start,
2416 .next = fib_trie_seq_next,
2417 .stop = fib_trie_seq_stop,
2418 .show = fib_trie_seq_show,
19baf839
RO
2419};
2420
cb7b593c 2421static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2422{
1c340b2f
DL
2423 return seq_open_net(inode, file, &fib_trie_seq_ops,
2424 sizeof(struct fib_trie_iter));
19baf839
RO
2425}
2426
9a32144e 2427static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2428 .owner = THIS_MODULE,
2429 .open = fib_trie_seq_open,
2430 .read = seq_read,
2431 .llseek = seq_lseek,
1c340b2f 2432 .release = seq_release_net,
19baf839
RO
2433};
2434
32ab5f80 2435static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2436{
cb7b593c
SH
2437 static unsigned type2flags[RTN_MAX + 1] = {
2438 [7] = RTF_REJECT, [8] = RTF_REJECT,
2439 };
2440 unsigned flags = type2flags[type];
19baf839 2441
cb7b593c
SH
2442 if (fi && fi->fib_nh->nh_gw)
2443 flags |= RTF_GATEWAY;
32ab5f80 2444 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2445 flags |= RTF_HOST;
2446 flags |= RTF_UP;
2447 return flags;
19baf839
RO
2448}
2449
cb7b593c
SH
2450/*
2451 * This outputs /proc/net/route.
2452 * The format of the file is not supposed to be changed
2453 * and needs to be same as fib_hash output to avoid breaking
2454 * legacy utilities
2455 */
2456static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2457{
c9e53cbe 2458 const struct fib_trie_iter *iter = seq->private;
cb7b593c 2459 struct leaf *l = v;
1328042e
SH
2460 struct leaf_info *li;
2461 struct hlist_node *node;
19baf839 2462
cb7b593c
SH
2463 if (v == SEQ_START_TOKEN) {
2464 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2465 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2466 "\tWindow\tIRTT");
2467 return 0;
2468 }
19baf839 2469
877a9bff 2470 if (iter->trie == iter->trie_local)
c9e53cbe 2471 return 0;
a07f5f50 2472
cb7b593c
SH
2473 if (IS_TNODE(l))
2474 return 0;
19baf839 2475
1328042e 2476 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2477 struct fib_alias *fa;
32ab5f80 2478 __be32 mask, prefix;
91b9a277 2479
cb7b593c
SH
2480 mask = inet_make_mask(li->plen);
2481 prefix = htonl(l->key);
19baf839 2482
cb7b593c 2483 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2484 const struct fib_info *fi = fa->fa_info;
cb7b593c 2485 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
1328042e 2486 char bf[128];
19baf839 2487
cb7b593c
SH
2488 if (fa->fa_type == RTN_BROADCAST
2489 || fa->fa_type == RTN_MULTICAST)
2490 continue;
19baf839 2491
cb7b593c
SH
2492 if (fi)
2493 snprintf(bf, sizeof(bf),
2494 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2495 fi->fib_dev ? fi->fib_dev->name : "*",
2496 prefix,
2497 fi->fib_nh->nh_gw, flags, 0, 0,
2498 fi->fib_priority,
2499 mask,
a07f5f50
SH
2500 (fi->fib_advmss ?
2501 fi->fib_advmss + 40 : 0),
cb7b593c
SH
2502 fi->fib_window,
2503 fi->fib_rtt >> 3);
2504 else
2505 snprintf(bf, sizeof(bf),
2506 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2507 prefix, 0, flags, 0, 0, 0,
2508 mask, 0, 0, 0);
19baf839 2509
cb7b593c
SH
2510 seq_printf(seq, "%-127s\n", bf);
2511 }
19baf839
RO
2512 }
2513
2514 return 0;
2515}
2516
f690808e 2517static const struct seq_operations fib_route_seq_ops = {
cb7b593c
SH
2518 .start = fib_trie_seq_start,
2519 .next = fib_trie_seq_next,
2520 .stop = fib_trie_seq_stop,
2521 .show = fib_route_seq_show,
19baf839
RO
2522};
2523
cb7b593c 2524static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2525{
1c340b2f
DL
2526 return seq_open_net(inode, file, &fib_route_seq_ops,
2527 sizeof(struct fib_trie_iter));
19baf839
RO
2528}
2529
9a32144e 2530static const struct file_operations fib_route_fops = {
cb7b593c
SH
2531 .owner = THIS_MODULE,
2532 .open = fib_route_seq_open,
2533 .read = seq_read,
2534 .llseek = seq_lseek,
1c340b2f 2535 .release = seq_release_net,
19baf839
RO
2536};
2537
61a02653 2538int __net_init fib_proc_init(struct net *net)
19baf839 2539{
61a02653 2540 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2541 goto out1;
2542
61a02653
DL
2543 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2544 &fib_triestat_fops))
cb7b593c
SH
2545 goto out2;
2546
61a02653 2547 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2548 goto out3;
2549
19baf839 2550 return 0;
cb7b593c
SH
2551
2552out3:
61a02653 2553 proc_net_remove(net, "fib_triestat");
cb7b593c 2554out2:
61a02653 2555 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2556out1:
2557 return -ENOMEM;
19baf839
RO
2558}
2559
61a02653 2560void __net_exit fib_proc_exit(struct net *net)
19baf839 2561{
61a02653
DL
2562 proc_net_remove(net, "fib_trie");
2563 proc_net_remove(net, "fib_triestat");
2564 proc_net_remove(net, "route");
19baf839
RO
2565}
2566
2567#endif /* CONFIG_PROC_FS */
This page took 0.524322 seconds and 5 git commands to generate.