[TCP]: Fix mark_head_lost to ignore R-bit when trying to mark L
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 88int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
49ff4bb4 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
009a2e3e 107#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
1da177e4
LT
108
109#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 113#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 114
4dc2665e
IJ
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
1da177e4 117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 118#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 119
e905a9ed 120/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 121 * real world.
e905a9ed 122 */
40efc6fa
SH
123static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
1da177e4 125{
463c84b9 126 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 128 unsigned int len;
1da177e4 129
e905a9ed 130 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
ff9b5e0f 135 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
9c70220b 144 len += skb->data - skb_transport_header(skb);
1da177e4
LT
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
463c84b9
ACM
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
1da177e4 159 if (len == lss) {
463c84b9 160 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
161 return;
162 }
163 }
1ef9696c
AK
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
167 }
168}
169
463c84b9 170static void tcp_incr_quickack(struct sock *sk)
1da177e4 171{
463c84b9
ACM
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
174
175 if (quickacks==0)
176 quickacks=2;
463c84b9
ACM
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
179}
180
463c84b9 181void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 182{
463c84b9
ACM
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
187}
188
189/* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
463c84b9 193static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 194{
463c84b9
ACM
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
197}
198
bdf1ee5d
IJ
199static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200{
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203}
204
205static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206{
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209}
210
211static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212{
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217{
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227}
228
229static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230{
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233}
234
235static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236{
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239}
240
241static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242{
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246}
247
1da177e4
LT
248/* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253static void tcp_fixup_sndbuf(struct sock *sk)
254{
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260}
261
262/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
caa20d9a 283 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287/* Slow part of check#2. */
9e412ba7 288static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 289{
9e412ba7 290 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
463c84b9 297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303}
304
9e412ba7 305static void tcp_grow_window(struct sock *sk,
40efc6fa 306 struct sk_buff *skb)
1da177e4 307{
9e412ba7
IJ
308 struct tcp_sock *tp = tcp_sk(sk);
309
1da177e4
LT
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
9e412ba7 322 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 326 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
327 }
328 }
329}
330
331/* 3. Tuning rcvbuf, when connection enters established state. */
332
333static void tcp_fixup_rcvbuf(struct sock *sk)
334{
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 339 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346}
347
caa20d9a 348/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
349 * established state.
350 */
351static void tcp_init_buffer_space(struct sock *sk)
352{
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382}
383
1da177e4 384/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 385static void tcp_clamp_window(struct sock *sk)
1da177e4 386{
9e412ba7 387 struct tcp_sock *tp = tcp_sk(sk);
6687e988 388 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 389
6687e988 390 icsk->icsk_ack.quick = 0;
1da177e4 391
326f36e9
JH
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
1da177e4 398 }
326f36e9 399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
401}
402
40efc6fa
SH
403
404/* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411void tcp_initialize_rcv_mss(struct sock *sk)
412{
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421}
422
1da177e4
LT
423/* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435{
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
31f34269 449 * non-timestamp case, we do not smooth things out
caa20d9a 450 * else with timestamps disabled convergence takes too
1da177e4
LT
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
caa20d9a 459 /* No previous measure. */
1da177e4
LT
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465}
466
467static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468{
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480}
481
463c84b9 482static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 483{
463c84b9 484 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
463c84b9 487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489}
490
491/*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495void tcp_rcv_space_adjust(struct sock *sk)
496{
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
e905a9ed 500
1da177e4
LT
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
e905a9ed 503
1da177e4
LT
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
e905a9ed 508
1da177e4
LT
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
6fcf9412
JH
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
e905a9ed 543
1da177e4
LT
544new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547}
548
549/* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
9e412ba7 559static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 560{
9e412ba7 561 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 562 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
563 u32 now;
564
463c84b9 565 inet_csk_schedule_ack(sk);
1da177e4 566
463c84b9 567 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
568
569 tcp_rcv_rtt_measure(tp);
e905a9ed 570
1da177e4
LT
571 now = tcp_time_stamp;
572
463c84b9 573 if (!icsk->icsk_ack.ato) {
1da177e4
LT
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
463c84b9
ACM
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 579 } else {
463c84b9 580 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
463c84b9
ACM
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
caa20d9a 590 /* Too long gap. Apparently sender failed to
1da177e4
LT
591 * restart window, so that we send ACKs quickly.
592 */
463c84b9 593 tcp_incr_quickack(sk);
1da177e4
LT
594 sk_stream_mem_reclaim(sk);
595 }
596 }
463c84b9 597 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
9e412ba7 602 tcp_grow_window(sk, skb);
1da177e4
LT
603}
604
05bb1fad
DM
605static u32 tcp_rto_min(struct sock *sk)
606{
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
5c127c58 610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
05bb1fad
DM
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613}
614
1da177e4
LT
615/* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
2d2abbab 624static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 625{
6687e988 626 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
627 long m = mrtt; /* RTT */
628
1da177e4
LT
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
e905a9ed 632 * This is designed to be as fast as possible
1da177e4
LT
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
31f34269 640 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
2de979bd 645 if (m == 0)
1da177e4
LT
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
05bb1fad 676 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
05bb1fad 682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
683 tp->rtt_seq = tp->snd_nxt;
684 }
1da177e4
LT
685}
686
687/* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
463c84b9 690static inline void tcp_set_rto(struct sock *sk)
1da177e4 691{
463c84b9 692 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 701 * ACKs in some circumstances.
1da177e4 702 */
463c84b9 703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
caa20d9a 708 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
709 */
710}
711
712/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
463c84b9 715static inline void tcp_bound_rto(struct sock *sk)
1da177e4 716{
463c84b9
ACM
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
719}
720
721/* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725void tcp_update_metrics(struct sock *sk)
726{
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
6687e988 736 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
737 int m;
738
6687e988 739 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 788 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813}
814
26722873
DM
815/* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
1da177e4
LT
824__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825{
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
c1b4a7e6 829 if (tp->mss_cache > 1460)
1da177e4
LT
830 cwnd = 2;
831 else
c1b4a7e6 832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835}
836
40efc6fa 837/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 838void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
839{
840 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 841 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
e01f9d77 845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 846 tp->undo_marker = 0;
3cfe3baa
IJ
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858}
859
e60402d0
IJ
860/*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864static void tcp_disable_fack(struct tcp_sock *tp)
865{
866 tp->rx_opt.sack_ok &= ~2;
867}
868
869/* Take a notice that peer is sending DSACKs */
870static void tcp_dsack_seen(struct tcp_sock *tp)
871{
872 tp->rx_opt.sack_ok |= 4;
873}
874
1da177e4
LT
875/* Initialize metrics on socket. */
876
877static void tcp_init_metrics(struct sock *sk)
878{
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 896 tcp_disable_fack(tp);
1da177e4
LT
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 912 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
463c84b9
ACM
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
945 }
946}
947
6687e988
ACM
948static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
1da177e4 950{
6687e988 951 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
e60402d0 958 else if (tcp_is_reno(tp))
1da177e4 959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
e60402d0 960 else if (tcp_is_fack(tp))
1da177e4
LT
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964#if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971#endif
e60402d0 972 tcp_disable_fack(tp);
1da177e4
LT
973 }
974}
975
976/* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
5b3c9882
IJ
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, DSACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1da177e4 1071 */
5b3c9882
IJ
1072static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1074{
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1078
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1082
1083 /* In outstanding window? ...This is valid exit for DSACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1085 */
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1088
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1091
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1095
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1098
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1102
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1105 */
1106 return !before(start_seq, end_seq - tp->max_window);
1107}
1108
1c1e87ed
IJ
1109/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110 * Event "C". Later note: FACK people cheated me again 8), we have to account
1111 * for reordering! Ugly, but should help.
1112 */
1113static int tcp_mark_lost_retrans(struct sock *sk, u32 lost_retrans)
1114{
1115 struct tcp_sock *tp = tcp_sk(sk);
1116 struct sk_buff *skb;
1117 int flag = 0;
1118
1119 tcp_for_write_queue(skb, sk) {
1120 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1121
1122 if (skb == tcp_send_head(sk))
1123 break;
1124 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1125 break;
1126 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1127 continue;
1128
1129 if ((TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) &&
1130 after(lost_retrans, ack_seq) &&
1131 (tcp_is_fack(tp) ||
1132 !before(lost_retrans,
1133 ack_seq + tp->reordering * tp->mss_cache))) {
1134 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1135 tp->retrans_out -= tcp_skb_pcount(skb);
1136
1137 /* clear lost hint */
1138 tp->retransmit_skb_hint = NULL;
1139
1140 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1141 tp->lost_out += tcp_skb_pcount(skb);
1142 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1143 flag |= FLAG_DATA_SACKED;
1144 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1145 }
1146 }
1147 }
1148 return flag;
1149}
5b3c9882 1150
d06e021d
DM
1151static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1152 struct tcp_sack_block_wire *sp, int num_sacks,
1153 u32 prior_snd_una)
1154{
1155 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1156 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1157 int dup_sack = 0;
1158
1159 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1160 dup_sack = 1;
e60402d0 1161 tcp_dsack_seen(tp);
d06e021d
DM
1162 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1163 } else if (num_sacks > 1) {
1164 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1165 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1166
1167 if (!after(end_seq_0, end_seq_1) &&
1168 !before(start_seq_0, start_seq_1)) {
1169 dup_sack = 1;
e60402d0 1170 tcp_dsack_seen(tp);
d06e021d
DM
1171 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1172 }
1173 }
1174
1175 /* D-SACK for already forgotten data... Do dumb counting. */
1176 if (dup_sack &&
1177 !after(end_seq_0, prior_snd_una) &&
1178 after(end_seq_0, tp->undo_marker))
1179 tp->undo_retrans--;
1180
1181 return dup_sack;
1182}
1183
1da177e4
LT
1184static int
1185tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1186{
6687e988 1187 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1188 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1189 unsigned char *ptr = (skb_transport_header(ack_skb) +
1190 TCP_SKB_CB(ack_skb)->sacked);
269bd27e 1191 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 1192 struct sk_buff *cached_skb;
1da177e4
LT
1193 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1194 int reord = tp->packets_out;
1195 int prior_fackets;
1196 u32 lost_retrans = 0;
1197 int flag = 0;
7769f406 1198 int found_dup_sack = 0;
fda03fbb 1199 int cached_fack_count;
1da177e4 1200 int i;
fda03fbb 1201 int first_sack_index;
1da177e4 1202
d738cd8f 1203 if (!tp->sacked_out) {
de83c058
IJ
1204 if (WARN_ON(tp->fackets_out))
1205 tp->fackets_out = 0;
d738cd8f
IJ
1206 tp->highest_sack = tp->snd_una;
1207 }
1da177e4
LT
1208 prior_fackets = tp->fackets_out;
1209
d06e021d
DM
1210 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1211 num_sacks, prior_snd_una);
1212 if (found_dup_sack)
49ff4bb4 1213 flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1214
1215 /* Eliminate too old ACKs, but take into
1216 * account more or less fresh ones, they can
1217 * contain valid SACK info.
1218 */
1219 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1220 return 0;
1221
6a438bbe
SH
1222 /* SACK fastpath:
1223 * if the only SACK change is the increase of the end_seq of
1224 * the first block then only apply that SACK block
1225 * and use retrans queue hinting otherwise slowpath */
1226 flag = 1;
6f74651a
BE
1227 for (i = 0; i < num_sacks; i++) {
1228 __be32 start_seq = sp[i].start_seq;
1229 __be32 end_seq = sp[i].end_seq;
6a438bbe 1230
6f74651a 1231 if (i == 0) {
6a438bbe
SH
1232 if (tp->recv_sack_cache[i].start_seq != start_seq)
1233 flag = 0;
1234 } else {
1235 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1236 (tp->recv_sack_cache[i].end_seq != end_seq))
1237 flag = 0;
1238 }
1239 tp->recv_sack_cache[i].start_seq = start_seq;
1240 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1241 }
8a3c3a97
BE
1242 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1243 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1244 tp->recv_sack_cache[i].start_seq = 0;
1245 tp->recv_sack_cache[i].end_seq = 0;
1246 }
6a438bbe 1247
fda03fbb 1248 first_sack_index = 0;
6a438bbe
SH
1249 if (flag)
1250 num_sacks = 1;
1251 else {
1252 int j;
1253 tp->fastpath_skb_hint = NULL;
1254
1255 /* order SACK blocks to allow in order walk of the retrans queue */
1256 for (i = num_sacks-1; i > 0; i--) {
1257 for (j = 0; j < i; j++){
1258 if (after(ntohl(sp[j].start_seq),
1259 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1260 struct tcp_sack_block_wire tmp;
1261
1262 tmp = sp[j];
1263 sp[j] = sp[j+1];
1264 sp[j+1] = tmp;
fda03fbb
BE
1265
1266 /* Track where the first SACK block goes to */
1267 if (j == first_sack_index)
1268 first_sack_index = j+1;
6a438bbe
SH
1269 }
1270
1271 }
1272 }
1273 }
1274
1275 /* clear flag as used for different purpose in following code */
1276 flag = 0;
1277
fda03fbb
BE
1278 /* Use SACK fastpath hint if valid */
1279 cached_skb = tp->fastpath_skb_hint;
1280 cached_fack_count = tp->fastpath_cnt_hint;
1281 if (!cached_skb) {
fe067e8a 1282 cached_skb = tcp_write_queue_head(sk);
fda03fbb
BE
1283 cached_fack_count = 0;
1284 }
1285
6a438bbe
SH
1286 for (i=0; i<num_sacks; i++, sp++) {
1287 struct sk_buff *skb;
1288 __u32 start_seq = ntohl(sp->start_seq);
1289 __u32 end_seq = ntohl(sp->end_seq);
1290 int fack_count;
7769f406 1291 int dup_sack = (found_dup_sack && (i == first_sack_index));
6a438bbe 1292
18f02545
IJ
1293 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1294 if (dup_sack) {
1295 if (!tp->undo_marker)
1296 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1297 else
1298 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
93e68020
IJ
1299 } else {
1300 /* Don't count olds caused by ACK reordering */
1301 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1302 !after(end_seq, tp->snd_una))
1303 continue;
18f02545 1304 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
93e68020 1305 }
5b3c9882 1306 continue;
18f02545 1307 }
5b3c9882 1308
fda03fbb
BE
1309 skb = cached_skb;
1310 fack_count = cached_fack_count;
1da177e4
LT
1311
1312 /* Event "B" in the comment above. */
1313 if (after(end_seq, tp->high_seq))
1314 flag |= FLAG_DATA_LOST;
1315
fe067e8a 1316 tcp_for_write_queue_from(skb, sk) {
6475be16
DM
1317 int in_sack, pcount;
1318 u8 sacked;
1da177e4 1319
fe067e8a
DM
1320 if (skb == tcp_send_head(sk))
1321 break;
1322
fda03fbb
BE
1323 cached_skb = skb;
1324 cached_fack_count = fack_count;
1325 if (i == first_sack_index) {
1326 tp->fastpath_skb_hint = skb;
1327 tp->fastpath_cnt_hint = fack_count;
1328 }
6a438bbe 1329
1da177e4
LT
1330 /* The retransmission queue is always in order, so
1331 * we can short-circuit the walk early.
1332 */
6475be16 1333 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1334 break;
1335
3c05d92e
HX
1336 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1337 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1338
6475be16
DM
1339 pcount = tcp_skb_pcount(skb);
1340
3c05d92e
HX
1341 if (pcount > 1 && !in_sack &&
1342 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1343 unsigned int pkt_len;
1344
3c05d92e
HX
1345 in_sack = !after(start_seq,
1346 TCP_SKB_CB(skb)->seq);
1347
1348 if (!in_sack)
6475be16
DM
1349 pkt_len = (start_seq -
1350 TCP_SKB_CB(skb)->seq);
1351 else
1352 pkt_len = (end_seq -
1353 TCP_SKB_CB(skb)->seq);
7967168c 1354 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1355 break;
1356 pcount = tcp_skb_pcount(skb);
1357 }
1358
1359 fack_count += pcount;
1da177e4 1360
6475be16
DM
1361 sacked = TCP_SKB_CB(skb)->sacked;
1362
1da177e4
LT
1363 /* Account D-SACK for retransmitted packet. */
1364 if ((dup_sack && in_sack) &&
1365 (sacked & TCPCB_RETRANS) &&
1366 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1367 tp->undo_retrans--;
1368
1369 /* The frame is ACKed. */
1370 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1371 if (sacked&TCPCB_RETRANS) {
1372 if ((dup_sack && in_sack) &&
1373 (sacked&TCPCB_SACKED_ACKED))
1374 reord = min(fack_count, reord);
1375 } else {
1376 /* If it was in a hole, we detected reordering. */
1377 if (fack_count < prior_fackets &&
1378 !(sacked&TCPCB_SACKED_ACKED))
1379 reord = min(fack_count, reord);
1380 }
1381
1382 /* Nothing to do; acked frame is about to be dropped. */
1383 continue;
1384 }
1385
1386 if ((sacked&TCPCB_SACKED_RETRANS) &&
1387 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1388 (!lost_retrans || after(end_seq, lost_retrans)))
1389 lost_retrans = end_seq;
1390
1391 if (!in_sack)
1392 continue;
1393
1394 if (!(sacked&TCPCB_SACKED_ACKED)) {
1395 if (sacked & TCPCB_SACKED_RETRANS) {
1396 /* If the segment is not tagged as lost,
1397 * we do not clear RETRANS, believing
1398 * that retransmission is still in flight.
1399 */
1400 if (sacked & TCPCB_LOST) {
1401 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1402 tp->lost_out -= tcp_skb_pcount(skb);
1403 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1404
1405 /* clear lost hint */
1406 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1407 }
1408 } else {
1409 /* New sack for not retransmitted frame,
1410 * which was in hole. It is reordering.
1411 */
1412 if (!(sacked & TCPCB_RETRANS) &&
1413 fack_count < prior_fackets)
1414 reord = min(fack_count, reord);
1415
1416 if (sacked & TCPCB_LOST) {
1417 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1418 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1419
1420 /* clear lost hint */
1421 tp->retransmit_skb_hint = NULL;
1da177e4 1422 }
4dc2665e
IJ
1423 /* SACK enhanced F-RTO detection.
1424 * Set flag if and only if non-rexmitted
1425 * segments below frto_highmark are
1426 * SACKed (RFC4138; Appendix B).
1427 * Clearing correct due to in-order walk
1428 */
1429 if (after(end_seq, tp->frto_highmark)) {
1430 flag &= ~FLAG_ONLY_ORIG_SACKED;
1431 } else {
1432 if (!(sacked & TCPCB_RETRANS))
1433 flag |= FLAG_ONLY_ORIG_SACKED;
1434 }
1da177e4
LT
1435 }
1436
1437 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1438 flag |= FLAG_DATA_SACKED;
1439 tp->sacked_out += tcp_skb_pcount(skb);
1440
1441 if (fack_count > tp->fackets_out)
1442 tp->fackets_out = fack_count;
d738cd8f
IJ
1443
1444 if (after(TCP_SKB_CB(skb)->seq,
1445 tp->highest_sack))
1446 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1da177e4
LT
1447 } else {
1448 if (dup_sack && (sacked&TCPCB_RETRANS))
1449 reord = min(fack_count, reord);
1450 }
1451
1452 /* D-SACK. We can detect redundant retransmission
1453 * in S|R and plain R frames and clear it.
1454 * undo_retrans is decreased above, L|R frames
1455 * are accounted above as well.
1456 */
1457 if (dup_sack &&
1458 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1459 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1460 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1461 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1462 }
1463 }
1464 }
1465
1c1e87ed
IJ
1466 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery)
1467 flag |= tcp_mark_lost_retrans(sk, lost_retrans);
1da177e4 1468
86426c22
IJ
1469 tcp_verify_left_out(tp);
1470
288035f9 1471 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1472 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1473 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1474
1475#if FASTRETRANS_DEBUG > 0
1476 BUG_TRAP((int)tp->sacked_out >= 0);
1477 BUG_TRAP((int)tp->lost_out >= 0);
1478 BUG_TRAP((int)tp->retrans_out >= 0);
1479 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1480#endif
1481 return flag;
1482}
1483
95eacd27
IJ
1484/* If we receive more dupacks than we expected counting segments
1485 * in assumption of absent reordering, interpret this as reordering.
1486 * The only another reason could be bug in receiver TCP.
30935cf4 1487 */
4ddf6676
IJ
1488static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1489{
1490 struct tcp_sock *tp = tcp_sk(sk);
1491 u32 holes;
1492
1493 holes = max(tp->lost_out, 1U);
1494 holes = min(holes, tp->packets_out);
1495
1496 if ((tp->sacked_out + holes) > tp->packets_out) {
1497 tp->sacked_out = tp->packets_out - holes;
1498 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1499 }
1500}
1501
1502/* Emulate SACKs for SACKless connection: account for a new dupack. */
1503
1504static void tcp_add_reno_sack(struct sock *sk)
1505{
1506 struct tcp_sock *tp = tcp_sk(sk);
1507 tp->sacked_out++;
1508 tcp_check_reno_reordering(sk, 0);
005903bc 1509 tcp_verify_left_out(tp);
4ddf6676
IJ
1510}
1511
1512/* Account for ACK, ACKing some data in Reno Recovery phase. */
1513
1514static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1515{
1516 struct tcp_sock *tp = tcp_sk(sk);
1517
1518 if (acked > 0) {
1519 /* One ACK acked hole. The rest eat duplicate ACKs. */
1520 if (acked-1 >= tp->sacked_out)
1521 tp->sacked_out = 0;
1522 else
1523 tp->sacked_out -= acked-1;
1524 }
1525 tcp_check_reno_reordering(sk, acked);
005903bc 1526 tcp_verify_left_out(tp);
4ddf6676
IJ
1527}
1528
1529static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1530{
1531 tp->sacked_out = 0;
4ddf6676
IJ
1532}
1533
95eacd27
IJ
1534/* F-RTO can only be used if TCP has never retransmitted anything other than
1535 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1536 */
46d0de4e 1537int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1538{
1539 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1540 struct sk_buff *skb;
1541
575ee714 1542 if (!sysctl_tcp_frto)
46d0de4e 1543 return 0;
bdaae17d 1544
4dc2665e
IJ
1545 if (IsSackFrto())
1546 return 1;
1547
46d0de4e
IJ
1548 /* Avoid expensive walking of rexmit queue if possible */
1549 if (tp->retrans_out > 1)
1550 return 0;
1551
fe067e8a
DM
1552 skb = tcp_write_queue_head(sk);
1553 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1554 tcp_for_write_queue_from(skb, sk) {
1555 if (skb == tcp_send_head(sk))
1556 break;
46d0de4e
IJ
1557 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1558 return 0;
1559 /* Short-circuit when first non-SACKed skb has been checked */
1560 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1561 break;
1562 }
1563 return 1;
bdaae17d
IJ
1564}
1565
30935cf4
IJ
1566/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1567 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1568 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1569 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1570 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1571 * bits are handled if the Loss state is really to be entered (in
1572 * tcp_enter_frto_loss).
7487c48c
IJ
1573 *
1574 * Do like tcp_enter_loss() would; when RTO expires the second time it
1575 * does:
1576 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1577 */
1578void tcp_enter_frto(struct sock *sk)
1579{
6687e988 1580 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1581 struct tcp_sock *tp = tcp_sk(sk);
1582 struct sk_buff *skb;
1583
7487c48c 1584 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1585 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1586 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1587 !icsk->icsk_retransmits)) {
6687e988 1588 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1589 /* Our state is too optimistic in ssthresh() call because cwnd
1590 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1591 * recovery has not yet completed. Pattern would be this: RTO,
1592 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1593 * up here twice).
1594 * RFC4138 should be more specific on what to do, even though
1595 * RTO is quite unlikely to occur after the first Cumulative ACK
1596 * due to back-off and complexity of triggering events ...
1597 */
1598 if (tp->frto_counter) {
1599 u32 stored_cwnd;
1600 stored_cwnd = tp->snd_cwnd;
1601 tp->snd_cwnd = 2;
1602 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1603 tp->snd_cwnd = stored_cwnd;
1604 } else {
1605 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1606 }
1607 /* ... in theory, cong.control module could do "any tricks" in
1608 * ssthresh(), which means that ca_state, lost bits and lost_out
1609 * counter would have to be faked before the call occurs. We
1610 * consider that too expensive, unlikely and hacky, so modules
1611 * using these in ssthresh() must deal these incompatibility
1612 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1613 */
6687e988 1614 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1615 }
1616
1da177e4
LT
1617 tp->undo_marker = tp->snd_una;
1618 tp->undo_retrans = 0;
1619
fe067e8a 1620 skb = tcp_write_queue_head(sk);
009a2e3e
IJ
1621 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1622 tp->undo_marker = 0;
d1a54c6a 1623 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1624 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1625 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4 1626 }
005903bc 1627 tcp_verify_left_out(tp);
1da177e4 1628
4dc2665e
IJ
1629 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1630 * The last condition is necessary at least in tp->frto_counter case.
1631 */
1632 if (IsSackFrto() && (tp->frto_counter ||
1633 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1634 after(tp->high_seq, tp->snd_una)) {
1635 tp->frto_highmark = tp->high_seq;
1636 } else {
1637 tp->frto_highmark = tp->snd_nxt;
1638 }
7b0eb22b
IJ
1639 tcp_set_ca_state(sk, TCP_CA_Disorder);
1640 tp->high_seq = tp->snd_nxt;
7487c48c 1641 tp->frto_counter = 1;
1da177e4
LT
1642}
1643
1644/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1645 * which indicates that we should follow the traditional RTO recovery,
1646 * i.e. mark everything lost and do go-back-N retransmission.
1647 */
d1a54c6a 1648static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1649{
1650 struct tcp_sock *tp = tcp_sk(sk);
1651 struct sk_buff *skb;
1da177e4 1652
1da177e4 1653 tp->lost_out = 0;
d1a54c6a 1654 tp->retrans_out = 0;
e60402d0 1655 if (tcp_is_reno(tp))
9bff40fd 1656 tcp_reset_reno_sack(tp);
1da177e4 1657
fe067e8a
DM
1658 tcp_for_write_queue(skb, sk) {
1659 if (skb == tcp_send_head(sk))
1660 break;
d1a54c6a
IJ
1661 /*
1662 * Count the retransmission made on RTO correctly (only when
1663 * waiting for the first ACK and did not get it)...
1664 */
1665 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
0a9f2a46
IJ
1666 /* For some reason this R-bit might get cleared? */
1667 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1668 tp->retrans_out += tcp_skb_pcount(skb);
d1a54c6a
IJ
1669 /* ...enter this if branch just for the first segment */
1670 flag |= FLAG_DATA_ACKED;
1671 } else {
009a2e3e
IJ
1672 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1673 tp->undo_marker = 0;
d1a54c6a
IJ
1674 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1675 }
1da177e4 1676
9bff40fd
IJ
1677 /* Don't lost mark skbs that were fwd transmitted after RTO */
1678 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1679 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1680 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1681 tp->lost_out += tcp_skb_pcount(skb);
1da177e4
LT
1682 }
1683 }
005903bc 1684 tcp_verify_left_out(tp);
1da177e4 1685
95c4922b 1686 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1687 tp->snd_cwnd_cnt = 0;
1688 tp->snd_cwnd_stamp = tcp_time_stamp;
1da177e4 1689 tp->frto_counter = 0;
16e90681 1690 tp->bytes_acked = 0;
1da177e4
LT
1691
1692 tp->reordering = min_t(unsigned int, tp->reordering,
1693 sysctl_tcp_reordering);
6687e988 1694 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1695 tp->high_seq = tp->frto_highmark;
1696 TCP_ECN_queue_cwr(tp);
6a438bbe 1697
b7689205 1698 tcp_clear_retrans_hints_partial(tp);
1da177e4
LT
1699}
1700
1701void tcp_clear_retrans(struct tcp_sock *tp)
1702{
1da177e4
LT
1703 tp->retrans_out = 0;
1704
1705 tp->fackets_out = 0;
1706 tp->sacked_out = 0;
1707 tp->lost_out = 0;
1708
1709 tp->undo_marker = 0;
1710 tp->undo_retrans = 0;
1711}
1712
1713/* Enter Loss state. If "how" is not zero, forget all SACK information
1714 * and reset tags completely, otherwise preserve SACKs. If receiver
1715 * dropped its ofo queue, we will know this due to reneging detection.
1716 */
1717void tcp_enter_loss(struct sock *sk, int how)
1718{
6687e988 1719 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1720 struct tcp_sock *tp = tcp_sk(sk);
1721 struct sk_buff *skb;
1722 int cnt = 0;
1723
1724 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1725 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1726 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1727 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1728 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1729 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1730 }
1731 tp->snd_cwnd = 1;
1732 tp->snd_cwnd_cnt = 0;
1733 tp->snd_cwnd_stamp = tcp_time_stamp;
1734
9772efb9 1735 tp->bytes_acked = 0;
1da177e4
LT
1736 tcp_clear_retrans(tp);
1737
b7689205
IJ
1738 if (!how) {
1739 /* Push undo marker, if it was plain RTO and nothing
1740 * was retransmitted. */
1da177e4 1741 tp->undo_marker = tp->snd_una;
b7689205
IJ
1742 tcp_clear_retrans_hints_partial(tp);
1743 } else {
1744 tcp_clear_all_retrans_hints(tp);
1745 }
1da177e4 1746
fe067e8a
DM
1747 tcp_for_write_queue(skb, sk) {
1748 if (skb == tcp_send_head(sk))
1749 break;
1da177e4
LT
1750 cnt += tcp_skb_pcount(skb);
1751 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1752 tp->undo_marker = 0;
1753 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1754 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1755 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1756 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1757 tp->lost_out += tcp_skb_pcount(skb);
1758 } else {
1759 tp->sacked_out += tcp_skb_pcount(skb);
1760 tp->fackets_out = cnt;
1761 }
1762 }
005903bc 1763 tcp_verify_left_out(tp);
1da177e4
LT
1764
1765 tp->reordering = min_t(unsigned int, tp->reordering,
1766 sysctl_tcp_reordering);
6687e988 1767 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1768 tp->high_seq = tp->snd_nxt;
1769 TCP_ECN_queue_cwr(tp);
580e572a
IJ
1770 /* Abort FRTO algorithm if one is in progress */
1771 tp->frto_counter = 0;
1da177e4
LT
1772}
1773
463c84b9 1774static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1775{
1776 struct sk_buff *skb;
1777
1778 /* If ACK arrived pointing to a remembered SACK,
1779 * it means that our remembered SACKs do not reflect
1780 * real state of receiver i.e.
1781 * receiver _host_ is heavily congested (or buggy).
1782 * Do processing similar to RTO timeout.
1783 */
fe067e8a 1784 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1da177e4 1785 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1786 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1787 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1788
1789 tcp_enter_loss(sk, 1);
6687e988 1790 icsk->icsk_retransmits++;
fe067e8a 1791 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
463c84b9 1792 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1793 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1794 return 1;
1795 }
1796 return 0;
1797}
1798
1799static inline int tcp_fackets_out(struct tcp_sock *tp)
1800{
e60402d0 1801 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1da177e4
LT
1802}
1803
463c84b9 1804static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1805{
463c84b9 1806 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1807}
1808
9e412ba7 1809static inline int tcp_head_timedout(struct sock *sk)
1da177e4 1810{
9e412ba7
IJ
1811 struct tcp_sock *tp = tcp_sk(sk);
1812
1da177e4 1813 return tp->packets_out &&
fe067e8a 1814 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1da177e4
LT
1815}
1816
1817/* Linux NewReno/SACK/FACK/ECN state machine.
1818 * --------------------------------------
1819 *
1820 * "Open" Normal state, no dubious events, fast path.
1821 * "Disorder" In all the respects it is "Open",
1822 * but requires a bit more attention. It is entered when
1823 * we see some SACKs or dupacks. It is split of "Open"
1824 * mainly to move some processing from fast path to slow one.
1825 * "CWR" CWND was reduced due to some Congestion Notification event.
1826 * It can be ECN, ICMP source quench, local device congestion.
1827 * "Recovery" CWND was reduced, we are fast-retransmitting.
1828 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1829 *
1830 * tcp_fastretrans_alert() is entered:
1831 * - each incoming ACK, if state is not "Open"
1832 * - when arrived ACK is unusual, namely:
1833 * * SACK
1834 * * Duplicate ACK.
1835 * * ECN ECE.
1836 *
1837 * Counting packets in flight is pretty simple.
1838 *
1839 * in_flight = packets_out - left_out + retrans_out
1840 *
1841 * packets_out is SND.NXT-SND.UNA counted in packets.
1842 *
1843 * retrans_out is number of retransmitted segments.
1844 *
1845 * left_out is number of segments left network, but not ACKed yet.
1846 *
1847 * left_out = sacked_out + lost_out
1848 *
1849 * sacked_out: Packets, which arrived to receiver out of order
1850 * and hence not ACKed. With SACKs this number is simply
1851 * amount of SACKed data. Even without SACKs
1852 * it is easy to give pretty reliable estimate of this number,
1853 * counting duplicate ACKs.
1854 *
1855 * lost_out: Packets lost by network. TCP has no explicit
1856 * "loss notification" feedback from network (for now).
1857 * It means that this number can be only _guessed_.
1858 * Actually, it is the heuristics to predict lossage that
1859 * distinguishes different algorithms.
1860 *
1861 * F.e. after RTO, when all the queue is considered as lost,
1862 * lost_out = packets_out and in_flight = retrans_out.
1863 *
1864 * Essentially, we have now two algorithms counting
1865 * lost packets.
1866 *
1867 * FACK: It is the simplest heuristics. As soon as we decided
1868 * that something is lost, we decide that _all_ not SACKed
1869 * packets until the most forward SACK are lost. I.e.
1870 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1871 * It is absolutely correct estimate, if network does not reorder
1872 * packets. And it loses any connection to reality when reordering
1873 * takes place. We use FACK by default until reordering
1874 * is suspected on the path to this destination.
1875 *
1876 * NewReno: when Recovery is entered, we assume that one segment
1877 * is lost (classic Reno). While we are in Recovery and
1878 * a partial ACK arrives, we assume that one more packet
1879 * is lost (NewReno). This heuristics are the same in NewReno
1880 * and SACK.
1881 *
1882 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1883 * deflation etc. CWND is real congestion window, never inflated, changes
1884 * only according to classic VJ rules.
1885 *
1886 * Really tricky (and requiring careful tuning) part of algorithm
1887 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1888 * The first determines the moment _when_ we should reduce CWND and,
1889 * hence, slow down forward transmission. In fact, it determines the moment
1890 * when we decide that hole is caused by loss, rather than by a reorder.
1891 *
1892 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1893 * holes, caused by lost packets.
1894 *
1895 * And the most logically complicated part of algorithm is undo
1896 * heuristics. We detect false retransmits due to both too early
1897 * fast retransmit (reordering) and underestimated RTO, analyzing
1898 * timestamps and D-SACKs. When we detect that some segments were
1899 * retransmitted by mistake and CWND reduction was wrong, we undo
1900 * window reduction and abort recovery phase. This logic is hidden
1901 * inside several functions named tcp_try_undo_<something>.
1902 */
1903
1904/* This function decides, when we should leave Disordered state
1905 * and enter Recovery phase, reducing congestion window.
1906 *
1907 * Main question: may we further continue forward transmission
1908 * with the same cwnd?
1909 */
9e412ba7 1910static int tcp_time_to_recover(struct sock *sk)
1da177e4 1911{
9e412ba7 1912 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1913 __u32 packets_out;
1914
52c63f1e
IJ
1915 /* Do not perform any recovery during FRTO algorithm */
1916 if (tp->frto_counter)
1917 return 0;
1918
1da177e4
LT
1919 /* Trick#1: The loss is proven. */
1920 if (tp->lost_out)
1921 return 1;
1922
1923 /* Not-A-Trick#2 : Classic rule... */
1924 if (tcp_fackets_out(tp) > tp->reordering)
1925 return 1;
1926
1927 /* Trick#3 : when we use RFC2988 timer restart, fast
1928 * retransmit can be triggered by timeout of queue head.
1929 */
9e412ba7 1930 if (tcp_head_timedout(sk))
1da177e4
LT
1931 return 1;
1932
1933 /* Trick#4: It is still not OK... But will it be useful to delay
1934 * recovery more?
1935 */
1936 packets_out = tp->packets_out;
1937 if (packets_out <= tp->reordering &&
1938 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
9e412ba7 1939 !tcp_may_send_now(sk)) {
1da177e4
LT
1940 /* We have nothing to send. This connection is limited
1941 * either by receiver window or by application.
1942 */
1943 return 1;
1944 }
1945
1946 return 0;
1947}
1948
d8f4f223
IJ
1949/* RFC: This is from the original, I doubt that this is necessary at all:
1950 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1951 * retransmitted past LOST markings in the first place? I'm not fully sure
1952 * about undo and end of connection cases, which can cause R without L?
1953 */
1954static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1955 struct sk_buff *skb)
1956{
1957 if ((tp->retransmit_skb_hint != NULL) &&
1958 before(TCP_SKB_CB(skb)->seq,
1959 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
19b2b486 1960 tp->retransmit_skb_hint = NULL;
d8f4f223
IJ
1961}
1962
1da177e4 1963/* Mark head of queue up as lost. */
9e412ba7 1964static void tcp_mark_head_lost(struct sock *sk,
1da177e4
LT
1965 int packets, u32 high_seq)
1966{
9e412ba7 1967 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1968 struct sk_buff *skb;
6a438bbe 1969 int cnt;
1da177e4 1970
6a438bbe
SH
1971 BUG_TRAP(packets <= tp->packets_out);
1972 if (tp->lost_skb_hint) {
1973 skb = tp->lost_skb_hint;
1974 cnt = tp->lost_cnt_hint;
1975 } else {
fe067e8a 1976 skb = tcp_write_queue_head(sk);
6a438bbe
SH
1977 cnt = 0;
1978 }
1da177e4 1979
fe067e8a
DM
1980 tcp_for_write_queue_from(skb, sk) {
1981 if (skb == tcp_send_head(sk))
1982 break;
6a438bbe
SH
1983 /* TODO: do this better */
1984 /* this is not the most efficient way to do this... */
1985 tp->lost_skb_hint = skb;
1986 tp->lost_cnt_hint = cnt;
1987 cnt += tcp_skb_pcount(skb);
1988 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4 1989 break;
3eec0047 1990 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
1da177e4
LT
1991 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1992 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1993 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1994 }
1995 }
005903bc 1996 tcp_verify_left_out(tp);
1da177e4
LT
1997}
1998
1999/* Account newly detected lost packet(s) */
2000
9e412ba7 2001static void tcp_update_scoreboard(struct sock *sk)
1da177e4 2002{
9e412ba7
IJ
2003 struct tcp_sock *tp = tcp_sk(sk);
2004
e60402d0 2005 if (tcp_is_fack(tp)) {
1da177e4
LT
2006 int lost = tp->fackets_out - tp->reordering;
2007 if (lost <= 0)
2008 lost = 1;
9e412ba7 2009 tcp_mark_head_lost(sk, lost, tp->high_seq);
1da177e4 2010 } else {
9e412ba7 2011 tcp_mark_head_lost(sk, 1, tp->high_seq);
1da177e4
LT
2012 }
2013
2014 /* New heuristics: it is possible only after we switched
2015 * to restart timer each time when something is ACKed.
2016 * Hence, we can detect timed out packets during fast
2017 * retransmit without falling to slow start.
2018 */
e60402d0 2019 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
1da177e4
LT
2020 struct sk_buff *skb;
2021
6a438bbe 2022 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
fe067e8a 2023 : tcp_write_queue_head(sk);
6a438bbe 2024
fe067e8a
DM
2025 tcp_for_write_queue_from(skb, sk) {
2026 if (skb == tcp_send_head(sk))
2027 break;
6a438bbe
SH
2028 if (!tcp_skb_timedout(sk, skb))
2029 break;
2030
2031 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
2032 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2033 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 2034 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
2035 }
2036 }
6a438bbe
SH
2037
2038 tp->scoreboard_skb_hint = skb;
2039
005903bc 2040 tcp_verify_left_out(tp);
1da177e4
LT
2041 }
2042}
2043
2044/* CWND moderation, preventing bursts due to too big ACKs
2045 * in dubious situations.
2046 */
2047static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2048{
2049 tp->snd_cwnd = min(tp->snd_cwnd,
2050 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2051 tp->snd_cwnd_stamp = tcp_time_stamp;
2052}
2053
72dc5b92
SH
2054/* Lower bound on congestion window is slow start threshold
2055 * unless congestion avoidance choice decides to overide it.
2056 */
2057static inline u32 tcp_cwnd_min(const struct sock *sk)
2058{
2059 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2060
2061 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2062}
2063
1da177e4 2064/* Decrease cwnd each second ack. */
1e757f99 2065static void tcp_cwnd_down(struct sock *sk, int flag)
1da177e4 2066{
6687e988 2067 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2068 int decr = tp->snd_cwnd_cnt + 1;
1da177e4 2069
49ff4bb4 2070 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
e60402d0 2071 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
1e757f99
IJ
2072 tp->snd_cwnd_cnt = decr&1;
2073 decr >>= 1;
1da177e4 2074
1e757f99
IJ
2075 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2076 tp->snd_cwnd -= decr;
1da177e4 2077
1e757f99
IJ
2078 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2079 tp->snd_cwnd_stamp = tcp_time_stamp;
2080 }
1da177e4
LT
2081}
2082
2083/* Nothing was retransmitted or returned timestamp is less
2084 * than timestamp of the first retransmission.
2085 */
2086static inline int tcp_packet_delayed(struct tcp_sock *tp)
2087{
2088 return !tp->retrans_stamp ||
2089 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2090 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2091}
2092
2093/* Undo procedures. */
2094
2095#if FASTRETRANS_DEBUG > 1
9e412ba7 2096static void DBGUNDO(struct sock *sk, const char *msg)
1da177e4 2097{
9e412ba7 2098 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2099 struct inet_sock *inet = inet_sk(sk);
9e412ba7 2100
1da177e4
LT
2101 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2102 msg,
2103 NIPQUAD(inet->daddr), ntohs(inet->dport),
83ae4088 2104 tp->snd_cwnd, tcp_left_out(tp),
1da177e4
LT
2105 tp->snd_ssthresh, tp->prior_ssthresh,
2106 tp->packets_out);
2107}
2108#else
2109#define DBGUNDO(x...) do { } while (0)
2110#endif
2111
6687e988 2112static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 2113{
6687e988
ACM
2114 struct tcp_sock *tp = tcp_sk(sk);
2115
1da177e4 2116 if (tp->prior_ssthresh) {
6687e988
ACM
2117 const struct inet_connection_sock *icsk = inet_csk(sk);
2118
2119 if (icsk->icsk_ca_ops->undo_cwnd)
2120 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
2121 else
2122 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2123
2124 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2125 tp->snd_ssthresh = tp->prior_ssthresh;
2126 TCP_ECN_withdraw_cwr(tp);
2127 }
2128 } else {
2129 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2130 }
2131 tcp_moderate_cwnd(tp);
2132 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
2133
2134 /* There is something screwy going on with the retrans hints after
2135 an undo */
5af4ec23 2136 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2137}
2138
2139static inline int tcp_may_undo(struct tcp_sock *tp)
2140{
2141 return tp->undo_marker &&
2142 (!tp->undo_retrans || tcp_packet_delayed(tp));
2143}
2144
2145/* People celebrate: "We love our President!" */
9e412ba7 2146static int tcp_try_undo_recovery(struct sock *sk)
1da177e4 2147{
9e412ba7
IJ
2148 struct tcp_sock *tp = tcp_sk(sk);
2149
1da177e4
LT
2150 if (tcp_may_undo(tp)) {
2151 /* Happy end! We did not retransmit anything
2152 * or our original transmission succeeded.
2153 */
9e412ba7 2154 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
6687e988
ACM
2155 tcp_undo_cwr(sk, 1);
2156 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
2157 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2158 else
2159 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2160 tp->undo_marker = 0;
2161 }
e60402d0 2162 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
1da177e4
LT
2163 /* Hold old state until something *above* high_seq
2164 * is ACKed. For Reno it is MUST to prevent false
2165 * fast retransmits (RFC2582). SACK TCP is safe. */
2166 tcp_moderate_cwnd(tp);
2167 return 1;
2168 }
6687e988 2169 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2170 return 0;
2171}
2172
2173/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
9e412ba7 2174static void tcp_try_undo_dsack(struct sock *sk)
1da177e4 2175{
9e412ba7
IJ
2176 struct tcp_sock *tp = tcp_sk(sk);
2177
1da177e4 2178 if (tp->undo_marker && !tp->undo_retrans) {
9e412ba7 2179 DBGUNDO(sk, "D-SACK");
6687e988 2180 tcp_undo_cwr(sk, 1);
1da177e4
LT
2181 tp->undo_marker = 0;
2182 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2183 }
2184}
2185
2186/* Undo during fast recovery after partial ACK. */
2187
9e412ba7 2188static int tcp_try_undo_partial(struct sock *sk, int acked)
1da177e4 2189{
9e412ba7 2190 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2191 /* Partial ACK arrived. Force Hoe's retransmit. */
e60402d0 2192 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
1da177e4
LT
2193
2194 if (tcp_may_undo(tp)) {
2195 /* Plain luck! Hole if filled with delayed
2196 * packet, rather than with a retransmit.
2197 */
2198 if (tp->retrans_out == 0)
2199 tp->retrans_stamp = 0;
2200
6687e988 2201 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4 2202
9e412ba7 2203 DBGUNDO(sk, "Hoe");
6687e988 2204 tcp_undo_cwr(sk, 0);
1da177e4
LT
2205 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2206
2207 /* So... Do not make Hoe's retransmit yet.
2208 * If the first packet was delayed, the rest
2209 * ones are most probably delayed as well.
2210 */
2211 failed = 0;
2212 }
2213 return failed;
2214}
2215
2216/* Undo during loss recovery after partial ACK. */
9e412ba7 2217static int tcp_try_undo_loss(struct sock *sk)
1da177e4 2218{
9e412ba7
IJ
2219 struct tcp_sock *tp = tcp_sk(sk);
2220
1da177e4
LT
2221 if (tcp_may_undo(tp)) {
2222 struct sk_buff *skb;
fe067e8a
DM
2223 tcp_for_write_queue(skb, sk) {
2224 if (skb == tcp_send_head(sk))
2225 break;
1da177e4
LT
2226 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2227 }
6a438bbe 2228
5af4ec23 2229 tcp_clear_all_retrans_hints(tp);
6a438bbe 2230
9e412ba7 2231 DBGUNDO(sk, "partial loss");
1da177e4 2232 tp->lost_out = 0;
6687e988 2233 tcp_undo_cwr(sk, 1);
1da177e4 2234 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 2235 inet_csk(sk)->icsk_retransmits = 0;
1da177e4 2236 tp->undo_marker = 0;
e60402d0 2237 if (tcp_is_sack(tp))
6687e988 2238 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2239 return 1;
2240 }
2241 return 0;
2242}
2243
6687e988 2244static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 2245{
6687e988 2246 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 2247 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 2248 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 2249 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
2250}
2251
9e412ba7 2252static void tcp_try_to_open(struct sock *sk, int flag)
1da177e4 2253{
9e412ba7
IJ
2254 struct tcp_sock *tp = tcp_sk(sk);
2255
86426c22
IJ
2256 tcp_verify_left_out(tp);
2257
1da177e4
LT
2258 if (tp->retrans_out == 0)
2259 tp->retrans_stamp = 0;
2260
2261 if (flag&FLAG_ECE)
3cfe3baa 2262 tcp_enter_cwr(sk, 1);
1da177e4 2263
6687e988 2264 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2265 int state = TCP_CA_Open;
2266
d02596e3 2267 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
1da177e4
LT
2268 state = TCP_CA_Disorder;
2269
6687e988
ACM
2270 if (inet_csk(sk)->icsk_ca_state != state) {
2271 tcp_set_ca_state(sk, state);
1da177e4
LT
2272 tp->high_seq = tp->snd_nxt;
2273 }
2274 tcp_moderate_cwnd(tp);
2275 } else {
1e757f99 2276 tcp_cwnd_down(sk, flag);
1da177e4
LT
2277 }
2278}
2279
5d424d5a
JH
2280static void tcp_mtup_probe_failed(struct sock *sk)
2281{
2282 struct inet_connection_sock *icsk = inet_csk(sk);
2283
2284 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2285 icsk->icsk_mtup.probe_size = 0;
2286}
2287
2288static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2289{
2290 struct tcp_sock *tp = tcp_sk(sk);
2291 struct inet_connection_sock *icsk = inet_csk(sk);
2292
2293 /* FIXME: breaks with very large cwnd */
2294 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2295 tp->snd_cwnd = tp->snd_cwnd *
2296 tcp_mss_to_mtu(sk, tp->mss_cache) /
2297 icsk->icsk_mtup.probe_size;
2298 tp->snd_cwnd_cnt = 0;
2299 tp->snd_cwnd_stamp = tcp_time_stamp;
2300 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2301
2302 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2303 icsk->icsk_mtup.probe_size = 0;
2304 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2305}
2306
2307
1da177e4
LT
2308/* Process an event, which can update packets-in-flight not trivially.
2309 * Main goal of this function is to calculate new estimate for left_out,
2310 * taking into account both packets sitting in receiver's buffer and
2311 * packets lost by network.
2312 *
2313 * Besides that it does CWND reduction, when packet loss is detected
2314 * and changes state of machine.
2315 *
2316 * It does _not_ decide what to send, it is made in function
2317 * tcp_xmit_retransmit_queue().
2318 */
2319static void
1b6d427b 2320tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
1da177e4 2321{
6687e988 2322 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2323 struct tcp_sock *tp = tcp_sk(sk);
2e605294
IJ
2324 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2325 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2326 (tp->fackets_out > tp->reordering));
1da177e4
LT
2327
2328 /* Some technical things:
2329 * 1. Reno does not count dupacks (sacked_out) automatically. */
2330 if (!tp->packets_out)
2331 tp->sacked_out = 0;
91fed7a1
IJ
2332
2333 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
1da177e4
LT
2334 tp->fackets_out = 0;
2335
e905a9ed 2336 /* Now state machine starts.
1da177e4
LT
2337 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2338 if (flag&FLAG_ECE)
2339 tp->prior_ssthresh = 0;
2340
2341 /* B. In all the states check for reneging SACKs. */
463c84b9 2342 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2343 return;
2344
2345 /* C. Process data loss notification, provided it is valid. */
2346 if ((flag&FLAG_DATA_LOST) &&
2347 before(tp->snd_una, tp->high_seq) &&
6687e988 2348 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4 2349 tp->fackets_out > tp->reordering) {
9e412ba7 2350 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
1da177e4
LT
2351 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2352 }
2353
005903bc
IJ
2354 /* D. Check consistency of the current state. */
2355 tcp_verify_left_out(tp);
1da177e4
LT
2356
2357 /* E. Check state exit conditions. State can be terminated
2358 * when high_seq is ACKed. */
6687e988 2359 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2360 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2361 tp->retrans_stamp = 0;
2362 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2363 switch (icsk->icsk_ca_state) {
1da177e4 2364 case TCP_CA_Loss:
6687e988 2365 icsk->icsk_retransmits = 0;
9e412ba7 2366 if (tcp_try_undo_recovery(sk))
1da177e4
LT
2367 return;
2368 break;
2369
2370 case TCP_CA_CWR:
2371 /* CWR is to be held something *above* high_seq
2372 * is ACKed for CWR bit to reach receiver. */
2373 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2374 tcp_complete_cwr(sk);
2375 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2376 }
2377 break;
2378
2379 case TCP_CA_Disorder:
9e412ba7 2380 tcp_try_undo_dsack(sk);
1da177e4
LT
2381 if (!tp->undo_marker ||
2382 /* For SACK case do not Open to allow to undo
2383 * catching for all duplicate ACKs. */
e60402d0 2384 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
1da177e4 2385 tp->undo_marker = 0;
6687e988 2386 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2387 }
2388 break;
2389
2390 case TCP_CA_Recovery:
e60402d0 2391 if (tcp_is_reno(tp))
1da177e4 2392 tcp_reset_reno_sack(tp);
9e412ba7 2393 if (tcp_try_undo_recovery(sk))
1da177e4 2394 return;
6687e988 2395 tcp_complete_cwr(sk);
1da177e4
LT
2396 break;
2397 }
2398 }
2399
2400 /* F. Process state. */
6687e988 2401 switch (icsk->icsk_ca_state) {
1da177e4 2402 case TCP_CA_Recovery:
2e605294 2403 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
e60402d0 2404 if (tcp_is_reno(tp) && is_dupack)
6687e988 2405 tcp_add_reno_sack(sk);
1b6d427b
IJ
2406 } else
2407 do_lost = tcp_try_undo_partial(sk, pkts_acked);
1da177e4
LT
2408 break;
2409 case TCP_CA_Loss:
2410 if (flag&FLAG_DATA_ACKED)
6687e988 2411 icsk->icsk_retransmits = 0;
9e412ba7 2412 if (!tcp_try_undo_loss(sk)) {
1da177e4
LT
2413 tcp_moderate_cwnd(tp);
2414 tcp_xmit_retransmit_queue(sk);
2415 return;
2416 }
6687e988 2417 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2418 return;
2419 /* Loss is undone; fall through to processing in Open state. */
2420 default:
e60402d0 2421 if (tcp_is_reno(tp)) {
2e605294 2422 if (flag & FLAG_SND_UNA_ADVANCED)
1da177e4
LT
2423 tcp_reset_reno_sack(tp);
2424 if (is_dupack)
6687e988 2425 tcp_add_reno_sack(sk);
1da177e4
LT
2426 }
2427
6687e988 2428 if (icsk->icsk_ca_state == TCP_CA_Disorder)
9e412ba7 2429 tcp_try_undo_dsack(sk);
1da177e4 2430
9e412ba7
IJ
2431 if (!tcp_time_to_recover(sk)) {
2432 tcp_try_to_open(sk, flag);
1da177e4
LT
2433 return;
2434 }
2435
5d424d5a
JH
2436 /* MTU probe failure: don't reduce cwnd */
2437 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2438 icsk->icsk_mtup.probe_size &&
0e7b1368 2439 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2440 tcp_mtup_probe_failed(sk);
2441 /* Restores the reduction we did in tcp_mtup_probe() */
2442 tp->snd_cwnd++;
2443 tcp_simple_retransmit(sk);
2444 return;
2445 }
2446
1da177e4
LT
2447 /* Otherwise enter Recovery state */
2448
e60402d0 2449 if (tcp_is_reno(tp))
1da177e4
LT
2450 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2451 else
2452 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2453
2454 tp->high_seq = tp->snd_nxt;
2455 tp->prior_ssthresh = 0;
2456 tp->undo_marker = tp->snd_una;
2457 tp->undo_retrans = tp->retrans_out;
2458
6687e988 2459 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2460 if (!(flag&FLAG_ECE))
6687e988
ACM
2461 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2462 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2463 TCP_ECN_queue_cwr(tp);
2464 }
2465
9772efb9 2466 tp->bytes_acked = 0;
1da177e4 2467 tp->snd_cwnd_cnt = 0;
6687e988 2468 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2469 }
2470
2e605294 2471 if (do_lost || tcp_head_timedout(sk))
9e412ba7 2472 tcp_update_scoreboard(sk);
1e757f99 2473 tcp_cwnd_down(sk, flag);
1da177e4
LT
2474 tcp_xmit_retransmit_queue(sk);
2475}
2476
2477/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2478 * with this code. (Supersedes RFC1323)
1da177e4 2479 */
2d2abbab 2480static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2481{
1da177e4
LT
2482 /* RTTM Rule: A TSecr value received in a segment is used to
2483 * update the averaged RTT measurement only if the segment
2484 * acknowledges some new data, i.e., only if it advances the
2485 * left edge of the send window.
2486 *
2487 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2488 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2489 *
2490 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2491 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2492 * samples are accepted even from very old segments: f.e., when rtt=1
2493 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2494 * answer arrives rto becomes 120 seconds! If at least one of segments
2495 * in window is lost... Voila. --ANK (010210)
2496 */
463c84b9
ACM
2497 struct tcp_sock *tp = tcp_sk(sk);
2498 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2499 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2500 tcp_set_rto(sk);
2501 inet_csk(sk)->icsk_backoff = 0;
2502 tcp_bound_rto(sk);
1da177e4
LT
2503}
2504
2d2abbab 2505static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2506{
2507 /* We don't have a timestamp. Can only use
2508 * packets that are not retransmitted to determine
2509 * rtt estimates. Also, we must not reset the
2510 * backoff for rto until we get a non-retransmitted
2511 * packet. This allows us to deal with a situation
2512 * where the network delay has increased suddenly.
2513 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2514 */
2515
2516 if (flag & FLAG_RETRANS_DATA_ACKED)
2517 return;
2518
2d2abbab 2519 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2520 tcp_set_rto(sk);
2521 inet_csk(sk)->icsk_backoff = 0;
2522 tcp_bound_rto(sk);
1da177e4
LT
2523}
2524
463c84b9 2525static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2526 const s32 seq_rtt)
1da177e4 2527{
463c84b9 2528 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2529 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2530 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2531 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2532 else if (seq_rtt >= 0)
2d2abbab 2533 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2534}
2535
16751347 2536static void tcp_cong_avoid(struct sock *sk, u32 ack,
40efc6fa 2537 u32 in_flight, int good)
1da177e4 2538{
6687e988 2539 const struct inet_connection_sock *icsk = inet_csk(sk);
16751347 2540 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
6687e988 2541 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2542}
2543
1da177e4
LT
2544/* Restart timer after forward progress on connection.
2545 * RFC2988 recommends to restart timer to now+rto.
2546 */
6728e7dc 2547static void tcp_rearm_rto(struct sock *sk)
1da177e4 2548{
9e412ba7
IJ
2549 struct tcp_sock *tp = tcp_sk(sk);
2550
1da177e4 2551 if (!tp->packets_out) {
463c84b9 2552 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2553 } else {
3f421baa 2554 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2555 }
2556}
2557
7c46a03e 2558/* If we get here, the whole TSO packet has not been acked. */
13fcf850 2559static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
2560{
2561 struct tcp_sock *tp = tcp_sk(sk);
7c46a03e 2562 u32 packets_acked;
1da177e4 2563
7c46a03e 2564 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
1da177e4
LT
2565
2566 packets_acked = tcp_skb_pcount(skb);
7c46a03e 2567 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1da177e4
LT
2568 return 0;
2569 packets_acked -= tcp_skb_pcount(skb);
2570
2571 if (packets_acked) {
1da177e4 2572 BUG_ON(tcp_skb_pcount(skb) == 0);
7c46a03e 2573 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
1da177e4
LT
2574 }
2575
13fcf850 2576 return packets_acked;
1da177e4
LT
2577}
2578
7c46a03e
IJ
2579/* Remove acknowledged frames from the retransmission queue. If our packet
2580 * is before the ack sequence we can discard it as it's confirmed to have
2581 * arrived at the other end.
2582 */
2583static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
1da177e4
LT
2584{
2585 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2586 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2587 struct sk_buff *skb;
7c46a03e 2588 u32 now = tcp_time_stamp;
13fcf850 2589 int fully_acked = 1;
7c46a03e 2590 int flag = 0;
6418204f 2591 int prior_packets = tp->packets_out;
7c46a03e 2592 s32 seq_rtt = -1;
b9ce204f 2593 ktime_t last_ackt = net_invalid_timestamp();
1da177e4 2594
7c46a03e 2595 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
e905a9ed 2596 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
13fcf850
IJ
2597 u32 end_seq;
2598 u32 packets_acked;
7c46a03e 2599 u8 sacked = scb->sacked;
1da177e4 2600
1da177e4 2601 if (after(scb->end_seq, tp->snd_una)) {
13fcf850
IJ
2602 if (tcp_skb_pcount(skb) == 1 ||
2603 !after(tp->snd_una, scb->seq))
2604 break;
2605
2606 packets_acked = tcp_tso_acked(sk, skb);
2607 if (!packets_acked)
2608 break;
2609
2610 fully_acked = 0;
2611 end_seq = tp->snd_una;
2612 } else {
2613 packets_acked = tcp_skb_pcount(skb);
2614 end_seq = scb->end_seq;
1da177e4
LT
2615 }
2616
5d424d5a 2617 /* MTU probing checks */
7c46a03e
IJ
2618 if (fully_acked && icsk->icsk_mtup.probe_size &&
2619 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2620 tcp_mtup_probe_success(sk, skb);
5d424d5a
JH
2621 }
2622
1da177e4
LT
2623 if (sacked) {
2624 if (sacked & TCPCB_RETRANS) {
2de979bd 2625 if (sacked & TCPCB_SACKED_RETRANS)
13fcf850 2626 tp->retrans_out -= packets_acked;
7c46a03e 2627 flag |= FLAG_RETRANS_DATA_ACKED;
1da177e4 2628 seq_rtt = -1;
009a2e3e
IJ
2629 if ((flag & FLAG_DATA_ACKED) ||
2630 (packets_acked > 1))
2631 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2d2abbab 2632 } else if (seq_rtt < 0) {
1da177e4 2633 seq_rtt = now - scb->when;
13fcf850
IJ
2634 if (fully_acked)
2635 last_ackt = skb->tstamp;
a61bbcf2 2636 }
7c46a03e 2637
1da177e4 2638 if (sacked & TCPCB_SACKED_ACKED)
13fcf850 2639 tp->sacked_out -= packets_acked;
1da177e4 2640 if (sacked & TCPCB_LOST)
13fcf850 2641 tp->lost_out -= packets_acked;
7c46a03e
IJ
2642
2643 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2644 !before(end_seq, tp->snd_up))
2645 tp->urg_mode = 0;
2d2abbab 2646 } else if (seq_rtt < 0) {
1da177e4 2647 seq_rtt = now - scb->when;
13fcf850
IJ
2648 if (fully_acked)
2649 last_ackt = skb->tstamp;
2d2abbab 2650 }
13fcf850
IJ
2651 tp->packets_out -= packets_acked;
2652
009a2e3e
IJ
2653 /* Initial outgoing SYN's get put onto the write_queue
2654 * just like anything else we transmit. It is not
2655 * true data, and if we misinform our callers that
2656 * this ACK acks real data, we will erroneously exit
2657 * connection startup slow start one packet too
2658 * quickly. This is severely frowned upon behavior.
2659 */
2660 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2661 flag |= FLAG_DATA_ACKED;
2662 } else {
2663 flag |= FLAG_SYN_ACKED;
2664 tp->retrans_stamp = 0;
2665 }
2666
13fcf850
IJ
2667 if (!fully_acked)
2668 break;
2669
fe067e8a 2670 tcp_unlink_write_queue(skb, sk);
1da177e4 2671 sk_stream_free_skb(sk, skb);
5af4ec23 2672 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2673 }
2674
7c46a03e 2675 if (flag & FLAG_ACKED) {
6418204f 2676 u32 pkts_acked = prior_packets - tp->packets_out;
164891aa
SH
2677 const struct tcp_congestion_ops *ca_ops
2678 = inet_csk(sk)->icsk_ca_ops;
2679
7c46a03e 2680 tcp_ack_update_rtt(sk, flag, seq_rtt);
6728e7dc 2681 tcp_rearm_rto(sk);
317a76f9 2682
91fed7a1 2683 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
13fcf850
IJ
2684 /* hint's skb might be NULL but we don't need to care */
2685 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2686 tp->fastpath_cnt_hint);
e60402d0 2687 if (tcp_is_reno(tp))
1b6d427b
IJ
2688 tcp_remove_reno_sacks(sk, pkts_acked);
2689
30cfd0ba
SH
2690 if (ca_ops->pkts_acked) {
2691 s32 rtt_us = -1;
2692
2693 /* Is the ACK triggering packet unambiguous? */
7c46a03e 2694 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
30cfd0ba
SH
2695 /* High resolution needed and available? */
2696 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2697 !ktime_equal(last_ackt,
2698 net_invalid_timestamp()))
2699 rtt_us = ktime_us_delta(ktime_get_real(),
2700 last_ackt);
2701 else if (seq_rtt > 0)
2702 rtt_us = jiffies_to_usecs(seq_rtt);
2703 }
b9ce204f 2704
30cfd0ba
SH
2705 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2706 }
1da177e4
LT
2707 }
2708
2709#if FASTRETRANS_DEBUG > 0
2710 BUG_TRAP((int)tp->sacked_out >= 0);
2711 BUG_TRAP((int)tp->lost_out >= 0);
2712 BUG_TRAP((int)tp->retrans_out >= 0);
e60402d0 2713 if (!tp->packets_out && tcp_is_sack(tp)) {
cfcabdcc 2714 icsk = inet_csk(sk);
1da177e4
LT
2715 if (tp->lost_out) {
2716 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2717 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2718 tp->lost_out = 0;
2719 }
2720 if (tp->sacked_out) {
2721 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2722 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2723 tp->sacked_out = 0;
2724 }
2725 if (tp->retrans_out) {
2726 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2727 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2728 tp->retrans_out = 0;
2729 }
2730 }
2731#endif
2732 *seq_rtt_p = seq_rtt;
7c46a03e 2733 return flag;
1da177e4
LT
2734}
2735
2736static void tcp_ack_probe(struct sock *sk)
2737{
463c84b9
ACM
2738 const struct tcp_sock *tp = tcp_sk(sk);
2739 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2740
2741 /* Was it a usable window open? */
2742
fe067e8a 2743 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1da177e4 2744 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2745 icsk->icsk_backoff = 0;
2746 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2747 /* Socket must be waked up by subsequent tcp_data_snd_check().
2748 * This function is not for random using!
2749 */
2750 } else {
463c84b9 2751 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2752 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2753 TCP_RTO_MAX);
1da177e4
LT
2754 }
2755}
2756
6687e988 2757static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2758{
2759 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2760 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2761}
2762
6687e988 2763static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2764{
6687e988 2765 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2766 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2767 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2768}
2769
2770/* Check that window update is acceptable.
2771 * The function assumes that snd_una<=ack<=snd_next.
2772 */
463c84b9
ACM
2773static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2774 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2775{
2776 return (after(ack, tp->snd_una) ||
2777 after(ack_seq, tp->snd_wl1) ||
2778 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2779}
2780
2781/* Update our send window.
2782 *
2783 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2784 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2785 */
9e412ba7
IJ
2786static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2787 u32 ack_seq)
1da177e4 2788{
9e412ba7 2789 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2790 int flag = 0;
aa8223c7 2791 u32 nwin = ntohs(tcp_hdr(skb)->window);
1da177e4 2792
aa8223c7 2793 if (likely(!tcp_hdr(skb)->syn))
1da177e4
LT
2794 nwin <<= tp->rx_opt.snd_wscale;
2795
2796 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2797 flag |= FLAG_WIN_UPDATE;
2798 tcp_update_wl(tp, ack, ack_seq);
2799
2800 if (tp->snd_wnd != nwin) {
2801 tp->snd_wnd = nwin;
2802
2803 /* Note, it is the only place, where
2804 * fast path is recovered for sending TCP.
2805 */
2ad41065 2806 tp->pred_flags = 0;
9e412ba7 2807 tcp_fast_path_check(sk);
1da177e4
LT
2808
2809 if (nwin > tp->max_window) {
2810 tp->max_window = nwin;
d83d8461 2811 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2812 }
2813 }
2814 }
2815
2816 tp->snd_una = ack;
2817
2818 return flag;
2819}
2820
9ead9a1d
IJ
2821/* A very conservative spurious RTO response algorithm: reduce cwnd and
2822 * continue in congestion avoidance.
2823 */
2824static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2825{
2826 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2827 tp->snd_cwnd_cnt = 0;
16e90681 2828 tp->bytes_acked = 0;
46323655 2829 TCP_ECN_queue_cwr(tp);
9ead9a1d
IJ
2830 tcp_moderate_cwnd(tp);
2831}
2832
3cfe3baa
IJ
2833/* A conservative spurious RTO response algorithm: reduce cwnd using
2834 * rate halving and continue in congestion avoidance.
2835 */
2836static void tcp_ratehalving_spur_to_response(struct sock *sk)
2837{
3cfe3baa 2838 tcp_enter_cwr(sk, 0);
3cfe3baa
IJ
2839}
2840
e317f6f6 2841static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3cfe3baa 2842{
e317f6f6
IJ
2843 if (flag&FLAG_ECE)
2844 tcp_ratehalving_spur_to_response(sk);
2845 else
2846 tcp_undo_cwr(sk, 1);
3cfe3baa
IJ
2847}
2848
30935cf4
IJ
2849/* F-RTO spurious RTO detection algorithm (RFC4138)
2850 *
6408d206
IJ
2851 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2852 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2853 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2854 * On First ACK, send two new segments out.
2855 * On Second ACK, RTO was likely spurious. Do spurious response (response
2856 * algorithm is not part of the F-RTO detection algorithm
2857 * given in RFC4138 but can be selected separately).
2858 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
d551e454
IJ
2859 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2860 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2861 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
30935cf4
IJ
2862 *
2863 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2864 * original window even after we transmit two new data segments.
2865 *
4dc2665e
IJ
2866 * SACK version:
2867 * on first step, wait until first cumulative ACK arrives, then move to
2868 * the second step. In second step, the next ACK decides.
2869 *
30935cf4
IJ
2870 * F-RTO is implemented (mainly) in four functions:
2871 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2872 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2873 * called when tcp_use_frto() showed green light
2874 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2875 * - tcp_enter_frto_loss() is called if there is not enough evidence
2876 * to prove that the RTO is indeed spurious. It transfers the control
2877 * from F-RTO to the conventional RTO recovery
2878 */
2e605294 2879static int tcp_process_frto(struct sock *sk, int flag)
1da177e4
LT
2880{
2881 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2882
005903bc 2883 tcp_verify_left_out(tp);
e905a9ed 2884
7487c48c
IJ
2885 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2886 if (flag&FLAG_DATA_ACKED)
2887 inet_csk(sk)->icsk_retransmits = 0;
2888
009a2e3e
IJ
2889 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2890 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2891 tp->undo_marker = 0;
2892
95c4922b 2893 if (!before(tp->snd_una, tp->frto_highmark)) {
d551e454 2894 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
7c9a4a5b 2895 return 1;
95c4922b
IJ
2896 }
2897
e60402d0 2898 if (!IsSackFrto() || tcp_is_reno(tp)) {
4dc2665e
IJ
2899 /* RFC4138 shortcoming in step 2; should also have case c):
2900 * ACK isn't duplicate nor advances window, e.g., opposite dir
2901 * data, winupdate
2902 */
2e605294 2903 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
4dc2665e
IJ
2904 return 1;
2905
2906 if (!(flag&FLAG_DATA_ACKED)) {
2907 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2908 flag);
2909 return 1;
2910 }
2911 } else {
2912 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2913 /* Prevent sending of new data. */
2914 tp->snd_cwnd = min(tp->snd_cwnd,
2915 tcp_packets_in_flight(tp));
2916 return 1;
2917 }
6408d206 2918
d551e454 2919 if ((tp->frto_counter >= 2) &&
4dc2665e
IJ
2920 (!(flag&FLAG_FORWARD_PROGRESS) ||
2921 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2922 /* RFC4138 shortcoming (see comment above) */
2923 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2924 return 1;
2925
2926 tcp_enter_frto_loss(sk, 3, flag);
2927 return 1;
2928 }
1da177e4
LT
2929 }
2930
2931 if (tp->frto_counter == 1) {
575ee714
IJ
2932 /* Sending of the next skb must be allowed or no FRTO */
2933 if (!tcp_send_head(sk) ||
2934 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2935 tp->snd_una + tp->snd_wnd)) {
d551e454
IJ
2936 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2937 flag);
575ee714
IJ
2938 return 1;
2939 }
2940
1da177e4 2941 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2942 tp->frto_counter = 2;
7c9a4a5b 2943 return 1;
d551e454 2944 } else {
3cfe3baa
IJ
2945 switch (sysctl_tcp_frto_response) {
2946 case 2:
e317f6f6 2947 tcp_undo_spur_to_response(sk, flag);
3cfe3baa
IJ
2948 break;
2949 case 1:
2950 tcp_conservative_spur_to_response(tp);
2951 break;
2952 default:
2953 tcp_ratehalving_spur_to_response(sk);
2954 break;
3ff50b79 2955 }
94d0ea77 2956 tp->frto_counter = 0;
009a2e3e 2957 tp->undo_marker = 0;
912d8f0b 2958 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
1da177e4 2959 }
7c9a4a5b 2960 return 0;
1da177e4
LT
2961}
2962
1da177e4
LT
2963/* This routine deals with incoming acks, but not outgoing ones. */
2964static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2965{
6687e988 2966 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2967 struct tcp_sock *tp = tcp_sk(sk);
2968 u32 prior_snd_una = tp->snd_una;
2969 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2970 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2971 u32 prior_in_flight;
2972 s32 seq_rtt;
2973 int prior_packets;
7c9a4a5b 2974 int frto_cwnd = 0;
1da177e4
LT
2975
2976 /* If the ack is newer than sent or older than previous acks
2977 * then we can probably ignore it.
2978 */
2979 if (after(ack, tp->snd_nxt))
2980 goto uninteresting_ack;
2981
2982 if (before(ack, prior_snd_una))
2983 goto old_ack;
2984
2e605294
IJ
2985 if (after(ack, prior_snd_una))
2986 flag |= FLAG_SND_UNA_ADVANCED;
2987
3fdf3f0c
DO
2988 if (sysctl_tcp_abc) {
2989 if (icsk->icsk_ca_state < TCP_CA_CWR)
2990 tp->bytes_acked += ack - prior_snd_una;
2991 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2992 /* we assume just one segment left network */
2993 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2994 }
9772efb9 2995
1da177e4
LT
2996 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2997 /* Window is constant, pure forward advance.
2998 * No more checks are required.
2999 * Note, we use the fact that SND.UNA>=SND.WL2.
3000 */
3001 tcp_update_wl(tp, ack, ack_seq);
3002 tp->snd_una = ack;
1da177e4
LT
3003 flag |= FLAG_WIN_UPDATE;
3004
6687e988 3005 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 3006
1da177e4
LT
3007 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3008 } else {
3009 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3010 flag |= FLAG_DATA;
3011 else
3012 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3013
9e412ba7 3014 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
1da177e4
LT
3015
3016 if (TCP_SKB_CB(skb)->sacked)
3017 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3018
aa8223c7 3019 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
1da177e4
LT
3020 flag |= FLAG_ECE;
3021
6687e988 3022 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
3023 }
3024
3025 /* We passed data and got it acked, remove any soft error
3026 * log. Something worked...
3027 */
3028 sk->sk_err_soft = 0;
3029 tp->rcv_tstamp = tcp_time_stamp;
3030 prior_packets = tp->packets_out;
3031 if (!prior_packets)
3032 goto no_queue;
3033
3034 prior_in_flight = tcp_packets_in_flight(tp);
3035
3036 /* See if we can take anything off of the retransmit queue. */
2d2abbab 3037 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4 3038
3de96471
IJ
3039 /* Guarantee sacktag reordering detection against wrap-arounds */
3040 if (before(tp->frto_highmark, tp->snd_una))
3041 tp->frto_highmark = 0;
1da177e4 3042 if (tp->frto_counter)
2e605294 3043 frto_cwnd = tcp_process_frto(sk, flag);
1da177e4 3044
6687e988 3045 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 3046 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
3047 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3048 tcp_may_raise_cwnd(sk, flag))
16751347 3049 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
1b6d427b 3050 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
1da177e4 3051 } else {
7c9a4a5b 3052 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
16751347 3053 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
1da177e4
LT
3054 }
3055
3056 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3057 dst_confirm(sk->sk_dst_cache);
3058
3059 return 1;
3060
3061no_queue:
6687e988 3062 icsk->icsk_probes_out = 0;
1da177e4
LT
3063
3064 /* If this ack opens up a zero window, clear backoff. It was
3065 * being used to time the probes, and is probably far higher than
3066 * it needs to be for normal retransmission.
3067 */
fe067e8a 3068 if (tcp_send_head(sk))
1da177e4
LT
3069 tcp_ack_probe(sk);
3070 return 1;
3071
3072old_ack:
3073 if (TCP_SKB_CB(skb)->sacked)
3074 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3075
3076uninteresting_ack:
3077 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3078 return 0;
3079}
3080
3081
3082/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3083 * But, this can also be called on packets in the established flow when
3084 * the fast version below fails.
3085 */
3086void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3087{
3088 unsigned char *ptr;
aa8223c7 3089 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3090 int length=(th->doff*4)-sizeof(struct tcphdr);
3091
3092 ptr = (unsigned char *)(th + 1);
3093 opt_rx->saw_tstamp = 0;
3094
2de979bd 3095 while (length > 0) {
e905a9ed 3096 int opcode=*ptr++;
1da177e4
LT
3097 int opsize;
3098
3099 switch (opcode) {
3100 case TCPOPT_EOL:
3101 return;
3102 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3103 length--;
3104 continue;
3105 default:
3106 opsize=*ptr++;
3107 if (opsize < 2) /* "silly options" */
3108 return;
3109 if (opsize > length)
3110 return; /* don't parse partial options */
2de979bd 3111 switch (opcode) {
1da177e4 3112 case TCPOPT_MSS:
2de979bd 3113 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 3114 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
3115 if (in_mss) {
3116 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3117 in_mss = opt_rx->user_mss;
3118 opt_rx->mss_clamp = in_mss;
3119 }
3120 }
3121 break;
3122 case TCPOPT_WINDOW:
2de979bd 3123 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
1da177e4
LT
3124 if (sysctl_tcp_window_scaling) {
3125 __u8 snd_wscale = *(__u8 *) ptr;
3126 opt_rx->wscale_ok = 1;
3127 if (snd_wscale > 14) {
2de979bd 3128 if (net_ratelimit())
1da177e4
LT
3129 printk(KERN_INFO "tcp_parse_options: Illegal window "
3130 "scaling value %d >14 received.\n",
3131 snd_wscale);
3132 snd_wscale = 14;
3133 }
3134 opt_rx->snd_wscale = snd_wscale;
3135 }
3136 break;
3137 case TCPOPT_TIMESTAMP:
2de979bd 3138 if (opsize==TCPOLEN_TIMESTAMP) {
1da177e4
LT
3139 if ((estab && opt_rx->tstamp_ok) ||
3140 (!estab && sysctl_tcp_timestamps)) {
3141 opt_rx->saw_tstamp = 1;
4f3608b7
AV
3142 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3143 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
3144 }
3145 }
3146 break;
3147 case TCPOPT_SACK_PERM:
2de979bd 3148 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
1da177e4
LT
3149 if (sysctl_tcp_sack) {
3150 opt_rx->sack_ok = 1;
3151 tcp_sack_reset(opt_rx);
3152 }
3153 }
3154 break;
3155
3156 case TCPOPT_SACK:
2de979bd 3157 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1da177e4
LT
3158 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3159 opt_rx->sack_ok) {
3160 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3161 }
d7ea5b91 3162 break;
cfb6eeb4
YH
3163#ifdef CONFIG_TCP_MD5SIG
3164 case TCPOPT_MD5SIG:
3165 /*
3166 * The MD5 Hash has already been
3167 * checked (see tcp_v{4,6}_do_rcv()).
3168 */
3169 break;
3170#endif
3ff50b79
SH
3171 }
3172
e905a9ed
YH
3173 ptr+=opsize-2;
3174 length-=opsize;
3ff50b79 3175 }
1da177e4
LT
3176 }
3177}
3178
3179/* Fast parse options. This hopes to only see timestamps.
3180 * If it is wrong it falls back on tcp_parse_options().
3181 */
40efc6fa
SH
3182static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3183 struct tcp_sock *tp)
1da177e4
LT
3184{
3185 if (th->doff == sizeof(struct tcphdr)>>2) {
3186 tp->rx_opt.saw_tstamp = 0;
3187 return 0;
3188 } else if (tp->rx_opt.tstamp_ok &&
3189 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
3190 __be32 *ptr = (__be32 *)(th + 1);
3191 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3192 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3193 tp->rx_opt.saw_tstamp = 1;
3194 ++ptr;
3195 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3196 ++ptr;
3197 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3198 return 1;
3199 }
3200 }
3201 tcp_parse_options(skb, &tp->rx_opt, 1);
3202 return 1;
3203}
3204
3205static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3206{
3207 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
9d729f72 3208 tp->rx_opt.ts_recent_stamp = get_seconds();
1da177e4
LT
3209}
3210
3211static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3212{
3213 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3214 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3215 * extra check below makes sure this can only happen
3216 * for pure ACK frames. -DaveM
3217 *
3218 * Not only, also it occurs for expired timestamps.
3219 */
3220
2de979bd 3221 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
9d729f72 3222 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
1da177e4
LT
3223 tcp_store_ts_recent(tp);
3224 }
3225}
3226
3227/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3228 *
3229 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3230 * it can pass through stack. So, the following predicate verifies that
3231 * this segment is not used for anything but congestion avoidance or
3232 * fast retransmit. Moreover, we even are able to eliminate most of such
3233 * second order effects, if we apply some small "replay" window (~RTO)
3234 * to timestamp space.
3235 *
3236 * All these measures still do not guarantee that we reject wrapped ACKs
3237 * on networks with high bandwidth, when sequence space is recycled fastly,
3238 * but it guarantees that such events will be very rare and do not affect
3239 * connection seriously. This doesn't look nice, but alas, PAWS is really
3240 * buggy extension.
3241 *
3242 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3243 * states that events when retransmit arrives after original data are rare.
3244 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3245 * the biggest problem on large power networks even with minor reordering.
3246 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3247 * up to bandwidth of 18Gigabit/sec. 8) ]
3248 */
3249
463c84b9 3250static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3251{
463c84b9 3252 struct tcp_sock *tp = tcp_sk(sk);
aa8223c7 3253 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3254 u32 seq = TCP_SKB_CB(skb)->seq;
3255 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3256
3257 return (/* 1. Pure ACK with correct sequence number. */
3258 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3259
3260 /* 2. ... and duplicate ACK. */
3261 ack == tp->snd_una &&
3262
3263 /* 3. ... and does not update window. */
3264 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3265
3266 /* 4. ... and sits in replay window. */
463c84b9 3267 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
3268}
3269
463c84b9 3270static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3271{
463c84b9 3272 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 3273 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
9d729f72 3274 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 3275 !tcp_disordered_ack(sk, skb));
1da177e4
LT
3276}
3277
3278/* Check segment sequence number for validity.
3279 *
3280 * Segment controls are considered valid, if the segment
3281 * fits to the window after truncation to the window. Acceptability
3282 * of data (and SYN, FIN, of course) is checked separately.
3283 * See tcp_data_queue(), for example.
3284 *
3285 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3286 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3287 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3288 * (borrowed from freebsd)
3289 */
3290
3291static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3292{
3293 return !before(end_seq, tp->rcv_wup) &&
3294 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3295}
3296
3297/* When we get a reset we do this. */
3298static void tcp_reset(struct sock *sk)
3299{
3300 /* We want the right error as BSD sees it (and indeed as we do). */
3301 switch (sk->sk_state) {
3302 case TCP_SYN_SENT:
3303 sk->sk_err = ECONNREFUSED;
3304 break;
3305 case TCP_CLOSE_WAIT:
3306 sk->sk_err = EPIPE;
3307 break;
3308 case TCP_CLOSE:
3309 return;
3310 default:
3311 sk->sk_err = ECONNRESET;
3312 }
3313
3314 if (!sock_flag(sk, SOCK_DEAD))
3315 sk->sk_error_report(sk);
3316
3317 tcp_done(sk);
3318}
3319
3320/*
3321 * Process the FIN bit. This now behaves as it is supposed to work
3322 * and the FIN takes effect when it is validly part of sequence
3323 * space. Not before when we get holes.
3324 *
3325 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3326 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3327 * TIME-WAIT)
3328 *
3329 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3330 * close and we go into CLOSING (and later onto TIME-WAIT)
3331 *
3332 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3333 */
3334static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3335{
3336 struct tcp_sock *tp = tcp_sk(sk);
3337
463c84b9 3338 inet_csk_schedule_ack(sk);
1da177e4
LT
3339
3340 sk->sk_shutdown |= RCV_SHUTDOWN;
3341 sock_set_flag(sk, SOCK_DONE);
3342
3343 switch (sk->sk_state) {
3344 case TCP_SYN_RECV:
3345 case TCP_ESTABLISHED:
3346 /* Move to CLOSE_WAIT */
3347 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3348 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3349 break;
3350
3351 case TCP_CLOSE_WAIT:
3352 case TCP_CLOSING:
3353 /* Received a retransmission of the FIN, do
3354 * nothing.
3355 */
3356 break;
3357 case TCP_LAST_ACK:
3358 /* RFC793: Remain in the LAST-ACK state. */
3359 break;
3360
3361 case TCP_FIN_WAIT1:
3362 /* This case occurs when a simultaneous close
3363 * happens, we must ack the received FIN and
3364 * enter the CLOSING state.
3365 */
3366 tcp_send_ack(sk);
3367 tcp_set_state(sk, TCP_CLOSING);
3368 break;
3369 case TCP_FIN_WAIT2:
3370 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3371 tcp_send_ack(sk);
3372 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3373 break;
3374 default:
3375 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3376 * cases we should never reach this piece of code.
3377 */
3378 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3379 __FUNCTION__, sk->sk_state);
3380 break;
3ff50b79 3381 }
1da177e4
LT
3382
3383 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3384 * Probably, we should reset in this case. For now drop them.
3385 */
3386 __skb_queue_purge(&tp->out_of_order_queue);
e60402d0 3387 if (tcp_is_sack(tp))
1da177e4
LT
3388 tcp_sack_reset(&tp->rx_opt);
3389 sk_stream_mem_reclaim(sk);
3390
3391 if (!sock_flag(sk, SOCK_DEAD)) {
3392 sk->sk_state_change(sk);
3393
3394 /* Do not send POLL_HUP for half duplex close. */
3395 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3396 sk->sk_state == TCP_CLOSE)
3397 sk_wake_async(sk, 1, POLL_HUP);
3398 else
3399 sk_wake_async(sk, 1, POLL_IN);
3400 }
3401}
3402
40efc6fa 3403static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3404{
3405 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3406 if (before(seq, sp->start_seq))
3407 sp->start_seq = seq;
3408 if (after(end_seq, sp->end_seq))
3409 sp->end_seq = end_seq;
3410 return 1;
3411 }
3412 return 0;
3413}
3414
40efc6fa 3415static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4 3416{
e60402d0 3417 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3418 if (before(seq, tp->rcv_nxt))
3419 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3420 else
3421 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3422
3423 tp->rx_opt.dsack = 1;
3424 tp->duplicate_sack[0].start_seq = seq;
3425 tp->duplicate_sack[0].end_seq = end_seq;
3426 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3427 }
3428}
3429
40efc6fa 3430static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3431{
3432 if (!tp->rx_opt.dsack)
3433 tcp_dsack_set(tp, seq, end_seq);
3434 else
3435 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3436}
3437
3438static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3439{
3440 struct tcp_sock *tp = tcp_sk(sk);
3441
3442 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3443 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3444 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3445 tcp_enter_quickack_mode(sk);
1da177e4 3446
e60402d0 3447 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3448 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3449
3450 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3451 end_seq = tp->rcv_nxt;
3452 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3453 }
3454 }
3455
3456 tcp_send_ack(sk);
3457}
3458
3459/* These routines update the SACK block as out-of-order packets arrive or
3460 * in-order packets close up the sequence space.
3461 */
3462static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3463{
3464 int this_sack;
3465 struct tcp_sack_block *sp = &tp->selective_acks[0];
3466 struct tcp_sack_block *swalk = sp+1;
3467
3468 /* See if the recent change to the first SACK eats into
3469 * or hits the sequence space of other SACK blocks, if so coalesce.
3470 */
3471 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3472 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3473 int i;
3474
3475 /* Zap SWALK, by moving every further SACK up by one slot.
3476 * Decrease num_sacks.
3477 */
3478 tp->rx_opt.num_sacks--;
3479 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2de979bd 3480 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
1da177e4
LT
3481 sp[i] = sp[i+1];
3482 continue;
3483 }
3484 this_sack++, swalk++;
3485 }
3486}
3487
40efc6fa 3488static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3489{
3490 __u32 tmp;
3491
3492 tmp = sack1->start_seq;
3493 sack1->start_seq = sack2->start_seq;
3494 sack2->start_seq = tmp;
3495
3496 tmp = sack1->end_seq;
3497 sack1->end_seq = sack2->end_seq;
3498 sack2->end_seq = tmp;
3499}
3500
3501static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3502{
3503 struct tcp_sock *tp = tcp_sk(sk);
3504 struct tcp_sack_block *sp = &tp->selective_acks[0];
3505 int cur_sacks = tp->rx_opt.num_sacks;
3506 int this_sack;
3507
3508 if (!cur_sacks)
3509 goto new_sack;
3510
3511 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3512 if (tcp_sack_extend(sp, seq, end_seq)) {
3513 /* Rotate this_sack to the first one. */
3514 for (; this_sack>0; this_sack--, sp--)
3515 tcp_sack_swap(sp, sp-1);
3516 if (cur_sacks > 1)
3517 tcp_sack_maybe_coalesce(tp);
3518 return;
3519 }
3520 }
3521
3522 /* Could not find an adjacent existing SACK, build a new one,
3523 * put it at the front, and shift everyone else down. We
3524 * always know there is at least one SACK present already here.
3525 *
3526 * If the sack array is full, forget about the last one.
3527 */
3528 if (this_sack >= 4) {
3529 this_sack--;
3530 tp->rx_opt.num_sacks--;
3531 sp--;
3532 }
2de979bd 3533 for (; this_sack > 0; this_sack--, sp--)
1da177e4
LT
3534 *sp = *(sp-1);
3535
3536new_sack:
3537 /* Build the new head SACK, and we're done. */
3538 sp->start_seq = seq;
3539 sp->end_seq = end_seq;
3540 tp->rx_opt.num_sacks++;
3541 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3542}
3543
3544/* RCV.NXT advances, some SACKs should be eaten. */
3545
3546static void tcp_sack_remove(struct tcp_sock *tp)
3547{
3548 struct tcp_sack_block *sp = &tp->selective_acks[0];
3549 int num_sacks = tp->rx_opt.num_sacks;
3550 int this_sack;
3551
3552 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3553 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3554 tp->rx_opt.num_sacks = 0;
3555 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3556 return;
3557 }
3558
2de979bd 3559 for (this_sack = 0; this_sack < num_sacks; ) {
1da177e4
LT
3560 /* Check if the start of the sack is covered by RCV.NXT. */
3561 if (!before(tp->rcv_nxt, sp->start_seq)) {
3562 int i;
3563
3564 /* RCV.NXT must cover all the block! */
3565 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3566
3567 /* Zap this SACK, by moving forward any other SACKS. */
3568 for (i=this_sack+1; i < num_sacks; i++)
3569 tp->selective_acks[i-1] = tp->selective_acks[i];
3570 num_sacks--;
3571 continue;
3572 }
3573 this_sack++;
3574 sp++;
3575 }
3576 if (num_sacks != tp->rx_opt.num_sacks) {
3577 tp->rx_opt.num_sacks = num_sacks;
3578 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3579 }
3580}
3581
3582/* This one checks to see if we can put data from the
3583 * out_of_order queue into the receive_queue.
3584 */
3585static void tcp_ofo_queue(struct sock *sk)
3586{
3587 struct tcp_sock *tp = tcp_sk(sk);
3588 __u32 dsack_high = tp->rcv_nxt;
3589 struct sk_buff *skb;
3590
3591 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3592 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3593 break;
3594
3595 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3596 __u32 dsack = dsack_high;
3597 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3598 dsack_high = TCP_SKB_CB(skb)->end_seq;
3599 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3600 }
3601
3602 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3603 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3604 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3605 __kfree_skb(skb);
3606 continue;
3607 }
3608 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3609 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3610 TCP_SKB_CB(skb)->end_seq);
3611
8728b834 3612 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3613 __skb_queue_tail(&sk->sk_receive_queue, skb);
3614 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
aa8223c7
ACM
3615 if (tcp_hdr(skb)->fin)
3616 tcp_fin(skb, sk, tcp_hdr(skb));
1da177e4
LT
3617 }
3618}
3619
3620static int tcp_prune_queue(struct sock *sk);
3621
3622static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3623{
aa8223c7 3624 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3625 struct tcp_sock *tp = tcp_sk(sk);
3626 int eaten = -1;
3627
3628 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3629 goto drop;
3630
1da177e4
LT
3631 __skb_pull(skb, th->doff*4);
3632
3633 TCP_ECN_accept_cwr(tp, skb);
3634
3635 if (tp->rx_opt.dsack) {
3636 tp->rx_opt.dsack = 0;
3637 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3638 4 - tp->rx_opt.tstamp_ok);
3639 }
3640
3641 /* Queue data for delivery to the user.
3642 * Packets in sequence go to the receive queue.
3643 * Out of sequence packets to the out_of_order_queue.
3644 */
3645 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3646 if (tcp_receive_window(tp) == 0)
3647 goto out_of_window;
3648
3649 /* Ok. In sequence. In window. */
3650 if (tp->ucopy.task == current &&
3651 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3652 sock_owned_by_user(sk) && !tp->urg_data) {
3653 int chunk = min_t(unsigned int, skb->len,
3654 tp->ucopy.len);
3655
3656 __set_current_state(TASK_RUNNING);
3657
3658 local_bh_enable();
3659 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3660 tp->ucopy.len -= chunk;
3661 tp->copied_seq += chunk;
3662 eaten = (chunk == skb->len && !th->fin);
3663 tcp_rcv_space_adjust(sk);
3664 }
3665 local_bh_disable();
3666 }
3667
3668 if (eaten <= 0) {
3669queue_and_out:
3670 if (eaten < 0 &&
3671 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3672 !sk_stream_rmem_schedule(sk, skb))) {
3673 if (tcp_prune_queue(sk) < 0 ||
3674 !sk_stream_rmem_schedule(sk, skb))
3675 goto drop;
3676 }
3677 sk_stream_set_owner_r(skb, sk);
3678 __skb_queue_tail(&sk->sk_receive_queue, skb);
3679 }
3680 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2de979bd 3681 if (skb->len)
9e412ba7 3682 tcp_event_data_recv(sk, skb);
2de979bd 3683 if (th->fin)
1da177e4
LT
3684 tcp_fin(skb, sk, th);
3685
b03efcfb 3686 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3687 tcp_ofo_queue(sk);
3688
3689 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3690 * gap in queue is filled.
3691 */
b03efcfb 3692 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3693 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3694 }
3695
3696 if (tp->rx_opt.num_sacks)
3697 tcp_sack_remove(tp);
3698
9e412ba7 3699 tcp_fast_path_check(sk);
1da177e4
LT
3700
3701 if (eaten > 0)
3702 __kfree_skb(skb);
3703 else if (!sock_flag(sk, SOCK_DEAD))
3704 sk->sk_data_ready(sk, 0);
3705 return;
3706 }
3707
3708 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3709 /* A retransmit, 2nd most common case. Force an immediate ack. */
3710 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3711 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3712
3713out_of_window:
463c84b9
ACM
3714 tcp_enter_quickack_mode(sk);
3715 inet_csk_schedule_ack(sk);
1da177e4
LT
3716drop:
3717 __kfree_skb(skb);
3718 return;
3719 }
3720
3721 /* Out of window. F.e. zero window probe. */
3722 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3723 goto out_of_window;
3724
463c84b9 3725 tcp_enter_quickack_mode(sk);
1da177e4
LT
3726
3727 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3728 /* Partial packet, seq < rcv_next < end_seq */
3729 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3730 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3731 TCP_SKB_CB(skb)->end_seq);
3732
3733 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3734
1da177e4
LT
3735 /* If window is closed, drop tail of packet. But after
3736 * remembering D-SACK for its head made in previous line.
3737 */
3738 if (!tcp_receive_window(tp))
3739 goto out_of_window;
3740 goto queue_and_out;
3741 }
3742
3743 TCP_ECN_check_ce(tp, skb);
3744
3745 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3746 !sk_stream_rmem_schedule(sk, skb)) {
3747 if (tcp_prune_queue(sk) < 0 ||
3748 !sk_stream_rmem_schedule(sk, skb))
3749 goto drop;
3750 }
3751
3752 /* Disable header prediction. */
3753 tp->pred_flags = 0;
463c84b9 3754 inet_csk_schedule_ack(sk);
1da177e4
LT
3755
3756 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3757 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3758
3759 sk_stream_set_owner_r(skb, sk);
3760
3761 if (!skb_peek(&tp->out_of_order_queue)) {
3762 /* Initial out of order segment, build 1 SACK. */
e60402d0 3763 if (tcp_is_sack(tp)) {
1da177e4
LT
3764 tp->rx_opt.num_sacks = 1;
3765 tp->rx_opt.dsack = 0;
3766 tp->rx_opt.eff_sacks = 1;
3767 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3768 tp->selective_acks[0].end_seq =
3769 TCP_SKB_CB(skb)->end_seq;
3770 }
3771 __skb_queue_head(&tp->out_of_order_queue,skb);
3772 } else {
3773 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3774 u32 seq = TCP_SKB_CB(skb)->seq;
3775 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3776
3777 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3778 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3779
3780 if (!tp->rx_opt.num_sacks ||
3781 tp->selective_acks[0].end_seq != seq)
3782 goto add_sack;
3783
3784 /* Common case: data arrive in order after hole. */
3785 tp->selective_acks[0].end_seq = end_seq;
3786 return;
3787 }
3788
3789 /* Find place to insert this segment. */
3790 do {
3791 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3792 break;
3793 } while ((skb1 = skb1->prev) !=
3794 (struct sk_buff*)&tp->out_of_order_queue);
3795
3796 /* Do skb overlap to previous one? */
3797 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3798 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3799 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3800 /* All the bits are present. Drop. */
3801 __kfree_skb(skb);
3802 tcp_dsack_set(tp, seq, end_seq);
3803 goto add_sack;
3804 }
3805 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3806 /* Partial overlap. */
3807 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3808 } else {
3809 skb1 = skb1->prev;
3810 }
3811 }
3812 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3813
1da177e4
LT
3814 /* And clean segments covered by new one as whole. */
3815 while ((skb1 = skb->next) !=
3816 (struct sk_buff*)&tp->out_of_order_queue &&
3817 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3818 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3819 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3820 break;
3821 }
8728b834 3822 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3823 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3824 __kfree_skb(skb1);
3825 }
3826
3827add_sack:
e60402d0 3828 if (tcp_is_sack(tp))
1da177e4
LT
3829 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3830 }
3831}
3832
3833/* Collapse contiguous sequence of skbs head..tail with
3834 * sequence numbers start..end.
3835 * Segments with FIN/SYN are not collapsed (only because this
3836 * simplifies code)
3837 */
3838static void
8728b834
DM
3839tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3840 struct sk_buff *head, struct sk_buff *tail,
3841 u32 start, u32 end)
1da177e4
LT
3842{
3843 struct sk_buff *skb;
3844
caa20d9a 3845 /* First, check that queue is collapsible and find
1da177e4
LT
3846 * the point where collapsing can be useful. */
3847 for (skb = head; skb != tail; ) {
3848 /* No new bits? It is possible on ofo queue. */
3849 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3850 struct sk_buff *next = skb->next;
8728b834 3851 __skb_unlink(skb, list);
1da177e4
LT
3852 __kfree_skb(skb);
3853 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3854 skb = next;
3855 continue;
3856 }
3857
3858 /* The first skb to collapse is:
3859 * - not SYN/FIN and
3860 * - bloated or contains data before "start" or
3861 * overlaps to the next one.
3862 */
aa8223c7 3863 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
1da177e4
LT
3864 (tcp_win_from_space(skb->truesize) > skb->len ||
3865 before(TCP_SKB_CB(skb)->seq, start) ||
3866 (skb->next != tail &&
3867 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3868 break;
3869
3870 /* Decided to skip this, advance start seq. */
3871 start = TCP_SKB_CB(skb)->end_seq;
3872 skb = skb->next;
3873 }
aa8223c7 3874 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
1da177e4
LT
3875 return;
3876
3877 while (before(start, end)) {
3878 struct sk_buff *nskb;
3879 int header = skb_headroom(skb);
3880 int copy = SKB_MAX_ORDER(header, 0);
3881
3882 /* Too big header? This can happen with IPv6. */
3883 if (copy < 0)
3884 return;
3885 if (end-start < copy)
3886 copy = end-start;
3887 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3888 if (!nskb)
3889 return;
c51957da 3890
98e399f8 3891 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
9c70220b
ACM
3892 skb_set_network_header(nskb, (skb_network_header(skb) -
3893 skb->head));
3894 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3895 skb->head));
1da177e4
LT
3896 skb_reserve(nskb, header);
3897 memcpy(nskb->head, skb->head, header);
1da177e4
LT
3898 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3899 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3900 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3901 sk_stream_set_owner_r(nskb, sk);
3902
3903 /* Copy data, releasing collapsed skbs. */
3904 while (copy > 0) {
3905 int offset = start - TCP_SKB_CB(skb)->seq;
3906 int size = TCP_SKB_CB(skb)->end_seq - start;
3907
09a62660 3908 BUG_ON(offset < 0);
1da177e4
LT
3909 if (size > 0) {
3910 size = min(copy, size);
3911 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3912 BUG();
3913 TCP_SKB_CB(nskb)->end_seq += size;
3914 copy -= size;
3915 start += size;
3916 }
3917 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3918 struct sk_buff *next = skb->next;
8728b834 3919 __skb_unlink(skb, list);
1da177e4
LT
3920 __kfree_skb(skb);
3921 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3922 skb = next;
aa8223c7
ACM
3923 if (skb == tail ||
3924 tcp_hdr(skb)->syn ||
3925 tcp_hdr(skb)->fin)
1da177e4
LT
3926 return;
3927 }
3928 }
3929 }
3930}
3931
3932/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3933 * and tcp_collapse() them until all the queue is collapsed.
3934 */
3935static void tcp_collapse_ofo_queue(struct sock *sk)
3936{
3937 struct tcp_sock *tp = tcp_sk(sk);
3938 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3939 struct sk_buff *head;
3940 u32 start, end;
3941
3942 if (skb == NULL)
3943 return;
3944
3945 start = TCP_SKB_CB(skb)->seq;
3946 end = TCP_SKB_CB(skb)->end_seq;
3947 head = skb;
3948
3949 for (;;) {
3950 skb = skb->next;
3951
3952 /* Segment is terminated when we see gap or when
3953 * we are at the end of all the queue. */
3954 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3955 after(TCP_SKB_CB(skb)->seq, end) ||
3956 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3957 tcp_collapse(sk, &tp->out_of_order_queue,
3958 head, skb, start, end);
1da177e4
LT
3959 head = skb;
3960 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3961 break;
3962 /* Start new segment */
3963 start = TCP_SKB_CB(skb)->seq;
3964 end = TCP_SKB_CB(skb)->end_seq;
3965 } else {
3966 if (before(TCP_SKB_CB(skb)->seq, start))
3967 start = TCP_SKB_CB(skb)->seq;
3968 if (after(TCP_SKB_CB(skb)->end_seq, end))
3969 end = TCP_SKB_CB(skb)->end_seq;
3970 }
3971 }
3972}
3973
3974/* Reduce allocated memory if we can, trying to get
3975 * the socket within its memory limits again.
3976 *
3977 * Return less than zero if we should start dropping frames
3978 * until the socket owning process reads some of the data
3979 * to stabilize the situation.
3980 */
3981static int tcp_prune_queue(struct sock *sk)
3982{
e905a9ed 3983 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3984
3985 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3986
3987 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3988
3989 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
9e412ba7 3990 tcp_clamp_window(sk);
1da177e4
LT
3991 else if (tcp_memory_pressure)
3992 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3993
3994 tcp_collapse_ofo_queue(sk);
8728b834
DM
3995 tcp_collapse(sk, &sk->sk_receive_queue,
3996 sk->sk_receive_queue.next,
1da177e4
LT
3997 (struct sk_buff*)&sk->sk_receive_queue,
3998 tp->copied_seq, tp->rcv_nxt);
3999 sk_stream_mem_reclaim(sk);
4000
4001 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4002 return 0;
4003
4004 /* Collapsing did not help, destructive actions follow.
4005 * This must not ever occur. */
4006
4007 /* First, purge the out_of_order queue. */
b03efcfb
DM
4008 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4009 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
4010 __skb_queue_purge(&tp->out_of_order_queue);
4011
4012 /* Reset SACK state. A conforming SACK implementation will
4013 * do the same at a timeout based retransmit. When a connection
4014 * is in a sad state like this, we care only about integrity
4015 * of the connection not performance.
4016 */
e60402d0 4017 if (tcp_is_sack(tp))
1da177e4
LT
4018 tcp_sack_reset(&tp->rx_opt);
4019 sk_stream_mem_reclaim(sk);
4020 }
4021
4022 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4023 return 0;
4024
4025 /* If we are really being abused, tell the caller to silently
4026 * drop receive data on the floor. It will get retransmitted
4027 * and hopefully then we'll have sufficient space.
4028 */
4029 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4030
4031 /* Massive buffer overcommit. */
4032 tp->pred_flags = 0;
4033 return -1;
4034}
4035
4036
4037/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4038 * As additional protections, we do not touch cwnd in retransmission phases,
4039 * and if application hit its sndbuf limit recently.
4040 */
4041void tcp_cwnd_application_limited(struct sock *sk)
4042{
4043 struct tcp_sock *tp = tcp_sk(sk);
4044
6687e988 4045 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
4046 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4047 /* Limited by application or receiver window. */
d254bcdb
IJ
4048 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4049 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 4050 if (win_used < tp->snd_cwnd) {
6687e988 4051 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
4052 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4053 }
4054 tp->snd_cwnd_used = 0;
4055 }
4056 tp->snd_cwnd_stamp = tcp_time_stamp;
4057}
4058
9e412ba7 4059static int tcp_should_expand_sndbuf(struct sock *sk)
0d9901df 4060{
9e412ba7
IJ
4061 struct tcp_sock *tp = tcp_sk(sk);
4062
0d9901df
DM
4063 /* If the user specified a specific send buffer setting, do
4064 * not modify it.
4065 */
4066 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4067 return 0;
4068
4069 /* If we are under global TCP memory pressure, do not expand. */
4070 if (tcp_memory_pressure)
4071 return 0;
4072
4073 /* If we are under soft global TCP memory pressure, do not expand. */
4074 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4075 return 0;
4076
4077 /* If we filled the congestion window, do not expand. */
4078 if (tp->packets_out >= tp->snd_cwnd)
4079 return 0;
4080
4081 return 1;
4082}
1da177e4
LT
4083
4084/* When incoming ACK allowed to free some skb from write_queue,
4085 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4086 * on the exit from tcp input handler.
4087 *
4088 * PROBLEM: sndbuf expansion does not work well with largesend.
4089 */
4090static void tcp_new_space(struct sock *sk)
4091{
4092 struct tcp_sock *tp = tcp_sk(sk);
4093
9e412ba7 4094 if (tcp_should_expand_sndbuf(sk)) {
e905a9ed 4095 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
4096 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4097 demanded = max_t(unsigned int, tp->snd_cwnd,
4098 tp->reordering + 1);
4099 sndmem *= 2*demanded;
4100 if (sndmem > sk->sk_sndbuf)
4101 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4102 tp->snd_cwnd_stamp = tcp_time_stamp;
4103 }
4104
4105 sk->sk_write_space(sk);
4106}
4107
40efc6fa 4108static void tcp_check_space(struct sock *sk)
1da177e4
LT
4109{
4110 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4111 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4112 if (sk->sk_socket &&
4113 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4114 tcp_new_space(sk);
4115 }
4116}
4117
9e412ba7 4118static inline void tcp_data_snd_check(struct sock *sk)
1da177e4 4119{
9e412ba7 4120 tcp_push_pending_frames(sk);
1da177e4
LT
4121 tcp_check_space(sk);
4122}
4123
4124/*
4125 * Check if sending an ack is needed.
4126 */
4127static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4128{
4129 struct tcp_sock *tp = tcp_sk(sk);
4130
4131 /* More than one full frame received... */
463c84b9 4132 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
4133 /* ... and right edge of window advances far enough.
4134 * (tcp_recvmsg() will send ACK otherwise). Or...
4135 */
4136 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4137 /* We ACK each frame or... */
463c84b9 4138 tcp_in_quickack_mode(sk) ||
1da177e4
LT
4139 /* We have out of order data. */
4140 (ofo_possible &&
4141 skb_peek(&tp->out_of_order_queue))) {
4142 /* Then ack it now */
4143 tcp_send_ack(sk);
4144 } else {
4145 /* Else, send delayed ack. */
4146 tcp_send_delayed_ack(sk);
4147 }
4148}
4149
40efc6fa 4150static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 4151{
463c84b9 4152 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
4153 /* We sent a data segment already. */
4154 return;
4155 }
4156 __tcp_ack_snd_check(sk, 1);
4157}
4158
4159/*
4160 * This routine is only called when we have urgent data
caa20d9a 4161 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
4162 * moved inline now as tcp_urg is only called from one
4163 * place. We handle URGent data wrong. We have to - as
4164 * BSD still doesn't use the correction from RFC961.
4165 * For 1003.1g we should support a new option TCP_STDURG to permit
4166 * either form (or just set the sysctl tcp_stdurg).
4167 */
e905a9ed 4168
1da177e4
LT
4169static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4170{
4171 struct tcp_sock *tp = tcp_sk(sk);
4172 u32 ptr = ntohs(th->urg_ptr);
4173
4174 if (ptr && !sysctl_tcp_stdurg)
4175 ptr--;
4176 ptr += ntohl(th->seq);
4177
4178 /* Ignore urgent data that we've already seen and read. */
4179 if (after(tp->copied_seq, ptr))
4180 return;
4181
4182 /* Do not replay urg ptr.
4183 *
4184 * NOTE: interesting situation not covered by specs.
4185 * Misbehaving sender may send urg ptr, pointing to segment,
4186 * which we already have in ofo queue. We are not able to fetch
4187 * such data and will stay in TCP_URG_NOTYET until will be eaten
4188 * by recvmsg(). Seems, we are not obliged to handle such wicked
4189 * situations. But it is worth to think about possibility of some
4190 * DoSes using some hypothetical application level deadlock.
4191 */
4192 if (before(ptr, tp->rcv_nxt))
4193 return;
4194
4195 /* Do we already have a newer (or duplicate) urgent pointer? */
4196 if (tp->urg_data && !after(ptr, tp->urg_seq))
4197 return;
4198
4199 /* Tell the world about our new urgent pointer. */
4200 sk_send_sigurg(sk);
4201
4202 /* We may be adding urgent data when the last byte read was
4203 * urgent. To do this requires some care. We cannot just ignore
4204 * tp->copied_seq since we would read the last urgent byte again
4205 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 4206 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
4207 *
4208 * NOTE. Double Dutch. Rendering to plain English: author of comment
4209 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4210 * and expect that both A and B disappear from stream. This is _wrong_.
4211 * Though this happens in BSD with high probability, this is occasional.
4212 * Any application relying on this is buggy. Note also, that fix "works"
4213 * only in this artificial test. Insert some normal data between A and B and we will
4214 * decline of BSD again. Verdict: it is better to remove to trap
4215 * buggy users.
4216 */
4217 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4218 !sock_flag(sk, SOCK_URGINLINE) &&
4219 tp->copied_seq != tp->rcv_nxt) {
4220 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4221 tp->copied_seq++;
4222 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 4223 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
4224 __kfree_skb(skb);
4225 }
4226 }
4227
4228 tp->urg_data = TCP_URG_NOTYET;
4229 tp->urg_seq = ptr;
4230
4231 /* Disable header prediction. */
4232 tp->pred_flags = 0;
4233}
4234
4235/* This is the 'fast' part of urgent handling. */
4236static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4237{
4238 struct tcp_sock *tp = tcp_sk(sk);
4239
4240 /* Check if we get a new urgent pointer - normally not. */
4241 if (th->urg)
4242 tcp_check_urg(sk,th);
4243
4244 /* Do we wait for any urgent data? - normally not... */
4245 if (tp->urg_data == TCP_URG_NOTYET) {
4246 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4247 th->syn;
4248
e905a9ed 4249 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
4250 if (ptr < skb->len) {
4251 u8 tmp;
4252 if (skb_copy_bits(skb, ptr, &tmp, 1))
4253 BUG();
4254 tp->urg_data = TCP_URG_VALID | tmp;
4255 if (!sock_flag(sk, SOCK_DEAD))
4256 sk->sk_data_ready(sk, 0);
4257 }
4258 }
4259}
4260
4261static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4262{
4263 struct tcp_sock *tp = tcp_sk(sk);
4264 int chunk = skb->len - hlen;
4265 int err;
4266
4267 local_bh_enable();
60476372 4268 if (skb_csum_unnecessary(skb))
1da177e4
LT
4269 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4270 else
4271 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4272 tp->ucopy.iov);
4273
4274 if (!err) {
4275 tp->ucopy.len -= chunk;
4276 tp->copied_seq += chunk;
4277 tcp_rcv_space_adjust(sk);
4278 }
4279
4280 local_bh_disable();
4281 return err;
4282}
4283
b51655b9 4284static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4285{
b51655b9 4286 __sum16 result;
1da177e4
LT
4287
4288 if (sock_owned_by_user(sk)) {
4289 local_bh_enable();
4290 result = __tcp_checksum_complete(skb);
4291 local_bh_disable();
4292 } else {
4293 result = __tcp_checksum_complete(skb);
4294 }
4295 return result;
4296}
4297
40efc6fa 4298static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4299{
60476372 4300 return !skb_csum_unnecessary(skb) &&
1da177e4
LT
4301 __tcp_checksum_complete_user(sk, skb);
4302}
4303
1a2449a8
CL
4304#ifdef CONFIG_NET_DMA
4305static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4306{
4307 struct tcp_sock *tp = tcp_sk(sk);
4308 int chunk = skb->len - hlen;
4309 int dma_cookie;
4310 int copied_early = 0;
4311
4312 if (tp->ucopy.wakeup)
e905a9ed 4313 return 0;
1a2449a8
CL
4314
4315 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4316 tp->ucopy.dma_chan = get_softnet_dma();
4317
60476372 4318 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
1a2449a8
CL
4319
4320 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4321 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4322
4323 if (dma_cookie < 0)
4324 goto out;
4325
4326 tp->ucopy.dma_cookie = dma_cookie;
4327 copied_early = 1;
4328
4329 tp->ucopy.len -= chunk;
4330 tp->copied_seq += chunk;
4331 tcp_rcv_space_adjust(sk);
4332
4333 if ((tp->ucopy.len == 0) ||
aa8223c7 4334 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
1a2449a8
CL
4335 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4336 tp->ucopy.wakeup = 1;
4337 sk->sk_data_ready(sk, 0);
4338 }
4339 } else if (chunk > 0) {
4340 tp->ucopy.wakeup = 1;
4341 sk->sk_data_ready(sk, 0);
4342 }
4343out:
4344 return copied_early;
4345}
4346#endif /* CONFIG_NET_DMA */
4347
1da177e4 4348/*
e905a9ed 4349 * TCP receive function for the ESTABLISHED state.
1da177e4 4350 *
e905a9ed 4351 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4352 * disabled when:
4353 * - A zero window was announced from us - zero window probing
e905a9ed 4354 * is only handled properly in the slow path.
1da177e4
LT
4355 * - Out of order segments arrived.
4356 * - Urgent data is expected.
4357 * - There is no buffer space left
4358 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4359 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4360 * - Data is sent in both directions. Fast path only supports pure senders
4361 * or pure receivers (this means either the sequence number or the ack
4362 * value must stay constant)
4363 * - Unexpected TCP option.
4364 *
e905a9ed 4365 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4366 * receive procedure patterned after RFC793 to handle all cases.
4367 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4368 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4369 * tcp_data_queue when everything is OK.
4370 */
4371int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4372 struct tcphdr *th, unsigned len)
4373{
4374 struct tcp_sock *tp = tcp_sk(sk);
4375
4376 /*
4377 * Header prediction.
e905a9ed 4378 * The code loosely follows the one in the famous
1da177e4 4379 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4380 *
4381 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4382 * on a device interrupt, to call tcp_recv function
4383 * on the receive process context and checksum and copy
4384 * the buffer to user space. smart...
4385 *
e905a9ed 4386 * Our current scheme is not silly either but we take the
1da177e4
LT
4387 * extra cost of the net_bh soft interrupt processing...
4388 * We do checksum and copy also but from device to kernel.
4389 */
4390
4391 tp->rx_opt.saw_tstamp = 0;
4392
4393 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4394 * if header_prediction is to be made
1da177e4
LT
4395 * 'S' will always be tp->tcp_header_len >> 2
4396 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4397 * turn it off (when there are holes in the receive
1da177e4
LT
4398 * space for instance)
4399 * PSH flag is ignored.
4400 */
4401
4402 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4403 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4404 int tcp_header_len = tp->tcp_header_len;
4405
4406 /* Timestamp header prediction: tcp_header_len
4407 * is automatically equal to th->doff*4 due to pred_flags
4408 * match.
4409 */
4410
4411 /* Check timestamp */
4412 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4413 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4414
4415 /* No? Slow path! */
4f3608b7 4416 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4417 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4418 goto slow_path;
4419
4420 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4421 ++ptr;
1da177e4
LT
4422 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4423 ++ptr;
4424 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4425
4426 /* If PAWS failed, check it more carefully in slow path */
4427 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4428 goto slow_path;
4429
4430 /* DO NOT update ts_recent here, if checksum fails
4431 * and timestamp was corrupted part, it will result
4432 * in a hung connection since we will drop all
4433 * future packets due to the PAWS test.
4434 */
4435 }
4436
4437 if (len <= tcp_header_len) {
4438 /* Bulk data transfer: sender */
4439 if (len == tcp_header_len) {
4440 /* Predicted packet is in window by definition.
4441 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4442 * Hence, check seq<=rcv_wup reduces to:
4443 */
4444 if (tcp_header_len ==
4445 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4446 tp->rcv_nxt == tp->rcv_wup)
4447 tcp_store_ts_recent(tp);
4448
1da177e4
LT
4449 /* We know that such packets are checksummed
4450 * on entry.
4451 */
4452 tcp_ack(sk, skb, 0);
e905a9ed 4453 __kfree_skb(skb);
9e412ba7 4454 tcp_data_snd_check(sk);
1da177e4
LT
4455 return 0;
4456 } else { /* Header too small */
4457 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4458 goto discard;
4459 }
4460 } else {
4461 int eaten = 0;
1a2449a8 4462 int copied_early = 0;
1da177e4 4463
1a2449a8
CL
4464 if (tp->copied_seq == tp->rcv_nxt &&
4465 len - tcp_header_len <= tp->ucopy.len) {
4466#ifdef CONFIG_NET_DMA
4467 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4468 copied_early = 1;
4469 eaten = 1;
4470 }
4471#endif
4472 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4473 __set_current_state(TASK_RUNNING);
1da177e4 4474
1a2449a8
CL
4475 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4476 eaten = 1;
4477 }
4478 if (eaten) {
1da177e4
LT
4479 /* Predicted packet is in window by definition.
4480 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4481 * Hence, check seq<=rcv_wup reduces to:
4482 */
4483 if (tcp_header_len ==
4484 (sizeof(struct tcphdr) +
4485 TCPOLEN_TSTAMP_ALIGNED) &&
4486 tp->rcv_nxt == tp->rcv_wup)
4487 tcp_store_ts_recent(tp);
4488
463c84b9 4489 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4490
4491 __skb_pull(skb, tcp_header_len);
4492 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4493 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4494 }
1a2449a8
CL
4495 if (copied_early)
4496 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4497 }
4498 if (!eaten) {
4499 if (tcp_checksum_complete_user(sk, skb))
4500 goto csum_error;
4501
4502 /* Predicted packet is in window by definition.
4503 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4504 * Hence, check seq<=rcv_wup reduces to:
4505 */
4506 if (tcp_header_len ==
4507 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4508 tp->rcv_nxt == tp->rcv_wup)
4509 tcp_store_ts_recent(tp);
4510
463c84b9 4511 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4512
4513 if ((int)skb->truesize > sk->sk_forward_alloc)
4514 goto step5;
4515
4516 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4517
4518 /* Bulk data transfer: receiver */
4519 __skb_pull(skb,tcp_header_len);
4520 __skb_queue_tail(&sk->sk_receive_queue, skb);
4521 sk_stream_set_owner_r(skb, sk);
4522 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4523 }
4524
9e412ba7 4525 tcp_event_data_recv(sk, skb);
1da177e4
LT
4526
4527 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4528 /* Well, only one small jumplet in fast path... */
4529 tcp_ack(sk, skb, FLAG_DATA);
9e412ba7 4530 tcp_data_snd_check(sk);
463c84b9 4531 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4532 goto no_ack;
4533 }
4534
31432412 4535 __tcp_ack_snd_check(sk, 0);
1da177e4 4536no_ack:
1a2449a8
CL
4537#ifdef CONFIG_NET_DMA
4538 if (copied_early)
4539 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4540 else
4541#endif
1da177e4
LT
4542 if (eaten)
4543 __kfree_skb(skb);
4544 else
4545 sk->sk_data_ready(sk, 0);
4546 return 0;
4547 }
4548 }
4549
4550slow_path:
4551 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4552 goto csum_error;
4553
4554 /*
4555 * RFC1323: H1. Apply PAWS check first.
4556 */
4557 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4558 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4559 if (!th->rst) {
4560 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4561 tcp_send_dupack(sk, skb);
4562 goto discard;
4563 }
4564 /* Resets are accepted even if PAWS failed.
4565
4566 ts_recent update must be made after we are sure
4567 that the packet is in window.
4568 */
4569 }
4570
4571 /*
4572 * Standard slow path.
4573 */
4574
4575 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4576 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4577 * (RST) segments are validated by checking their SEQ-fields."
4578 * And page 69: "If an incoming segment is not acceptable,
4579 * an acknowledgment should be sent in reply (unless the RST bit
4580 * is set, if so drop the segment and return)".
4581 */
4582 if (!th->rst)
4583 tcp_send_dupack(sk, skb);
4584 goto discard;
4585 }
4586
2de979bd 4587 if (th->rst) {
1da177e4
LT
4588 tcp_reset(sk);
4589 goto discard;
4590 }
4591
4592 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4593
4594 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4595 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4596 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4597 tcp_reset(sk);
4598 return 1;
4599 }
4600
4601step5:
2de979bd 4602 if (th->ack)
1da177e4
LT
4603 tcp_ack(sk, skb, FLAG_SLOWPATH);
4604
463c84b9 4605 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4606
4607 /* Process urgent data. */
4608 tcp_urg(sk, skb, th);
4609
4610 /* step 7: process the segment text */
4611 tcp_data_queue(sk, skb);
4612
9e412ba7 4613 tcp_data_snd_check(sk);
1da177e4
LT
4614 tcp_ack_snd_check(sk);
4615 return 0;
4616
4617csum_error:
4618 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4619
4620discard:
4621 __kfree_skb(skb);
4622 return 0;
4623}
4624
4625static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4626 struct tcphdr *th, unsigned len)
4627{
4628 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4629 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4630 int saved_clamp = tp->rx_opt.mss_clamp;
4631
4632 tcp_parse_options(skb, &tp->rx_opt, 0);
4633
4634 if (th->ack) {
4635 /* rfc793:
4636 * "If the state is SYN-SENT then
4637 * first check the ACK bit
4638 * If the ACK bit is set
4639 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4640 * a reset (unless the RST bit is set, if so drop
4641 * the segment and return)"
4642 *
4643 * We do not send data with SYN, so that RFC-correct
4644 * test reduces to:
4645 */
4646 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4647 goto reset_and_undo;
4648
4649 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4650 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4651 tcp_time_stamp)) {
4652 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4653 goto reset_and_undo;
4654 }
4655
4656 /* Now ACK is acceptable.
4657 *
4658 * "If the RST bit is set
4659 * If the ACK was acceptable then signal the user "error:
4660 * connection reset", drop the segment, enter CLOSED state,
4661 * delete TCB, and return."
4662 */
4663
4664 if (th->rst) {
4665 tcp_reset(sk);
4666 goto discard;
4667 }
4668
4669 /* rfc793:
4670 * "fifth, if neither of the SYN or RST bits is set then
4671 * drop the segment and return."
4672 *
4673 * See note below!
4674 * --ANK(990513)
4675 */
4676 if (!th->syn)
4677 goto discard_and_undo;
4678
4679 /* rfc793:
4680 * "If the SYN bit is on ...
4681 * are acceptable then ...
4682 * (our SYN has been ACKed), change the connection
4683 * state to ESTABLISHED..."
4684 */
4685
4686 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4687
4688 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4689 tcp_ack(sk, skb, FLAG_SLOWPATH);
4690
4691 /* Ok.. it's good. Set up sequence numbers and
4692 * move to established.
4693 */
4694 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4695 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4696
4697 /* RFC1323: The window in SYN & SYN/ACK segments is
4698 * never scaled.
4699 */
4700 tp->snd_wnd = ntohs(th->window);
4701 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4702
4703 if (!tp->rx_opt.wscale_ok) {
4704 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4705 tp->window_clamp = min(tp->window_clamp, 65535U);
4706 }
4707
4708 if (tp->rx_opt.saw_tstamp) {
4709 tp->rx_opt.tstamp_ok = 1;
4710 tp->tcp_header_len =
4711 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4712 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4713 tcp_store_ts_recent(tp);
4714 } else {
4715 tp->tcp_header_len = sizeof(struct tcphdr);
4716 }
4717
e60402d0
IJ
4718 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4719 tcp_enable_fack(tp);
1da177e4 4720
5d424d5a 4721 tcp_mtup_init(sk);
d83d8461 4722 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4723 tcp_initialize_rcv_mss(sk);
4724
4725 /* Remember, tcp_poll() does not lock socket!
4726 * Change state from SYN-SENT only after copied_seq
4727 * is initialized. */
4728 tp->copied_seq = tp->rcv_nxt;
e16aa207 4729 smp_mb();
1da177e4
LT
4730 tcp_set_state(sk, TCP_ESTABLISHED);
4731
6b877699
VY
4732 security_inet_conn_established(sk, skb);
4733
1da177e4 4734 /* Make sure socket is routed, for correct metrics. */
8292a17a 4735 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4736
4737 tcp_init_metrics(sk);
4738
6687e988 4739 tcp_init_congestion_control(sk);
317a76f9 4740
1da177e4
LT
4741 /* Prevent spurious tcp_cwnd_restart() on first data
4742 * packet.
4743 */
4744 tp->lsndtime = tcp_time_stamp;
4745
4746 tcp_init_buffer_space(sk);
4747
4748 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4749 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4750
4751 if (!tp->rx_opt.snd_wscale)
4752 __tcp_fast_path_on(tp, tp->snd_wnd);
4753 else
4754 tp->pred_flags = 0;
4755
4756 if (!sock_flag(sk, SOCK_DEAD)) {
4757 sk->sk_state_change(sk);
4758 sk_wake_async(sk, 0, POLL_OUT);
4759 }
4760
295f7324
ACM
4761 if (sk->sk_write_pending ||
4762 icsk->icsk_accept_queue.rskq_defer_accept ||
4763 icsk->icsk_ack.pingpong) {
1da177e4
LT
4764 /* Save one ACK. Data will be ready after
4765 * several ticks, if write_pending is set.
4766 *
4767 * It may be deleted, but with this feature tcpdumps
4768 * look so _wonderfully_ clever, that I was not able
4769 * to stand against the temptation 8) --ANK
4770 */
463c84b9 4771 inet_csk_schedule_ack(sk);
295f7324
ACM
4772 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4773 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4774 tcp_incr_quickack(sk);
4775 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4776 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4777 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4778
4779discard:
4780 __kfree_skb(skb);
4781 return 0;
4782 } else {
4783 tcp_send_ack(sk);
4784 }
4785 return -1;
4786 }
4787
4788 /* No ACK in the segment */
4789
4790 if (th->rst) {
4791 /* rfc793:
4792 * "If the RST bit is set
4793 *
4794 * Otherwise (no ACK) drop the segment and return."
4795 */
4796
4797 goto discard_and_undo;
4798 }
4799
4800 /* PAWS check. */
4801 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4802 goto discard_and_undo;
4803
4804 if (th->syn) {
4805 /* We see SYN without ACK. It is attempt of
4806 * simultaneous connect with crossed SYNs.
4807 * Particularly, it can be connect to self.
4808 */
4809 tcp_set_state(sk, TCP_SYN_RECV);
4810
4811 if (tp->rx_opt.saw_tstamp) {
4812 tp->rx_opt.tstamp_ok = 1;
4813 tcp_store_ts_recent(tp);
4814 tp->tcp_header_len =
4815 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4816 } else {
4817 tp->tcp_header_len = sizeof(struct tcphdr);
4818 }
4819
4820 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4821 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4822
4823 /* RFC1323: The window in SYN & SYN/ACK segments is
4824 * never scaled.
4825 */
4826 tp->snd_wnd = ntohs(th->window);
4827 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4828 tp->max_window = tp->snd_wnd;
4829
4830 TCP_ECN_rcv_syn(tp, th);
1da177e4 4831
5d424d5a 4832 tcp_mtup_init(sk);
d83d8461 4833 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4834 tcp_initialize_rcv_mss(sk);
4835
4836
4837 tcp_send_synack(sk);
4838#if 0
4839 /* Note, we could accept data and URG from this segment.
4840 * There are no obstacles to make this.
4841 *
4842 * However, if we ignore data in ACKless segments sometimes,
4843 * we have no reasons to accept it sometimes.
4844 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4845 * is not flawless. So, discard packet for sanity.
4846 * Uncomment this return to process the data.
4847 */
4848 return -1;
4849#else
4850 goto discard;
4851#endif
4852 }
4853 /* "fifth, if neither of the SYN or RST bits is set then
4854 * drop the segment and return."
4855 */
4856
4857discard_and_undo:
4858 tcp_clear_options(&tp->rx_opt);
4859 tp->rx_opt.mss_clamp = saved_clamp;
4860 goto discard;
4861
4862reset_and_undo:
4863 tcp_clear_options(&tp->rx_opt);
4864 tp->rx_opt.mss_clamp = saved_clamp;
4865 return 1;
4866}
4867
4868
4869/*
4870 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4871 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4872 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4873 * address independent.
4874 */
e905a9ed 4875
1da177e4
LT
4876int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4877 struct tcphdr *th, unsigned len)
4878{
4879 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4880 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4881 int queued = 0;
4882
4883 tp->rx_opt.saw_tstamp = 0;
4884
4885 switch (sk->sk_state) {
4886 case TCP_CLOSE:
4887 goto discard;
4888
4889 case TCP_LISTEN:
2de979bd 4890 if (th->ack)
1da177e4
LT
4891 return 1;
4892
2de979bd 4893 if (th->rst)
1da177e4
LT
4894 goto discard;
4895
2de979bd 4896 if (th->syn) {
8292a17a 4897 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4898 return 1;
4899
e905a9ed
YH
4900 /* Now we have several options: In theory there is
4901 * nothing else in the frame. KA9Q has an option to
1da177e4 4902 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4903 * syn up to the [to be] advertised window and
4904 * Solaris 2.1 gives you a protocol error. For now
4905 * we just ignore it, that fits the spec precisely
1da177e4
LT
4906 * and avoids incompatibilities. It would be nice in
4907 * future to drop through and process the data.
4908 *
e905a9ed 4909 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4910 * queue this data.
4911 * But, this leaves one open to an easy denial of
e905a9ed 4912 * service attack, and SYN cookies can't defend
1da177e4 4913 * against this problem. So, we drop the data
fb7e2399
MN
4914 * in the interest of security over speed unless
4915 * it's still in use.
1da177e4 4916 */
fb7e2399
MN
4917 kfree_skb(skb);
4918 return 0;
1da177e4
LT
4919 }
4920 goto discard;
4921
4922 case TCP_SYN_SENT:
1da177e4
LT
4923 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4924 if (queued >= 0)
4925 return queued;
4926
4927 /* Do step6 onward by hand. */
4928 tcp_urg(sk, skb, th);
4929 __kfree_skb(skb);
9e412ba7 4930 tcp_data_snd_check(sk);
1da177e4
LT
4931 return 0;
4932 }
4933
4934 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4935 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4936 if (!th->rst) {
4937 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4938 tcp_send_dupack(sk, skb);
4939 goto discard;
4940 }
4941 /* Reset is accepted even if it did not pass PAWS. */
4942 }
4943
4944 /* step 1: check sequence number */
4945 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4946 if (!th->rst)
4947 tcp_send_dupack(sk, skb);
4948 goto discard;
4949 }
4950
4951 /* step 2: check RST bit */
2de979bd 4952 if (th->rst) {
1da177e4
LT
4953 tcp_reset(sk);
4954 goto discard;
4955 }
4956
4957 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4958
4959 /* step 3: check security and precedence [ignored] */
4960
4961 /* step 4:
4962 *
4963 * Check for a SYN in window.
4964 */
4965 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4966 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4967 tcp_reset(sk);
4968 return 1;
4969 }
4970
4971 /* step 5: check the ACK field */
4972 if (th->ack) {
4973 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4974
2de979bd 4975 switch (sk->sk_state) {
1da177e4
LT
4976 case TCP_SYN_RECV:
4977 if (acceptable) {
4978 tp->copied_seq = tp->rcv_nxt;
e16aa207 4979 smp_mb();
1da177e4
LT
4980 tcp_set_state(sk, TCP_ESTABLISHED);
4981 sk->sk_state_change(sk);
4982
4983 /* Note, that this wakeup is only for marginal
4984 * crossed SYN case. Passively open sockets
4985 * are not waked up, because sk->sk_sleep ==
4986 * NULL and sk->sk_socket == NULL.
4987 */
4988 if (sk->sk_socket) {
4989 sk_wake_async(sk,0,POLL_OUT);
4990 }
4991
4992 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4993 tp->snd_wnd = ntohs(th->window) <<
4994 tp->rx_opt.snd_wscale;
4995 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4996 TCP_SKB_CB(skb)->seq);
4997
4998 /* tcp_ack considers this ACK as duplicate
4999 * and does not calculate rtt.
5000 * Fix it at least with timestamps.
5001 */
5002 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5003 !tp->srtt)
2d2abbab 5004 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
5005
5006 if (tp->rx_opt.tstamp_ok)
5007 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5008
5009 /* Make sure socket is routed, for
5010 * correct metrics.
5011 */
8292a17a 5012 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
5013
5014 tcp_init_metrics(sk);
5015
6687e988 5016 tcp_init_congestion_control(sk);
317a76f9 5017
1da177e4
LT
5018 /* Prevent spurious tcp_cwnd_restart() on
5019 * first data packet.
5020 */
5021 tp->lsndtime = tcp_time_stamp;
5022
5d424d5a 5023 tcp_mtup_init(sk);
1da177e4
LT
5024 tcp_initialize_rcv_mss(sk);
5025 tcp_init_buffer_space(sk);
5026 tcp_fast_path_on(tp);
5027 } else {
5028 return 1;
5029 }
5030 break;
5031
5032 case TCP_FIN_WAIT1:
5033 if (tp->snd_una == tp->write_seq) {
5034 tcp_set_state(sk, TCP_FIN_WAIT2);
5035 sk->sk_shutdown |= SEND_SHUTDOWN;
5036 dst_confirm(sk->sk_dst_cache);
5037
5038 if (!sock_flag(sk, SOCK_DEAD))
5039 /* Wake up lingering close() */
5040 sk->sk_state_change(sk);
5041 else {
5042 int tmo;
5043
5044 if (tp->linger2 < 0 ||
5045 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5046 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5047 tcp_done(sk);
5048 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5049 return 1;
5050 }
5051
463c84b9 5052 tmo = tcp_fin_time(sk);
1da177e4 5053 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 5054 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
5055 } else if (th->fin || sock_owned_by_user(sk)) {
5056 /* Bad case. We could lose such FIN otherwise.
5057 * It is not a big problem, but it looks confusing
5058 * and not so rare event. We still can lose it now,
5059 * if it spins in bh_lock_sock(), but it is really
5060 * marginal case.
5061 */
463c84b9 5062 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
5063 } else {
5064 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5065 goto discard;
5066 }
5067 }
5068 }
5069 break;
5070
5071 case TCP_CLOSING:
5072 if (tp->snd_una == tp->write_seq) {
5073 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5074 goto discard;
5075 }
5076 break;
5077
5078 case TCP_LAST_ACK:
5079 if (tp->snd_una == tp->write_seq) {
5080 tcp_update_metrics(sk);
5081 tcp_done(sk);
5082 goto discard;
5083 }
5084 break;
5085 }
5086 } else
5087 goto discard;
5088
5089 /* step 6: check the URG bit */
5090 tcp_urg(sk, skb, th);
5091
5092 /* step 7: process the segment text */
5093 switch (sk->sk_state) {
5094 case TCP_CLOSE_WAIT:
5095 case TCP_CLOSING:
5096 case TCP_LAST_ACK:
5097 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5098 break;
5099 case TCP_FIN_WAIT1:
5100 case TCP_FIN_WAIT2:
5101 /* RFC 793 says to queue data in these states,
e905a9ed 5102 * RFC 1122 says we MUST send a reset.
1da177e4
LT
5103 * BSD 4.4 also does reset.
5104 */
5105 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5106 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5107 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5108 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5109 tcp_reset(sk);
5110 return 1;
5111 }
5112 }
5113 /* Fall through */
e905a9ed 5114 case TCP_ESTABLISHED:
1da177e4
LT
5115 tcp_data_queue(sk, skb);
5116 queued = 1;
5117 break;
5118 }
5119
5120 /* tcp_data could move socket to TIME-WAIT */
5121 if (sk->sk_state != TCP_CLOSE) {
9e412ba7 5122 tcp_data_snd_check(sk);
1da177e4
LT
5123 tcp_ack_snd_check(sk);
5124 }
5125
e905a9ed 5126 if (!queued) {
1da177e4
LT
5127discard:
5128 __kfree_skb(skb);
5129 }
5130 return 0;
5131}
5132
5133EXPORT_SYMBOL(sysctl_tcp_ecn);
5134EXPORT_SYMBOL(sysctl_tcp_reordering);
5135EXPORT_SYMBOL(tcp_parse_options);
5136EXPORT_SYMBOL(tcp_rcv_established);
5137EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 5138EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.753866 seconds and 5 git commands to generate.