Merge tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
5ffc02a1 71#include <net/dst.h>
1da177e4
LT
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
1a2449a8 76#include <net/netdma.h>
1da177e4 77
ab32ea5d
BH
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 86int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 88
282f23c6
ED
89/* rfc5961 challenge ack rate limiting */
90int sysctl_tcp_challenge_ack_limit = 100;
91
ab32ea5d
BH
92int sysctl_tcp_stdurg __read_mostly;
93int sysctl_tcp_rfc1337 __read_mostly;
94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 95int sysctl_tcp_frto __read_mostly = 2;
1da177e4 96
7e380175
AP
97int sysctl_tcp_thin_dupack __read_mostly;
98
ab32ea5d 99int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 100int sysctl_tcp_early_retrans __read_mostly = 3;
1da177e4 101
1da177e4
LT
102#define FLAG_DATA 0x01 /* Incoming frame contained data. */
103#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107#define FLAG_DATA_SACKED 0x20 /* New SACK. */
108#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 109#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 110#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 111#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 112#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 113#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 114#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
115
116#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
1da177e4 121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 123
e905a9ed 124/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 125 * real world.
e905a9ed 126 */
056834d9 127static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 128{
463c84b9 129 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 131 unsigned int len;
1da177e4 132
e905a9ed 133 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
056834d9 138 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
9c70220b 147 len += skb->data - skb_transport_header(skb);
bee7ca9e 148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
463c84b9
ACM
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
1da177e4 162 if (len == lss) {
463c84b9 163 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
164 return;
165 }
166 }
1ef9696c
AK
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
170 }
171}
172
463c84b9 173static void tcp_incr_quickack(struct sock *sk)
1da177e4 174{
463c84b9 175 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 177
056834d9
IJ
178 if (quickacks == 0)
179 quickacks = 2;
463c84b9
ACM
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
182}
183
1b9f4092 184static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 185{
463c84b9
ACM
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
190}
191
192/* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
a2a385d6 196static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 197{
463c84b9 198 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 199
463c84b9 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
201}
202
bdf1ee5d
IJ
203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204{
056834d9 205 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207}
208
cf533ea5 209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
210{
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216{
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
7a269ffa 220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 221{
7a269ffa
ED
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
b82d1bb4 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 226 case INET_ECN_NOT_ECT:
bdf1ee5d 227 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 232 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
233 break;
234 case INET_ECN_CE:
aae06bf5
ED
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
7a269ffa
ED
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
bdf1ee5d
IJ
243 }
244}
245
cf533ea5 246static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 247{
056834d9 248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
249 tp->ecn_flags &= ~TCP_ECN_OK;
250}
251
cf533ea5 252static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 253{
056834d9 254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
255 tp->ecn_flags &= ~TCP_ECN_OK;
256}
257
a2a385d6 258static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 259{
056834d9 260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
261 return true;
262 return false;
bdf1ee5d
IJ
263}
264
1da177e4
LT
265/* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
6ae70532 270static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 271{
6ae70532
ED
272 const struct tcp_sock *tp = tcp_sk(sk);
273 int sndmem, per_mss;
274 u32 nr_segs;
275
276 /* Worst case is non GSO/TSO : each frame consumes one skb
277 * and skb->head is kmalloced using power of two area of memory
278 */
279 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
280 MAX_TCP_HEADER +
281 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
282
283 per_mss = roundup_pow_of_two(per_mss) +
284 SKB_DATA_ALIGN(sizeof(struct sk_buff));
285
286 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
287 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
288
289 /* Fast Recovery (RFC 5681 3.2) :
290 * Cubic needs 1.7 factor, rounded to 2 to include
291 * extra cushion (application might react slowly to POLLOUT)
292 */
293 sndmem = 2 * nr_segs * per_mss;
1da177e4 294
06a59ecb
ED
295 if (sk->sk_sndbuf < sndmem)
296 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
297}
298
299/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
300 *
301 * All tcp_full_space() is split to two parts: "network" buffer, allocated
302 * forward and advertised in receiver window (tp->rcv_wnd) and
303 * "application buffer", required to isolate scheduling/application
304 * latencies from network.
305 * window_clamp is maximal advertised window. It can be less than
306 * tcp_full_space(), in this case tcp_full_space() - window_clamp
307 * is reserved for "application" buffer. The less window_clamp is
308 * the smoother our behaviour from viewpoint of network, but the lower
309 * throughput and the higher sensitivity of the connection to losses. 8)
310 *
311 * rcv_ssthresh is more strict window_clamp used at "slow start"
312 * phase to predict further behaviour of this connection.
313 * It is used for two goals:
314 * - to enforce header prediction at sender, even when application
315 * requires some significant "application buffer". It is check #1.
316 * - to prevent pruning of receive queue because of misprediction
317 * of receiver window. Check #2.
318 *
319 * The scheme does not work when sender sends good segments opening
caa20d9a 320 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
321 * in common situations. Otherwise, we have to rely on queue collapsing.
322 */
323
324/* Slow part of check#2. */
9e412ba7 325static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 326{
9e412ba7 327 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 328 /* Optimize this! */
dfd4f0ae
ED
329 int truesize = tcp_win_from_space(skb->truesize) >> 1;
330 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
331
332 while (tp->rcv_ssthresh <= window) {
333 if (truesize <= skb->len)
463c84b9 334 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
335
336 truesize >>= 1;
337 window >>= 1;
338 }
339 return 0;
340}
341
cf533ea5 342static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 343{
9e412ba7
IJ
344 struct tcp_sock *tp = tcp_sk(sk);
345
1da177e4
LT
346 /* Check #1 */
347 if (tp->rcv_ssthresh < tp->window_clamp &&
348 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 349 !sk_under_memory_pressure(sk)) {
1da177e4
LT
350 int incr;
351
352 /* Check #2. Increase window, if skb with such overhead
353 * will fit to rcvbuf in future.
354 */
355 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 356 incr = 2 * tp->advmss;
1da177e4 357 else
9e412ba7 358 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
359
360 if (incr) {
4d846f02 361 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
362 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
363 tp->window_clamp);
463c84b9 364 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
365 }
366 }
367}
368
369/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
370static void tcp_fixup_rcvbuf(struct sock *sk)
371{
e9266a02 372 u32 mss = tcp_sk(sk)->advmss;
e9266a02 373 int rcvmem;
1da177e4 374
85f16525
YC
375 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
376 tcp_default_init_rwnd(mss);
e9266a02 377
b0983d3c
ED
378 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
379 * Allow enough cushion so that sender is not limited by our window
380 */
381 if (sysctl_tcp_moderate_rcvbuf)
382 rcvmem <<= 2;
383
e9266a02
ED
384 if (sk->sk_rcvbuf < rcvmem)
385 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
386}
387
caa20d9a 388/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
389 * established state.
390 */
10467163 391void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
392{
393 struct tcp_sock *tp = tcp_sk(sk);
394 int maxwin;
395
396 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
397 tcp_fixup_rcvbuf(sk);
398 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 399 tcp_sndbuf_expand(sk);
1da177e4
LT
400
401 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
402 tp->rcvq_space.time = tcp_time_stamp;
403 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
404
405 maxwin = tcp_full_space(sk);
406
407 if (tp->window_clamp >= maxwin) {
408 tp->window_clamp = maxwin;
409
410 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
411 tp->window_clamp = max(maxwin -
412 (maxwin >> sysctl_tcp_app_win),
413 4 * tp->advmss);
414 }
415
416 /* Force reservation of one segment. */
417 if (sysctl_tcp_app_win &&
418 tp->window_clamp > 2 * tp->advmss &&
419 tp->window_clamp + tp->advmss > maxwin)
420 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
421
422 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
423 tp->snd_cwnd_stamp = tcp_time_stamp;
424}
425
1da177e4 426/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 427static void tcp_clamp_window(struct sock *sk)
1da177e4 428{
9e412ba7 429 struct tcp_sock *tp = tcp_sk(sk);
6687e988 430 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 431
6687e988 432 icsk->icsk_ack.quick = 0;
1da177e4 433
326f36e9
JH
434 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
435 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
436 !sk_under_memory_pressure(sk) &&
437 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
438 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
439 sysctl_tcp_rmem[2]);
1da177e4 440 }
326f36e9 441 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 442 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
443}
444
40efc6fa
SH
445/* Initialize RCV_MSS value.
446 * RCV_MSS is an our guess about MSS used by the peer.
447 * We haven't any direct information about the MSS.
448 * It's better to underestimate the RCV_MSS rather than overestimate.
449 * Overestimations make us ACKing less frequently than needed.
450 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
451 */
452void tcp_initialize_rcv_mss(struct sock *sk)
453{
cf533ea5 454 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
455 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
456
056834d9 457 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 458 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
459 hint = max(hint, TCP_MIN_MSS);
460
461 inet_csk(sk)->icsk_ack.rcv_mss = hint;
462}
4bc2f18b 463EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 464
1da177e4
LT
465/* Receiver "autotuning" code.
466 *
467 * The algorithm for RTT estimation w/o timestamps is based on
468 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 469 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
470 *
471 * More detail on this code can be found at
631dd1a8 472 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
473 * though this reference is out of date. A new paper
474 * is pending.
475 */
476static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
477{
478 u32 new_sample = tp->rcv_rtt_est.rtt;
479 long m = sample;
480
481 if (m == 0)
482 m = 1;
483
484 if (new_sample != 0) {
485 /* If we sample in larger samples in the non-timestamp
486 * case, we could grossly overestimate the RTT especially
487 * with chatty applications or bulk transfer apps which
488 * are stalled on filesystem I/O.
489 *
490 * Also, since we are only going for a minimum in the
31f34269 491 * non-timestamp case, we do not smooth things out
caa20d9a 492 * else with timestamps disabled convergence takes too
1da177e4
LT
493 * long.
494 */
495 if (!win_dep) {
496 m -= (new_sample >> 3);
497 new_sample += m;
18a223e0
NC
498 } else {
499 m <<= 3;
500 if (m < new_sample)
501 new_sample = m;
502 }
1da177e4 503 } else {
caa20d9a 504 /* No previous measure. */
1da177e4
LT
505 new_sample = m << 3;
506 }
507
508 if (tp->rcv_rtt_est.rtt != new_sample)
509 tp->rcv_rtt_est.rtt = new_sample;
510}
511
512static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
513{
514 if (tp->rcv_rtt_est.time == 0)
515 goto new_measure;
516 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
517 return;
651913ce 518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
519
520new_measure:
521 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
522 tp->rcv_rtt_est.time = tcp_time_stamp;
523}
524
056834d9
IJ
525static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
526 const struct sk_buff *skb)
1da177e4 527{
463c84b9 528 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
529 if (tp->rx_opt.rcv_tsecr &&
530 (TCP_SKB_CB(skb)->end_seq -
463c84b9 531 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
532 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
533}
534
535/*
536 * This function should be called every time data is copied to user space.
537 * It calculates the appropriate TCP receive buffer space.
538 */
539void tcp_rcv_space_adjust(struct sock *sk)
540{
541 struct tcp_sock *tp = tcp_sk(sk);
542 int time;
b0983d3c 543 int copied;
e905a9ed 544
1da177e4 545 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 546 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 547 return;
e905a9ed 548
b0983d3c
ED
549 /* Number of bytes copied to user in last RTT */
550 copied = tp->copied_seq - tp->rcvq_space.seq;
551 if (copied <= tp->rcvq_space.space)
552 goto new_measure;
553
554 /* A bit of theory :
555 * copied = bytes received in previous RTT, our base window
556 * To cope with packet losses, we need a 2x factor
557 * To cope with slow start, and sender growing its cwin by 100 %
558 * every RTT, we need a 4x factor, because the ACK we are sending
559 * now is for the next RTT, not the current one :
560 * <prev RTT . ><current RTT .. ><next RTT .... >
561 */
562
563 if (sysctl_tcp_moderate_rcvbuf &&
564 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
565 int rcvwin, rcvmem, rcvbuf;
1da177e4 566
b0983d3c
ED
567 /* minimal window to cope with packet losses, assuming
568 * steady state. Add some cushion because of small variations.
569 */
570 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 571
b0983d3c
ED
572 /* If rate increased by 25%,
573 * assume slow start, rcvwin = 3 * copied
574 * If rate increased by 50%,
575 * assume sender can use 2x growth, rcvwin = 4 * copied
576 */
577 if (copied >=
578 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
579 if (copied >=
580 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
581 rcvwin <<= 1;
582 else
583 rcvwin += (rcvwin >> 1);
584 }
1da177e4 585
b0983d3c
ED
586 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
587 while (tcp_win_from_space(rcvmem) < tp->advmss)
588 rcvmem += 128;
1da177e4 589
b0983d3c
ED
590 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
591 if (rcvbuf > sk->sk_rcvbuf) {
592 sk->sk_rcvbuf = rcvbuf;
1da177e4 593
b0983d3c
ED
594 /* Make the window clamp follow along. */
595 tp->window_clamp = rcvwin;
1da177e4
LT
596 }
597 }
b0983d3c 598 tp->rcvq_space.space = copied;
e905a9ed 599
1da177e4
LT
600new_measure:
601 tp->rcvq_space.seq = tp->copied_seq;
602 tp->rcvq_space.time = tcp_time_stamp;
603}
604
605/* There is something which you must keep in mind when you analyze the
606 * behavior of the tp->ato delayed ack timeout interval. When a
607 * connection starts up, we want to ack as quickly as possible. The
608 * problem is that "good" TCP's do slow start at the beginning of data
609 * transmission. The means that until we send the first few ACK's the
610 * sender will sit on his end and only queue most of his data, because
611 * he can only send snd_cwnd unacked packets at any given time. For
612 * each ACK we send, he increments snd_cwnd and transmits more of his
613 * queue. -DaveM
614 */
9e412ba7 615static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 616{
9e412ba7 617 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 618 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
619 u32 now;
620
463c84b9 621 inet_csk_schedule_ack(sk);
1da177e4 622
463c84b9 623 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
624
625 tcp_rcv_rtt_measure(tp);
e905a9ed 626
1da177e4
LT
627 now = tcp_time_stamp;
628
463c84b9 629 if (!icsk->icsk_ack.ato) {
1da177e4
LT
630 /* The _first_ data packet received, initialize
631 * delayed ACK engine.
632 */
463c84b9
ACM
633 tcp_incr_quickack(sk);
634 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 635 } else {
463c84b9 636 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 637
056834d9 638 if (m <= TCP_ATO_MIN / 2) {
1da177e4 639 /* The fastest case is the first. */
463c84b9
ACM
640 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
641 } else if (m < icsk->icsk_ack.ato) {
642 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
643 if (icsk->icsk_ack.ato > icsk->icsk_rto)
644 icsk->icsk_ack.ato = icsk->icsk_rto;
645 } else if (m > icsk->icsk_rto) {
caa20d9a 646 /* Too long gap. Apparently sender failed to
1da177e4
LT
647 * restart window, so that we send ACKs quickly.
648 */
463c84b9 649 tcp_incr_quickack(sk);
3ab224be 650 sk_mem_reclaim(sk);
1da177e4
LT
651 }
652 }
463c84b9 653 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
654
655 TCP_ECN_check_ce(tp, skb);
656
657 if (skb->len >= 128)
9e412ba7 658 tcp_grow_window(sk, skb);
1da177e4
LT
659}
660
1da177e4
LT
661/* Called to compute a smoothed rtt estimate. The data fed to this
662 * routine either comes from timestamps, or from segments that were
663 * known _not_ to have been retransmitted [see Karn/Partridge
664 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
665 * piece by Van Jacobson.
666 * NOTE: the next three routines used to be one big routine.
667 * To save cycles in the RFC 1323 implementation it was better to break
668 * it up into three procedures. -- erics
669 */
2d2abbab 670static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 671{
6687e988 672 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 673 long m = mrtt; /* RTT */
4a5ab4e2 674 u32 srtt = tp->srtt;
1da177e4 675
1da177e4
LT
676 /* The following amusing code comes from Jacobson's
677 * article in SIGCOMM '88. Note that rtt and mdev
678 * are scaled versions of rtt and mean deviation.
e905a9ed 679 * This is designed to be as fast as possible
1da177e4
LT
680 * m stands for "measurement".
681 *
682 * On a 1990 paper the rto value is changed to:
683 * RTO = rtt + 4 * mdev
684 *
685 * Funny. This algorithm seems to be very broken.
686 * These formulae increase RTO, when it should be decreased, increase
31f34269 687 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
688 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
689 * does not matter how to _calculate_ it. Seems, it was trap
690 * that VJ failed to avoid. 8)
691 */
4a5ab4e2
ED
692 if (srtt != 0) {
693 m -= (srtt >> 3); /* m is now error in rtt est */
694 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
695 if (m < 0) {
696 m = -m; /* m is now abs(error) */
697 m -= (tp->mdev >> 2); /* similar update on mdev */
698 /* This is similar to one of Eifel findings.
699 * Eifel blocks mdev updates when rtt decreases.
700 * This solution is a bit different: we use finer gain
701 * for mdev in this case (alpha*beta).
702 * Like Eifel it also prevents growth of rto,
703 * but also it limits too fast rto decreases,
704 * happening in pure Eifel.
705 */
706 if (m > 0)
707 m >>= 3;
708 } else {
709 m -= (tp->mdev >> 2); /* similar update on mdev */
710 }
711 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
712 if (tp->mdev > tp->mdev_max) {
713 tp->mdev_max = tp->mdev;
714 if (tp->mdev_max > tp->rttvar)
715 tp->rttvar = tp->mdev_max;
716 }
717 if (after(tp->snd_una, tp->rtt_seq)) {
718 if (tp->mdev_max < tp->rttvar)
056834d9 719 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 720 tp->rtt_seq = tp->snd_nxt;
05bb1fad 721 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
722 }
723 } else {
724 /* no previous measure. */
4a5ab4e2 725 srtt = m << 3; /* take the measured time to be rtt */
056834d9 726 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 727 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
728 tp->rtt_seq = tp->snd_nxt;
729 }
4a5ab4e2 730 tp->srtt = max(1U, srtt);
1da177e4
LT
731}
732
95bd09eb
ED
733/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
734 * Note: TCP stack does not yet implement pacing.
735 * FQ packet scheduler can be used to implement cheap but effective
736 * TCP pacing, to smooth the burst on large writes when packets
737 * in flight is significantly lower than cwnd (or rwin)
738 */
739static void tcp_update_pacing_rate(struct sock *sk)
740{
741 const struct tcp_sock *tp = tcp_sk(sk);
742 u64 rate;
743
744 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
745 rate = (u64)tp->mss_cache * 2 * (HZ << 3);
746
747 rate *= max(tp->snd_cwnd, tp->packets_out);
748
4a5ab4e2
ED
749 /* Correction for small srtt and scheduling constraints.
750 * For small rtt, consider noise is too high, and use
751 * the minimal value (srtt = 1 -> 125 us for HZ=1000)
752 *
95bd09eb
ED
753 * We probably need usec resolution in the future.
754 * Note: This also takes care of possible srtt=0 case,
755 * when tcp_rtt_estimator() was not yet called.
756 */
757 if (tp->srtt > 8 + 2)
758 do_div(rate, tp->srtt);
759
ba537427
ED
760 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
761 * without any lock. We want to make sure compiler wont store
762 * intermediate values in this location.
763 */
764 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
765 sk->sk_max_pacing_rate);
95bd09eb
ED
766}
767
1da177e4
LT
768/* Calculate rto without backoff. This is the second half of Van Jacobson's
769 * routine referred to above.
770 */
f7e56a76 771static void tcp_set_rto(struct sock *sk)
1da177e4 772{
463c84b9 773 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
774 /* Old crap is replaced with new one. 8)
775 *
776 * More seriously:
777 * 1. If rtt variance happened to be less 50msec, it is hallucination.
778 * It cannot be less due to utterly erratic ACK generation made
779 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
780 * to do with delayed acks, because at cwnd>2 true delack timeout
781 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 782 * ACKs in some circumstances.
1da177e4 783 */
f1ecd5d9 784 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
785
786 /* 2. Fixups made earlier cannot be right.
787 * If we do not estimate RTO correctly without them,
788 * all the algo is pure shit and should be replaced
caa20d9a 789 * with correct one. It is exactly, which we pretend to do.
1da177e4 790 */
1da177e4 791
ee6aac59
IJ
792 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
793 * guarantees that rto is higher.
794 */
f1ecd5d9 795 tcp_bound_rto(sk);
1da177e4
LT
796}
797
cf533ea5 798__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
799{
800 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
801
22b71c8f 802 if (!cwnd)
442b9635 803 cwnd = TCP_INIT_CWND;
1da177e4
LT
804 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
805}
806
e60402d0
IJ
807/*
808 * Packet counting of FACK is based on in-order assumptions, therefore TCP
809 * disables it when reordering is detected
810 */
4aabd8ef 811void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 812{
85cc391c
IJ
813 /* RFC3517 uses different metric in lost marker => reset on change */
814 if (tcp_is_fack(tp))
815 tp->lost_skb_hint = NULL;
ab56222a 816 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
817}
818
564262c1 819/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
820static void tcp_dsack_seen(struct tcp_sock *tp)
821{
ab56222a 822 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
823}
824
6687e988
ACM
825static void tcp_update_reordering(struct sock *sk, const int metric,
826 const int ts)
1da177e4 827{
6687e988 828 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 829 if (metric > tp->reordering) {
40b215e5
PE
830 int mib_idx;
831
1da177e4
LT
832 tp->reordering = min(TCP_MAX_REORDERING, metric);
833
834 /* This exciting event is worth to be remembered. 8) */
835 if (ts)
40b215e5 836 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 837 else if (tcp_is_reno(tp))
40b215e5 838 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 839 else if (tcp_is_fack(tp))
40b215e5 840 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 841 else
40b215e5
PE
842 mib_idx = LINUX_MIB_TCPSACKREORDER;
843
de0744af 844 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 845#if FASTRETRANS_DEBUG > 1
91df42be
JP
846 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
847 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
848 tp->reordering,
849 tp->fackets_out,
850 tp->sacked_out,
851 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 852#endif
e60402d0 853 tcp_disable_fack(tp);
1da177e4 854 }
eed530b6
YC
855
856 if (metric > 0)
857 tcp_disable_early_retrans(tp);
1da177e4
LT
858}
859
006f582c 860/* This must be called before lost_out is incremented */
c8c213f2
IJ
861static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
862{
006f582c 863 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
864 before(TCP_SKB_CB(skb)->seq,
865 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
866 tp->retransmit_skb_hint = skb;
867
868 if (!tp->lost_out ||
869 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
870 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
871}
872
41ea36e3
IJ
873static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
874{
875 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
876 tcp_verify_retransmit_hint(tp, skb);
877
878 tp->lost_out += tcp_skb_pcount(skb);
879 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
880 }
881}
882
e1aa680f
IJ
883static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
884 struct sk_buff *skb)
006f582c
IJ
885{
886 tcp_verify_retransmit_hint(tp, skb);
887
888 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
889 tp->lost_out += tcp_skb_pcount(skb);
890 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
891 }
892}
893
1da177e4
LT
894/* This procedure tags the retransmission queue when SACKs arrive.
895 *
896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897 * Packets in queue with these bits set are counted in variables
898 * sacked_out, retrans_out and lost_out, correspondingly.
899 *
900 * Valid combinations are:
901 * Tag InFlight Description
902 * 0 1 - orig segment is in flight.
903 * S 0 - nothing flies, orig reached receiver.
904 * L 0 - nothing flies, orig lost by net.
905 * R 2 - both orig and retransmit are in flight.
906 * L|R 1 - orig is lost, retransmit is in flight.
907 * S|R 1 - orig reached receiver, retrans is still in flight.
908 * (L|S|R is logically valid, it could occur when L|R is sacked,
909 * but it is equivalent to plain S and code short-curcuits it to S.
910 * L|S is logically invalid, it would mean -1 packet in flight 8))
911 *
912 * These 6 states form finite state machine, controlled by the following events:
913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 915 * 3. Loss detection event of two flavors:
1da177e4
LT
916 * A. Scoreboard estimator decided the packet is lost.
917 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
918 * A''. Its FACK modification, head until snd.fack is lost.
919 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
920 * segment was retransmitted.
921 * 4. D-SACK added new rule: D-SACK changes any tag to S.
922 *
923 * It is pleasant to note, that state diagram turns out to be commutative,
924 * so that we are allowed not to be bothered by order of our actions,
925 * when multiple events arrive simultaneously. (see the function below).
926 *
927 * Reordering detection.
928 * --------------------
929 * Reordering metric is maximal distance, which a packet can be displaced
930 * in packet stream. With SACKs we can estimate it:
931 *
932 * 1. SACK fills old hole and the corresponding segment was not
933 * ever retransmitted -> reordering. Alas, we cannot use it
934 * when segment was retransmitted.
935 * 2. The last flaw is solved with D-SACK. D-SACK arrives
936 * for retransmitted and already SACKed segment -> reordering..
937 * Both of these heuristics are not used in Loss state, when we cannot
938 * account for retransmits accurately.
5b3c9882
IJ
939 *
940 * SACK block validation.
941 * ----------------------
942 *
943 * SACK block range validation checks that the received SACK block fits to
944 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
945 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
946 * it means that the receiver is rather inconsistent with itself reporting
947 * SACK reneging when it should advance SND.UNA. Such SACK block this is
948 * perfectly valid, however, in light of RFC2018 which explicitly states
949 * that "SACK block MUST reflect the newest segment. Even if the newest
950 * segment is going to be discarded ...", not that it looks very clever
951 * in case of head skb. Due to potentional receiver driven attacks, we
952 * choose to avoid immediate execution of a walk in write queue due to
953 * reneging and defer head skb's loss recovery to standard loss recovery
954 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
955 *
956 * Implements also blockage to start_seq wrap-around. Problem lies in the
957 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
958 * there's no guarantee that it will be before snd_nxt (n). The problem
959 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
960 * wrap (s_w):
961 *
962 * <- outs wnd -> <- wrapzone ->
963 * u e n u_w e_w s n_w
964 * | | | | | | |
965 * |<------------+------+----- TCP seqno space --------------+---------->|
966 * ...-- <2^31 ->| |<--------...
967 * ...---- >2^31 ------>| |<--------...
968 *
969 * Current code wouldn't be vulnerable but it's better still to discard such
970 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
971 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
972 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
973 * equal to the ideal case (infinite seqno space without wrap caused issues).
974 *
975 * With D-SACK the lower bound is extended to cover sequence space below
976 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 977 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
978 * for the normal SACK blocks, explained above). But there all simplicity
979 * ends, TCP might receive valid D-SACKs below that. As long as they reside
980 * fully below undo_marker they do not affect behavior in anyway and can
981 * therefore be safely ignored. In rare cases (which are more or less
982 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
983 * fragmentation and packet reordering past skb's retransmission. To consider
984 * them correctly, the acceptable range must be extended even more though
985 * the exact amount is rather hard to quantify. However, tp->max_window can
986 * be used as an exaggerated estimate.
1da177e4 987 */
a2a385d6
ED
988static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
989 u32 start_seq, u32 end_seq)
5b3c9882
IJ
990{
991 /* Too far in future, or reversed (interpretation is ambiguous) */
992 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 993 return false;
5b3c9882
IJ
994
995 /* Nasty start_seq wrap-around check (see comments above) */
996 if (!before(start_seq, tp->snd_nxt))
a2a385d6 997 return false;
5b3c9882 998
564262c1 999 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1000 * start_seq == snd_una is non-sensical (see comments above)
1001 */
1002 if (after(start_seq, tp->snd_una))
a2a385d6 1003 return true;
5b3c9882
IJ
1004
1005 if (!is_dsack || !tp->undo_marker)
a2a385d6 1006 return false;
5b3c9882
IJ
1007
1008 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1009 if (after(end_seq, tp->snd_una))
a2a385d6 1010 return false;
5b3c9882
IJ
1011
1012 if (!before(start_seq, tp->undo_marker))
a2a385d6 1013 return true;
5b3c9882
IJ
1014
1015 /* Too old */
1016 if (!after(end_seq, tp->undo_marker))
a2a385d6 1017 return false;
5b3c9882
IJ
1018
1019 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1020 * start_seq < undo_marker and end_seq >= undo_marker.
1021 */
1022 return !before(start_seq, end_seq - tp->max_window);
1023}
1024
1c1e87ed 1025/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 1026 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 1027 * for reordering! Ugly, but should help.
f785a8e2
IJ
1028 *
1029 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1030 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1031 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1032 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1033 */
407ef1de 1034static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1035{
9f58f3b7 1036 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1037 struct tcp_sock *tp = tcp_sk(sk);
1038 struct sk_buff *skb;
f785a8e2 1039 int cnt = 0;
df2e014b 1040 u32 new_low_seq = tp->snd_nxt;
6859d494 1041 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1042
1043 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1044 !after(received_upto, tp->lost_retrans_low) ||
1045 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1046 return;
1c1e87ed
IJ
1047
1048 tcp_for_write_queue(skb, sk) {
1049 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1050
1051 if (skb == tcp_send_head(sk))
1052 break;
f785a8e2 1053 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1054 break;
1055 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1056 continue;
1057
f785a8e2
IJ
1058 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1059 continue;
1060
d0af4160
IJ
1061 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1062 * constraint here (see above) but figuring out that at
1063 * least tp->reordering SACK blocks reside between ack_seq
1064 * and received_upto is not easy task to do cheaply with
1065 * the available datastructures.
1066 *
1067 * Whether FACK should check here for tp->reordering segs
1068 * in-between one could argue for either way (it would be
1069 * rather simple to implement as we could count fack_count
1070 * during the walk and do tp->fackets_out - fack_count).
1071 */
1072 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1073 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1074 tp->retrans_out -= tcp_skb_pcount(skb);
1075
006f582c 1076 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1077 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1078 } else {
df2e014b 1079 if (before(ack_seq, new_low_seq))
b08d6cb2 1080 new_low_seq = ack_seq;
f785a8e2 1081 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1082 }
1083 }
b08d6cb2
IJ
1084
1085 if (tp->retrans_out)
1086 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1087}
5b3c9882 1088
a2a385d6
ED
1089static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1090 struct tcp_sack_block_wire *sp, int num_sacks,
1091 u32 prior_snd_una)
d06e021d 1092{
1ed83465 1093 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1094 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1095 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1096 bool dup_sack = false;
d06e021d
DM
1097
1098 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1099 dup_sack = true;
e60402d0 1100 tcp_dsack_seen(tp);
de0744af 1101 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1102 } else if (num_sacks > 1) {
d3e2ce3b
HH
1103 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1104 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1105
1106 if (!after(end_seq_0, end_seq_1) &&
1107 !before(start_seq_0, start_seq_1)) {
a2a385d6 1108 dup_sack = true;
e60402d0 1109 tcp_dsack_seen(tp);
de0744af
PE
1110 NET_INC_STATS_BH(sock_net(sk),
1111 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1112 }
1113 }
1114
1115 /* D-SACK for already forgotten data... Do dumb counting. */
c24f691b 1116 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
d06e021d
DM
1117 !after(end_seq_0, prior_snd_una) &&
1118 after(end_seq_0, tp->undo_marker))
1119 tp->undo_retrans--;
1120
1121 return dup_sack;
1122}
1123
a1197f5a
IJ
1124struct tcp_sacktag_state {
1125 int reord;
1126 int fack_count;
1127 int flag;
59c9af42 1128 s32 rtt; /* RTT measured by SACKing never-retransmitted data */
a1197f5a
IJ
1129};
1130
d1935942
IJ
1131/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1132 * the incoming SACK may not exactly match but we can find smaller MSS
1133 * aligned portion of it that matches. Therefore we might need to fragment
1134 * which may fail and creates some hassle (caller must handle error case
1135 * returns).
832d11c5
IJ
1136 *
1137 * FIXME: this could be merged to shift decision code
d1935942 1138 */
0f79efdc 1139static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1140 u32 start_seq, u32 end_seq)
d1935942 1141{
a2a385d6
ED
1142 int err;
1143 bool in_sack;
d1935942 1144 unsigned int pkt_len;
adb92db8 1145 unsigned int mss;
d1935942
IJ
1146
1147 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1148 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1149
1150 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1151 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1152 mss = tcp_skb_mss(skb);
d1935942
IJ
1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1154
adb92db8 1155 if (!in_sack) {
d1935942 1156 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1157 if (pkt_len < mss)
1158 pkt_len = mss;
1159 } else {
d1935942 1160 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1161 if (pkt_len < mss)
1162 return -EINVAL;
1163 }
1164
1165 /* Round if necessary so that SACKs cover only full MSSes
1166 * and/or the remaining small portion (if present)
1167 */
1168 if (pkt_len > mss) {
1169 unsigned int new_len = (pkt_len / mss) * mss;
1170 if (!in_sack && new_len < pkt_len) {
1171 new_len += mss;
1172 if (new_len > skb->len)
1173 return 0;
1174 }
1175 pkt_len = new_len;
1176 }
1177 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1178 if (err < 0)
1179 return err;
1180 }
1181
1182 return in_sack;
1183}
1184
cc9a672e
NC
1185/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1186static u8 tcp_sacktag_one(struct sock *sk,
1187 struct tcp_sacktag_state *state, u8 sacked,
1188 u32 start_seq, u32 end_seq,
59c9af42 1189 int dup_sack, int pcount, u32 xmit_time)
9e10c47c 1190{
6859d494 1191 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1192 int fack_count = state->fack_count;
9e10c47c
IJ
1193
1194 /* Account D-SACK for retransmitted packet. */
1195 if (dup_sack && (sacked & TCPCB_RETRANS)) {
c24f691b 1196 if (tp->undo_marker && tp->undo_retrans &&
cc9a672e 1197 after(end_seq, tp->undo_marker))
9e10c47c 1198 tp->undo_retrans--;
ede9f3b1 1199 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1200 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1201 }
1202
1203 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1204 if (!after(end_seq, tp->snd_una))
a1197f5a 1205 return sacked;
9e10c47c
IJ
1206
1207 if (!(sacked & TCPCB_SACKED_ACKED)) {
1208 if (sacked & TCPCB_SACKED_RETRANS) {
1209 /* If the segment is not tagged as lost,
1210 * we do not clear RETRANS, believing
1211 * that retransmission is still in flight.
1212 */
1213 if (sacked & TCPCB_LOST) {
a1197f5a 1214 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1215 tp->lost_out -= pcount;
1216 tp->retrans_out -= pcount;
9e10c47c
IJ
1217 }
1218 } else {
1219 if (!(sacked & TCPCB_RETRANS)) {
1220 /* New sack for not retransmitted frame,
1221 * which was in hole. It is reordering.
1222 */
cc9a672e 1223 if (before(start_seq,
9e10c47c 1224 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1225 state->reord = min(fack_count,
1226 state->reord);
e33099f9
YC
1227 if (!after(end_seq, tp->high_seq))
1228 state->flag |= FLAG_ORIG_SACK_ACKED;
59c9af42
YC
1229 /* Pick the earliest sequence sacked for RTT */
1230 if (state->rtt < 0)
1231 state->rtt = tcp_time_stamp - xmit_time;
9e10c47c
IJ
1232 }
1233
1234 if (sacked & TCPCB_LOST) {
a1197f5a 1235 sacked &= ~TCPCB_LOST;
f58b22fd 1236 tp->lost_out -= pcount;
9e10c47c
IJ
1237 }
1238 }
1239
a1197f5a
IJ
1240 sacked |= TCPCB_SACKED_ACKED;
1241 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1242 tp->sacked_out += pcount;
9e10c47c 1243
f58b22fd 1244 fack_count += pcount;
9e10c47c
IJ
1245
1246 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1247 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1248 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1249 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1250
1251 if (fack_count > tp->fackets_out)
1252 tp->fackets_out = fack_count;
9e10c47c
IJ
1253 }
1254
1255 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1256 * frames and clear it. undo_retrans is decreased above, L|R frames
1257 * are accounted above as well.
1258 */
a1197f5a
IJ
1259 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1260 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1261 tp->retrans_out -= pcount;
9e10c47c
IJ
1262 }
1263
a1197f5a 1264 return sacked;
9e10c47c
IJ
1265}
1266
daef52ba
NC
1267/* Shift newly-SACKed bytes from this skb to the immediately previous
1268 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1269 */
a2a385d6
ED
1270static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1271 struct tcp_sacktag_state *state,
1272 unsigned int pcount, int shifted, int mss,
1273 bool dup_sack)
832d11c5
IJ
1274{
1275 struct tcp_sock *tp = tcp_sk(sk);
50133161 1276 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1277 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1278 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1279
1280 BUG_ON(!pcount);
1281
4c90d3b3
NC
1282 /* Adjust counters and hints for the newly sacked sequence
1283 * range but discard the return value since prev is already
1284 * marked. We must tag the range first because the seq
1285 * advancement below implicitly advances
1286 * tcp_highest_sack_seq() when skb is highest_sack.
1287 */
1288 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42
YC
1289 start_seq, end_seq, dup_sack, pcount,
1290 TCP_SKB_CB(skb)->when);
4c90d3b3
NC
1291
1292 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1293 tp->lost_cnt_hint += pcount;
1294
832d11c5
IJ
1295 TCP_SKB_CB(prev)->end_seq += shifted;
1296 TCP_SKB_CB(skb)->seq += shifted;
1297
1298 skb_shinfo(prev)->gso_segs += pcount;
1299 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1300 skb_shinfo(skb)->gso_segs -= pcount;
1301
1302 /* When we're adding to gso_segs == 1, gso_size will be zero,
1303 * in theory this shouldn't be necessary but as long as DSACK
1304 * code can come after this skb later on it's better to keep
1305 * setting gso_size to something.
1306 */
1307 if (!skb_shinfo(prev)->gso_size) {
1308 skb_shinfo(prev)->gso_size = mss;
c9af6db4 1309 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
832d11c5
IJ
1310 }
1311
1312 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1313 if (skb_shinfo(skb)->gso_segs <= 1) {
1314 skb_shinfo(skb)->gso_size = 0;
c9af6db4 1315 skb_shinfo(skb)->gso_type = 0;
832d11c5
IJ
1316 }
1317
832d11c5
IJ
1318 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1319 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1320
832d11c5
IJ
1321 if (skb->len > 0) {
1322 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1324 return false;
832d11c5
IJ
1325 }
1326
1327 /* Whole SKB was eaten :-) */
1328
92ee76b6
IJ
1329 if (skb == tp->retransmit_skb_hint)
1330 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1331 if (skb == tp->lost_skb_hint) {
1332 tp->lost_skb_hint = prev;
1333 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1334 }
1335
5e8a402f
ED
1336 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1337 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1338 TCP_SKB_CB(prev)->end_seq++;
1339
832d11c5
IJ
1340 if (skb == tcp_highest_sack(sk))
1341 tcp_advance_highest_sack(sk, skb);
1342
1343 tcp_unlink_write_queue(skb, sk);
1344 sk_wmem_free_skb(sk, skb);
1345
111cc8b9
IJ
1346 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1347
a2a385d6 1348 return true;
832d11c5
IJ
1349}
1350
1351/* I wish gso_size would have a bit more sane initialization than
1352 * something-or-zero which complicates things
1353 */
cf533ea5 1354static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1355{
775ffabf 1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1357}
1358
1359/* Shifting pages past head area doesn't work */
cf533ea5 1360static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1361{
1362 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363}
1364
1365/* Try collapsing SACK blocks spanning across multiple skbs to a single
1366 * skb.
1367 */
1368static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1369 struct tcp_sacktag_state *state,
832d11c5 1370 u32 start_seq, u32 end_seq,
a2a385d6 1371 bool dup_sack)
832d11c5
IJ
1372{
1373 struct tcp_sock *tp = tcp_sk(sk);
1374 struct sk_buff *prev;
1375 int mss;
1376 int pcount = 0;
1377 int len;
1378 int in_sack;
1379
1380 if (!sk_can_gso(sk))
1381 goto fallback;
1382
1383 /* Normally R but no L won't result in plain S */
1384 if (!dup_sack &&
9969ca5f 1385 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1386 goto fallback;
1387 if (!skb_can_shift(skb))
1388 goto fallback;
1389 /* This frame is about to be dropped (was ACKed). */
1390 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1391 goto fallback;
1392
1393 /* Can only happen with delayed DSACK + discard craziness */
1394 if (unlikely(skb == tcp_write_queue_head(sk)))
1395 goto fallback;
1396 prev = tcp_write_queue_prev(sk, skb);
1397
1398 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1399 goto fallback;
1400
1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403
1404 if (in_sack) {
1405 len = skb->len;
1406 pcount = tcp_skb_pcount(skb);
775ffabf 1407 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1408
1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 * drop this restriction as unnecessary
1411 */
775ffabf 1412 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1413 goto fallback;
1414 } else {
1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 goto noop;
1417 /* CHECKME: This is non-MSS split case only?, this will
1418 * cause skipped skbs due to advancing loop btw, original
1419 * has that feature too
1420 */
1421 if (tcp_skb_pcount(skb) <= 1)
1422 goto noop;
1423
1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 if (!in_sack) {
1426 /* TODO: head merge to next could be attempted here
1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 * though it might not be worth of the additional hassle
1429 *
1430 * ...we can probably just fallback to what was done
1431 * previously. We could try merging non-SACKed ones
1432 * as well but it probably isn't going to buy off
1433 * because later SACKs might again split them, and
1434 * it would make skb timestamp tracking considerably
1435 * harder problem.
1436 */
1437 goto fallback;
1438 }
1439
1440 len = end_seq - TCP_SKB_CB(skb)->seq;
1441 BUG_ON(len < 0);
1442 BUG_ON(len > skb->len);
1443
1444 /* MSS boundaries should be honoured or else pcount will
1445 * severely break even though it makes things bit trickier.
1446 * Optimize common case to avoid most of the divides
1447 */
1448 mss = tcp_skb_mss(skb);
1449
1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 * drop this restriction as unnecessary
1452 */
775ffabf 1453 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1454 goto fallback;
1455
1456 if (len == mss) {
1457 pcount = 1;
1458 } else if (len < mss) {
1459 goto noop;
1460 } else {
1461 pcount = len / mss;
1462 len = pcount * mss;
1463 }
1464 }
1465
4648dc97
NC
1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 goto fallback;
1469
832d11c5
IJ
1470 if (!skb_shift(prev, skb, len))
1471 goto fallback;
9ec06ff5 1472 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1473 goto out;
1474
1475 /* Hole filled allows collapsing with the next as well, this is very
1476 * useful when hole on every nth skb pattern happens
1477 */
1478 if (prev == tcp_write_queue_tail(sk))
1479 goto out;
1480 skb = tcp_write_queue_next(sk, prev);
1481
f0bc52f3
IJ
1482 if (!skb_can_shift(skb) ||
1483 (skb == tcp_send_head(sk)) ||
1484 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1485 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1486 goto out;
1487
1488 len = skb->len;
1489 if (skb_shift(prev, skb, len)) {
1490 pcount += tcp_skb_pcount(skb);
9ec06ff5 1491 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1492 }
1493
1494out:
a1197f5a 1495 state->fack_count += pcount;
832d11c5
IJ
1496 return prev;
1497
1498noop:
1499 return skb;
1500
1501fallback:
111cc8b9 1502 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1503 return NULL;
1504}
1505
68f8353b
IJ
1506static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1507 struct tcp_sack_block *next_dup,
a1197f5a 1508 struct tcp_sacktag_state *state,
68f8353b 1509 u32 start_seq, u32 end_seq,
a2a385d6 1510 bool dup_sack_in)
68f8353b 1511{
832d11c5
IJ
1512 struct tcp_sock *tp = tcp_sk(sk);
1513 struct sk_buff *tmp;
1514
68f8353b
IJ
1515 tcp_for_write_queue_from(skb, sk) {
1516 int in_sack = 0;
a2a385d6 1517 bool dup_sack = dup_sack_in;
68f8353b
IJ
1518
1519 if (skb == tcp_send_head(sk))
1520 break;
1521
1522 /* queue is in-order => we can short-circuit the walk early */
1523 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1524 break;
1525
1526 if ((next_dup != NULL) &&
1527 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1528 in_sack = tcp_match_skb_to_sack(sk, skb,
1529 next_dup->start_seq,
1530 next_dup->end_seq);
1531 if (in_sack > 0)
a2a385d6 1532 dup_sack = true;
68f8353b
IJ
1533 }
1534
832d11c5
IJ
1535 /* skb reference here is a bit tricky to get right, since
1536 * shifting can eat and free both this skb and the next,
1537 * so not even _safe variant of the loop is enough.
1538 */
1539 if (in_sack <= 0) {
a1197f5a
IJ
1540 tmp = tcp_shift_skb_data(sk, skb, state,
1541 start_seq, end_seq, dup_sack);
832d11c5
IJ
1542 if (tmp != NULL) {
1543 if (tmp != skb) {
1544 skb = tmp;
1545 continue;
1546 }
1547
1548 in_sack = 0;
1549 } else {
1550 in_sack = tcp_match_skb_to_sack(sk, skb,
1551 start_seq,
1552 end_seq);
1553 }
1554 }
1555
68f8353b
IJ
1556 if (unlikely(in_sack < 0))
1557 break;
1558
832d11c5 1559 if (in_sack) {
cc9a672e
NC
1560 TCP_SKB_CB(skb)->sacked =
1561 tcp_sacktag_one(sk,
1562 state,
1563 TCP_SKB_CB(skb)->sacked,
1564 TCP_SKB_CB(skb)->seq,
1565 TCP_SKB_CB(skb)->end_seq,
1566 dup_sack,
59c9af42
YC
1567 tcp_skb_pcount(skb),
1568 TCP_SKB_CB(skb)->when);
68f8353b 1569
832d11c5
IJ
1570 if (!before(TCP_SKB_CB(skb)->seq,
1571 tcp_highest_sack_seq(tp)))
1572 tcp_advance_highest_sack(sk, skb);
1573 }
1574
a1197f5a 1575 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1576 }
1577 return skb;
1578}
1579
1580/* Avoid all extra work that is being done by sacktag while walking in
1581 * a normal way
1582 */
1583static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1584 struct tcp_sacktag_state *state,
1585 u32 skip_to_seq)
68f8353b
IJ
1586{
1587 tcp_for_write_queue_from(skb, sk) {
1588 if (skb == tcp_send_head(sk))
1589 break;
1590
e8bae275 1591 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1592 break;
d152a7d8 1593
a1197f5a 1594 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1595 }
1596 return skb;
1597}
1598
1599static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600 struct sock *sk,
1601 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1602 struct tcp_sacktag_state *state,
1603 u32 skip_to_seq)
68f8353b
IJ
1604{
1605 if (next_dup == NULL)
1606 return skb;
1607
1608 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1609 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611 next_dup->start_seq, next_dup->end_seq,
1612 1);
68f8353b
IJ
1613 }
1614
1615 return skb;
1616}
1617
cf533ea5 1618static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1619{
1620 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621}
1622
1da177e4 1623static int
cf533ea5 1624tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
59c9af42 1625 u32 prior_snd_una, s32 *sack_rtt)
1da177e4
LT
1626{
1627 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1628 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1630 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1631 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1632 struct tcp_sack_block *cache;
a1197f5a 1633 struct tcp_sacktag_state state;
68f8353b 1634 struct sk_buff *skb;
4389dded 1635 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1636 int used_sacks;
a2a385d6 1637 bool found_dup_sack = false;
68f8353b 1638 int i, j;
fda03fbb 1639 int first_sack_index;
1da177e4 1640
a1197f5a
IJ
1641 state.flag = 0;
1642 state.reord = tp->packets_out;
59c9af42 1643 state.rtt = -1;
a1197f5a 1644
d738cd8f 1645 if (!tp->sacked_out) {
de83c058
IJ
1646 if (WARN_ON(tp->fackets_out))
1647 tp->fackets_out = 0;
6859d494 1648 tcp_highest_sack_reset(sk);
d738cd8f 1649 }
1da177e4 1650
1ed83465 1651 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1652 num_sacks, prior_snd_una);
1653 if (found_dup_sack)
a1197f5a 1654 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1655
1656 /* Eliminate too old ACKs, but take into
1657 * account more or less fresh ones, they can
1658 * contain valid SACK info.
1659 */
1660 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 return 0;
1662