Merge git://git.infradead.org/mtd-2.6
[deliverable/linux.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
fd966255
RO
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
19baf839
RO
51 */
52
05eee48c 53#define VERSION "0.408"
19baf839 54
19baf839
RO
55#include <asm/uaccess.h>
56#include <asm/system.h>
57#include <asm/bitops.h>
58#include <linux/types.h>
59#include <linux/kernel.h>
19baf839
RO
60#include <linux/mm.h>
61#include <linux/string.h>
62#include <linux/socket.h>
63#include <linux/sockios.h>
64#include <linux/errno.h>
65#include <linux/in.h>
66#include <linux/inet.h>
cd8787ab 67#include <linux/inetdevice.h>
19baf839
RO
68#include <linux/netdevice.h>
69#include <linux/if_arp.h>
70#include <linux/proc_fs.h>
2373ce1c 71#include <linux/rcupdate.h>
19baf839
RO
72#include <linux/skbuff.h>
73#include <linux/netlink.h>
74#include <linux/init.h>
75#include <linux/list.h>
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
84#undef CONFIG_IP_FIB_TRIE_STATS
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
19baf839
RO
87#define KEYLENGTH (8*sizeof(t_key))
88#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
89#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
90
19baf839
RO
91typedef unsigned int t_key;
92
93#define T_TNODE 0
94#define T_LEAF 1
95#define NODE_TYPE_MASK 0x1UL
91b9a277 96#define NODE_PARENT(node) \
2373ce1c
RO
97 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
98
99#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
100
101#define NODE_SET_PARENT(node, ptr) \
102 rcu_assign_pointer((node)->parent, \
103 ((unsigned long)(ptr)) | NODE_TYPE(node))
91b9a277
OJ
104
105#define IS_TNODE(n) (!(n->parent & T_LEAF))
106#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
107
108struct node {
91b9a277
OJ
109 t_key key;
110 unsigned long parent;
19baf839
RO
111};
112
113struct leaf {
91b9a277
OJ
114 t_key key;
115 unsigned long parent;
19baf839 116 struct hlist_head list;
2373ce1c 117 struct rcu_head rcu;
19baf839
RO
118};
119
120struct leaf_info {
121 struct hlist_node hlist;
2373ce1c 122 struct rcu_head rcu;
19baf839
RO
123 int plen;
124 struct list_head falh;
125};
126
127struct tnode {
91b9a277
OJ
128 t_key key;
129 unsigned long parent;
130 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
131 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
132 unsigned short full_children; /* KEYLENGTH bits needed */
133 unsigned short empty_children; /* KEYLENGTH bits needed */
2373ce1c 134 struct rcu_head rcu;
91b9a277 135 struct node *child[0];
19baf839
RO
136};
137
138#ifdef CONFIG_IP_FIB_TRIE_STATS
139struct trie_use_stats {
140 unsigned int gets;
141 unsigned int backtrack;
142 unsigned int semantic_match_passed;
143 unsigned int semantic_match_miss;
144 unsigned int null_node_hit;
2f36895a 145 unsigned int resize_node_skipped;
19baf839
RO
146};
147#endif
148
149struct trie_stat {
150 unsigned int totdepth;
151 unsigned int maxdepth;
152 unsigned int tnodes;
153 unsigned int leaves;
154 unsigned int nullpointers;
06ef921d 155 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 156};
19baf839
RO
157
158struct trie {
91b9a277 159 struct node *trie;
19baf839
RO
160#ifdef CONFIG_IP_FIB_TRIE_STATS
161 struct trie_use_stats stats;
162#endif
91b9a277 163 int size;
19baf839
RO
164 unsigned int revision;
165};
166
19baf839
RO
167static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
168static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
19baf839 169static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
170static struct tnode *inflate(struct trie *t, struct tnode *tn);
171static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 172static void tnode_free(struct tnode *tn);
19baf839 173
e18b890b 174static struct kmem_cache *fn_alias_kmem __read_mostly;
19baf839
RO
175static struct trie *trie_local = NULL, *trie_main = NULL;
176
2373ce1c
RO
177
178/* rcu_read_lock needs to be hold by caller from readside */
179
c877efb2 180static inline struct node *tnode_get_child(struct tnode *tn, int i)
19baf839 181{
91b9a277 182 BUG_ON(i >= 1 << tn->bits);
19baf839 183
2373ce1c 184 return rcu_dereference(tn->child[i]);
19baf839
RO
185}
186
bb435b8d 187static inline int tnode_child_length(const struct tnode *tn)
19baf839 188{
91b9a277 189 return 1 << tn->bits;
19baf839
RO
190}
191
19baf839
RO
192static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
193{
91b9a277 194 if (offset < KEYLENGTH)
19baf839 195 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 196 else
19baf839
RO
197 return 0;
198}
199
200static inline int tkey_equals(t_key a, t_key b)
201{
c877efb2 202 return a == b;
19baf839
RO
203}
204
205static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
206{
c877efb2
SH
207 if (bits == 0 || offset >= KEYLENGTH)
208 return 1;
91b9a277
OJ
209 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
210 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 211}
19baf839
RO
212
213static inline int tkey_mismatch(t_key a, int offset, t_key b)
214{
215 t_key diff = a ^ b;
216 int i = offset;
217
c877efb2
SH
218 if (!diff)
219 return 0;
220 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
221 i++;
222 return i;
223}
224
19baf839 225/*
e905a9ed
YH
226 To understand this stuff, an understanding of keys and all their bits is
227 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
228 all of the bits in that key are significant.
229
230 Consider a node 'n' and its parent 'tp'.
231
e905a9ed
YH
232 If n is a leaf, every bit in its key is significant. Its presence is
233 necessitated by path compression, since during a tree traversal (when
234 searching for a leaf - unless we are doing an insertion) we will completely
235 ignore all skipped bits we encounter. Thus we need to verify, at the end of
236 a potentially successful search, that we have indeed been walking the
19baf839
RO
237 correct key path.
238
e905a9ed
YH
239 Note that we can never "miss" the correct key in the tree if present by
240 following the wrong path. Path compression ensures that segments of the key
241 that are the same for all keys with a given prefix are skipped, but the
242 skipped part *is* identical for each node in the subtrie below the skipped
243 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
244 call to tkey_sub_equals() in trie_insert().
245
e905a9ed 246 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
247 have many different meanings.
248
e905a9ed 249 Example:
19baf839
RO
250 _________________________________________________________________
251 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
252 -----------------------------------------------------------------
e905a9ed 253 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
254
255 _________________________________________________________________
256 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
257 -----------------------------------------------------------------
258 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
259
260 tp->pos = 7
261 tp->bits = 3
262 n->pos = 15
91b9a277 263 n->bits = 4
19baf839 264
e905a9ed
YH
265 First, let's just ignore the bits that come before the parent tp, that is
266 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
267 not use them for anything.
268
269 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 270 index into the parent's child array. That is, they will be used to find
19baf839
RO
271 'n' among tp's children.
272
273 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
274 for the node n.
275
e905a9ed 276 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
277 of the bits are really not needed or indeed known in n->key.
278
e905a9ed 279 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 280 n's child array, and will of course be different for each child.
e905a9ed 281
c877efb2 282
19baf839
RO
283 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
284 at this point.
285
286*/
287
0c7770c7 288static inline void check_tnode(const struct tnode *tn)
19baf839 289{
0c7770c7 290 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
291}
292
293static int halve_threshold = 25;
294static int inflate_threshold = 50;
965ffea4
RO
295static int halve_threshold_root = 8;
296static int inflate_threshold_root = 15;
19baf839 297
2373ce1c
RO
298
299static void __alias_free_mem(struct rcu_head *head)
19baf839 300{
2373ce1c
RO
301 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
302 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
303}
304
2373ce1c 305static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 306{
2373ce1c
RO
307 call_rcu(&fa->rcu, __alias_free_mem);
308}
91b9a277 309
2373ce1c
RO
310static void __leaf_free_rcu(struct rcu_head *head)
311{
312 kfree(container_of(head, struct leaf, rcu));
313}
91b9a277 314
2373ce1c 315static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 316{
2373ce1c 317 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
318}
319
2373ce1c 320static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 321{
2373ce1c 322 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
323}
324
f0e36f8c
PM
325static struct tnode *tnode_alloc(unsigned int size)
326{
2373ce1c
RO
327 struct page *pages;
328
329 if (size <= PAGE_SIZE)
330 return kcalloc(size, 1, GFP_KERNEL);
331
332 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
333 if (!pages)
334 return NULL;
335
336 return page_address(pages);
f0e36f8c
PM
337}
338
2373ce1c 339static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 340{
2373ce1c 341 struct tnode *tn = container_of(head, struct tnode, rcu);
f0e36f8c 342 unsigned int size = sizeof(struct tnode) +
2373ce1c 343 (1 << tn->bits) * sizeof(struct node *);
f0e36f8c
PM
344
345 if (size <= PAGE_SIZE)
346 kfree(tn);
347 else
348 free_pages((unsigned long)tn, get_order(size));
349}
350
2373ce1c
RO
351static inline void tnode_free(struct tnode *tn)
352{
132adf54 353 if (IS_LEAF(tn)) {
550e29bc
RO
354 struct leaf *l = (struct leaf *) tn;
355 call_rcu_bh(&l->rcu, __leaf_free_rcu);
132adf54 356 } else
550e29bc 357 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
358}
359
360static struct leaf *leaf_new(void)
361{
362 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
363 if (l) {
364 l->parent = T_LEAF;
365 INIT_HLIST_HEAD(&l->list);
366 }
367 return l;
368}
369
370static struct leaf_info *leaf_info_new(int plen)
371{
372 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
373 if (li) {
374 li->plen = plen;
375 INIT_LIST_HEAD(&li->falh);
376 }
377 return li;
378}
379
19baf839
RO
380static struct tnode* tnode_new(t_key key, int pos, int bits)
381{
382 int nchildren = 1<<bits;
383 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
f0e36f8c 384 struct tnode *tn = tnode_alloc(sz);
19baf839 385
91b9a277 386 if (tn) {
19baf839 387 memset(tn, 0, sz);
2373ce1c 388 tn->parent = T_TNODE;
19baf839
RO
389 tn->pos = pos;
390 tn->bits = bits;
391 tn->key = key;
392 tn->full_children = 0;
393 tn->empty_children = 1<<bits;
394 }
c877efb2 395
0c7770c7
SH
396 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
397 (unsigned int) (sizeof(struct node) * 1<<bits));
19baf839
RO
398 return tn;
399}
400
19baf839
RO
401/*
402 * Check whether a tnode 'n' is "full", i.e. it is an internal node
403 * and no bits are skipped. See discussion in dyntree paper p. 6
404 */
405
bb435b8d 406static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 407{
c877efb2 408 if (n == NULL || IS_LEAF(n))
19baf839
RO
409 return 0;
410
411 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
412}
413
c877efb2 414static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
19baf839
RO
415{
416 tnode_put_child_reorg(tn, i, n, -1);
417}
418
c877efb2 419 /*
19baf839
RO
420 * Add a child at position i overwriting the old value.
421 * Update the value of full_children and empty_children.
422 */
423
c877efb2 424static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
19baf839 425{
2373ce1c 426 struct node *chi = tn->child[i];
19baf839
RO
427 int isfull;
428
0c7770c7
SH
429 BUG_ON(i >= 1<<tn->bits);
430
19baf839
RO
431
432 /* update emptyChildren */
433 if (n == NULL && chi != NULL)
434 tn->empty_children++;
435 else if (n != NULL && chi == NULL)
436 tn->empty_children--;
c877efb2 437
19baf839 438 /* update fullChildren */
91b9a277 439 if (wasfull == -1)
19baf839
RO
440 wasfull = tnode_full(tn, chi);
441
442 isfull = tnode_full(tn, n);
c877efb2 443 if (wasfull && !isfull)
19baf839 444 tn->full_children--;
c877efb2 445 else if (!wasfull && isfull)
19baf839 446 tn->full_children++;
91b9a277 447
c877efb2
SH
448 if (n)
449 NODE_SET_PARENT(n, tn);
19baf839 450
2373ce1c 451 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
452}
453
c877efb2 454static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
455{
456 int i;
2f36895a 457 int err = 0;
2f80b3c8 458 struct tnode *old_tn;
e6308be8
RO
459 int inflate_threshold_use;
460 int halve_threshold_use;
05eee48c 461 int max_resize;
19baf839 462
e905a9ed 463 if (!tn)
19baf839
RO
464 return NULL;
465
0c7770c7
SH
466 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
467 tn, inflate_threshold, halve_threshold);
19baf839
RO
468
469 /* No children */
470 if (tn->empty_children == tnode_child_length(tn)) {
471 tnode_free(tn);
472 return NULL;
473 }
474 /* One child */
475 if (tn->empty_children == tnode_child_length(tn) - 1)
476 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 477 struct node *n;
19baf839 478
91b9a277 479 n = tn->child[i];
2373ce1c 480 if (!n)
91b9a277 481 continue;
91b9a277
OJ
482
483 /* compress one level */
2373ce1c 484 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
485 tnode_free(tn);
486 return n;
19baf839 487 }
c877efb2 488 /*
19baf839
RO
489 * Double as long as the resulting node has a number of
490 * nonempty nodes that are above the threshold.
491 */
492
493 /*
c877efb2
SH
494 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
495 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 496 * Telecommunications, page 6:
c877efb2 497 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
498 * children in the *doubled* node is at least 'high'."
499 *
c877efb2
SH
500 * 'high' in this instance is the variable 'inflate_threshold'. It
501 * is expressed as a percentage, so we multiply it with
502 * tnode_child_length() and instead of multiplying by 2 (since the
503 * child array will be doubled by inflate()) and multiplying
504 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 505 * multiply the left-hand side by 50.
c877efb2
SH
506 *
507 * The left-hand side may look a bit weird: tnode_child_length(tn)
508 * - tn->empty_children is of course the number of non-null children
509 * in the current node. tn->full_children is the number of "full"
19baf839 510 * children, that is non-null tnodes with a skip value of 0.
c877efb2 511 * All of those will be doubled in the resulting inflated tnode, so
19baf839 512 * we just count them one extra time here.
c877efb2 513 *
19baf839 514 * A clearer way to write this would be:
c877efb2 515 *
19baf839 516 * to_be_doubled = tn->full_children;
c877efb2 517 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
518 * tn->full_children;
519 *
520 * new_child_length = tnode_child_length(tn) * 2;
521 *
c877efb2 522 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
523 * new_child_length;
524 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
525 *
526 * ...and so on, tho it would mess up the while () loop.
527 *
19baf839
RO
528 * anyway,
529 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
530 * inflate_threshold
c877efb2 531 *
19baf839
RO
532 * avoid a division:
533 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
534 * inflate_threshold * new_child_length
c877efb2 535 *
19baf839 536 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 537 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 538 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 539 *
19baf839 540 * expand new_child_length:
c877efb2 541 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 542 * tn->full_children) >=
19baf839 543 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 544 *
19baf839 545 * shorten again:
c877efb2 546 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 547 * tn->empty_children) >= inflate_threshold *
19baf839 548 * tnode_child_length(tn)
c877efb2 549 *
19baf839
RO
550 */
551
552 check_tnode(tn);
c877efb2 553
e6308be8
RO
554 /* Keep root node larger */
555
132adf54 556 if (!tn->parent)
e6308be8 557 inflate_threshold_use = inflate_threshold_root;
e905a9ed 558 else
e6308be8
RO
559 inflate_threshold_use = inflate_threshold;
560
2f36895a 561 err = 0;
05eee48c
RO
562 max_resize = 10;
563 while ((tn->full_children > 0 && max_resize-- &&
19baf839 564 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
e6308be8 565 inflate_threshold_use * tnode_child_length(tn))) {
19baf839 566
2f80b3c8
RO
567 old_tn = tn;
568 tn = inflate(t, tn);
569 if (IS_ERR(tn)) {
570 tn = old_tn;
2f36895a
RO
571#ifdef CONFIG_IP_FIB_TRIE_STATS
572 t->stats.resize_node_skipped++;
573#endif
574 break;
575 }
19baf839
RO
576 }
577
05eee48c
RO
578 if (max_resize < 0) {
579 if (!tn->parent)
580 printk(KERN_WARNING "Fix inflate_threshold_root. Now=%d size=%d bits\n",
581 inflate_threshold_root, tn->bits);
582 else
583 printk(KERN_WARNING "Fix inflate_threshold. Now=%d size=%d bits\n",
584 inflate_threshold, tn->bits);
585 }
586
19baf839
RO
587 check_tnode(tn);
588
589 /*
590 * Halve as long as the number of empty children in this
591 * node is above threshold.
592 */
2f36895a 593
e6308be8
RO
594
595 /* Keep root node larger */
596
132adf54 597 if (!tn->parent)
e6308be8 598 halve_threshold_use = halve_threshold_root;
e905a9ed 599 else
e6308be8
RO
600 halve_threshold_use = halve_threshold;
601
2f36895a 602 err = 0;
05eee48c
RO
603 max_resize = 10;
604 while (tn->bits > 1 && max_resize-- &&
19baf839 605 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 606 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 607
2f80b3c8
RO
608 old_tn = tn;
609 tn = halve(t, tn);
610 if (IS_ERR(tn)) {
611 tn = old_tn;
2f36895a
RO
612#ifdef CONFIG_IP_FIB_TRIE_STATS
613 t->stats.resize_node_skipped++;
614#endif
615 break;
616 }
617 }
19baf839 618
05eee48c
RO
619 if (max_resize < 0) {
620 if (!tn->parent)
621 printk(KERN_WARNING "Fix halve_threshold_root. Now=%d size=%d bits\n",
622 halve_threshold_root, tn->bits);
623 else
624 printk(KERN_WARNING "Fix halve_threshold. Now=%d size=%d bits\n",
625 halve_threshold, tn->bits);
626 }
c877efb2 627
19baf839 628 /* Only one child remains */
19baf839
RO
629 if (tn->empty_children == tnode_child_length(tn) - 1)
630 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 631 struct node *n;
19baf839 632
91b9a277 633 n = tn->child[i];
2373ce1c 634 if (!n)
91b9a277 635 continue;
91b9a277
OJ
636
637 /* compress one level */
638
2373ce1c 639 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
640 tnode_free(tn);
641 return n;
19baf839
RO
642 }
643
644 return (struct node *) tn;
645}
646
2f80b3c8 647static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839
RO
648{
649 struct tnode *inode;
650 struct tnode *oldtnode = tn;
651 int olen = tnode_child_length(tn);
652 int i;
653
0c7770c7 654 pr_debug("In inflate\n");
19baf839
RO
655
656 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
657
0c7770c7 658 if (!tn)
2f80b3c8 659 return ERR_PTR(-ENOMEM);
2f36895a
RO
660
661 /*
c877efb2
SH
662 * Preallocate and store tnodes before the actual work so we
663 * don't get into an inconsistent state if memory allocation
664 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
665 * of tnode is ignored.
666 */
91b9a277
OJ
667
668 for (i = 0; i < olen; i++) {
2f36895a
RO
669 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
670
671 if (inode &&
672 IS_TNODE(inode) &&
673 inode->pos == oldtnode->pos + oldtnode->bits &&
674 inode->bits > 1) {
675 struct tnode *left, *right;
2f36895a 676 t_key m = TKEY_GET_MASK(inode->pos, 1);
c877efb2 677
2f36895a
RO
678 left = tnode_new(inode->key&(~m), inode->pos + 1,
679 inode->bits - 1);
2f80b3c8
RO
680 if (!left)
681 goto nomem;
91b9a277 682
2f36895a
RO
683 right = tnode_new(inode->key|m, inode->pos + 1,
684 inode->bits - 1);
685
e905a9ed 686 if (!right) {
2f80b3c8
RO
687 tnode_free(left);
688 goto nomem;
e905a9ed 689 }
2f36895a
RO
690
691 put_child(t, tn, 2*i, (struct node *) left);
692 put_child(t, tn, 2*i+1, (struct node *) right);
693 }
694 }
695
91b9a277 696 for (i = 0; i < olen; i++) {
19baf839 697 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
698 struct tnode *left, *right;
699 int size, j;
c877efb2 700
19baf839
RO
701 /* An empty child */
702 if (node == NULL)
703 continue;
704
705 /* A leaf or an internal node with skipped bits */
706
c877efb2 707 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 708 tn->pos + tn->bits - 1) {
c877efb2 709 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
19baf839
RO
710 1) == 0)
711 put_child(t, tn, 2*i, node);
712 else
713 put_child(t, tn, 2*i+1, node);
714 continue;
715 }
716
717 /* An internal node with two children */
718 inode = (struct tnode *) node;
719
720 if (inode->bits == 1) {
721 put_child(t, tn, 2*i, inode->child[0]);
722 put_child(t, tn, 2*i+1, inode->child[1]);
723
724 tnode_free(inode);
91b9a277 725 continue;
19baf839
RO
726 }
727
91b9a277
OJ
728 /* An internal node with more than two children */
729
730 /* We will replace this node 'inode' with two new
731 * ones, 'left' and 'right', each with half of the
732 * original children. The two new nodes will have
733 * a position one bit further down the key and this
734 * means that the "significant" part of their keys
735 * (see the discussion near the top of this file)
736 * will differ by one bit, which will be "0" in
737 * left's key and "1" in right's key. Since we are
738 * moving the key position by one step, the bit that
739 * we are moving away from - the bit at position
740 * (inode->pos) - is the one that will differ between
741 * left and right. So... we synthesize that bit in the
742 * two new keys.
743 * The mask 'm' below will be a single "one" bit at
744 * the position (inode->pos)
745 */
19baf839 746
91b9a277
OJ
747 /* Use the old key, but set the new significant
748 * bit to zero.
749 */
2f36895a 750
91b9a277
OJ
751 left = (struct tnode *) tnode_get_child(tn, 2*i);
752 put_child(t, tn, 2*i, NULL);
2f36895a 753
91b9a277 754 BUG_ON(!left);
2f36895a 755
91b9a277
OJ
756 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
757 put_child(t, tn, 2*i+1, NULL);
19baf839 758
91b9a277 759 BUG_ON(!right);
19baf839 760
91b9a277
OJ
761 size = tnode_child_length(left);
762 for (j = 0; j < size; j++) {
763 put_child(t, left, j, inode->child[j]);
764 put_child(t, right, j, inode->child[j + size]);
19baf839 765 }
91b9a277
OJ
766 put_child(t, tn, 2*i, resize(t, left));
767 put_child(t, tn, 2*i+1, resize(t, right));
768
769 tnode_free(inode);
19baf839
RO
770 }
771 tnode_free(oldtnode);
772 return tn;
2f80b3c8
RO
773nomem:
774 {
775 int size = tnode_child_length(tn);
776 int j;
777
0c7770c7 778 for (j = 0; j < size; j++)
2f80b3c8
RO
779 if (tn->child[j])
780 tnode_free((struct tnode *)tn->child[j]);
781
782 tnode_free(tn);
0c7770c7 783
2f80b3c8
RO
784 return ERR_PTR(-ENOMEM);
785 }
19baf839
RO
786}
787
2f80b3c8 788static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
789{
790 struct tnode *oldtnode = tn;
791 struct node *left, *right;
792 int i;
793 int olen = tnode_child_length(tn);
794
0c7770c7 795 pr_debug("In halve\n");
c877efb2
SH
796
797 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 798
2f80b3c8
RO
799 if (!tn)
800 return ERR_PTR(-ENOMEM);
2f36895a
RO
801
802 /*
c877efb2
SH
803 * Preallocate and store tnodes before the actual work so we
804 * don't get into an inconsistent state if memory allocation
805 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
806 * of tnode is ignored.
807 */
808
91b9a277 809 for (i = 0; i < olen; i += 2) {
2f36895a
RO
810 left = tnode_get_child(oldtnode, i);
811 right = tnode_get_child(oldtnode, i+1);
c877efb2 812
2f36895a 813 /* Two nonempty children */
0c7770c7 814 if (left && right) {
2f80b3c8 815 struct tnode *newn;
0c7770c7 816
2f80b3c8 817 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
818
819 if (!newn)
2f80b3c8 820 goto nomem;
0c7770c7 821
2f80b3c8 822 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 823 }
2f36895a 824
2f36895a 825 }
19baf839 826
91b9a277
OJ
827 for (i = 0; i < olen; i += 2) {
828 struct tnode *newBinNode;
829
19baf839
RO
830 left = tnode_get_child(oldtnode, i);
831 right = tnode_get_child(oldtnode, i+1);
c877efb2 832
19baf839
RO
833 /* At least one of the children is empty */
834 if (left == NULL) {
835 if (right == NULL) /* Both are empty */
836 continue;
837 put_child(t, tn, i/2, right);
91b9a277 838 continue;
0c7770c7 839 }
91b9a277
OJ
840
841 if (right == NULL) {
19baf839 842 put_child(t, tn, i/2, left);
91b9a277
OJ
843 continue;
844 }
c877efb2 845
19baf839 846 /* Two nonempty children */
91b9a277
OJ
847 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
848 put_child(t, tn, i/2, NULL);
91b9a277
OJ
849 put_child(t, newBinNode, 0, left);
850 put_child(t, newBinNode, 1, right);
851 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
852 }
853 tnode_free(oldtnode);
854 return tn;
2f80b3c8
RO
855nomem:
856 {
857 int size = tnode_child_length(tn);
858 int j;
859
0c7770c7 860 for (j = 0; j < size; j++)
2f80b3c8
RO
861 if (tn->child[j])
862 tnode_free((struct tnode *)tn->child[j]);
863
864 tnode_free(tn);
0c7770c7 865
2f80b3c8
RO
866 return ERR_PTR(-ENOMEM);
867 }
19baf839
RO
868}
869
91b9a277 870static void trie_init(struct trie *t)
19baf839 871{
91b9a277
OJ
872 if (!t)
873 return;
874
875 t->size = 0;
2373ce1c 876 rcu_assign_pointer(t->trie, NULL);
91b9a277 877 t->revision = 0;
19baf839 878#ifdef CONFIG_IP_FIB_TRIE_STATS
91b9a277 879 memset(&t->stats, 0, sizeof(struct trie_use_stats));
19baf839 880#endif
19baf839
RO
881}
882
772cb712 883/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
884 via get_fa_head and dump */
885
772cb712 886static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 887{
772cb712 888 struct hlist_head *head = &l->list;
19baf839
RO
889 struct hlist_node *node;
890 struct leaf_info *li;
891
2373ce1c 892 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 893 if (li->plen == plen)
19baf839 894 return li;
91b9a277 895
19baf839
RO
896 return NULL;
897}
898
899static inline struct list_head * get_fa_head(struct leaf *l, int plen)
900{
772cb712 901 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 902
91b9a277
OJ
903 if (!li)
904 return NULL;
c877efb2 905
91b9a277 906 return &li->falh;
19baf839
RO
907}
908
909static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
910{
e905a9ed
YH
911 struct leaf_info *li = NULL, *last = NULL;
912 struct hlist_node *node;
913
914 if (hlist_empty(head)) {
915 hlist_add_head_rcu(&new->hlist, head);
916 } else {
917 hlist_for_each_entry(li, node, head, hlist) {
918 if (new->plen > li->plen)
919 break;
920
921 last = li;
922 }
923 if (last)
924 hlist_add_after_rcu(&last->hlist, &new->hlist);
925 else
926 hlist_add_before_rcu(&new->hlist, &li->hlist);
927 }
19baf839
RO
928}
929
2373ce1c
RO
930/* rcu_read_lock needs to be hold by caller from readside */
931
19baf839
RO
932static struct leaf *
933fib_find_node(struct trie *t, u32 key)
934{
935 int pos;
936 struct tnode *tn;
937 struct node *n;
938
939 pos = 0;
2373ce1c 940 n = rcu_dereference(t->trie);
19baf839
RO
941
942 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
943 tn = (struct tnode *) n;
91b9a277 944
19baf839 945 check_tnode(tn);
91b9a277 946
c877efb2 947 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 948 pos = tn->pos + tn->bits;
19baf839 949 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
91b9a277 950 } else
19baf839
RO
951 break;
952 }
953 /* Case we have found a leaf. Compare prefixes */
954
91b9a277
OJ
955 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
956 return (struct leaf *)n;
957
19baf839
RO
958 return NULL;
959}
960
961static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
962{
19baf839
RO
963 int wasfull;
964 t_key cindex, key;
965 struct tnode *tp = NULL;
966
19baf839 967 key = tn->key;
19baf839
RO
968
969 while (tn != NULL && NODE_PARENT(tn) != NULL) {
19baf839
RO
970
971 tp = NODE_PARENT(tn);
972 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
973 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
974 tn = (struct tnode *) resize (t, (struct tnode *)tn);
975 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
91b9a277 976
c877efb2 977 if (!NODE_PARENT(tn))
19baf839
RO
978 break;
979
980 tn = NODE_PARENT(tn);
981 }
982 /* Handle last (top) tnode */
c877efb2 983 if (IS_TNODE(tn))
19baf839
RO
984 tn = (struct tnode*) resize(t, (struct tnode *)tn);
985
986 return (struct node*) tn;
987}
988
2373ce1c
RO
989/* only used from updater-side */
990
f835e471
RO
991static struct list_head *
992fib_insert_node(struct trie *t, int *err, u32 key, int plen)
19baf839
RO
993{
994 int pos, newpos;
995 struct tnode *tp = NULL, *tn = NULL;
996 struct node *n;
997 struct leaf *l;
998 int missbit;
c877efb2 999 struct list_head *fa_head = NULL;
19baf839
RO
1000 struct leaf_info *li;
1001 t_key cindex;
1002
1003 pos = 0;
c877efb2 1004 n = t->trie;
19baf839 1005
c877efb2
SH
1006 /* If we point to NULL, stop. Either the tree is empty and we should
1007 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1008 * and we should just put our new leaf in that.
c877efb2
SH
1009 * If we point to a T_TNODE, check if it matches our key. Note that
1010 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1011 * not be the parent's 'pos'+'bits'!
1012 *
c877efb2 1013 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1014 * the index from our key, push the T_TNODE and walk the tree.
1015 *
1016 * If it doesn't, we have to replace it with a new T_TNODE.
1017 *
c877efb2
SH
1018 * If we point to a T_LEAF, it might or might not have the same key
1019 * as we do. If it does, just change the value, update the T_LEAF's
1020 * value, and return it.
19baf839
RO
1021 * If it doesn't, we need to replace it with a T_TNODE.
1022 */
1023
1024 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1025 tn = (struct tnode *) n;
91b9a277 1026
c877efb2 1027 check_tnode(tn);
91b9a277 1028
c877efb2 1029 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1030 tp = tn;
91b9a277 1031 pos = tn->pos + tn->bits;
19baf839
RO
1032 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1033
0c7770c7 1034 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 1035 } else
19baf839
RO
1036 break;
1037 }
1038
1039 /*
1040 * n ----> NULL, LEAF or TNODE
1041 *
c877efb2 1042 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1043 */
1044
91b9a277 1045 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1046
1047 /* Case 1: n is a leaf. Compare prefixes */
1048
c877efb2 1049 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
91b9a277
OJ
1050 struct leaf *l = (struct leaf *) n;
1051
19baf839 1052 li = leaf_info_new(plen);
91b9a277 1053
c877efb2 1054 if (!li) {
f835e471
RO
1055 *err = -ENOMEM;
1056 goto err;
1057 }
19baf839
RO
1058
1059 fa_head = &li->falh;
1060 insert_leaf_info(&l->list, li);
1061 goto done;
1062 }
1063 t->size++;
1064 l = leaf_new();
1065
c877efb2 1066 if (!l) {
f835e471
RO
1067 *err = -ENOMEM;
1068 goto err;
1069 }
19baf839
RO
1070
1071 l->key = key;
1072 li = leaf_info_new(plen);
1073
c877efb2 1074 if (!li) {
f835e471
RO
1075 tnode_free((struct tnode *) l);
1076 *err = -ENOMEM;
1077 goto err;
1078 }
19baf839
RO
1079
1080 fa_head = &li->falh;
1081 insert_leaf_info(&l->list, li);
1082
19baf839 1083 if (t->trie && n == NULL) {
91b9a277 1084 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839
RO
1085
1086 NODE_SET_PARENT(l, tp);
19baf839 1087
91b9a277
OJ
1088 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1089 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1090 } else {
1091 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1092 /*
1093 * Add a new tnode here
19baf839
RO
1094 * first tnode need some special handling
1095 */
1096
1097 if (tp)
91b9a277 1098 pos = tp->pos+tp->bits;
19baf839 1099 else
91b9a277
OJ
1100 pos = 0;
1101
c877efb2 1102 if (n) {
19baf839
RO
1103 newpos = tkey_mismatch(key, pos, n->key);
1104 tn = tnode_new(n->key, newpos, 1);
91b9a277 1105 } else {
19baf839 1106 newpos = 0;
c877efb2 1107 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1108 }
19baf839 1109
c877efb2 1110 if (!tn) {
f835e471
RO
1111 free_leaf_info(li);
1112 tnode_free((struct tnode *) l);
1113 *err = -ENOMEM;
1114 goto err;
91b9a277
OJ
1115 }
1116
19baf839
RO
1117 NODE_SET_PARENT(tn, tp);
1118
91b9a277 1119 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1120 put_child(t, tn, missbit, (struct node *)l);
1121 put_child(t, tn, 1-missbit, n);
1122
c877efb2 1123 if (tp) {
19baf839
RO
1124 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1125 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
91b9a277 1126 } else {
2373ce1c 1127 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
19baf839
RO
1128 tp = tn;
1129 }
1130 }
91b9a277
OJ
1131
1132 if (tp && tp->pos + tp->bits > 32)
78c6671a 1133 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
19baf839 1134 tp, tp->pos, tp->bits, key, plen);
91b9a277 1135
19baf839 1136 /* Rebalance the trie */
2373ce1c
RO
1137
1138 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471
RO
1139done:
1140 t->revision++;
91b9a277 1141err:
19baf839
RO
1142 return fa_head;
1143}
1144
d562f1f8
RO
1145/*
1146 * Caller must hold RTNL.
1147 */
4e902c57 1148static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1149{
1150 struct trie *t = (struct trie *) tb->tb_data;
1151 struct fib_alias *fa, *new_fa;
c877efb2 1152 struct list_head *fa_head = NULL;
19baf839 1153 struct fib_info *fi;
4e902c57
TG
1154 int plen = cfg->fc_dst_len;
1155 u8 tos = cfg->fc_tos;
19baf839
RO
1156 u32 key, mask;
1157 int err;
1158 struct leaf *l;
1159
1160 if (plen > 32)
1161 return -EINVAL;
1162
4e902c57 1163 key = ntohl(cfg->fc_dst);
19baf839 1164
2dfe55b4 1165 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1166
91b9a277 1167 mask = ntohl(inet_make_mask(plen));
19baf839 1168
c877efb2 1169 if (key & ~mask)
19baf839
RO
1170 return -EINVAL;
1171
1172 key = key & mask;
1173
4e902c57
TG
1174 fi = fib_create_info(cfg);
1175 if (IS_ERR(fi)) {
1176 err = PTR_ERR(fi);
19baf839 1177 goto err;
4e902c57 1178 }
19baf839
RO
1179
1180 l = fib_find_node(t, key);
c877efb2 1181 fa = NULL;
19baf839 1182
c877efb2 1183 if (l) {
19baf839
RO
1184 fa_head = get_fa_head(l, plen);
1185 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1186 }
1187
1188 /* Now fa, if non-NULL, points to the first fib alias
1189 * with the same keys [prefix,tos,priority], if such key already
1190 * exists or to the node before which we will insert new one.
1191 *
1192 * If fa is NULL, we will need to allocate a new one and
1193 * insert to the head of f.
1194 *
1195 * If f is NULL, no fib node matched the destination key
1196 * and we need to allocate a new one of those as well.
1197 */
1198
91b9a277 1199 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
19baf839
RO
1200 struct fib_alias *fa_orig;
1201
1202 err = -EEXIST;
4e902c57 1203 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1204 goto out;
1205
4e902c57 1206 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1207 struct fib_info *fi_drop;
1208 u8 state;
1209
2373ce1c 1210 err = -ENOBUFS;
e94b1766 1211 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1212 if (new_fa == NULL)
1213 goto out;
19baf839
RO
1214
1215 fi_drop = fa->fa_info;
2373ce1c
RO
1216 new_fa->fa_tos = fa->fa_tos;
1217 new_fa->fa_info = fi;
4e902c57
TG
1218 new_fa->fa_type = cfg->fc_type;
1219 new_fa->fa_scope = cfg->fc_scope;
19baf839 1220 state = fa->fa_state;
2373ce1c 1221 new_fa->fa_state &= ~FA_S_ACCESSED;
19baf839 1222
2373ce1c
RO
1223 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1224 alias_free_mem_rcu(fa);
19baf839
RO
1225
1226 fib_release_info(fi_drop);
1227 if (state & FA_S_ACCESSED)
91b9a277 1228 rt_cache_flush(-1);
b8f55831
MK
1229 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1230 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1231
91b9a277 1232 goto succeeded;
19baf839
RO
1233 }
1234 /* Error if we find a perfect match which
1235 * uses the same scope, type, and nexthop
1236 * information.
1237 */
1238 fa_orig = fa;
1239 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1240 if (fa->fa_tos != tos)
1241 break;
1242 if (fa->fa_info->fib_priority != fi->fib_priority)
1243 break;
4e902c57
TG
1244 if (fa->fa_type == cfg->fc_type &&
1245 fa->fa_scope == cfg->fc_scope &&
19baf839
RO
1246 fa->fa_info == fi) {
1247 goto out;
1248 }
1249 }
4e902c57 1250 if (!(cfg->fc_nlflags & NLM_F_APPEND))
19baf839
RO
1251 fa = fa_orig;
1252 }
1253 err = -ENOENT;
4e902c57 1254 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1255 goto out;
1256
1257 err = -ENOBUFS;
e94b1766 1258 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1259 if (new_fa == NULL)
1260 goto out;
1261
1262 new_fa->fa_info = fi;
1263 new_fa->fa_tos = tos;
4e902c57
TG
1264 new_fa->fa_type = cfg->fc_type;
1265 new_fa->fa_scope = cfg->fc_scope;
19baf839 1266 new_fa->fa_state = 0;
19baf839
RO
1267 /*
1268 * Insert new entry to the list.
1269 */
1270
c877efb2 1271 if (!fa_head) {
f835e471 1272 err = 0;
b47b2ec1 1273 fa_head = fib_insert_node(t, &err, key, plen);
c877efb2 1274 if (err)
f835e471
RO
1275 goto out_free_new_fa;
1276 }
19baf839 1277
2373ce1c
RO
1278 list_add_tail_rcu(&new_fa->fa_list,
1279 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1280
1281 rt_cache_flush(-1);
4e902c57 1282 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1283 &cfg->fc_nlinfo, 0);
19baf839
RO
1284succeeded:
1285 return 0;
f835e471
RO
1286
1287out_free_new_fa:
1288 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1289out:
1290 fib_release_info(fi);
91b9a277 1291err:
19baf839
RO
1292 return err;
1293}
1294
2373ce1c 1295
772cb712 1296/* should be called with rcu_read_lock */
0c7770c7
SH
1297static inline int check_leaf(struct trie *t, struct leaf *l,
1298 t_key key, int *plen, const struct flowi *flp,
06c74270 1299 struct fib_result *res)
19baf839 1300{
06c74270 1301 int err, i;
888454c5 1302 __be32 mask;
19baf839
RO
1303 struct leaf_info *li;
1304 struct hlist_head *hhead = &l->list;
1305 struct hlist_node *node;
c877efb2 1306
2373ce1c 1307 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
19baf839 1308 i = li->plen;
888454c5
AV
1309 mask = inet_make_mask(i);
1310 if (l->key != (key & ntohl(mask)))
19baf839
RO
1311 continue;
1312
888454c5 1313 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
19baf839
RO
1314 *plen = i;
1315#ifdef CONFIG_IP_FIB_TRIE_STATS
1316 t->stats.semantic_match_passed++;
1317#endif
06c74270 1318 return err;
19baf839
RO
1319 }
1320#ifdef CONFIG_IP_FIB_TRIE_STATS
1321 t->stats.semantic_match_miss++;
1322#endif
1323 }
06c74270 1324 return 1;
19baf839
RO
1325}
1326
1327static int
1328fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1329{
1330 struct trie *t = (struct trie *) tb->tb_data;
1331 int plen, ret = 0;
1332 struct node *n;
1333 struct tnode *pn;
1334 int pos, bits;
91b9a277 1335 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1336 int chopped_off;
1337 t_key cindex = 0;
1338 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1339 struct tnode *cn;
1340 t_key node_prefix, key_prefix, pref_mismatch;
1341 int mp;
1342
2373ce1c 1343 rcu_read_lock();
91b9a277 1344
2373ce1c 1345 n = rcu_dereference(t->trie);
c877efb2 1346 if (!n)
19baf839
RO
1347 goto failed;
1348
1349#ifdef CONFIG_IP_FIB_TRIE_STATS
1350 t->stats.gets++;
1351#endif
1352
1353 /* Just a leaf? */
1354 if (IS_LEAF(n)) {
06c74270 1355 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
19baf839
RO
1356 goto found;
1357 goto failed;
1358 }
1359 pn = (struct tnode *) n;
1360 chopped_off = 0;
c877efb2 1361
91b9a277 1362 while (pn) {
19baf839
RO
1363 pos = pn->pos;
1364 bits = pn->bits;
1365
c877efb2 1366 if (!chopped_off)
19baf839
RO
1367 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1368
1369 n = tnode_get_child(pn, cindex);
1370
1371 if (n == NULL) {
1372#ifdef CONFIG_IP_FIB_TRIE_STATS
1373 t->stats.null_node_hit++;
1374#endif
1375 goto backtrace;
1376 }
1377
91b9a277
OJ
1378 if (IS_LEAF(n)) {
1379 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1380 goto found;
1381 else
1382 goto backtrace;
1383 }
1384
19baf839
RO
1385#define HL_OPTIMIZE
1386#ifdef HL_OPTIMIZE
91b9a277 1387 cn = (struct tnode *)n;
19baf839 1388
91b9a277
OJ
1389 /*
1390 * It's a tnode, and we can do some extra checks here if we
1391 * like, to avoid descending into a dead-end branch.
1392 * This tnode is in the parent's child array at index
1393 * key[p_pos..p_pos+p_bits] but potentially with some bits
1394 * chopped off, so in reality the index may be just a
1395 * subprefix, padded with zero at the end.
1396 * We can also take a look at any skipped bits in this
1397 * tnode - everything up to p_pos is supposed to be ok,
1398 * and the non-chopped bits of the index (se previous
1399 * paragraph) are also guaranteed ok, but the rest is
1400 * considered unknown.
1401 *
1402 * The skipped bits are key[pos+bits..cn->pos].
1403 */
19baf839 1404
91b9a277
OJ
1405 /* If current_prefix_length < pos+bits, we are already doing
1406 * actual prefix matching, which means everything from
1407 * pos+(bits-chopped_off) onward must be zero along some
1408 * branch of this subtree - otherwise there is *no* valid
1409 * prefix present. Here we can only check the skipped
1410 * bits. Remember, since we have already indexed into the
1411 * parent's child array, we know that the bits we chopped of
1412 * *are* zero.
1413 */
19baf839 1414
91b9a277 1415 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
19baf839 1416
91b9a277
OJ
1417 if (current_prefix_length < pos+bits) {
1418 if (tkey_extract_bits(cn->key, current_prefix_length,
1419 cn->pos - current_prefix_length) != 0 ||
1420 !(cn->child[0]))
1421 goto backtrace;
1422 }
19baf839 1423
91b9a277
OJ
1424 /*
1425 * If chopped_off=0, the index is fully validated and we
1426 * only need to look at the skipped bits for this, the new,
1427 * tnode. What we actually want to do is to find out if
1428 * these skipped bits match our key perfectly, or if we will
1429 * have to count on finding a matching prefix further down,
1430 * because if we do, we would like to have some way of
1431 * verifying the existence of such a prefix at this point.
1432 */
19baf839 1433
91b9a277
OJ
1434 /* The only thing we can do at this point is to verify that
1435 * any such matching prefix can indeed be a prefix to our
1436 * key, and if the bits in the node we are inspecting that
1437 * do not match our key are not ZERO, this cannot be true.
1438 * Thus, find out where there is a mismatch (before cn->pos)
1439 * and verify that all the mismatching bits are zero in the
1440 * new tnode's key.
1441 */
19baf839 1442
91b9a277
OJ
1443 /* Note: We aren't very concerned about the piece of the key
1444 * that precede pn->pos+pn->bits, since these have already been
1445 * checked. The bits after cn->pos aren't checked since these are
1446 * by definition "unknown" at this point. Thus, what we want to
1447 * see is if we are about to enter the "prefix matching" state,
1448 * and in that case verify that the skipped bits that will prevail
1449 * throughout this subtree are zero, as they have to be if we are
1450 * to find a matching prefix.
1451 */
1452
1453 node_prefix = MASK_PFX(cn->key, cn->pos);
1454 key_prefix = MASK_PFX(key, cn->pos);
1455 pref_mismatch = key_prefix^node_prefix;
1456 mp = 0;
1457
1458 /* In short: If skipped bits in this node do not match the search
1459 * key, enter the "prefix matching" state.directly.
1460 */
1461 if (pref_mismatch) {
1462 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1463 mp++;
1464 pref_mismatch = pref_mismatch <<1;
1465 }
1466 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1467
1468 if (key_prefix != 0)
1469 goto backtrace;
1470
1471 if (current_prefix_length >= cn->pos)
1472 current_prefix_length = mp;
c877efb2 1473 }
91b9a277
OJ
1474#endif
1475 pn = (struct tnode *)n; /* Descend */
1476 chopped_off = 0;
1477 continue;
1478
19baf839
RO
1479backtrace:
1480 chopped_off++;
1481
1482 /* As zero don't change the child key (cindex) */
91b9a277 1483 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
19baf839 1484 chopped_off++;
19baf839
RO
1485
1486 /* Decrease current_... with bits chopped off */
1487 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1488 current_prefix_length = pn->pos + pn->bits - chopped_off;
91b9a277 1489
19baf839 1490 /*
c877efb2 1491 * Either we do the actual chop off according or if we have
19baf839
RO
1492 * chopped off all bits in this tnode walk up to our parent.
1493 */
1494
91b9a277 1495 if (chopped_off <= pn->bits) {
19baf839 1496 cindex &= ~(1 << (chopped_off-1));
91b9a277 1497 } else {
c877efb2 1498 if (NODE_PARENT(pn) == NULL)
19baf839 1499 goto failed;
91b9a277 1500
19baf839
RO
1501 /* Get Child's index */
1502 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1503 pn = NODE_PARENT(pn);
1504 chopped_off = 0;
1505
1506#ifdef CONFIG_IP_FIB_TRIE_STATS
1507 t->stats.backtrack++;
1508#endif
1509 goto backtrace;
c877efb2 1510 }
19baf839
RO
1511 }
1512failed:
c877efb2 1513 ret = 1;
19baf839 1514found:
2373ce1c 1515 rcu_read_unlock();
19baf839
RO
1516 return ret;
1517}
1518
2373ce1c 1519/* only called from updater side */
19baf839
RO
1520static int trie_leaf_remove(struct trie *t, t_key key)
1521{
1522 t_key cindex;
1523 struct tnode *tp = NULL;
1524 struct node *n = t->trie;
1525 struct leaf *l;
1526
0c7770c7 1527 pr_debug("entering trie_leaf_remove(%p)\n", n);
19baf839
RO
1528
1529 /* Note that in the case skipped bits, those bits are *not* checked!
c877efb2 1530 * When we finish this, we will have NULL or a T_LEAF, and the
19baf839
RO
1531 * T_LEAF may or may not match our key.
1532 */
1533
91b9a277 1534 while (n != NULL && IS_TNODE(n)) {
19baf839
RO
1535 struct tnode *tn = (struct tnode *) n;
1536 check_tnode(tn);
1537 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1538
0c7770c7 1539 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 1540 }
19baf839
RO
1541 l = (struct leaf *) n;
1542
c877efb2 1543 if (!n || !tkey_equals(l->key, key))
19baf839 1544 return 0;
c877efb2
SH
1545
1546 /*
1547 * Key found.
1548 * Remove the leaf and rebalance the tree
19baf839
RO
1549 */
1550
1551 t->revision++;
1552 t->size--;
1553
1554 tp = NODE_PARENT(n);
1555 tnode_free((struct tnode *) n);
1556
c877efb2 1557 if (tp) {
19baf839
RO
1558 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1559 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1560 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1561 } else
2373ce1c 1562 rcu_assign_pointer(t->trie, NULL);
19baf839
RO
1563
1564 return 1;
1565}
1566
d562f1f8
RO
1567/*
1568 * Caller must hold RTNL.
1569 */
4e902c57 1570static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1571{
1572 struct trie *t = (struct trie *) tb->tb_data;
1573 u32 key, mask;
4e902c57
TG
1574 int plen = cfg->fc_dst_len;
1575 u8 tos = cfg->fc_tos;
19baf839
RO
1576 struct fib_alias *fa, *fa_to_delete;
1577 struct list_head *fa_head;
1578 struct leaf *l;
91b9a277
OJ
1579 struct leaf_info *li;
1580
c877efb2 1581 if (plen > 32)
19baf839
RO
1582 return -EINVAL;
1583
4e902c57 1584 key = ntohl(cfg->fc_dst);
91b9a277 1585 mask = ntohl(inet_make_mask(plen));
19baf839 1586
c877efb2 1587 if (key & ~mask)
19baf839
RO
1588 return -EINVAL;
1589
1590 key = key & mask;
1591 l = fib_find_node(t, key);
1592
c877efb2 1593 if (!l)
19baf839
RO
1594 return -ESRCH;
1595
1596 fa_head = get_fa_head(l, plen);
1597 fa = fib_find_alias(fa_head, tos, 0);
1598
1599 if (!fa)
1600 return -ESRCH;
1601
0c7770c7 1602 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1603
1604 fa_to_delete = NULL;
1605 fa_head = fa->fa_list.prev;
2373ce1c 1606
19baf839
RO
1607 list_for_each_entry(fa, fa_head, fa_list) {
1608 struct fib_info *fi = fa->fa_info;
1609
1610 if (fa->fa_tos != tos)
1611 break;
1612
4e902c57
TG
1613 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1614 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1615 fa->fa_scope == cfg->fc_scope) &&
1616 (!cfg->fc_protocol ||
1617 fi->fib_protocol == cfg->fc_protocol) &&
1618 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1619 fa_to_delete = fa;
1620 break;
1621 }
1622 }
1623
91b9a277
OJ
1624 if (!fa_to_delete)
1625 return -ESRCH;
19baf839 1626
91b9a277 1627 fa = fa_to_delete;
4e902c57 1628 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1629 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1630
1631 l = fib_find_node(t, key);
772cb712 1632 li = find_leaf_info(l, plen);
19baf839 1633
2373ce1c 1634 list_del_rcu(&fa->fa_list);
19baf839 1635
91b9a277 1636 if (list_empty(fa_head)) {
2373ce1c 1637 hlist_del_rcu(&li->hlist);
91b9a277 1638 free_leaf_info(li);
2373ce1c 1639 }
19baf839 1640
91b9a277
OJ
1641 if (hlist_empty(&l->list))
1642 trie_leaf_remove(t, key);
19baf839 1643
91b9a277
OJ
1644 if (fa->fa_state & FA_S_ACCESSED)
1645 rt_cache_flush(-1);
19baf839 1646
2373ce1c
RO
1647 fib_release_info(fa->fa_info);
1648 alias_free_mem_rcu(fa);
91b9a277 1649 return 0;
19baf839
RO
1650}
1651
1652static int trie_flush_list(struct trie *t, struct list_head *head)
1653{
1654 struct fib_alias *fa, *fa_node;
1655 int found = 0;
1656
1657 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1658 struct fib_info *fi = fa->fa_info;
19baf839 1659
2373ce1c
RO
1660 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1661 list_del_rcu(&fa->fa_list);
1662 fib_release_info(fa->fa_info);
1663 alias_free_mem_rcu(fa);
19baf839
RO
1664 found++;
1665 }
1666 }
1667 return found;
1668}
1669
1670static int trie_flush_leaf(struct trie *t, struct leaf *l)
1671{
1672 int found = 0;
1673 struct hlist_head *lih = &l->list;
1674 struct hlist_node *node, *tmp;
1675 struct leaf_info *li = NULL;
1676
1677 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
19baf839
RO
1678 found += trie_flush_list(t, &li->falh);
1679
1680 if (list_empty(&li->falh)) {
2373ce1c 1681 hlist_del_rcu(&li->hlist);
19baf839
RO
1682 free_leaf_info(li);
1683 }
1684 }
1685 return found;
1686}
1687
2373ce1c
RO
1688/* rcu_read_lock needs to be hold by caller from readside */
1689
19baf839
RO
1690static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1691{
1692 struct node *c = (struct node *) thisleaf;
1693 struct tnode *p;
1694 int idx;
2373ce1c 1695 struct node *trie = rcu_dereference(t->trie);
19baf839 1696
c877efb2 1697 if (c == NULL) {
2373ce1c 1698 if (trie == NULL)
19baf839
RO
1699 return NULL;
1700
2373ce1c
RO
1701 if (IS_LEAF(trie)) /* trie w. just a leaf */
1702 return (struct leaf *) trie;
19baf839 1703
2373ce1c 1704 p = (struct tnode*) trie; /* Start */
91b9a277 1705 } else
19baf839 1706 p = (struct tnode *) NODE_PARENT(c);
c877efb2 1707
19baf839
RO
1708 while (p) {
1709 int pos, last;
1710
1711 /* Find the next child of the parent */
c877efb2
SH
1712 if (c)
1713 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1714 else
19baf839
RO
1715 pos = 0;
1716
1717 last = 1 << p->bits;
91b9a277 1718 for (idx = pos; idx < last ; idx++) {
2373ce1c
RO
1719 c = rcu_dereference(p->child[idx]);
1720
1721 if (!c)
91b9a277
OJ
1722 continue;
1723
1724 /* Decend if tnode */
2373ce1c
RO
1725 while (IS_TNODE(c)) {
1726 p = (struct tnode *) c;
e905a9ed 1727 idx = 0;
91b9a277
OJ
1728
1729 /* Rightmost non-NULL branch */
1730 if (p && IS_TNODE(p))
2373ce1c
RO
1731 while (!(c = rcu_dereference(p->child[idx]))
1732 && idx < (1<<p->bits)) idx++;
91b9a277
OJ
1733
1734 /* Done with this tnode? */
2373ce1c 1735 if (idx >= (1 << p->bits) || !c)
91b9a277 1736 goto up;
19baf839 1737 }
2373ce1c 1738 return (struct leaf *) c;
19baf839
RO
1739 }
1740up:
1741 /* No more children go up one step */
91b9a277 1742 c = (struct node *) p;
19baf839
RO
1743 p = (struct tnode *) NODE_PARENT(p);
1744 }
1745 return NULL; /* Ready. Root of trie */
1746}
1747
d562f1f8
RO
1748/*
1749 * Caller must hold RTNL.
1750 */
19baf839
RO
1751static int fn_trie_flush(struct fib_table *tb)
1752{
1753 struct trie *t = (struct trie *) tb->tb_data;
1754 struct leaf *ll = NULL, *l = NULL;
1755 int found = 0, h;
1756
1757 t->revision++;
1758
91b9a277 1759 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1760 found += trie_flush_leaf(t, l);
1761
1762 if (ll && hlist_empty(&ll->list))
1763 trie_leaf_remove(t, ll->key);
1764 ll = l;
1765 }
1766
1767 if (ll && hlist_empty(&ll->list))
1768 trie_leaf_remove(t, ll->key);
1769
0c7770c7 1770 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1771 return found;
1772}
1773
91b9a277 1774static int trie_last_dflt = -1;
19baf839
RO
1775
1776static void
1777fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1778{
1779 struct trie *t = (struct trie *) tb->tb_data;
1780 int order, last_idx;
1781 struct fib_info *fi = NULL;
1782 struct fib_info *last_resort;
1783 struct fib_alias *fa = NULL;
1784 struct list_head *fa_head;
1785 struct leaf *l;
1786
1787 last_idx = -1;
1788 last_resort = NULL;
1789 order = -1;
1790
2373ce1c 1791 rcu_read_lock();
c877efb2 1792
19baf839 1793 l = fib_find_node(t, 0);
c877efb2 1794 if (!l)
19baf839
RO
1795 goto out;
1796
1797 fa_head = get_fa_head(l, 0);
c877efb2 1798 if (!fa_head)
19baf839
RO
1799 goto out;
1800
c877efb2 1801 if (list_empty(fa_head))
19baf839
RO
1802 goto out;
1803
2373ce1c 1804 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1805 struct fib_info *next_fi = fa->fa_info;
91b9a277 1806
19baf839
RO
1807 if (fa->fa_scope != res->scope ||
1808 fa->fa_type != RTN_UNICAST)
1809 continue;
91b9a277 1810
19baf839
RO
1811 if (next_fi->fib_priority > res->fi->fib_priority)
1812 break;
1813 if (!next_fi->fib_nh[0].nh_gw ||
1814 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1815 continue;
1816 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1817
19baf839
RO
1818 if (fi == NULL) {
1819 if (next_fi != res->fi)
1820 break;
1821 } else if (!fib_detect_death(fi, order, &last_resort,
1822 &last_idx, &trie_last_dflt)) {
1823 if (res->fi)
1824 fib_info_put(res->fi);
1825 res->fi = fi;
1826 atomic_inc(&fi->fib_clntref);
1827 trie_last_dflt = order;
1828 goto out;
1829 }
1830 fi = next_fi;
1831 order++;
1832 }
1833 if (order <= 0 || fi == NULL) {
1834 trie_last_dflt = -1;
1835 goto out;
1836 }
1837
1838 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1839 if (res->fi)
1840 fib_info_put(res->fi);
1841 res->fi = fi;
1842 atomic_inc(&fi->fib_clntref);
1843 trie_last_dflt = order;
1844 goto out;
1845 }
1846 if (last_idx >= 0) {
1847 if (res->fi)
1848 fib_info_put(res->fi);
1849 res->fi = last_resort;
1850 if (last_resort)
1851 atomic_inc(&last_resort->fib_clntref);
1852 }
1853 trie_last_dflt = last_idx;
1854 out:;
2373ce1c 1855 rcu_read_unlock();
19baf839
RO
1856}
1857
c877efb2 1858static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
19baf839
RO
1859 struct sk_buff *skb, struct netlink_callback *cb)
1860{
1861 int i, s_i;
1862 struct fib_alias *fa;
1863
32ab5f80 1864 __be32 xkey = htonl(key);
19baf839 1865
1af5a8c4 1866 s_i = cb->args[4];
19baf839
RO
1867 i = 0;
1868
2373ce1c
RO
1869 /* rcu_read_lock is hold by caller */
1870
1871 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1872 if (i < s_i) {
1873 i++;
1874 continue;
1875 }
78c6671a 1876 BUG_ON(!fa->fa_info);
19baf839
RO
1877
1878 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1879 cb->nlh->nlmsg_seq,
1880 RTM_NEWROUTE,
1881 tb->tb_id,
1882 fa->fa_type,
1883 fa->fa_scope,
be403ea1 1884 xkey,
19baf839
RO
1885 plen,
1886 fa->fa_tos,
90f66914 1887 fa->fa_info, 0) < 0) {
1af5a8c4 1888 cb->args[4] = i;
19baf839 1889 return -1;
91b9a277 1890 }
19baf839
RO
1891 i++;
1892 }
1af5a8c4 1893 cb->args[4] = i;
19baf839
RO
1894 return skb->len;
1895}
1896
c877efb2 1897static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
19baf839
RO
1898 struct netlink_callback *cb)
1899{
1900 int h, s_h;
1901 struct list_head *fa_head;
1902 struct leaf *l = NULL;
19baf839 1903
1af5a8c4 1904 s_h = cb->args[3];
19baf839 1905
91b9a277 1906 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1907 if (h < s_h)
1908 continue;
1909 if (h > s_h)
1af5a8c4
PM
1910 memset(&cb->args[4], 0,
1911 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839
RO
1912
1913 fa_head = get_fa_head(l, plen);
91b9a277 1914
c877efb2 1915 if (!fa_head)
19baf839
RO
1916 continue;
1917
c877efb2 1918 if (list_empty(fa_head))
19baf839
RO
1919 continue;
1920
1921 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1af5a8c4 1922 cb->args[3] = h;
19baf839
RO
1923 return -1;
1924 }
1925 }
1af5a8c4 1926 cb->args[3] = h;
19baf839
RO
1927 return skb->len;
1928}
1929
1930static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1931{
1932 int m, s_m;
1933 struct trie *t = (struct trie *) tb->tb_data;
1934
1af5a8c4 1935 s_m = cb->args[2];
19baf839 1936
2373ce1c 1937 rcu_read_lock();
91b9a277 1938 for (m = 0; m <= 32; m++) {
19baf839
RO
1939 if (m < s_m)
1940 continue;
1941 if (m > s_m)
1af5a8c4
PM
1942 memset(&cb->args[3], 0,
1943 sizeof(cb->args) - 3*sizeof(cb->args[0]));
19baf839
RO
1944
1945 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1af5a8c4 1946 cb->args[2] = m;
19baf839
RO
1947 goto out;
1948 }
1949 }
2373ce1c 1950 rcu_read_unlock();
1af5a8c4 1951 cb->args[2] = m;
19baf839 1952 return skb->len;
91b9a277 1953out:
2373ce1c 1954 rcu_read_unlock();
19baf839
RO
1955 return -1;
1956}
1957
1958/* Fix more generic FIB names for init later */
1959
1960#ifdef CONFIG_IP_MULTIPLE_TABLES
2dfe55b4 1961struct fib_table * fib_hash_init(u32 id)
19baf839 1962#else
2dfe55b4 1963struct fib_table * __init fib_hash_init(u32 id)
19baf839
RO
1964#endif
1965{
1966 struct fib_table *tb;
1967 struct trie *t;
1968
1969 if (fn_alias_kmem == NULL)
1970 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1971 sizeof(struct fib_alias),
1972 0, SLAB_HWCACHE_ALIGN,
1973 NULL, NULL);
1974
1975 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1976 GFP_KERNEL);
1977 if (tb == NULL)
1978 return NULL;
1979
1980 tb->tb_id = id;
1981 tb->tb_lookup = fn_trie_lookup;
1982 tb->tb_insert = fn_trie_insert;
1983 tb->tb_delete = fn_trie_delete;
1984 tb->tb_flush = fn_trie_flush;
1985 tb->tb_select_default = fn_trie_select_default;
1986 tb->tb_dump = fn_trie_dump;
1987 memset(tb->tb_data, 0, sizeof(struct trie));
1988
1989 t = (struct trie *) tb->tb_data;
1990
1991 trie_init(t);
1992
c877efb2 1993 if (id == RT_TABLE_LOCAL)
91b9a277 1994 trie_local = t;
c877efb2 1995 else if (id == RT_TABLE_MAIN)
91b9a277 1996 trie_main = t;
19baf839
RO
1997
1998 if (id == RT_TABLE_LOCAL)
78c6671a 1999 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2000
2001 return tb;
2002}
2003
cb7b593c
SH
2004#ifdef CONFIG_PROC_FS
2005/* Depth first Trie walk iterator */
2006struct fib_trie_iter {
2007 struct tnode *tnode;
2008 struct trie *trie;
2009 unsigned index;
2010 unsigned depth;
2011};
19baf839 2012
cb7b593c 2013static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2014{
cb7b593c
SH
2015 struct tnode *tn = iter->tnode;
2016 unsigned cindex = iter->index;
2017 struct tnode *p;
19baf839 2018
6640e697
EB
2019 /* A single entry routing table */
2020 if (!tn)
2021 return NULL;
2022
cb7b593c
SH
2023 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2024 iter->tnode, iter->index, iter->depth);
2025rescan:
2026 while (cindex < (1<<tn->bits)) {
2027 struct node *n = tnode_get_child(tn, cindex);
19baf839 2028
cb7b593c
SH
2029 if (n) {
2030 if (IS_LEAF(n)) {
2031 iter->tnode = tn;
2032 iter->index = cindex + 1;
2033 } else {
2034 /* push down one level */
2035 iter->tnode = (struct tnode *) n;
2036 iter->index = 0;
2037 ++iter->depth;
2038 }
2039 return n;
2040 }
19baf839 2041
cb7b593c
SH
2042 ++cindex;
2043 }
91b9a277 2044
cb7b593c
SH
2045 /* Current node exhausted, pop back up */
2046 p = NODE_PARENT(tn);
2047 if (p) {
2048 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2049 tn = p;
2050 --iter->depth;
2051 goto rescan;
19baf839 2052 }
cb7b593c
SH
2053
2054 /* got root? */
2055 return NULL;
19baf839
RO
2056}
2057
cb7b593c
SH
2058static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2059 struct trie *t)
19baf839 2060{
5ddf0eb2
RO
2061 struct node *n ;
2062
132adf54 2063 if (!t)
5ddf0eb2
RO
2064 return NULL;
2065
2066 n = rcu_dereference(t->trie);
2067
132adf54 2068 if (!iter)
5ddf0eb2 2069 return NULL;
19baf839 2070
6640e697
EB
2071 if (n) {
2072 if (IS_TNODE(n)) {
2073 iter->tnode = (struct tnode *) n;
2074 iter->trie = t;
2075 iter->index = 0;
2076 iter->depth = 1;
2077 } else {
2078 iter->tnode = NULL;
2079 iter->trie = t;
2080 iter->index = 0;
2081 iter->depth = 0;
2082 }
cb7b593c 2083 return n;
91b9a277 2084 }
cb7b593c
SH
2085 return NULL;
2086}
91b9a277 2087
cb7b593c
SH
2088static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2089{
2090 struct node *n;
2091 struct fib_trie_iter iter;
91b9a277 2092
cb7b593c 2093 memset(s, 0, sizeof(*s));
91b9a277 2094
cb7b593c
SH
2095 rcu_read_lock();
2096 for (n = fib_trie_get_first(&iter, t); n;
2097 n = fib_trie_get_next(&iter)) {
2098 if (IS_LEAF(n)) {
2099 s->leaves++;
2100 s->totdepth += iter.depth;
2101 if (iter.depth > s->maxdepth)
2102 s->maxdepth = iter.depth;
2103 } else {
2104 const struct tnode *tn = (const struct tnode *) n;
2105 int i;
2106
2107 s->tnodes++;
132adf54 2108 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2109 s->nodesizes[tn->bits]++;
2110
cb7b593c
SH
2111 for (i = 0; i < (1<<tn->bits); i++)
2112 if (!tn->child[i])
2113 s->nullpointers++;
19baf839 2114 }
19baf839 2115 }
2373ce1c 2116 rcu_read_unlock();
19baf839
RO
2117}
2118
cb7b593c
SH
2119/*
2120 * This outputs /proc/net/fib_triestats
2121 */
2122static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2123{
cb7b593c 2124 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2125
cb7b593c
SH
2126 if (stat->leaves)
2127 avdepth = stat->totdepth*100 / stat->leaves;
2128 else
2129 avdepth = 0;
91b9a277 2130
cb7b593c
SH
2131 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2132 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2133
cb7b593c 2134 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
91b9a277 2135
cb7b593c
SH
2136 bytes = sizeof(struct leaf) * stat->leaves;
2137 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2138 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2139
06ef921d
RO
2140 max = MAX_STAT_DEPTH;
2141 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2142 max--;
19baf839 2143
cb7b593c
SH
2144 pointers = 0;
2145 for (i = 1; i <= max; i++)
2146 if (stat->nodesizes[i] != 0) {
2147 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2148 pointers += (1<<i) * stat->nodesizes[i];
2149 }
2150 seq_putc(seq, '\n');
2151 seq_printf(seq, "\tPointers: %d\n", pointers);
2373ce1c 2152
cb7b593c
SH
2153 bytes += sizeof(struct node *) * pointers;
2154 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2155 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2373ce1c 2156
cb7b593c
SH
2157#ifdef CONFIG_IP_FIB_TRIE_STATS
2158 seq_printf(seq, "Counters:\n---------\n");
2159 seq_printf(seq,"gets = %d\n", t->stats.gets);
2160 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2161 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2162 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2163 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2164 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2165#ifdef CLEAR_STATS
2166 memset(&(t->stats), 0, sizeof(t->stats));
2167#endif
2168#endif /* CONFIG_IP_FIB_TRIE_STATS */
2169}
19baf839 2170
cb7b593c
SH
2171static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2172{
2173 struct trie_stat *stat;
91b9a277 2174
cb7b593c
SH
2175 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2176 if (!stat)
2177 return -ENOMEM;
91b9a277 2178
cb7b593c
SH
2179 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2180 sizeof(struct leaf), sizeof(struct tnode));
91b9a277 2181
cb7b593c
SH
2182 if (trie_local) {
2183 seq_printf(seq, "Local:\n");
2184 trie_collect_stats(trie_local, stat);
2185 trie_show_stats(seq, stat);
2186 }
91b9a277 2187
cb7b593c
SH
2188 if (trie_main) {
2189 seq_printf(seq, "Main:\n");
2190 trie_collect_stats(trie_main, stat);
2191 trie_show_stats(seq, stat);
19baf839 2192 }
cb7b593c 2193 kfree(stat);
19baf839 2194
cb7b593c 2195 return 0;
19baf839
RO
2196}
2197
cb7b593c 2198static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2199{
cb7b593c 2200 return single_open(file, fib_triestat_seq_show, NULL);
19baf839
RO
2201}
2202
9a32144e 2203static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2204 .owner = THIS_MODULE,
2205 .open = fib_triestat_seq_open,
2206 .read = seq_read,
2207 .llseek = seq_lseek,
2208 .release = single_release,
2209};
2210
2211static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2212 loff_t pos)
19baf839 2213{
cb7b593c
SH
2214 loff_t idx = 0;
2215 struct node *n;
2216
2217 for (n = fib_trie_get_first(iter, trie_local);
2218 n; ++idx, n = fib_trie_get_next(iter)) {
2219 if (pos == idx)
2220 return n;
2221 }
2222
2223 for (n = fib_trie_get_first(iter, trie_main);
2224 n; ++idx, n = fib_trie_get_next(iter)) {
2225 if (pos == idx)
2226 return n;
2227 }
19baf839
RO
2228 return NULL;
2229}
2230
cb7b593c 2231static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
19baf839 2232{
cb7b593c
SH
2233 rcu_read_lock();
2234 if (*pos == 0)
91b9a277 2235 return SEQ_START_TOKEN;
cb7b593c 2236 return fib_trie_get_idx(seq->private, *pos - 1);
19baf839
RO
2237}
2238
cb7b593c 2239static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2240{
cb7b593c
SH
2241 struct fib_trie_iter *iter = seq->private;
2242 void *l = v;
2243
19baf839 2244 ++*pos;
91b9a277 2245 if (v == SEQ_START_TOKEN)
cb7b593c 2246 return fib_trie_get_idx(iter, 0);
19baf839 2247
cb7b593c
SH
2248 v = fib_trie_get_next(iter);
2249 BUG_ON(v == l);
2250 if (v)
2251 return v;
19baf839 2252
cb7b593c
SH
2253 /* continue scan in next trie */
2254 if (iter->trie == trie_local)
2255 return fib_trie_get_first(iter, trie_main);
19baf839 2256
cb7b593c
SH
2257 return NULL;
2258}
19baf839 2259
cb7b593c 2260static void fib_trie_seq_stop(struct seq_file *seq, void *v)
19baf839 2261{
cb7b593c
SH
2262 rcu_read_unlock();
2263}
91b9a277 2264
cb7b593c
SH
2265static void seq_indent(struct seq_file *seq, int n)
2266{
2267 while (n-- > 0) seq_puts(seq, " ");
2268}
19baf839 2269
cb7b593c
SH
2270static inline const char *rtn_scope(enum rt_scope_t s)
2271{
2272 static char buf[32];
19baf839 2273
132adf54 2274 switch (s) {
cb7b593c
SH
2275 case RT_SCOPE_UNIVERSE: return "universe";
2276 case RT_SCOPE_SITE: return "site";
2277 case RT_SCOPE_LINK: return "link";
2278 case RT_SCOPE_HOST: return "host";
2279 case RT_SCOPE_NOWHERE: return "nowhere";
2280 default:
2281 snprintf(buf, sizeof(buf), "scope=%d", s);
2282 return buf;
2283 }
2284}
19baf839 2285
cb7b593c
SH
2286static const char *rtn_type_names[__RTN_MAX] = {
2287 [RTN_UNSPEC] = "UNSPEC",
2288 [RTN_UNICAST] = "UNICAST",
2289 [RTN_LOCAL] = "LOCAL",
2290 [RTN_BROADCAST] = "BROADCAST",
2291 [RTN_ANYCAST] = "ANYCAST",
2292 [RTN_MULTICAST] = "MULTICAST",
2293 [RTN_BLACKHOLE] = "BLACKHOLE",
2294 [RTN_UNREACHABLE] = "UNREACHABLE",
2295 [RTN_PROHIBIT] = "PROHIBIT",
2296 [RTN_THROW] = "THROW",
2297 [RTN_NAT] = "NAT",
2298 [RTN_XRESOLVE] = "XRESOLVE",
2299};
19baf839 2300
cb7b593c
SH
2301static inline const char *rtn_type(unsigned t)
2302{
2303 static char buf[32];
19baf839 2304
cb7b593c
SH
2305 if (t < __RTN_MAX && rtn_type_names[t])
2306 return rtn_type_names[t];
2307 snprintf(buf, sizeof(buf), "type %d", t);
2308 return buf;
19baf839
RO
2309}
2310
cb7b593c
SH
2311/* Pretty print the trie */
2312static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2313{
cb7b593c
SH
2314 const struct fib_trie_iter *iter = seq->private;
2315 struct node *n = v;
c877efb2 2316
cb7b593c
SH
2317 if (v == SEQ_START_TOKEN)
2318 return 0;
19baf839 2319
095b8501
RO
2320 if (!NODE_PARENT(n)) {
2321 if (iter->trie == trie_local)
2322 seq_puts(seq, "<local>:\n");
2323 else
2324 seq_puts(seq, "<main>:\n");
2325 }
2326
cb7b593c
SH
2327 if (IS_TNODE(n)) {
2328 struct tnode *tn = (struct tnode *) n;
32ab5f80 2329 __be32 prf = htonl(MASK_PFX(tn->key, tn->pos));
91b9a277 2330
1d25cd6c
RO
2331 seq_indent(seq, iter->depth-1);
2332 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
e905a9ed 2333 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
1d25cd6c 2334 tn->empty_children);
e905a9ed 2335
cb7b593c
SH
2336 } else {
2337 struct leaf *l = (struct leaf *) n;
2338 int i;
32ab5f80 2339 __be32 val = htonl(l->key);
cb7b593c
SH
2340
2341 seq_indent(seq, iter->depth);
2342 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2343 for (i = 32; i >= 0; i--) {
772cb712 2344 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c
SH
2345 if (li) {
2346 struct fib_alias *fa;
2347 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2348 seq_indent(seq, iter->depth+1);
2349 seq_printf(seq, " /%d %s %s", i,
2350 rtn_scope(fa->fa_scope),
2351 rtn_type(fa->fa_type));
2352 if (fa->fa_tos)
2353 seq_printf(seq, "tos =%d\n",
2354 fa->fa_tos);
2355 seq_putc(seq, '\n');
2356 }
2357 }
2358 }
19baf839 2359 }
cb7b593c 2360
19baf839
RO
2361 return 0;
2362}
2363
f690808e 2364static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2365 .start = fib_trie_seq_start,
2366 .next = fib_trie_seq_next,
2367 .stop = fib_trie_seq_stop,
2368 .show = fib_trie_seq_show,
19baf839
RO
2369};
2370
cb7b593c 2371static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839
RO
2372{
2373 struct seq_file *seq;
2374 int rc = -ENOMEM;
cb7b593c 2375 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
19baf839 2376
cb7b593c
SH
2377 if (!s)
2378 goto out;
2379
2380 rc = seq_open(file, &fib_trie_seq_ops);
19baf839
RO
2381 if (rc)
2382 goto out_kfree;
2383
cb7b593c
SH
2384 seq = file->private_data;
2385 seq->private = s;
2386 memset(s, 0, sizeof(*s));
19baf839
RO
2387out:
2388 return rc;
2389out_kfree:
cb7b593c 2390 kfree(s);
19baf839
RO
2391 goto out;
2392}
2393
9a32144e 2394static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2395 .owner = THIS_MODULE,
2396 .open = fib_trie_seq_open,
2397 .read = seq_read,
2398 .llseek = seq_lseek,
c877efb2 2399 .release = seq_release_private,
19baf839
RO
2400};
2401
32ab5f80 2402static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2403{
cb7b593c
SH
2404 static unsigned type2flags[RTN_MAX + 1] = {
2405 [7] = RTF_REJECT, [8] = RTF_REJECT,
2406 };
2407 unsigned flags = type2flags[type];
19baf839 2408
cb7b593c
SH
2409 if (fi && fi->fib_nh->nh_gw)
2410 flags |= RTF_GATEWAY;
32ab5f80 2411 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2412 flags |= RTF_HOST;
2413 flags |= RTF_UP;
2414 return flags;
19baf839
RO
2415}
2416
cb7b593c
SH
2417/*
2418 * This outputs /proc/net/route.
2419 * The format of the file is not supposed to be changed
2420 * and needs to be same as fib_hash output to avoid breaking
2421 * legacy utilities
2422 */
2423static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2424{
c9e53cbe 2425 const struct fib_trie_iter *iter = seq->private;
cb7b593c
SH
2426 struct leaf *l = v;
2427 int i;
2428 char bf[128];
19baf839 2429
cb7b593c
SH
2430 if (v == SEQ_START_TOKEN) {
2431 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2432 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2433 "\tWindow\tIRTT");
2434 return 0;
2435 }
19baf839 2436
c9e53cbe
PM
2437 if (iter->trie == trie_local)
2438 return 0;
cb7b593c
SH
2439 if (IS_TNODE(l))
2440 return 0;
19baf839 2441
cb7b593c 2442 for (i=32; i>=0; i--) {
772cb712 2443 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c 2444 struct fib_alias *fa;
32ab5f80 2445 __be32 mask, prefix;
91b9a277 2446
cb7b593c
SH
2447 if (!li)
2448 continue;
19baf839 2449
cb7b593c
SH
2450 mask = inet_make_mask(li->plen);
2451 prefix = htonl(l->key);
19baf839 2452
cb7b593c 2453 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2454 const struct fib_info *fi = fa->fa_info;
cb7b593c 2455 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2456
cb7b593c
SH
2457 if (fa->fa_type == RTN_BROADCAST
2458 || fa->fa_type == RTN_MULTICAST)
2459 continue;
19baf839 2460
cb7b593c
SH
2461 if (fi)
2462 snprintf(bf, sizeof(bf),
2463 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2464 fi->fib_dev ? fi->fib_dev->name : "*",
2465 prefix,
2466 fi->fib_nh->nh_gw, flags, 0, 0,
2467 fi->fib_priority,
2468 mask,
2469 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2470 fi->fib_window,
2471 fi->fib_rtt >> 3);
2472 else
2473 snprintf(bf, sizeof(bf),
2474 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2475 prefix, 0, flags, 0, 0, 0,
2476 mask, 0, 0, 0);
19baf839 2477
cb7b593c
SH
2478 seq_printf(seq, "%-127s\n", bf);
2479 }
19baf839
RO
2480 }
2481
2482 return 0;
2483}
2484
f690808e 2485static const struct seq_operations fib_route_seq_ops = {
cb7b593c
SH
2486 .start = fib_trie_seq_start,
2487 .next = fib_trie_seq_next,
2488 .stop = fib_trie_seq_stop,
2489 .show = fib_route_seq_show,
19baf839
RO
2490};
2491
cb7b593c 2492static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839
RO
2493{
2494 struct seq_file *seq;
2495 int rc = -ENOMEM;
cb7b593c 2496 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
19baf839 2497
cb7b593c
SH
2498 if (!s)
2499 goto out;
2500
2501 rc = seq_open(file, &fib_route_seq_ops);
19baf839
RO
2502 if (rc)
2503 goto out_kfree;
2504
cb7b593c
SH
2505 seq = file->private_data;
2506 seq->private = s;
2507 memset(s, 0, sizeof(*s));
19baf839
RO
2508out:
2509 return rc;
2510out_kfree:
cb7b593c 2511 kfree(s);
19baf839
RO
2512 goto out;
2513}
2514
9a32144e 2515static const struct file_operations fib_route_fops = {
cb7b593c
SH
2516 .owner = THIS_MODULE,
2517 .open = fib_route_seq_open,
2518 .read = seq_read,
2519 .llseek = seq_lseek,
2520 .release = seq_release_private,
19baf839
RO
2521};
2522
2523int __init fib_proc_init(void)
2524{
cb7b593c
SH
2525 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2526 goto out1;
2527
2528 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2529 goto out2;
2530
2531 if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2532 goto out3;
2533
19baf839 2534 return 0;
cb7b593c
SH
2535
2536out3:
2537 proc_net_remove("fib_triestat");
2538out2:
2539 proc_net_remove("fib_trie");
2540out1:
2541 return -ENOMEM;
19baf839
RO
2542}
2543
2544void __init fib_proc_exit(void)
2545{
2546 proc_net_remove("fib_trie");
cb7b593c
SH
2547 proc_net_remove("fib_triestat");
2548 proc_net_remove("route");
19baf839
RO
2549}
2550
2551#endif /* CONFIG_PROC_FS */
This page took 0.450523 seconds and 5 git commands to generate.