fib_trie: Add tnode struct as a container for fields not needed in key_vector
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
8e05fd71 82#include <net/switchdev.h>
19baf839
RO
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
95f60ea3
AD
87#define KEYLENGTH (8*sizeof(t_key))
88#define KEY_MAX ((t_key)~0)
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
64c9b6fb
AD
92#define IS_TNODE(n) ((n)->bits)
93#define IS_LEAF(n) (!(n)->bits)
2373ce1c 94
35c6edac 95struct key_vector {
41b489fd
AD
96 struct rcu_head rcu;
97
98 t_key empty_children; /* KEYLENGTH bits needed */
99 t_key full_children; /* KEYLENGTH bits needed */
35c6edac 100 struct key_vector __rcu *parent;
41b489fd 101
64c9b6fb 102 t_key key;
64c9b6fb 103 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 104 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 105 unsigned char slen;
adaf9816 106 union {
41b489fd 107 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 108 struct hlist_head leaf;
41b489fd 109 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 110 struct key_vector __rcu *tnode[0];
adaf9816 111 };
19baf839
RO
112};
113
dc35dbed
AD
114struct tnode {
115 struct key_vector kv[1];
116};
117
118#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
119#define LEAF_SIZE TNODE_SIZE(1)
120
19baf839
RO
121#ifdef CONFIG_IP_FIB_TRIE_STATS
122struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
2f36895a 128 unsigned int resize_node_skipped;
19baf839
RO
129};
130#endif
131
132struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
93672292 138 unsigned int prefixes;
06ef921d 139 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 140};
19baf839
RO
141
142struct trie {
35c6edac 143 struct key_vector __rcu *tnode[1];
19baf839 144#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 145 struct trie_use_stats __percpu *stats;
19baf839 146#endif
19baf839
RO
147};
148
35c6edac 149static struct key_vector **resize(struct trie *t, struct key_vector *tn);
c3059477
JP
150static size_t tnode_free_size;
151
152/*
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
156 */
157static const int sync_pages = 128;
19baf839 158
e18b890b 159static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 160static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 161
64c9b6fb
AD
162/* caller must hold RTNL */
163#define node_parent(n) rtnl_dereference((n)->parent)
754baf8d 164#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 165
64c9b6fb
AD
166/* caller must hold RCU read lock or RTNL */
167#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
754baf8d 168#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 169
64c9b6fb 170/* wrapper for rcu_assign_pointer */
35c6edac 171static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 172{
adaf9816
AD
173 if (n)
174 rcu_assign_pointer(n->parent, tp);
06801916
SH
175}
176
64c9b6fb
AD
177#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
178
179/* This provides us with the number of children in this node, in the case of a
180 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 181 */
2e1ac88a 182static inline unsigned long child_length(const struct key_vector *tn)
06801916 183{
64c9b6fb 184 return (1ul << tn->bits) & ~(1ul);
06801916 185}
2373ce1c 186
2e1ac88a
AD
187static inline unsigned long get_index(t_key key, struct key_vector *kv)
188{
189 unsigned long index = key ^ kv->key;
190
191 return index >> kv->pos;
192}
193
a7e53531
AD
194static inline struct fib_table *trie_get_table(struct trie *t)
195{
196 unsigned long *tb_data = (unsigned long *)t;
197
198 return container_of(tb_data, struct fib_table, tb_data[0]);
199}
200
e9b44019
AD
201/* To understand this stuff, an understanding of keys and all their bits is
202 * necessary. Every node in the trie has a key associated with it, but not
203 * all of the bits in that key are significant.
204 *
205 * Consider a node 'n' and its parent 'tp'.
206 *
207 * If n is a leaf, every bit in its key is significant. Its presence is
208 * necessitated by path compression, since during a tree traversal (when
209 * searching for a leaf - unless we are doing an insertion) we will completely
210 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
211 * a potentially successful search, that we have indeed been walking the
212 * correct key path.
213 *
214 * Note that we can never "miss" the correct key in the tree if present by
215 * following the wrong path. Path compression ensures that segments of the key
216 * that are the same for all keys with a given prefix are skipped, but the
217 * skipped part *is* identical for each node in the subtrie below the skipped
218 * bit! trie_insert() in this implementation takes care of that.
219 *
220 * if n is an internal node - a 'tnode' here, the various parts of its key
221 * have many different meanings.
222 *
223 * Example:
224 * _________________________________________________________________
225 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
226 * -----------------------------------------------------------------
227 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
228 *
229 * _________________________________________________________________
230 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
231 * -----------------------------------------------------------------
232 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
233 *
234 * tp->pos = 22
235 * tp->bits = 3
236 * n->pos = 13
237 * n->bits = 4
238 *
239 * First, let's just ignore the bits that come before the parent tp, that is
240 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
241 * point we do not use them for anything.
242 *
243 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
244 * index into the parent's child array. That is, they will be used to find
245 * 'n' among tp's children.
246 *
247 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
248 * for the node n.
249 *
250 * All the bits we have seen so far are significant to the node n. The rest
251 * of the bits are really not needed or indeed known in n->key.
252 *
253 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
254 * n's child array, and will of course be different for each child.
255 *
256 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
257 * at this point.
258 */
19baf839 259
f5026fab
DL
260static const int halve_threshold = 25;
261static const int inflate_threshold = 50;
345aa031 262static const int halve_threshold_root = 15;
80b71b80 263static const int inflate_threshold_root = 30;
2373ce1c
RO
264
265static void __alias_free_mem(struct rcu_head *head)
19baf839 266{
2373ce1c
RO
267 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
268 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
269}
270
2373ce1c 271static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 272{
2373ce1c
RO
273 call_rcu(&fa->rcu, __alias_free_mem);
274}
91b9a277 275
37fd30f2 276#define TNODE_KMALLOC_MAX \
35c6edac 277 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 278#define TNODE_VMALLOC_MAX \
35c6edac 279 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 280
37fd30f2 281static void __node_free_rcu(struct rcu_head *head)
387a5487 282{
35c6edac 283 struct key_vector *n = container_of(head, struct key_vector, rcu);
37fd30f2
AD
284
285 if (IS_LEAF(n))
286 kmem_cache_free(trie_leaf_kmem, n);
287 else if (n->bits <= TNODE_KMALLOC_MAX)
288 kfree(n);
289 else
290 vfree(n);
387a5487
SH
291}
292
37fd30f2
AD
293#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
294
dc35dbed 295static struct tnode *tnode_alloc(int bits)
f0e36f8c 296{
1de3d87b
AD
297 size_t size;
298
299 /* verify bits is within bounds */
300 if (bits > TNODE_VMALLOC_MAX)
301 return NULL;
302
303 /* determine size and verify it is non-zero and didn't overflow */
304 size = TNODE_SIZE(1ul << bits);
305
2373ce1c 306 if (size <= PAGE_SIZE)
8d965444 307 return kzalloc(size, GFP_KERNEL);
15be75cd 308 else
7a1c8e5a 309 return vzalloc(size);
15be75cd 310}
2373ce1c 311
35c6edac 312static inline void empty_child_inc(struct key_vector *n)
95f60ea3
AD
313{
314 ++n->empty_children ? : ++n->full_children;
315}
316
35c6edac 317static inline void empty_child_dec(struct key_vector *n)
95f60ea3
AD
318{
319 n->empty_children-- ? : n->full_children--;
320}
321
35c6edac 322static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 323{
dc35dbed
AD
324 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
325 struct key_vector *l = kv->kv;
326
327 if (!kv)
328 return NULL;
329
330 /* initialize key vector */
331 l->key = key;
332 l->pos = 0;
333 l->bits = 0;
334 l->slen = fa->fa_slen;
335
336 /* link leaf to fib alias */
337 INIT_HLIST_HEAD(&l->leaf);
338 hlist_add_head(&fa->fa_list, &l->leaf);
339
2373ce1c
RO
340 return l;
341}
342
35c6edac 343static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 344{
dc35dbed 345 struct tnode *tnode = tnode_alloc(bits);
64c9b6fb 346 unsigned int shift = pos + bits;
dc35dbed 347 struct key_vector *tn = tnode->kv;
64c9b6fb
AD
348
349 /* verify bits and pos their msb bits clear and values are valid */
350 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 351
dc35dbed 352 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
35c6edac 353 sizeof(struct key_vector *) << bits);
dc35dbed
AD
354
355 if (!tnode)
356 return NULL;
357
358 if (bits == KEYLENGTH)
359 tn->full_children = 1;
360 else
361 tn->empty_children = 1ul << bits;
362
363 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
364 tn->pos = pos;
365 tn->bits = bits;
366 tn->slen = pos;
367
19baf839
RO
368 return tn;
369}
370
e9b44019 371/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
372 * and no bits are skipped. See discussion in dyntree paper p. 6
373 */
35c6edac 374static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 375{
e9b44019 376 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
377}
378
ff181ed8
AD
379/* Add a child at position i overwriting the old value.
380 * Update the value of full_children and empty_children.
381 */
35c6edac
AD
382static void put_child(struct key_vector *tn, unsigned long i,
383 struct key_vector *n)
19baf839 384{
754baf8d 385 struct key_vector *chi = get_child(tn, i);
ff181ed8 386 int isfull, wasfull;
19baf839 387
2e1ac88a 388 BUG_ON(i >= child_length(tn));
0c7770c7 389
95f60ea3 390 /* update emptyChildren, overflow into fullChildren */
19baf839 391 if (n == NULL && chi != NULL)
95f60ea3
AD
392 empty_child_inc(tn);
393 if (n != NULL && chi == NULL)
394 empty_child_dec(tn);
c877efb2 395
19baf839 396 /* update fullChildren */
ff181ed8 397 wasfull = tnode_full(tn, chi);
19baf839 398 isfull = tnode_full(tn, n);
ff181ed8 399
c877efb2 400 if (wasfull && !isfull)
19baf839 401 tn->full_children--;
c877efb2 402 else if (!wasfull && isfull)
19baf839 403 tn->full_children++;
91b9a277 404
5405afd1
AD
405 if (n && (tn->slen < n->slen))
406 tn->slen = n->slen;
407
41b489fd 408 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
409}
410
35c6edac 411static void update_children(struct key_vector *tn)
69fa57b1
AD
412{
413 unsigned long i;
414
415 /* update all of the child parent pointers */
2e1ac88a 416 for (i = child_length(tn); i;) {
754baf8d 417 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
418
419 if (!inode)
420 continue;
421
422 /* Either update the children of a tnode that
423 * already belongs to us or update the child
424 * to point to ourselves.
425 */
426 if (node_parent(inode) == tn)
427 update_children(inode);
428 else
429 node_set_parent(inode, tn);
430 }
431}
432
35c6edac
AD
433static inline void put_child_root(struct key_vector *tp, struct trie *t,
434 t_key key, struct key_vector *n)
836a0123
AD
435{
436 if (tp)
437 put_child(tp, get_index(key, tp), n);
438 else
35c6edac 439 rcu_assign_pointer(t->tnode[0], n);
836a0123
AD
440}
441
35c6edac 442static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 443{
fc86a93b
AD
444 tn->rcu.next = NULL;
445}
446
35c6edac
AD
447static inline void tnode_free_append(struct key_vector *tn,
448 struct key_vector *n)
fc86a93b
AD
449{
450 n->rcu.next = tn->rcu.next;
451 tn->rcu.next = &n->rcu;
452}
0a5c0475 453
35c6edac 454static void tnode_free(struct key_vector *tn)
fc86a93b
AD
455{
456 struct callback_head *head = &tn->rcu;
457
458 while (head) {
459 head = head->next;
41b489fd 460 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
461 node_free(tn);
462
35c6edac 463 tn = container_of(head, struct key_vector, rcu);
fc86a93b
AD
464 }
465
466 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
467 tnode_free_size = 0;
468 synchronize_rcu();
0a5c0475 469 }
0a5c0475
ED
470}
471
35c6edac
AD
472static struct key_vector __rcu **replace(struct trie *t,
473 struct key_vector *oldtnode,
474 struct key_vector *tn)
69fa57b1 475{
35c6edac
AD
476 struct key_vector *tp = node_parent(oldtnode);
477 struct key_vector **cptr;
69fa57b1
AD
478 unsigned long i;
479
480 /* setup the parent pointer out of and back into this node */
481 NODE_INIT_PARENT(tn, tp);
482 put_child_root(tp, t, tn->key, tn);
483
484 /* update all of the child parent pointers */
485 update_children(tn);
486
487 /* all pointers should be clean so we are done */
488 tnode_free(oldtnode);
489
8d8e810c 490 /* record the pointer that is pointing to this node */
35c6edac 491 cptr = tp ? tp->tnode : t->tnode;
8d8e810c 492
69fa57b1 493 /* resize children now that oldtnode is freed */
2e1ac88a 494 for (i = child_length(tn); i;) {
754baf8d 495 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
496
497 /* resize child node */
498 if (tnode_full(tn, inode))
499 resize(t, inode);
500 }
8d8e810c
AD
501
502 return cptr;
69fa57b1
AD
503}
504
35c6edac
AD
505static struct key_vector __rcu **inflate(struct trie *t,
506 struct key_vector *oldtnode)
19baf839 507{
35c6edac 508 struct key_vector *tn;
69fa57b1 509 unsigned long i;
e9b44019 510 t_key m;
19baf839 511
0c7770c7 512 pr_debug("In inflate\n");
19baf839 513
e9b44019 514 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 515 if (!tn)
8d8e810c 516 goto notnode;
2f36895a 517
69fa57b1
AD
518 /* prepare oldtnode to be freed */
519 tnode_free_init(oldtnode);
520
12c081a5
AD
521 /* Assemble all of the pointers in our cluster, in this case that
522 * represents all of the pointers out of our allocated nodes that
523 * point to existing tnodes and the links between our allocated
524 * nodes.
2f36895a 525 */
2e1ac88a 526 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 527 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 528 struct key_vector *node0, *node1;
69fa57b1 529 unsigned long j, k;
c877efb2 530
19baf839 531 /* An empty child */
adaf9816 532 if (inode == NULL)
19baf839
RO
533 continue;
534
535 /* A leaf or an internal node with skipped bits */
adaf9816 536 if (!tnode_full(oldtnode, inode)) {
e9b44019 537 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
538 continue;
539 }
540
69fa57b1
AD
541 /* drop the node in the old tnode free list */
542 tnode_free_append(oldtnode, inode);
543
19baf839 544 /* An internal node with two children */
19baf839 545 if (inode->bits == 1) {
754baf8d
AD
546 put_child(tn, 2 * i + 1, get_child(inode, 1));
547 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 548 continue;
19baf839
RO
549 }
550
91b9a277 551 /* We will replace this node 'inode' with two new
12c081a5 552 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
553 * original children. The two new nodes will have
554 * a position one bit further down the key and this
555 * means that the "significant" part of their keys
556 * (see the discussion near the top of this file)
557 * will differ by one bit, which will be "0" in
12c081a5 558 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
559 * moving the key position by one step, the bit that
560 * we are moving away from - the bit at position
12c081a5
AD
561 * (tn->pos) - is the one that will differ between
562 * node0 and node1. So... we synthesize that bit in the
563 * two new keys.
91b9a277 564 */
12c081a5
AD
565 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
566 if (!node1)
567 goto nomem;
69fa57b1 568 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 569
69fa57b1 570 tnode_free_append(tn, node1);
12c081a5
AD
571 if (!node0)
572 goto nomem;
573 tnode_free_append(tn, node0);
574
575 /* populate child pointers in new nodes */
2e1ac88a 576 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
577 put_child(node1, --j, get_child(inode, --k));
578 put_child(node0, j, get_child(inode, j));
579 put_child(node1, --j, get_child(inode, --k));
580 put_child(node0, j, get_child(inode, j));
12c081a5 581 }
19baf839 582
12c081a5
AD
583 /* link new nodes to parent */
584 NODE_INIT_PARENT(node1, tn);
585 NODE_INIT_PARENT(node0, tn);
2f36895a 586
12c081a5
AD
587 /* link parent to nodes */
588 put_child(tn, 2 * i + 1, node1);
589 put_child(tn, 2 * i, node0);
590 }
2f36895a 591
69fa57b1 592 /* setup the parent pointers into and out of this node */
8d8e810c 593 return replace(t, oldtnode, tn);
2f80b3c8 594nomem:
fc86a93b
AD
595 /* all pointers should be clean so we are done */
596 tnode_free(tn);
8d8e810c
AD
597notnode:
598 return NULL;
19baf839
RO
599}
600
35c6edac
AD
601static struct key_vector __rcu **halve(struct trie *t,
602 struct key_vector *oldtnode)
19baf839 603{
35c6edac 604 struct key_vector *tn;
12c081a5 605 unsigned long i;
19baf839 606
0c7770c7 607 pr_debug("In halve\n");
c877efb2 608
e9b44019 609 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 610 if (!tn)
8d8e810c 611 goto notnode;
2f36895a 612
69fa57b1
AD
613 /* prepare oldtnode to be freed */
614 tnode_free_init(oldtnode);
615
12c081a5
AD
616 /* Assemble all of the pointers in our cluster, in this case that
617 * represents all of the pointers out of our allocated nodes that
618 * point to existing tnodes and the links between our allocated
619 * nodes.
2f36895a 620 */
2e1ac88a 621 for (i = child_length(oldtnode); i;) {
754baf8d
AD
622 struct key_vector *node1 = get_child(oldtnode, --i);
623 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 624 struct key_vector *inode;
2f36895a 625
12c081a5
AD
626 /* At least one of the children is empty */
627 if (!node1 || !node0) {
628 put_child(tn, i / 2, node1 ? : node0);
629 continue;
630 }
c877efb2 631
2f36895a 632 /* Two nonempty children */
12c081a5 633 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
634 if (!inode)
635 goto nomem;
12c081a5 636 tnode_free_append(tn, inode);
2f36895a 637
12c081a5
AD
638 /* initialize pointers out of node */
639 put_child(inode, 1, node1);
640 put_child(inode, 0, node0);
641 NODE_INIT_PARENT(inode, tn);
642
643 /* link parent to node */
644 put_child(tn, i / 2, inode);
2f36895a 645 }
19baf839 646
69fa57b1 647 /* setup the parent pointers into and out of this node */
8d8e810c
AD
648 return replace(t, oldtnode, tn);
649nomem:
650 /* all pointers should be clean so we are done */
651 tnode_free(tn);
652notnode:
653 return NULL;
19baf839
RO
654}
655
35c6edac 656static void collapse(struct trie *t, struct key_vector *oldtnode)
95f60ea3 657{
35c6edac 658 struct key_vector *n, *tp;
95f60ea3
AD
659 unsigned long i;
660
661 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 662 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 663 n = get_child(oldtnode, --i);
95f60ea3
AD
664
665 /* compress one level */
666 tp = node_parent(oldtnode);
667 put_child_root(tp, t, oldtnode->key, n);
668 node_set_parent(n, tp);
669
670 /* drop dead node */
671 node_free(oldtnode);
672}
673
35c6edac 674static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
675{
676 unsigned char slen = tn->pos;
677 unsigned long stride, i;
678
679 /* search though the list of children looking for nodes that might
680 * have a suffix greater than the one we currently have. This is
681 * why we start with a stride of 2 since a stride of 1 would
682 * represent the nodes with suffix length equal to tn->pos
683 */
2e1ac88a 684 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 685 struct key_vector *n = get_child(tn, i);
5405afd1
AD
686
687 if (!n || (n->slen <= slen))
688 continue;
689
690 /* update stride and slen based on new value */
691 stride <<= (n->slen - slen);
692 slen = n->slen;
693 i &= ~(stride - 1);
694
695 /* if slen covers all but the last bit we can stop here
696 * there will be nothing longer than that since only node
697 * 0 and 1 << (bits - 1) could have that as their suffix
698 * length.
699 */
700 if ((slen + 1) >= (tn->pos + tn->bits))
701 break;
702 }
703
704 tn->slen = slen;
705
706 return slen;
707}
708
f05a4819
AD
709/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
710 * the Helsinki University of Technology and Matti Tikkanen of Nokia
711 * Telecommunications, page 6:
712 * "A node is doubled if the ratio of non-empty children to all
713 * children in the *doubled* node is at least 'high'."
714 *
715 * 'high' in this instance is the variable 'inflate_threshold'. It
716 * is expressed as a percentage, so we multiply it with
2e1ac88a 717 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
718 * child array will be doubled by inflate()) and multiplying
719 * the left-hand side by 100 (to handle the percentage thing) we
720 * multiply the left-hand side by 50.
721 *
2e1ac88a 722 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
723 * - tn->empty_children is of course the number of non-null children
724 * in the current node. tn->full_children is the number of "full"
725 * children, that is non-null tnodes with a skip value of 0.
726 * All of those will be doubled in the resulting inflated tnode, so
727 * we just count them one extra time here.
728 *
729 * A clearer way to write this would be:
730 *
731 * to_be_doubled = tn->full_children;
2e1ac88a 732 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
733 * tn->full_children;
734 *
2e1ac88a 735 * new_child_length = child_length(tn) * 2;
f05a4819
AD
736 *
737 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
738 * new_child_length;
739 * if (new_fill_factor >= inflate_threshold)
740 *
741 * ...and so on, tho it would mess up the while () loop.
742 *
743 * anyway,
744 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
745 * inflate_threshold
746 *
747 * avoid a division:
748 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
749 * inflate_threshold * new_child_length
750 *
751 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 752 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
753 * tn->full_children) >= inflate_threshold * new_child_length
754 *
755 * expand new_child_length:
2e1ac88a 756 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 757 * tn->full_children) >=
2e1ac88a 758 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
759 *
760 * shorten again:
2e1ac88a 761 * 50 * (tn->full_children + child_length(tn) -
f05a4819 762 * tn->empty_children) >= inflate_threshold *
2e1ac88a 763 * child_length(tn)
f05a4819
AD
764 *
765 */
35c6edac 766static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 767{
2e1ac88a 768 unsigned long used = child_length(tn);
f05a4819
AD
769 unsigned long threshold = used;
770
771 /* Keep root node larger */
ff181ed8 772 threshold *= tp ? inflate_threshold : inflate_threshold_root;
f05a4819 773 used -= tn->empty_children;
95f60ea3 774 used += tn->full_children;
f05a4819 775
95f60ea3
AD
776 /* if bits == KEYLENGTH then pos = 0, and will fail below */
777
778 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
779}
780
35c6edac 781static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 782{
2e1ac88a 783 unsigned long used = child_length(tn);
f05a4819
AD
784 unsigned long threshold = used;
785
786 /* Keep root node larger */
ff181ed8 787 threshold *= tp ? halve_threshold : halve_threshold_root;
f05a4819
AD
788 used -= tn->empty_children;
789
95f60ea3
AD
790 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
791
792 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
793}
794
35c6edac 795static inline bool should_collapse(struct key_vector *tn)
95f60ea3 796{
2e1ac88a 797 unsigned long used = child_length(tn);
95f60ea3
AD
798
799 used -= tn->empty_children;
800
801 /* account for bits == KEYLENGTH case */
802 if ((tn->bits == KEYLENGTH) && tn->full_children)
803 used -= KEY_MAX;
804
805 /* One child or none, time to drop us from the trie */
806 return used < 2;
f05a4819
AD
807}
808
cf3637bb 809#define MAX_WORK 10
35c6edac
AD
810static struct key_vector __rcu **resize(struct trie *t,
811 struct key_vector *tn)
cf3637bb 812{
8d8e810c
AD
813#ifdef CONFIG_IP_FIB_TRIE_STATS
814 struct trie_use_stats __percpu *stats = t->stats;
815#endif
35c6edac 816 struct key_vector *tp = node_parent(tn);
8d8e810c 817 unsigned long cindex = tp ? get_index(tn->key, tp) : 0;
35c6edac 818 struct key_vector __rcu **cptr = tp ? tp->tnode : t->tnode;
a80e89d4 819 int max_work = MAX_WORK;
cf3637bb 820
cf3637bb
AD
821 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 tn, inflate_threshold, halve_threshold);
823
ff181ed8
AD
824 /* track the tnode via the pointer from the parent instead of
825 * doing it ourselves. This way we can let RCU fully do its
826 * thing without us interfering
827 */
8d8e810c 828 BUG_ON(tn != rtnl_dereference(cptr[cindex]));
ff181ed8 829
f05a4819
AD
830 /* Double as long as the resulting node has a number of
831 * nonempty nodes that are above the threshold.
cf3637bb 832 */
a80e89d4 833 while (should_inflate(tp, tn) && max_work) {
35c6edac 834 struct key_vector __rcu **tcptr = inflate(t, tn);
8d8e810c
AD
835
836 if (!tcptr) {
cf3637bb 837#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 838 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
839#endif
840 break;
841 }
ff181ed8 842
a80e89d4 843 max_work--;
8d8e810c
AD
844 cptr = tcptr;
845 tn = rtnl_dereference(cptr[cindex]);
cf3637bb
AD
846 }
847
848 /* Return if at least one inflate is run */
849 if (max_work != MAX_WORK)
8d8e810c 850 return cptr;
cf3637bb 851
f05a4819 852 /* Halve as long as the number of empty children in this
cf3637bb
AD
853 * node is above threshold.
854 */
a80e89d4 855 while (should_halve(tp, tn) && max_work) {
35c6edac 856 struct key_vector __rcu **tcptr = halve(t, tn);
8d8e810c
AD
857
858 if (!tcptr) {
cf3637bb 859#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 860 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
861#endif
862 break;
863 }
cf3637bb 864
a80e89d4 865 max_work--;
8d8e810c
AD
866 cptr = tcptr;
867 tn = rtnl_dereference(cptr[cindex]);
ff181ed8 868 }
cf3637bb
AD
869
870 /* Only one child remains */
95f60ea3
AD
871 if (should_collapse(tn)) {
872 collapse(t, tn);
8d8e810c 873 return cptr;
5405afd1
AD
874 }
875
876 /* Return if at least one deflate was run */
877 if (max_work != MAX_WORK)
8d8e810c 878 return cptr;
5405afd1
AD
879
880 /* push the suffix length to the parent node */
881 if (tn->slen > tn->pos) {
882 unsigned char slen = update_suffix(tn);
883
884 if (tp && (slen > tp->slen))
885 tp->slen = slen;
cf3637bb 886 }
8d8e810c
AD
887
888 return cptr;
cf3637bb
AD
889}
890
35c6edac 891static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 892{
5405afd1
AD
893 while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
894 if (update_suffix(tp) > l->slen)
895 break;
896 tp = node_parent(tp);
897 }
898}
899
35c6edac 900static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 901{
5405afd1
AD
902 /* if this is a new leaf then tn will be NULL and we can sort
903 * out parent suffix lengths as a part of trie_rebalance
904 */
905 while (tn && (tn->slen < l->slen)) {
906 tn->slen = l->slen;
907 tn = node_parent(tn);
908 }
909}
910
2373ce1c 911/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
912static struct key_vector *fib_find_node(struct trie *t,
913 struct key_vector **tp, u32 key)
19baf839 914{
35c6edac 915 struct key_vector *pn = NULL, *n = rcu_dereference_rtnl(t->tnode[0]);
939afb06
AD
916
917 while (n) {
918 unsigned long index = get_index(key, n);
919
920 /* This bit of code is a bit tricky but it combines multiple
921 * checks into a single check. The prefix consists of the
922 * prefix plus zeros for the bits in the cindex. The index
923 * is the difference between the key and this value. From
924 * this we can actually derive several pieces of data.
d4a975e8 925 * if (index >= (1ul << bits))
939afb06 926 * we have a mismatch in skip bits and failed
b3832117
AD
927 * else
928 * we know the value is cindex
d4a975e8
AD
929 *
930 * This check is safe even if bits == KEYLENGTH due to the
931 * fact that we can only allocate a node with 32 bits if a
932 * long is greater than 32 bits.
939afb06 933 */
d4a975e8
AD
934 if (index >= (1ul << n->bits)) {
935 n = NULL;
936 break;
937 }
939afb06
AD
938
939 /* we have found a leaf. Prefixes have already been compared */
940 if (IS_LEAF(n))
19baf839 941 break;
19baf839 942
d4a975e8 943 pn = n;
754baf8d 944 n = get_child_rcu(n, index);
939afb06 945 }
91b9a277 946
35c6edac 947 *tp = pn;
d4a975e8 948
939afb06 949 return n;
19baf839
RO
950}
951
02525368
AD
952/* Return the first fib alias matching TOS with
953 * priority less than or equal to PRIO.
954 */
79e5ad2c
AD
955static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
956 u8 tos, u32 prio)
02525368
AD
957{
958 struct fib_alias *fa;
959
960 if (!fah)
961 return NULL;
962
56315f9e 963 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
964 if (fa->fa_slen < slen)
965 continue;
966 if (fa->fa_slen != slen)
967 break;
02525368
AD
968 if (fa->fa_tos > tos)
969 continue;
970 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
971 return fa;
972 }
973
974 return NULL;
975}
976
35c6edac 977static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 978{
35c6edac 979 struct key_vector __rcu **cptr = t->tnode;
19baf839 980
d5d6487c 981 while (tn) {
35c6edac 982 struct key_vector *tp = node_parent(tn);
8d8e810c
AD
983
984 cptr = resize(t, tn);
985 if (!tp)
986 break;
35c6edac 987 tn = container_of(cptr, struct key_vector, tnode[0]);
19baf839 988 }
19baf839
RO
989}
990
35c6edac 991static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 992 struct fib_alias *new, t_key key)
19baf839 993{
35c6edac 994 struct key_vector *n, *l;
19baf839 995
d5d6487c 996 l = leaf_new(key, new);
79e5ad2c 997 if (!l)
8d8e810c 998 goto noleaf;
d5d6487c
AD
999
1000 /* retrieve child from parent node */
1001 if (tp)
754baf8d 1002 n = get_child(tp, get_index(key, tp));
d5d6487c 1003 else
35c6edac 1004 n = rcu_dereference_rtnl(t->tnode[0]);
19baf839 1005
836a0123
AD
1006 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1007 *
1008 * Add a new tnode here
1009 * first tnode need some special handling
1010 * leaves us in position for handling as case 3
1011 */
1012 if (n) {
35c6edac 1013 struct key_vector *tn;
19baf839 1014
e9b44019 1015 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1016 if (!tn)
1017 goto notnode;
91b9a277 1018
836a0123
AD
1019 /* initialize routes out of node */
1020 NODE_INIT_PARENT(tn, tp);
1021 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1022
836a0123
AD
1023 /* start adding routes into the node */
1024 put_child_root(tp, t, key, tn);
1025 node_set_parent(n, tn);
e962f302 1026
836a0123 1027 /* parent now has a NULL spot where the leaf can go */
e962f302 1028 tp = tn;
19baf839 1029 }
91b9a277 1030
836a0123 1031 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c
AD
1032 NODE_INIT_PARENT(l, tp);
1033 put_child_root(tp, t, key, l);
1034 trie_rebalance(t, tp);
1035
1036 return 0;
8d8e810c
AD
1037notnode:
1038 node_free(l);
1039noleaf:
1040 return -ENOMEM;
d5d6487c
AD
1041}
1042
35c6edac
AD
1043static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1044 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1045 struct fib_alias *fa, t_key key)
1046{
1047 if (!l)
1048 return fib_insert_node(t, tp, new, key);
1049
1050 if (fa) {
1051 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1052 } else {
d5d6487c
AD
1053 struct fib_alias *last;
1054
1055 hlist_for_each_entry(last, &l->leaf, fa_list) {
1056 if (new->fa_slen < last->fa_slen)
1057 break;
1058 fa = last;
1059 }
1060
1061 if (fa)
1062 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1063 else
1064 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1065 }
2373ce1c 1066
d5d6487c
AD
1067 /* if we added to the tail node then we need to update slen */
1068 if (l->slen < new->fa_slen) {
1069 l->slen = new->fa_slen;
1070 leaf_push_suffix(tp, l);
1071 }
1072
1073 return 0;
19baf839
RO
1074}
1075
d5d6487c 1076/* Caller must hold RTNL. */
16c6cf8b 1077int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1078{
d4a975e8 1079 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1080 struct fib_alias *fa, *new_fa;
35c6edac 1081 struct key_vector *l, *tp;
19baf839 1082 struct fib_info *fi;
79e5ad2c
AD
1083 u8 plen = cfg->fc_dst_len;
1084 u8 slen = KEYLENGTH - plen;
4e902c57 1085 u8 tos = cfg->fc_tos;
d4a975e8 1086 u32 key;
19baf839 1087 int err;
19baf839 1088
5786ec60 1089 if (plen > KEYLENGTH)
19baf839
RO
1090 return -EINVAL;
1091
4e902c57 1092 key = ntohl(cfg->fc_dst);
19baf839 1093
2dfe55b4 1094 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1095
d4a975e8 1096 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1097 return -EINVAL;
1098
4e902c57
TG
1099 fi = fib_create_info(cfg);
1100 if (IS_ERR(fi)) {
1101 err = PTR_ERR(fi);
19baf839 1102 goto err;
4e902c57 1103 }
19baf839 1104
d4a975e8 1105 l = fib_find_node(t, &tp, key);
79e5ad2c 1106 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
19baf839
RO
1107
1108 /* Now fa, if non-NULL, points to the first fib alias
1109 * with the same keys [prefix,tos,priority], if such key already
1110 * exists or to the node before which we will insert new one.
1111 *
1112 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1113 * insert to the tail of the section matching the suffix length
1114 * of the new alias.
19baf839
RO
1115 */
1116
936f6f8e
JA
1117 if (fa && fa->fa_tos == tos &&
1118 fa->fa_info->fib_priority == fi->fib_priority) {
1119 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1120
1121 err = -EEXIST;
4e902c57 1122 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1123 goto out;
1124
936f6f8e
JA
1125 /* We have 2 goals:
1126 * 1. Find exact match for type, scope, fib_info to avoid
1127 * duplicate routes
1128 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1129 */
1130 fa_match = NULL;
1131 fa_first = fa;
56315f9e 1132 hlist_for_each_entry_from(fa, fa_list) {
79e5ad2c 1133 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
936f6f8e
JA
1134 break;
1135 if (fa->fa_info->fib_priority != fi->fib_priority)
1136 break;
1137 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1138 fa->fa_info == fi) {
1139 fa_match = fa;
1140 break;
1141 }
1142 }
1143
4e902c57 1144 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1145 struct fib_info *fi_drop;
1146 u8 state;
1147
936f6f8e
JA
1148 fa = fa_first;
1149 if (fa_match) {
1150 if (fa == fa_match)
1151 err = 0;
6725033f 1152 goto out;
936f6f8e 1153 }
2373ce1c 1154 err = -ENOBUFS;
e94b1766 1155 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1156 if (new_fa == NULL)
1157 goto out;
19baf839
RO
1158
1159 fi_drop = fa->fa_info;
2373ce1c
RO
1160 new_fa->fa_tos = fa->fa_tos;
1161 new_fa->fa_info = fi;
4e902c57 1162 new_fa->fa_type = cfg->fc_type;
19baf839 1163 state = fa->fa_state;
936f6f8e 1164 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1165 new_fa->fa_slen = fa->fa_slen;
19baf839 1166
8e05fd71
SF
1167 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1168 new_fa->fa_tos,
1169 cfg->fc_type,
1170 tb->tb_id);
1171 if (err) {
1172 netdev_switch_fib_ipv4_abort(fi);
1173 kmem_cache_free(fn_alias_kmem, new_fa);
1174 goto out;
1175 }
1176
56315f9e 1177 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1178
2373ce1c 1179 alias_free_mem_rcu(fa);
19baf839
RO
1180
1181 fib_release_info(fi_drop);
1182 if (state & FA_S_ACCESSED)
4ccfe6d4 1183 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1184 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1185 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1186
91b9a277 1187 goto succeeded;
19baf839
RO
1188 }
1189 /* Error if we find a perfect match which
1190 * uses the same scope, type, and nexthop
1191 * information.
1192 */
936f6f8e
JA
1193 if (fa_match)
1194 goto out;
a07f5f50 1195
4e902c57 1196 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1197 fa = fa_first;
19baf839
RO
1198 }
1199 err = -ENOENT;
4e902c57 1200 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1201 goto out;
1202
1203 err = -ENOBUFS;
e94b1766 1204 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1205 if (new_fa == NULL)
1206 goto out;
1207
1208 new_fa->fa_info = fi;
1209 new_fa->fa_tos = tos;
4e902c57 1210 new_fa->fa_type = cfg->fc_type;
19baf839 1211 new_fa->fa_state = 0;
79e5ad2c 1212 new_fa->fa_slen = slen;
19baf839 1213
8e05fd71
SF
1214 /* (Optionally) offload fib entry to switch hardware. */
1215 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1216 cfg->fc_type, tb->tb_id);
1217 if (err) {
1218 netdev_switch_fib_ipv4_abort(fi);
1219 goto out_free_new_fa;
1220 }
1221
9b6ebad5 1222 /* Insert new entry to the list. */
d5d6487c
AD
1223 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1224 if (err)
8e05fd71 1225 goto out_sw_fib_del;
19baf839 1226
21d8c49e
DM
1227 if (!plen)
1228 tb->tb_num_default++;
1229
4ccfe6d4 1230 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1231 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1232 &cfg->fc_nlinfo, 0);
19baf839
RO
1233succeeded:
1234 return 0;
f835e471 1235
8e05fd71
SF
1236out_sw_fib_del:
1237 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
f835e471
RO
1238out_free_new_fa:
1239 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1240out:
1241 fib_release_info(fi);
91b9a277 1242err:
19baf839
RO
1243 return err;
1244}
1245
35c6edac 1246static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1247{
1248 t_key prefix = n->key;
1249
1250 return (key ^ prefix) & (prefix | -prefix);
1251}
1252
345e9b54 1253/* should be called with rcu_read_lock */
22bd5b9b 1254int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1255 struct fib_result *res, int fib_flags)
19baf839 1256{
9f9e636d 1257 struct trie *t = (struct trie *)tb->tb_data;
8274a97a
AD
1258#ifdef CONFIG_IP_FIB_TRIE_STATS
1259 struct trie_use_stats __percpu *stats = t->stats;
1260#endif
9f9e636d 1261 const t_key key = ntohl(flp->daddr);
35c6edac 1262 struct key_vector *n, *pn;
79e5ad2c 1263 struct fib_alias *fa;
71e8b67d 1264 unsigned long index;
9f9e636d 1265 t_key cindex;
91b9a277 1266
35c6edac 1267 n = rcu_dereference(t->tnode[0]);
c877efb2 1268 if (!n)
345e9b54 1269 return -EAGAIN;
19baf839
RO
1270
1271#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1272 this_cpu_inc(stats->gets);
19baf839
RO
1273#endif
1274
adaf9816 1275 pn = n;
9f9e636d
AD
1276 cindex = 0;
1277
1278 /* Step 1: Travel to the longest prefix match in the trie */
1279 for (;;) {
71e8b67d 1280 index = get_index(key, n);
9f9e636d
AD
1281
1282 /* This bit of code is a bit tricky but it combines multiple
1283 * checks into a single check. The prefix consists of the
1284 * prefix plus zeros for the "bits" in the prefix. The index
1285 * is the difference between the key and this value. From
1286 * this we can actually derive several pieces of data.
71e8b67d 1287 * if (index >= (1ul << bits))
9f9e636d 1288 * we have a mismatch in skip bits and failed
b3832117
AD
1289 * else
1290 * we know the value is cindex
71e8b67d
AD
1291 *
1292 * This check is safe even if bits == KEYLENGTH due to the
1293 * fact that we can only allocate a node with 32 bits if a
1294 * long is greater than 32 bits.
9f9e636d 1295 */
71e8b67d 1296 if (index >= (1ul << n->bits))
9f9e636d 1297 break;
19baf839 1298
9f9e636d
AD
1299 /* we have found a leaf. Prefixes have already been compared */
1300 if (IS_LEAF(n))
a07f5f50 1301 goto found;
19baf839 1302
9f9e636d
AD
1303 /* only record pn and cindex if we are going to be chopping
1304 * bits later. Otherwise we are just wasting cycles.
91b9a277 1305 */
5405afd1 1306 if (n->slen > n->pos) {
9f9e636d
AD
1307 pn = n;
1308 cindex = index;
91b9a277 1309 }
19baf839 1310
754baf8d 1311 n = get_child_rcu(n, index);
9f9e636d
AD
1312 if (unlikely(!n))
1313 goto backtrace;
1314 }
19baf839 1315
9f9e636d
AD
1316 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1317 for (;;) {
1318 /* record the pointer where our next node pointer is stored */
35c6edac 1319 struct key_vector __rcu **cptr = n->tnode;
19baf839 1320
9f9e636d
AD
1321 /* This test verifies that none of the bits that differ
1322 * between the key and the prefix exist in the region of
1323 * the lsb and higher in the prefix.
91b9a277 1324 */
5405afd1 1325 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1326 goto backtrace;
91b9a277 1327
9f9e636d
AD
1328 /* exit out and process leaf */
1329 if (unlikely(IS_LEAF(n)))
1330 break;
91b9a277 1331
9f9e636d
AD
1332 /* Don't bother recording parent info. Since we are in
1333 * prefix match mode we will have to come back to wherever
1334 * we started this traversal anyway
91b9a277 1335 */
91b9a277 1336
9f9e636d 1337 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1338backtrace:
19baf839 1339#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1340 if (!n)
1341 this_cpu_inc(stats->null_node_hit);
19baf839 1342#endif
9f9e636d
AD
1343 /* If we are at cindex 0 there are no more bits for
1344 * us to strip at this level so we must ascend back
1345 * up one level to see if there are any more bits to
1346 * be stripped there.
1347 */
1348 while (!cindex) {
1349 t_key pkey = pn->key;
1350
1351 pn = node_parent_rcu(pn);
1352 if (unlikely(!pn))
345e9b54 1353 return -EAGAIN;
9f9e636d
AD
1354#ifdef CONFIG_IP_FIB_TRIE_STATS
1355 this_cpu_inc(stats->backtrack);
1356#endif
1357 /* Get Child's index */
1358 cindex = get_index(pkey, pn);
1359 }
1360
1361 /* strip the least significant bit from the cindex */
1362 cindex &= cindex - 1;
1363
1364 /* grab pointer for next child node */
41b489fd 1365 cptr = &pn->tnode[cindex];
c877efb2 1366 }
19baf839 1367 }
9f9e636d 1368
19baf839 1369found:
71e8b67d
AD
1370 /* this line carries forward the xor from earlier in the function */
1371 index = key ^ n->key;
1372
9f9e636d 1373 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1374 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1375 struct fib_info *fi = fa->fa_info;
1376 int nhsel, err;
345e9b54 1377
71e8b67d 1378 if ((index >= (1ul << fa->fa_slen)) &&
79e5ad2c 1379 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
71e8b67d 1380 continue;
79e5ad2c
AD
1381 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1382 continue;
1383 if (fi->fib_dead)
1384 continue;
1385 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1386 continue;
1387 fib_alias_accessed(fa);
1388 err = fib_props[fa->fa_type].error;
1389 if (unlikely(err < 0)) {
345e9b54 1390#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1391 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1392#endif
79e5ad2c
AD
1393 return err;
1394 }
1395 if (fi->fib_flags & RTNH_F_DEAD)
1396 continue;
1397 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1398 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1399
1400 if (nh->nh_flags & RTNH_F_DEAD)
1401 continue;
1402 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1403 continue;
79e5ad2c
AD
1404
1405 if (!(fib_flags & FIB_LOOKUP_NOREF))
1406 atomic_inc(&fi->fib_clntref);
1407
1408 res->prefixlen = KEYLENGTH - fa->fa_slen;
1409 res->nh_sel = nhsel;
1410 res->type = fa->fa_type;
1411 res->scope = fi->fib_scope;
1412 res->fi = fi;
1413 res->table = tb;
1414 res->fa_head = &n->leaf;
345e9b54 1415#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1416 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1417#endif
79e5ad2c 1418 return err;
345e9b54 1419 }
9b6ebad5 1420 }
345e9b54 1421#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1422 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1423#endif
345e9b54 1424 goto backtrace;
19baf839 1425}
6fc01438 1426EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1427
35c6edac
AD
1428static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1429 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1430{
1431 /* record the location of the previous list_info entry */
1432 struct hlist_node **pprev = old->fa_list.pprev;
1433 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1434
1435 /* remove the fib_alias from the list */
1436 hlist_del_rcu(&old->fa_list);
1437
1438 /* if we emptied the list this leaf will be freed and we can sort
1439 * out parent suffix lengths as a part of trie_rebalance
1440 */
1441 if (hlist_empty(&l->leaf)) {
1442 put_child_root(tp, t, l->key, NULL);
1443 node_free(l);
1444 trie_rebalance(t, tp);
1445 return;
1446 }
1447
1448 /* only access fa if it is pointing at the last valid hlist_node */
1449 if (*pprev)
1450 return;
1451
1452 /* update the trie with the latest suffix length */
1453 l->slen = fa->fa_slen;
1454 leaf_pull_suffix(tp, l);
1455}
1456
1457/* Caller must hold RTNL. */
16c6cf8b 1458int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1459{
1460 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1461 struct fib_alias *fa, *fa_to_delete;
35c6edac 1462 struct key_vector *l, *tp;
79e5ad2c 1463 u8 plen = cfg->fc_dst_len;
79e5ad2c 1464 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1465 u8 tos = cfg->fc_tos;
1466 u32 key;
91b9a277 1467
79e5ad2c 1468 if (plen > KEYLENGTH)
19baf839
RO
1469 return -EINVAL;
1470
4e902c57 1471 key = ntohl(cfg->fc_dst);
19baf839 1472
d4a975e8 1473 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1474 return -EINVAL;
1475
d4a975e8 1476 l = fib_find_node(t, &tp, key);
c877efb2 1477 if (!l)
19baf839
RO
1478 return -ESRCH;
1479
79e5ad2c 1480 fa = fib_find_alias(&l->leaf, slen, tos, 0);
19baf839
RO
1481 if (!fa)
1482 return -ESRCH;
1483
0c7770c7 1484 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1485
1486 fa_to_delete = NULL;
56315f9e 1487 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1488 struct fib_info *fi = fa->fa_info;
1489
79e5ad2c 1490 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
19baf839
RO
1491 break;
1492
4e902c57
TG
1493 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1494 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1495 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1496 (!cfg->fc_prefsrc ||
1497 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1498 (!cfg->fc_protocol ||
1499 fi->fib_protocol == cfg->fc_protocol) &&
1500 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1501 fa_to_delete = fa;
1502 break;
1503 }
1504 }
1505
91b9a277
OJ
1506 if (!fa_to_delete)
1507 return -ESRCH;
19baf839 1508
8e05fd71
SF
1509 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1510 cfg->fc_type, tb->tb_id);
1511
d5d6487c 1512 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1513 &cfg->fc_nlinfo, 0);
91b9a277 1514
21d8c49e
DM
1515 if (!plen)
1516 tb->tb_num_default--;
1517
d5d6487c 1518 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1519
d5d6487c 1520 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1521 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1522
d5d6487c
AD
1523 fib_release_info(fa_to_delete->fa_info);
1524 alias_free_mem_rcu(fa_to_delete);
91b9a277 1525 return 0;
19baf839
RO
1526}
1527
8be33e95 1528/* Scan for the next leaf starting at the provided key value */
35c6edac 1529static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1530{
35c6edac 1531 struct key_vector *pn, *n = *tn;
8be33e95 1532 unsigned long cindex;
82cfbb00 1533
8be33e95
AD
1534 /* record parent node for backtracing */
1535 pn = n;
1536 cindex = n ? get_index(key, n) : 0;
82cfbb00 1537
8be33e95
AD
1538 /* this loop is meant to try and find the key in the trie */
1539 while (n) {
1540 unsigned long idx = get_index(key, n);
82cfbb00 1541
8be33e95
AD
1542 /* guarantee forward progress on the keys */
1543 if (IS_LEAF(n) && (n->key >= key))
1544 goto found;
1545 if (idx >= (1ul << n->bits))
1546 break;
82cfbb00 1547
8be33e95
AD
1548 /* record parent and next child index */
1549 pn = n;
1550 cindex = idx;
82cfbb00 1551
8be33e95 1552 /* descend into the next child */
754baf8d 1553 n = get_child_rcu(pn, cindex++);
8be33e95 1554 }
82cfbb00 1555
8be33e95
AD
1556 /* this loop will search for the next leaf with a greater key */
1557 while (pn) {
1558 /* if we exhausted the parent node we will need to climb */
1559 if (cindex >= (1ul << pn->bits)) {
1560 t_key pkey = pn->key;
82cfbb00 1561
8be33e95
AD
1562 pn = node_parent_rcu(pn);
1563 if (!pn)
1564 break;
82cfbb00 1565
8be33e95
AD
1566 cindex = get_index(pkey, pn) + 1;
1567 continue;
1568 }
82cfbb00 1569
8be33e95 1570 /* grab the next available node */
754baf8d 1571 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1572 if (!n)
1573 continue;
19baf839 1574
8be33e95
AD
1575 /* no need to compare keys since we bumped the index */
1576 if (IS_LEAF(n))
1577 goto found;
71d67e66 1578
8be33e95
AD
1579 /* Rescan start scanning in new node */
1580 pn = n;
1581 cindex = 0;
1582 }
ec28cf73 1583
8be33e95
AD
1584 *tn = pn;
1585 return NULL; /* Root of trie */
1586found:
1587 /* if we are at the limit for keys just return NULL for the tnode */
1588 *tn = (n->key == KEY_MAX) ? NULL : pn;
1589 return n;
71d67e66
SH
1590}
1591
104616e7
SF
1592/* Caller must hold RTNL */
1593void fib_table_flush_external(struct fib_table *tb)
1594{
1595 struct trie *t = (struct trie *)tb->tb_data;
1596 struct fib_alias *fa;
35c6edac 1597 struct key_vector *n, *pn;
104616e7 1598 unsigned long cindex;
104616e7 1599
35c6edac 1600 n = rcu_dereference(t->tnode[0]);
104616e7
SF
1601 if (!n)
1602 return;
1603
1604 pn = NULL;
1605 cindex = 0;
1606
1607 while (IS_TNODE(n)) {
1608 /* record pn and cindex for leaf walking */
1609 pn = n;
1610 cindex = 1ul << n->bits;
1611backtrace:
1612 /* walk trie in reverse order */
1613 do {
1614 while (!(cindex--)) {
1615 t_key pkey = pn->key;
1616
104616e7 1617 /* if we got the root we are done */
72be7260 1618 pn = node_parent(pn);
104616e7
SF
1619 if (!pn)
1620 return;
1621
1622 cindex = get_index(pkey, pn);
1623 }
1624
1625 /* grab the next available node */
754baf8d 1626 n = get_child(pn, cindex);
104616e7
SF
1627 } while (!n);
1628 }
1629
1630 hlist_for_each_entry(fa, &n->leaf, fa_list) {
1631 struct fib_info *fi = fa->fa_info;
1632
72be7260
AD
1633 if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
1634 continue;
1635
1636 netdev_switch_fib_ipv4_del(n->key,
1637 KEYLENGTH - fa->fa_slen,
1638 fi, fa->fa_tos,
1639 fa->fa_type, tb->tb_id);
104616e7
SF
1640 }
1641
1642 /* if trie is leaf only loop is completed */
1643 if (pn)
1644 goto backtrace;
1645}
1646
8be33e95 1647/* Caller must hold RTNL. */
16c6cf8b 1648int fib_table_flush(struct fib_table *tb)
19baf839 1649{
7289e6dd 1650 struct trie *t = (struct trie *)tb->tb_data;
35c6edac 1651 struct key_vector *n, *pn;
7289e6dd
AD
1652 struct hlist_node *tmp;
1653 struct fib_alias *fa;
7289e6dd
AD
1654 unsigned long cindex;
1655 unsigned char slen;
82cfbb00 1656 int found = 0;
19baf839 1657
35c6edac 1658 n = rcu_dereference(t->tnode[0]);
7289e6dd
AD
1659 if (!n)
1660 goto flush_complete;
19baf839 1661
7289e6dd
AD
1662 pn = NULL;
1663 cindex = 0;
1664
1665 while (IS_TNODE(n)) {
1666 /* record pn and cindex for leaf walking */
1667 pn = n;
1668 cindex = 1ul << n->bits;
1669backtrace:
1670 /* walk trie in reverse order */
1671 do {
1672 while (!(cindex--)) {
35c6edac 1673 struct key_vector __rcu **cptr;
7289e6dd
AD
1674 t_key pkey = pn->key;
1675
1676 n = pn;
1677 pn = node_parent(n);
1678
1679 /* resize completed node */
8d8e810c 1680 cptr = resize(t, n);
7289e6dd
AD
1681
1682 /* if we got the root we are done */
1683 if (!pn)
1684 goto flush_complete;
1685
35c6edac
AD
1686 pn = container_of(cptr, struct key_vector,
1687 tnode[0]);
7289e6dd
AD
1688 cindex = get_index(pkey, pn);
1689 }
1690
1691 /* grab the next available node */
754baf8d 1692 n = get_child(pn, cindex);
7289e6dd
AD
1693 } while (!n);
1694 }
1695
1696 /* track slen in case any prefixes survive */
1697 slen = 0;
1698
1699 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1700 struct fib_info *fi = fa->fa_info;
1701
1702 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
8e05fd71
SF
1703 netdev_switch_fib_ipv4_del(n->key,
1704 KEYLENGTH - fa->fa_slen,
1705 fi, fa->fa_tos,
1706 fa->fa_type, tb->tb_id);
7289e6dd
AD
1707 hlist_del_rcu(&fa->fa_list);
1708 fib_release_info(fa->fa_info);
1709 alias_free_mem_rcu(fa);
1710 found++;
1711
1712 continue;
64c62723
AD
1713 }
1714
7289e6dd 1715 slen = fa->fa_slen;
19baf839
RO
1716 }
1717
7289e6dd
AD
1718 /* update leaf slen */
1719 n->slen = slen;
1720
1721 if (hlist_empty(&n->leaf)) {
1722 put_child_root(pn, t, n->key, NULL);
1723 node_free(n);
1724 } else {
d5d6487c 1725 leaf_pull_suffix(pn, n);
64c62723 1726 }
19baf839 1727
7289e6dd
AD
1728 /* if trie is leaf only loop is completed */
1729 if (pn)
1730 goto backtrace;
1731flush_complete:
0c7770c7 1732 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1733 return found;
1734}
1735
a7e53531 1736static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1737{
a7e53531 1738 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1739#ifdef CONFIG_IP_FIB_TRIE_STATS
1740 struct trie *t = (struct trie *)tb->tb_data;
1741
1742 free_percpu(t->stats);
1743#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1744 kfree(tb);
1745}
1746
a7e53531
AD
1747void fib_free_table(struct fib_table *tb)
1748{
1749 call_rcu(&tb->rcu, __trie_free_rcu);
1750}
1751
35c6edac 1752static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1753 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1754{
79e5ad2c 1755 __be32 xkey = htonl(l->key);
19baf839 1756 struct fib_alias *fa;
79e5ad2c 1757 int i, s_i;
19baf839 1758
79e5ad2c 1759 s_i = cb->args[4];
19baf839
RO
1760 i = 0;
1761
2373ce1c 1762 /* rcu_read_lock is hold by caller */
79e5ad2c 1763 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1764 if (i < s_i) {
1765 i++;
1766 continue;
1767 }
19baf839 1768
15e47304 1769 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1770 cb->nlh->nlmsg_seq,
1771 RTM_NEWROUTE,
1772 tb->tb_id,
1773 fa->fa_type,
be403ea1 1774 xkey,
9b6ebad5 1775 KEYLENGTH - fa->fa_slen,
19baf839 1776 fa->fa_tos,
64347f78 1777 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1778 cb->args[4] = i;
19baf839
RO
1779 return -1;
1780 }
a88ee229 1781 i++;
19baf839 1782 }
a88ee229 1783
71d67e66 1784 cb->args[4] = i;
19baf839
RO
1785 return skb->len;
1786}
1787
a7e53531 1788/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1789int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1790 struct netlink_callback *cb)
19baf839 1791{
8be33e95 1792 struct trie *t = (struct trie *)tb->tb_data;
35c6edac 1793 struct key_vector *l, *tp;
d5ce8a0e
SH
1794 /* Dump starting at last key.
1795 * Note: 0.0.0.0/0 (ie default) is first key.
1796 */
8be33e95
AD
1797 int count = cb->args[2];
1798 t_key key = cb->args[3];
a88ee229 1799
35c6edac 1800 tp = rcu_dereference_rtnl(t->tnode[0]);
8be33e95
AD
1801
1802 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1803 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1804 cb->args[3] = key;
1805 cb->args[2] = count;
a88ee229 1806 return -1;
19baf839 1807 }
d5ce8a0e 1808
71d67e66 1809 ++count;
8be33e95
AD
1810 key = l->key + 1;
1811
71d67e66
SH
1812 memset(&cb->args[4], 0,
1813 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1814
1815 /* stop loop if key wrapped back to 0 */
1816 if (key < l->key)
1817 break;
19baf839 1818 }
8be33e95 1819
8be33e95
AD
1820 cb->args[3] = key;
1821 cb->args[2] = count;
1822
19baf839 1823 return skb->len;
19baf839
RO
1824}
1825
5348ba85 1826void __init fib_trie_init(void)
7f9b8052 1827{
a07f5f50
SH
1828 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1829 sizeof(struct fib_alias),
bc3c8c1e
SH
1830 0, SLAB_PANIC, NULL);
1831
1832 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1833 LEAF_SIZE,
bc3c8c1e 1834 0, SLAB_PANIC, NULL);
7f9b8052 1835}
19baf839 1836
7f9b8052 1837
5348ba85 1838struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1839{
1840 struct fib_table *tb;
1841 struct trie *t;
1842
19baf839
RO
1843 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1844 GFP_KERNEL);
1845 if (tb == NULL)
1846 return NULL;
1847
1848 tb->tb_id = id;
971b893e 1849 tb->tb_default = -1;
21d8c49e 1850 tb->tb_num_default = 0;
19baf839
RO
1851
1852 t = (struct trie *) tb->tb_data;
35c6edac 1853 RCU_INIT_POINTER(t->tnode[0], NULL);
8274a97a
AD
1854#ifdef CONFIG_IP_FIB_TRIE_STATS
1855 t->stats = alloc_percpu(struct trie_use_stats);
1856 if (!t->stats) {
1857 kfree(tb);
1858 tb = NULL;
1859 }
1860#endif
19baf839 1861
19baf839
RO
1862 return tb;
1863}
1864
cb7b593c
SH
1865#ifdef CONFIG_PROC_FS
1866/* Depth first Trie walk iterator */
1867struct fib_trie_iter {
1c340b2f 1868 struct seq_net_private p;
3d3b2d25 1869 struct fib_table *tb;
35c6edac 1870 struct key_vector *tnode;
a034ee3c
ED
1871 unsigned int index;
1872 unsigned int depth;
cb7b593c 1873};
19baf839 1874
35c6edac 1875static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1876{
98293e8d 1877 unsigned long cindex = iter->index;
35c6edac
AD
1878 struct key_vector *tn = iter->tnode;
1879 struct key_vector *p;
19baf839 1880
6640e697
EB
1881 /* A single entry routing table */
1882 if (!tn)
1883 return NULL;
1884
cb7b593c
SH
1885 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1886 iter->tnode, iter->index, iter->depth);
1887rescan:
2e1ac88a 1888 while (cindex < child_length(tn)) {
754baf8d 1889 struct key_vector *n = get_child_rcu(tn, cindex);
19baf839 1890
cb7b593c
SH
1891 if (n) {
1892 if (IS_LEAF(n)) {
1893 iter->tnode = tn;
1894 iter->index = cindex + 1;
1895 } else {
1896 /* push down one level */
adaf9816 1897 iter->tnode = n;
cb7b593c
SH
1898 iter->index = 0;
1899 ++iter->depth;
1900 }
1901 return n;
1902 }
19baf839 1903
cb7b593c
SH
1904 ++cindex;
1905 }
91b9a277 1906
cb7b593c 1907 /* Current node exhausted, pop back up */
adaf9816 1908 p = node_parent_rcu(tn);
cb7b593c 1909 if (p) {
e9b44019 1910 cindex = get_index(tn->key, p) + 1;
cb7b593c
SH
1911 tn = p;
1912 --iter->depth;
1913 goto rescan;
19baf839 1914 }
cb7b593c
SH
1915
1916 /* got root? */
1917 return NULL;
19baf839
RO
1918}
1919
35c6edac
AD
1920static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
1921 struct trie *t)
19baf839 1922{
35c6edac 1923 struct key_vector *n;
5ddf0eb2 1924
132adf54 1925 if (!t)
5ddf0eb2
RO
1926 return NULL;
1927
35c6edac 1928 n = rcu_dereference(t->tnode[0]);
3d3b2d25 1929 if (!n)
5ddf0eb2 1930 return NULL;
19baf839 1931
3d3b2d25 1932 if (IS_TNODE(n)) {
adaf9816 1933 iter->tnode = n;
3d3b2d25
SH
1934 iter->index = 0;
1935 iter->depth = 1;
1936 } else {
1937 iter->tnode = NULL;
1938 iter->index = 0;
1939 iter->depth = 0;
91b9a277 1940 }
3d3b2d25
SH
1941
1942 return n;
cb7b593c 1943}
91b9a277 1944
cb7b593c
SH
1945static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1946{
35c6edac 1947 struct key_vector *n;
cb7b593c 1948 struct fib_trie_iter iter;
91b9a277 1949
cb7b593c 1950 memset(s, 0, sizeof(*s));
91b9a277 1951
cb7b593c 1952 rcu_read_lock();
3d3b2d25 1953 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 1954 if (IS_LEAF(n)) {
79e5ad2c 1955 struct fib_alias *fa;
93672292 1956
cb7b593c
SH
1957 s->leaves++;
1958 s->totdepth += iter.depth;
1959 if (iter.depth > s->maxdepth)
1960 s->maxdepth = iter.depth;
93672292 1961
79e5ad2c 1962 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 1963 ++s->prefixes;
cb7b593c 1964 } else {
cb7b593c 1965 s->tnodes++;
adaf9816
AD
1966 if (n->bits < MAX_STAT_DEPTH)
1967 s->nodesizes[n->bits]++;
30cfe7c9 1968 s->nullpointers += n->empty_children;
19baf839 1969 }
19baf839 1970 }
2373ce1c 1971 rcu_read_unlock();
19baf839
RO
1972}
1973
cb7b593c
SH
1974/*
1975 * This outputs /proc/net/fib_triestats
1976 */
1977static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 1978{
a034ee3c 1979 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 1980
cb7b593c
SH
1981 if (stat->leaves)
1982 avdepth = stat->totdepth*100 / stat->leaves;
1983 else
1984 avdepth = 0;
91b9a277 1985
a07f5f50
SH
1986 seq_printf(seq, "\tAver depth: %u.%02d\n",
1987 avdepth / 100, avdepth % 100);
cb7b593c 1988 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 1989
cb7b593c 1990 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 1991 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
1992
1993 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 1994 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 1995
187b5188 1996 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 1997 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 1998
06ef921d
RO
1999 max = MAX_STAT_DEPTH;
2000 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2001 max--;
19baf839 2002
cb7b593c 2003 pointers = 0;
f585a991 2004 for (i = 1; i < max; i++)
cb7b593c 2005 if (stat->nodesizes[i] != 0) {
187b5188 2006 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2007 pointers += (1<<i) * stat->nodesizes[i];
2008 }
2009 seq_putc(seq, '\n');
187b5188 2010 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2011
35c6edac 2012 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2013 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2014 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2015}
2373ce1c 2016
cb7b593c 2017#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2018static void trie_show_usage(struct seq_file *seq,
8274a97a 2019 const struct trie_use_stats __percpu *stats)
66a2f7fd 2020{
8274a97a
AD
2021 struct trie_use_stats s = { 0 };
2022 int cpu;
2023
2024 /* loop through all of the CPUs and gather up the stats */
2025 for_each_possible_cpu(cpu) {
2026 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2027
2028 s.gets += pcpu->gets;
2029 s.backtrack += pcpu->backtrack;
2030 s.semantic_match_passed += pcpu->semantic_match_passed;
2031 s.semantic_match_miss += pcpu->semantic_match_miss;
2032 s.null_node_hit += pcpu->null_node_hit;
2033 s.resize_node_skipped += pcpu->resize_node_skipped;
2034 }
2035
66a2f7fd 2036 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2037 seq_printf(seq, "gets = %u\n", s.gets);
2038 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2039 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2040 s.semantic_match_passed);
2041 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2042 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2043 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2044}
66a2f7fd
SH
2045#endif /* CONFIG_IP_FIB_TRIE_STATS */
2046
3d3b2d25 2047static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2048{
3d3b2d25
SH
2049 if (tb->tb_id == RT_TABLE_LOCAL)
2050 seq_puts(seq, "Local:\n");
2051 else if (tb->tb_id == RT_TABLE_MAIN)
2052 seq_puts(seq, "Main:\n");
2053 else
2054 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2055}
19baf839 2056
3d3b2d25 2057
cb7b593c
SH
2058static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2059{
1c340b2f 2060 struct net *net = (struct net *)seq->private;
3d3b2d25 2061 unsigned int h;
877a9bff 2062
d717a9a6 2063 seq_printf(seq,
a07f5f50
SH
2064 "Basic info: size of leaf:"
2065 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2066 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2067
3d3b2d25
SH
2068 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2069 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2070 struct fib_table *tb;
2071
b67bfe0d 2072 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2073 struct trie *t = (struct trie *) tb->tb_data;
2074 struct trie_stat stat;
877a9bff 2075
3d3b2d25
SH
2076 if (!t)
2077 continue;
2078
2079 fib_table_print(seq, tb);
2080
2081 trie_collect_stats(t, &stat);
2082 trie_show_stats(seq, &stat);
2083#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2084 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2085#endif
2086 }
2087 }
19baf839 2088
cb7b593c 2089 return 0;
19baf839
RO
2090}
2091
cb7b593c 2092static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2093{
de05c557 2094 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2095}
2096
9a32144e 2097static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2098 .owner = THIS_MODULE,
2099 .open = fib_triestat_seq_open,
2100 .read = seq_read,
2101 .llseek = seq_lseek,
b6fcbdb4 2102 .release = single_release_net,
cb7b593c
SH
2103};
2104
35c6edac 2105static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2106{
1218854a
YH
2107 struct fib_trie_iter *iter = seq->private;
2108 struct net *net = seq_file_net(seq);
cb7b593c 2109 loff_t idx = 0;
3d3b2d25 2110 unsigned int h;
cb7b593c 2111
3d3b2d25
SH
2112 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2113 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2114 struct fib_table *tb;
cb7b593c 2115
b67bfe0d 2116 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2117 struct key_vector *n;
3d3b2d25
SH
2118
2119 for (n = fib_trie_get_first(iter,
2120 (struct trie *) tb->tb_data);
2121 n; n = fib_trie_get_next(iter))
2122 if (pos == idx++) {
2123 iter->tb = tb;
2124 return n;
2125 }
2126 }
cb7b593c 2127 }
3d3b2d25 2128
19baf839
RO
2129 return NULL;
2130}
2131
cb7b593c 2132static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2133 __acquires(RCU)
19baf839 2134{
cb7b593c 2135 rcu_read_lock();
1218854a 2136 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2137}
2138
cb7b593c 2139static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2140{
cb7b593c 2141 struct fib_trie_iter *iter = seq->private;
1218854a 2142 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2143 struct fib_table *tb = iter->tb;
2144 struct hlist_node *tb_node;
2145 unsigned int h;
35c6edac 2146 struct key_vector *n;
cb7b593c 2147
19baf839 2148 ++*pos;
3d3b2d25
SH
2149 /* next node in same table */
2150 n = fib_trie_get_next(iter);
2151 if (n)
2152 return n;
19baf839 2153
3d3b2d25
SH
2154 /* walk rest of this hash chain */
2155 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2156 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2157 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2158 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2159 if (n)
2160 goto found;
2161 }
19baf839 2162
3d3b2d25
SH
2163 /* new hash chain */
2164 while (++h < FIB_TABLE_HASHSZ) {
2165 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2166 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2167 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2168 if (n)
2169 goto found;
2170 }
2171 }
cb7b593c 2172 return NULL;
3d3b2d25
SH
2173
2174found:
2175 iter->tb = tb;
2176 return n;
cb7b593c 2177}
19baf839 2178
cb7b593c 2179static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2180 __releases(RCU)
19baf839 2181{
cb7b593c
SH
2182 rcu_read_unlock();
2183}
91b9a277 2184
cb7b593c
SH
2185static void seq_indent(struct seq_file *seq, int n)
2186{
a034ee3c
ED
2187 while (n-- > 0)
2188 seq_puts(seq, " ");
cb7b593c 2189}
19baf839 2190
28d36e37 2191static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2192{
132adf54 2193 switch (s) {
cb7b593c
SH
2194 case RT_SCOPE_UNIVERSE: return "universe";
2195 case RT_SCOPE_SITE: return "site";
2196 case RT_SCOPE_LINK: return "link";
2197 case RT_SCOPE_HOST: return "host";
2198 case RT_SCOPE_NOWHERE: return "nowhere";
2199 default:
28d36e37 2200 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2201 return buf;
2202 }
2203}
19baf839 2204
36cbd3dc 2205static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2206 [RTN_UNSPEC] = "UNSPEC",
2207 [RTN_UNICAST] = "UNICAST",
2208 [RTN_LOCAL] = "LOCAL",
2209 [RTN_BROADCAST] = "BROADCAST",
2210 [RTN_ANYCAST] = "ANYCAST",
2211 [RTN_MULTICAST] = "MULTICAST",
2212 [RTN_BLACKHOLE] = "BLACKHOLE",
2213 [RTN_UNREACHABLE] = "UNREACHABLE",
2214 [RTN_PROHIBIT] = "PROHIBIT",
2215 [RTN_THROW] = "THROW",
2216 [RTN_NAT] = "NAT",
2217 [RTN_XRESOLVE] = "XRESOLVE",
2218};
19baf839 2219
a034ee3c 2220static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2221{
cb7b593c
SH
2222 if (t < __RTN_MAX && rtn_type_names[t])
2223 return rtn_type_names[t];
28d36e37 2224 snprintf(buf, len, "type %u", t);
cb7b593c 2225 return buf;
19baf839
RO
2226}
2227
cb7b593c
SH
2228/* Pretty print the trie */
2229static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2230{
cb7b593c 2231 const struct fib_trie_iter *iter = seq->private;
35c6edac 2232 struct key_vector *n = v;
c877efb2 2233
3d3b2d25
SH
2234 if (!node_parent_rcu(n))
2235 fib_table_print(seq, iter->tb);
095b8501 2236
cb7b593c 2237 if (IS_TNODE(n)) {
adaf9816 2238 __be32 prf = htonl(n->key);
91b9a277 2239
e9b44019
AD
2240 seq_indent(seq, iter->depth-1);
2241 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2242 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2243 n->full_children, n->empty_children);
cb7b593c 2244 } else {
adaf9816 2245 __be32 val = htonl(n->key);
79e5ad2c 2246 struct fib_alias *fa;
cb7b593c
SH
2247
2248 seq_indent(seq, iter->depth);
673d57e7 2249 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2250
79e5ad2c
AD
2251 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2252 char buf1[32], buf2[32];
2253
2254 seq_indent(seq, iter->depth + 1);
2255 seq_printf(seq, " /%zu %s %s",
2256 KEYLENGTH - fa->fa_slen,
2257 rtn_scope(buf1, sizeof(buf1),
2258 fa->fa_info->fib_scope),
2259 rtn_type(buf2, sizeof(buf2),
2260 fa->fa_type));
2261 if (fa->fa_tos)
2262 seq_printf(seq, " tos=%d", fa->fa_tos);
2263 seq_putc(seq, '\n');
cb7b593c 2264 }
19baf839 2265 }
cb7b593c 2266
19baf839
RO
2267 return 0;
2268}
2269
f690808e 2270static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2271 .start = fib_trie_seq_start,
2272 .next = fib_trie_seq_next,
2273 .stop = fib_trie_seq_stop,
2274 .show = fib_trie_seq_show,
19baf839
RO
2275};
2276
cb7b593c 2277static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2278{
1c340b2f
DL
2279 return seq_open_net(inode, file, &fib_trie_seq_ops,
2280 sizeof(struct fib_trie_iter));
19baf839
RO
2281}
2282
9a32144e 2283static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2284 .owner = THIS_MODULE,
2285 .open = fib_trie_seq_open,
2286 .read = seq_read,
2287 .llseek = seq_lseek,
1c340b2f 2288 .release = seq_release_net,
19baf839
RO
2289};
2290
8315f5d8
SH
2291struct fib_route_iter {
2292 struct seq_net_private p;
8be33e95 2293 struct fib_table *main_tb;
35c6edac 2294 struct key_vector *tnode;
8315f5d8
SH
2295 loff_t pos;
2296 t_key key;
2297};
2298
35c6edac
AD
2299static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2300 loff_t pos)
8315f5d8 2301{
8be33e95 2302 struct fib_table *tb = iter->main_tb;
35c6edac 2303 struct key_vector *l, **tp = &iter->tnode;
8be33e95
AD
2304 struct trie *t;
2305 t_key key;
8315f5d8 2306
8be33e95
AD
2307 /* use cache location of next-to-find key */
2308 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2309 pos -= iter->pos;
8be33e95
AD
2310 key = iter->key;
2311 } else {
2312 t = (struct trie *)tb->tb_data;
35c6edac 2313 iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
8315f5d8 2314 iter->pos = 0;
8be33e95 2315 key = 0;
8315f5d8
SH
2316 }
2317
8be33e95
AD
2318 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2319 key = l->key + 1;
8315f5d8 2320 iter->pos++;
8be33e95
AD
2321
2322 if (pos-- <= 0)
2323 break;
2324
2325 l = NULL;
2326
2327 /* handle unlikely case of a key wrap */
2328 if (!key)
2329 break;
8315f5d8
SH
2330 }
2331
2332 if (l)
8be33e95 2333 iter->key = key; /* remember it */
8315f5d8
SH
2334 else
2335 iter->pos = 0; /* forget it */
2336
2337 return l;
2338}
2339
2340static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2341 __acquires(RCU)
2342{
2343 struct fib_route_iter *iter = seq->private;
2344 struct fib_table *tb;
8be33e95 2345 struct trie *t;
8315f5d8
SH
2346
2347 rcu_read_lock();
8be33e95 2348
1218854a 2349 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2350 if (!tb)
2351 return NULL;
2352
8be33e95
AD
2353 iter->main_tb = tb;
2354
2355 if (*pos != 0)
2356 return fib_route_get_idx(iter, *pos);
2357
2358 t = (struct trie *)tb->tb_data;
35c6edac 2359 iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
8be33e95
AD
2360 iter->pos = 0;
2361 iter->key = 0;
2362
2363 return SEQ_START_TOKEN;
8315f5d8
SH
2364}
2365
2366static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2367{
2368 struct fib_route_iter *iter = seq->private;
35c6edac 2369 struct key_vector *l = NULL;
8be33e95 2370 t_key key = iter->key;
8315f5d8
SH
2371
2372 ++*pos;
8be33e95
AD
2373
2374 /* only allow key of 0 for start of sequence */
2375 if ((v == SEQ_START_TOKEN) || key)
2376 l = leaf_walk_rcu(&iter->tnode, key);
2377
2378 if (l) {
2379 iter->key = l->key + 1;
8315f5d8 2380 iter->pos++;
8be33e95
AD
2381 } else {
2382 iter->pos = 0;
8315f5d8
SH
2383 }
2384
8315f5d8
SH
2385 return l;
2386}
2387
2388static void fib_route_seq_stop(struct seq_file *seq, void *v)
2389 __releases(RCU)
2390{
2391 rcu_read_unlock();
2392}
2393
a034ee3c 2394static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2395{
a034ee3c 2396 unsigned int flags = 0;
19baf839 2397
a034ee3c
ED
2398 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2399 flags = RTF_REJECT;
cb7b593c
SH
2400 if (fi && fi->fib_nh->nh_gw)
2401 flags |= RTF_GATEWAY;
32ab5f80 2402 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2403 flags |= RTF_HOST;
2404 flags |= RTF_UP;
2405 return flags;
19baf839
RO
2406}
2407
cb7b593c
SH
2408/*
2409 * This outputs /proc/net/route.
2410 * The format of the file is not supposed to be changed
a034ee3c 2411 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2412 * legacy utilities
2413 */
2414static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2415{
79e5ad2c 2416 struct fib_alias *fa;
35c6edac 2417 struct key_vector *l = v;
9b6ebad5 2418 __be32 prefix;
19baf839 2419
cb7b593c
SH
2420 if (v == SEQ_START_TOKEN) {
2421 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2422 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2423 "\tWindow\tIRTT");
2424 return 0;
2425 }
19baf839 2426
9b6ebad5
AD
2427 prefix = htonl(l->key);
2428
79e5ad2c
AD
2429 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2430 const struct fib_info *fi = fa->fa_info;
2431 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2432 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2433
79e5ad2c
AD
2434 if ((fa->fa_type == RTN_BROADCAST) ||
2435 (fa->fa_type == RTN_MULTICAST))
2436 continue;
19baf839 2437
79e5ad2c
AD
2438 seq_setwidth(seq, 127);
2439
2440 if (fi)
2441 seq_printf(seq,
2442 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2443 "%d\t%08X\t%d\t%u\t%u",
2444 fi->fib_dev ? fi->fib_dev->name : "*",
2445 prefix,
2446 fi->fib_nh->nh_gw, flags, 0, 0,
2447 fi->fib_priority,
2448 mask,
2449 (fi->fib_advmss ?
2450 fi->fib_advmss + 40 : 0),
2451 fi->fib_window,
2452 fi->fib_rtt >> 3);
2453 else
2454 seq_printf(seq,
2455 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2456 "%d\t%08X\t%d\t%u\t%u",
2457 prefix, 0, flags, 0, 0, 0,
2458 mask, 0, 0, 0);
19baf839 2459
79e5ad2c 2460 seq_pad(seq, '\n');
19baf839
RO
2461 }
2462
2463 return 0;
2464}
2465
f690808e 2466static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2467 .start = fib_route_seq_start,
2468 .next = fib_route_seq_next,
2469 .stop = fib_route_seq_stop,
cb7b593c 2470 .show = fib_route_seq_show,
19baf839
RO
2471};
2472
cb7b593c 2473static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2474{
1c340b2f 2475 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2476 sizeof(struct fib_route_iter));
19baf839
RO
2477}
2478
9a32144e 2479static const struct file_operations fib_route_fops = {
cb7b593c
SH
2480 .owner = THIS_MODULE,
2481 .open = fib_route_seq_open,
2482 .read = seq_read,
2483 .llseek = seq_lseek,
1c340b2f 2484 .release = seq_release_net,
19baf839
RO
2485};
2486
61a02653 2487int __net_init fib_proc_init(struct net *net)
19baf839 2488{
d4beaa66 2489 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2490 goto out1;
2491
d4beaa66
G
2492 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2493 &fib_triestat_fops))
cb7b593c
SH
2494 goto out2;
2495
d4beaa66 2496 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2497 goto out3;
2498
19baf839 2499 return 0;
cb7b593c
SH
2500
2501out3:
ece31ffd 2502 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2503out2:
ece31ffd 2504 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2505out1:
2506 return -ENOMEM;
19baf839
RO
2507}
2508
61a02653 2509void __net_exit fib_proc_exit(struct net *net)
19baf839 2510{
ece31ffd
G
2511 remove_proc_entry("fib_trie", net->proc_net);
2512 remove_proc_entry("fib_triestat", net->proc_net);
2513 remove_proc_entry("route", net->proc_net);
19baf839
RO
2514}
2515
2516#endif /* CONFIG_PROC_FS */
This page took 1.407567 seconds and 5 git commands to generate.