gre: allow live address change
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
06ef921d 84#define MAX_STAT_DEPTH 32
19baf839 85
19baf839 86#define KEYLENGTH (8*sizeof(t_key))
19baf839 87
19baf839
RO
88typedef unsigned int t_key;
89
90#define T_TNODE 0
91#define T_LEAF 1
92#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
91b9a277
OJ
95#define IS_TNODE(n) (!(n->parent & T_LEAF))
96#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839 97
b299e4f0 98struct rt_trie_node {
91b9a277 99 unsigned long parent;
8d965444 100 t_key key;
19baf839
RO
101};
102
103struct leaf {
91b9a277 104 unsigned long parent;
8d965444 105 t_key key;
19baf839 106 struct hlist_head list;
2373ce1c 107 struct rcu_head rcu;
19baf839
RO
108};
109
110struct leaf_info {
111 struct hlist_node hlist;
112 int plen;
5c74501f 113 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
19baf839 114 struct list_head falh;
5c74501f 115 struct rcu_head rcu;
19baf839
RO
116};
117
118struct tnode {
91b9a277 119 unsigned long parent;
8d965444 120 t_key key;
112d8cfc
ED
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
125 union {
126 struct rcu_head rcu;
e0f7cb8c 127 struct tnode *tnode_free;
15be75cd 128 };
0a5c0475 129 struct rt_trie_node __rcu *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
93672292 149 unsigned int prefixes;
06ef921d 150 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 151};
19baf839
RO
152
153struct trie {
0a5c0475 154 struct rt_trie_node __rcu *trie;
19baf839
RO
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157#endif
19baf839
RO
158};
159
b299e4f0 160static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 161 int wasfull);
b299e4f0 162static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
163static struct tnode *inflate(struct trie *t, struct tnode *tn);
164static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
165/* tnodes to free after resize(); protected by RTNL */
166static struct tnode *tnode_free_head;
c3059477
JP
167static size_t tnode_free_size;
168
169/*
170 * synchronize_rcu after call_rcu for that many pages; it should be especially
171 * useful before resizing the root node with PREEMPT_NONE configs; the value was
172 * obtained experimentally, aiming to avoid visible slowdown.
173 */
174static const int sync_pages = 128;
19baf839 175
e18b890b 176static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 177static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 178
0a5c0475
ED
179/*
180 * caller must hold RTNL
181 */
182static inline struct tnode *node_parent(const struct rt_trie_node *node)
06801916 183{
0a5c0475
ED
184 unsigned long parent;
185
186 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
187
188 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
b59cfbf7
ED
189}
190
0a5c0475
ED
191/*
192 * caller must hold RCU read lock or RTNL
193 */
194static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
b59cfbf7 195{
0a5c0475
ED
196 unsigned long parent;
197
198 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
199 lockdep_rtnl_is_held());
06801916 200
0a5c0475 201 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
06801916
SH
202}
203
cf778b00 204/* Same as rcu_assign_pointer
6440cc9e
SH
205 * but that macro() assumes that value is a pointer.
206 */
b299e4f0 207static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
06801916 208{
6440cc9e
SH
209 smp_wmb();
210 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 211}
2373ce1c 212
0a5c0475
ED
213/*
214 * caller must hold RTNL
215 */
216static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
b59cfbf7
ED
217{
218 BUG_ON(i >= 1U << tn->bits);
2373ce1c 219
0a5c0475 220 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
221}
222
0a5c0475
ED
223/*
224 * caller must hold RCU read lock or RTNL
225 */
226static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
19baf839 227{
0a5c0475 228 BUG_ON(i >= 1U << tn->bits);
19baf839 229
0a5c0475 230 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
231}
232
bb435b8d 233static inline int tnode_child_length(const struct tnode *tn)
19baf839 234{
91b9a277 235 return 1 << tn->bits;
19baf839
RO
236}
237
3b004569 238static inline t_key mask_pfx(t_key k, unsigned int l)
ab66b4a7
SH
239{
240 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
241}
242
3b004569 243static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
19baf839 244{
91b9a277 245 if (offset < KEYLENGTH)
19baf839 246 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 247 else
19baf839
RO
248 return 0;
249}
250
251static inline int tkey_equals(t_key a, t_key b)
252{
c877efb2 253 return a == b;
19baf839
RO
254}
255
256static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
257{
c877efb2
SH
258 if (bits == 0 || offset >= KEYLENGTH)
259 return 1;
91b9a277
OJ
260 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
261 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 262}
19baf839
RO
263
264static inline int tkey_mismatch(t_key a, int offset, t_key b)
265{
266 t_key diff = a ^ b;
267 int i = offset;
268
c877efb2
SH
269 if (!diff)
270 return 0;
271 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
272 i++;
273 return i;
274}
275
19baf839 276/*
e905a9ed
YH
277 To understand this stuff, an understanding of keys and all their bits is
278 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
279 all of the bits in that key are significant.
280
281 Consider a node 'n' and its parent 'tp'.
282
e905a9ed
YH
283 If n is a leaf, every bit in its key is significant. Its presence is
284 necessitated by path compression, since during a tree traversal (when
285 searching for a leaf - unless we are doing an insertion) we will completely
286 ignore all skipped bits we encounter. Thus we need to verify, at the end of
287 a potentially successful search, that we have indeed been walking the
19baf839
RO
288 correct key path.
289
e905a9ed
YH
290 Note that we can never "miss" the correct key in the tree if present by
291 following the wrong path. Path compression ensures that segments of the key
292 that are the same for all keys with a given prefix are skipped, but the
293 skipped part *is* identical for each node in the subtrie below the skipped
294 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
295 call to tkey_sub_equals() in trie_insert().
296
e905a9ed 297 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
298 have many different meanings.
299
e905a9ed 300 Example:
19baf839
RO
301 _________________________________________________________________
302 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
303 -----------------------------------------------------------------
e905a9ed 304 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
305
306 _________________________________________________________________
307 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
308 -----------------------------------------------------------------
309 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
310
311 tp->pos = 7
312 tp->bits = 3
313 n->pos = 15
91b9a277 314 n->bits = 4
19baf839 315
e905a9ed
YH
316 First, let's just ignore the bits that come before the parent tp, that is
317 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
318 not use them for anything.
319
320 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 321 index into the parent's child array. That is, they will be used to find
19baf839
RO
322 'n' among tp's children.
323
324 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
325 for the node n.
326
e905a9ed 327 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
328 of the bits are really not needed or indeed known in n->key.
329
e905a9ed 330 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 331 n's child array, and will of course be different for each child.
e905a9ed 332
c877efb2 333
19baf839
RO
334 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
335 at this point.
336
337*/
338
0c7770c7 339static inline void check_tnode(const struct tnode *tn)
19baf839 340{
0c7770c7 341 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
342}
343
f5026fab
DL
344static const int halve_threshold = 25;
345static const int inflate_threshold = 50;
345aa031 346static const int halve_threshold_root = 15;
80b71b80 347static const int inflate_threshold_root = 30;
2373ce1c
RO
348
349static void __alias_free_mem(struct rcu_head *head)
19baf839 350{
2373ce1c
RO
351 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
352 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
353}
354
2373ce1c 355static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 356{
2373ce1c
RO
357 call_rcu(&fa->rcu, __alias_free_mem);
358}
91b9a277 359
2373ce1c
RO
360static void __leaf_free_rcu(struct rcu_head *head)
361{
bc3c8c1e
SH
362 struct leaf *l = container_of(head, struct leaf, rcu);
363 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 364}
91b9a277 365
387a5487
SH
366static inline void free_leaf(struct leaf *l)
367{
0c03eca3 368 call_rcu(&l->rcu, __leaf_free_rcu);
387a5487
SH
369}
370
2373ce1c 371static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 372{
bceb0f45 373 kfree_rcu(leaf, rcu);
19baf839
RO
374}
375
8d965444 376static struct tnode *tnode_alloc(size_t size)
f0e36f8c 377{
2373ce1c 378 if (size <= PAGE_SIZE)
8d965444 379 return kzalloc(size, GFP_KERNEL);
15be75cd 380 else
7a1c8e5a 381 return vzalloc(size);
15be75cd 382}
2373ce1c 383
2373ce1c 384static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 385{
2373ce1c 386 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444 387 size_t size = sizeof(struct tnode) +
b299e4f0 388 (sizeof(struct rt_trie_node *) << tn->bits);
f0e36f8c
PM
389
390 if (size <= PAGE_SIZE)
391 kfree(tn);
00203563
AV
392 else
393 vfree(tn);
f0e36f8c
PM
394}
395
2373ce1c
RO
396static inline void tnode_free(struct tnode *tn)
397{
387a5487
SH
398 if (IS_LEAF(tn))
399 free_leaf((struct leaf *) tn);
400 else
550e29bc 401 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
402}
403
e0f7cb8c
JP
404static void tnode_free_safe(struct tnode *tn)
405{
406 BUG_ON(IS_LEAF(tn));
7b85576d
JP
407 tn->tnode_free = tnode_free_head;
408 tnode_free_head = tn;
c3059477 409 tnode_free_size += sizeof(struct tnode) +
b299e4f0 410 (sizeof(struct rt_trie_node *) << tn->bits);
e0f7cb8c
JP
411}
412
413static void tnode_free_flush(void)
414{
415 struct tnode *tn;
416
417 while ((tn = tnode_free_head)) {
418 tnode_free_head = tn->tnode_free;
419 tn->tnode_free = NULL;
420 tnode_free(tn);
421 }
c3059477
JP
422
423 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
424 tnode_free_size = 0;
425 synchronize_rcu();
426 }
e0f7cb8c
JP
427}
428
2373ce1c
RO
429static struct leaf *leaf_new(void)
430{
bc3c8c1e 431 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
432 if (l) {
433 l->parent = T_LEAF;
434 INIT_HLIST_HEAD(&l->list);
435 }
436 return l;
437}
438
439static struct leaf_info *leaf_info_new(int plen)
440{
441 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
442 if (li) {
443 li->plen = plen;
5c74501f 444 li->mask_plen = ntohl(inet_make_mask(plen));
2373ce1c
RO
445 INIT_LIST_HEAD(&li->falh);
446 }
447 return li;
448}
449
a07f5f50 450static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 451{
b299e4f0 452 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
f0e36f8c 453 struct tnode *tn = tnode_alloc(sz);
19baf839 454
91b9a277 455 if (tn) {
2373ce1c 456 tn->parent = T_TNODE;
19baf839
RO
457 tn->pos = pos;
458 tn->bits = bits;
459 tn->key = key;
460 tn->full_children = 0;
461 tn->empty_children = 1<<bits;
462 }
c877efb2 463
a034ee3c 464 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
4ea4bf7e 465 sizeof(struct rt_trie_node *) << bits);
19baf839
RO
466 return tn;
467}
468
19baf839
RO
469/*
470 * Check whether a tnode 'n' is "full", i.e. it is an internal node
471 * and no bits are skipped. See discussion in dyntree paper p. 6
472 */
473
b299e4f0 474static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
19baf839 475{
c877efb2 476 if (n == NULL || IS_LEAF(n))
19baf839
RO
477 return 0;
478
479 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
480}
481
61648d91 482static inline void put_child(struct tnode *tn, int i,
b299e4f0 483 struct rt_trie_node *n)
19baf839
RO
484{
485 tnode_put_child_reorg(tn, i, n, -1);
486}
487
c877efb2 488 /*
19baf839
RO
489 * Add a child at position i overwriting the old value.
490 * Update the value of full_children and empty_children.
491 */
492
b299e4f0 493static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 494 int wasfull)
19baf839 495{
0a5c0475 496 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
19baf839
RO
497 int isfull;
498
0c7770c7
SH
499 BUG_ON(i >= 1<<tn->bits);
500
19baf839
RO
501 /* update emptyChildren */
502 if (n == NULL && chi != NULL)
503 tn->empty_children++;
504 else if (n != NULL && chi == NULL)
505 tn->empty_children--;
c877efb2 506
19baf839 507 /* update fullChildren */
91b9a277 508 if (wasfull == -1)
19baf839
RO
509 wasfull = tnode_full(tn, chi);
510
511 isfull = tnode_full(tn, n);
c877efb2 512 if (wasfull && !isfull)
19baf839 513 tn->full_children--;
c877efb2 514 else if (!wasfull && isfull)
19baf839 515 tn->full_children++;
91b9a277 516
c877efb2 517 if (n)
06801916 518 node_set_parent(n, tn);
19baf839 519
cf778b00 520 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
521}
522
80b71b80 523#define MAX_WORK 10
b299e4f0 524static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
525{
526 int i;
2f80b3c8 527 struct tnode *old_tn;
e6308be8
RO
528 int inflate_threshold_use;
529 int halve_threshold_use;
80b71b80 530 int max_work;
19baf839 531
e905a9ed 532 if (!tn)
19baf839
RO
533 return NULL;
534
0c7770c7
SH
535 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
536 tn, inflate_threshold, halve_threshold);
19baf839
RO
537
538 /* No children */
539 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 540 tnode_free_safe(tn);
19baf839
RO
541 return NULL;
542 }
543 /* One child */
544 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 545 goto one_child;
c877efb2 546 /*
19baf839
RO
547 * Double as long as the resulting node has a number of
548 * nonempty nodes that are above the threshold.
549 */
550
551 /*
c877efb2
SH
552 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
553 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 554 * Telecommunications, page 6:
c877efb2 555 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
556 * children in the *doubled* node is at least 'high'."
557 *
c877efb2
SH
558 * 'high' in this instance is the variable 'inflate_threshold'. It
559 * is expressed as a percentage, so we multiply it with
560 * tnode_child_length() and instead of multiplying by 2 (since the
561 * child array will be doubled by inflate()) and multiplying
562 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 563 * multiply the left-hand side by 50.
c877efb2
SH
564 *
565 * The left-hand side may look a bit weird: tnode_child_length(tn)
566 * - tn->empty_children is of course the number of non-null children
567 * in the current node. tn->full_children is the number of "full"
19baf839 568 * children, that is non-null tnodes with a skip value of 0.
c877efb2 569 * All of those will be doubled in the resulting inflated tnode, so
19baf839 570 * we just count them one extra time here.
c877efb2 571 *
19baf839 572 * A clearer way to write this would be:
c877efb2 573 *
19baf839 574 * to_be_doubled = tn->full_children;
c877efb2 575 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
576 * tn->full_children;
577 *
578 * new_child_length = tnode_child_length(tn) * 2;
579 *
c877efb2 580 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
581 * new_child_length;
582 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
583 *
584 * ...and so on, tho it would mess up the while () loop.
585 *
19baf839
RO
586 * anyway,
587 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
588 * inflate_threshold
c877efb2 589 *
19baf839
RO
590 * avoid a division:
591 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
592 * inflate_threshold * new_child_length
c877efb2 593 *
19baf839 594 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 595 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 596 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 597 *
19baf839 598 * expand new_child_length:
c877efb2 599 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 600 * tn->full_children) >=
19baf839 601 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 602 *
19baf839 603 * shorten again:
c877efb2 604 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 605 * tn->empty_children) >= inflate_threshold *
19baf839 606 * tnode_child_length(tn)
c877efb2 607 *
19baf839
RO
608 */
609
610 check_tnode(tn);
c877efb2 611
e6308be8
RO
612 /* Keep root node larger */
613
b299e4f0 614 if (!node_parent((struct rt_trie_node *)tn)) {
80b71b80
JL
615 inflate_threshold_use = inflate_threshold_root;
616 halve_threshold_use = halve_threshold_root;
a034ee3c 617 } else {
e6308be8 618 inflate_threshold_use = inflate_threshold;
80b71b80
JL
619 halve_threshold_use = halve_threshold;
620 }
e6308be8 621
80b71b80
JL
622 max_work = MAX_WORK;
623 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
624 50 * (tn->full_children + tnode_child_length(tn)
625 - tn->empty_children)
626 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 627
2f80b3c8
RO
628 old_tn = tn;
629 tn = inflate(t, tn);
a07f5f50 630
2f80b3c8
RO
631 if (IS_ERR(tn)) {
632 tn = old_tn;
2f36895a
RO
633#ifdef CONFIG_IP_FIB_TRIE_STATS
634 t->stats.resize_node_skipped++;
635#endif
636 break;
637 }
19baf839
RO
638 }
639
640 check_tnode(tn);
641
80b71b80 642 /* Return if at least one inflate is run */
a034ee3c 643 if (max_work != MAX_WORK)
b299e4f0 644 return (struct rt_trie_node *) tn;
80b71b80 645
19baf839
RO
646 /*
647 * Halve as long as the number of empty children in this
648 * node is above threshold.
649 */
2f36895a 650
80b71b80
JL
651 max_work = MAX_WORK;
652 while (tn->bits > 1 && max_work-- &&
19baf839 653 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 654 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 655
2f80b3c8
RO
656 old_tn = tn;
657 tn = halve(t, tn);
658 if (IS_ERR(tn)) {
659 tn = old_tn;
2f36895a
RO
660#ifdef CONFIG_IP_FIB_TRIE_STATS
661 t->stats.resize_node_skipped++;
662#endif
663 break;
664 }
665 }
19baf839 666
c877efb2 667
19baf839 668 /* Only one child remains */
80b71b80
JL
669 if (tn->empty_children == tnode_child_length(tn) - 1) {
670one_child:
19baf839 671 for (i = 0; i < tnode_child_length(tn); i++) {
b299e4f0 672 struct rt_trie_node *n;
19baf839 673
0a5c0475 674 n = rtnl_dereference(tn->child[i]);
2373ce1c 675 if (!n)
91b9a277 676 continue;
91b9a277
OJ
677
678 /* compress one level */
679
06801916 680 node_set_parent(n, NULL);
e0f7cb8c 681 tnode_free_safe(tn);
91b9a277 682 return n;
19baf839 683 }
80b71b80 684 }
b299e4f0 685 return (struct rt_trie_node *) tn;
19baf839
RO
686}
687
0a5c0475
ED
688
689static void tnode_clean_free(struct tnode *tn)
690{
691 int i;
692 struct tnode *tofree;
693
694 for (i = 0; i < tnode_child_length(tn); i++) {
695 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
696 if (tofree)
697 tnode_free(tofree);
698 }
699 tnode_free(tn);
700}
701
2f80b3c8 702static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 703{
19baf839
RO
704 struct tnode *oldtnode = tn;
705 int olen = tnode_child_length(tn);
706 int i;
707
0c7770c7 708 pr_debug("In inflate\n");
19baf839
RO
709
710 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
711
0c7770c7 712 if (!tn)
2f80b3c8 713 return ERR_PTR(-ENOMEM);
2f36895a
RO
714
715 /*
c877efb2
SH
716 * Preallocate and store tnodes before the actual work so we
717 * don't get into an inconsistent state if memory allocation
718 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
719 * of tnode is ignored.
720 */
91b9a277
OJ
721
722 for (i = 0; i < olen; i++) {
a07f5f50 723 struct tnode *inode;
2f36895a 724
a07f5f50 725 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
726 if (inode &&
727 IS_TNODE(inode) &&
728 inode->pos == oldtnode->pos + oldtnode->bits &&
729 inode->bits > 1) {
730 struct tnode *left, *right;
ab66b4a7 731 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 732
2f36895a
RO
733 left = tnode_new(inode->key&(~m), inode->pos + 1,
734 inode->bits - 1);
2f80b3c8
RO
735 if (!left)
736 goto nomem;
91b9a277 737
2f36895a
RO
738 right = tnode_new(inode->key|m, inode->pos + 1,
739 inode->bits - 1);
740
e905a9ed 741 if (!right) {
2f80b3c8
RO
742 tnode_free(left);
743 goto nomem;
e905a9ed 744 }
2f36895a 745
61648d91
LM
746 put_child(tn, 2*i, (struct rt_trie_node *) left);
747 put_child(tn, 2*i+1, (struct rt_trie_node *) right);
2f36895a
RO
748 }
749 }
750
91b9a277 751 for (i = 0; i < olen; i++) {
c95aaf9a 752 struct tnode *inode;
b299e4f0 753 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
754 struct tnode *left, *right;
755 int size, j;
c877efb2 756
19baf839
RO
757 /* An empty child */
758 if (node == NULL)
759 continue;
760
761 /* A leaf or an internal node with skipped bits */
762
c877efb2 763 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 764 tn->pos + tn->bits - 1) {
bbe34cf8 765 put_child(tn,
766 tkey_extract_bits(node->key, oldtnode->pos, oldtnode->bits + 1),
767 node);
19baf839
RO
768 continue;
769 }
770
771 /* An internal node with two children */
772 inode = (struct tnode *) node;
773
774 if (inode->bits == 1) {
61648d91
LM
775 put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
776 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
19baf839 777
e0f7cb8c 778 tnode_free_safe(inode);
91b9a277 779 continue;
19baf839
RO
780 }
781
91b9a277
OJ
782 /* An internal node with more than two children */
783
784 /* We will replace this node 'inode' with two new
785 * ones, 'left' and 'right', each with half of the
786 * original children. The two new nodes will have
787 * a position one bit further down the key and this
788 * means that the "significant" part of their keys
789 * (see the discussion near the top of this file)
790 * will differ by one bit, which will be "0" in
791 * left's key and "1" in right's key. Since we are
792 * moving the key position by one step, the bit that
793 * we are moving away from - the bit at position
794 * (inode->pos) - is the one that will differ between
795 * left and right. So... we synthesize that bit in the
796 * two new keys.
797 * The mask 'm' below will be a single "one" bit at
798 * the position (inode->pos)
799 */
19baf839 800
91b9a277
OJ
801 /* Use the old key, but set the new significant
802 * bit to zero.
803 */
2f36895a 804
91b9a277 805 left = (struct tnode *) tnode_get_child(tn, 2*i);
61648d91 806 put_child(tn, 2*i, NULL);
2f36895a 807
91b9a277 808 BUG_ON(!left);
2f36895a 809
91b9a277 810 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
61648d91 811 put_child(tn, 2*i+1, NULL);
19baf839 812
91b9a277 813 BUG_ON(!right);
19baf839 814
91b9a277
OJ
815 size = tnode_child_length(left);
816 for (j = 0; j < size; j++) {
61648d91
LM
817 put_child(left, j, rtnl_dereference(inode->child[j]));
818 put_child(right, j, rtnl_dereference(inode->child[j + size]));
19baf839 819 }
61648d91
LM
820 put_child(tn, 2*i, resize(t, left));
821 put_child(tn, 2*i+1, resize(t, right));
91b9a277 822
e0f7cb8c 823 tnode_free_safe(inode);
19baf839 824 }
e0f7cb8c 825 tnode_free_safe(oldtnode);
19baf839 826 return tn;
2f80b3c8 827nomem:
0a5c0475
ED
828 tnode_clean_free(tn);
829 return ERR_PTR(-ENOMEM);
19baf839
RO
830}
831
2f80b3c8 832static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
833{
834 struct tnode *oldtnode = tn;
b299e4f0 835 struct rt_trie_node *left, *right;
19baf839
RO
836 int i;
837 int olen = tnode_child_length(tn);
838
0c7770c7 839 pr_debug("In halve\n");
c877efb2
SH
840
841 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 842
2f80b3c8
RO
843 if (!tn)
844 return ERR_PTR(-ENOMEM);
2f36895a
RO
845
846 /*
c877efb2
SH
847 * Preallocate and store tnodes before the actual work so we
848 * don't get into an inconsistent state if memory allocation
849 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
850 * of tnode is ignored.
851 */
852
91b9a277 853 for (i = 0; i < olen; i += 2) {
2f36895a
RO
854 left = tnode_get_child(oldtnode, i);
855 right = tnode_get_child(oldtnode, i+1);
c877efb2 856
2f36895a 857 /* Two nonempty children */
0c7770c7 858 if (left && right) {
2f80b3c8 859 struct tnode *newn;
0c7770c7 860
2f80b3c8 861 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
862
863 if (!newn)
2f80b3c8 864 goto nomem;
0c7770c7 865
61648d91 866 put_child(tn, i/2, (struct rt_trie_node *)newn);
2f36895a 867 }
2f36895a 868
2f36895a 869 }
19baf839 870
91b9a277
OJ
871 for (i = 0; i < olen; i += 2) {
872 struct tnode *newBinNode;
873
19baf839
RO
874 left = tnode_get_child(oldtnode, i);
875 right = tnode_get_child(oldtnode, i+1);
c877efb2 876
19baf839
RO
877 /* At least one of the children is empty */
878 if (left == NULL) {
879 if (right == NULL) /* Both are empty */
880 continue;
61648d91 881 put_child(tn, i/2, right);
91b9a277 882 continue;
0c7770c7 883 }
91b9a277
OJ
884
885 if (right == NULL) {
61648d91 886 put_child(tn, i/2, left);
91b9a277
OJ
887 continue;
888 }
c877efb2 889
19baf839 890 /* Two nonempty children */
91b9a277 891 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
61648d91
LM
892 put_child(tn, i/2, NULL);
893 put_child(newBinNode, 0, left);
894 put_child(newBinNode, 1, right);
895 put_child(tn, i/2, resize(t, newBinNode));
19baf839 896 }
e0f7cb8c 897 tnode_free_safe(oldtnode);
19baf839 898 return tn;
2f80b3c8 899nomem:
0a5c0475
ED
900 tnode_clean_free(tn);
901 return ERR_PTR(-ENOMEM);
19baf839
RO
902}
903
772cb712 904/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
905 via get_fa_head and dump */
906
772cb712 907static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 908{
772cb712 909 struct hlist_head *head = &l->list;
19baf839
RO
910 struct leaf_info *li;
911
b67bfe0d 912 hlist_for_each_entry_rcu(li, head, hlist)
c877efb2 913 if (li->plen == plen)
19baf839 914 return li;
91b9a277 915
19baf839
RO
916 return NULL;
917}
918
a07f5f50 919static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 920{
772cb712 921 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 922
91b9a277
OJ
923 if (!li)
924 return NULL;
c877efb2 925
91b9a277 926 return &li->falh;
19baf839
RO
927}
928
929static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
930{
e905a9ed 931 struct leaf_info *li = NULL, *last = NULL;
e905a9ed
YH
932
933 if (hlist_empty(head)) {
934 hlist_add_head_rcu(&new->hlist, head);
935 } else {
b67bfe0d 936 hlist_for_each_entry(li, head, hlist) {
e905a9ed
YH
937 if (new->plen > li->plen)
938 break;
939
940 last = li;
941 }
942 if (last)
1d023284 943 hlist_add_behind_rcu(&new->hlist, &last->hlist);
e905a9ed
YH
944 else
945 hlist_add_before_rcu(&new->hlist, &li->hlist);
946 }
19baf839
RO
947}
948
2373ce1c
RO
949/* rcu_read_lock needs to be hold by caller from readside */
950
19baf839
RO
951static struct leaf *
952fib_find_node(struct trie *t, u32 key)
953{
954 int pos;
955 struct tnode *tn;
b299e4f0 956 struct rt_trie_node *n;
19baf839
RO
957
958 pos = 0;
a034ee3c 959 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
960
961 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
962 tn = (struct tnode *) n;
91b9a277 963
19baf839 964 check_tnode(tn);
91b9a277 965
c877efb2 966 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 967 pos = tn->pos + tn->bits;
a07f5f50
SH
968 n = tnode_get_child_rcu(tn,
969 tkey_extract_bits(key,
970 tn->pos,
971 tn->bits));
91b9a277 972 } else
19baf839
RO
973 break;
974 }
975 /* Case we have found a leaf. Compare prefixes */
976
91b9a277
OJ
977 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
978 return (struct leaf *)n;
979
19baf839
RO
980 return NULL;
981}
982
7b85576d 983static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 984{
19baf839 985 int wasfull;
3ed18d76 986 t_key cindex, key;
06801916 987 struct tnode *tp;
19baf839 988
3ed18d76
RO
989 key = tn->key;
990
b299e4f0 991 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
19baf839
RO
992 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
993 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
e3192690 994 tn = (struct tnode *)resize(t, tn);
a07f5f50 995
e3192690 996 tnode_put_child_reorg(tp, cindex,
b299e4f0 997 (struct rt_trie_node *)tn, wasfull);
91b9a277 998
b299e4f0 999 tp = node_parent((struct rt_trie_node *) tn);
008440e3 1000 if (!tp)
cf778b00 1001 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
008440e3 1002
e0f7cb8c 1003 tnode_free_flush();
06801916 1004 if (!tp)
19baf839 1005 break;
06801916 1006 tn = tp;
19baf839 1007 }
06801916 1008
19baf839 1009 /* Handle last (top) tnode */
7b85576d 1010 if (IS_TNODE(tn))
e3192690 1011 tn = (struct tnode *)resize(t, tn);
19baf839 1012
cf778b00 1013 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
7b85576d 1014 tnode_free_flush();
19baf839
RO
1015}
1016
2373ce1c
RO
1017/* only used from updater-side */
1018
fea86ad8 1019static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1020{
1021 int pos, newpos;
1022 struct tnode *tp = NULL, *tn = NULL;
b299e4f0 1023 struct rt_trie_node *n;
19baf839
RO
1024 struct leaf *l;
1025 int missbit;
c877efb2 1026 struct list_head *fa_head = NULL;
19baf839
RO
1027 struct leaf_info *li;
1028 t_key cindex;
1029
1030 pos = 0;
0a5c0475 1031 n = rtnl_dereference(t->trie);
19baf839 1032
c877efb2
SH
1033 /* If we point to NULL, stop. Either the tree is empty and we should
1034 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1035 * and we should just put our new leaf in that.
c877efb2
SH
1036 * If we point to a T_TNODE, check if it matches our key. Note that
1037 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1038 * not be the parent's 'pos'+'bits'!
1039 *
c877efb2 1040 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1041 * the index from our key, push the T_TNODE and walk the tree.
1042 *
1043 * If it doesn't, we have to replace it with a new T_TNODE.
1044 *
c877efb2
SH
1045 * If we point to a T_LEAF, it might or might not have the same key
1046 * as we do. If it does, just change the value, update the T_LEAF's
1047 * value, and return it.
19baf839
RO
1048 * If it doesn't, we need to replace it with a T_TNODE.
1049 */
1050
1051 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1052 tn = (struct tnode *) n;
91b9a277 1053
c877efb2 1054 check_tnode(tn);
91b9a277 1055
c877efb2 1056 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1057 tp = tn;
91b9a277 1058 pos = tn->pos + tn->bits;
a07f5f50
SH
1059 n = tnode_get_child(tn,
1060 tkey_extract_bits(key,
1061 tn->pos,
1062 tn->bits));
19baf839 1063
06801916 1064 BUG_ON(n && node_parent(n) != tn);
91b9a277 1065 } else
19baf839
RO
1066 break;
1067 }
1068
1069 /*
1070 * n ----> NULL, LEAF or TNODE
1071 *
c877efb2 1072 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1073 */
1074
91b9a277 1075 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1076
1077 /* Case 1: n is a leaf. Compare prefixes */
1078
c877efb2 1079 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1080 l = (struct leaf *) n;
19baf839 1081 li = leaf_info_new(plen);
91b9a277 1082
fea86ad8
SH
1083 if (!li)
1084 return NULL;
19baf839
RO
1085
1086 fa_head = &li->falh;
1087 insert_leaf_info(&l->list, li);
1088 goto done;
1089 }
19baf839
RO
1090 l = leaf_new();
1091
fea86ad8
SH
1092 if (!l)
1093 return NULL;
19baf839
RO
1094
1095 l->key = key;
1096 li = leaf_info_new(plen);
1097
c877efb2 1098 if (!li) {
387a5487 1099 free_leaf(l);
fea86ad8 1100 return NULL;
f835e471 1101 }
19baf839
RO
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105
19baf839 1106 if (t->trie && n == NULL) {
91b9a277 1107 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1108
b299e4f0 1109 node_set_parent((struct rt_trie_node *)l, tp);
19baf839 1110
91b9a277 1111 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
61648d91 1112 put_child(tp, cindex, (struct rt_trie_node *)l);
91b9a277
OJ
1113 } else {
1114 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1115 /*
1116 * Add a new tnode here
19baf839
RO
1117 * first tnode need some special handling
1118 */
1119
c877efb2 1120 if (n) {
4c60f1d6 1121 pos = tp ? tp->pos+tp->bits : 0;
19baf839
RO
1122 newpos = tkey_mismatch(key, pos, n->key);
1123 tn = tnode_new(n->key, newpos, 1);
91b9a277 1124 } else {
19baf839 1125 newpos = 0;
c877efb2 1126 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1127 }
19baf839 1128
c877efb2 1129 if (!tn) {
f835e471 1130 free_leaf_info(li);
387a5487 1131 free_leaf(l);
fea86ad8 1132 return NULL;
91b9a277
OJ
1133 }
1134
b299e4f0 1135 node_set_parent((struct rt_trie_node *)tn, tp);
19baf839 1136
91b9a277 1137 missbit = tkey_extract_bits(key, newpos, 1);
61648d91
LM
1138 put_child(tn, missbit, (struct rt_trie_node *)l);
1139 put_child(tn, 1-missbit, n);
19baf839 1140
c877efb2 1141 if (tp) {
19baf839 1142 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
61648d91 1143 put_child(tp, cindex, (struct rt_trie_node *)tn);
91b9a277 1144 } else {
cf778b00 1145 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
19baf839 1146 }
e962f302
AD
1147
1148 tp = tn;
19baf839 1149 }
91b9a277
OJ
1150
1151 if (tp && tp->pos + tp->bits > 32)
058bd4d2
JP
1152 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1153 tp, tp->pos, tp->bits, key, plen);
91b9a277 1154
19baf839 1155 /* Rebalance the trie */
2373ce1c 1156
7b85576d 1157 trie_rebalance(t, tp);
f835e471 1158done:
19baf839
RO
1159 return fa_head;
1160}
1161
d562f1f8
RO
1162/*
1163 * Caller must hold RTNL.
1164 */
16c6cf8b 1165int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1166{
1167 struct trie *t = (struct trie *) tb->tb_data;
1168 struct fib_alias *fa, *new_fa;
c877efb2 1169 struct list_head *fa_head = NULL;
19baf839 1170 struct fib_info *fi;
4e902c57
TG
1171 int plen = cfg->fc_dst_len;
1172 u8 tos = cfg->fc_tos;
19baf839
RO
1173 u32 key, mask;
1174 int err;
1175 struct leaf *l;
1176
1177 if (plen > 32)
1178 return -EINVAL;
1179
4e902c57 1180 key = ntohl(cfg->fc_dst);
19baf839 1181
2dfe55b4 1182 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1183
91b9a277 1184 mask = ntohl(inet_make_mask(plen));
19baf839 1185
c877efb2 1186 if (key & ~mask)
19baf839
RO
1187 return -EINVAL;
1188
1189 key = key & mask;
1190
4e902c57
TG
1191 fi = fib_create_info(cfg);
1192 if (IS_ERR(fi)) {
1193 err = PTR_ERR(fi);
19baf839 1194 goto err;
4e902c57 1195 }
19baf839
RO
1196
1197 l = fib_find_node(t, key);
c877efb2 1198 fa = NULL;
19baf839 1199
c877efb2 1200 if (l) {
19baf839
RO
1201 fa_head = get_fa_head(l, plen);
1202 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1203 }
1204
1205 /* Now fa, if non-NULL, points to the first fib alias
1206 * with the same keys [prefix,tos,priority], if such key already
1207 * exists or to the node before which we will insert new one.
1208 *
1209 * If fa is NULL, we will need to allocate a new one and
1210 * insert to the head of f.
1211 *
1212 * If f is NULL, no fib node matched the destination key
1213 * and we need to allocate a new one of those as well.
1214 */
1215
936f6f8e
JA
1216 if (fa && fa->fa_tos == tos &&
1217 fa->fa_info->fib_priority == fi->fib_priority) {
1218 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1219
1220 err = -EEXIST;
4e902c57 1221 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1222 goto out;
1223
936f6f8e
JA
1224 /* We have 2 goals:
1225 * 1. Find exact match for type, scope, fib_info to avoid
1226 * duplicate routes
1227 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1228 */
1229 fa_match = NULL;
1230 fa_first = fa;
1231 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1232 list_for_each_entry_continue(fa, fa_head, fa_list) {
1233 if (fa->fa_tos != tos)
1234 break;
1235 if (fa->fa_info->fib_priority != fi->fib_priority)
1236 break;
1237 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1238 fa->fa_info == fi) {
1239 fa_match = fa;
1240 break;
1241 }
1242 }
1243
4e902c57 1244 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1245 struct fib_info *fi_drop;
1246 u8 state;
1247
936f6f8e
JA
1248 fa = fa_first;
1249 if (fa_match) {
1250 if (fa == fa_match)
1251 err = 0;
6725033f 1252 goto out;
936f6f8e 1253 }
2373ce1c 1254 err = -ENOBUFS;
e94b1766 1255 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1256 if (new_fa == NULL)
1257 goto out;
19baf839
RO
1258
1259 fi_drop = fa->fa_info;
2373ce1c
RO
1260 new_fa->fa_tos = fa->fa_tos;
1261 new_fa->fa_info = fi;
4e902c57 1262 new_fa->fa_type = cfg->fc_type;
19baf839 1263 state = fa->fa_state;
936f6f8e 1264 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1265
2373ce1c
RO
1266 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1267 alias_free_mem_rcu(fa);
19baf839
RO
1268
1269 fib_release_info(fi_drop);
1270 if (state & FA_S_ACCESSED)
4ccfe6d4 1271 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1272 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1273 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1274
91b9a277 1275 goto succeeded;
19baf839
RO
1276 }
1277 /* Error if we find a perfect match which
1278 * uses the same scope, type, and nexthop
1279 * information.
1280 */
936f6f8e
JA
1281 if (fa_match)
1282 goto out;
a07f5f50 1283
4e902c57 1284 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1285 fa = fa_first;
19baf839
RO
1286 }
1287 err = -ENOENT;
4e902c57 1288 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1289 goto out;
1290
1291 err = -ENOBUFS;
e94b1766 1292 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1293 if (new_fa == NULL)
1294 goto out;
1295
1296 new_fa->fa_info = fi;
1297 new_fa->fa_tos = tos;
4e902c57 1298 new_fa->fa_type = cfg->fc_type;
19baf839 1299 new_fa->fa_state = 0;
19baf839
RO
1300 /*
1301 * Insert new entry to the list.
1302 */
1303
c877efb2 1304 if (!fa_head) {
fea86ad8
SH
1305 fa_head = fib_insert_node(t, key, plen);
1306 if (unlikely(!fa_head)) {
1307 err = -ENOMEM;
f835e471 1308 goto out_free_new_fa;
fea86ad8 1309 }
f835e471 1310 }
19baf839 1311
21d8c49e
DM
1312 if (!plen)
1313 tb->tb_num_default++;
1314
2373ce1c
RO
1315 list_add_tail_rcu(&new_fa->fa_list,
1316 (fa ? &fa->fa_list : fa_head));
19baf839 1317
4ccfe6d4 1318 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1319 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1320 &cfg->fc_nlinfo, 0);
19baf839
RO
1321succeeded:
1322 return 0;
f835e471
RO
1323
1324out_free_new_fa:
1325 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1326out:
1327 fib_release_info(fi);
91b9a277 1328err:
19baf839
RO
1329 return err;
1330}
1331
772cb712 1332/* should be called with rcu_read_lock */
5b470441 1333static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
22bd5b9b 1334 t_key key, const struct flowi4 *flp,
ebc0ffae 1335 struct fib_result *res, int fib_flags)
19baf839 1336{
19baf839
RO
1337 struct leaf_info *li;
1338 struct hlist_head *hhead = &l->list;
c877efb2 1339
b67bfe0d 1340 hlist_for_each_entry_rcu(li, hhead, hlist) {
3be0686b 1341 struct fib_alias *fa;
a07f5f50 1342
5c74501f 1343 if (l->key != (key & li->mask_plen))
19baf839
RO
1344 continue;
1345
3be0686b
DM
1346 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1347 struct fib_info *fi = fa->fa_info;
1348 int nhsel, err;
a07f5f50 1349
22bd5b9b 1350 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
3be0686b 1351 continue;
dccd9ecc
DM
1352 if (fi->fib_dead)
1353 continue;
37e826c5 1354 if (fa->fa_info->fib_scope < flp->flowi4_scope)
3be0686b
DM
1355 continue;
1356 fib_alias_accessed(fa);
1357 err = fib_props[fa->fa_type].error;
1358 if (err) {
19baf839 1359#ifdef CONFIG_IP_FIB_TRIE_STATS
1fbc7843 1360 t->stats.semantic_match_passed++;
3be0686b 1361#endif
1fbc7843 1362 return err;
3be0686b
DM
1363 }
1364 if (fi->fib_flags & RTNH_F_DEAD)
1365 continue;
1366 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1367 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1368
1369 if (nh->nh_flags & RTNH_F_DEAD)
1370 continue;
22bd5b9b 1371 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
3be0686b
DM
1372 continue;
1373
1374#ifdef CONFIG_IP_FIB_TRIE_STATS
1375 t->stats.semantic_match_passed++;
1376#endif
5c74501f 1377 res->prefixlen = li->plen;
3be0686b
DM
1378 res->nh_sel = nhsel;
1379 res->type = fa->fa_type;
37e826c5 1380 res->scope = fa->fa_info->fib_scope;
3be0686b
DM
1381 res->fi = fi;
1382 res->table = tb;
1383 res->fa_head = &li->falh;
1384 if (!(fib_flags & FIB_LOOKUP_NOREF))
5c74501f 1385 atomic_inc(&fi->fib_clntref);
3be0686b
DM
1386 return 0;
1387 }
1388 }
1389
1390#ifdef CONFIG_IP_FIB_TRIE_STATS
1391 t->stats.semantic_match_miss++;
19baf839 1392#endif
19baf839 1393 }
a07f5f50 1394
2e655571 1395 return 1;
19baf839
RO
1396}
1397
22bd5b9b 1398int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1399 struct fib_result *res, int fib_flags)
19baf839
RO
1400{
1401 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1402 int ret;
b299e4f0 1403 struct rt_trie_node *n;
19baf839 1404 struct tnode *pn;
3b004569 1405 unsigned int pos, bits;
22bd5b9b 1406 t_key key = ntohl(flp->daddr);
3b004569 1407 unsigned int chopped_off;
19baf839 1408 t_key cindex = 0;
3b004569 1409 unsigned int current_prefix_length = KEYLENGTH;
91b9a277 1410 struct tnode *cn;
874ffa8f 1411 t_key pref_mismatch;
91b9a277 1412
2373ce1c 1413 rcu_read_lock();
91b9a277 1414
2373ce1c 1415 n = rcu_dereference(t->trie);
c877efb2 1416 if (!n)
19baf839
RO
1417 goto failed;
1418
1419#ifdef CONFIG_IP_FIB_TRIE_STATS
1420 t->stats.gets++;
1421#endif
1422
1423 /* Just a leaf? */
1424 if (IS_LEAF(n)) {
5b470441 1425 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1426 goto found;
19baf839 1427 }
a07f5f50 1428
19baf839
RO
1429 pn = (struct tnode *) n;
1430 chopped_off = 0;
c877efb2 1431
91b9a277 1432 while (pn) {
19baf839
RO
1433 pos = pn->pos;
1434 bits = pn->bits;
1435
c877efb2 1436 if (!chopped_off)
ab66b4a7
SH
1437 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1438 pos, bits);
19baf839 1439
b902e573 1440 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1441
1442 if (n == NULL) {
1443#ifdef CONFIG_IP_FIB_TRIE_STATS
1444 t->stats.null_node_hit++;
1445#endif
1446 goto backtrace;
1447 }
1448
91b9a277 1449 if (IS_LEAF(n)) {
5b470441 1450 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1451 if (ret > 0)
91b9a277 1452 goto backtrace;
a07f5f50 1453 goto found;
91b9a277
OJ
1454 }
1455
91b9a277 1456 cn = (struct tnode *)n;
19baf839 1457
91b9a277
OJ
1458 /*
1459 * It's a tnode, and we can do some extra checks here if we
1460 * like, to avoid descending into a dead-end branch.
1461 * This tnode is in the parent's child array at index
1462 * key[p_pos..p_pos+p_bits] but potentially with some bits
1463 * chopped off, so in reality the index may be just a
1464 * subprefix, padded with zero at the end.
1465 * We can also take a look at any skipped bits in this
1466 * tnode - everything up to p_pos is supposed to be ok,
1467 * and the non-chopped bits of the index (se previous
1468 * paragraph) are also guaranteed ok, but the rest is
1469 * considered unknown.
1470 *
1471 * The skipped bits are key[pos+bits..cn->pos].
1472 */
19baf839 1473
91b9a277
OJ
1474 /* If current_prefix_length < pos+bits, we are already doing
1475 * actual prefix matching, which means everything from
1476 * pos+(bits-chopped_off) onward must be zero along some
1477 * branch of this subtree - otherwise there is *no* valid
1478 * prefix present. Here we can only check the skipped
1479 * bits. Remember, since we have already indexed into the
1480 * parent's child array, we know that the bits we chopped of
1481 * *are* zero.
1482 */
19baf839 1483
a07f5f50
SH
1484 /* NOTA BENE: Checking only skipped bits
1485 for the new node here */
19baf839 1486
91b9a277
OJ
1487 if (current_prefix_length < pos+bits) {
1488 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1489 cn->pos - current_prefix_length)
1490 || !(cn->child[0]))
91b9a277
OJ
1491 goto backtrace;
1492 }
19baf839 1493
91b9a277
OJ
1494 /*
1495 * If chopped_off=0, the index is fully validated and we
1496 * only need to look at the skipped bits for this, the new,
1497 * tnode. What we actually want to do is to find out if
1498 * these skipped bits match our key perfectly, or if we will
1499 * have to count on finding a matching prefix further down,
1500 * because if we do, we would like to have some way of
1501 * verifying the existence of such a prefix at this point.
1502 */
19baf839 1503
91b9a277
OJ
1504 /* The only thing we can do at this point is to verify that
1505 * any such matching prefix can indeed be a prefix to our
1506 * key, and if the bits in the node we are inspecting that
1507 * do not match our key are not ZERO, this cannot be true.
1508 * Thus, find out where there is a mismatch (before cn->pos)
1509 * and verify that all the mismatching bits are zero in the
1510 * new tnode's key.
1511 */
19baf839 1512
a07f5f50
SH
1513 /*
1514 * Note: We aren't very concerned about the piece of
1515 * the key that precede pn->pos+pn->bits, since these
1516 * have already been checked. The bits after cn->pos
1517 * aren't checked since these are by definition
1518 * "unknown" at this point. Thus, what we want to see
1519 * is if we are about to enter the "prefix matching"
1520 * state, and in that case verify that the skipped
1521 * bits that will prevail throughout this subtree are
1522 * zero, as they have to be if we are to find a
1523 * matching prefix.
91b9a277
OJ
1524 */
1525
874ffa8f 1526 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1527
a07f5f50
SH
1528 /*
1529 * In short: If skipped bits in this node do not match
1530 * the search key, enter the "prefix matching"
1531 * state.directly.
91b9a277
OJ
1532 */
1533 if (pref_mismatch) {
79cda75a
ED
1534 /* fls(x) = __fls(x) + 1 */
1535 int mp = KEYLENGTH - __fls(pref_mismatch) - 1;
91b9a277 1536
874ffa8f 1537 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1538 goto backtrace;
1539
1540 if (current_prefix_length >= cn->pos)
1541 current_prefix_length = mp;
c877efb2 1542 }
a07f5f50 1543
91b9a277
OJ
1544 pn = (struct tnode *)n; /* Descend */
1545 chopped_off = 0;
1546 continue;
1547
19baf839
RO
1548backtrace:
1549 chopped_off++;
1550
1551 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1552 while ((chopped_off <= pn->bits)
1553 && !(cindex & (1<<(chopped_off-1))))
19baf839 1554 chopped_off++;
19baf839
RO
1555
1556 /* Decrease current_... with bits chopped off */
1557 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1558 current_prefix_length = pn->pos + pn->bits
1559 - chopped_off;
91b9a277 1560
19baf839 1561 /*
c877efb2 1562 * Either we do the actual chop off according or if we have
19baf839
RO
1563 * chopped off all bits in this tnode walk up to our parent.
1564 */
1565
91b9a277 1566 if (chopped_off <= pn->bits) {
19baf839 1567 cindex &= ~(1 << (chopped_off-1));
91b9a277 1568 } else {
b299e4f0 1569 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
06801916 1570 if (!parent)
19baf839 1571 goto failed;
91b9a277 1572
19baf839 1573 /* Get Child's index */
06801916
SH
1574 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1575 pn = parent;
19baf839
RO
1576 chopped_off = 0;
1577
1578#ifdef CONFIG_IP_FIB_TRIE_STATS
1579 t->stats.backtrack++;
1580#endif
1581 goto backtrace;
c877efb2 1582 }
19baf839
RO
1583 }
1584failed:
c877efb2 1585 ret = 1;
19baf839 1586found:
2373ce1c 1587 rcu_read_unlock();
19baf839
RO
1588 return ret;
1589}
6fc01438 1590EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1591
9195bef7
SH
1592/*
1593 * Remove the leaf and return parent.
1594 */
1595static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1596{
b299e4f0 1597 struct tnode *tp = node_parent((struct rt_trie_node *) l);
c877efb2 1598
9195bef7 1599 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1600
c877efb2 1601 if (tp) {
9195bef7 1602 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
61648d91 1603 put_child(tp, cindex, NULL);
7b85576d 1604 trie_rebalance(t, tp);
91b9a277 1605 } else
a9b3cd7f 1606 RCU_INIT_POINTER(t->trie, NULL);
19baf839 1607
387a5487 1608 free_leaf(l);
19baf839
RO
1609}
1610
d562f1f8
RO
1611/*
1612 * Caller must hold RTNL.
1613 */
16c6cf8b 1614int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1615{
1616 struct trie *t = (struct trie *) tb->tb_data;
1617 u32 key, mask;
4e902c57
TG
1618 int plen = cfg->fc_dst_len;
1619 u8 tos = cfg->fc_tos;
19baf839
RO
1620 struct fib_alias *fa, *fa_to_delete;
1621 struct list_head *fa_head;
1622 struct leaf *l;
91b9a277
OJ
1623 struct leaf_info *li;
1624
c877efb2 1625 if (plen > 32)
19baf839
RO
1626 return -EINVAL;
1627
4e902c57 1628 key = ntohl(cfg->fc_dst);
91b9a277 1629 mask = ntohl(inet_make_mask(plen));
19baf839 1630
c877efb2 1631 if (key & ~mask)
19baf839
RO
1632 return -EINVAL;
1633
1634 key = key & mask;
1635 l = fib_find_node(t, key);
1636
c877efb2 1637 if (!l)
19baf839
RO
1638 return -ESRCH;
1639
ad5b3102
IM
1640 li = find_leaf_info(l, plen);
1641
1642 if (!li)
1643 return -ESRCH;
1644
1645 fa_head = &li->falh;
19baf839
RO
1646 fa = fib_find_alias(fa_head, tos, 0);
1647
1648 if (!fa)
1649 return -ESRCH;
1650
0c7770c7 1651 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1652
1653 fa_to_delete = NULL;
936f6f8e
JA
1654 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1655 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1656 struct fib_info *fi = fa->fa_info;
1657
1658 if (fa->fa_tos != tos)
1659 break;
1660
4e902c57
TG
1661 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1662 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1663 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1664 (!cfg->fc_prefsrc ||
1665 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1666 (!cfg->fc_protocol ||
1667 fi->fib_protocol == cfg->fc_protocol) &&
1668 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1669 fa_to_delete = fa;
1670 break;
1671 }
1672 }
1673
91b9a277
OJ
1674 if (!fa_to_delete)
1675 return -ESRCH;
19baf839 1676
91b9a277 1677 fa = fa_to_delete;
4e902c57 1678 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1679 &cfg->fc_nlinfo, 0);
91b9a277 1680
2373ce1c 1681 list_del_rcu(&fa->fa_list);
19baf839 1682
21d8c49e
DM
1683 if (!plen)
1684 tb->tb_num_default--;
1685
91b9a277 1686 if (list_empty(fa_head)) {
2373ce1c 1687 hlist_del_rcu(&li->hlist);
91b9a277 1688 free_leaf_info(li);
2373ce1c 1689 }
19baf839 1690
91b9a277 1691 if (hlist_empty(&l->list))
9195bef7 1692 trie_leaf_remove(t, l);
19baf839 1693
91b9a277 1694 if (fa->fa_state & FA_S_ACCESSED)
4ccfe6d4 1695 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1696
2373ce1c
RO
1697 fib_release_info(fa->fa_info);
1698 alias_free_mem_rcu(fa);
91b9a277 1699 return 0;
19baf839
RO
1700}
1701
ef3660ce 1702static int trie_flush_list(struct list_head *head)
19baf839
RO
1703{
1704 struct fib_alias *fa, *fa_node;
1705 int found = 0;
1706
1707 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1708 struct fib_info *fi = fa->fa_info;
19baf839 1709
2373ce1c
RO
1710 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1711 list_del_rcu(&fa->fa_list);
1712 fib_release_info(fa->fa_info);
1713 alias_free_mem_rcu(fa);
19baf839
RO
1714 found++;
1715 }
1716 }
1717 return found;
1718}
1719
ef3660ce 1720static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1721{
1722 int found = 0;
1723 struct hlist_head *lih = &l->list;
b67bfe0d 1724 struct hlist_node *tmp;
19baf839
RO
1725 struct leaf_info *li = NULL;
1726
b67bfe0d 1727 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
ef3660ce 1728 found += trie_flush_list(&li->falh);
19baf839
RO
1729
1730 if (list_empty(&li->falh)) {
2373ce1c 1731 hlist_del_rcu(&li->hlist);
19baf839
RO
1732 free_leaf_info(li);
1733 }
1734 }
1735 return found;
1736}
1737
82cfbb00
SH
1738/*
1739 * Scan for the next right leaf starting at node p->child[idx]
1740 * Since we have back pointer, no recursion necessary.
1741 */
b299e4f0 1742static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
19baf839 1743{
82cfbb00
SH
1744 do {
1745 t_key idx;
c877efb2 1746
c877efb2 1747 if (c)
82cfbb00 1748 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1749 else
82cfbb00 1750 idx = 0;
2373ce1c 1751
82cfbb00
SH
1752 while (idx < 1u << p->bits) {
1753 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1754 if (!c)
91b9a277
OJ
1755 continue;
1756
aab515d7 1757 if (IS_LEAF(c))
82cfbb00 1758 return (struct leaf *) c;
82cfbb00
SH
1759
1760 /* Rescan start scanning in new node */
1761 p = (struct tnode *) c;
1762 idx = 0;
19baf839 1763 }
82cfbb00
SH
1764
1765 /* Node empty, walk back up to parent */
b299e4f0 1766 c = (struct rt_trie_node *) p;
a034ee3c 1767 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1768
1769 return NULL; /* Root of trie */
1770}
1771
82cfbb00
SH
1772static struct leaf *trie_firstleaf(struct trie *t)
1773{
a034ee3c 1774 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1775
1776 if (!n)
1777 return NULL;
1778
1779 if (IS_LEAF(n)) /* trie is just a leaf */
1780 return (struct leaf *) n;
1781
1782 return leaf_walk_rcu(n, NULL);
1783}
1784
1785static struct leaf *trie_nextleaf(struct leaf *l)
1786{
b299e4f0 1787 struct rt_trie_node *c = (struct rt_trie_node *) l;
b902e573 1788 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1789
1790 if (!p)
1791 return NULL; /* trie with just one leaf */
1792
1793 return leaf_walk_rcu(p, c);
19baf839
RO
1794}
1795
71d67e66
SH
1796static struct leaf *trie_leafindex(struct trie *t, int index)
1797{
1798 struct leaf *l = trie_firstleaf(t);
1799
ec28cf73 1800 while (l && index-- > 0)
71d67e66 1801 l = trie_nextleaf(l);
ec28cf73 1802
71d67e66
SH
1803 return l;
1804}
1805
1806
d562f1f8
RO
1807/*
1808 * Caller must hold RTNL.
1809 */
16c6cf8b 1810int fib_table_flush(struct fib_table *tb)
19baf839
RO
1811{
1812 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1813 struct leaf *l, *ll = NULL;
82cfbb00 1814 int found = 0;
19baf839 1815
82cfbb00 1816 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1817 found += trie_flush_leaf(l);
19baf839
RO
1818
1819 if (ll && hlist_empty(&ll->list))
9195bef7 1820 trie_leaf_remove(t, ll);
19baf839
RO
1821 ll = l;
1822 }
1823
1824 if (ll && hlist_empty(&ll->list))
9195bef7 1825 trie_leaf_remove(t, ll);
19baf839 1826
0c7770c7 1827 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1828 return found;
1829}
1830
4aa2c466
PE
1831void fib_free_table(struct fib_table *tb)
1832{
1833 kfree(tb);
1834}
1835
a07f5f50
SH
1836static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1837 struct fib_table *tb,
19baf839
RO
1838 struct sk_buff *skb, struct netlink_callback *cb)
1839{
1840 int i, s_i;
1841 struct fib_alias *fa;
32ab5f80 1842 __be32 xkey = htonl(key);
19baf839 1843
71d67e66 1844 s_i = cb->args[5];
19baf839
RO
1845 i = 0;
1846
2373ce1c
RO
1847 /* rcu_read_lock is hold by caller */
1848
1849 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1850 if (i < s_i) {
1851 i++;
1852 continue;
1853 }
19baf839 1854
15e47304 1855 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1856 cb->nlh->nlmsg_seq,
1857 RTM_NEWROUTE,
1858 tb->tb_id,
1859 fa->fa_type,
be403ea1 1860 xkey,
19baf839
RO
1861 plen,
1862 fa->fa_tos,
64347f78 1863 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1864 cb->args[5] = i;
19baf839 1865 return -1;
91b9a277 1866 }
19baf839
RO
1867 i++;
1868 }
71d67e66 1869 cb->args[5] = i;
19baf839
RO
1870 return skb->len;
1871}
1872
a88ee229
SH
1873static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1874 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1875{
a88ee229 1876 struct leaf_info *li;
a88ee229 1877 int i, s_i;
19baf839 1878
71d67e66 1879 s_i = cb->args[4];
a88ee229 1880 i = 0;
19baf839 1881
a88ee229 1882 /* rcu_read_lock is hold by caller */
b67bfe0d 1883 hlist_for_each_entry_rcu(li, &l->list, hlist) {
a88ee229
SH
1884 if (i < s_i) {
1885 i++;
19baf839 1886 continue;
a88ee229 1887 }
91b9a277 1888
a88ee229 1889 if (i > s_i)
71d67e66 1890 cb->args[5] = 0;
19baf839 1891
a88ee229 1892 if (list_empty(&li->falh))
19baf839
RO
1893 continue;
1894
a88ee229 1895 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1896 cb->args[4] = i;
19baf839
RO
1897 return -1;
1898 }
a88ee229 1899 i++;
19baf839 1900 }
a88ee229 1901
71d67e66 1902 cb->args[4] = i;
19baf839
RO
1903 return skb->len;
1904}
1905
16c6cf8b
SH
1906int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1907 struct netlink_callback *cb)
19baf839 1908{
a88ee229 1909 struct leaf *l;
19baf839 1910 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1911 t_key key = cb->args[2];
71d67e66 1912 int count = cb->args[3];
19baf839 1913
2373ce1c 1914 rcu_read_lock();
d5ce8a0e
SH
1915 /* Dump starting at last key.
1916 * Note: 0.0.0.0/0 (ie default) is first key.
1917 */
71d67e66 1918 if (count == 0)
d5ce8a0e
SH
1919 l = trie_firstleaf(t);
1920 else {
71d67e66
SH
1921 /* Normally, continue from last key, but if that is missing
1922 * fallback to using slow rescan
1923 */
d5ce8a0e 1924 l = fib_find_node(t, key);
71d67e66
SH
1925 if (!l)
1926 l = trie_leafindex(t, count);
d5ce8a0e 1927 }
a88ee229 1928
d5ce8a0e
SH
1929 while (l) {
1930 cb->args[2] = l->key;
a88ee229 1931 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1932 cb->args[3] = count;
a88ee229 1933 rcu_read_unlock();
a88ee229 1934 return -1;
19baf839 1935 }
d5ce8a0e 1936
71d67e66 1937 ++count;
d5ce8a0e 1938 l = trie_nextleaf(l);
71d67e66
SH
1939 memset(&cb->args[4], 0,
1940 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1941 }
71d67e66 1942 cb->args[3] = count;
2373ce1c 1943 rcu_read_unlock();
a88ee229 1944
19baf839 1945 return skb->len;
19baf839
RO
1946}
1947
5348ba85 1948void __init fib_trie_init(void)
7f9b8052 1949{
a07f5f50
SH
1950 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1951 sizeof(struct fib_alias),
bc3c8c1e
SH
1952 0, SLAB_PANIC, NULL);
1953
1954 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1955 max(sizeof(struct leaf),
1956 sizeof(struct leaf_info)),
1957 0, SLAB_PANIC, NULL);
7f9b8052 1958}
19baf839 1959
7f9b8052 1960
5348ba85 1961struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1962{
1963 struct fib_table *tb;
1964 struct trie *t;
1965
19baf839
RO
1966 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1967 GFP_KERNEL);
1968 if (tb == NULL)
1969 return NULL;
1970
1971 tb->tb_id = id;
971b893e 1972 tb->tb_default = -1;
21d8c49e 1973 tb->tb_num_default = 0;
19baf839
RO
1974
1975 t = (struct trie *) tb->tb_data;
c28a1cf4 1976 memset(t, 0, sizeof(*t));
19baf839 1977
19baf839
RO
1978 return tb;
1979}
1980
cb7b593c
SH
1981#ifdef CONFIG_PROC_FS
1982/* Depth first Trie walk iterator */
1983struct fib_trie_iter {
1c340b2f 1984 struct seq_net_private p;
3d3b2d25 1985 struct fib_table *tb;
cb7b593c 1986 struct tnode *tnode;
a034ee3c
ED
1987 unsigned int index;
1988 unsigned int depth;
cb7b593c 1989};
19baf839 1990
b299e4f0 1991static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1992{
cb7b593c 1993 struct tnode *tn = iter->tnode;
a034ee3c 1994 unsigned int cindex = iter->index;
cb7b593c 1995 struct tnode *p;
19baf839 1996
6640e697
EB
1997 /* A single entry routing table */
1998 if (!tn)
1999 return NULL;
2000
cb7b593c
SH
2001 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2002 iter->tnode, iter->index, iter->depth);
2003rescan:
2004 while (cindex < (1<<tn->bits)) {
b299e4f0 2005 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2006
cb7b593c
SH
2007 if (n) {
2008 if (IS_LEAF(n)) {
2009 iter->tnode = tn;
2010 iter->index = cindex + 1;
2011 } else {
2012 /* push down one level */
2013 iter->tnode = (struct tnode *) n;
2014 iter->index = 0;
2015 ++iter->depth;
2016 }
2017 return n;
2018 }
19baf839 2019
cb7b593c
SH
2020 ++cindex;
2021 }
91b9a277 2022
cb7b593c 2023 /* Current node exhausted, pop back up */
b299e4f0 2024 p = node_parent_rcu((struct rt_trie_node *)tn);
cb7b593c
SH
2025 if (p) {
2026 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2027 tn = p;
2028 --iter->depth;
2029 goto rescan;
19baf839 2030 }
cb7b593c
SH
2031
2032 /* got root? */
2033 return NULL;
19baf839
RO
2034}
2035
b299e4f0 2036static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 2037 struct trie *t)
19baf839 2038{
b299e4f0 2039 struct rt_trie_node *n;
5ddf0eb2 2040
132adf54 2041 if (!t)
5ddf0eb2
RO
2042 return NULL;
2043
2044 n = rcu_dereference(t->trie);
3d3b2d25 2045 if (!n)
5ddf0eb2 2046 return NULL;
19baf839 2047
3d3b2d25
SH
2048 if (IS_TNODE(n)) {
2049 iter->tnode = (struct tnode *) n;
2050 iter->index = 0;
2051 iter->depth = 1;
2052 } else {
2053 iter->tnode = NULL;
2054 iter->index = 0;
2055 iter->depth = 0;
91b9a277 2056 }
3d3b2d25
SH
2057
2058 return n;
cb7b593c 2059}
91b9a277 2060
cb7b593c
SH
2061static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2062{
b299e4f0 2063 struct rt_trie_node *n;
cb7b593c 2064 struct fib_trie_iter iter;
91b9a277 2065
cb7b593c 2066 memset(s, 0, sizeof(*s));
91b9a277 2067
cb7b593c 2068 rcu_read_lock();
3d3b2d25 2069 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2070 if (IS_LEAF(n)) {
93672292
SH
2071 struct leaf *l = (struct leaf *)n;
2072 struct leaf_info *li;
93672292 2073
cb7b593c
SH
2074 s->leaves++;
2075 s->totdepth += iter.depth;
2076 if (iter.depth > s->maxdepth)
2077 s->maxdepth = iter.depth;
93672292 2078
b67bfe0d 2079 hlist_for_each_entry_rcu(li, &l->list, hlist)
93672292 2080 ++s->prefixes;
cb7b593c
SH
2081 } else {
2082 const struct tnode *tn = (const struct tnode *) n;
2083 int i;
2084
2085 s->tnodes++;
132adf54 2086 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2087 s->nodesizes[tn->bits]++;
2088
cb7b593c
SH
2089 for (i = 0; i < (1<<tn->bits); i++)
2090 if (!tn->child[i])
2091 s->nullpointers++;
19baf839 2092 }
19baf839 2093 }
2373ce1c 2094 rcu_read_unlock();
19baf839
RO
2095}
2096
cb7b593c
SH
2097/*
2098 * This outputs /proc/net/fib_triestats
2099 */
2100static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2101{
a034ee3c 2102 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2103
cb7b593c
SH
2104 if (stat->leaves)
2105 avdepth = stat->totdepth*100 / stat->leaves;
2106 else
2107 avdepth = 0;
91b9a277 2108
a07f5f50
SH
2109 seq_printf(seq, "\tAver depth: %u.%02d\n",
2110 avdepth / 100, avdepth % 100);
cb7b593c 2111 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2112
cb7b593c 2113 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2114 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2115
2116 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2117 bytes += sizeof(struct leaf_info) * stat->prefixes;
2118
187b5188 2119 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2120 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2121
06ef921d
RO
2122 max = MAX_STAT_DEPTH;
2123 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2124 max--;
19baf839 2125
cb7b593c 2126 pointers = 0;
f585a991 2127 for (i = 1; i < max; i++)
cb7b593c 2128 if (stat->nodesizes[i] != 0) {
187b5188 2129 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2130 pointers += (1<<i) * stat->nodesizes[i];
2131 }
2132 seq_putc(seq, '\n');
187b5188 2133 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2134
b299e4f0 2135 bytes += sizeof(struct rt_trie_node *) * pointers;
187b5188
SH
2136 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2137 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2138}
2373ce1c 2139
cb7b593c 2140#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2141static void trie_show_usage(struct seq_file *seq,
2142 const struct trie_use_stats *stats)
2143{
2144 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2145 seq_printf(seq, "gets = %u\n", stats->gets);
2146 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2147 seq_printf(seq, "semantic match passed = %u\n",
2148 stats->semantic_match_passed);
2149 seq_printf(seq, "semantic match miss = %u\n",
2150 stats->semantic_match_miss);
2151 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2152 seq_printf(seq, "skipped node resize = %u\n\n",
2153 stats->resize_node_skipped);
cb7b593c 2154}
66a2f7fd
SH
2155#endif /* CONFIG_IP_FIB_TRIE_STATS */
2156
3d3b2d25 2157static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2158{
3d3b2d25
SH
2159 if (tb->tb_id == RT_TABLE_LOCAL)
2160 seq_puts(seq, "Local:\n");
2161 else if (tb->tb_id == RT_TABLE_MAIN)
2162 seq_puts(seq, "Main:\n");
2163 else
2164 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2165}
19baf839 2166
3d3b2d25 2167
cb7b593c
SH
2168static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2169{
1c340b2f 2170 struct net *net = (struct net *)seq->private;
3d3b2d25 2171 unsigned int h;
877a9bff 2172
d717a9a6 2173 seq_printf(seq,
a07f5f50
SH
2174 "Basic info: size of leaf:"
2175 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2176 sizeof(struct leaf), sizeof(struct tnode));
2177
3d3b2d25
SH
2178 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2179 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2180 struct fib_table *tb;
2181
b67bfe0d 2182 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2183 struct trie *t = (struct trie *) tb->tb_data;
2184 struct trie_stat stat;
877a9bff 2185
3d3b2d25
SH
2186 if (!t)
2187 continue;
2188
2189 fib_table_print(seq, tb);
2190
2191 trie_collect_stats(t, &stat);
2192 trie_show_stats(seq, &stat);
2193#ifdef CONFIG_IP_FIB_TRIE_STATS
2194 trie_show_usage(seq, &t->stats);
2195#endif
2196 }
2197 }
19baf839 2198
cb7b593c 2199 return 0;
19baf839
RO
2200}
2201
cb7b593c 2202static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2203{
de05c557 2204 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2205}
2206
9a32144e 2207static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2208 .owner = THIS_MODULE,
2209 .open = fib_triestat_seq_open,
2210 .read = seq_read,
2211 .llseek = seq_lseek,
b6fcbdb4 2212 .release = single_release_net,
cb7b593c
SH
2213};
2214
b299e4f0 2215static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2216{
1218854a
YH
2217 struct fib_trie_iter *iter = seq->private;
2218 struct net *net = seq_file_net(seq);
cb7b593c 2219 loff_t idx = 0;
3d3b2d25 2220 unsigned int h;
cb7b593c 2221
3d3b2d25
SH
2222 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2223 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2224 struct fib_table *tb;
cb7b593c 2225
b67bfe0d 2226 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
b299e4f0 2227 struct rt_trie_node *n;
3d3b2d25
SH
2228
2229 for (n = fib_trie_get_first(iter,
2230 (struct trie *) tb->tb_data);
2231 n; n = fib_trie_get_next(iter))
2232 if (pos == idx++) {
2233 iter->tb = tb;
2234 return n;
2235 }
2236 }
cb7b593c 2237 }
3d3b2d25 2238
19baf839
RO
2239 return NULL;
2240}
2241
cb7b593c 2242static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2243 __acquires(RCU)
19baf839 2244{
cb7b593c 2245 rcu_read_lock();
1218854a 2246 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2247}
2248
cb7b593c 2249static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2250{
cb7b593c 2251 struct fib_trie_iter *iter = seq->private;
1218854a 2252 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2253 struct fib_table *tb = iter->tb;
2254 struct hlist_node *tb_node;
2255 unsigned int h;
b299e4f0 2256 struct rt_trie_node *n;
cb7b593c 2257
19baf839 2258 ++*pos;
3d3b2d25
SH
2259 /* next node in same table */
2260 n = fib_trie_get_next(iter);
2261 if (n)
2262 return n;
19baf839 2263
3d3b2d25
SH
2264 /* walk rest of this hash chain */
2265 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2266 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2267 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2268 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2269 if (n)
2270 goto found;
2271 }
19baf839 2272
3d3b2d25
SH
2273 /* new hash chain */
2274 while (++h < FIB_TABLE_HASHSZ) {
2275 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2276 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2277 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2278 if (n)
2279 goto found;
2280 }
2281 }
cb7b593c 2282 return NULL;
3d3b2d25
SH
2283
2284found:
2285 iter->tb = tb;
2286 return n;
cb7b593c 2287}
19baf839 2288
cb7b593c 2289static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2290 __releases(RCU)
19baf839 2291{
cb7b593c
SH
2292 rcu_read_unlock();
2293}
91b9a277 2294
cb7b593c
SH
2295static void seq_indent(struct seq_file *seq, int n)
2296{
a034ee3c
ED
2297 while (n-- > 0)
2298 seq_puts(seq, " ");
cb7b593c 2299}
19baf839 2300
28d36e37 2301static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2302{
132adf54 2303 switch (s) {
cb7b593c
SH
2304 case RT_SCOPE_UNIVERSE: return "universe";
2305 case RT_SCOPE_SITE: return "site";
2306 case RT_SCOPE_LINK: return "link";
2307 case RT_SCOPE_HOST: return "host";
2308 case RT_SCOPE_NOWHERE: return "nowhere";
2309 default:
28d36e37 2310 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2311 return buf;
2312 }
2313}
19baf839 2314
36cbd3dc 2315static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2316 [RTN_UNSPEC] = "UNSPEC",
2317 [RTN_UNICAST] = "UNICAST",
2318 [RTN_LOCAL] = "LOCAL",
2319 [RTN_BROADCAST] = "BROADCAST",
2320 [RTN_ANYCAST] = "ANYCAST",
2321 [RTN_MULTICAST] = "MULTICAST",
2322 [RTN_BLACKHOLE] = "BLACKHOLE",
2323 [RTN_UNREACHABLE] = "UNREACHABLE",
2324 [RTN_PROHIBIT] = "PROHIBIT",
2325 [RTN_THROW] = "THROW",
2326 [RTN_NAT] = "NAT",
2327 [RTN_XRESOLVE] = "XRESOLVE",
2328};
19baf839 2329
a034ee3c 2330static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2331{
cb7b593c
SH
2332 if (t < __RTN_MAX && rtn_type_names[t])
2333 return rtn_type_names[t];
28d36e37 2334 snprintf(buf, len, "type %u", t);
cb7b593c 2335 return buf;
19baf839
RO
2336}
2337
cb7b593c
SH
2338/* Pretty print the trie */
2339static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2340{
cb7b593c 2341 const struct fib_trie_iter *iter = seq->private;
b299e4f0 2342 struct rt_trie_node *n = v;
c877efb2 2343
3d3b2d25
SH
2344 if (!node_parent_rcu(n))
2345 fib_table_print(seq, iter->tb);
095b8501 2346
cb7b593c
SH
2347 if (IS_TNODE(n)) {
2348 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2349 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2350
1d25cd6c 2351 seq_indent(seq, iter->depth-1);
673d57e7
HH
2352 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2353 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2354 tn->empty_children);
e905a9ed 2355
cb7b593c
SH
2356 } else {
2357 struct leaf *l = (struct leaf *) n;
1328042e 2358 struct leaf_info *li;
32ab5f80 2359 __be32 val = htonl(l->key);
cb7b593c
SH
2360
2361 seq_indent(seq, iter->depth);
673d57e7 2362 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2363
b67bfe0d 2364 hlist_for_each_entry_rcu(li, &l->list, hlist) {
1328042e
SH
2365 struct fib_alias *fa;
2366
2367 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2368 char buf1[32], buf2[32];
2369
2370 seq_indent(seq, iter->depth+1);
2371 seq_printf(seq, " /%d %s %s", li->plen,
2372 rtn_scope(buf1, sizeof(buf1),
37e826c5 2373 fa->fa_info->fib_scope),
1328042e
SH
2374 rtn_type(buf2, sizeof(buf2),
2375 fa->fa_type));
2376 if (fa->fa_tos)
b9c4d82a 2377 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2378 seq_putc(seq, '\n');
cb7b593c
SH
2379 }
2380 }
19baf839 2381 }
cb7b593c 2382
19baf839
RO
2383 return 0;
2384}
2385
f690808e 2386static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2387 .start = fib_trie_seq_start,
2388 .next = fib_trie_seq_next,
2389 .stop = fib_trie_seq_stop,
2390 .show = fib_trie_seq_show,
19baf839
RO
2391};
2392
cb7b593c 2393static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2394{
1c340b2f
DL
2395 return seq_open_net(inode, file, &fib_trie_seq_ops,
2396 sizeof(struct fib_trie_iter));
19baf839
RO
2397}
2398
9a32144e 2399static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2400 .owner = THIS_MODULE,
2401 .open = fib_trie_seq_open,
2402 .read = seq_read,
2403 .llseek = seq_lseek,
1c340b2f 2404 .release = seq_release_net,
19baf839
RO
2405};
2406
8315f5d8
SH
2407struct fib_route_iter {
2408 struct seq_net_private p;
2409 struct trie *main_trie;
2410 loff_t pos;
2411 t_key key;
2412};
2413
2414static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2415{
2416 struct leaf *l = NULL;
2417 struct trie *t = iter->main_trie;
2418
2419 /* use cache location of last found key */
2420 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2421 pos -= iter->pos;
2422 else {
2423 iter->pos = 0;
2424 l = trie_firstleaf(t);
2425 }
2426
2427 while (l && pos-- > 0) {
2428 iter->pos++;
2429 l = trie_nextleaf(l);
2430 }
2431
2432 if (l)
2433 iter->key = pos; /* remember it */
2434 else
2435 iter->pos = 0; /* forget it */
2436
2437 return l;
2438}
2439
2440static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2441 __acquires(RCU)
2442{
2443 struct fib_route_iter *iter = seq->private;
2444 struct fib_table *tb;
2445
2446 rcu_read_lock();
1218854a 2447 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2448 if (!tb)
2449 return NULL;
2450
2451 iter->main_trie = (struct trie *) tb->tb_data;
2452 if (*pos == 0)
2453 return SEQ_START_TOKEN;
2454 else
2455 return fib_route_get_idx(iter, *pos - 1);
2456}
2457
2458static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2459{
2460 struct fib_route_iter *iter = seq->private;
2461 struct leaf *l = v;
2462
2463 ++*pos;
2464 if (v == SEQ_START_TOKEN) {
2465 iter->pos = 0;
2466 l = trie_firstleaf(iter->main_trie);
2467 } else {
2468 iter->pos++;
2469 l = trie_nextleaf(l);
2470 }
2471
2472 if (l)
2473 iter->key = l->key;
2474 else
2475 iter->pos = 0;
2476 return l;
2477}
2478
2479static void fib_route_seq_stop(struct seq_file *seq, void *v)
2480 __releases(RCU)
2481{
2482 rcu_read_unlock();
2483}
2484
a034ee3c 2485static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2486{
a034ee3c 2487 unsigned int flags = 0;
19baf839 2488
a034ee3c
ED
2489 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2490 flags = RTF_REJECT;
cb7b593c
SH
2491 if (fi && fi->fib_nh->nh_gw)
2492 flags |= RTF_GATEWAY;
32ab5f80 2493 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2494 flags |= RTF_HOST;
2495 flags |= RTF_UP;
2496 return flags;
19baf839
RO
2497}
2498
cb7b593c
SH
2499/*
2500 * This outputs /proc/net/route.
2501 * The format of the file is not supposed to be changed
a034ee3c 2502 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2503 * legacy utilities
2504 */
2505static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2506{
cb7b593c 2507 struct leaf *l = v;
1328042e 2508 struct leaf_info *li;
19baf839 2509
cb7b593c
SH
2510 if (v == SEQ_START_TOKEN) {
2511 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2512 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2513 "\tWindow\tIRTT");
2514 return 0;
2515 }
19baf839 2516
b67bfe0d 2517 hlist_for_each_entry_rcu(li, &l->list, hlist) {
cb7b593c 2518 struct fib_alias *fa;
32ab5f80 2519 __be32 mask, prefix;
91b9a277 2520
cb7b593c
SH
2521 mask = inet_make_mask(li->plen);
2522 prefix = htonl(l->key);
19baf839 2523
cb7b593c 2524 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2525 const struct fib_info *fi = fa->fa_info;
a034ee3c 2526 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2527
cb7b593c
SH
2528 if (fa->fa_type == RTN_BROADCAST
2529 || fa->fa_type == RTN_MULTICAST)
2530 continue;
19baf839 2531
652586df
TH
2532 seq_setwidth(seq, 127);
2533
cb7b593c 2534 if (fi)
5e659e4c
PE
2535 seq_printf(seq,
2536 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
652586df 2537 "%d\t%08X\t%d\t%u\t%u",
cb7b593c
SH
2538 fi->fib_dev ? fi->fib_dev->name : "*",
2539 prefix,
2540 fi->fib_nh->nh_gw, flags, 0, 0,
2541 fi->fib_priority,
2542 mask,
a07f5f50
SH
2543 (fi->fib_advmss ?
2544 fi->fib_advmss + 40 : 0),
cb7b593c 2545 fi->fib_window,
652586df 2546 fi->fib_rtt >> 3);
cb7b593c 2547 else
5e659e4c
PE
2548 seq_printf(seq,
2549 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
652586df 2550 "%d\t%08X\t%d\t%u\t%u",
cb7b593c 2551 prefix, 0, flags, 0, 0, 0,
652586df 2552 mask, 0, 0, 0);
19baf839 2553
652586df 2554 seq_pad(seq, '\n');
cb7b593c 2555 }
19baf839
RO
2556 }
2557
2558 return 0;
2559}
2560
f690808e 2561static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2562 .start = fib_route_seq_start,
2563 .next = fib_route_seq_next,
2564 .stop = fib_route_seq_stop,
cb7b593c 2565 .show = fib_route_seq_show,
19baf839
RO
2566};
2567
cb7b593c 2568static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2569{
1c340b2f 2570 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2571 sizeof(struct fib_route_iter));
19baf839
RO
2572}
2573
9a32144e 2574static const struct file_operations fib_route_fops = {
cb7b593c
SH
2575 .owner = THIS_MODULE,
2576 .open = fib_route_seq_open,
2577 .read = seq_read,
2578 .llseek = seq_lseek,
1c340b2f 2579 .release = seq_release_net,
19baf839
RO
2580};
2581
61a02653 2582int __net_init fib_proc_init(struct net *net)
19baf839 2583{
d4beaa66 2584 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2585 goto out1;
2586
d4beaa66
G
2587 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2588 &fib_triestat_fops))
cb7b593c
SH
2589 goto out2;
2590
d4beaa66 2591 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2592 goto out3;
2593
19baf839 2594 return 0;
cb7b593c
SH
2595
2596out3:
ece31ffd 2597 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2598out2:
ece31ffd 2599 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2600out1:
2601 return -ENOMEM;
19baf839
RO
2602}
2603
61a02653 2604void __net_exit fib_proc_exit(struct net *net)
19baf839 2605{
ece31ffd
G
2606 remove_proc_entry("fib_trie", net->proc_net);
2607 remove_proc_entry("fib_triestat", net->proc_net);
2608 remove_proc_entry("route", net->proc_net);
19baf839
RO
2609}
2610
2611#endif /* CONFIG_PROC_FS */
This page took 0.988649 seconds and 5 git commands to generate.