Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
5ffc02a1 71#include <net/dst.h>
1da177e4
LT
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
1a2449a8 76#include <net/netdma.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 84EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
85int sysctl_tcp_dsack __read_mostly = 1;
86int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 87int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 88EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 89
282f23c6
ED
90/* rfc5961 challenge ack rate limiting */
91int sysctl_tcp_challenge_ack_limit = 100;
92
ab32ea5d
BH
93int sysctl_tcp_stdurg __read_mostly;
94int sysctl_tcp_rfc1337 __read_mostly;
95int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 96int sysctl_tcp_frto __read_mostly = 2;
1da177e4 97
7e380175
AP
98int sysctl_tcp_thin_dupack __read_mostly;
99
ab32ea5d 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 101int sysctl_tcp_early_retrans __read_mostly = 3;
1da177e4 102
1da177e4
LT
103#define FLAG_DATA 0x01 /* Incoming frame contained data. */
104#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108#define FLAG_DATA_SACKED 0x20 /* New SACK. */
109#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 110#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 111#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 112#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 113#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 114#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 115#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
116
117#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121
1da177e4 122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 124
e905a9ed 125/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 126 * real world.
e905a9ed 127 */
056834d9 128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 129{
463c84b9 130 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 132 unsigned int len;
1da177e4 133
e905a9ed 134 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
135
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
138 */
056834d9 139 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
145 *
146 * "len" is invariant segment length, including TCP header.
147 */
9c70220b 148 len += skb->data - skb_transport_header(skb);
bee7ca9e 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
154 */
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
160 */
463c84b9
ACM
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
1da177e4 163 if (len == lss) {
463c84b9 164 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
165 return;
166 }
167 }
1ef9696c
AK
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
171 }
172}
173
463c84b9 174static void tcp_incr_quickack(struct sock *sk)
1da177e4 175{
463c84b9 176 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 177 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 178
056834d9
IJ
179 if (quickacks == 0)
180 quickacks = 2;
463c84b9
ACM
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
183}
184
1b9f4092 185static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 186{
463c84b9
ACM
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
191}
192
193/* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
a2a385d6 197static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 198{
463c84b9 199 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 200
463c84b9 201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
202}
203
bdf1ee5d
IJ
204static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205{
056834d9 206 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208}
209
cf533ea5 210static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
211{
212 if (tcp_hdr(skb)->cwr)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217{
218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219}
220
7a269ffa 221static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 222{
7a269ffa
ED
223 if (!(tp->ecn_flags & TCP_ECN_OK))
224 return;
225
b82d1bb4 226 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 227 case INET_ECN_NOT_ECT:
bdf1ee5d 228 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
229 * and we already seen ECT on a previous segment,
230 * it is probably a retransmit.
231 */
232 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 233 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
234 break;
235 case INET_ECN_CE:
aae06bf5
ED
236 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
237 /* Better not delay acks, sender can have a very low cwnd */
238 tcp_enter_quickack_mode((struct sock *)tp);
239 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240 }
7a269ffa
ED
241 /* fallinto */
242 default:
243 tp->ecn_flags |= TCP_ECN_SEEN;
bdf1ee5d
IJ
244 }
245}
246
cf533ea5 247static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 248{
056834d9 249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
250 tp->ecn_flags &= ~TCP_ECN_OK;
251}
252
cf533ea5 253static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 254{
056834d9 255 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
256 tp->ecn_flags &= ~TCP_ECN_OK;
257}
258
a2a385d6 259static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 260{
056834d9 261 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
262 return true;
263 return false;
bdf1ee5d
IJ
264}
265
1da177e4
LT
266/* Buffer size and advertised window tuning.
267 *
268 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
269 */
270
6ae70532 271static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 272{
6ae70532
ED
273 const struct tcp_sock *tp = tcp_sk(sk);
274 int sndmem, per_mss;
275 u32 nr_segs;
276
277 /* Worst case is non GSO/TSO : each frame consumes one skb
278 * and skb->head is kmalloced using power of two area of memory
279 */
280 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
281 MAX_TCP_HEADER +
282 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
283
284 per_mss = roundup_pow_of_two(per_mss) +
285 SKB_DATA_ALIGN(sizeof(struct sk_buff));
286
287 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
288 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
289
290 /* Fast Recovery (RFC 5681 3.2) :
291 * Cubic needs 1.7 factor, rounded to 2 to include
292 * extra cushion (application might react slowly to POLLOUT)
293 */
294 sndmem = 2 * nr_segs * per_mss;
1da177e4 295
06a59ecb
ED
296 if (sk->sk_sndbuf < sndmem)
297 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
298}
299
300/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
301 *
302 * All tcp_full_space() is split to two parts: "network" buffer, allocated
303 * forward and advertised in receiver window (tp->rcv_wnd) and
304 * "application buffer", required to isolate scheduling/application
305 * latencies from network.
306 * window_clamp is maximal advertised window. It can be less than
307 * tcp_full_space(), in this case tcp_full_space() - window_clamp
308 * is reserved for "application" buffer. The less window_clamp is
309 * the smoother our behaviour from viewpoint of network, but the lower
310 * throughput and the higher sensitivity of the connection to losses. 8)
311 *
312 * rcv_ssthresh is more strict window_clamp used at "slow start"
313 * phase to predict further behaviour of this connection.
314 * It is used for two goals:
315 * - to enforce header prediction at sender, even when application
316 * requires some significant "application buffer". It is check #1.
317 * - to prevent pruning of receive queue because of misprediction
318 * of receiver window. Check #2.
319 *
320 * The scheme does not work when sender sends good segments opening
caa20d9a 321 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
322 * in common situations. Otherwise, we have to rely on queue collapsing.
323 */
324
325/* Slow part of check#2. */
9e412ba7 326static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 327{
9e412ba7 328 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 329 /* Optimize this! */
dfd4f0ae
ED
330 int truesize = tcp_win_from_space(skb->truesize) >> 1;
331 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
332
333 while (tp->rcv_ssthresh <= window) {
334 if (truesize <= skb->len)
463c84b9 335 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
336
337 truesize >>= 1;
338 window >>= 1;
339 }
340 return 0;
341}
342
cf533ea5 343static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 344{
9e412ba7
IJ
345 struct tcp_sock *tp = tcp_sk(sk);
346
1da177e4
LT
347 /* Check #1 */
348 if (tp->rcv_ssthresh < tp->window_clamp &&
349 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 350 !sk_under_memory_pressure(sk)) {
1da177e4
LT
351 int incr;
352
353 /* Check #2. Increase window, if skb with such overhead
354 * will fit to rcvbuf in future.
355 */
356 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 357 incr = 2 * tp->advmss;
1da177e4 358 else
9e412ba7 359 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
360
361 if (incr) {
4d846f02 362 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
363 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
364 tp->window_clamp);
463c84b9 365 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
366 }
367 }
368}
369
370/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
371static void tcp_fixup_rcvbuf(struct sock *sk)
372{
e9266a02 373 u32 mss = tcp_sk(sk)->advmss;
e9266a02 374 int rcvmem;
1da177e4 375
85f16525
YC
376 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
377 tcp_default_init_rwnd(mss);
e9266a02 378
b0983d3c
ED
379 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
380 * Allow enough cushion so that sender is not limited by our window
381 */
382 if (sysctl_tcp_moderate_rcvbuf)
383 rcvmem <<= 2;
384
e9266a02
ED
385 if (sk->sk_rcvbuf < rcvmem)
386 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
387}
388
caa20d9a 389/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
390 * established state.
391 */
10467163 392void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
393{
394 struct tcp_sock *tp = tcp_sk(sk);
395 int maxwin;
396
397 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
398 tcp_fixup_rcvbuf(sk);
399 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 400 tcp_sndbuf_expand(sk);
1da177e4
LT
401
402 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
403 tp->rcvq_space.time = tcp_time_stamp;
404 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
405
406 maxwin = tcp_full_space(sk);
407
408 if (tp->window_clamp >= maxwin) {
409 tp->window_clamp = maxwin;
410
411 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
412 tp->window_clamp = max(maxwin -
413 (maxwin >> sysctl_tcp_app_win),
414 4 * tp->advmss);
415 }
416
417 /* Force reservation of one segment. */
418 if (sysctl_tcp_app_win &&
419 tp->window_clamp > 2 * tp->advmss &&
420 tp->window_clamp + tp->advmss > maxwin)
421 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
422
423 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
424 tp->snd_cwnd_stamp = tcp_time_stamp;
425}
426
1da177e4 427/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 428static void tcp_clamp_window(struct sock *sk)
1da177e4 429{
9e412ba7 430 struct tcp_sock *tp = tcp_sk(sk);
6687e988 431 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 432
6687e988 433 icsk->icsk_ack.quick = 0;
1da177e4 434
326f36e9
JH
435 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
436 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
437 !sk_under_memory_pressure(sk) &&
438 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
439 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
440 sysctl_tcp_rmem[2]);
1da177e4 441 }
326f36e9 442 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 443 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
444}
445
40efc6fa
SH
446/* Initialize RCV_MSS value.
447 * RCV_MSS is an our guess about MSS used by the peer.
448 * We haven't any direct information about the MSS.
449 * It's better to underestimate the RCV_MSS rather than overestimate.
450 * Overestimations make us ACKing less frequently than needed.
451 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
452 */
453void tcp_initialize_rcv_mss(struct sock *sk)
454{
cf533ea5 455 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
456 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
457
056834d9 458 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 459 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
460 hint = max(hint, TCP_MIN_MSS);
461
462 inet_csk(sk)->icsk_ack.rcv_mss = hint;
463}
4bc2f18b 464EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 465
1da177e4
LT
466/* Receiver "autotuning" code.
467 *
468 * The algorithm for RTT estimation w/o timestamps is based on
469 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 470 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
471 *
472 * More detail on this code can be found at
631dd1a8 473 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
474 * though this reference is out of date. A new paper
475 * is pending.
476 */
477static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
478{
479 u32 new_sample = tp->rcv_rtt_est.rtt;
480 long m = sample;
481
482 if (m == 0)
483 m = 1;
484
485 if (new_sample != 0) {
486 /* If we sample in larger samples in the non-timestamp
487 * case, we could grossly overestimate the RTT especially
488 * with chatty applications or bulk transfer apps which
489 * are stalled on filesystem I/O.
490 *
491 * Also, since we are only going for a minimum in the
31f34269 492 * non-timestamp case, we do not smooth things out
caa20d9a 493 * else with timestamps disabled convergence takes too
1da177e4
LT
494 * long.
495 */
496 if (!win_dep) {
497 m -= (new_sample >> 3);
498 new_sample += m;
18a223e0
NC
499 } else {
500 m <<= 3;
501 if (m < new_sample)
502 new_sample = m;
503 }
1da177e4 504 } else {
caa20d9a 505 /* No previous measure. */
1da177e4
LT
506 new_sample = m << 3;
507 }
508
509 if (tp->rcv_rtt_est.rtt != new_sample)
510 tp->rcv_rtt_est.rtt = new_sample;
511}
512
513static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
514{
515 if (tp->rcv_rtt_est.time == 0)
516 goto new_measure;
517 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
518 return;
651913ce 519 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
520
521new_measure:
522 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
523 tp->rcv_rtt_est.time = tcp_time_stamp;
524}
525
056834d9
IJ
526static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
527 const struct sk_buff *skb)
1da177e4 528{
463c84b9 529 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
530 if (tp->rx_opt.rcv_tsecr &&
531 (TCP_SKB_CB(skb)->end_seq -
463c84b9 532 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
533 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
534}
535
536/*
537 * This function should be called every time data is copied to user space.
538 * It calculates the appropriate TCP receive buffer space.
539 */
540void tcp_rcv_space_adjust(struct sock *sk)
541{
542 struct tcp_sock *tp = tcp_sk(sk);
543 int time;
b0983d3c 544 int copied;
e905a9ed 545
1da177e4 546 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 547 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 548 return;
e905a9ed 549
b0983d3c
ED
550 /* Number of bytes copied to user in last RTT */
551 copied = tp->copied_seq - tp->rcvq_space.seq;
552 if (copied <= tp->rcvq_space.space)
553 goto new_measure;
554
555 /* A bit of theory :
556 * copied = bytes received in previous RTT, our base window
557 * To cope with packet losses, we need a 2x factor
558 * To cope with slow start, and sender growing its cwin by 100 %
559 * every RTT, we need a 4x factor, because the ACK we are sending
560 * now is for the next RTT, not the current one :
561 * <prev RTT . ><current RTT .. ><next RTT .... >
562 */
563
564 if (sysctl_tcp_moderate_rcvbuf &&
565 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
566 int rcvwin, rcvmem, rcvbuf;
1da177e4 567
b0983d3c
ED
568 /* minimal window to cope with packet losses, assuming
569 * steady state. Add some cushion because of small variations.
570 */
571 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 572
b0983d3c
ED
573 /* If rate increased by 25%,
574 * assume slow start, rcvwin = 3 * copied
575 * If rate increased by 50%,
576 * assume sender can use 2x growth, rcvwin = 4 * copied
577 */
578 if (copied >=
579 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
580 if (copied >=
581 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
582 rcvwin <<= 1;
583 else
584 rcvwin += (rcvwin >> 1);
585 }
1da177e4 586
b0983d3c
ED
587 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
588 while (tcp_win_from_space(rcvmem) < tp->advmss)
589 rcvmem += 128;
1da177e4 590
b0983d3c
ED
591 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
592 if (rcvbuf > sk->sk_rcvbuf) {
593 sk->sk_rcvbuf = rcvbuf;
1da177e4 594
b0983d3c
ED
595 /* Make the window clamp follow along. */
596 tp->window_clamp = rcvwin;
1da177e4
LT
597 }
598 }
b0983d3c 599 tp->rcvq_space.space = copied;
e905a9ed 600
1da177e4
LT
601new_measure:
602 tp->rcvq_space.seq = tp->copied_seq;
603 tp->rcvq_space.time = tcp_time_stamp;
604}
605
606/* There is something which you must keep in mind when you analyze the
607 * behavior of the tp->ato delayed ack timeout interval. When a
608 * connection starts up, we want to ack as quickly as possible. The
609 * problem is that "good" TCP's do slow start at the beginning of data
610 * transmission. The means that until we send the first few ACK's the
611 * sender will sit on his end and only queue most of his data, because
612 * he can only send snd_cwnd unacked packets at any given time. For
613 * each ACK we send, he increments snd_cwnd and transmits more of his
614 * queue. -DaveM
615 */
9e412ba7 616static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 617{
9e412ba7 618 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 619 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
620 u32 now;
621
463c84b9 622 inet_csk_schedule_ack(sk);
1da177e4 623
463c84b9 624 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
625
626 tcp_rcv_rtt_measure(tp);
e905a9ed 627
1da177e4
LT
628 now = tcp_time_stamp;
629
463c84b9 630 if (!icsk->icsk_ack.ato) {
1da177e4
LT
631 /* The _first_ data packet received, initialize
632 * delayed ACK engine.
633 */
463c84b9
ACM
634 tcp_incr_quickack(sk);
635 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 636 } else {
463c84b9 637 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 638
056834d9 639 if (m <= TCP_ATO_MIN / 2) {
1da177e4 640 /* The fastest case is the first. */
463c84b9
ACM
641 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
642 } else if (m < icsk->icsk_ack.ato) {
643 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
644 if (icsk->icsk_ack.ato > icsk->icsk_rto)
645 icsk->icsk_ack.ato = icsk->icsk_rto;
646 } else if (m > icsk->icsk_rto) {
caa20d9a 647 /* Too long gap. Apparently sender failed to
1da177e4
LT
648 * restart window, so that we send ACKs quickly.
649 */
463c84b9 650 tcp_incr_quickack(sk);
3ab224be 651 sk_mem_reclaim(sk);
1da177e4
LT
652 }
653 }
463c84b9 654 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
655
656 TCP_ECN_check_ce(tp, skb);
657
658 if (skb->len >= 128)
9e412ba7 659 tcp_grow_window(sk, skb);
1da177e4
LT
660}
661
1da177e4
LT
662/* Called to compute a smoothed rtt estimate. The data fed to this
663 * routine either comes from timestamps, or from segments that were
664 * known _not_ to have been retransmitted [see Karn/Partridge
665 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
666 * piece by Van Jacobson.
667 * NOTE: the next three routines used to be one big routine.
668 * To save cycles in the RFC 1323 implementation it was better to break
669 * it up into three procedures. -- erics
670 */
740b0f18 671static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 672{
6687e988 673 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
674 long m = mrtt_us; /* RTT */
675 u32 srtt = tp->srtt_us;
1da177e4 676
1da177e4
LT
677 /* The following amusing code comes from Jacobson's
678 * article in SIGCOMM '88. Note that rtt and mdev
679 * are scaled versions of rtt and mean deviation.
e905a9ed 680 * This is designed to be as fast as possible
1da177e4
LT
681 * m stands for "measurement".
682 *
683 * On a 1990 paper the rto value is changed to:
684 * RTO = rtt + 4 * mdev
685 *
686 * Funny. This algorithm seems to be very broken.
687 * These formulae increase RTO, when it should be decreased, increase
31f34269 688 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
689 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
690 * does not matter how to _calculate_ it. Seems, it was trap
691 * that VJ failed to avoid. 8)
692 */
4a5ab4e2
ED
693 if (srtt != 0) {
694 m -= (srtt >> 3); /* m is now error in rtt est */
695 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
696 if (m < 0) {
697 m = -m; /* m is now abs(error) */
740b0f18 698 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
699 /* This is similar to one of Eifel findings.
700 * Eifel blocks mdev updates when rtt decreases.
701 * This solution is a bit different: we use finer gain
702 * for mdev in this case (alpha*beta).
703 * Like Eifel it also prevents growth of rto,
704 * but also it limits too fast rto decreases,
705 * happening in pure Eifel.
706 */
707 if (m > 0)
708 m >>= 3;
709 } else {
740b0f18 710 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 711 }
740b0f18
ED
712 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
713 if (tp->mdev_us > tp->mdev_max_us) {
714 tp->mdev_max_us = tp->mdev_us;
715 if (tp->mdev_max_us > tp->rttvar_us)
716 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
717 }
718 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
719 if (tp->mdev_max_us < tp->rttvar_us)
720 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 721 tp->rtt_seq = tp->snd_nxt;
740b0f18 722 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
723 }
724 } else {
725 /* no previous measure. */
4a5ab4e2 726 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
727 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
728 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
729 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
730 tp->rtt_seq = tp->snd_nxt;
731 }
740b0f18 732 tp->srtt_us = max(1U, srtt);
1da177e4
LT
733}
734
95bd09eb
ED
735/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
736 * Note: TCP stack does not yet implement pacing.
737 * FQ packet scheduler can be used to implement cheap but effective
738 * TCP pacing, to smooth the burst on large writes when packets
739 * in flight is significantly lower than cwnd (or rwin)
740 */
741static void tcp_update_pacing_rate(struct sock *sk)
742{
743 const struct tcp_sock *tp = tcp_sk(sk);
744 u64 rate;
745
746 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
740b0f18 747 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
95bd09eb
ED
748
749 rate *= max(tp->snd_cwnd, tp->packets_out);
750
740b0f18
ED
751 if (likely(tp->srtt_us))
752 do_div(rate, tp->srtt_us);
95bd09eb 753
ba537427
ED
754 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
755 * without any lock. We want to make sure compiler wont store
756 * intermediate values in this location.
757 */
758 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
759 sk->sk_max_pacing_rate);
95bd09eb
ED
760}
761
1da177e4
LT
762/* Calculate rto without backoff. This is the second half of Van Jacobson's
763 * routine referred to above.
764 */
f7e56a76 765static void tcp_set_rto(struct sock *sk)
1da177e4 766{
463c84b9 767 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
768 /* Old crap is replaced with new one. 8)
769 *
770 * More seriously:
771 * 1. If rtt variance happened to be less 50msec, it is hallucination.
772 * It cannot be less due to utterly erratic ACK generation made
773 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
774 * to do with delayed acks, because at cwnd>2 true delack timeout
775 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 776 * ACKs in some circumstances.
1da177e4 777 */
f1ecd5d9 778 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
779
780 /* 2. Fixups made earlier cannot be right.
781 * If we do not estimate RTO correctly without them,
782 * all the algo is pure shit and should be replaced
caa20d9a 783 * with correct one. It is exactly, which we pretend to do.
1da177e4 784 */
1da177e4 785
ee6aac59
IJ
786 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
787 * guarantees that rto is higher.
788 */
f1ecd5d9 789 tcp_bound_rto(sk);
1da177e4
LT
790}
791
cf533ea5 792__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
793{
794 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
795
22b71c8f 796 if (!cwnd)
442b9635 797 cwnd = TCP_INIT_CWND;
1da177e4
LT
798 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
799}
800
e60402d0
IJ
801/*
802 * Packet counting of FACK is based on in-order assumptions, therefore TCP
803 * disables it when reordering is detected
804 */
4aabd8ef 805void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 806{
85cc391c
IJ
807 /* RFC3517 uses different metric in lost marker => reset on change */
808 if (tcp_is_fack(tp))
809 tp->lost_skb_hint = NULL;
ab56222a 810 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
811}
812
564262c1 813/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
814static void tcp_dsack_seen(struct tcp_sock *tp)
815{
ab56222a 816 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
817}
818
6687e988
ACM
819static void tcp_update_reordering(struct sock *sk, const int metric,
820 const int ts)
1da177e4 821{
6687e988 822 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 823 if (metric > tp->reordering) {
40b215e5
PE
824 int mib_idx;
825
1da177e4
LT
826 tp->reordering = min(TCP_MAX_REORDERING, metric);
827
828 /* This exciting event is worth to be remembered. 8) */
829 if (ts)
40b215e5 830 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 831 else if (tcp_is_reno(tp))
40b215e5 832 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 833 else if (tcp_is_fack(tp))
40b215e5 834 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 835 else
40b215e5
PE
836 mib_idx = LINUX_MIB_TCPSACKREORDER;
837
de0744af 838 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 839#if FASTRETRANS_DEBUG > 1
91df42be
JP
840 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
841 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
842 tp->reordering,
843 tp->fackets_out,
844 tp->sacked_out,
845 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 846#endif
e60402d0 847 tcp_disable_fack(tp);
1da177e4 848 }
eed530b6
YC
849
850 if (metric > 0)
851 tcp_disable_early_retrans(tp);
1da177e4
LT
852}
853
006f582c 854/* This must be called before lost_out is incremented */
c8c213f2
IJ
855static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
856{
006f582c 857 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
858 before(TCP_SKB_CB(skb)->seq,
859 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
860 tp->retransmit_skb_hint = skb;
861
862 if (!tp->lost_out ||
863 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
864 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
865}
866
41ea36e3
IJ
867static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
868{
869 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
870 tcp_verify_retransmit_hint(tp, skb);
871
872 tp->lost_out += tcp_skb_pcount(skb);
873 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
874 }
875}
876
e1aa680f
IJ
877static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
878 struct sk_buff *skb)
006f582c
IJ
879{
880 tcp_verify_retransmit_hint(tp, skb);
881
882 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
883 tp->lost_out += tcp_skb_pcount(skb);
884 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
885 }
886}
887
1da177e4
LT
888/* This procedure tags the retransmission queue when SACKs arrive.
889 *
890 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
891 * Packets in queue with these bits set are counted in variables
892 * sacked_out, retrans_out and lost_out, correspondingly.
893 *
894 * Valid combinations are:
895 * Tag InFlight Description
896 * 0 1 - orig segment is in flight.
897 * S 0 - nothing flies, orig reached receiver.
898 * L 0 - nothing flies, orig lost by net.
899 * R 2 - both orig and retransmit are in flight.
900 * L|R 1 - orig is lost, retransmit is in flight.
901 * S|R 1 - orig reached receiver, retrans is still in flight.
902 * (L|S|R is logically valid, it could occur when L|R is sacked,
903 * but it is equivalent to plain S and code short-curcuits it to S.
904 * L|S is logically invalid, it would mean -1 packet in flight 8))
905 *
906 * These 6 states form finite state machine, controlled by the following events:
907 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
908 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 909 * 3. Loss detection event of two flavors:
1da177e4
LT
910 * A. Scoreboard estimator decided the packet is lost.
911 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
912 * A''. Its FACK modification, head until snd.fack is lost.
913 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
914 * segment was retransmitted.
915 * 4. D-SACK added new rule: D-SACK changes any tag to S.
916 *
917 * It is pleasant to note, that state diagram turns out to be commutative,
918 * so that we are allowed not to be bothered by order of our actions,
919 * when multiple events arrive simultaneously. (see the function below).
920 *
921 * Reordering detection.
922 * --------------------
923 * Reordering metric is maximal distance, which a packet can be displaced
924 * in packet stream. With SACKs we can estimate it:
925 *
926 * 1. SACK fills old hole and the corresponding segment was not
927 * ever retransmitted -> reordering. Alas, we cannot use it
928 * when segment was retransmitted.
929 * 2. The last flaw is solved with D-SACK. D-SACK arrives
930 * for retransmitted and already SACKed segment -> reordering..
931 * Both of these heuristics are not used in Loss state, when we cannot
932 * account for retransmits accurately.
5b3c9882
IJ
933 *
934 * SACK block validation.
935 * ----------------------
936 *
937 * SACK block range validation checks that the received SACK block fits to
938 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
939 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
940 * it means that the receiver is rather inconsistent with itself reporting
941 * SACK reneging when it should advance SND.UNA. Such SACK block this is
942 * perfectly valid, however, in light of RFC2018 which explicitly states
943 * that "SACK block MUST reflect the newest segment. Even if the newest
944 * segment is going to be discarded ...", not that it looks very clever
945 * in case of head skb. Due to potentional receiver driven attacks, we
946 * choose to avoid immediate execution of a walk in write queue due to
947 * reneging and defer head skb's loss recovery to standard loss recovery
948 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
949 *
950 * Implements also blockage to start_seq wrap-around. Problem lies in the
951 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
952 * there's no guarantee that it will be before snd_nxt (n). The problem
953 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
954 * wrap (s_w):
955 *
956 * <- outs wnd -> <- wrapzone ->
957 * u e n u_w e_w s n_w
958 * | | | | | | |
959 * |<------------+------+----- TCP seqno space --------------+---------->|
960 * ...-- <2^31 ->| |<--------...
961 * ...---- >2^31 ------>| |<--------...
962 *
963 * Current code wouldn't be vulnerable but it's better still to discard such
964 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
965 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
966 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
967 * equal to the ideal case (infinite seqno space without wrap caused issues).
968 *
969 * With D-SACK the lower bound is extended to cover sequence space below
970 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 971 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
972 * for the normal SACK blocks, explained above). But there all simplicity
973 * ends, TCP might receive valid D-SACKs below that. As long as they reside
974 * fully below undo_marker they do not affect behavior in anyway and can
975 * therefore be safely ignored. In rare cases (which are more or less
976 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
977 * fragmentation and packet reordering past skb's retransmission. To consider
978 * them correctly, the acceptable range must be extended even more though
979 * the exact amount is rather hard to quantify. However, tp->max_window can
980 * be used as an exaggerated estimate.
1da177e4 981 */
a2a385d6
ED
982static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
983 u32 start_seq, u32 end_seq)
5b3c9882
IJ
984{
985 /* Too far in future, or reversed (interpretation is ambiguous) */
986 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 987 return false;
5b3c9882
IJ
988
989 /* Nasty start_seq wrap-around check (see comments above) */
990 if (!before(start_seq, tp->snd_nxt))
a2a385d6 991 return false;
5b3c9882 992
564262c1 993 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
994 * start_seq == snd_una is non-sensical (see comments above)
995 */
996 if (after(start_seq, tp->snd_una))
a2a385d6 997 return true;
5b3c9882
IJ
998
999 if (!is_dsack || !tp->undo_marker)
a2a385d6 1000 return false;
5b3c9882
IJ
1001
1002 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1003 if (after(end_seq, tp->snd_una))
a2a385d6 1004 return false;
5b3c9882
IJ
1005
1006 if (!before(start_seq, tp->undo_marker))
a2a385d6 1007 return true;
5b3c9882
IJ
1008
1009 /* Too old */
1010 if (!after(end_seq, tp->undo_marker))
a2a385d6 1011 return false;
5b3c9882
IJ
1012
1013 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1014 * start_seq < undo_marker and end_seq >= undo_marker.
1015 */
1016 return !before(start_seq, end_seq - tp->max_window);
1017}
1018
1c1e87ed 1019/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 1020 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 1021 * for reordering! Ugly, but should help.
f785a8e2
IJ
1022 *
1023 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1024 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1025 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1026 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1027 */
407ef1de 1028static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1029{
9f58f3b7 1030 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1031 struct tcp_sock *tp = tcp_sk(sk);
1032 struct sk_buff *skb;
f785a8e2 1033 int cnt = 0;
df2e014b 1034 u32 new_low_seq = tp->snd_nxt;
6859d494 1035 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1036
1037 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1038 !after(received_upto, tp->lost_retrans_low) ||
1039 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1040 return;
1c1e87ed
IJ
1041
1042 tcp_for_write_queue(skb, sk) {
1043 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1044
1045 if (skb == tcp_send_head(sk))
1046 break;
f785a8e2 1047 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1048 break;
1049 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1050 continue;
1051
f785a8e2
IJ
1052 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1053 continue;
1054
d0af4160
IJ
1055 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1056 * constraint here (see above) but figuring out that at
1057 * least tp->reordering SACK blocks reside between ack_seq
1058 * and received_upto is not easy task to do cheaply with
1059 * the available datastructures.
1060 *
1061 * Whether FACK should check here for tp->reordering segs
1062 * in-between one could argue for either way (it would be
1063 * rather simple to implement as we could count fack_count
1064 * during the walk and do tp->fackets_out - fack_count).
1065 */
1066 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1067 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1068 tp->retrans_out -= tcp_skb_pcount(skb);
1069
006f582c 1070 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1071 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1072 } else {
df2e014b 1073 if (before(ack_seq, new_low_seq))
b08d6cb2 1074 new_low_seq = ack_seq;
f785a8e2 1075 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1076 }
1077 }
b08d6cb2
IJ
1078
1079 if (tp->retrans_out)
1080 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1081}
5b3c9882 1082
a2a385d6
ED
1083static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1084 struct tcp_sack_block_wire *sp, int num_sacks,
1085 u32 prior_snd_una)
d06e021d 1086{
1ed83465 1087 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1088 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1089 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1090 bool dup_sack = false;
d06e021d
DM
1091
1092 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1093 dup_sack = true;
e60402d0 1094 tcp_dsack_seen(tp);
de0744af 1095 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1096 } else if (num_sacks > 1) {
d3e2ce3b
HH
1097 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1098 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1099
1100 if (!after(end_seq_0, end_seq_1) &&
1101 !before(start_seq_0, start_seq_1)) {
a2a385d6 1102 dup_sack = true;
e60402d0 1103 tcp_dsack_seen(tp);
de0744af
PE
1104 NET_INC_STATS_BH(sock_net(sk),
1105 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1106 }
1107 }
1108
1109 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1110 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1111 !after(end_seq_0, prior_snd_una) &&
1112 after(end_seq_0, tp->undo_marker))
1113 tp->undo_retrans--;
1114
1115 return dup_sack;
1116}
1117
a1197f5a 1118struct tcp_sacktag_state {
740b0f18
ED
1119 int reord;
1120 int fack_count;
1121 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1122 int flag;
a1197f5a
IJ
1123};
1124
d1935942
IJ
1125/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1126 * the incoming SACK may not exactly match but we can find smaller MSS
1127 * aligned portion of it that matches. Therefore we might need to fragment
1128 * which may fail and creates some hassle (caller must handle error case
1129 * returns).
832d11c5
IJ
1130 *
1131 * FIXME: this could be merged to shift decision code
d1935942 1132 */
0f79efdc 1133static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1134 u32 start_seq, u32 end_seq)
d1935942 1135{
a2a385d6
ED
1136 int err;
1137 bool in_sack;
d1935942 1138 unsigned int pkt_len;
adb92db8 1139 unsigned int mss;
d1935942
IJ
1140
1141 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1142 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1143
1144 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1145 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1146 mss = tcp_skb_mss(skb);
d1935942
IJ
1147 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1148
adb92db8 1149 if (!in_sack) {
d1935942 1150 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1151 if (pkt_len < mss)
1152 pkt_len = mss;
1153 } else {
d1935942 1154 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1155 if (pkt_len < mss)
1156 return -EINVAL;
1157 }
1158
1159 /* Round if necessary so that SACKs cover only full MSSes
1160 * and/or the remaining small portion (if present)
1161 */
1162 if (pkt_len > mss) {
1163 unsigned int new_len = (pkt_len / mss) * mss;
1164 if (!in_sack && new_len < pkt_len) {
1165 new_len += mss;
2cd0d743 1166 if (new_len >= skb->len)
adb92db8
IJ
1167 return 0;
1168 }
1169 pkt_len = new_len;
1170 }
6cc55e09 1171 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1172 if (err < 0)
1173 return err;
1174 }
1175
1176 return in_sack;
1177}
1178
cc9a672e
NC
1179/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1180static u8 tcp_sacktag_one(struct sock *sk,
1181 struct tcp_sacktag_state *state, u8 sacked,
1182 u32 start_seq, u32 end_seq,
740b0f18
ED
1183 int dup_sack, int pcount,
1184 const struct skb_mstamp *xmit_time)
9e10c47c 1185{
6859d494 1186 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1187 int fack_count = state->fack_count;
9e10c47c
IJ
1188
1189 /* Account D-SACK for retransmitted packet. */
1190 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1191 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1192 after(end_seq, tp->undo_marker))
9e10c47c 1193 tp->undo_retrans--;
ede9f3b1 1194 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1195 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1196 }
1197
1198 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1199 if (!after(end_seq, tp->snd_una))
a1197f5a 1200 return sacked;
9e10c47c
IJ
1201
1202 if (!(sacked & TCPCB_SACKED_ACKED)) {
1203 if (sacked & TCPCB_SACKED_RETRANS) {
1204 /* If the segment is not tagged as lost,
1205 * we do not clear RETRANS, believing
1206 * that retransmission is still in flight.
1207 */
1208 if (sacked & TCPCB_LOST) {
a1197f5a 1209 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1210 tp->lost_out -= pcount;
1211 tp->retrans_out -= pcount;
9e10c47c
IJ
1212 }
1213 } else {
1214 if (!(sacked & TCPCB_RETRANS)) {
1215 /* New sack for not retransmitted frame,
1216 * which was in hole. It is reordering.
1217 */
cc9a672e 1218 if (before(start_seq,
9e10c47c 1219 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1220 state->reord = min(fack_count,
1221 state->reord);
e33099f9
YC
1222 if (!after(end_seq, tp->high_seq))
1223 state->flag |= FLAG_ORIG_SACK_ACKED;
59c9af42 1224 /* Pick the earliest sequence sacked for RTT */
740b0f18
ED
1225 if (state->rtt_us < 0) {
1226 struct skb_mstamp now;
1227
1228 skb_mstamp_get(&now);
1229 state->rtt_us = skb_mstamp_us_delta(&now,
1230 xmit_time);
1231 }
9e10c47c
IJ
1232 }
1233
1234 if (sacked & TCPCB_LOST) {
a1197f5a 1235 sacked &= ~TCPCB_LOST;
f58b22fd 1236 tp->lost_out -= pcount;
9e10c47c
IJ
1237 }
1238 }
1239
a1197f5a
IJ
1240 sacked |= TCPCB_SACKED_ACKED;
1241 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1242 tp->sacked_out += pcount;
9e10c47c 1243
f58b22fd 1244 fack_count += pcount;
9e10c47c
IJ
1245
1246 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1247 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1248 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1249 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1250
1251 if (fack_count > tp->fackets_out)
1252 tp->fackets_out = fack_count;
9e10c47c
IJ
1253 }
1254
1255 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1256 * frames and clear it. undo_retrans is decreased above, L|R frames
1257 * are accounted above as well.
1258 */
a1197f5a
IJ
1259 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1260 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1261 tp->retrans_out -= pcount;
9e10c47c
IJ
1262 }
1263
a1197f5a 1264 return sacked;
9e10c47c
IJ
1265}
1266
daef52ba
NC
1267/* Shift newly-SACKed bytes from this skb to the immediately previous
1268 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1269 */
a2a385d6
ED
1270static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1271 struct tcp_sacktag_state *state,
1272 unsigned int pcount, int shifted, int mss,
1273 bool dup_sack)
832d11c5
IJ
1274{
1275 struct tcp_sock *tp = tcp_sk(sk);
50133161 1276 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1277 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1278 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1279
1280 BUG_ON(!pcount);
1281
4c90d3b3
NC
1282 /* Adjust counters and hints for the newly sacked sequence
1283 * range but discard the return value since prev is already
1284 * marked. We must tag the range first because the seq
1285 * advancement below implicitly advances
1286 * tcp_highest_sack_seq() when skb is highest_sack.
1287 */
1288 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1289 start_seq, end_seq, dup_sack, pcount,
740b0f18 1290 &skb->skb_mstamp);
4c90d3b3
NC
1291
1292 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1293 tp->lost_cnt_hint += pcount;
1294
832d11c5
IJ
1295 TCP_SKB_CB(prev)->end_seq += shifted;
1296 TCP_SKB_CB(skb)->seq += shifted;
1297
1298 skb_shinfo(prev)->gso_segs += pcount;
1299 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1300 skb_shinfo(skb)->gso_segs -= pcount;
1301
1302 /* When we're adding to gso_segs == 1, gso_size will be zero,
1303 * in theory this shouldn't be necessary but as long as DSACK
1304 * code can come after this skb later on it's better to keep
1305 * setting gso_size to something.
1306 */
1307 if (!skb_shinfo(prev)->gso_size) {
1308 skb_shinfo(prev)->gso_size = mss;
c9af6db4 1309 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
832d11c5
IJ
1310 }
1311
1312 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1313 if (skb_shinfo(skb)->gso_segs <= 1) {
1314 skb_shinfo(skb)->gso_size = 0;
c9af6db4 1315 skb_shinfo(skb)->gso_type = 0;
832d11c5
IJ
1316 }
1317
832d11c5
IJ
1318 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1319 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1320
832d11c5
IJ
1321 if (skb->len > 0) {
1322 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1324 return false;
832d11c5
IJ
1325 }
1326
1327 /* Whole SKB was eaten :-) */
1328
92ee76b6
IJ
1329 if (skb == tp->retransmit_skb_hint)
1330 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1331 if (skb == tp->lost_skb_hint) {
1332 tp->lost_skb_hint = prev;
1333 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1334 }
1335
5e8a402f
ED
1336 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1337 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1338 TCP_SKB_CB(prev)->end_seq++;
1339
832d11c5
IJ
1340 if (skb == tcp_highest_sack(sk))
1341 tcp_advance_highest_sack(sk, skb);
1342
1343 tcp_unlink_write_queue(skb, sk);
1344 sk_wmem_free_skb(sk, skb);
1345
111cc8b9
IJ
1346 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1347
a2a385d6 1348 return true;
832d11c5
IJ
1349}
1350
1351/* I wish gso_size would have a bit more sane initialization than
1352 * something-or-zero which complicates things
1353 */
cf533ea5 1354static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1355{
775ffabf 1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1357}
1358
1359/* Shifting pages past head area doesn't work */
cf533ea5 1360static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1361{
1362 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363}
1364
1365/* Try collapsing SACK blocks spanning across multiple skbs to a single
1366 * skb.
1367 */
1368static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1369 struct tcp_sacktag_state *state,
832d11c5 1370 u32 start_seq, u32 end_seq,
a2a385d6 1371 bool dup_sack)
832d11c5
IJ
1372{
1373 struct tcp_sock *tp = tcp_sk(sk);
1374 struct sk_buff *prev;
1375 int mss;
1376 int pcount = 0;
1377 int len;
1378 int in_sack;
1379
1380 if (!sk_can_gso(sk))
1381 goto fallback;
1382
1383 /* Normally R but no L won't result in plain S */
1384 if (!dup_sack &&
9969ca5f 1385 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1386 goto fallback;
1387 if (!skb_can_shift(skb))
1388 goto fallback;
1389 /* This frame is about to be dropped (was ACKed). */
1390 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1391 goto fallback;
1392
1393 /* Can only happen with delayed DSACK + discard craziness */
1394 if (unlikely(skb == tcp_write_queue_head(sk)))
1395 goto fallback;
1396 prev = tcp_write_queue_prev(sk, skb);
1397
1398 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1399 goto fallback;
1400
1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403
1404 if (in_sack) {
1405 len = skb->len;
1406 pcount = tcp_skb_pcount(skb);
775ffabf 1407 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1408
1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 * drop this restriction as unnecessary
1411 */
775ffabf 1412 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1413 goto fallback;
1414 } else {
1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 goto noop;
1417 /* CHECKME: This is non-MSS split case only?, this will
1418 * cause skipped skbs due to advancing loop btw, original
1419 * has that feature too
1420 */
1421 if (tcp_skb_pcount(skb) <= 1)
1422 goto noop;
1423
1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 if (!in_sack) {
1426 /* TODO: head merge to next could be attempted here
1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 * though it might not be worth of the additional hassle
1429 *
1430 * ...we can probably just fallback to what was done
1431 * previously. We could try merging non-SACKed ones
1432 * as well but it probably isn't going to buy off
1433 * because later SACKs might again split them, and
1434 * it would make skb timestamp tracking considerably
1435 * harder problem.
1436 */
1437 goto fallback;
1438 }
1439
1440 len = end_seq - TCP_SKB_CB(skb)->seq;
1441 BUG_ON(len < 0);
1442 BUG_ON(len > skb->len);
1443
1444 /* MSS boundaries should be honoured or else pcount will
1445 * severely break even though it makes things bit trickier.
1446 * Optimize common case to avoid most of the divides
1447 */
1448 mss = tcp_skb_mss(skb);
1449
1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 * drop this restriction as unnecessary
1452 */
775ffabf 1453 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1454 goto fallback;
1455
1456 if (len == mss) {
1457 pcount = 1;
1458 } else if (len < mss) {
1459 goto noop;
1460 } else {
1461 pcount = len / mss;
1462 len = pcount * mss;
1463 }
1464 }
1465
4648dc97
NC
1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 goto fallback;
1469
832d11c5
IJ
1470 if (!skb_shift(prev, skb, len))
1471 goto fallback;
9ec06ff5 1472 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1473 goto out;
1474
1475 /* Hole filled allows collapsing with the next as well, this is very
1476 * useful when hole on every nth skb pattern happens
1477 */
1478 if (prev == tcp_write_queue_tail(sk))
1479 goto out;
1480 skb = tcp_write_queue_next(sk, prev);
1481
f0bc52f3
IJ
1482 if (!skb_can_shift(skb) ||
1483 (skb == tcp_send_head(sk)) ||
1484 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1485 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1486 goto out;
1487
1488 len = skb->len;
1489 if (skb_shift(prev, skb, len)) {
1490 pcount += tcp_skb_pcount(skb);
9ec06ff5 1491 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1492 }
1493
1494out:
a1197f5a 1495 state->fack_count += pcount;
832d11c5
IJ
1496 return prev;
1497
1498noop:
1499 return skb;
1500
1501fallback:
111cc8b9 1502 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1503 return NULL;
1504}
1505
68f8353b
IJ
1506static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1507 struct tcp_sack_block *next_dup,
a1197f5a 1508 struct tcp_sacktag_state *state,
68f8353b 1509 u32 start_seq, u32 end_seq,
a2a385d6 1510 bool dup_sack_in)
68f8353b 1511{
832d11c5
IJ
1512 struct tcp_sock *tp = tcp_sk(sk);
1513 struct sk_buff *tmp;
1514
68f8353b
IJ
1515 tcp_for_write_queue_from(skb, sk) {
1516 int in_sack = 0;
a2a385d6 1517 bool dup_sack = dup_sack_in;
68f8353b
IJ
1518
1519 if (skb == tcp_send_head(sk))
1520 break;
1521
1522 /* queue is in-order => we can short-circuit the walk early */
1523 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1524 break;
1525
1526 if ((next_dup != NULL) &&
1527 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1528 in_sack = tcp_match_skb_to_sack(sk, skb,
1529 next_dup->start_seq,
1530 next_dup->end_seq);
1531 if (in_sack > 0)
a2a385d6 1532 dup_sack = true;
68f8353b
IJ
1533 }
1534
832d11c5
IJ
1535 /* skb reference here is a bit tricky to get right, since
1536 * shifting can eat and free both this skb and the next,
1537 * so not even _safe variant of the loop is enough.
1538 */
1539 if (in_sack <= 0) {
a1197f5a
IJ
1540 tmp = tcp_shift_skb_data(sk, skb, state,
1541 start_seq, end_seq, dup_sack);
832d11c5
IJ
1542 if (tmp != NULL) {
1543 if (tmp != skb) {
1544 skb = tmp;
1545 continue;
1546 }
1547
1548 in_sack = 0;
1549 } else {
1550 in_sack = tcp_match_skb_to_sack(sk, skb,
1551 start_seq,
1552 end_seq);
1553 }
1554 }
1555
68f8353b
IJ
1556 if (unlikely(in_sack < 0))
1557 break;
1558
832d11c5 1559 if (in_sack) {
cc9a672e
NC
1560 TCP_SKB_CB(skb)->sacked =
1561 tcp_sacktag_one(sk,
1562 state,
1563 TCP_SKB_CB(skb)->sacked,
1564 TCP_SKB_CB(skb)->seq,
1565 TCP_SKB_CB(skb)->end_seq,
1566 dup_sack,
59c9af42 1567 tcp_skb_pcount(skb),
740b0f18 1568 &skb->skb_mstamp);
68f8353b 1569
832d11c5
IJ
1570 if (!before(TCP_SKB_CB(skb)->seq,
1571 tcp_highest_sack_seq(tp)))
1572 tcp_advance_highest_sack(sk, skb);
1573 }
1574
a1197f5a 1575 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1576 }
1577 return skb;
1578}
1579
1580/* Avoid all extra work that is being done by sacktag while walking in
1581 * a normal way
1582 */
1583static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1584 struct tcp_sacktag_state *state,
1585 u32 skip_to_seq)
68f8353b
IJ
1586{
1587 tcp_for_write_queue_from(skb, sk) {
1588 if (skb == tcp_send_head(sk))
1589 break;
1590
e8bae275 1591 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1592 break;
d152a7d8 1593
a1197f5a 1594 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1595 }
1596 return skb;
1597}
1598
1599static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600 struct sock *sk,
1601 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1602 struct tcp_sacktag_state *state,
1603 u32 skip_to_seq)
68f8353b
IJ
1604{
1605 if (next_dup == NULL)
1606 return skb;
1607
1608 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1609 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611 next_dup->start_seq, next_dup->end_seq,
1612 1);
68f8353b
IJ
1613 }
1614
1615 return skb;
1616}
1617
cf533ea5 1618static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1619{
1620 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621}
1622
1da177e4 1623static int
cf533ea5 1624tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
740b0f18 1625 u32 prior_snd_una, long *sack_rtt_us)
1da177e4
LT
1626{
1627 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1628 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1630 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1631 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1632 struct tcp_sack_block *cache;
a1197f5a 1633 struct tcp_sacktag_state state;
68f8353b 1634 struct sk_buff *skb;
4389dded 1635 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1636 int used_sacks;
a2a385d6 1637 bool found_dup_sack = false;
68f8353b 1638 int i, j;
fda03fbb 1639 int first_sack_index;
1da177e4 1640
a1197f5a
IJ
1641 state.flag = 0;
1642 state.reord = tp->packets_out;
740b0f18 1643 state.rtt_us = -1L;
a1197f5a 1644
d738cd8f 1645 if (!tp->sacked_out) {
de83c058
IJ
1646 if (WARN_ON(tp->fackets_out))
1647 tp->fackets_out = 0;
6859d494 1648 tcp_highest_sack_reset(sk);
d738cd8f 1649 }
1da177e4 1650
1ed83465 1651 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1652 num_sacks, prior_snd_una);
1653 if (found_dup_sack)
a1197f5a 1654 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1655
1656 /* Eliminate too old ACKs, but take into
1657 * account more or less fresh ones, they can
1658 * contain valid SACK info.
1659 */
1660 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 return 0;
1662