Merge branch 'for-linus' into for-next
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
dca145ff 84int sysctl_tcp_max_reordering __read_mostly = 300;
4bc2f18b 85EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 88int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 90
282f23c6
ED
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 100;
93
ab32ea5d
BH
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 97int sysctl_tcp_frto __read_mostly = 2;
1da177e4 98
7e380175
AP
99int sysctl_tcp_thin_dupack __read_mostly;
100
ab32ea5d 101int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 102int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 103int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 104
1da177e4
LT
105#define FLAG_DATA 0x01 /* Incoming frame contained data. */
106#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110#define FLAG_DATA_SACKED 0x20 /* New SACK. */
111#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 112#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
1da177e4 113#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 114#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 115#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 116#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 117#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 118#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
119
120#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124
1da177e4 125#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 126#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 127
e905a9ed 128/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 129 * real world.
e905a9ed 130 */
056834d9 131static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 132{
463c84b9 133 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 134 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 135 unsigned int len;
1da177e4 136
e905a9ed 137 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
138
139 /* skb->len may jitter because of SACKs, even if peer
140 * sends good full-sized frames.
141 */
056834d9 142 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
143 if (len >= icsk->icsk_ack.rcv_mss) {
144 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
145 } else {
146 /* Otherwise, we make more careful check taking into account,
147 * that SACKs block is variable.
148 *
149 * "len" is invariant segment length, including TCP header.
150 */
9c70220b 151 len += skb->data - skb_transport_header(skb);
bee7ca9e 152 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
153 /* If PSH is not set, packet should be
154 * full sized, provided peer TCP is not badly broken.
155 * This observation (if it is correct 8)) allows
156 * to handle super-low mtu links fairly.
157 */
158 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 159 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
160 /* Subtract also invariant (if peer is RFC compliant),
161 * tcp header plus fixed timestamp option length.
162 * Resulting "len" is MSS free of SACK jitter.
163 */
463c84b9
ACM
164 len -= tcp_sk(sk)->tcp_header_len;
165 icsk->icsk_ack.last_seg_size = len;
1da177e4 166 if (len == lss) {
463c84b9 167 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
168 return;
169 }
170 }
1ef9696c
AK
171 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
174 }
175}
176
463c84b9 177static void tcp_incr_quickack(struct sock *sk)
1da177e4 178{
463c84b9 179 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 180 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 181
056834d9
IJ
182 if (quickacks == 0)
183 quickacks = 2;
463c84b9
ACM
184 if (quickacks > icsk->icsk_ack.quick)
185 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
186}
187
1b9f4092 188static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 189{
463c84b9
ACM
190 struct inet_connection_sock *icsk = inet_csk(sk);
191 tcp_incr_quickack(sk);
192 icsk->icsk_ack.pingpong = 0;
193 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
194}
195
196/* Send ACKs quickly, if "quick" count is not exhausted
197 * and the session is not interactive.
198 */
199
2251ae46 200static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 201{
463c84b9 202 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 203 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 204
2251ae46
JM
205 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
206 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
207}
208
735d3831 209static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 210{
056834d9 211 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
212 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
213}
214
735d3831 215static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
216{
217 if (tcp_hdr(skb)->cwr)
218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219}
220
735d3831 221static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
222{
223 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
224}
225
735d3831 226static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 227{
b82d1bb4 228 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 229 case INET_ECN_NOT_ECT:
bdf1ee5d 230 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
231 * and we already seen ECT on a previous segment,
232 * it is probably a retransmit.
233 */
234 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 235 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
236 break;
237 case INET_ECN_CE:
9890092e
FW
238 if (tcp_ca_needs_ecn((struct sock *)tp))
239 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
240
aae06bf5
ED
241 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
242 /* Better not delay acks, sender can have a very low cwnd */
243 tcp_enter_quickack_mode((struct sock *)tp);
244 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
245 }
9890092e
FW
246 tp->ecn_flags |= TCP_ECN_SEEN;
247 break;
7a269ffa 248 default:
9890092e
FW
249 if (tcp_ca_needs_ecn((struct sock *)tp))
250 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 251 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 252 break;
bdf1ee5d
IJ
253 }
254}
255
735d3831
FW
256static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
257{
258 if (tp->ecn_flags & TCP_ECN_OK)
259 __tcp_ecn_check_ce(tp, skb);
260}
261
262static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 263{
056834d9 264 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
265 tp->ecn_flags &= ~TCP_ECN_OK;
266}
267
735d3831 268static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 269{
056834d9 270 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
271 tp->ecn_flags &= ~TCP_ECN_OK;
272}
273
735d3831 274static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 275{
056834d9 276 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
277 return true;
278 return false;
bdf1ee5d
IJ
279}
280
1da177e4
LT
281/* Buffer size and advertised window tuning.
282 *
283 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
284 */
285
6ae70532 286static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 287{
6ae70532
ED
288 const struct tcp_sock *tp = tcp_sk(sk);
289 int sndmem, per_mss;
290 u32 nr_segs;
291
292 /* Worst case is non GSO/TSO : each frame consumes one skb
293 * and skb->head is kmalloced using power of two area of memory
294 */
295 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
296 MAX_TCP_HEADER +
297 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
298
299 per_mss = roundup_pow_of_two(per_mss) +
300 SKB_DATA_ALIGN(sizeof(struct sk_buff));
301
302 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
303 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
304
305 /* Fast Recovery (RFC 5681 3.2) :
306 * Cubic needs 1.7 factor, rounded to 2 to include
307 * extra cushion (application might react slowly to POLLOUT)
308 */
309 sndmem = 2 * nr_segs * per_mss;
1da177e4 310
06a59ecb
ED
311 if (sk->sk_sndbuf < sndmem)
312 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
313}
314
315/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
316 *
317 * All tcp_full_space() is split to two parts: "network" buffer, allocated
318 * forward and advertised in receiver window (tp->rcv_wnd) and
319 * "application buffer", required to isolate scheduling/application
320 * latencies from network.
321 * window_clamp is maximal advertised window. It can be less than
322 * tcp_full_space(), in this case tcp_full_space() - window_clamp
323 * is reserved for "application" buffer. The less window_clamp is
324 * the smoother our behaviour from viewpoint of network, but the lower
325 * throughput and the higher sensitivity of the connection to losses. 8)
326 *
327 * rcv_ssthresh is more strict window_clamp used at "slow start"
328 * phase to predict further behaviour of this connection.
329 * It is used for two goals:
330 * - to enforce header prediction at sender, even when application
331 * requires some significant "application buffer". It is check #1.
332 * - to prevent pruning of receive queue because of misprediction
333 * of receiver window. Check #2.
334 *
335 * The scheme does not work when sender sends good segments opening
caa20d9a 336 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
337 * in common situations. Otherwise, we have to rely on queue collapsing.
338 */
339
340/* Slow part of check#2. */
9e412ba7 341static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 342{
9e412ba7 343 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 344 /* Optimize this! */
dfd4f0ae
ED
345 int truesize = tcp_win_from_space(skb->truesize) >> 1;
346 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
347
348 while (tp->rcv_ssthresh <= window) {
349 if (truesize <= skb->len)
463c84b9 350 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
351
352 truesize >>= 1;
353 window >>= 1;
354 }
355 return 0;
356}
357
cf533ea5 358static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 359{
9e412ba7
IJ
360 struct tcp_sock *tp = tcp_sk(sk);
361
1da177e4
LT
362 /* Check #1 */
363 if (tp->rcv_ssthresh < tp->window_clamp &&
364 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 365 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
366 int incr;
367
368 /* Check #2. Increase window, if skb with such overhead
369 * will fit to rcvbuf in future.
370 */
371 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 372 incr = 2 * tp->advmss;
1da177e4 373 else
9e412ba7 374 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
375
376 if (incr) {
4d846f02 377 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
378 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
379 tp->window_clamp);
463c84b9 380 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
381 }
382 }
383}
384
385/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
386static void tcp_fixup_rcvbuf(struct sock *sk)
387{
e9266a02 388 u32 mss = tcp_sk(sk)->advmss;
e9266a02 389 int rcvmem;
1da177e4 390
85f16525
YC
391 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
392 tcp_default_init_rwnd(mss);
e9266a02 393
b0983d3c
ED
394 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
395 * Allow enough cushion so that sender is not limited by our window
396 */
397 if (sysctl_tcp_moderate_rcvbuf)
398 rcvmem <<= 2;
399
e9266a02
ED
400 if (sk->sk_rcvbuf < rcvmem)
401 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
402}
403
caa20d9a 404/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
405 * established state.
406 */
10467163 407void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
408{
409 struct tcp_sock *tp = tcp_sk(sk);
410 int maxwin;
411
412 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
413 tcp_fixup_rcvbuf(sk);
414 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 415 tcp_sndbuf_expand(sk);
1da177e4
LT
416
417 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
418 tp->rcvq_space.time = tcp_time_stamp;
419 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
420
421 maxwin = tcp_full_space(sk);
422
423 if (tp->window_clamp >= maxwin) {
424 tp->window_clamp = maxwin;
425
426 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
427 tp->window_clamp = max(maxwin -
428 (maxwin >> sysctl_tcp_app_win),
429 4 * tp->advmss);
430 }
431
432 /* Force reservation of one segment. */
433 if (sysctl_tcp_app_win &&
434 tp->window_clamp > 2 * tp->advmss &&
435 tp->window_clamp + tp->advmss > maxwin)
436 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
437
438 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
439 tp->snd_cwnd_stamp = tcp_time_stamp;
440}
441
1da177e4 442/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 443static void tcp_clamp_window(struct sock *sk)
1da177e4 444{
9e412ba7 445 struct tcp_sock *tp = tcp_sk(sk);
6687e988 446 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 447
6687e988 448 icsk->icsk_ack.quick = 0;
1da177e4 449
326f36e9
JH
450 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
451 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 452 !tcp_under_memory_pressure(sk) &&
180d8cd9 453 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
454 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
455 sysctl_tcp_rmem[2]);
1da177e4 456 }
326f36e9 457 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 458 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
459}
460
40efc6fa
SH
461/* Initialize RCV_MSS value.
462 * RCV_MSS is an our guess about MSS used by the peer.
463 * We haven't any direct information about the MSS.
464 * It's better to underestimate the RCV_MSS rather than overestimate.
465 * Overestimations make us ACKing less frequently than needed.
466 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
467 */
468void tcp_initialize_rcv_mss(struct sock *sk)
469{
cf533ea5 470 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
471 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
472
056834d9 473 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 474 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
475 hint = max(hint, TCP_MIN_MSS);
476
477 inet_csk(sk)->icsk_ack.rcv_mss = hint;
478}
4bc2f18b 479EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 480
1da177e4
LT
481/* Receiver "autotuning" code.
482 *
483 * The algorithm for RTT estimation w/o timestamps is based on
484 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 485 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
486 *
487 * More detail on this code can be found at
631dd1a8 488 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
489 * though this reference is out of date. A new paper
490 * is pending.
491 */
492static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
493{
494 u32 new_sample = tp->rcv_rtt_est.rtt;
495 long m = sample;
496
497 if (m == 0)
498 m = 1;
499
500 if (new_sample != 0) {
501 /* If we sample in larger samples in the non-timestamp
502 * case, we could grossly overestimate the RTT especially
503 * with chatty applications or bulk transfer apps which
504 * are stalled on filesystem I/O.
505 *
506 * Also, since we are only going for a minimum in the
31f34269 507 * non-timestamp case, we do not smooth things out
caa20d9a 508 * else with timestamps disabled convergence takes too
1da177e4
LT
509 * long.
510 */
511 if (!win_dep) {
512 m -= (new_sample >> 3);
513 new_sample += m;
18a223e0
NC
514 } else {
515 m <<= 3;
516 if (m < new_sample)
517 new_sample = m;
518 }
1da177e4 519 } else {
caa20d9a 520 /* No previous measure. */
1da177e4
LT
521 new_sample = m << 3;
522 }
523
524 if (tp->rcv_rtt_est.rtt != new_sample)
525 tp->rcv_rtt_est.rtt = new_sample;
526}
527
528static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
529{
530 if (tp->rcv_rtt_est.time == 0)
531 goto new_measure;
532 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
533 return;
651913ce 534 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
535
536new_measure:
537 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
538 tp->rcv_rtt_est.time = tcp_time_stamp;
539}
540
056834d9
IJ
541static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
542 const struct sk_buff *skb)
1da177e4 543{
463c84b9 544 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
545 if (tp->rx_opt.rcv_tsecr &&
546 (TCP_SKB_CB(skb)->end_seq -
463c84b9 547 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
548 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
549}
550
551/*
552 * This function should be called every time data is copied to user space.
553 * It calculates the appropriate TCP receive buffer space.
554 */
555void tcp_rcv_space_adjust(struct sock *sk)
556{
557 struct tcp_sock *tp = tcp_sk(sk);
558 int time;
b0983d3c 559 int copied;
e905a9ed 560
1da177e4 561 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 562 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 563 return;
e905a9ed 564
b0983d3c
ED
565 /* Number of bytes copied to user in last RTT */
566 copied = tp->copied_seq - tp->rcvq_space.seq;
567 if (copied <= tp->rcvq_space.space)
568 goto new_measure;
569
570 /* A bit of theory :
571 * copied = bytes received in previous RTT, our base window
572 * To cope with packet losses, we need a 2x factor
573 * To cope with slow start, and sender growing its cwin by 100 %
574 * every RTT, we need a 4x factor, because the ACK we are sending
575 * now is for the next RTT, not the current one :
576 * <prev RTT . ><current RTT .. ><next RTT .... >
577 */
578
579 if (sysctl_tcp_moderate_rcvbuf &&
580 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
581 int rcvwin, rcvmem, rcvbuf;
1da177e4 582
b0983d3c
ED
583 /* minimal window to cope with packet losses, assuming
584 * steady state. Add some cushion because of small variations.
585 */
586 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 587
b0983d3c
ED
588 /* If rate increased by 25%,
589 * assume slow start, rcvwin = 3 * copied
590 * If rate increased by 50%,
591 * assume sender can use 2x growth, rcvwin = 4 * copied
592 */
593 if (copied >=
594 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
595 if (copied >=
596 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
597 rcvwin <<= 1;
598 else
599 rcvwin += (rcvwin >> 1);
600 }
1da177e4 601
b0983d3c
ED
602 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
603 while (tcp_win_from_space(rcvmem) < tp->advmss)
604 rcvmem += 128;
1da177e4 605
b0983d3c
ED
606 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
607 if (rcvbuf > sk->sk_rcvbuf) {
608 sk->sk_rcvbuf = rcvbuf;
1da177e4 609
b0983d3c
ED
610 /* Make the window clamp follow along. */
611 tp->window_clamp = rcvwin;
1da177e4
LT
612 }
613 }
b0983d3c 614 tp->rcvq_space.space = copied;
e905a9ed 615
1da177e4
LT
616new_measure:
617 tp->rcvq_space.seq = tp->copied_seq;
618 tp->rcvq_space.time = tcp_time_stamp;
619}
620
621/* There is something which you must keep in mind when you analyze the
622 * behavior of the tp->ato delayed ack timeout interval. When a
623 * connection starts up, we want to ack as quickly as possible. The
624 * problem is that "good" TCP's do slow start at the beginning of data
625 * transmission. The means that until we send the first few ACK's the
626 * sender will sit on his end and only queue most of his data, because
627 * he can only send snd_cwnd unacked packets at any given time. For
628 * each ACK we send, he increments snd_cwnd and transmits more of his
629 * queue. -DaveM
630 */
9e412ba7 631static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 632{
9e412ba7 633 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 634 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
635 u32 now;
636
463c84b9 637 inet_csk_schedule_ack(sk);
1da177e4 638
463c84b9 639 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
640
641 tcp_rcv_rtt_measure(tp);
e905a9ed 642
1da177e4
LT
643 now = tcp_time_stamp;
644
463c84b9 645 if (!icsk->icsk_ack.ato) {
1da177e4
LT
646 /* The _first_ data packet received, initialize
647 * delayed ACK engine.
648 */
463c84b9
ACM
649 tcp_incr_quickack(sk);
650 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 651 } else {
463c84b9 652 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 653
056834d9 654 if (m <= TCP_ATO_MIN / 2) {
1da177e4 655 /* The fastest case is the first. */
463c84b9
ACM
656 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
657 } else if (m < icsk->icsk_ack.ato) {
658 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
659 if (icsk->icsk_ack.ato > icsk->icsk_rto)
660 icsk->icsk_ack.ato = icsk->icsk_rto;
661 } else if (m > icsk->icsk_rto) {
caa20d9a 662 /* Too long gap. Apparently sender failed to
1da177e4
LT
663 * restart window, so that we send ACKs quickly.
664 */
463c84b9 665 tcp_incr_quickack(sk);
3ab224be 666 sk_mem_reclaim(sk);
1da177e4
LT
667 }
668 }
463c84b9 669 icsk->icsk_ack.lrcvtime = now;
1da177e4 670
735d3831 671 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
672
673 if (skb->len >= 128)
9e412ba7 674 tcp_grow_window(sk, skb);
1da177e4
LT
675}
676
1da177e4
LT
677/* Called to compute a smoothed rtt estimate. The data fed to this
678 * routine either comes from timestamps, or from segments that were
679 * known _not_ to have been retransmitted [see Karn/Partridge
680 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
681 * piece by Van Jacobson.
682 * NOTE: the next three routines used to be one big routine.
683 * To save cycles in the RFC 1323 implementation it was better to break
684 * it up into three procedures. -- erics
685 */
740b0f18 686static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 687{
6687e988 688 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
689 long m = mrtt_us; /* RTT */
690 u32 srtt = tp->srtt_us;
1da177e4 691
1da177e4
LT
692 /* The following amusing code comes from Jacobson's
693 * article in SIGCOMM '88. Note that rtt and mdev
694 * are scaled versions of rtt and mean deviation.
e905a9ed 695 * This is designed to be as fast as possible
1da177e4
LT
696 * m stands for "measurement".
697 *
698 * On a 1990 paper the rto value is changed to:
699 * RTO = rtt + 4 * mdev
700 *
701 * Funny. This algorithm seems to be very broken.
702 * These formulae increase RTO, when it should be decreased, increase
31f34269 703 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
704 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
705 * does not matter how to _calculate_ it. Seems, it was trap
706 * that VJ failed to avoid. 8)
707 */
4a5ab4e2
ED
708 if (srtt != 0) {
709 m -= (srtt >> 3); /* m is now error in rtt est */
710 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
711 if (m < 0) {
712 m = -m; /* m is now abs(error) */
740b0f18 713 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
714 /* This is similar to one of Eifel findings.
715 * Eifel blocks mdev updates when rtt decreases.
716 * This solution is a bit different: we use finer gain
717 * for mdev in this case (alpha*beta).
718 * Like Eifel it also prevents growth of rto,
719 * but also it limits too fast rto decreases,
720 * happening in pure Eifel.
721 */
722 if (m > 0)
723 m >>= 3;
724 } else {
740b0f18 725 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 726 }
740b0f18
ED
727 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
728 if (tp->mdev_us > tp->mdev_max_us) {
729 tp->mdev_max_us = tp->mdev_us;
730 if (tp->mdev_max_us > tp->rttvar_us)
731 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
732 }
733 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
734 if (tp->mdev_max_us < tp->rttvar_us)
735 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 736 tp->rtt_seq = tp->snd_nxt;
740b0f18 737 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
738 }
739 } else {
740 /* no previous measure. */
4a5ab4e2 741 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
742 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
743 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
744 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
745 tp->rtt_seq = tp->snd_nxt;
746 }
740b0f18 747 tp->srtt_us = max(1U, srtt);
1da177e4
LT
748}
749
95bd09eb
ED
750/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
751 * Note: TCP stack does not yet implement pacing.
752 * FQ packet scheduler can be used to implement cheap but effective
753 * TCP pacing, to smooth the burst on large writes when packets
754 * in flight is significantly lower than cwnd (or rwin)
755 */
43e122b0
ED
756int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
757int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
758
95bd09eb
ED
759static void tcp_update_pacing_rate(struct sock *sk)
760{
761 const struct tcp_sock *tp = tcp_sk(sk);
762 u64 rate;
763
764 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
765 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
766
767 /* current rate is (cwnd * mss) / srtt
768 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
769 * In Congestion Avoidance phase, set it to 120 % the current rate.
770 *
771 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
772 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
773 * end of slow start and should slow down.
774 */
775 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
776 rate *= sysctl_tcp_pacing_ss_ratio;
777 else
778 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
779
780 rate *= max(tp->snd_cwnd, tp->packets_out);
781
740b0f18
ED
782 if (likely(tp->srtt_us))
783 do_div(rate, tp->srtt_us);
95bd09eb 784
ba537427
ED
785 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
786 * without any lock. We want to make sure compiler wont store
787 * intermediate values in this location.
788 */
789 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
790 sk->sk_max_pacing_rate);
95bd09eb
ED
791}
792
1da177e4
LT
793/* Calculate rto without backoff. This is the second half of Van Jacobson's
794 * routine referred to above.
795 */
f7e56a76 796static void tcp_set_rto(struct sock *sk)
1da177e4 797{
463c84b9 798 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
799 /* Old crap is replaced with new one. 8)
800 *
801 * More seriously:
802 * 1. If rtt variance happened to be less 50msec, it is hallucination.
803 * It cannot be less due to utterly erratic ACK generation made
804 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
805 * to do with delayed acks, because at cwnd>2 true delack timeout
806 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 807 * ACKs in some circumstances.
1da177e4 808 */
f1ecd5d9 809 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
810
811 /* 2. Fixups made earlier cannot be right.
812 * If we do not estimate RTO correctly without them,
813 * all the algo is pure shit and should be replaced
caa20d9a 814 * with correct one. It is exactly, which we pretend to do.
1da177e4 815 */
1da177e4 816
ee6aac59
IJ
817 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
818 * guarantees that rto is higher.
819 */
f1ecd5d9 820 tcp_bound_rto(sk);
1da177e4
LT
821}
822
cf533ea5 823__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
824{
825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
22b71c8f 827 if (!cwnd)
442b9635 828 cwnd = TCP_INIT_CWND;
1da177e4
LT
829 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
830}
831
e60402d0
IJ
832/*
833 * Packet counting of FACK is based on in-order assumptions, therefore TCP
834 * disables it when reordering is detected
835 */
4aabd8ef 836void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 837{
85cc391c
IJ
838 /* RFC3517 uses different metric in lost marker => reset on change */
839 if (tcp_is_fack(tp))
840 tp->lost_skb_hint = NULL;
ab56222a 841 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
842}
843
564262c1 844/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
845static void tcp_dsack_seen(struct tcp_sock *tp)
846{
ab56222a 847 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
848}
849
6687e988
ACM
850static void tcp_update_reordering(struct sock *sk, const int metric,
851 const int ts)
1da177e4 852{
6687e988 853 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 854 if (metric > tp->reordering) {
40b215e5
PE
855 int mib_idx;
856
dca145ff 857 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4
LT
858
859 /* This exciting event is worth to be remembered. 8) */
860 if (ts)
40b215e5 861 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 862 else if (tcp_is_reno(tp))
40b215e5 863 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 864 else if (tcp_is_fack(tp))
40b215e5 865 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 866 else
40b215e5
PE
867 mib_idx = LINUX_MIB_TCPSACKREORDER;
868
de0744af 869 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 870#if FASTRETRANS_DEBUG > 1
91df42be
JP
871 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
872 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
873 tp->reordering,
874 tp->fackets_out,
875 tp->sacked_out,
876 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 877#endif
e60402d0 878 tcp_disable_fack(tp);
1da177e4 879 }
eed530b6
YC
880
881 if (metric > 0)
882 tcp_disable_early_retrans(tp);
1da177e4
LT
883}
884
006f582c 885/* This must be called before lost_out is incremented */
c8c213f2
IJ
886static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
887{
51456b29 888 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
889 before(TCP_SKB_CB(skb)->seq,
890 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
891 tp->retransmit_skb_hint = skb;
892
893 if (!tp->lost_out ||
894 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
895 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
896}
897
41ea36e3
IJ
898static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
899{
900 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
901 tcp_verify_retransmit_hint(tp, skb);
902
903 tp->lost_out += tcp_skb_pcount(skb);
904 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
905 }
906}
907
e1aa680f
IJ
908static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
909 struct sk_buff *skb)
006f582c
IJ
910{
911 tcp_verify_retransmit_hint(tp, skb);
912
913 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
914 tp->lost_out += tcp_skb_pcount(skb);
915 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
916 }
917}
918
1da177e4
LT
919/* This procedure tags the retransmission queue when SACKs arrive.
920 *
921 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
922 * Packets in queue with these bits set are counted in variables
923 * sacked_out, retrans_out and lost_out, correspondingly.
924 *
925 * Valid combinations are:
926 * Tag InFlight Description
927 * 0 1 - orig segment is in flight.
928 * S 0 - nothing flies, orig reached receiver.
929 * L 0 - nothing flies, orig lost by net.
930 * R 2 - both orig and retransmit are in flight.
931 * L|R 1 - orig is lost, retransmit is in flight.
932 * S|R 1 - orig reached receiver, retrans is still in flight.
933 * (L|S|R is logically valid, it could occur when L|R is sacked,
934 * but it is equivalent to plain S and code short-curcuits it to S.
935 * L|S is logically invalid, it would mean -1 packet in flight 8))
936 *
937 * These 6 states form finite state machine, controlled by the following events:
938 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
939 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 940 * 3. Loss detection event of two flavors:
1da177e4
LT
941 * A. Scoreboard estimator decided the packet is lost.
942 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
943 * A''. Its FACK modification, head until snd.fack is lost.
944 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
945 * segment was retransmitted.
946 * 4. D-SACK added new rule: D-SACK changes any tag to S.
947 *
948 * It is pleasant to note, that state diagram turns out to be commutative,
949 * so that we are allowed not to be bothered by order of our actions,
950 * when multiple events arrive simultaneously. (see the function below).
951 *
952 * Reordering detection.
953 * --------------------
954 * Reordering metric is maximal distance, which a packet can be displaced
955 * in packet stream. With SACKs we can estimate it:
956 *
957 * 1. SACK fills old hole and the corresponding segment was not
958 * ever retransmitted -> reordering. Alas, we cannot use it
959 * when segment was retransmitted.
960 * 2. The last flaw is solved with D-SACK. D-SACK arrives
961 * for retransmitted and already SACKed segment -> reordering..
962 * Both of these heuristics are not used in Loss state, when we cannot
963 * account for retransmits accurately.
5b3c9882
IJ
964 *
965 * SACK block validation.
966 * ----------------------
967 *
968 * SACK block range validation checks that the received SACK block fits to
969 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
970 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
971 * it means that the receiver is rather inconsistent with itself reporting
972 * SACK reneging when it should advance SND.UNA. Such SACK block this is
973 * perfectly valid, however, in light of RFC2018 which explicitly states
974 * that "SACK block MUST reflect the newest segment. Even if the newest
975 * segment is going to be discarded ...", not that it looks very clever
976 * in case of head skb. Due to potentional receiver driven attacks, we
977 * choose to avoid immediate execution of a walk in write queue due to
978 * reneging and defer head skb's loss recovery to standard loss recovery
979 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
980 *
981 * Implements also blockage to start_seq wrap-around. Problem lies in the
982 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
983 * there's no guarantee that it will be before snd_nxt (n). The problem
984 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
985 * wrap (s_w):
986 *
987 * <- outs wnd -> <- wrapzone ->
988 * u e n u_w e_w s n_w
989 * | | | | | | |
990 * |<------------+------+----- TCP seqno space --------------+---------->|
991 * ...-- <2^31 ->| |<--------...
992 * ...---- >2^31 ------>| |<--------...
993 *
994 * Current code wouldn't be vulnerable but it's better still to discard such
995 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
996 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
997 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
998 * equal to the ideal case (infinite seqno space without wrap caused issues).
999 *
1000 * With D-SACK the lower bound is extended to cover sequence space below
1001 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1002 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1003 * for the normal SACK blocks, explained above). But there all simplicity
1004 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1005 * fully below undo_marker they do not affect behavior in anyway and can
1006 * therefore be safely ignored. In rare cases (which are more or less
1007 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1008 * fragmentation and packet reordering past skb's retransmission. To consider
1009 * them correctly, the acceptable range must be extended even more though
1010 * the exact amount is rather hard to quantify. However, tp->max_window can
1011 * be used as an exaggerated estimate.
1da177e4 1012 */
a2a385d6
ED
1013static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1014 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1015{
1016 /* Too far in future, or reversed (interpretation is ambiguous) */
1017 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1018 return false;
5b3c9882
IJ
1019
1020 /* Nasty start_seq wrap-around check (see comments above) */
1021 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1022 return false;
5b3c9882 1023
564262c1 1024 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1025 * start_seq == snd_una is non-sensical (see comments above)
1026 */
1027 if (after(start_seq, tp->snd_una))
a2a385d6 1028 return true;
5b3c9882
IJ
1029
1030 if (!is_dsack || !tp->undo_marker)
a2a385d6 1031 return false;
5b3c9882
IJ
1032
1033 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1034 if (after(end_seq, tp->snd_una))
a2a385d6 1035 return false;
5b3c9882
IJ
1036
1037 if (!before(start_seq, tp->undo_marker))
a2a385d6 1038 return true;
5b3c9882
IJ
1039
1040 /* Too old */
1041 if (!after(end_seq, tp->undo_marker))
a2a385d6 1042 return false;
5b3c9882
IJ
1043
1044 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1045 * start_seq < undo_marker and end_seq >= undo_marker.
1046 */
1047 return !before(start_seq, end_seq - tp->max_window);
1048}
1049
1c1e87ed 1050/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 1051 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 1052 * for reordering! Ugly, but should help.
f785a8e2
IJ
1053 *
1054 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1055 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1056 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1057 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1058 */
291a00d1 1059static void tcp_mark_lost_retrans(struct sock *sk, int *flag)
1c1e87ed 1060{
9f58f3b7 1061 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1062 struct tcp_sock *tp = tcp_sk(sk);
1063 struct sk_buff *skb;
f785a8e2 1064 int cnt = 0;
df2e014b 1065 u32 new_low_seq = tp->snd_nxt;
6859d494 1066 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1067
1068 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1069 !after(received_upto, tp->lost_retrans_low) ||
1070 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1071 return;
1c1e87ed
IJ
1072
1073 tcp_for_write_queue(skb, sk) {
1074 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1075
1076 if (skb == tcp_send_head(sk))
1077 break;
f785a8e2 1078 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1079 break;
1080 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1081 continue;
1082
f785a8e2
IJ
1083 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1084 continue;
1085
d0af4160
IJ
1086 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1087 * constraint here (see above) but figuring out that at
1088 * least tp->reordering SACK blocks reside between ack_seq
1089 * and received_upto is not easy task to do cheaply with
1090 * the available datastructures.
1091 *
1092 * Whether FACK should check here for tp->reordering segs
1093 * in-between one could argue for either way (it would be
1094 * rather simple to implement as we could count fack_count
1095 * during the walk and do tp->fackets_out - fack_count).
1096 */
1097 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1098 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1099 tp->retrans_out -= tcp_skb_pcount(skb);
291a00d1 1100 *flag |= FLAG_LOST_RETRANS;
006f582c 1101 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1102 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1103 } else {
df2e014b 1104 if (before(ack_seq, new_low_seq))
b08d6cb2 1105 new_low_seq = ack_seq;
f785a8e2 1106 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1107 }
1108 }
b08d6cb2
IJ
1109
1110 if (tp->retrans_out)
1111 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1112}
5b3c9882 1113
a2a385d6
ED
1114static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1115 struct tcp_sack_block_wire *sp, int num_sacks,
1116 u32 prior_snd_una)
d06e021d 1117{
1ed83465 1118 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1119 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1120 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1121 bool dup_sack = false;
d06e021d
DM
1122
1123 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1124 dup_sack = true;
e60402d0 1125 tcp_dsack_seen(tp);
de0744af 1126 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1127 } else if (num_sacks > 1) {
d3e2ce3b
HH
1128 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1129 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1130
1131 if (!after(end_seq_0, end_seq_1) &&
1132 !before(start_seq_0, start_seq_1)) {
a2a385d6 1133 dup_sack = true;
e60402d0 1134 tcp_dsack_seen(tp);
de0744af
PE
1135 NET_INC_STATS_BH(sock_net(sk),
1136 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1137 }
1138 }
1139
1140 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1141 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1142 !after(end_seq_0, prior_snd_una) &&
1143 after(end_seq_0, tp->undo_marker))
1144 tp->undo_retrans--;
1145
1146 return dup_sack;
1147}
1148
a1197f5a 1149struct tcp_sacktag_state {
740b0f18
ED
1150 int reord;
1151 int fack_count;
31231a8a
KKJ
1152 /* Timestamps for earliest and latest never-retransmitted segment
1153 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1154 * but congestion control should still get an accurate delay signal.
1155 */
1156 struct skb_mstamp first_sackt;
1157 struct skb_mstamp last_sackt;
740b0f18 1158 int flag;
a1197f5a
IJ
1159};
1160
d1935942
IJ
1161/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1162 * the incoming SACK may not exactly match but we can find smaller MSS
1163 * aligned portion of it that matches. Therefore we might need to fragment
1164 * which may fail and creates some hassle (caller must handle error case
1165 * returns).
832d11c5
IJ
1166 *
1167 * FIXME: this could be merged to shift decision code
d1935942 1168 */
0f79efdc 1169static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1170 u32 start_seq, u32 end_seq)
d1935942 1171{
a2a385d6
ED
1172 int err;
1173 bool in_sack;
d1935942 1174 unsigned int pkt_len;
adb92db8 1175 unsigned int mss;
d1935942
IJ
1176
1177 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1178 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1179
1180 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1181 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1182 mss = tcp_skb_mss(skb);
d1935942
IJ
1183 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1184
adb92db8 1185 if (!in_sack) {
d1935942 1186 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1187 if (pkt_len < mss)
1188 pkt_len = mss;
1189 } else {
d1935942 1190 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1191 if (pkt_len < mss)
1192 return -EINVAL;
1193 }
1194
1195 /* Round if necessary so that SACKs cover only full MSSes
1196 * and/or the remaining small portion (if present)
1197 */
1198 if (pkt_len > mss) {
1199 unsigned int new_len = (pkt_len / mss) * mss;
1200 if (!in_sack && new_len < pkt_len) {
1201 new_len += mss;
2cd0d743 1202 if (new_len >= skb->len)
adb92db8
IJ
1203 return 0;
1204 }
1205 pkt_len = new_len;
1206 }
6cc55e09 1207 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1208 if (err < 0)
1209 return err;
1210 }
1211
1212 return in_sack;
1213}
1214
cc9a672e
NC
1215/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1216static u8 tcp_sacktag_one(struct sock *sk,
1217 struct tcp_sacktag_state *state, u8 sacked,
1218 u32 start_seq, u32 end_seq,
740b0f18
ED
1219 int dup_sack, int pcount,
1220 const struct skb_mstamp *xmit_time)
9e10c47c 1221{
6859d494 1222 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1223 int fack_count = state->fack_count;
9e10c47c
IJ
1224
1225 /* Account D-SACK for retransmitted packet. */
1226 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1227 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1228 after(end_seq, tp->undo_marker))
9e10c47c 1229 tp->undo_retrans--;
ede9f3b1 1230 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1231 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1232 }
1233
1234 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1235 if (!after(end_seq, tp->snd_una))
a1197f5a 1236 return sacked;
9e10c47c
IJ
1237
1238 if (!(sacked & TCPCB_SACKED_ACKED)) {
1239 if (sacked & TCPCB_SACKED_RETRANS) {
1240 /* If the segment is not tagged as lost,
1241 * we do not clear RETRANS, believing
1242 * that retransmission is still in flight.
1243 */
1244 if (sacked & TCPCB_LOST) {
a1197f5a 1245 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1246 tp->lost_out -= pcount;
1247 tp->retrans_out -= pcount;
9e10c47c
IJ
1248 }
1249 } else {
1250 if (!(sacked & TCPCB_RETRANS)) {
1251 /* New sack for not retransmitted frame,
1252 * which was in hole. It is reordering.
1253 */
cc9a672e 1254 if (before(start_seq,
9e10c47c 1255 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1256 state->reord = min(fack_count,
1257 state->reord);
e33099f9
YC
1258 if (!after(end_seq, tp->high_seq))
1259 state->flag |= FLAG_ORIG_SACK_ACKED;
31231a8a
KKJ
1260 if (state->first_sackt.v64 == 0)
1261 state->first_sackt = *xmit_time;
1262 state->last_sackt = *xmit_time;
9e10c47c
IJ
1263 }
1264
1265 if (sacked & TCPCB_LOST) {
a1197f5a 1266 sacked &= ~TCPCB_LOST;
f58b22fd 1267 tp->lost_out -= pcount;
9e10c47c
IJ
1268 }
1269 }
1270
a1197f5a
IJ
1271 sacked |= TCPCB_SACKED_ACKED;
1272 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1273 tp->sacked_out += pcount;
9e10c47c 1274
f58b22fd 1275 fack_count += pcount;
9e10c47c
IJ
1276
1277 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1278 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1279 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1280 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1281
1282 if (fack_count > tp->fackets_out)
1283 tp->fackets_out = fack_count;
9e10c47c
IJ
1284 }
1285
1286 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1287 * frames and clear it. undo_retrans is decreased above, L|R frames
1288 * are accounted above as well.
1289 */
a1197f5a
IJ
1290 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1291 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1292 tp->retrans_out -= pcount;
9e10c47c
IJ
1293 }
1294
a1197f5a 1295 return sacked;
9e10c47c
IJ
1296}
1297
daef52ba
NC
1298/* Shift newly-SACKed bytes from this skb to the immediately previous
1299 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1300 */
a2a385d6
ED
1301static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1302 struct tcp_sacktag_state *state,
1303 unsigned int pcount, int shifted, int mss,
1304 bool dup_sack)
832d11c5
IJ
1305{
1306 struct tcp_sock *tp = tcp_sk(sk);
50133161 1307 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1308 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1309 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1310
1311 BUG_ON(!pcount);
1312
4c90d3b3
NC
1313 /* Adjust counters and hints for the newly sacked sequence
1314 * range but discard the return value since prev is already
1315 * marked. We must tag the range first because the seq
1316 * advancement below implicitly advances
1317 * tcp_highest_sack_seq() when skb is highest_sack.
1318 */
1319 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1320 start_seq, end_seq, dup_sack, pcount,
740b0f18 1321 &skb->skb_mstamp);
4c90d3b3
NC
1322
1323 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1324 tp->lost_cnt_hint += pcount;
1325
832d11c5
IJ
1326 TCP_SKB_CB(prev)->end_seq += shifted;
1327 TCP_SKB_CB(skb)->seq += shifted;
1328
cd7d8498
ED
1329 tcp_skb_pcount_add(prev, pcount);
1330 BUG_ON(tcp_skb_pcount(skb) < pcount);
1331 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1332
1333 /* When we're adding to gso_segs == 1, gso_size will be zero,
1334 * in theory this shouldn't be necessary but as long as DSACK
1335 * code can come after this skb later on it's better to keep
1336 * setting gso_size to something.
1337 */
f69ad292
ED
1338 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1339 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1340
1341 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1342 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1343 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1344
832d11c5
IJ
1345 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1346 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1347
832d11c5
IJ
1348 if (skb->len > 0) {
1349 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1350 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1351 return false;
832d11c5
IJ
1352 }
1353
1354 /* Whole SKB was eaten :-) */
1355
92ee76b6
IJ
1356 if (skb == tp->retransmit_skb_hint)
1357 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1358 if (skb == tp->lost_skb_hint) {
1359 tp->lost_skb_hint = prev;
1360 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1361 }
1362
5e8a402f
ED
1363 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1364 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1365 TCP_SKB_CB(prev)->end_seq++;
1366
832d11c5
IJ
1367 if (skb == tcp_highest_sack(sk))
1368 tcp_advance_highest_sack(sk, skb);
1369
1370 tcp_unlink_write_queue(skb, sk);
1371 sk_wmem_free_skb(sk, skb);
1372
111cc8b9
IJ
1373 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1374
a2a385d6 1375 return true;
832d11c5
IJ
1376}
1377
1378/* I wish gso_size would have a bit more sane initialization than
1379 * something-or-zero which complicates things
1380 */
cf533ea5 1381static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1382{
775ffabf 1383 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1384}
1385
1386/* Shifting pages past head area doesn't work */
cf533ea5 1387static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1388{
1389 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1390}
1391
1392/* Try collapsing SACK blocks spanning across multiple skbs to a single
1393 * skb.
1394 */
1395static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1396 struct tcp_sacktag_state *state,
832d11c5 1397 u32 start_seq, u32 end_seq,
a2a385d6 1398 bool dup_sack)
832d11c5
IJ
1399{
1400 struct tcp_sock *tp = tcp_sk(sk);
1401 struct sk_buff *prev;
1402 int mss;
1403 int pcount = 0;
1404 int len;
1405 int in_sack;
1406
1407 if (!sk_can_gso(sk))
1408 goto fallback;
1409
1410 /* Normally R but no L won't result in plain S */
1411 if (!dup_sack &&
9969ca5f 1412 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1413 goto fallback;
1414 if (!skb_can_shift(skb))
1415 goto fallback;
1416 /* This frame is about to be dropped (was ACKed). */
1417 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1418 goto fallback;
1419
1420 /* Can only happen with delayed DSACK + discard craziness */
1421 if (unlikely(skb == tcp_write_queue_head(sk)))
1422 goto fallback;
1423 prev = tcp_write_queue_prev(sk, skb);
1424
1425 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1426 goto fallback;
1427
1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1429 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1430
1431 if (in_sack) {
1432 len = skb->len;
1433 pcount = tcp_skb_pcount(skb);
775ffabf 1434 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1435
1436 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1437 * drop this restriction as unnecessary
1438 */
775ffabf 1439 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1440 goto fallback;
1441 } else {
1442 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1443 goto noop;
1444 /* CHECKME: This is non-MSS split case only?, this will
1445 * cause skipped skbs due to advancing loop btw, original
1446 * has that feature too
1447 */
1448 if (tcp_skb_pcount(skb) <= 1)
1449 goto noop;
1450
1451 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1452 if (!in_sack) {
1453 /* TODO: head merge to next could be attempted here
1454 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1455 * though it might not be worth of the additional hassle
1456 *
1457 * ...we can probably just fallback to what was done
1458 * previously. We could try merging non-SACKed ones
1459 * as well but it probably isn't going to buy off
1460 * because later SACKs might again split them, and
1461 * it would make skb timestamp tracking considerably
1462 * harder problem.
1463 */
1464 goto fallback;
1465 }
1466
1467 len = end_seq - TCP_SKB_CB(skb)->seq;
1468 BUG_ON(len < 0);
1469 BUG_ON(len > skb->len);
1470
1471 /* MSS boundaries should be honoured or else pcount will
1472 * severely break even though it makes things bit trickier.
1473 * Optimize common case to avoid most of the divides
1474 */
1475 mss = tcp_skb_mss(skb);
1476
1477 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1478 * drop this restriction as unnecessary
1479 */
775ffabf 1480 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1481 goto fallback;
1482
1483 if (len == mss) {
1484 pcount = 1;
1485 } else if (len < mss) {
1486 goto noop;
1487 } else {
1488 pcount = len / mss;
1489 len = pcount * mss;
1490 }
1491 }
1492
4648dc97
NC
1493 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1494 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1495 goto fallback;
1496
832d11c5
IJ
1497 if (!skb_shift(prev, skb, len))
1498 goto fallback;
9ec06ff5 1499 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1500 goto out;
1501
1502 /* Hole filled allows collapsing with the next as well, this is very
1503 * useful when hole on every nth skb pattern happens
1504 */
1505 if (prev == tcp_write_queue_tail(sk))
1506 goto out;
1507 skb = tcp_write_queue_next(sk, prev);
1508
f0bc52f3
IJ
1509 if (!skb_can_shift(skb) ||
1510 (skb == tcp_send_head(sk)) ||
1511 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1512 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1513 goto out;
1514
1515 len = skb->len;
1516 if (skb_shift(prev, skb, len)) {
1517 pcount += tcp_skb_pcount(skb);
9ec06ff5 1518 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1519 }
1520
1521out:
a1197f5a 1522 state->fack_count += pcount;
832d11c5
IJ
1523 return prev;
1524
1525noop:
1526 return skb;
1527
1528fallback:
111cc8b9 1529 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1530 return NULL;
1531}
1532
68f8353b
IJ
1533static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1534 struct tcp_sack_block *next_dup,
a1197f5a 1535 struct tcp_sacktag_state *state,
68f8353b 1536 u32 start_seq, u32 end_seq,
a2a385d6 1537 bool dup_sack_in)
68f8353b 1538{
832d11c5
IJ
1539 struct tcp_sock *tp = tcp_sk(sk);
1540 struct sk_buff *tmp;
1541
68f8353b
IJ
1542 tcp_for_write_queue_from(skb, sk) {
1543 int in_sack = 0;
a2a385d6 1544 bool dup_sack = dup_sack_in;
68f8353b
IJ
1545
1546 if (skb == tcp_send_head(sk))
1547 break;
1548
1549 /* queue is in-order => we can short-circuit the walk early */
1550 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1551 break;
1552
00db4124 1553 if (next_dup &&
68f8353b
IJ
1554 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1555 in_sack = tcp_match_skb_to_sack(sk, skb,
1556 next_dup->start_seq,
1557 next_dup->end_seq);
1558 if (in_sack > 0)
a2a385d6 1559 dup_sack = true;
68f8353b
IJ
1560 }
1561
832d11c5
IJ
1562 /* skb reference here is a bit tricky to get right, since
1563 * shifting can eat and free both this skb and the next,
1564 * so not even _safe variant of the loop is enough.
1565 */
1566 if (in_sack <= 0) {
a1197f5a
IJ
1567 tmp = tcp_shift_skb_data(sk, skb, state,
1568 start_seq, end_seq, dup_sack);
00db4124 1569 if (tmp) {
832d11c5
IJ
1570 if (tmp != skb) {
1571 skb = tmp;
1572 continue;
1573 }
1574
1575 in_sack = 0;
1576 } else {
1577 in_sack = tcp_match_skb_to_sack(sk, skb,
1578 start_seq,
1579 end_seq);
1580 }
1581 }
1582
68f8353b
IJ
1583 if (unlikely(in_sack < 0))
1584 break;
1585
832d11c5 1586 if (in_sack) {
cc9a672e
NC
1587 TCP_SKB_CB(skb)->sacked =
1588 tcp_sacktag_one(sk,
1589 state,
1590 TCP_SKB_CB(skb)->sacked,
1591 TCP_SKB_CB(skb)->seq,
1592 TCP_SKB_CB(skb)->end_seq,
1593 dup_sack,
59c9af42 1594 tcp_skb_pcount(skb),
740b0f18 1595 &skb->skb_mstamp);
68f8353b 1596
832d11c5
IJ
1597 if (!before(TCP_SKB_CB(skb)->seq,
1598 tcp_highest_sack_seq(tp)))
1599 tcp_advance_highest_sack(sk, skb);
1600 }
1601
a1197f5a 1602 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1603 }
1604 return skb;
1605}
1606
1607/* Avoid all extra work that is being done by sacktag while walking in
1608 * a normal way
1609 */
1610static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1611 struct tcp_sacktag_state *state,
1612 u32 skip_to_seq)
68f8353b
IJ
1613{
1614 tcp_for_write_queue_from(skb, sk) {
1615 if (skb == tcp_send_head(sk))
1616 break;
1617
e8bae275 1618 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1619 break;
d152a7d8 1620
a1197f5a 1621 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1622 }
1623 return skb;
1624}
1625
1626static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1627 struct sock *sk,
1628 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1629 struct tcp_sacktag_state *state,
1630 u32 skip_to_seq)
68f8353b 1631{
51456b29 1632 if (!next_dup)
68f8353b
IJ
1633 return skb;
1634
1635 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1636 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1637 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1638 next_dup->start_seq, next_dup->end_seq,
1639 1);
68f8353b
IJ
1640 }
1641
1642 return skb;
1643}
1644
cf533ea5 1645static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1646{
1647 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1648}
1649
1da177e4 1650static int
cf533ea5 1651tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1652 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1653{
1654 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1655 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1656 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1657 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1658 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1659 struct tcp_sack_block *cache;
1660 struct sk_buff *skb;
4389dded 1661 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1662 int used_sacks;
a2a385d6 1663 bool found_dup_sack = false;
68f8353b 1664 int i, j;
fda03fbb 1665 int first_sack_index;
1da177e4 1666
196da974
KKJ
1667 state->flag = 0;
1668 state->reord = tp->packets_out;
a1197f5a 1669
d738cd8f 1670 if (!tp->sacked_out) {
de83c058
IJ
1671 if (WARN_ON(tp->fackets_out))
1672 tp->fackets_out = 0;
6859d494 1673 tcp_highest_sack_reset(sk);
d738cd8f 1674 }
1da177e4 1675
1ed83465 1676 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1677 num_sacks, prior_snd_una);
1678 if (found_dup_sack)
196da974 1679 state->flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1680
1681 /* Eliminate too old ACKs, but take into
1682 * account more or less fresh ones, they can
1683 * contain valid SACK info.
1684 */
1685 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1686 return 0;
1687