ipv4: Namespaceify tcp syncookies sysctl knob
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
dca145ff 84int sysctl_tcp_max_reordering __read_mostly = 300;
4bc2f18b 85EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 88int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 90
282f23c6
ED
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 100;
93
ab32ea5d
BH
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 97int sysctl_tcp_frto __read_mostly = 2;
f6722583 98int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
1da177e4 99
7e380175
AP
100int sysctl_tcp_thin_dupack __read_mostly;
101
ab32ea5d 102int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 103int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 104int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 105
1da177e4
LT
106#define FLAG_DATA 0x01 /* Incoming frame contained data. */
107#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111#define FLAG_DATA_SACKED 0x20 /* New SACK. */
112#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 113#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
1da177e4 114#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 115#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 116#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 117#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 118#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 119#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
120
121#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
124#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
125
1da177e4 126#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 127#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 128
e662ca40
YC
129#define REXMIT_NONE 0 /* no loss recovery to do */
130#define REXMIT_LOST 1 /* retransmit packets marked lost */
131#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
132
e905a9ed 133/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 134 * real world.
e905a9ed 135 */
056834d9 136static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 137{
463c84b9 138 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 139 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 140 unsigned int len;
1da177e4 141
e905a9ed 142 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
143
144 /* skb->len may jitter because of SACKs, even if peer
145 * sends good full-sized frames.
146 */
056834d9 147 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
148 if (len >= icsk->icsk_ack.rcv_mss) {
149 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
150 } else {
151 /* Otherwise, we make more careful check taking into account,
152 * that SACKs block is variable.
153 *
154 * "len" is invariant segment length, including TCP header.
155 */
9c70220b 156 len += skb->data - skb_transport_header(skb);
bee7ca9e 157 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
158 /* If PSH is not set, packet should be
159 * full sized, provided peer TCP is not badly broken.
160 * This observation (if it is correct 8)) allows
161 * to handle super-low mtu links fairly.
162 */
163 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 164 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
165 /* Subtract also invariant (if peer is RFC compliant),
166 * tcp header plus fixed timestamp option length.
167 * Resulting "len" is MSS free of SACK jitter.
168 */
463c84b9
ACM
169 len -= tcp_sk(sk)->tcp_header_len;
170 icsk->icsk_ack.last_seg_size = len;
1da177e4 171 if (len == lss) {
463c84b9 172 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
173 return;
174 }
175 }
1ef9696c
AK
176 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
177 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 178 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
179 }
180}
181
463c84b9 182static void tcp_incr_quickack(struct sock *sk)
1da177e4 183{
463c84b9 184 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 185 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 186
056834d9
IJ
187 if (quickacks == 0)
188 quickacks = 2;
463c84b9
ACM
189 if (quickacks > icsk->icsk_ack.quick)
190 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
191}
192
1b9f4092 193static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 194{
463c84b9
ACM
195 struct inet_connection_sock *icsk = inet_csk(sk);
196 tcp_incr_quickack(sk);
197 icsk->icsk_ack.pingpong = 0;
198 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
199}
200
201/* Send ACKs quickly, if "quick" count is not exhausted
202 * and the session is not interactive.
203 */
204
2251ae46 205static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 206{
463c84b9 207 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 208 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 209
2251ae46
JM
210 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
211 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
212}
213
735d3831 214static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 215{
056834d9 216 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
217 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
218}
219
735d3831 220static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
221{
222 if (tcp_hdr(skb)->cwr)
223 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
224}
225
735d3831 226static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
227{
228 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
229}
230
735d3831 231static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 232{
b82d1bb4 233 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 234 case INET_ECN_NOT_ECT:
bdf1ee5d 235 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
236 * and we already seen ECT on a previous segment,
237 * it is probably a retransmit.
238 */
239 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 240 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
241 break;
242 case INET_ECN_CE:
9890092e
FW
243 if (tcp_ca_needs_ecn((struct sock *)tp))
244 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
245
aae06bf5
ED
246 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
247 /* Better not delay acks, sender can have a very low cwnd */
248 tcp_enter_quickack_mode((struct sock *)tp);
249 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
250 }
9890092e
FW
251 tp->ecn_flags |= TCP_ECN_SEEN;
252 break;
7a269ffa 253 default:
9890092e
FW
254 if (tcp_ca_needs_ecn((struct sock *)tp))
255 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 256 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 257 break;
bdf1ee5d
IJ
258 }
259}
260
735d3831
FW
261static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
262{
263 if (tp->ecn_flags & TCP_ECN_OK)
264 __tcp_ecn_check_ce(tp, skb);
265}
266
267static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 268{
056834d9 269 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
270 tp->ecn_flags &= ~TCP_ECN_OK;
271}
272
735d3831 273static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 274{
056834d9 275 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
276 tp->ecn_flags &= ~TCP_ECN_OK;
277}
278
735d3831 279static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 280{
056834d9 281 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
282 return true;
283 return false;
bdf1ee5d
IJ
284}
285
1da177e4
LT
286/* Buffer size and advertised window tuning.
287 *
288 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
289 */
290
6ae70532 291static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 292{
6ae70532
ED
293 const struct tcp_sock *tp = tcp_sk(sk);
294 int sndmem, per_mss;
295 u32 nr_segs;
296
297 /* Worst case is non GSO/TSO : each frame consumes one skb
298 * and skb->head is kmalloced using power of two area of memory
299 */
300 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
301 MAX_TCP_HEADER +
302 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
303
304 per_mss = roundup_pow_of_two(per_mss) +
305 SKB_DATA_ALIGN(sizeof(struct sk_buff));
306
307 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
308 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
309
310 /* Fast Recovery (RFC 5681 3.2) :
311 * Cubic needs 1.7 factor, rounded to 2 to include
312 * extra cushion (application might react slowly to POLLOUT)
313 */
314 sndmem = 2 * nr_segs * per_mss;
1da177e4 315
06a59ecb
ED
316 if (sk->sk_sndbuf < sndmem)
317 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
318}
319
320/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
321 *
322 * All tcp_full_space() is split to two parts: "network" buffer, allocated
323 * forward and advertised in receiver window (tp->rcv_wnd) and
324 * "application buffer", required to isolate scheduling/application
325 * latencies from network.
326 * window_clamp is maximal advertised window. It can be less than
327 * tcp_full_space(), in this case tcp_full_space() - window_clamp
328 * is reserved for "application" buffer. The less window_clamp is
329 * the smoother our behaviour from viewpoint of network, but the lower
330 * throughput and the higher sensitivity of the connection to losses. 8)
331 *
332 * rcv_ssthresh is more strict window_clamp used at "slow start"
333 * phase to predict further behaviour of this connection.
334 * It is used for two goals:
335 * - to enforce header prediction at sender, even when application
336 * requires some significant "application buffer". It is check #1.
337 * - to prevent pruning of receive queue because of misprediction
338 * of receiver window. Check #2.
339 *
340 * The scheme does not work when sender sends good segments opening
caa20d9a 341 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
342 * in common situations. Otherwise, we have to rely on queue collapsing.
343 */
344
345/* Slow part of check#2. */
9e412ba7 346static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 347{
9e412ba7 348 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 349 /* Optimize this! */
dfd4f0ae
ED
350 int truesize = tcp_win_from_space(skb->truesize) >> 1;
351 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
352
353 while (tp->rcv_ssthresh <= window) {
354 if (truesize <= skb->len)
463c84b9 355 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
356
357 truesize >>= 1;
358 window >>= 1;
359 }
360 return 0;
361}
362
cf533ea5 363static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 364{
9e412ba7
IJ
365 struct tcp_sock *tp = tcp_sk(sk);
366
1da177e4
LT
367 /* Check #1 */
368 if (tp->rcv_ssthresh < tp->window_clamp &&
369 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 370 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
371 int incr;
372
373 /* Check #2. Increase window, if skb with such overhead
374 * will fit to rcvbuf in future.
375 */
376 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 377 incr = 2 * tp->advmss;
1da177e4 378 else
9e412ba7 379 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
380
381 if (incr) {
4d846f02 382 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
383 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
384 tp->window_clamp);
463c84b9 385 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
386 }
387 }
388}
389
390/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
391static void tcp_fixup_rcvbuf(struct sock *sk)
392{
e9266a02 393 u32 mss = tcp_sk(sk)->advmss;
e9266a02 394 int rcvmem;
1da177e4 395
85f16525
YC
396 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
397 tcp_default_init_rwnd(mss);
e9266a02 398
b0983d3c
ED
399 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
400 * Allow enough cushion so that sender is not limited by our window
401 */
402 if (sysctl_tcp_moderate_rcvbuf)
403 rcvmem <<= 2;
404
e9266a02
ED
405 if (sk->sk_rcvbuf < rcvmem)
406 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
407}
408
caa20d9a 409/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
410 * established state.
411 */
10467163 412void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
413{
414 struct tcp_sock *tp = tcp_sk(sk);
415 int maxwin;
416
417 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
418 tcp_fixup_rcvbuf(sk);
419 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 420 tcp_sndbuf_expand(sk);
1da177e4
LT
421
422 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
423 tp->rcvq_space.time = tcp_time_stamp;
424 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
425
426 maxwin = tcp_full_space(sk);
427
428 if (tp->window_clamp >= maxwin) {
429 tp->window_clamp = maxwin;
430
431 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
432 tp->window_clamp = max(maxwin -
433 (maxwin >> sysctl_tcp_app_win),
434 4 * tp->advmss);
435 }
436
437 /* Force reservation of one segment. */
438 if (sysctl_tcp_app_win &&
439 tp->window_clamp > 2 * tp->advmss &&
440 tp->window_clamp + tp->advmss > maxwin)
441 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
442
443 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
444 tp->snd_cwnd_stamp = tcp_time_stamp;
445}
446
1da177e4 447/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 448static void tcp_clamp_window(struct sock *sk)
1da177e4 449{
9e412ba7 450 struct tcp_sock *tp = tcp_sk(sk);
6687e988 451 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 452
6687e988 453 icsk->icsk_ack.quick = 0;
1da177e4 454
326f36e9
JH
455 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
456 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 457 !tcp_under_memory_pressure(sk) &&
180d8cd9 458 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
459 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
460 sysctl_tcp_rmem[2]);
1da177e4 461 }
326f36e9 462 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 463 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
464}
465
40efc6fa
SH
466/* Initialize RCV_MSS value.
467 * RCV_MSS is an our guess about MSS used by the peer.
468 * We haven't any direct information about the MSS.
469 * It's better to underestimate the RCV_MSS rather than overestimate.
470 * Overestimations make us ACKing less frequently than needed.
471 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
472 */
473void tcp_initialize_rcv_mss(struct sock *sk)
474{
cf533ea5 475 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
476 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
477
056834d9 478 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 479 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
480 hint = max(hint, TCP_MIN_MSS);
481
482 inet_csk(sk)->icsk_ack.rcv_mss = hint;
483}
4bc2f18b 484EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 485
1da177e4
LT
486/* Receiver "autotuning" code.
487 *
488 * The algorithm for RTT estimation w/o timestamps is based on
489 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 490 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
491 *
492 * More detail on this code can be found at
631dd1a8 493 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
494 * though this reference is out of date. A new paper
495 * is pending.
496 */
497static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
498{
499 u32 new_sample = tp->rcv_rtt_est.rtt;
500 long m = sample;
501
502 if (m == 0)
503 m = 1;
504
505 if (new_sample != 0) {
506 /* If we sample in larger samples in the non-timestamp
507 * case, we could grossly overestimate the RTT especially
508 * with chatty applications or bulk transfer apps which
509 * are stalled on filesystem I/O.
510 *
511 * Also, since we are only going for a minimum in the
31f34269 512 * non-timestamp case, we do not smooth things out
caa20d9a 513 * else with timestamps disabled convergence takes too
1da177e4
LT
514 * long.
515 */
516 if (!win_dep) {
517 m -= (new_sample >> 3);
518 new_sample += m;
18a223e0
NC
519 } else {
520 m <<= 3;
521 if (m < new_sample)
522 new_sample = m;
523 }
1da177e4 524 } else {
caa20d9a 525 /* No previous measure. */
1da177e4
LT
526 new_sample = m << 3;
527 }
528
529 if (tp->rcv_rtt_est.rtt != new_sample)
530 tp->rcv_rtt_est.rtt = new_sample;
531}
532
533static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
534{
535 if (tp->rcv_rtt_est.time == 0)
536 goto new_measure;
537 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
538 return;
651913ce 539 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
540
541new_measure:
542 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
543 tp->rcv_rtt_est.time = tcp_time_stamp;
544}
545
056834d9
IJ
546static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
547 const struct sk_buff *skb)
1da177e4 548{
463c84b9 549 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
550 if (tp->rx_opt.rcv_tsecr &&
551 (TCP_SKB_CB(skb)->end_seq -
463c84b9 552 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
553 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
554}
555
556/*
557 * This function should be called every time data is copied to user space.
558 * It calculates the appropriate TCP receive buffer space.
559 */
560void tcp_rcv_space_adjust(struct sock *sk)
561{
562 struct tcp_sock *tp = tcp_sk(sk);
563 int time;
b0983d3c 564 int copied;
e905a9ed 565
1da177e4 566 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 567 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 568 return;
e905a9ed 569
b0983d3c
ED
570 /* Number of bytes copied to user in last RTT */
571 copied = tp->copied_seq - tp->rcvq_space.seq;
572 if (copied <= tp->rcvq_space.space)
573 goto new_measure;
574
575 /* A bit of theory :
576 * copied = bytes received in previous RTT, our base window
577 * To cope with packet losses, we need a 2x factor
578 * To cope with slow start, and sender growing its cwin by 100 %
579 * every RTT, we need a 4x factor, because the ACK we are sending
580 * now is for the next RTT, not the current one :
581 * <prev RTT . ><current RTT .. ><next RTT .... >
582 */
583
584 if (sysctl_tcp_moderate_rcvbuf &&
585 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
586 int rcvwin, rcvmem, rcvbuf;
1da177e4 587
b0983d3c
ED
588 /* minimal window to cope with packet losses, assuming
589 * steady state. Add some cushion because of small variations.
590 */
591 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 592
b0983d3c
ED
593 /* If rate increased by 25%,
594 * assume slow start, rcvwin = 3 * copied
595 * If rate increased by 50%,
596 * assume sender can use 2x growth, rcvwin = 4 * copied
597 */
598 if (copied >=
599 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
600 if (copied >=
601 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
602 rcvwin <<= 1;
603 else
604 rcvwin += (rcvwin >> 1);
605 }
1da177e4 606
b0983d3c
ED
607 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
608 while (tcp_win_from_space(rcvmem) < tp->advmss)
609 rcvmem += 128;
1da177e4 610
b0983d3c
ED
611 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
612 if (rcvbuf > sk->sk_rcvbuf) {
613 sk->sk_rcvbuf = rcvbuf;
1da177e4 614
b0983d3c
ED
615 /* Make the window clamp follow along. */
616 tp->window_clamp = rcvwin;
1da177e4
LT
617 }
618 }
b0983d3c 619 tp->rcvq_space.space = copied;
e905a9ed 620
1da177e4
LT
621new_measure:
622 tp->rcvq_space.seq = tp->copied_seq;
623 tp->rcvq_space.time = tcp_time_stamp;
624}
625
626/* There is something which you must keep in mind when you analyze the
627 * behavior of the tp->ato delayed ack timeout interval. When a
628 * connection starts up, we want to ack as quickly as possible. The
629 * problem is that "good" TCP's do slow start at the beginning of data
630 * transmission. The means that until we send the first few ACK's the
631 * sender will sit on his end and only queue most of his data, because
632 * he can only send snd_cwnd unacked packets at any given time. For
633 * each ACK we send, he increments snd_cwnd and transmits more of his
634 * queue. -DaveM
635 */
9e412ba7 636static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 637{
9e412ba7 638 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 639 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
640 u32 now;
641
463c84b9 642 inet_csk_schedule_ack(sk);
1da177e4 643
463c84b9 644 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
645
646 tcp_rcv_rtt_measure(tp);
e905a9ed 647
1da177e4
LT
648 now = tcp_time_stamp;
649
463c84b9 650 if (!icsk->icsk_ack.ato) {
1da177e4
LT
651 /* The _first_ data packet received, initialize
652 * delayed ACK engine.
653 */
463c84b9
ACM
654 tcp_incr_quickack(sk);
655 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 656 } else {
463c84b9 657 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 658
056834d9 659 if (m <= TCP_ATO_MIN / 2) {
1da177e4 660 /* The fastest case is the first. */
463c84b9
ACM
661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
662 } else if (m < icsk->icsk_ack.ato) {
663 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
664 if (icsk->icsk_ack.ato > icsk->icsk_rto)
665 icsk->icsk_ack.ato = icsk->icsk_rto;
666 } else if (m > icsk->icsk_rto) {
caa20d9a 667 /* Too long gap. Apparently sender failed to
1da177e4
LT
668 * restart window, so that we send ACKs quickly.
669 */
463c84b9 670 tcp_incr_quickack(sk);
3ab224be 671 sk_mem_reclaim(sk);
1da177e4
LT
672 }
673 }
463c84b9 674 icsk->icsk_ack.lrcvtime = now;
1da177e4 675
735d3831 676 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
677
678 if (skb->len >= 128)
9e412ba7 679 tcp_grow_window(sk, skb);
1da177e4
LT
680}
681
1da177e4
LT
682/* Called to compute a smoothed rtt estimate. The data fed to this
683 * routine either comes from timestamps, or from segments that were
684 * known _not_ to have been retransmitted [see Karn/Partridge
685 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
686 * piece by Van Jacobson.
687 * NOTE: the next three routines used to be one big routine.
688 * To save cycles in the RFC 1323 implementation it was better to break
689 * it up into three procedures. -- erics
690 */
740b0f18 691static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 692{
6687e988 693 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
694 long m = mrtt_us; /* RTT */
695 u32 srtt = tp->srtt_us;
1da177e4 696
1da177e4
LT
697 /* The following amusing code comes from Jacobson's
698 * article in SIGCOMM '88. Note that rtt and mdev
699 * are scaled versions of rtt and mean deviation.
e905a9ed 700 * This is designed to be as fast as possible
1da177e4
LT
701 * m stands for "measurement".
702 *
703 * On a 1990 paper the rto value is changed to:
704 * RTO = rtt + 4 * mdev
705 *
706 * Funny. This algorithm seems to be very broken.
707 * These formulae increase RTO, when it should be decreased, increase
31f34269 708 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
709 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
710 * does not matter how to _calculate_ it. Seems, it was trap
711 * that VJ failed to avoid. 8)
712 */
4a5ab4e2
ED
713 if (srtt != 0) {
714 m -= (srtt >> 3); /* m is now error in rtt est */
715 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
716 if (m < 0) {
717 m = -m; /* m is now abs(error) */
740b0f18 718 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
719 /* This is similar to one of Eifel findings.
720 * Eifel blocks mdev updates when rtt decreases.
721 * This solution is a bit different: we use finer gain
722 * for mdev in this case (alpha*beta).
723 * Like Eifel it also prevents growth of rto,
724 * but also it limits too fast rto decreases,
725 * happening in pure Eifel.
726 */
727 if (m > 0)
728 m >>= 3;
729 } else {
740b0f18 730 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 731 }
740b0f18
ED
732 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
733 if (tp->mdev_us > tp->mdev_max_us) {
734 tp->mdev_max_us = tp->mdev_us;
735 if (tp->mdev_max_us > tp->rttvar_us)
736 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
737 }
738 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
739 if (tp->mdev_max_us < tp->rttvar_us)
740 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 741 tp->rtt_seq = tp->snd_nxt;
740b0f18 742 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
743 }
744 } else {
745 /* no previous measure. */
4a5ab4e2 746 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
747 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
748 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
749 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
750 tp->rtt_seq = tp->snd_nxt;
751 }
740b0f18 752 tp->srtt_us = max(1U, srtt);
1da177e4
LT
753}
754
95bd09eb
ED
755/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
756 * Note: TCP stack does not yet implement pacing.
757 * FQ packet scheduler can be used to implement cheap but effective
758 * TCP pacing, to smooth the burst on large writes when packets
759 * in flight is significantly lower than cwnd (or rwin)
760 */
43e122b0
ED
761int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
762int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
763
95bd09eb
ED
764static void tcp_update_pacing_rate(struct sock *sk)
765{
766 const struct tcp_sock *tp = tcp_sk(sk);
767 u64 rate;
768
769 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
770 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
771
772 /* current rate is (cwnd * mss) / srtt
773 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
774 * In Congestion Avoidance phase, set it to 120 % the current rate.
775 *
776 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
777 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
778 * end of slow start and should slow down.
779 */
780 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
781 rate *= sysctl_tcp_pacing_ss_ratio;
782 else
783 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
784
785 rate *= max(tp->snd_cwnd, tp->packets_out);
786
740b0f18
ED
787 if (likely(tp->srtt_us))
788 do_div(rate, tp->srtt_us);
95bd09eb 789
ba537427
ED
790 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
791 * without any lock. We want to make sure compiler wont store
792 * intermediate values in this location.
793 */
794 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
795 sk->sk_max_pacing_rate);
95bd09eb
ED
796}
797
1da177e4
LT
798/* Calculate rto without backoff. This is the second half of Van Jacobson's
799 * routine referred to above.
800 */
f7e56a76 801static void tcp_set_rto(struct sock *sk)
1da177e4 802{
463c84b9 803 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
804 /* Old crap is replaced with new one. 8)
805 *
806 * More seriously:
807 * 1. If rtt variance happened to be less 50msec, it is hallucination.
808 * It cannot be less due to utterly erratic ACK generation made
809 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
810 * to do with delayed acks, because at cwnd>2 true delack timeout
811 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 812 * ACKs in some circumstances.
1da177e4 813 */
f1ecd5d9 814 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
815
816 /* 2. Fixups made earlier cannot be right.
817 * If we do not estimate RTO correctly without them,
818 * all the algo is pure shit and should be replaced
caa20d9a 819 * with correct one. It is exactly, which we pretend to do.
1da177e4 820 */
1da177e4 821
ee6aac59
IJ
822 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
823 * guarantees that rto is higher.
824 */
f1ecd5d9 825 tcp_bound_rto(sk);
1da177e4
LT
826}
827
cf533ea5 828__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
829{
830 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
831
22b71c8f 832 if (!cwnd)
442b9635 833 cwnd = TCP_INIT_CWND;
1da177e4
LT
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835}
836
e60402d0
IJ
837/*
838 * Packet counting of FACK is based on in-order assumptions, therefore TCP
839 * disables it when reordering is detected
840 */
4aabd8ef 841void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 842{
85cc391c
IJ
843 /* RFC3517 uses different metric in lost marker => reset on change */
844 if (tcp_is_fack(tp))
845 tp->lost_skb_hint = NULL;
ab56222a 846 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
847}
848
564262c1 849/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
850static void tcp_dsack_seen(struct tcp_sock *tp)
851{
ab56222a 852 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
853}
854
6687e988
ACM
855static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
1da177e4 857{
6687e988 858 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 859 if (metric > tp->reordering) {
40b215e5
PE
860 int mib_idx;
861
dca145ff 862 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4
LT
863
864 /* This exciting event is worth to be remembered. 8) */
865 if (ts)
40b215e5 866 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 867 else if (tcp_is_reno(tp))
40b215e5 868 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 869 else if (tcp_is_fack(tp))
40b215e5 870 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 871 else
40b215e5
PE
872 mib_idx = LINUX_MIB_TCPSACKREORDER;
873
de0744af 874 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 875#if FASTRETRANS_DEBUG > 1
91df42be
JP
876 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
877 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
878 tp->reordering,
879 tp->fackets_out,
880 tp->sacked_out,
881 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 882#endif
e60402d0 883 tcp_disable_fack(tp);
1da177e4 884 }
eed530b6
YC
885
886 if (metric > 0)
887 tcp_disable_early_retrans(tp);
4f41b1c5 888 tp->rack.reord = 1;
1da177e4
LT
889}
890
006f582c 891/* This must be called before lost_out is incremented */
c8c213f2
IJ
892static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
893{
51456b29 894 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
895 before(TCP_SKB_CB(skb)->seq,
896 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
897 tp->retransmit_skb_hint = skb;
898
899 if (!tp->lost_out ||
900 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
901 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
902}
903
41ea36e3
IJ
904static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
905{
906 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
907 tcp_verify_retransmit_hint(tp, skb);
908
909 tp->lost_out += tcp_skb_pcount(skb);
910 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
911 }
912}
913
4f41b1c5 914void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
915{
916 tcp_verify_retransmit_hint(tp, skb);
917
918 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
919 tp->lost_out += tcp_skb_pcount(skb);
920 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
921 }
922}
923
1da177e4
LT
924/* This procedure tags the retransmission queue when SACKs arrive.
925 *
926 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
927 * Packets in queue with these bits set are counted in variables
928 * sacked_out, retrans_out and lost_out, correspondingly.
929 *
930 * Valid combinations are:
931 * Tag InFlight Description
932 * 0 1 - orig segment is in flight.
933 * S 0 - nothing flies, orig reached receiver.
934 * L 0 - nothing flies, orig lost by net.
935 * R 2 - both orig and retransmit are in flight.
936 * L|R 1 - orig is lost, retransmit is in flight.
937 * S|R 1 - orig reached receiver, retrans is still in flight.
938 * (L|S|R is logically valid, it could occur when L|R is sacked,
939 * but it is equivalent to plain S and code short-curcuits it to S.
940 * L|S is logically invalid, it would mean -1 packet in flight 8))
941 *
942 * These 6 states form finite state machine, controlled by the following events:
943 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
944 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 945 * 3. Loss detection event of two flavors:
1da177e4
LT
946 * A. Scoreboard estimator decided the packet is lost.
947 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
948 * A''. Its FACK modification, head until snd.fack is lost.
949 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
950 * segment was retransmitted.
951 * 4. D-SACK added new rule: D-SACK changes any tag to S.
952 *
953 * It is pleasant to note, that state diagram turns out to be commutative,
954 * so that we are allowed not to be bothered by order of our actions,
955 * when multiple events arrive simultaneously. (see the function below).
956 *
957 * Reordering detection.
958 * --------------------
959 * Reordering metric is maximal distance, which a packet can be displaced
960 * in packet stream. With SACKs we can estimate it:
961 *
962 * 1. SACK fills old hole and the corresponding segment was not
963 * ever retransmitted -> reordering. Alas, we cannot use it
964 * when segment was retransmitted.
965 * 2. The last flaw is solved with D-SACK. D-SACK arrives
966 * for retransmitted and already SACKed segment -> reordering..
967 * Both of these heuristics are not used in Loss state, when we cannot
968 * account for retransmits accurately.
5b3c9882
IJ
969 *
970 * SACK block validation.
971 * ----------------------
972 *
973 * SACK block range validation checks that the received SACK block fits to
974 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
975 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
976 * it means that the receiver is rather inconsistent with itself reporting
977 * SACK reneging when it should advance SND.UNA. Such SACK block this is
978 * perfectly valid, however, in light of RFC2018 which explicitly states
979 * that "SACK block MUST reflect the newest segment. Even if the newest
980 * segment is going to be discarded ...", not that it looks very clever
981 * in case of head skb. Due to potentional receiver driven attacks, we
982 * choose to avoid immediate execution of a walk in write queue due to
983 * reneging and defer head skb's loss recovery to standard loss recovery
984 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
985 *
986 * Implements also blockage to start_seq wrap-around. Problem lies in the
987 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
988 * there's no guarantee that it will be before snd_nxt (n). The problem
989 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
990 * wrap (s_w):
991 *
992 * <- outs wnd -> <- wrapzone ->
993 * u e n u_w e_w s n_w
994 * | | | | | | |
995 * |<------------+------+----- TCP seqno space --------------+---------->|
996 * ...-- <2^31 ->| |<--------...
997 * ...---- >2^31 ------>| |<--------...
998 *
999 * Current code wouldn't be vulnerable but it's better still to discard such
1000 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1001 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1002 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1003 * equal to the ideal case (infinite seqno space without wrap caused issues).
1004 *
1005 * With D-SACK the lower bound is extended to cover sequence space below
1006 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1007 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1008 * for the normal SACK blocks, explained above). But there all simplicity
1009 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1010 * fully below undo_marker they do not affect behavior in anyway and can
1011 * therefore be safely ignored. In rare cases (which are more or less
1012 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1013 * fragmentation and packet reordering past skb's retransmission. To consider
1014 * them correctly, the acceptable range must be extended even more though
1015 * the exact amount is rather hard to quantify. However, tp->max_window can
1016 * be used as an exaggerated estimate.
1da177e4 1017 */
a2a385d6
ED
1018static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1019 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1020{
1021 /* Too far in future, or reversed (interpretation is ambiguous) */
1022 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1023 return false;
5b3c9882
IJ
1024
1025 /* Nasty start_seq wrap-around check (see comments above) */
1026 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1027 return false;
5b3c9882 1028
564262c1 1029 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1030 * start_seq == snd_una is non-sensical (see comments above)
1031 */
1032 if (after(start_seq, tp->snd_una))
a2a385d6 1033 return true;
5b3c9882
IJ
1034
1035 if (!is_dsack || !tp->undo_marker)
a2a385d6 1036 return false;
5b3c9882
IJ
1037
1038 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1039 if (after(end_seq, tp->snd_una))
a2a385d6 1040 return false;
5b3c9882
IJ
1041
1042 if (!before(start_seq, tp->undo_marker))
a2a385d6 1043 return true;
5b3c9882
IJ
1044
1045 /* Too old */
1046 if (!after(end_seq, tp->undo_marker))
a2a385d6 1047 return false;
5b3c9882
IJ
1048
1049 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1050 * start_seq < undo_marker and end_seq >= undo_marker.
1051 */
1052 return !before(start_seq, end_seq - tp->max_window);
1053}
1054
a2a385d6
ED
1055static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1056 struct tcp_sack_block_wire *sp, int num_sacks,
1057 u32 prior_snd_una)
d06e021d 1058{
1ed83465 1059 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1060 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1061 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1062 bool dup_sack = false;
d06e021d
DM
1063
1064 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1065 dup_sack = true;
e60402d0 1066 tcp_dsack_seen(tp);
de0744af 1067 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1068 } else if (num_sacks > 1) {
d3e2ce3b
HH
1069 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1070 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1071
1072 if (!after(end_seq_0, end_seq_1) &&
1073 !before(start_seq_0, start_seq_1)) {
a2a385d6 1074 dup_sack = true;
e60402d0 1075 tcp_dsack_seen(tp);
de0744af
PE
1076 NET_INC_STATS_BH(sock_net(sk),
1077 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1078 }
1079 }
1080
1081 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1082 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1083 !after(end_seq_0, prior_snd_una) &&
1084 after(end_seq_0, tp->undo_marker))
1085 tp->undo_retrans--;
1086
1087 return dup_sack;
1088}
1089
a1197f5a 1090struct tcp_sacktag_state {
740b0f18
ED
1091 int reord;
1092 int fack_count;
31231a8a
KKJ
1093 /* Timestamps for earliest and latest never-retransmitted segment
1094 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1095 * but congestion control should still get an accurate delay signal.
1096 */
1097 struct skb_mstamp first_sackt;
1098 struct skb_mstamp last_sackt;
740b0f18 1099 int flag;
a1197f5a
IJ
1100};
1101
d1935942
IJ
1102/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1103 * the incoming SACK may not exactly match but we can find smaller MSS
1104 * aligned portion of it that matches. Therefore we might need to fragment
1105 * which may fail and creates some hassle (caller must handle error case
1106 * returns).
832d11c5
IJ
1107 *
1108 * FIXME: this could be merged to shift decision code
d1935942 1109 */
0f79efdc 1110static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1111 u32 start_seq, u32 end_seq)
d1935942 1112{
a2a385d6
ED
1113 int err;
1114 bool in_sack;
d1935942 1115 unsigned int pkt_len;
adb92db8 1116 unsigned int mss;
d1935942
IJ
1117
1118 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1119 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1120
1121 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1122 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1123 mss = tcp_skb_mss(skb);
d1935942
IJ
1124 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1125
adb92db8 1126 if (!in_sack) {
d1935942 1127 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1128 if (pkt_len < mss)
1129 pkt_len = mss;
1130 } else {
d1935942 1131 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1132 if (pkt_len < mss)
1133 return -EINVAL;
1134 }
1135
1136 /* Round if necessary so that SACKs cover only full MSSes
1137 * and/or the remaining small portion (if present)
1138 */
1139 if (pkt_len > mss) {
1140 unsigned int new_len = (pkt_len / mss) * mss;
1141 if (!in_sack && new_len < pkt_len) {
1142 new_len += mss;
2cd0d743 1143 if (new_len >= skb->len)
adb92db8
IJ
1144 return 0;
1145 }
1146 pkt_len = new_len;
1147 }
6cc55e09 1148 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1149 if (err < 0)
1150 return err;
1151 }
1152
1153 return in_sack;
1154}
1155
cc9a672e
NC
1156/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1157static u8 tcp_sacktag_one(struct sock *sk,
1158 struct tcp_sacktag_state *state, u8 sacked,
1159 u32 start_seq, u32 end_seq,
740b0f18
ED
1160 int dup_sack, int pcount,
1161 const struct skb_mstamp *xmit_time)
9e10c47c 1162{
6859d494 1163 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1164 int fack_count = state->fack_count;
9e10c47c
IJ
1165
1166 /* Account D-SACK for retransmitted packet. */
1167 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1168 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1169 after(end_seq, tp->undo_marker))
9e10c47c 1170 tp->undo_retrans--;
ede9f3b1 1171 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1172 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1173 }
1174
1175 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1176 if (!after(end_seq, tp->snd_una))
a1197f5a 1177 return sacked;
9e10c47c
IJ
1178
1179 if (!(sacked & TCPCB_SACKED_ACKED)) {
659a8ad5
YC
1180 tcp_rack_advance(tp, xmit_time, sacked);
1181
9e10c47c
IJ
1182 if (sacked & TCPCB_SACKED_RETRANS) {
1183 /* If the segment is not tagged as lost,
1184 * we do not clear RETRANS, believing
1185 * that retransmission is still in flight.
1186 */
1187 if (sacked & TCPCB_LOST) {
a1197f5a 1188 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1189 tp->lost_out -= pcount;
1190 tp->retrans_out -= pcount;
9e10c47c
IJ
1191 }
1192 } else {
1193 if (!(sacked & TCPCB_RETRANS)) {
1194 /* New sack for not retransmitted frame,
1195 * which was in hole. It is reordering.
1196 */
cc9a672e 1197 if (before(start_seq,
9e10c47c 1198 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1199 state->reord = min(fack_count,
1200 state->reord);
e33099f9
YC
1201 if (!after(end_seq, tp->high_seq))
1202 state->flag |= FLAG_ORIG_SACK_ACKED;
31231a8a
KKJ
1203 if (state->first_sackt.v64 == 0)
1204 state->first_sackt = *xmit_time;
1205 state->last_sackt = *xmit_time;
9e10c47c
IJ
1206 }
1207
1208 if (sacked & TCPCB_LOST) {
a1197f5a 1209 sacked &= ~TCPCB_LOST;
f58b22fd 1210 tp->lost_out -= pcount;
9e10c47c
IJ
1211 }
1212 }
1213
a1197f5a
IJ
1214 sacked |= TCPCB_SACKED_ACKED;
1215 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1216 tp->sacked_out += pcount;
ddf1af6f 1217 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1218
f58b22fd 1219 fack_count += pcount;
9e10c47c
IJ
1220
1221 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1222 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1223 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1224 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1225
1226 if (fack_count > tp->fackets_out)
1227 tp->fackets_out = fack_count;
9e10c47c
IJ
1228 }
1229
1230 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1231 * frames and clear it. undo_retrans is decreased above, L|R frames
1232 * are accounted above as well.
1233 */
a1197f5a
IJ
1234 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1235 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1236 tp->retrans_out -= pcount;
9e10c47c
IJ
1237 }
1238
a1197f5a 1239 return sacked;
9e10c47c
IJ
1240}
1241
daef52ba
NC
1242/* Shift newly-SACKed bytes from this skb to the immediately previous
1243 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1244 */
a2a385d6
ED
1245static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1246 struct tcp_sacktag_state *state,
1247 unsigned int pcount, int shifted, int mss,
1248 bool dup_sack)
832d11c5
IJ
1249{
1250 struct tcp_sock *tp = tcp_sk(sk);
50133161 1251 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1252 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1253 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1254
1255 BUG_ON(!pcount);
1256
4c90d3b3
NC
1257 /* Adjust counters and hints for the newly sacked sequence
1258 * range but discard the return value since prev is already
1259 * marked. We must tag the range first because the seq
1260 * advancement below implicitly advances
1261 * tcp_highest_sack_seq() when skb is highest_sack.
1262 */
1263 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1264 start_seq, end_seq, dup_sack, pcount,
740b0f18 1265 &skb->skb_mstamp);
4c90d3b3
NC
1266
1267 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1268 tp->lost_cnt_hint += pcount;
1269
832d11c5
IJ
1270 TCP_SKB_CB(prev)->end_seq += shifted;
1271 TCP_SKB_CB(skb)->seq += shifted;
1272
cd7d8498
ED
1273 tcp_skb_pcount_add(prev, pcount);
1274 BUG_ON(tcp_skb_pcount(skb) < pcount);
1275 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1276
1277 /* When we're adding to gso_segs == 1, gso_size will be zero,
1278 * in theory this shouldn't be necessary but as long as DSACK
1279 * code can come after this skb later on it's better to keep
1280 * setting gso_size to something.
1281 */
f69ad292
ED
1282 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1283 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1284
1285 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1286 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1287 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1288
832d11c5
IJ
1289 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1290 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1291
832d11c5
IJ
1292 if (skb->len > 0) {
1293 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1294 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1295 return false;
832d11c5
IJ
1296 }
1297
1298 /* Whole SKB was eaten :-) */
1299
92ee76b6
IJ
1300 if (skb == tp->retransmit_skb_hint)
1301 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1302 if (skb == tp->lost_skb_hint) {
1303 tp->lost_skb_hint = prev;
1304 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1305 }
1306
5e8a402f
ED
1307 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1308 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1309 TCP_SKB_CB(prev)->end_seq++;
1310
832d11c5
IJ
1311 if (skb == tcp_highest_sack(sk))
1312 tcp_advance_highest_sack(sk, skb);
1313
1314 tcp_unlink_write_queue(skb, sk);
1315 sk_wmem_free_skb(sk, skb);
1316
111cc8b9
IJ
1317 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1318
a2a385d6 1319 return true;
832d11c5
IJ
1320}
1321
1322/* I wish gso_size would have a bit more sane initialization than
1323 * something-or-zero which complicates things
1324 */
cf533ea5 1325static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1326{
775ffabf 1327 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1328}
1329
1330/* Shifting pages past head area doesn't work */
cf533ea5 1331static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1332{
1333 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1334}
1335
1336/* Try collapsing SACK blocks spanning across multiple skbs to a single
1337 * skb.
1338 */
1339static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1340 struct tcp_sacktag_state *state,
832d11c5 1341 u32 start_seq, u32 end_seq,
a2a385d6 1342 bool dup_sack)
832d11c5
IJ
1343{
1344 struct tcp_sock *tp = tcp_sk(sk);
1345 struct sk_buff *prev;
1346 int mss;
1347 int pcount = 0;
1348 int len;
1349 int in_sack;
1350
1351 if (!sk_can_gso(sk))
1352 goto fallback;
1353
1354 /* Normally R but no L won't result in plain S */
1355 if (!dup_sack &&
9969ca5f 1356 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1357 goto fallback;
1358 if (!skb_can_shift(skb))
1359 goto fallback;
1360 /* This frame is about to be dropped (was ACKed). */
1361 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1362 goto fallback;
1363
1364 /* Can only happen with delayed DSACK + discard craziness */
1365 if (unlikely(skb == tcp_write_queue_head(sk)))
1366 goto fallback;
1367 prev = tcp_write_queue_prev(sk, skb);
1368
1369 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1370 goto fallback;
1371
1372 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1373 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1374
1375 if (in_sack) {
1376 len = skb->len;
1377 pcount = tcp_skb_pcount(skb);
775ffabf 1378 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1379
1380 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1381 * drop this restriction as unnecessary
1382 */
775ffabf 1383 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1384 goto fallback;
1385 } else {
1386 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1387 goto noop;
1388 /* CHECKME: This is non-MSS split case only?, this will
1389 * cause skipped skbs due to advancing loop btw, original
1390 * has that feature too
1391 */
1392 if (tcp_skb_pcount(skb) <= 1)
1393 goto noop;
1394
1395 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1396 if (!in_sack) {
1397 /* TODO: head merge to next could be attempted here
1398 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1399 * though it might not be worth of the additional hassle
1400 *
1401 * ...we can probably just fallback to what was done
1402 * previously. We could try merging non-SACKed ones
1403 * as well but it probably isn't going to buy off
1404 * because later SACKs might again split them, and
1405 * it would make skb timestamp tracking considerably
1406 * harder problem.
1407 */
1408 goto fallback;
1409 }
1410
1411 len = end_seq - TCP_SKB_CB(skb)->seq;
1412 BUG_ON(len < 0);
1413 BUG_ON(len > skb->len);
1414
1415 /* MSS boundaries should be honoured or else pcount will
1416 * severely break even though it makes things bit trickier.
1417 * Optimize common case to avoid most of the divides
1418 */
1419 mss = tcp_skb_mss(skb);
1420
1421 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1422 * drop this restriction as unnecessary
1423 */
775ffabf 1424 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1425 goto fallback;
1426
1427 if (len == mss) {
1428 pcount = 1;
1429 } else if (len < mss) {
1430 goto noop;
1431 } else {
1432 pcount = len / mss;
1433 len = pcount * mss;
1434 }
1435 }
1436
4648dc97
NC
1437 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1438 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1439 goto fallback;
1440
832d11c5
IJ
1441 if (!skb_shift(prev, skb, len))
1442 goto fallback;
9ec06ff5 1443 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1444 goto out;
1445
1446 /* Hole filled allows collapsing with the next as well, this is very
1447 * useful when hole on every nth skb pattern happens
1448 */
1449 if (prev == tcp_write_queue_tail(sk))
1450 goto out;
1451 skb = tcp_write_queue_next(sk, prev);
1452
f0bc52f3
IJ
1453 if (!skb_can_shift(skb) ||
1454 (skb == tcp_send_head(sk)) ||
1455 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1456 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1457 goto out;
1458
1459 len = skb->len;
1460 if (skb_shift(prev, skb, len)) {
1461 pcount += tcp_skb_pcount(skb);
9ec06ff5 1462 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1463 }
1464
1465out:
a1197f5a 1466 state->fack_count += pcount;
832d11c5
IJ
1467 return prev;
1468
1469noop:
1470 return skb;
1471
1472fallback:
111cc8b9 1473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1474 return NULL;
1475}
1476
68f8353b
IJ
1477static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1478 struct tcp_sack_block *next_dup,
a1197f5a 1479 struct tcp_sacktag_state *state,
68f8353b 1480 u32 start_seq, u32 end_seq,
a2a385d6 1481 bool dup_sack_in)
68f8353b 1482{
832d11c5
IJ
1483 struct tcp_sock *tp = tcp_sk(sk);
1484 struct sk_buff *tmp;
1485
68f8353b
IJ
1486 tcp_for_write_queue_from(skb, sk) {
1487 int in_sack = 0;
a2a385d6 1488 bool dup_sack = dup_sack_in;
68f8353b
IJ
1489
1490 if (skb == tcp_send_head(sk))
1491 break;
1492
1493 /* queue is in-order => we can short-circuit the walk early */
1494 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1495 break;
1496
00db4124 1497 if (next_dup &&
68f8353b
IJ
1498 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1499 in_sack = tcp_match_skb_to_sack(sk, skb,
1500 next_dup->start_seq,
1501 next_dup->end_seq);
1502 if (in_sack > 0)
a2a385d6 1503 dup_sack = true;
68f8353b
IJ
1504 }
1505
832d11c5
IJ
1506 /* skb reference here is a bit tricky to get right, since
1507 * shifting can eat and free both this skb and the next,
1508 * so not even _safe variant of the loop is enough.
1509 */
1510 if (in_sack <= 0) {
a1197f5a
IJ
1511 tmp = tcp_shift_skb_data(sk, skb, state,
1512 start_seq, end_seq, dup_sack);
00db4124 1513 if (tmp) {
832d11c5
IJ
1514 if (tmp != skb) {
1515 skb = tmp;
1516 continue;
1517 }
1518
1519 in_sack = 0;
1520 } else {
1521 in_sack = tcp_match_skb_to_sack(sk, skb,
1522 start_seq,
1523 end_seq);
1524 }
1525 }
1526
68f8353b
IJ
1527 if (unlikely(in_sack < 0))
1528 break;
1529
832d11c5 1530 if (in_sack) {
cc9a672e
NC
1531 TCP_SKB_CB(skb)->sacked =
1532 tcp_sacktag_one(sk,
1533 state,
1534 TCP_SKB_CB(skb)->sacked,
1535 TCP_SKB_CB(skb)->seq,
1536 TCP_SKB_CB(skb)->end_seq,
1537 dup_sack,
59c9af42 1538 tcp_skb_pcount(skb),
740b0f18 1539 &skb->skb_mstamp);
68f8353b 1540
832d11c5
IJ
1541 if (!before(TCP_SKB_CB(skb)->seq,
1542 tcp_highest_sack_seq(tp)))
1543 tcp_advance_highest_sack(sk, skb);
1544 }
1545
a1197f5a 1546 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1547 }
1548 return skb;
1549}
1550
1551/* Avoid all extra work that is being done by sacktag while walking in
1552 * a normal way
1553 */
1554static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1555 struct tcp_sacktag_state *state,
1556 u32 skip_to_seq)
68f8353b
IJ
1557{
1558 tcp_for_write_queue_from(skb, sk) {
1559 if (skb == tcp_send_head(sk))
1560 break;
1561
e8bae275 1562 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1563 break;
d152a7d8 1564
a1197f5a 1565 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1566 }
1567 return skb;
1568}
1569
1570static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1571 struct sock *sk,
1572 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1573 struct tcp_sacktag_state *state,
1574 u32 skip_to_seq)
68f8353b 1575{
51456b29 1576 if (!next_dup)
68f8353b
IJ
1577 return skb;
1578
1579 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1580 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1581 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1582 next_dup->start_seq, next_dup->end_seq,
1583 1);
68f8353b
IJ
1584 }
1585
1586 return skb;
1587}
1588
cf533ea5 1589static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1590{
1591 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1592}
1593
1da177e4 1594static int
cf533ea5 1595tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1596 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1597{
1598 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1599 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1600 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1601 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1602 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1603 struct tcp_sack_block *cache;
1604 struct sk_buff *skb;
4389dded 1605 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1606 int used_sacks;
a2a385d6 1607 bool found_dup_sack = false;
68f8353b 1608 int i, j;
fda03fbb 1609 int first_sack_index;
1da177e4 1610
196da974
KKJ
1611 state->flag = 0;
1612 state->reord = tp->packets_out;
a1197f5a 1613
d738cd8f 1614 if (!tp->sacked_out) {
de83c058
IJ
1615 if (WARN_ON(tp->fackets_out))
1616 tp->fackets_out = 0;
6859d494 1617 tcp_highest_sack_reset(sk);
d738cd8f 1618 }
1da177e4 1619
1ed83465 1620 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1621 num_sacks, prior_snd_una);
1622 if (found_dup_sack)
196da974 1623 state->flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1624
1625 /* Eliminate too old ACKs, but take into
1626 * account more or less fresh ones, they can
1627 * contain valid SACK info.
1628 */
1629 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1630 return 0;
1631