fib_trie: Fib find node should return parent
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
06ef921d 84#define MAX_STAT_DEPTH 32
19baf839 85
95f60ea3
AD
86#define KEYLENGTH (8*sizeof(t_key))
87#define KEY_MAX ((t_key)~0)
19baf839 88
19baf839
RO
89typedef unsigned int t_key;
90
64c9b6fb
AD
91#define IS_TNODE(n) ((n)->bits)
92#define IS_LEAF(n) (!(n)->bits)
2373ce1c 93
e9b44019 94#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
9f9e636d 95
64c9b6fb
AD
96struct tnode {
97 t_key key;
98 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
99 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
5405afd1 100 unsigned char slen;
64c9b6fb 101 struct tnode __rcu *parent;
37fd30f2 102 struct rcu_head rcu;
adaf9816
AD
103 union {
104 /* The fields in this struct are valid if bits > 0 (TNODE) */
105 struct {
95f60ea3
AD
106 t_key empty_children; /* KEYLENGTH bits needed */
107 t_key full_children; /* KEYLENGTH bits needed */
adaf9816
AD
108 struct tnode __rcu *child[0];
109 };
110 /* This list pointer if valid if bits == 0 (LEAF) */
79e5ad2c 111 struct hlist_head leaf;
adaf9816 112 };
19baf839
RO
113};
114
19baf839
RO
115#ifdef CONFIG_IP_FIB_TRIE_STATS
116struct trie_use_stats {
117 unsigned int gets;
118 unsigned int backtrack;
119 unsigned int semantic_match_passed;
120 unsigned int semantic_match_miss;
121 unsigned int null_node_hit;
2f36895a 122 unsigned int resize_node_skipped;
19baf839
RO
123};
124#endif
125
126struct trie_stat {
127 unsigned int totdepth;
128 unsigned int maxdepth;
129 unsigned int tnodes;
130 unsigned int leaves;
131 unsigned int nullpointers;
93672292 132 unsigned int prefixes;
06ef921d 133 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 134};
19baf839
RO
135
136struct trie {
adaf9816 137 struct tnode __rcu *trie;
19baf839 138#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 139 struct trie_use_stats __percpu *stats;
19baf839 140#endif
19baf839
RO
141};
142
ff181ed8 143static void resize(struct trie *t, struct tnode *tn);
c3059477
JP
144static size_t tnode_free_size;
145
146/*
147 * synchronize_rcu after call_rcu for that many pages; it should be especially
148 * useful before resizing the root node with PREEMPT_NONE configs; the value was
149 * obtained experimentally, aiming to avoid visible slowdown.
150 */
151static const int sync_pages = 128;
19baf839 152
e18b890b 153static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 154static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 155
64c9b6fb
AD
156/* caller must hold RTNL */
157#define node_parent(n) rtnl_dereference((n)->parent)
0a5c0475 158
64c9b6fb
AD
159/* caller must hold RCU read lock or RTNL */
160#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
0a5c0475 161
64c9b6fb 162/* wrapper for rcu_assign_pointer */
adaf9816 163static inline void node_set_parent(struct tnode *n, struct tnode *tp)
b59cfbf7 164{
adaf9816
AD
165 if (n)
166 rcu_assign_pointer(n->parent, tp);
06801916
SH
167}
168
64c9b6fb
AD
169#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
170
171/* This provides us with the number of children in this node, in the case of a
172 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 173 */
98293e8d 174static inline unsigned long tnode_child_length(const struct tnode *tn)
06801916 175{
64c9b6fb 176 return (1ul << tn->bits) & ~(1ul);
06801916 177}
2373ce1c 178
98293e8d
AD
179/* caller must hold RTNL */
180static inline struct tnode *tnode_get_child(const struct tnode *tn,
181 unsigned long i)
b59cfbf7 182{
0a5c0475 183 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
184}
185
98293e8d
AD
186/* caller must hold RCU read lock or RTNL */
187static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
188 unsigned long i)
19baf839 189{
0a5c0475 190 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
191}
192
e9b44019
AD
193/* To understand this stuff, an understanding of keys and all their bits is
194 * necessary. Every node in the trie has a key associated with it, but not
195 * all of the bits in that key are significant.
196 *
197 * Consider a node 'n' and its parent 'tp'.
198 *
199 * If n is a leaf, every bit in its key is significant. Its presence is
200 * necessitated by path compression, since during a tree traversal (when
201 * searching for a leaf - unless we are doing an insertion) we will completely
202 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
203 * a potentially successful search, that we have indeed been walking the
204 * correct key path.
205 *
206 * Note that we can never "miss" the correct key in the tree if present by
207 * following the wrong path. Path compression ensures that segments of the key
208 * that are the same for all keys with a given prefix are skipped, but the
209 * skipped part *is* identical for each node in the subtrie below the skipped
210 * bit! trie_insert() in this implementation takes care of that.
211 *
212 * if n is an internal node - a 'tnode' here, the various parts of its key
213 * have many different meanings.
214 *
215 * Example:
216 * _________________________________________________________________
217 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
218 * -----------------------------------------------------------------
219 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
220 *
221 * _________________________________________________________________
222 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
223 * -----------------------------------------------------------------
224 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
225 *
226 * tp->pos = 22
227 * tp->bits = 3
228 * n->pos = 13
229 * n->bits = 4
230 *
231 * First, let's just ignore the bits that come before the parent tp, that is
232 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
233 * point we do not use them for anything.
234 *
235 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
236 * index into the parent's child array. That is, they will be used to find
237 * 'n' among tp's children.
238 *
239 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
240 * for the node n.
241 *
242 * All the bits we have seen so far are significant to the node n. The rest
243 * of the bits are really not needed or indeed known in n->key.
244 *
245 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
246 * n's child array, and will of course be different for each child.
247 *
248 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
249 * at this point.
250 */
19baf839 251
f5026fab
DL
252static const int halve_threshold = 25;
253static const int inflate_threshold = 50;
345aa031 254static const int halve_threshold_root = 15;
80b71b80 255static const int inflate_threshold_root = 30;
2373ce1c
RO
256
257static void __alias_free_mem(struct rcu_head *head)
19baf839 258{
2373ce1c
RO
259 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
260 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
261}
262
2373ce1c 263static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 264{
2373ce1c
RO
265 call_rcu(&fa->rcu, __alias_free_mem);
266}
91b9a277 267
37fd30f2 268#define TNODE_KMALLOC_MAX \
adaf9816 269 ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
91b9a277 270
37fd30f2 271static void __node_free_rcu(struct rcu_head *head)
387a5487 272{
adaf9816 273 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2
AD
274
275 if (IS_LEAF(n))
276 kmem_cache_free(trie_leaf_kmem, n);
277 else if (n->bits <= TNODE_KMALLOC_MAX)
278 kfree(n);
279 else
280 vfree(n);
387a5487
SH
281}
282
37fd30f2
AD
283#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
284
8d965444 285static struct tnode *tnode_alloc(size_t size)
f0e36f8c 286{
2373ce1c 287 if (size <= PAGE_SIZE)
8d965444 288 return kzalloc(size, GFP_KERNEL);
15be75cd 289 else
7a1c8e5a 290 return vzalloc(size);
15be75cd 291}
2373ce1c 292
95f60ea3
AD
293static inline void empty_child_inc(struct tnode *n)
294{
295 ++n->empty_children ? : ++n->full_children;
296}
297
298static inline void empty_child_dec(struct tnode *n)
299{
300 n->empty_children-- ? : n->full_children--;
301}
302
adaf9816 303static struct tnode *leaf_new(t_key key)
2373ce1c 304{
adaf9816 305 struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c 306 if (l) {
64c9b6fb
AD
307 l->parent = NULL;
308 /* set key and pos to reflect full key value
309 * any trailing zeros in the key should be ignored
310 * as the nodes are searched
311 */
312 l->key = key;
5405afd1 313 l->slen = 0;
e9b44019 314 l->pos = 0;
64c9b6fb
AD
315 /* set bits to 0 indicating we are not a tnode */
316 l->bits = 0;
317
79e5ad2c 318 INIT_HLIST_HEAD(&l->leaf);
2373ce1c
RO
319 }
320 return l;
321}
322
a07f5f50 323static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 324{
95f60ea3 325 size_t sz = offsetof(struct tnode, child[1ul << bits]);
f0e36f8c 326 struct tnode *tn = tnode_alloc(sz);
64c9b6fb
AD
327 unsigned int shift = pos + bits;
328
329 /* verify bits and pos their msb bits clear and values are valid */
330 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 331
91b9a277 332 if (tn) {
64c9b6fb 333 tn->parent = NULL;
5405afd1 334 tn->slen = pos;
19baf839
RO
335 tn->pos = pos;
336 tn->bits = bits;
e9b44019 337 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
95f60ea3
AD
338 if (bits == KEYLENGTH)
339 tn->full_children = 1;
340 else
341 tn->empty_children = 1ul << bits;
19baf839 342 }
c877efb2 343
a034ee3c 344 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
adaf9816 345 sizeof(struct tnode *) << bits);
19baf839
RO
346 return tn;
347}
348
e9b44019 349/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
350 * and no bits are skipped. See discussion in dyntree paper p. 6
351 */
adaf9816 352static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
19baf839 353{
e9b44019 354 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
355}
356
ff181ed8
AD
357/* Add a child at position i overwriting the old value.
358 * Update the value of full_children and empty_children.
359 */
360static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
19baf839 361{
21d1f11d 362 struct tnode *chi = tnode_get_child(tn, i);
ff181ed8 363 int isfull, wasfull;
19baf839 364
98293e8d 365 BUG_ON(i >= tnode_child_length(tn));
0c7770c7 366
95f60ea3 367 /* update emptyChildren, overflow into fullChildren */
19baf839 368 if (n == NULL && chi != NULL)
95f60ea3
AD
369 empty_child_inc(tn);
370 if (n != NULL && chi == NULL)
371 empty_child_dec(tn);
c877efb2 372
19baf839 373 /* update fullChildren */
ff181ed8 374 wasfull = tnode_full(tn, chi);
19baf839 375 isfull = tnode_full(tn, n);
ff181ed8 376
c877efb2 377 if (wasfull && !isfull)
19baf839 378 tn->full_children--;
c877efb2 379 else if (!wasfull && isfull)
19baf839 380 tn->full_children++;
91b9a277 381
5405afd1
AD
382 if (n && (tn->slen < n->slen))
383 tn->slen = n->slen;
384
cf778b00 385 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
386}
387
69fa57b1
AD
388static void update_children(struct tnode *tn)
389{
390 unsigned long i;
391
392 /* update all of the child parent pointers */
393 for (i = tnode_child_length(tn); i;) {
394 struct tnode *inode = tnode_get_child(tn, --i);
395
396 if (!inode)
397 continue;
398
399 /* Either update the children of a tnode that
400 * already belongs to us or update the child
401 * to point to ourselves.
402 */
403 if (node_parent(inode) == tn)
404 update_children(inode);
405 else
406 node_set_parent(inode, tn);
407 }
408}
409
410static inline void put_child_root(struct tnode *tp, struct trie *t,
411 t_key key, struct tnode *n)
836a0123
AD
412{
413 if (tp)
414 put_child(tp, get_index(key, tp), n);
415 else
416 rcu_assign_pointer(t->trie, n);
417}
418
fc86a93b 419static inline void tnode_free_init(struct tnode *tn)
0a5c0475 420{
fc86a93b
AD
421 tn->rcu.next = NULL;
422}
423
424static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
425{
426 n->rcu.next = tn->rcu.next;
427 tn->rcu.next = &n->rcu;
428}
0a5c0475 429
fc86a93b
AD
430static void tnode_free(struct tnode *tn)
431{
432 struct callback_head *head = &tn->rcu;
433
434 while (head) {
435 head = head->next;
436 tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
437 node_free(tn);
438
439 tn = container_of(head, struct tnode, rcu);
440 }
441
442 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
443 tnode_free_size = 0;
444 synchronize_rcu();
0a5c0475 445 }
0a5c0475
ED
446}
447
69fa57b1
AD
448static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
449{
450 struct tnode *tp = node_parent(oldtnode);
451 unsigned long i;
452
453 /* setup the parent pointer out of and back into this node */
454 NODE_INIT_PARENT(tn, tp);
455 put_child_root(tp, t, tn->key, tn);
456
457 /* update all of the child parent pointers */
458 update_children(tn);
459
460 /* all pointers should be clean so we are done */
461 tnode_free(oldtnode);
462
463 /* resize children now that oldtnode is freed */
464 for (i = tnode_child_length(tn); i;) {
465 struct tnode *inode = tnode_get_child(tn, --i);
466
467 /* resize child node */
468 if (tnode_full(tn, inode))
469 resize(t, inode);
470 }
471}
472
ff181ed8 473static int inflate(struct trie *t, struct tnode *oldtnode)
19baf839 474{
69fa57b1
AD
475 struct tnode *tn;
476 unsigned long i;
e9b44019 477 t_key m;
19baf839 478
0c7770c7 479 pr_debug("In inflate\n");
19baf839 480
e9b44019 481 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 482 if (!tn)
ff181ed8 483 return -ENOMEM;
2f36895a 484
69fa57b1
AD
485 /* prepare oldtnode to be freed */
486 tnode_free_init(oldtnode);
487
12c081a5
AD
488 /* Assemble all of the pointers in our cluster, in this case that
489 * represents all of the pointers out of our allocated nodes that
490 * point to existing tnodes and the links between our allocated
491 * nodes.
2f36895a 492 */
12c081a5 493 for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
69fa57b1
AD
494 struct tnode *inode = tnode_get_child(oldtnode, --i);
495 struct tnode *node0, *node1;
496 unsigned long j, k;
c877efb2 497
19baf839 498 /* An empty child */
adaf9816 499 if (inode == NULL)
19baf839
RO
500 continue;
501
502 /* A leaf or an internal node with skipped bits */
adaf9816 503 if (!tnode_full(oldtnode, inode)) {
e9b44019 504 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
505 continue;
506 }
507
69fa57b1
AD
508 /* drop the node in the old tnode free list */
509 tnode_free_append(oldtnode, inode);
510
19baf839 511 /* An internal node with two children */
19baf839 512 if (inode->bits == 1) {
12c081a5
AD
513 put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
514 put_child(tn, 2 * i, tnode_get_child(inode, 0));
91b9a277 515 continue;
19baf839
RO
516 }
517
91b9a277 518 /* We will replace this node 'inode' with two new
12c081a5 519 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
520 * original children. The two new nodes will have
521 * a position one bit further down the key and this
522 * means that the "significant" part of their keys
523 * (see the discussion near the top of this file)
524 * will differ by one bit, which will be "0" in
12c081a5 525 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
526 * moving the key position by one step, the bit that
527 * we are moving away from - the bit at position
12c081a5
AD
528 * (tn->pos) - is the one that will differ between
529 * node0 and node1. So... we synthesize that bit in the
530 * two new keys.
91b9a277 531 */
12c081a5
AD
532 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
533 if (!node1)
534 goto nomem;
69fa57b1 535 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 536
69fa57b1 537 tnode_free_append(tn, node1);
12c081a5
AD
538 if (!node0)
539 goto nomem;
540 tnode_free_append(tn, node0);
541
542 /* populate child pointers in new nodes */
543 for (k = tnode_child_length(inode), j = k / 2; j;) {
544 put_child(node1, --j, tnode_get_child(inode, --k));
545 put_child(node0, j, tnode_get_child(inode, j));
546 put_child(node1, --j, tnode_get_child(inode, --k));
547 put_child(node0, j, tnode_get_child(inode, j));
548 }
19baf839 549
12c081a5
AD
550 /* link new nodes to parent */
551 NODE_INIT_PARENT(node1, tn);
552 NODE_INIT_PARENT(node0, tn);
2f36895a 553
12c081a5
AD
554 /* link parent to nodes */
555 put_child(tn, 2 * i + 1, node1);
556 put_child(tn, 2 * i, node0);
557 }
2f36895a 558
69fa57b1
AD
559 /* setup the parent pointers into and out of this node */
560 replace(t, oldtnode, tn);
12c081a5 561
ff181ed8 562 return 0;
2f80b3c8 563nomem:
fc86a93b
AD
564 /* all pointers should be clean so we are done */
565 tnode_free(tn);
ff181ed8 566 return -ENOMEM;
19baf839
RO
567}
568
ff181ed8 569static int halve(struct trie *t, struct tnode *oldtnode)
19baf839 570{
69fa57b1 571 struct tnode *tn;
12c081a5 572 unsigned long i;
19baf839 573
0c7770c7 574 pr_debug("In halve\n");
c877efb2 575
e9b44019 576 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 577 if (!tn)
ff181ed8 578 return -ENOMEM;
2f36895a 579
69fa57b1
AD
580 /* prepare oldtnode to be freed */
581 tnode_free_init(oldtnode);
582
12c081a5
AD
583 /* Assemble all of the pointers in our cluster, in this case that
584 * represents all of the pointers out of our allocated nodes that
585 * point to existing tnodes and the links between our allocated
586 * nodes.
2f36895a 587 */
12c081a5 588 for (i = tnode_child_length(oldtnode); i;) {
69fa57b1
AD
589 struct tnode *node1 = tnode_get_child(oldtnode, --i);
590 struct tnode *node0 = tnode_get_child(oldtnode, --i);
591 struct tnode *inode;
2f36895a 592
12c081a5
AD
593 /* At least one of the children is empty */
594 if (!node1 || !node0) {
595 put_child(tn, i / 2, node1 ? : node0);
596 continue;
597 }
c877efb2 598
2f36895a 599 /* Two nonempty children */
12c081a5
AD
600 inode = tnode_new(node0->key, oldtnode->pos, 1);
601 if (!inode) {
602 tnode_free(tn);
603 return -ENOMEM;
2f36895a 604 }
12c081a5 605 tnode_free_append(tn, inode);
2f36895a 606
12c081a5
AD
607 /* initialize pointers out of node */
608 put_child(inode, 1, node1);
609 put_child(inode, 0, node0);
610 NODE_INIT_PARENT(inode, tn);
611
612 /* link parent to node */
613 put_child(tn, i / 2, inode);
2f36895a 614 }
19baf839 615
69fa57b1
AD
616 /* setup the parent pointers into and out of this node */
617 replace(t, oldtnode, tn);
ff181ed8
AD
618
619 return 0;
19baf839
RO
620}
621
95f60ea3
AD
622static void collapse(struct trie *t, struct tnode *oldtnode)
623{
624 struct tnode *n, *tp;
625 unsigned long i;
626
627 /* scan the tnode looking for that one child that might still exist */
628 for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
629 n = tnode_get_child(oldtnode, --i);
630
631 /* compress one level */
632 tp = node_parent(oldtnode);
633 put_child_root(tp, t, oldtnode->key, n);
634 node_set_parent(n, tp);
635
636 /* drop dead node */
637 node_free(oldtnode);
638}
639
5405afd1
AD
640static unsigned char update_suffix(struct tnode *tn)
641{
642 unsigned char slen = tn->pos;
643 unsigned long stride, i;
644
645 /* search though the list of children looking for nodes that might
646 * have a suffix greater than the one we currently have. This is
647 * why we start with a stride of 2 since a stride of 1 would
648 * represent the nodes with suffix length equal to tn->pos
649 */
650 for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
651 struct tnode *n = tnode_get_child(tn, i);
652
653 if (!n || (n->slen <= slen))
654 continue;
655
656 /* update stride and slen based on new value */
657 stride <<= (n->slen - slen);
658 slen = n->slen;
659 i &= ~(stride - 1);
660
661 /* if slen covers all but the last bit we can stop here
662 * there will be nothing longer than that since only node
663 * 0 and 1 << (bits - 1) could have that as their suffix
664 * length.
665 */
666 if ((slen + 1) >= (tn->pos + tn->bits))
667 break;
668 }
669
670 tn->slen = slen;
671
672 return slen;
673}
674
f05a4819
AD
675/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
676 * the Helsinki University of Technology and Matti Tikkanen of Nokia
677 * Telecommunications, page 6:
678 * "A node is doubled if the ratio of non-empty children to all
679 * children in the *doubled* node is at least 'high'."
680 *
681 * 'high' in this instance is the variable 'inflate_threshold'. It
682 * is expressed as a percentage, so we multiply it with
683 * tnode_child_length() and instead of multiplying by 2 (since the
684 * child array will be doubled by inflate()) and multiplying
685 * the left-hand side by 100 (to handle the percentage thing) we
686 * multiply the left-hand side by 50.
687 *
688 * The left-hand side may look a bit weird: tnode_child_length(tn)
689 * - tn->empty_children is of course the number of non-null children
690 * in the current node. tn->full_children is the number of "full"
691 * children, that is non-null tnodes with a skip value of 0.
692 * All of those will be doubled in the resulting inflated tnode, so
693 * we just count them one extra time here.
694 *
695 * A clearer way to write this would be:
696 *
697 * to_be_doubled = tn->full_children;
698 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
699 * tn->full_children;
700 *
701 * new_child_length = tnode_child_length(tn) * 2;
702 *
703 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
704 * new_child_length;
705 * if (new_fill_factor >= inflate_threshold)
706 *
707 * ...and so on, tho it would mess up the while () loop.
708 *
709 * anyway,
710 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
711 * inflate_threshold
712 *
713 * avoid a division:
714 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
715 * inflate_threshold * new_child_length
716 *
717 * expand not_to_be_doubled and to_be_doubled, and shorten:
718 * 100 * (tnode_child_length(tn) - tn->empty_children +
719 * tn->full_children) >= inflate_threshold * new_child_length
720 *
721 * expand new_child_length:
722 * 100 * (tnode_child_length(tn) - tn->empty_children +
723 * tn->full_children) >=
724 * inflate_threshold * tnode_child_length(tn) * 2
725 *
726 * shorten again:
727 * 50 * (tn->full_children + tnode_child_length(tn) -
728 * tn->empty_children) >= inflate_threshold *
729 * tnode_child_length(tn)
730 *
731 */
ff181ed8 732static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
f05a4819
AD
733{
734 unsigned long used = tnode_child_length(tn);
735 unsigned long threshold = used;
736
737 /* Keep root node larger */
ff181ed8 738 threshold *= tp ? inflate_threshold : inflate_threshold_root;
f05a4819 739 used -= tn->empty_children;
95f60ea3 740 used += tn->full_children;
f05a4819 741
95f60ea3
AD
742 /* if bits == KEYLENGTH then pos = 0, and will fail below */
743
744 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
745}
746
ff181ed8 747static bool should_halve(const struct tnode *tp, const struct tnode *tn)
f05a4819
AD
748{
749 unsigned long used = tnode_child_length(tn);
750 unsigned long threshold = used;
751
752 /* Keep root node larger */
ff181ed8 753 threshold *= tp ? halve_threshold : halve_threshold_root;
f05a4819
AD
754 used -= tn->empty_children;
755
95f60ea3
AD
756 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
757
758 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
759}
760
761static bool should_collapse(const struct tnode *tn)
762{
763 unsigned long used = tnode_child_length(tn);
764
765 used -= tn->empty_children;
766
767 /* account for bits == KEYLENGTH case */
768 if ((tn->bits == KEYLENGTH) && tn->full_children)
769 used -= KEY_MAX;
770
771 /* One child or none, time to drop us from the trie */
772 return used < 2;
f05a4819
AD
773}
774
cf3637bb 775#define MAX_WORK 10
ff181ed8 776static void resize(struct trie *t, struct tnode *tn)
cf3637bb 777{
95f60ea3 778 struct tnode *tp = node_parent(tn);
ff181ed8 779 struct tnode __rcu **cptr;
a80e89d4 780 int max_work = MAX_WORK;
cf3637bb 781
cf3637bb
AD
782 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
783 tn, inflate_threshold, halve_threshold);
784
ff181ed8
AD
785 /* track the tnode via the pointer from the parent instead of
786 * doing it ourselves. This way we can let RCU fully do its
787 * thing without us interfering
788 */
789 cptr = tp ? &tp->child[get_index(tn->key, tp)] : &t->trie;
790 BUG_ON(tn != rtnl_dereference(*cptr));
791
f05a4819
AD
792 /* Double as long as the resulting node has a number of
793 * nonempty nodes that are above the threshold.
cf3637bb 794 */
a80e89d4 795 while (should_inflate(tp, tn) && max_work) {
ff181ed8 796 if (inflate(t, tn)) {
cf3637bb
AD
797#ifdef CONFIG_IP_FIB_TRIE_STATS
798 this_cpu_inc(t->stats->resize_node_skipped);
799#endif
800 break;
801 }
ff181ed8 802
a80e89d4 803 max_work--;
ff181ed8 804 tn = rtnl_dereference(*cptr);
cf3637bb
AD
805 }
806
807 /* Return if at least one inflate is run */
808 if (max_work != MAX_WORK)
ff181ed8 809 return;
cf3637bb 810
f05a4819 811 /* Halve as long as the number of empty children in this
cf3637bb
AD
812 * node is above threshold.
813 */
a80e89d4 814 while (should_halve(tp, tn) && max_work) {
ff181ed8 815 if (halve(t, tn)) {
cf3637bb
AD
816#ifdef CONFIG_IP_FIB_TRIE_STATS
817 this_cpu_inc(t->stats->resize_node_skipped);
818#endif
819 break;
820 }
cf3637bb 821
a80e89d4 822 max_work--;
ff181ed8
AD
823 tn = rtnl_dereference(*cptr);
824 }
cf3637bb
AD
825
826 /* Only one child remains */
95f60ea3
AD
827 if (should_collapse(tn)) {
828 collapse(t, tn);
5405afd1
AD
829 return;
830 }
831
832 /* Return if at least one deflate was run */
833 if (max_work != MAX_WORK)
834 return;
835
836 /* push the suffix length to the parent node */
837 if (tn->slen > tn->pos) {
838 unsigned char slen = update_suffix(tn);
839
840 if (tp && (slen > tp->slen))
841 tp->slen = slen;
cf3637bb 842 }
cf3637bb
AD
843}
844
5405afd1
AD
845static void leaf_pull_suffix(struct tnode *l)
846{
847 struct tnode *tp = node_parent(l);
848
849 while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
850 if (update_suffix(tp) > l->slen)
851 break;
852 tp = node_parent(tp);
853 }
854}
855
856static void leaf_push_suffix(struct tnode *l)
19baf839 857{
5405afd1
AD
858 struct tnode *tn = node_parent(l);
859
860 /* if this is a new leaf then tn will be NULL and we can sort
861 * out parent suffix lengths as a part of trie_rebalance
862 */
863 while (tn && (tn->slen < l->slen)) {
864 tn->slen = l->slen;
865 tn = node_parent(tn);
866 }
867}
868
79e5ad2c 869static void fib_remove_alias(struct tnode *l, struct fib_alias *old)
5405afd1 870{
64c62723 871 /* record the location of the previous list_info entry */
79e5ad2c
AD
872 struct hlist_node **pprev = old->fa_list.pprev;
873 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
5405afd1 874
79e5ad2c
AD
875 /* remove the fib_alias from the list */
876 hlist_del_rcu(&old->fa_list);
5405afd1 877
79e5ad2c
AD
878 /* only access fa if it is pointing at the last valid hlist_node */
879 if (hlist_empty(&l->leaf) || (*pprev))
5405afd1
AD
880 return;
881
64c62723 882 /* update the trie with the latest suffix length */
79e5ad2c 883 l->slen = fa->fa_slen;
64c62723 884 leaf_pull_suffix(l);
5405afd1
AD
885}
886
79e5ad2c
AD
887static void fib_insert_alias(struct tnode *l, struct fib_alias *fa,
888 struct fib_alias *new)
5405afd1 889{
79e5ad2c
AD
890 if (fa) {
891 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
892 } else {
893 struct fib_alias *last;
e905a9ed 894
79e5ad2c
AD
895 hlist_for_each_entry(last, &l->leaf, fa_list) {
896 if (new->fa_slen < last->fa_slen)
897 break;
898 fa = last;
899 }
5405afd1 900
79e5ad2c
AD
901 if (fa)
902 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
903 else
904 hlist_add_head_rcu(&new->fa_list, &l->leaf);
905 }
5786ec60 906
5405afd1 907 /* if we added to the tail node then we need to update slen */
79e5ad2c
AD
908 if (l->slen < new->fa_slen) {
909 l->slen = new->fa_slen;
5405afd1
AD
910 leaf_push_suffix(l);
911 }
19baf839
RO
912}
913
2373ce1c 914/* rcu_read_lock needs to be hold by caller from readside */
d4a975e8 915static struct tnode *fib_find_node(struct trie *t, struct tnode **tn, u32 key)
19baf839 916{
d4a975e8 917 struct tnode *pn = NULL, *n = rcu_dereference_rtnl(t->trie);
939afb06
AD
918
919 while (n) {
920 unsigned long index = get_index(key, n);
921
922 /* This bit of code is a bit tricky but it combines multiple
923 * checks into a single check. The prefix consists of the
924 * prefix plus zeros for the bits in the cindex. The index
925 * is the difference between the key and this value. From
926 * this we can actually derive several pieces of data.
d4a975e8 927 * if (index >= (1ul << bits))
939afb06 928 * we have a mismatch in skip bits and failed
b3832117
AD
929 * else
930 * we know the value is cindex
d4a975e8
AD
931 *
932 * This check is safe even if bits == KEYLENGTH due to the
933 * fact that we can only allocate a node with 32 bits if a
934 * long is greater than 32 bits.
939afb06 935 */
d4a975e8
AD
936 if (index >= (1ul << n->bits)) {
937 n = NULL;
938 break;
939 }
939afb06
AD
940
941 /* we have found a leaf. Prefixes have already been compared */
942 if (IS_LEAF(n))
19baf839 943 break;
19baf839 944
d4a975e8 945 pn = n;
21d1f11d 946 n = tnode_get_child_rcu(n, index);
939afb06 947 }
91b9a277 948
d4a975e8
AD
949 *tn = pn;
950
939afb06 951 return n;
19baf839
RO
952}
953
02525368
AD
954/* Return the first fib alias matching TOS with
955 * priority less than or equal to PRIO.
956 */
79e5ad2c
AD
957static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
958 u8 tos, u32 prio)
02525368
AD
959{
960 struct fib_alias *fa;
961
962 if (!fah)
963 return NULL;
964
56315f9e 965 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
966 if (fa->fa_slen < slen)
967 continue;
968 if (fa->fa_slen != slen)
969 break;
02525368
AD
970 if (fa->fa_tos > tos)
971 continue;
972 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
973 return fa;
974 }
975
976 return NULL;
977}
978
7b85576d 979static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 980{
06801916 981 struct tnode *tp;
19baf839 982
ff181ed8
AD
983 while ((tp = node_parent(tn)) != NULL) {
984 resize(t, tn);
06801916 985 tn = tp;
19baf839 986 }
06801916 987
19baf839 988 /* Handle last (top) tnode */
7b85576d 989 if (IS_TNODE(tn))
ff181ed8 990 resize(t, tn);
19baf839
RO
991}
992
2373ce1c
RO
993/* only used from updater-side */
994
79e5ad2c 995static struct tnode *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839 996{
836a0123 997 struct tnode *l, *n, *tp = NULL;
836a0123 998
0a5c0475 999 n = rtnl_dereference(t->trie);
19baf839 1000
c877efb2
SH
1001 /* If we point to NULL, stop. Either the tree is empty and we should
1002 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1003 * and we should just put our new leaf in that.
19baf839 1004 *
836a0123
AD
1005 * If we hit a node with a key that does't match then we should stop
1006 * and create a new tnode to replace that node and insert ourselves
1007 * and the other node into the new tnode.
19baf839 1008 */
836a0123
AD
1009 while (n) {
1010 unsigned long index = get_index(key, n);
19baf839 1011
836a0123
AD
1012 /* This bit of code is a bit tricky but it combines multiple
1013 * checks into a single check. The prefix consists of the
1014 * prefix plus zeros for the "bits" in the prefix. The index
1015 * is the difference between the key and this value. From
1016 * this we can actually derive several pieces of data.
1017 * if !(index >> bits)
1018 * we know the value is child index
1019 * else
1020 * we have a mismatch in skip bits and failed
1021 */
1022 if (index >> n->bits)
19baf839 1023 break;
19baf839 1024
836a0123
AD
1025 /* we have found a leaf. Prefixes have already been compared */
1026 if (IS_LEAF(n)) {
1027 /* Case 1: n is a leaf, and prefixes match*/
79e5ad2c 1028 return n;
836a0123 1029 }
19baf839 1030
836a0123 1031 tp = n;
21d1f11d 1032 n = tnode_get_child_rcu(n, index);
19baf839 1033 }
19baf839 1034
836a0123 1035 l = leaf_new(key);
79e5ad2c 1036 if (!l)
fea86ad8 1037 return NULL;
19baf839 1038
836a0123
AD
1039 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1040 *
1041 * Add a new tnode here
1042 * first tnode need some special handling
1043 * leaves us in position for handling as case 3
1044 */
1045 if (n) {
1046 struct tnode *tn;
19baf839 1047
e9b44019 1048 tn = tnode_new(key, __fls(key ^ n->key), 1);
c877efb2 1049 if (!tn) {
37fd30f2 1050 node_free(l);
fea86ad8 1051 return NULL;
91b9a277
OJ
1052 }
1053
836a0123
AD
1054 /* initialize routes out of node */
1055 NODE_INIT_PARENT(tn, tp);
1056 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1057
836a0123
AD
1058 /* start adding routes into the node */
1059 put_child_root(tp, t, key, tn);
1060 node_set_parent(n, tn);
e962f302 1061
836a0123 1062 /* parent now has a NULL spot where the leaf can go */
e962f302 1063 tp = tn;
19baf839 1064 }
91b9a277 1065
836a0123
AD
1066 /* Case 3: n is NULL, and will just insert a new leaf */
1067 if (tp) {
1068 NODE_INIT_PARENT(l, tp);
1069 put_child(tp, get_index(key, tp), l);
1070 trie_rebalance(t, tp);
1071 } else {
1072 rcu_assign_pointer(t->trie, l);
1073 }
2373ce1c 1074
79e5ad2c 1075 return l;
19baf839
RO
1076}
1077
d562f1f8
RO
1078/*
1079 * Caller must hold RTNL.
1080 */
16c6cf8b 1081int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1082{
d4a975e8 1083 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1084 struct fib_alias *fa, *new_fa;
d4a975e8 1085 struct tnode *l, *tp;
19baf839 1086 struct fib_info *fi;
79e5ad2c
AD
1087 u8 plen = cfg->fc_dst_len;
1088 u8 slen = KEYLENGTH - plen;
4e902c57 1089 u8 tos = cfg->fc_tos;
d4a975e8 1090 u32 key;
19baf839 1091 int err;
19baf839 1092
5786ec60 1093 if (plen > KEYLENGTH)
19baf839
RO
1094 return -EINVAL;
1095
4e902c57 1096 key = ntohl(cfg->fc_dst);
19baf839 1097
2dfe55b4 1098 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1099
d4a975e8 1100 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1101 return -EINVAL;
1102
4e902c57
TG
1103 fi = fib_create_info(cfg);
1104 if (IS_ERR(fi)) {
1105 err = PTR_ERR(fi);
19baf839 1106 goto err;
4e902c57 1107 }
19baf839 1108
d4a975e8 1109 l = fib_find_node(t, &tp, key);
79e5ad2c 1110 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
19baf839
RO
1111
1112 /* Now fa, if non-NULL, points to the first fib alias
1113 * with the same keys [prefix,tos,priority], if such key already
1114 * exists or to the node before which we will insert new one.
1115 *
1116 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1117 * insert to the tail of the section matching the suffix length
1118 * of the new alias.
19baf839
RO
1119 */
1120
936f6f8e
JA
1121 if (fa && fa->fa_tos == tos &&
1122 fa->fa_info->fib_priority == fi->fib_priority) {
1123 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1124
1125 err = -EEXIST;
4e902c57 1126 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1127 goto out;
1128
936f6f8e
JA
1129 /* We have 2 goals:
1130 * 1. Find exact match for type, scope, fib_info to avoid
1131 * duplicate routes
1132 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1133 */
1134 fa_match = NULL;
1135 fa_first = fa;
56315f9e 1136 hlist_for_each_entry_from(fa, fa_list) {
79e5ad2c 1137 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
936f6f8e
JA
1138 break;
1139 if (fa->fa_info->fib_priority != fi->fib_priority)
1140 break;
1141 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1142 fa->fa_info == fi) {
1143 fa_match = fa;
1144 break;
1145 }
1146 }
1147
4e902c57 1148 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1149 struct fib_info *fi_drop;
1150 u8 state;
1151
936f6f8e
JA
1152 fa = fa_first;
1153 if (fa_match) {
1154 if (fa == fa_match)
1155 err = 0;
6725033f 1156 goto out;
936f6f8e 1157 }
2373ce1c 1158 err = -ENOBUFS;
e94b1766 1159 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1160 if (new_fa == NULL)
1161 goto out;
19baf839
RO
1162
1163 fi_drop = fa->fa_info;
2373ce1c
RO
1164 new_fa->fa_tos = fa->fa_tos;
1165 new_fa->fa_info = fi;
4e902c57 1166 new_fa->fa_type = cfg->fc_type;
19baf839 1167 state = fa->fa_state;
936f6f8e 1168 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1169 new_fa->fa_slen = fa->fa_slen;
19baf839 1170
56315f9e 1171 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
2373ce1c 1172 alias_free_mem_rcu(fa);
19baf839
RO
1173
1174 fib_release_info(fi_drop);
1175 if (state & FA_S_ACCESSED)
4ccfe6d4 1176 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1177 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1178 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1179
91b9a277 1180 goto succeeded;
19baf839
RO
1181 }
1182 /* Error if we find a perfect match which
1183 * uses the same scope, type, and nexthop
1184 * information.
1185 */
936f6f8e
JA
1186 if (fa_match)
1187 goto out;
a07f5f50 1188
4e902c57 1189 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1190 fa = fa_first;
19baf839
RO
1191 }
1192 err = -ENOENT;
4e902c57 1193 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1194 goto out;
1195
1196 err = -ENOBUFS;
e94b1766 1197 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1198 if (new_fa == NULL)
1199 goto out;
1200
1201 new_fa->fa_info = fi;
1202 new_fa->fa_tos = tos;
4e902c57 1203 new_fa->fa_type = cfg->fc_type;
19baf839 1204 new_fa->fa_state = 0;
79e5ad2c 1205 new_fa->fa_slen = slen;
19baf839 1206
9b6ebad5 1207 /* Insert new entry to the list. */
79e5ad2c
AD
1208 if (!l) {
1209 l = fib_insert_node(t, key, plen);
1210 if (unlikely(!l)) {
fea86ad8 1211 err = -ENOMEM;
f835e471 1212 goto out_free_new_fa;
fea86ad8 1213 }
f835e471 1214 }
19baf839 1215
21d8c49e
DM
1216 if (!plen)
1217 tb->tb_num_default++;
1218
79e5ad2c 1219 fib_insert_alias(l, fa, new_fa);
19baf839 1220
4ccfe6d4 1221 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1222 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1223 &cfg->fc_nlinfo, 0);
19baf839
RO
1224succeeded:
1225 return 0;
f835e471
RO
1226
1227out_free_new_fa:
1228 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1229out:
1230 fib_release_info(fi);
91b9a277 1231err:
19baf839
RO
1232 return err;
1233}
1234
9f9e636d
AD
1235static inline t_key prefix_mismatch(t_key key, struct tnode *n)
1236{
1237 t_key prefix = n->key;
1238
1239 return (key ^ prefix) & (prefix | -prefix);
1240}
1241
345e9b54 1242/* should be called with rcu_read_lock */
22bd5b9b 1243int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1244 struct fib_result *res, int fib_flags)
19baf839 1245{
9f9e636d 1246 struct trie *t = (struct trie *)tb->tb_data;
8274a97a
AD
1247#ifdef CONFIG_IP_FIB_TRIE_STATS
1248 struct trie_use_stats __percpu *stats = t->stats;
1249#endif
9f9e636d
AD
1250 const t_key key = ntohl(flp->daddr);
1251 struct tnode *n, *pn;
79e5ad2c 1252 struct fib_alias *fa;
9f9e636d 1253 t_key cindex;
91b9a277 1254
2373ce1c 1255 n = rcu_dereference(t->trie);
c877efb2 1256 if (!n)
345e9b54 1257 return -EAGAIN;
19baf839
RO
1258
1259#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1260 this_cpu_inc(stats->gets);
19baf839
RO
1261#endif
1262
adaf9816 1263 pn = n;
9f9e636d
AD
1264 cindex = 0;
1265
1266 /* Step 1: Travel to the longest prefix match in the trie */
1267 for (;;) {
1268 unsigned long index = get_index(key, n);
1269
1270 /* This bit of code is a bit tricky but it combines multiple
1271 * checks into a single check. The prefix consists of the
1272 * prefix plus zeros for the "bits" in the prefix. The index
1273 * is the difference between the key and this value. From
1274 * this we can actually derive several pieces of data.
b3832117 1275 * if (index & (~0ul << bits))
9f9e636d 1276 * we have a mismatch in skip bits and failed
b3832117
AD
1277 * else
1278 * we know the value is cindex
9f9e636d 1279 */
b3832117 1280 if (index & (~0ul << n->bits))
9f9e636d 1281 break;
19baf839 1282
9f9e636d
AD
1283 /* we have found a leaf. Prefixes have already been compared */
1284 if (IS_LEAF(n))
a07f5f50 1285 goto found;
19baf839 1286
9f9e636d
AD
1287 /* only record pn and cindex if we are going to be chopping
1288 * bits later. Otherwise we are just wasting cycles.
91b9a277 1289 */
5405afd1 1290 if (n->slen > n->pos) {
9f9e636d
AD
1291 pn = n;
1292 cindex = index;
91b9a277 1293 }
19baf839 1294
21d1f11d 1295 n = tnode_get_child_rcu(n, index);
9f9e636d
AD
1296 if (unlikely(!n))
1297 goto backtrace;
1298 }
19baf839 1299
9f9e636d
AD
1300 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1301 for (;;) {
1302 /* record the pointer where our next node pointer is stored */
1303 struct tnode __rcu **cptr = n->child;
19baf839 1304
9f9e636d
AD
1305 /* This test verifies that none of the bits that differ
1306 * between the key and the prefix exist in the region of
1307 * the lsb and higher in the prefix.
91b9a277 1308 */
5405afd1 1309 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1310 goto backtrace;
91b9a277 1311
9f9e636d
AD
1312 /* exit out and process leaf */
1313 if (unlikely(IS_LEAF(n)))
1314 break;
91b9a277 1315
9f9e636d
AD
1316 /* Don't bother recording parent info. Since we are in
1317 * prefix match mode we will have to come back to wherever
1318 * we started this traversal anyway
91b9a277 1319 */
91b9a277 1320
9f9e636d 1321 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1322backtrace:
19baf839 1323#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1324 if (!n)
1325 this_cpu_inc(stats->null_node_hit);
19baf839 1326#endif
9f9e636d
AD
1327 /* If we are at cindex 0 there are no more bits for
1328 * us to strip at this level so we must ascend back
1329 * up one level to see if there are any more bits to
1330 * be stripped there.
1331 */
1332 while (!cindex) {
1333 t_key pkey = pn->key;
1334
1335 pn = node_parent_rcu(pn);
1336 if (unlikely(!pn))
345e9b54 1337 return -EAGAIN;
9f9e636d
AD
1338#ifdef CONFIG_IP_FIB_TRIE_STATS
1339 this_cpu_inc(stats->backtrack);
1340#endif
1341 /* Get Child's index */
1342 cindex = get_index(pkey, pn);
1343 }
1344
1345 /* strip the least significant bit from the cindex */
1346 cindex &= cindex - 1;
1347
1348 /* grab pointer for next child node */
1349 cptr = &pn->child[cindex];
c877efb2 1350 }
19baf839 1351 }
9f9e636d 1352
19baf839 1353found:
9f9e636d 1354 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1355 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1356 struct fib_info *fi = fa->fa_info;
1357 int nhsel, err;
345e9b54 1358
79e5ad2c
AD
1359 if (((key ^ n->key) >= (1ul << fa->fa_slen)) &&
1360 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
345e9b54 1361 continue;
79e5ad2c
AD
1362 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1363 continue;
1364 if (fi->fib_dead)
1365 continue;
1366 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1367 continue;
1368 fib_alias_accessed(fa);
1369 err = fib_props[fa->fa_type].error;
1370 if (unlikely(err < 0)) {
345e9b54 1371#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1372 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1373#endif
79e5ad2c
AD
1374 return err;
1375 }
1376 if (fi->fib_flags & RTNH_F_DEAD)
1377 continue;
1378 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1379 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1380
1381 if (nh->nh_flags & RTNH_F_DEAD)
1382 continue;
1383 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1384 continue;
79e5ad2c
AD
1385
1386 if (!(fib_flags & FIB_LOOKUP_NOREF))
1387 atomic_inc(&fi->fib_clntref);
1388
1389 res->prefixlen = KEYLENGTH - fa->fa_slen;
1390 res->nh_sel = nhsel;
1391 res->type = fa->fa_type;
1392 res->scope = fi->fib_scope;
1393 res->fi = fi;
1394 res->table = tb;
1395 res->fa_head = &n->leaf;
345e9b54 1396#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1397 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1398#endif
79e5ad2c 1399 return err;
345e9b54 1400 }
9b6ebad5 1401 }
345e9b54 1402#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1403 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1404#endif
345e9b54 1405 goto backtrace;
19baf839 1406}
6fc01438 1407EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1408
d562f1f8
RO
1409/*
1410 * Caller must hold RTNL.
1411 */
16c6cf8b 1412int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1413{
1414 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1415 struct fib_alias *fa, *fa_to_delete;
d4a975e8 1416 struct tnode *l, *tp;
79e5ad2c 1417 u8 plen = cfg->fc_dst_len;
79e5ad2c 1418 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1419 u8 tos = cfg->fc_tos;
1420 u32 key;
91b9a277 1421
79e5ad2c 1422 if (plen > KEYLENGTH)
19baf839
RO
1423 return -EINVAL;
1424
4e902c57 1425 key = ntohl(cfg->fc_dst);
19baf839 1426
d4a975e8 1427 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1428 return -EINVAL;
1429
d4a975e8 1430 l = fib_find_node(t, &tp, key);
c877efb2 1431 if (!l)
19baf839
RO
1432 return -ESRCH;
1433
79e5ad2c 1434 fa = fib_find_alias(&l->leaf, slen, tos, 0);
19baf839
RO
1435
1436 if (!fa)
1437 return -ESRCH;
1438
0c7770c7 1439 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1440
1441 fa_to_delete = NULL;
56315f9e 1442 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1443 struct fib_info *fi = fa->fa_info;
1444
79e5ad2c 1445 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
19baf839
RO
1446 break;
1447
4e902c57
TG
1448 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1449 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1450 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1451 (!cfg->fc_prefsrc ||
1452 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1453 (!cfg->fc_protocol ||
1454 fi->fib_protocol == cfg->fc_protocol) &&
1455 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1456 fa_to_delete = fa;
1457 break;
1458 }
1459 }
1460
91b9a277
OJ
1461 if (!fa_to_delete)
1462 return -ESRCH;
19baf839 1463
91b9a277 1464 fa = fa_to_delete;
4e902c57 1465 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1466 &cfg->fc_nlinfo, 0);
91b9a277 1467
79e5ad2c 1468 fib_remove_alias(l, fa);
19baf839 1469
21d8c49e
DM
1470 if (!plen)
1471 tb->tb_num_default--;
1472
7289e6dd
AD
1473 if (hlist_empty(&l->leaf)) {
1474 struct tnode *tp = node_parent(l);
1475
1476 if (tp) {
1477 put_child(tp, get_index(l->key, tp), NULL);
1478 trie_rebalance(t, tp);
1479 } else {
1480 RCU_INIT_POINTER(t->trie, NULL);
1481 }
1482
1483 node_free(l);
1484 }
19baf839 1485
91b9a277 1486 if (fa->fa_state & FA_S_ACCESSED)
4ccfe6d4 1487 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1488
2373ce1c
RO
1489 fib_release_info(fa->fa_info);
1490 alias_free_mem_rcu(fa);
91b9a277 1491 return 0;
19baf839
RO
1492}
1493
8be33e95
AD
1494/* Scan for the next leaf starting at the provided key value */
1495static struct tnode *leaf_walk_rcu(struct tnode **tn, t_key key)
19baf839 1496{
8be33e95
AD
1497 struct tnode *pn, *n = *tn;
1498 unsigned long cindex;
82cfbb00 1499
8be33e95
AD
1500 /* record parent node for backtracing */
1501 pn = n;
1502 cindex = n ? get_index(key, n) : 0;
82cfbb00 1503
8be33e95
AD
1504 /* this loop is meant to try and find the key in the trie */
1505 while (n) {
1506 unsigned long idx = get_index(key, n);
82cfbb00 1507
8be33e95
AD
1508 /* guarantee forward progress on the keys */
1509 if (IS_LEAF(n) && (n->key >= key))
1510 goto found;
1511 if (idx >= (1ul << n->bits))
1512 break;
82cfbb00 1513
8be33e95
AD
1514 /* record parent and next child index */
1515 pn = n;
1516 cindex = idx;
82cfbb00 1517
8be33e95
AD
1518 /* descend into the next child */
1519 n = tnode_get_child_rcu(pn, cindex++);
1520 }
82cfbb00 1521
8be33e95
AD
1522 /* this loop will search for the next leaf with a greater key */
1523 while (pn) {
1524 /* if we exhausted the parent node we will need to climb */
1525 if (cindex >= (1ul << pn->bits)) {
1526 t_key pkey = pn->key;
82cfbb00 1527
8be33e95
AD
1528 pn = node_parent_rcu(pn);
1529 if (!pn)
1530 break;
82cfbb00 1531
8be33e95
AD
1532 cindex = get_index(pkey, pn) + 1;
1533 continue;
1534 }
82cfbb00 1535
8be33e95
AD
1536 /* grab the next available node */
1537 n = tnode_get_child_rcu(pn, cindex++);
1538 if (!n)
1539 continue;
19baf839 1540
8be33e95
AD
1541 /* no need to compare keys since we bumped the index */
1542 if (IS_LEAF(n))
1543 goto found;
71d67e66 1544
8be33e95
AD
1545 /* Rescan start scanning in new node */
1546 pn = n;
1547 cindex = 0;
1548 }
ec28cf73 1549
8be33e95
AD
1550 *tn = pn;
1551 return NULL; /* Root of trie */
1552found:
1553 /* if we are at the limit for keys just return NULL for the tnode */
1554 *tn = (n->key == KEY_MAX) ? NULL : pn;
1555 return n;
71d67e66
SH
1556}
1557
8be33e95 1558/* Caller must hold RTNL. */
16c6cf8b 1559int fib_table_flush(struct fib_table *tb)
19baf839 1560{
7289e6dd
AD
1561 struct trie *t = (struct trie *)tb->tb_data;
1562 struct hlist_node *tmp;
1563 struct fib_alias *fa;
1564 struct tnode *n, *pn;
1565 unsigned long cindex;
1566 unsigned char slen;
82cfbb00 1567 int found = 0;
19baf839 1568
7289e6dd
AD
1569 n = rcu_dereference(t->trie);
1570 if (!n)
1571 goto flush_complete;
19baf839 1572
7289e6dd
AD
1573 pn = NULL;
1574 cindex = 0;
1575
1576 while (IS_TNODE(n)) {
1577 /* record pn and cindex for leaf walking */
1578 pn = n;
1579 cindex = 1ul << n->bits;
1580backtrace:
1581 /* walk trie in reverse order */
1582 do {
1583 while (!(cindex--)) {
1584 t_key pkey = pn->key;
1585
1586 n = pn;
1587 pn = node_parent(n);
1588
1589 /* resize completed node */
1590 resize(t, n);
1591
1592 /* if we got the root we are done */
1593 if (!pn)
1594 goto flush_complete;
1595
1596 cindex = get_index(pkey, pn);
1597 }
1598
1599 /* grab the next available node */
1600 n = tnode_get_child(pn, cindex);
1601 } while (!n);
1602 }
1603
1604 /* track slen in case any prefixes survive */
1605 slen = 0;
1606
1607 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1608 struct fib_info *fi = fa->fa_info;
1609
1610 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1611 hlist_del_rcu(&fa->fa_list);
1612 fib_release_info(fa->fa_info);
1613 alias_free_mem_rcu(fa);
1614 found++;
1615
1616 continue;
64c62723
AD
1617 }
1618
7289e6dd 1619 slen = fa->fa_slen;
19baf839
RO
1620 }
1621
7289e6dd
AD
1622 /* update leaf slen */
1623 n->slen = slen;
1624
1625 if (hlist_empty(&n->leaf)) {
1626 put_child_root(pn, t, n->key, NULL);
1627 node_free(n);
1628 } else {
1629 leaf_pull_suffix(n);
64c62723 1630 }
19baf839 1631
7289e6dd
AD
1632 /* if trie is leaf only loop is completed */
1633 if (pn)
1634 goto backtrace;
1635flush_complete:
0c7770c7 1636 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1637 return found;
1638}
1639
4aa2c466
PE
1640void fib_free_table(struct fib_table *tb)
1641{
8274a97a
AD
1642#ifdef CONFIG_IP_FIB_TRIE_STATS
1643 struct trie *t = (struct trie *)tb->tb_data;
1644
1645 free_percpu(t->stats);
1646#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1647 kfree(tb);
1648}
1649
79e5ad2c
AD
1650static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
1651 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1652{
79e5ad2c 1653 __be32 xkey = htonl(l->key);
19baf839 1654 struct fib_alias *fa;
79e5ad2c 1655 int i, s_i;
19baf839 1656
79e5ad2c 1657 s_i = cb->args[4];
19baf839
RO
1658 i = 0;
1659
2373ce1c 1660 /* rcu_read_lock is hold by caller */
79e5ad2c 1661 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1662 if (i < s_i) {
1663 i++;
1664 continue;
1665 }
19baf839 1666
15e47304 1667 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1668 cb->nlh->nlmsg_seq,
1669 RTM_NEWROUTE,
1670 tb->tb_id,
1671 fa->fa_type,
be403ea1 1672 xkey,
9b6ebad5 1673 KEYLENGTH - fa->fa_slen,
19baf839 1674 fa->fa_tos,
64347f78 1675 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1676 cb->args[4] = i;
19baf839
RO
1677 return -1;
1678 }
a88ee229 1679 i++;
19baf839 1680 }
a88ee229 1681
71d67e66 1682 cb->args[4] = i;
19baf839
RO
1683 return skb->len;
1684}
1685
16c6cf8b
SH
1686int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1687 struct netlink_callback *cb)
19baf839 1688{
8be33e95
AD
1689 struct trie *t = (struct trie *)tb->tb_data;
1690 struct tnode *l, *tp;
d5ce8a0e
SH
1691 /* Dump starting at last key.
1692 * Note: 0.0.0.0/0 (ie default) is first key.
1693 */
8be33e95
AD
1694 int count = cb->args[2];
1695 t_key key = cb->args[3];
a88ee229 1696
8be33e95
AD
1697 rcu_read_lock();
1698
1699 tp = rcu_dereference_rtnl(t->trie);
1700
1701 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1702 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1703 cb->args[3] = key;
1704 cb->args[2] = count;
a88ee229 1705 rcu_read_unlock();
a88ee229 1706 return -1;
19baf839 1707 }
d5ce8a0e 1708
71d67e66 1709 ++count;
8be33e95
AD
1710 key = l->key + 1;
1711
71d67e66
SH
1712 memset(&cb->args[4], 0,
1713 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1714
1715 /* stop loop if key wrapped back to 0 */
1716 if (key < l->key)
1717 break;
19baf839 1718 }
8be33e95 1719
2373ce1c 1720 rcu_read_unlock();
a88ee229 1721
8be33e95
AD
1722 cb->args[3] = key;
1723 cb->args[2] = count;
1724
19baf839 1725 return skb->len;
19baf839
RO
1726}
1727
5348ba85 1728void __init fib_trie_init(void)
7f9b8052 1729{
a07f5f50
SH
1730 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1731 sizeof(struct fib_alias),
bc3c8c1e
SH
1732 0, SLAB_PANIC, NULL);
1733
1734 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
79e5ad2c 1735 sizeof(struct tnode),
bc3c8c1e 1736 0, SLAB_PANIC, NULL);
7f9b8052 1737}
19baf839 1738
7f9b8052 1739
5348ba85 1740struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1741{
1742 struct fib_table *tb;
1743 struct trie *t;
1744
19baf839
RO
1745 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1746 GFP_KERNEL);
1747 if (tb == NULL)
1748 return NULL;
1749
1750 tb->tb_id = id;
971b893e 1751 tb->tb_default = -1;
21d8c49e 1752 tb->tb_num_default = 0;
19baf839
RO
1753
1754 t = (struct trie *) tb->tb_data;
8274a97a
AD
1755 RCU_INIT_POINTER(t->trie, NULL);
1756#ifdef CONFIG_IP_FIB_TRIE_STATS
1757 t->stats = alloc_percpu(struct trie_use_stats);
1758 if (!t->stats) {
1759 kfree(tb);
1760 tb = NULL;
1761 }
1762#endif
19baf839 1763
19baf839
RO
1764 return tb;
1765}
1766
cb7b593c
SH
1767#ifdef CONFIG_PROC_FS
1768/* Depth first Trie walk iterator */
1769struct fib_trie_iter {
1c340b2f 1770 struct seq_net_private p;
3d3b2d25 1771 struct fib_table *tb;
cb7b593c 1772 struct tnode *tnode;
a034ee3c
ED
1773 unsigned int index;
1774 unsigned int depth;
cb7b593c 1775};
19baf839 1776
adaf9816 1777static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1778{
98293e8d 1779 unsigned long cindex = iter->index;
cb7b593c 1780 struct tnode *tn = iter->tnode;
cb7b593c 1781 struct tnode *p;
19baf839 1782
6640e697
EB
1783 /* A single entry routing table */
1784 if (!tn)
1785 return NULL;
1786
cb7b593c
SH
1787 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1788 iter->tnode, iter->index, iter->depth);
1789rescan:
98293e8d 1790 while (cindex < tnode_child_length(tn)) {
adaf9816 1791 struct tnode *n = tnode_get_child_rcu(tn, cindex);
19baf839 1792
cb7b593c
SH
1793 if (n) {
1794 if (IS_LEAF(n)) {
1795 iter->tnode = tn;
1796 iter->index = cindex + 1;
1797 } else {
1798 /* push down one level */
adaf9816 1799 iter->tnode = n;
cb7b593c
SH
1800 iter->index = 0;
1801 ++iter->depth;
1802 }
1803 return n;
1804 }
19baf839 1805
cb7b593c
SH
1806 ++cindex;
1807 }
91b9a277 1808
cb7b593c 1809 /* Current node exhausted, pop back up */
adaf9816 1810 p = node_parent_rcu(tn);
cb7b593c 1811 if (p) {
e9b44019 1812 cindex = get_index(tn->key, p) + 1;
cb7b593c
SH
1813 tn = p;
1814 --iter->depth;
1815 goto rescan;
19baf839 1816 }
cb7b593c
SH
1817
1818 /* got root? */
1819 return NULL;
19baf839
RO
1820}
1821
adaf9816 1822static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 1823 struct trie *t)
19baf839 1824{
adaf9816 1825 struct tnode *n;
5ddf0eb2 1826
132adf54 1827 if (!t)
5ddf0eb2
RO
1828 return NULL;
1829
1830 n = rcu_dereference(t->trie);
3d3b2d25 1831 if (!n)
5ddf0eb2 1832 return NULL;
19baf839 1833
3d3b2d25 1834 if (IS_TNODE(n)) {
adaf9816 1835 iter->tnode = n;
3d3b2d25
SH
1836 iter->index = 0;
1837 iter->depth = 1;
1838 } else {
1839 iter->tnode = NULL;
1840 iter->index = 0;
1841 iter->depth = 0;
91b9a277 1842 }
3d3b2d25
SH
1843
1844 return n;
cb7b593c 1845}
91b9a277 1846
cb7b593c
SH
1847static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1848{
adaf9816 1849 struct tnode *n;
cb7b593c 1850 struct fib_trie_iter iter;
91b9a277 1851
cb7b593c 1852 memset(s, 0, sizeof(*s));
91b9a277 1853
cb7b593c 1854 rcu_read_lock();
3d3b2d25 1855 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 1856 if (IS_LEAF(n)) {
79e5ad2c 1857 struct fib_alias *fa;
93672292 1858
cb7b593c
SH
1859 s->leaves++;
1860 s->totdepth += iter.depth;
1861 if (iter.depth > s->maxdepth)
1862 s->maxdepth = iter.depth;
93672292 1863
79e5ad2c 1864 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 1865 ++s->prefixes;
cb7b593c 1866 } else {
cb7b593c 1867 s->tnodes++;
adaf9816
AD
1868 if (n->bits < MAX_STAT_DEPTH)
1869 s->nodesizes[n->bits]++;
30cfe7c9 1870 s->nullpointers += n->empty_children;
19baf839 1871 }
19baf839 1872 }
2373ce1c 1873 rcu_read_unlock();
19baf839
RO
1874}
1875
cb7b593c
SH
1876/*
1877 * This outputs /proc/net/fib_triestats
1878 */
1879static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 1880{
a034ee3c 1881 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 1882
cb7b593c
SH
1883 if (stat->leaves)
1884 avdepth = stat->totdepth*100 / stat->leaves;
1885 else
1886 avdepth = 0;
91b9a277 1887
a07f5f50
SH
1888 seq_printf(seq, "\tAver depth: %u.%02d\n",
1889 avdepth / 100, avdepth % 100);
cb7b593c 1890 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 1891
cb7b593c 1892 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
adaf9816 1893 bytes = sizeof(struct tnode) * stat->leaves;
93672292
SH
1894
1895 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 1896 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 1897
187b5188 1898 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 1899 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 1900
06ef921d
RO
1901 max = MAX_STAT_DEPTH;
1902 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 1903 max--;
19baf839 1904
cb7b593c 1905 pointers = 0;
f585a991 1906 for (i = 1; i < max; i++)
cb7b593c 1907 if (stat->nodesizes[i] != 0) {
187b5188 1908 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
1909 pointers += (1<<i) * stat->nodesizes[i];
1910 }
1911 seq_putc(seq, '\n');
187b5188 1912 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 1913
adaf9816 1914 bytes += sizeof(struct tnode *) * pointers;
187b5188
SH
1915 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
1916 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 1917}
2373ce1c 1918
cb7b593c 1919#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 1920static void trie_show_usage(struct seq_file *seq,
8274a97a 1921 const struct trie_use_stats __percpu *stats)
66a2f7fd 1922{
8274a97a
AD
1923 struct trie_use_stats s = { 0 };
1924 int cpu;
1925
1926 /* loop through all of the CPUs and gather up the stats */
1927 for_each_possible_cpu(cpu) {
1928 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
1929
1930 s.gets += pcpu->gets;
1931 s.backtrack += pcpu->backtrack;
1932 s.semantic_match_passed += pcpu->semantic_match_passed;
1933 s.semantic_match_miss += pcpu->semantic_match_miss;
1934 s.null_node_hit += pcpu->null_node_hit;
1935 s.resize_node_skipped += pcpu->resize_node_skipped;
1936 }
1937
66a2f7fd 1938 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
1939 seq_printf(seq, "gets = %u\n", s.gets);
1940 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 1941 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
1942 s.semantic_match_passed);
1943 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
1944 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
1945 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 1946}
66a2f7fd
SH
1947#endif /* CONFIG_IP_FIB_TRIE_STATS */
1948
3d3b2d25 1949static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 1950{
3d3b2d25
SH
1951 if (tb->tb_id == RT_TABLE_LOCAL)
1952 seq_puts(seq, "Local:\n");
1953 else if (tb->tb_id == RT_TABLE_MAIN)
1954 seq_puts(seq, "Main:\n");
1955 else
1956 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 1957}
19baf839 1958
3d3b2d25 1959
cb7b593c
SH
1960static int fib_triestat_seq_show(struct seq_file *seq, void *v)
1961{
1c340b2f 1962 struct net *net = (struct net *)seq->private;
3d3b2d25 1963 unsigned int h;
877a9bff 1964
d717a9a6 1965 seq_printf(seq,
a07f5f50
SH
1966 "Basic info: size of leaf:"
1967 " %Zd bytes, size of tnode: %Zd bytes.\n",
adaf9816 1968 sizeof(struct tnode), sizeof(struct tnode));
d717a9a6 1969
3d3b2d25
SH
1970 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1971 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
1972 struct fib_table *tb;
1973
b67bfe0d 1974 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
1975 struct trie *t = (struct trie *) tb->tb_data;
1976 struct trie_stat stat;
877a9bff 1977
3d3b2d25
SH
1978 if (!t)
1979 continue;
1980
1981 fib_table_print(seq, tb);
1982
1983 trie_collect_stats(t, &stat);
1984 trie_show_stats(seq, &stat);
1985#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1986 trie_show_usage(seq, t->stats);
3d3b2d25
SH
1987#endif
1988 }
1989 }
19baf839 1990
cb7b593c 1991 return 0;
19baf839
RO
1992}
1993
cb7b593c 1994static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 1995{
de05c557 1996 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
1997}
1998
9a32144e 1999static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2000 .owner = THIS_MODULE,
2001 .open = fib_triestat_seq_open,
2002 .read = seq_read,
2003 .llseek = seq_lseek,
b6fcbdb4 2004 .release = single_release_net,
cb7b593c
SH
2005};
2006
adaf9816 2007static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2008{
1218854a
YH
2009 struct fib_trie_iter *iter = seq->private;
2010 struct net *net = seq_file_net(seq);
cb7b593c 2011 loff_t idx = 0;
3d3b2d25 2012 unsigned int h;
cb7b593c 2013
3d3b2d25
SH
2014 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2015 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2016 struct fib_table *tb;
cb7b593c 2017
b67bfe0d 2018 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
adaf9816 2019 struct tnode *n;
3d3b2d25
SH
2020
2021 for (n = fib_trie_get_first(iter,
2022 (struct trie *) tb->tb_data);
2023 n; n = fib_trie_get_next(iter))
2024 if (pos == idx++) {
2025 iter->tb = tb;
2026 return n;
2027 }
2028 }
cb7b593c 2029 }
3d3b2d25 2030
19baf839
RO
2031 return NULL;
2032}
2033
cb7b593c 2034static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2035 __acquires(RCU)
19baf839 2036{
cb7b593c 2037 rcu_read_lock();
1218854a 2038 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2039}
2040
cb7b593c 2041static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2042{
cb7b593c 2043 struct fib_trie_iter *iter = seq->private;
1218854a 2044 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2045 struct fib_table *tb = iter->tb;
2046 struct hlist_node *tb_node;
2047 unsigned int h;
adaf9816 2048 struct tnode *n;
cb7b593c 2049
19baf839 2050 ++*pos;
3d3b2d25
SH
2051 /* next node in same table */
2052 n = fib_trie_get_next(iter);
2053 if (n)
2054 return n;
19baf839 2055
3d3b2d25
SH
2056 /* walk rest of this hash chain */
2057 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2058 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2059 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2060 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2061 if (n)
2062 goto found;
2063 }
19baf839 2064
3d3b2d25
SH
2065 /* new hash chain */
2066 while (++h < FIB_TABLE_HASHSZ) {
2067 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2068 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2069 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2070 if (n)
2071 goto found;
2072 }
2073 }
cb7b593c 2074 return NULL;
3d3b2d25
SH
2075
2076found:
2077 iter->tb = tb;
2078 return n;
cb7b593c 2079}
19baf839 2080
cb7b593c 2081static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2082 __releases(RCU)
19baf839 2083{
cb7b593c
SH
2084 rcu_read_unlock();
2085}
91b9a277 2086
cb7b593c
SH
2087static void seq_indent(struct seq_file *seq, int n)
2088{
a034ee3c
ED
2089 while (n-- > 0)
2090 seq_puts(seq, " ");
cb7b593c 2091}
19baf839 2092
28d36e37 2093static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2094{
132adf54 2095 switch (s) {
cb7b593c
SH
2096 case RT_SCOPE_UNIVERSE: return "universe";
2097 case RT_SCOPE_SITE: return "site";
2098 case RT_SCOPE_LINK: return "link";
2099 case RT_SCOPE_HOST: return "host";
2100 case RT_SCOPE_NOWHERE: return "nowhere";
2101 default:
28d36e37 2102 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2103 return buf;
2104 }
2105}
19baf839 2106
36cbd3dc 2107static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2108 [RTN_UNSPEC] = "UNSPEC",
2109 [RTN_UNICAST] = "UNICAST",
2110 [RTN_LOCAL] = "LOCAL",
2111 [RTN_BROADCAST] = "BROADCAST",
2112 [RTN_ANYCAST] = "ANYCAST",
2113 [RTN_MULTICAST] = "MULTICAST",
2114 [RTN_BLACKHOLE] = "BLACKHOLE",
2115 [RTN_UNREACHABLE] = "UNREACHABLE",
2116 [RTN_PROHIBIT] = "PROHIBIT",
2117 [RTN_THROW] = "THROW",
2118 [RTN_NAT] = "NAT",
2119 [RTN_XRESOLVE] = "XRESOLVE",
2120};
19baf839 2121
a034ee3c 2122static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2123{
cb7b593c
SH
2124 if (t < __RTN_MAX && rtn_type_names[t])
2125 return rtn_type_names[t];
28d36e37 2126 snprintf(buf, len, "type %u", t);
cb7b593c 2127 return buf;
19baf839
RO
2128}
2129
cb7b593c
SH
2130/* Pretty print the trie */
2131static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2132{
cb7b593c 2133 const struct fib_trie_iter *iter = seq->private;
adaf9816 2134 struct tnode *n = v;
c877efb2 2135
3d3b2d25
SH
2136 if (!node_parent_rcu(n))
2137 fib_table_print(seq, iter->tb);
095b8501 2138
cb7b593c 2139 if (IS_TNODE(n)) {
adaf9816 2140 __be32 prf = htonl(n->key);
91b9a277 2141
e9b44019
AD
2142 seq_indent(seq, iter->depth-1);
2143 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2144 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2145 n->full_children, n->empty_children);
cb7b593c 2146 } else {
adaf9816 2147 __be32 val = htonl(n->key);
79e5ad2c 2148 struct fib_alias *fa;
cb7b593c
SH
2149
2150 seq_indent(seq, iter->depth);
673d57e7 2151 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2152
79e5ad2c
AD
2153 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2154 char buf1[32], buf2[32];
2155
2156 seq_indent(seq, iter->depth + 1);
2157 seq_printf(seq, " /%zu %s %s",
2158 KEYLENGTH - fa->fa_slen,
2159 rtn_scope(buf1, sizeof(buf1),
2160 fa->fa_info->fib_scope),
2161 rtn_type(buf2, sizeof(buf2),
2162 fa->fa_type));
2163 if (fa->fa_tos)
2164 seq_printf(seq, " tos=%d", fa->fa_tos);
2165 seq_putc(seq, '\n');
cb7b593c 2166 }
19baf839 2167 }
cb7b593c 2168
19baf839
RO
2169 return 0;
2170}
2171
f690808e 2172static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2173 .start = fib_trie_seq_start,
2174 .next = fib_trie_seq_next,
2175 .stop = fib_trie_seq_stop,
2176 .show = fib_trie_seq_show,
19baf839
RO
2177};
2178
cb7b593c 2179static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2180{
1c340b2f
DL
2181 return seq_open_net(inode, file, &fib_trie_seq_ops,
2182 sizeof(struct fib_trie_iter));
19baf839
RO
2183}
2184
9a32144e 2185static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2186 .owner = THIS_MODULE,
2187 .open = fib_trie_seq_open,
2188 .read = seq_read,
2189 .llseek = seq_lseek,
1c340b2f 2190 .release = seq_release_net,
19baf839
RO
2191};
2192
8315f5d8
SH
2193struct fib_route_iter {
2194 struct seq_net_private p;
8be33e95
AD
2195 struct fib_table *main_tb;
2196 struct tnode *tnode;
8315f5d8
SH
2197 loff_t pos;
2198 t_key key;
2199};
2200
adaf9816 2201static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
8315f5d8 2202{
8be33e95
AD
2203 struct fib_table *tb = iter->main_tb;
2204 struct tnode *l, **tp = &iter->tnode;
2205 struct trie *t;
2206 t_key key;
8315f5d8 2207
8be33e95
AD
2208 /* use cache location of next-to-find key */
2209 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2210 pos -= iter->pos;
8be33e95
AD
2211 key = iter->key;
2212 } else {
2213 t = (struct trie *)tb->tb_data;
2214 iter->tnode = rcu_dereference_rtnl(t->trie);
8315f5d8 2215 iter->pos = 0;
8be33e95 2216 key = 0;
8315f5d8
SH
2217 }
2218
8be33e95
AD
2219 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2220 key = l->key + 1;
8315f5d8 2221 iter->pos++;
8be33e95
AD
2222
2223 if (pos-- <= 0)
2224 break;
2225
2226 l = NULL;
2227
2228 /* handle unlikely case of a key wrap */
2229 if (!key)
2230 break;
8315f5d8
SH
2231 }
2232
2233 if (l)
8be33e95 2234 iter->key = key; /* remember it */
8315f5d8
SH
2235 else
2236 iter->pos = 0; /* forget it */
2237
2238 return l;
2239}
2240
2241static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2242 __acquires(RCU)
2243{
2244 struct fib_route_iter *iter = seq->private;
2245 struct fib_table *tb;
8be33e95 2246 struct trie *t;
8315f5d8
SH
2247
2248 rcu_read_lock();
8be33e95 2249
1218854a 2250 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2251 if (!tb)
2252 return NULL;
2253
8be33e95
AD
2254 iter->main_tb = tb;
2255
2256 if (*pos != 0)
2257 return fib_route_get_idx(iter, *pos);
2258
2259 t = (struct trie *)tb->tb_data;
2260 iter->tnode = rcu_dereference_rtnl(t->trie);
2261 iter->pos = 0;
2262 iter->key = 0;
2263
2264 return SEQ_START_TOKEN;
8315f5d8
SH
2265}
2266
2267static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2268{
2269 struct fib_route_iter *iter = seq->private;
8be33e95
AD
2270 struct tnode *l = NULL;
2271 t_key key = iter->key;
8315f5d8
SH
2272
2273 ++*pos;
8be33e95
AD
2274
2275 /* only allow key of 0 for start of sequence */
2276 if ((v == SEQ_START_TOKEN) || key)
2277 l = leaf_walk_rcu(&iter->tnode, key);
2278
2279 if (l) {
2280 iter->key = l->key + 1;
8315f5d8 2281 iter->pos++;
8be33e95
AD
2282 } else {
2283 iter->pos = 0;
8315f5d8
SH
2284 }
2285
8315f5d8
SH
2286 return l;
2287}
2288
2289static void fib_route_seq_stop(struct seq_file *seq, void *v)
2290 __releases(RCU)
2291{
2292 rcu_read_unlock();
2293}
2294
a034ee3c 2295static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2296{
a034ee3c 2297 unsigned int flags = 0;
19baf839 2298
a034ee3c
ED
2299 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2300 flags = RTF_REJECT;
cb7b593c
SH
2301 if (fi && fi->fib_nh->nh_gw)
2302 flags |= RTF_GATEWAY;
32ab5f80 2303 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2304 flags |= RTF_HOST;
2305 flags |= RTF_UP;
2306 return flags;
19baf839
RO
2307}
2308
cb7b593c
SH
2309/*
2310 * This outputs /proc/net/route.
2311 * The format of the file is not supposed to be changed
a034ee3c 2312 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2313 * legacy utilities
2314 */
2315static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2316{
79e5ad2c 2317 struct fib_alias *fa;
adaf9816 2318 struct tnode *l = v;
9b6ebad5 2319 __be32 prefix;
19baf839 2320
cb7b593c
SH
2321 if (v == SEQ_START_TOKEN) {
2322 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2323 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2324 "\tWindow\tIRTT");
2325 return 0;
2326 }
19baf839 2327
9b6ebad5
AD
2328 prefix = htonl(l->key);
2329
79e5ad2c
AD
2330 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2331 const struct fib_info *fi = fa->fa_info;
2332 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2333 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2334
79e5ad2c
AD
2335 if ((fa->fa_type == RTN_BROADCAST) ||
2336 (fa->fa_type == RTN_MULTICAST))
2337 continue;
19baf839 2338
79e5ad2c
AD
2339 seq_setwidth(seq, 127);
2340
2341 if (fi)
2342 seq_printf(seq,
2343 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2344 "%d\t%08X\t%d\t%u\t%u",
2345 fi->fib_dev ? fi->fib_dev->name : "*",
2346 prefix,
2347 fi->fib_nh->nh_gw, flags, 0, 0,
2348 fi->fib_priority,
2349 mask,
2350 (fi->fib_advmss ?
2351 fi->fib_advmss + 40 : 0),
2352 fi->fib_window,
2353 fi->fib_rtt >> 3);
2354 else
2355 seq_printf(seq,
2356 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2357 "%d\t%08X\t%d\t%u\t%u",
2358 prefix, 0, flags, 0, 0, 0,
2359 mask, 0, 0, 0);
19baf839 2360
79e5ad2c 2361 seq_pad(seq, '\n');
19baf839
RO
2362 }
2363
2364 return 0;
2365}
2366
f690808e 2367static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2368 .start = fib_route_seq_start,
2369 .next = fib_route_seq_next,
2370 .stop = fib_route_seq_stop,
cb7b593c 2371 .show = fib_route_seq_show,
19baf839
RO
2372};
2373
cb7b593c 2374static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2375{
1c340b2f 2376 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2377 sizeof(struct fib_route_iter));
19baf839
RO
2378}
2379
9a32144e 2380static const struct file_operations fib_route_fops = {
cb7b593c
SH
2381 .owner = THIS_MODULE,
2382 .open = fib_route_seq_open,
2383 .read = seq_read,
2384 .llseek = seq_lseek,
1c340b2f 2385 .release = seq_release_net,
19baf839
RO
2386};
2387
61a02653 2388int __net_init fib_proc_init(struct net *net)
19baf839 2389{
d4beaa66 2390 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2391 goto out1;
2392
d4beaa66
G
2393 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2394 &fib_triestat_fops))
cb7b593c
SH
2395 goto out2;
2396
d4beaa66 2397 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2398 goto out3;
2399
19baf839 2400 return 0;
cb7b593c
SH
2401
2402out3:
ece31ffd 2403 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2404out2:
ece31ffd 2405 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2406out1:
2407 return -ENOMEM;
19baf839
RO
2408}
2409
61a02653 2410void __net_exit fib_proc_exit(struct net *net)
19baf839 2411{
ece31ffd
G
2412 remove_proc_entry("fib_trie", net->proc_net);
2413 remove_proc_entry("fib_triestat", net->proc_net);
2414 remove_proc_entry("route", net->proc_net);
19baf839
RO
2415}
2416
2417#endif /* CONFIG_PROC_FS */
This page took 1.210821 seconds and 5 git commands to generate.