[TCP]: No need to re-count fackets_out/sacked_out at RTO
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 88int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
49ff4bb4 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
009a2e3e 107#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
1da177e4
LT
108
109#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 113#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 114
4dc2665e
IJ
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
1da177e4 117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 118#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 119
e905a9ed 120/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 121 * real world.
e905a9ed 122 */
40efc6fa
SH
123static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
1da177e4 125{
463c84b9 126 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 128 unsigned int len;
1da177e4 129
e905a9ed 130 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
ff9b5e0f 135 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
9c70220b 144 len += skb->data - skb_transport_header(skb);
1da177e4
LT
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
463c84b9
ACM
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
1da177e4 159 if (len == lss) {
463c84b9 160 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
161 return;
162 }
163 }
1ef9696c
AK
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
167 }
168}
169
463c84b9 170static void tcp_incr_quickack(struct sock *sk)
1da177e4 171{
463c84b9
ACM
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
174
175 if (quickacks==0)
176 quickacks=2;
463c84b9
ACM
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
179}
180
463c84b9 181void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 182{
463c84b9
ACM
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
187}
188
189/* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
463c84b9 193static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 194{
463c84b9
ACM
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
197}
198
bdf1ee5d
IJ
199static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200{
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203}
204
205static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206{
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209}
210
211static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212{
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217{
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227}
228
229static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230{
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233}
234
235static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236{
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239}
240
241static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242{
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246}
247
1da177e4
LT
248/* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253static void tcp_fixup_sndbuf(struct sock *sk)
254{
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260}
261
262/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
caa20d9a 283 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287/* Slow part of check#2. */
9e412ba7 288static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 289{
9e412ba7 290 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
463c84b9 297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303}
304
9e412ba7 305static void tcp_grow_window(struct sock *sk,
40efc6fa 306 struct sk_buff *skb)
1da177e4 307{
9e412ba7
IJ
308 struct tcp_sock *tp = tcp_sk(sk);
309
1da177e4
LT
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
9e412ba7 322 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 326 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
327 }
328 }
329}
330
331/* 3. Tuning rcvbuf, when connection enters established state. */
332
333static void tcp_fixup_rcvbuf(struct sock *sk)
334{
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 339 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346}
347
caa20d9a 348/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
349 * established state.
350 */
351static void tcp_init_buffer_space(struct sock *sk)
352{
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382}
383
1da177e4 384/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 385static void tcp_clamp_window(struct sock *sk)
1da177e4 386{
9e412ba7 387 struct tcp_sock *tp = tcp_sk(sk);
6687e988 388 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 389
6687e988 390 icsk->icsk_ack.quick = 0;
1da177e4 391
326f36e9
JH
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
1da177e4 398 }
326f36e9 399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
401}
402
40efc6fa
SH
403
404/* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411void tcp_initialize_rcv_mss(struct sock *sk)
412{
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421}
422
1da177e4
LT
423/* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435{
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
31f34269 449 * non-timestamp case, we do not smooth things out
caa20d9a 450 * else with timestamps disabled convergence takes too
1da177e4
LT
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
caa20d9a 459 /* No previous measure. */
1da177e4
LT
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465}
466
467static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468{
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480}
481
463c84b9 482static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 483{
463c84b9 484 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
463c84b9 487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489}
490
491/*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495void tcp_rcv_space_adjust(struct sock *sk)
496{
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
e905a9ed 500
1da177e4
LT
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
e905a9ed 503
1da177e4
LT
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
e905a9ed 508
1da177e4
LT
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
6fcf9412
JH
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
e905a9ed 543
1da177e4
LT
544new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547}
548
549/* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
9e412ba7 559static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 560{
9e412ba7 561 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 562 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
563 u32 now;
564
463c84b9 565 inet_csk_schedule_ack(sk);
1da177e4 566
463c84b9 567 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
568
569 tcp_rcv_rtt_measure(tp);
e905a9ed 570
1da177e4
LT
571 now = tcp_time_stamp;
572
463c84b9 573 if (!icsk->icsk_ack.ato) {
1da177e4
LT
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
463c84b9
ACM
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 579 } else {
463c84b9 580 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
463c84b9
ACM
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
caa20d9a 590 /* Too long gap. Apparently sender failed to
1da177e4
LT
591 * restart window, so that we send ACKs quickly.
592 */
463c84b9 593 tcp_incr_quickack(sk);
1da177e4
LT
594 sk_stream_mem_reclaim(sk);
595 }
596 }
463c84b9 597 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
9e412ba7 602 tcp_grow_window(sk, skb);
1da177e4
LT
603}
604
05bb1fad
DM
605static u32 tcp_rto_min(struct sock *sk)
606{
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
5c127c58 610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
05bb1fad
DM
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613}
614
1da177e4
LT
615/* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
2d2abbab 624static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 625{
6687e988 626 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
627 long m = mrtt; /* RTT */
628
1da177e4
LT
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
e905a9ed 632 * This is designed to be as fast as possible
1da177e4
LT
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
31f34269 640 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
2de979bd 645 if (m == 0)
1da177e4
LT
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
05bb1fad 676 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
05bb1fad 682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
683 tp->rtt_seq = tp->snd_nxt;
684 }
1da177e4
LT
685}
686
687/* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
463c84b9 690static inline void tcp_set_rto(struct sock *sk)
1da177e4 691{
463c84b9 692 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 701 * ACKs in some circumstances.
1da177e4 702 */
463c84b9 703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
caa20d9a 708 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
709 */
710}
711
712/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
463c84b9 715static inline void tcp_bound_rto(struct sock *sk)
1da177e4 716{
463c84b9
ACM
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
719}
720
721/* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725void tcp_update_metrics(struct sock *sk)
726{
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
6687e988 736 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
737 int m;
738
6687e988 739 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 788 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813}
814
26722873
DM
815/* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
1da177e4
LT
824__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825{
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
c1b4a7e6 829 if (tp->mss_cache > 1460)
1da177e4
LT
830 cwnd = 2;
831 else
c1b4a7e6 832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835}
836
40efc6fa 837/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 838void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
839{
840 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 841 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
e01f9d77 845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 846 tp->undo_marker = 0;
3cfe3baa
IJ
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858}
859
e60402d0
IJ
860/*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864static void tcp_disable_fack(struct tcp_sock *tp)
865{
866 tp->rx_opt.sack_ok &= ~2;
867}
868
869/* Take a notice that peer is sending DSACKs */
870static void tcp_dsack_seen(struct tcp_sock *tp)
871{
872 tp->rx_opt.sack_ok |= 4;
873}
874
1da177e4
LT
875/* Initialize metrics on socket. */
876
877static void tcp_init_metrics(struct sock *sk)
878{
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 896 tcp_disable_fack(tp);
1da177e4
LT
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 912 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
463c84b9
ACM
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
945 }
946}
947
6687e988
ACM
948static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
1da177e4 950{
6687e988 951 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
e60402d0 958 else if (tcp_is_reno(tp))
1da177e4 959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
e60402d0 960 else if (tcp_is_fack(tp))
1da177e4
LT
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964#if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971#endif
e60402d0 972 tcp_disable_fack(tp);
1da177e4
LT
973 }
974}
975
976/* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
5b3c9882
IJ
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, DSACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1da177e4 1071 */
5b3c9882
IJ
1072static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1074{
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1078
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1082
1083 /* In outstanding window? ...This is valid exit for DSACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1085 */
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1088
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1091
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1095
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1098
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1102
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1105 */
1106 return !before(start_seq, end_seq - tp->max_window);
1107}
1108
1c1e87ed
IJ
1109/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110 * Event "C". Later note: FACK people cheated me again 8), we have to account
1111 * for reordering! Ugly, but should help.
1112 */
1113static int tcp_mark_lost_retrans(struct sock *sk, u32 lost_retrans)
1114{
1115 struct tcp_sock *tp = tcp_sk(sk);
1116 struct sk_buff *skb;
1117 int flag = 0;
1118
1119 tcp_for_write_queue(skb, sk) {
1120 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1121
1122 if (skb == tcp_send_head(sk))
1123 break;
1124 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1125 break;
1126 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1127 continue;
1128
1129 if ((TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) &&
1130 after(lost_retrans, ack_seq) &&
1131 (tcp_is_fack(tp) ||
1132 !before(lost_retrans,
1133 ack_seq + tp->reordering * tp->mss_cache))) {
1134 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1135 tp->retrans_out -= tcp_skb_pcount(skb);
1136
1137 /* clear lost hint */
1138 tp->retransmit_skb_hint = NULL;
1139
1140 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1141 tp->lost_out += tcp_skb_pcount(skb);
1142 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1143 flag |= FLAG_DATA_SACKED;
1144 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1145 }
1146 }
1147 }
1148 return flag;
1149}
5b3c9882 1150
d06e021d
DM
1151static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1152 struct tcp_sack_block_wire *sp, int num_sacks,
1153 u32 prior_snd_una)
1154{
1155 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1156 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1157 int dup_sack = 0;
1158
1159 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1160 dup_sack = 1;
e60402d0 1161 tcp_dsack_seen(tp);
d06e021d
DM
1162 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1163 } else if (num_sacks > 1) {
1164 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1165 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1166
1167 if (!after(end_seq_0, end_seq_1) &&
1168 !before(start_seq_0, start_seq_1)) {
1169 dup_sack = 1;
e60402d0 1170 tcp_dsack_seen(tp);
d06e021d
DM
1171 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1172 }
1173 }
1174
1175 /* D-SACK for already forgotten data... Do dumb counting. */
1176 if (dup_sack &&
1177 !after(end_seq_0, prior_snd_una) &&
1178 after(end_seq_0, tp->undo_marker))
1179 tp->undo_retrans--;
1180
1181 return dup_sack;
1182}
1183
d1935942
IJ
1184/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1185 * the incoming SACK may not exactly match but we can find smaller MSS
1186 * aligned portion of it that matches. Therefore we might need to fragment
1187 * which may fail and creates some hassle (caller must handle error case
1188 * returns).
1189 */
1190int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1191 u32 start_seq, u32 end_seq)
1192{
1193 int in_sack, err;
1194 unsigned int pkt_len;
1195
1196 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1197 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1198
1199 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1200 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1201
1202 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1203
1204 if (!in_sack)
1205 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1206 else
1207 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1208 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1209 if (err < 0)
1210 return err;
1211 }
1212
1213 return in_sack;
1214}
1215
1da177e4
LT
1216static int
1217tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1218{
6687e988 1219 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1220 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1221 unsigned char *ptr = (skb_transport_header(ack_skb) +
1222 TCP_SKB_CB(ack_skb)->sacked);
269bd27e 1223 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 1224 struct sk_buff *cached_skb;
1da177e4
LT
1225 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1226 int reord = tp->packets_out;
1227 int prior_fackets;
1228 u32 lost_retrans = 0;
1229 int flag = 0;
7769f406 1230 int found_dup_sack = 0;
fda03fbb 1231 int cached_fack_count;
1da177e4 1232 int i;
fda03fbb 1233 int first_sack_index;
1da177e4 1234
d738cd8f 1235 if (!tp->sacked_out) {
de83c058
IJ
1236 if (WARN_ON(tp->fackets_out))
1237 tp->fackets_out = 0;
d738cd8f
IJ
1238 tp->highest_sack = tp->snd_una;
1239 }
1da177e4
LT
1240 prior_fackets = tp->fackets_out;
1241
d06e021d
DM
1242 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1243 num_sacks, prior_snd_una);
1244 if (found_dup_sack)
49ff4bb4 1245 flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1246
1247 /* Eliminate too old ACKs, but take into
1248 * account more or less fresh ones, they can
1249 * contain valid SACK info.
1250 */
1251 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1252 return 0;
1253
6a438bbe
SH
1254 /* SACK fastpath:
1255 * if the only SACK change is the increase of the end_seq of
1256 * the first block then only apply that SACK block
1257 * and use retrans queue hinting otherwise slowpath */
1258 flag = 1;
6f74651a
BE
1259 for (i = 0; i < num_sacks; i++) {
1260 __be32 start_seq = sp[i].start_seq;
1261 __be32 end_seq = sp[i].end_seq;
6a438bbe 1262
6f74651a 1263 if (i == 0) {
6a438bbe
SH
1264 if (tp->recv_sack_cache[i].start_seq != start_seq)
1265 flag = 0;
1266 } else {
1267 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1268 (tp->recv_sack_cache[i].end_seq != end_seq))
1269 flag = 0;
1270 }
1271 tp->recv_sack_cache[i].start_seq = start_seq;
1272 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1273 }
8a3c3a97
BE
1274 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1275 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1276 tp->recv_sack_cache[i].start_seq = 0;
1277 tp->recv_sack_cache[i].end_seq = 0;
1278 }
6a438bbe 1279
fda03fbb 1280 first_sack_index = 0;
6a438bbe
SH
1281 if (flag)
1282 num_sacks = 1;
1283 else {
1284 int j;
1285 tp->fastpath_skb_hint = NULL;
1286
1287 /* order SACK blocks to allow in order walk of the retrans queue */
1288 for (i = num_sacks-1; i > 0; i--) {
1289 for (j = 0; j < i; j++){
1290 if (after(ntohl(sp[j].start_seq),
1291 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1292 struct tcp_sack_block_wire tmp;
1293
1294 tmp = sp[j];
1295 sp[j] = sp[j+1];
1296 sp[j+1] = tmp;
fda03fbb
BE
1297
1298 /* Track where the first SACK block goes to */
1299 if (j == first_sack_index)
1300 first_sack_index = j+1;
6a438bbe
SH
1301 }
1302
1303 }
1304 }
1305 }
1306
1307 /* clear flag as used for different purpose in following code */
1308 flag = 0;
1309
fda03fbb
BE
1310 /* Use SACK fastpath hint if valid */
1311 cached_skb = tp->fastpath_skb_hint;
1312 cached_fack_count = tp->fastpath_cnt_hint;
1313 if (!cached_skb) {
fe067e8a 1314 cached_skb = tcp_write_queue_head(sk);
fda03fbb
BE
1315 cached_fack_count = 0;
1316 }
1317
6a438bbe
SH
1318 for (i=0; i<num_sacks; i++, sp++) {
1319 struct sk_buff *skb;
1320 __u32 start_seq = ntohl(sp->start_seq);
1321 __u32 end_seq = ntohl(sp->end_seq);
1322 int fack_count;
7769f406 1323 int dup_sack = (found_dup_sack && (i == first_sack_index));
6a438bbe 1324
18f02545
IJ
1325 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1326 if (dup_sack) {
1327 if (!tp->undo_marker)
1328 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1329 else
1330 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
93e68020
IJ
1331 } else {
1332 /* Don't count olds caused by ACK reordering */
1333 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1334 !after(end_seq, tp->snd_una))
1335 continue;
18f02545 1336 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
93e68020 1337 }
5b3c9882 1338 continue;
18f02545 1339 }
5b3c9882 1340
fda03fbb
BE
1341 skb = cached_skb;
1342 fack_count = cached_fack_count;
1da177e4
LT
1343
1344 /* Event "B" in the comment above. */
1345 if (after(end_seq, tp->high_seq))
1346 flag |= FLAG_DATA_LOST;
1347
fe067e8a 1348 tcp_for_write_queue_from(skb, sk) {
f6fb128d 1349 int in_sack;
6475be16 1350 u8 sacked;
1da177e4 1351
fe067e8a
DM
1352 if (skb == tcp_send_head(sk))
1353 break;
1354
fda03fbb
BE
1355 cached_skb = skb;
1356 cached_fack_count = fack_count;
1357 if (i == first_sack_index) {
1358 tp->fastpath_skb_hint = skb;
1359 tp->fastpath_cnt_hint = fack_count;
1360 }
6a438bbe 1361
1da177e4
LT
1362 /* The retransmission queue is always in order, so
1363 * we can short-circuit the walk early.
1364 */
6475be16 1365 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1366 break;
1367
d1935942
IJ
1368 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1369 if (in_sack < 0)
1370 break;
6475be16 1371
f6fb128d 1372 fack_count += tcp_skb_pcount(skb);
1da177e4 1373
6475be16
DM
1374 sacked = TCP_SKB_CB(skb)->sacked;
1375
1da177e4
LT
1376 /* Account D-SACK for retransmitted packet. */
1377 if ((dup_sack && in_sack) &&
1378 (sacked & TCPCB_RETRANS) &&
1379 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1380 tp->undo_retrans--;
1381
1382 /* The frame is ACKed. */
1383 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1384 if (sacked&TCPCB_RETRANS) {
1385 if ((dup_sack && in_sack) &&
1386 (sacked&TCPCB_SACKED_ACKED))
1387 reord = min(fack_count, reord);
1388 } else {
1389 /* If it was in a hole, we detected reordering. */
1390 if (fack_count < prior_fackets &&
1391 !(sacked&TCPCB_SACKED_ACKED))
1392 reord = min(fack_count, reord);
1393 }
1394
1395 /* Nothing to do; acked frame is about to be dropped. */
1396 continue;
1397 }
1398
1399 if ((sacked&TCPCB_SACKED_RETRANS) &&
1400 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1401 (!lost_retrans || after(end_seq, lost_retrans)))
1402 lost_retrans = end_seq;
1403
1404 if (!in_sack)
1405 continue;
1406
1407 if (!(sacked&TCPCB_SACKED_ACKED)) {
1408 if (sacked & TCPCB_SACKED_RETRANS) {
1409 /* If the segment is not tagged as lost,
1410 * we do not clear RETRANS, believing
1411 * that retransmission is still in flight.
1412 */
1413 if (sacked & TCPCB_LOST) {
1414 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1415 tp->lost_out -= tcp_skb_pcount(skb);
1416 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1417
1418 /* clear lost hint */
1419 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1420 }
1421 } else {
1422 /* New sack for not retransmitted frame,
1423 * which was in hole. It is reordering.
1424 */
1425 if (!(sacked & TCPCB_RETRANS) &&
1426 fack_count < prior_fackets)
1427 reord = min(fack_count, reord);
1428
1429 if (sacked & TCPCB_LOST) {
1430 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1431 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1432
1433 /* clear lost hint */
1434 tp->retransmit_skb_hint = NULL;
1da177e4 1435 }
4dc2665e
IJ
1436 /* SACK enhanced F-RTO detection.
1437 * Set flag if and only if non-rexmitted
1438 * segments below frto_highmark are
1439 * SACKed (RFC4138; Appendix B).
1440 * Clearing correct due to in-order walk
1441 */
1442 if (after(end_seq, tp->frto_highmark)) {
1443 flag &= ~FLAG_ONLY_ORIG_SACKED;
1444 } else {
1445 if (!(sacked & TCPCB_RETRANS))
1446 flag |= FLAG_ONLY_ORIG_SACKED;
1447 }
1da177e4
LT
1448 }
1449
1450 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1451 flag |= FLAG_DATA_SACKED;
1452 tp->sacked_out += tcp_skb_pcount(skb);
1453
1454 if (fack_count > tp->fackets_out)
1455 tp->fackets_out = fack_count;
d738cd8f
IJ
1456
1457 if (after(TCP_SKB_CB(skb)->seq,
1458 tp->highest_sack))
1459 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1da177e4
LT
1460 } else {
1461 if (dup_sack && (sacked&TCPCB_RETRANS))
1462 reord = min(fack_count, reord);
1463 }
1464
1465 /* D-SACK. We can detect redundant retransmission
1466 * in S|R and plain R frames and clear it.
1467 * undo_retrans is decreased above, L|R frames
1468 * are accounted above as well.
1469 */
1470 if (dup_sack &&
1471 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1472 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1473 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1474 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1475 }
1476 }
1477 }
1478
1c1e87ed
IJ
1479 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery)
1480 flag |= tcp_mark_lost_retrans(sk, lost_retrans);
1da177e4 1481
86426c22
IJ
1482 tcp_verify_left_out(tp);
1483
288035f9 1484 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1485 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1486 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1487
1488#if FASTRETRANS_DEBUG > 0
1489 BUG_TRAP((int)tp->sacked_out >= 0);
1490 BUG_TRAP((int)tp->lost_out >= 0);
1491 BUG_TRAP((int)tp->retrans_out >= 0);
1492 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1493#endif
1494 return flag;
1495}
1496
95eacd27
IJ
1497/* If we receive more dupacks than we expected counting segments
1498 * in assumption of absent reordering, interpret this as reordering.
1499 * The only another reason could be bug in receiver TCP.
30935cf4 1500 */
4ddf6676
IJ
1501static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1502{
1503 struct tcp_sock *tp = tcp_sk(sk);
1504 u32 holes;
1505
1506 holes = max(tp->lost_out, 1U);
1507 holes = min(holes, tp->packets_out);
1508
1509 if ((tp->sacked_out + holes) > tp->packets_out) {
1510 tp->sacked_out = tp->packets_out - holes;
1511 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1512 }
1513}
1514
1515/* Emulate SACKs for SACKless connection: account for a new dupack. */
1516
1517static void tcp_add_reno_sack(struct sock *sk)
1518{
1519 struct tcp_sock *tp = tcp_sk(sk);
1520 tp->sacked_out++;
1521 tcp_check_reno_reordering(sk, 0);
005903bc 1522 tcp_verify_left_out(tp);
4ddf6676
IJ
1523}
1524
1525/* Account for ACK, ACKing some data in Reno Recovery phase. */
1526
1527static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1528{
1529 struct tcp_sock *tp = tcp_sk(sk);
1530
1531 if (acked > 0) {
1532 /* One ACK acked hole. The rest eat duplicate ACKs. */
1533 if (acked-1 >= tp->sacked_out)
1534 tp->sacked_out = 0;
1535 else
1536 tp->sacked_out -= acked-1;
1537 }
1538 tcp_check_reno_reordering(sk, acked);
005903bc 1539 tcp_verify_left_out(tp);
4ddf6676
IJ
1540}
1541
1542static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1543{
1544 tp->sacked_out = 0;
4ddf6676
IJ
1545}
1546
95eacd27
IJ
1547/* F-RTO can only be used if TCP has never retransmitted anything other than
1548 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1549 */
46d0de4e 1550int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1551{
1552 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1553 struct sk_buff *skb;
1554
575ee714 1555 if (!sysctl_tcp_frto)
46d0de4e 1556 return 0;
bdaae17d 1557
4dc2665e
IJ
1558 if (IsSackFrto())
1559 return 1;
1560
46d0de4e
IJ
1561 /* Avoid expensive walking of rexmit queue if possible */
1562 if (tp->retrans_out > 1)
1563 return 0;
1564
fe067e8a
DM
1565 skb = tcp_write_queue_head(sk);
1566 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1567 tcp_for_write_queue_from(skb, sk) {
1568 if (skb == tcp_send_head(sk))
1569 break;
46d0de4e
IJ
1570 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1571 return 0;
1572 /* Short-circuit when first non-SACKed skb has been checked */
1573 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1574 break;
1575 }
1576 return 1;
bdaae17d
IJ
1577}
1578
30935cf4
IJ
1579/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1580 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1581 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1582 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1583 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1584 * bits are handled if the Loss state is really to be entered (in
1585 * tcp_enter_frto_loss).
7487c48c
IJ
1586 *
1587 * Do like tcp_enter_loss() would; when RTO expires the second time it
1588 * does:
1589 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1590 */
1591void tcp_enter_frto(struct sock *sk)
1592{
6687e988 1593 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1594 struct tcp_sock *tp = tcp_sk(sk);
1595 struct sk_buff *skb;
1596
7487c48c 1597 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1598 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1599 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1600 !icsk->icsk_retransmits)) {
6687e988 1601 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1602 /* Our state is too optimistic in ssthresh() call because cwnd
1603 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1604 * recovery has not yet completed. Pattern would be this: RTO,
1605 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1606 * up here twice).
1607 * RFC4138 should be more specific on what to do, even though
1608 * RTO is quite unlikely to occur after the first Cumulative ACK
1609 * due to back-off and complexity of triggering events ...
1610 */
1611 if (tp->frto_counter) {
1612 u32 stored_cwnd;
1613 stored_cwnd = tp->snd_cwnd;
1614 tp->snd_cwnd = 2;
1615 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1616 tp->snd_cwnd = stored_cwnd;
1617 } else {
1618 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1619 }
1620 /* ... in theory, cong.control module could do "any tricks" in
1621 * ssthresh(), which means that ca_state, lost bits and lost_out
1622 * counter would have to be faked before the call occurs. We
1623 * consider that too expensive, unlikely and hacky, so modules
1624 * using these in ssthresh() must deal these incompatibility
1625 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1626 */
6687e988 1627 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1628 }
1629
1da177e4
LT
1630 tp->undo_marker = tp->snd_una;
1631 tp->undo_retrans = 0;
1632
fe067e8a 1633 skb = tcp_write_queue_head(sk);
009a2e3e
IJ
1634 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1635 tp->undo_marker = 0;
d1a54c6a 1636 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1637 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1638 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4 1639 }
005903bc 1640 tcp_verify_left_out(tp);
1da177e4 1641
4dc2665e
IJ
1642 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1643 * The last condition is necessary at least in tp->frto_counter case.
1644 */
1645 if (IsSackFrto() && (tp->frto_counter ||
1646 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1647 after(tp->high_seq, tp->snd_una)) {
1648 tp->frto_highmark = tp->high_seq;
1649 } else {
1650 tp->frto_highmark = tp->snd_nxt;
1651 }
7b0eb22b
IJ
1652 tcp_set_ca_state(sk, TCP_CA_Disorder);
1653 tp->high_seq = tp->snd_nxt;
7487c48c 1654 tp->frto_counter = 1;
1da177e4
LT
1655}
1656
1657/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1658 * which indicates that we should follow the traditional RTO recovery,
1659 * i.e. mark everything lost and do go-back-N retransmission.
1660 */
d1a54c6a 1661static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1662{
1663 struct tcp_sock *tp = tcp_sk(sk);
1664 struct sk_buff *skb;
1da177e4 1665
1da177e4 1666 tp->lost_out = 0;
d1a54c6a 1667 tp->retrans_out = 0;
e60402d0 1668 if (tcp_is_reno(tp))
9bff40fd 1669 tcp_reset_reno_sack(tp);
1da177e4 1670
fe067e8a
DM
1671 tcp_for_write_queue(skb, sk) {
1672 if (skb == tcp_send_head(sk))
1673 break;
d1a54c6a
IJ
1674 /*
1675 * Count the retransmission made on RTO correctly (only when
1676 * waiting for the first ACK and did not get it)...
1677 */
1678 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
0a9f2a46
IJ
1679 /* For some reason this R-bit might get cleared? */
1680 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1681 tp->retrans_out += tcp_skb_pcount(skb);
d1a54c6a
IJ
1682 /* ...enter this if branch just for the first segment */
1683 flag |= FLAG_DATA_ACKED;
1684 } else {
009a2e3e
IJ
1685 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1686 tp->undo_marker = 0;
d1a54c6a
IJ
1687 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1688 }
1da177e4 1689
9bff40fd
IJ
1690 /* Don't lost mark skbs that were fwd transmitted after RTO */
1691 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1692 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1693 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1694 tp->lost_out += tcp_skb_pcount(skb);
1da177e4
LT
1695 }
1696 }
005903bc 1697 tcp_verify_left_out(tp);
1da177e4 1698
95c4922b 1699 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1700 tp->snd_cwnd_cnt = 0;
1701 tp->snd_cwnd_stamp = tcp_time_stamp;
1da177e4 1702 tp->frto_counter = 0;
16e90681 1703 tp->bytes_acked = 0;
1da177e4
LT
1704
1705 tp->reordering = min_t(unsigned int, tp->reordering,
1706 sysctl_tcp_reordering);
6687e988 1707 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1708 tp->high_seq = tp->frto_highmark;
1709 TCP_ECN_queue_cwr(tp);
6a438bbe 1710
b7689205 1711 tcp_clear_retrans_hints_partial(tp);
1da177e4
LT
1712}
1713
4cd82999 1714static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1da177e4 1715{
1da177e4 1716 tp->retrans_out = 0;
1da177e4
LT
1717 tp->lost_out = 0;
1718
1719 tp->undo_marker = 0;
1720 tp->undo_retrans = 0;
1721}
1722
4cd82999
IJ
1723void tcp_clear_retrans(struct tcp_sock *tp)
1724{
1725 tcp_clear_retrans_partial(tp);
1726
1727 tp->fackets_out = 0;
1728 tp->sacked_out = 0;
1729}
1730
1da177e4
LT
1731/* Enter Loss state. If "how" is not zero, forget all SACK information
1732 * and reset tags completely, otherwise preserve SACKs. If receiver
1733 * dropped its ofo queue, we will know this due to reneging detection.
1734 */
1735void tcp_enter_loss(struct sock *sk, int how)
1736{
6687e988 1737 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1738 struct tcp_sock *tp = tcp_sk(sk);
1739 struct sk_buff *skb;
1da177e4
LT
1740
1741 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1742 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1743 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1744 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1745 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1746 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1747 }
1748 tp->snd_cwnd = 1;
1749 tp->snd_cwnd_cnt = 0;
1750 tp->snd_cwnd_stamp = tcp_time_stamp;
1751
9772efb9 1752 tp->bytes_acked = 0;
4cd82999
IJ
1753 tcp_clear_retrans_partial(tp);
1754
1755 if (tcp_is_reno(tp))
1756 tcp_reset_reno_sack(tp);
1da177e4 1757
b7689205
IJ
1758 if (!how) {
1759 /* Push undo marker, if it was plain RTO and nothing
1760 * was retransmitted. */
1da177e4 1761 tp->undo_marker = tp->snd_una;
b7689205
IJ
1762 tcp_clear_retrans_hints_partial(tp);
1763 } else {
4cd82999
IJ
1764 tp->sacked_out = 0;
1765 tp->fackets_out = 0;
b7689205
IJ
1766 tcp_clear_all_retrans_hints(tp);
1767 }
1da177e4 1768
fe067e8a
DM
1769 tcp_for_write_queue(skb, sk) {
1770 if (skb == tcp_send_head(sk))
1771 break;
4cd82999 1772
1da177e4
LT
1773 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1774 tp->undo_marker = 0;
1775 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1776 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1777 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1778 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1779 tp->lost_out += tcp_skb_pcount(skb);
1da177e4
LT
1780 }
1781 }
005903bc 1782 tcp_verify_left_out(tp);
1da177e4
LT
1783
1784 tp->reordering = min_t(unsigned int, tp->reordering,
1785 sysctl_tcp_reordering);
6687e988 1786 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1787 tp->high_seq = tp->snd_nxt;
1788 TCP_ECN_queue_cwr(tp);
580e572a
IJ
1789 /* Abort FRTO algorithm if one is in progress */
1790 tp->frto_counter = 0;
1da177e4
LT
1791}
1792
463c84b9 1793static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1794{
1795 struct sk_buff *skb;
1796
1797 /* If ACK arrived pointing to a remembered SACK,
1798 * it means that our remembered SACKs do not reflect
1799 * real state of receiver i.e.
1800 * receiver _host_ is heavily congested (or buggy).
1801 * Do processing similar to RTO timeout.
1802 */
fe067e8a 1803 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1da177e4 1804 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1805 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1806 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1807
1808 tcp_enter_loss(sk, 1);
6687e988 1809 icsk->icsk_retransmits++;
fe067e8a 1810 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
463c84b9 1811 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1812 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1813 return 1;
1814 }
1815 return 0;
1816}
1817
1818static inline int tcp_fackets_out(struct tcp_sock *tp)
1819{
e60402d0 1820 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1da177e4
LT
1821}
1822
463c84b9 1823static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1824{
463c84b9 1825 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1826}
1827
9e412ba7 1828static inline int tcp_head_timedout(struct sock *sk)
1da177e4 1829{
9e412ba7
IJ
1830 struct tcp_sock *tp = tcp_sk(sk);
1831
1da177e4 1832 return tp->packets_out &&
fe067e8a 1833 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1da177e4
LT
1834}
1835
1836/* Linux NewReno/SACK/FACK/ECN state machine.
1837 * --------------------------------------
1838 *
1839 * "Open" Normal state, no dubious events, fast path.
1840 * "Disorder" In all the respects it is "Open",
1841 * but requires a bit more attention. It is entered when
1842 * we see some SACKs or dupacks. It is split of "Open"
1843 * mainly to move some processing from fast path to slow one.
1844 * "CWR" CWND was reduced due to some Congestion Notification event.
1845 * It can be ECN, ICMP source quench, local device congestion.
1846 * "Recovery" CWND was reduced, we are fast-retransmitting.
1847 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1848 *
1849 * tcp_fastretrans_alert() is entered:
1850 * - each incoming ACK, if state is not "Open"
1851 * - when arrived ACK is unusual, namely:
1852 * * SACK
1853 * * Duplicate ACK.
1854 * * ECN ECE.
1855 *
1856 * Counting packets in flight is pretty simple.
1857 *
1858 * in_flight = packets_out - left_out + retrans_out
1859 *
1860 * packets_out is SND.NXT-SND.UNA counted in packets.
1861 *
1862 * retrans_out is number of retransmitted segments.
1863 *
1864 * left_out is number of segments left network, but not ACKed yet.
1865 *
1866 * left_out = sacked_out + lost_out
1867 *
1868 * sacked_out: Packets, which arrived to receiver out of order
1869 * and hence not ACKed. With SACKs this number is simply
1870 * amount of SACKed data. Even without SACKs
1871 * it is easy to give pretty reliable estimate of this number,
1872 * counting duplicate ACKs.
1873 *
1874 * lost_out: Packets lost by network. TCP has no explicit
1875 * "loss notification" feedback from network (for now).
1876 * It means that this number can be only _guessed_.
1877 * Actually, it is the heuristics to predict lossage that
1878 * distinguishes different algorithms.
1879 *
1880 * F.e. after RTO, when all the queue is considered as lost,
1881 * lost_out = packets_out and in_flight = retrans_out.
1882 *
1883 * Essentially, we have now two algorithms counting
1884 * lost packets.
1885 *
1886 * FACK: It is the simplest heuristics. As soon as we decided
1887 * that something is lost, we decide that _all_ not SACKed
1888 * packets until the most forward SACK are lost. I.e.
1889 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1890 * It is absolutely correct estimate, if network does not reorder
1891 * packets. And it loses any connection to reality when reordering
1892 * takes place. We use FACK by default until reordering
1893 * is suspected on the path to this destination.
1894 *
1895 * NewReno: when Recovery is entered, we assume that one segment
1896 * is lost (classic Reno). While we are in Recovery and
1897 * a partial ACK arrives, we assume that one more packet
1898 * is lost (NewReno). This heuristics are the same in NewReno
1899 * and SACK.
1900 *
1901 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1902 * deflation etc. CWND is real congestion window, never inflated, changes
1903 * only according to classic VJ rules.
1904 *
1905 * Really tricky (and requiring careful tuning) part of algorithm
1906 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1907 * The first determines the moment _when_ we should reduce CWND and,
1908 * hence, slow down forward transmission. In fact, it determines the moment
1909 * when we decide that hole is caused by loss, rather than by a reorder.
1910 *
1911 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1912 * holes, caused by lost packets.
1913 *
1914 * And the most logically complicated part of algorithm is undo
1915 * heuristics. We detect false retransmits due to both too early
1916 * fast retransmit (reordering) and underestimated RTO, analyzing
1917 * timestamps and D-SACKs. When we detect that some segments were
1918 * retransmitted by mistake and CWND reduction was wrong, we undo
1919 * window reduction and abort recovery phase. This logic is hidden
1920 * inside several functions named tcp_try_undo_<something>.
1921 */
1922
1923/* This function decides, when we should leave Disordered state
1924 * and enter Recovery phase, reducing congestion window.
1925 *
1926 * Main question: may we further continue forward transmission
1927 * with the same cwnd?
1928 */
9e412ba7 1929static int tcp_time_to_recover(struct sock *sk)
1da177e4 1930{
9e412ba7 1931 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1932 __u32 packets_out;
1933
52c63f1e
IJ
1934 /* Do not perform any recovery during FRTO algorithm */
1935 if (tp->frto_counter)
1936 return 0;
1937
1da177e4
LT
1938 /* Trick#1: The loss is proven. */
1939 if (tp->lost_out)
1940 return 1;
1941
1942 /* Not-A-Trick#2 : Classic rule... */
1943 if (tcp_fackets_out(tp) > tp->reordering)
1944 return 1;
1945
1946 /* Trick#3 : when we use RFC2988 timer restart, fast
1947 * retransmit can be triggered by timeout of queue head.
1948 */
9e412ba7 1949 if (tcp_head_timedout(sk))
1da177e4
LT
1950 return 1;
1951
1952 /* Trick#4: It is still not OK... But will it be useful to delay
1953 * recovery more?
1954 */
1955 packets_out = tp->packets_out;
1956 if (packets_out <= tp->reordering &&
1957 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
9e412ba7 1958 !tcp_may_send_now(sk)) {
1da177e4
LT
1959 /* We have nothing to send. This connection is limited
1960 * either by receiver window or by application.
1961 */
1962 return 1;
1963 }
1964
1965 return 0;
1966}
1967
d8f4f223
IJ
1968/* RFC: This is from the original, I doubt that this is necessary at all:
1969 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1970 * retransmitted past LOST markings in the first place? I'm not fully sure
1971 * about undo and end of connection cases, which can cause R without L?
1972 */
1973static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1974 struct sk_buff *skb)
1975{
1976 if ((tp->retransmit_skb_hint != NULL) &&
1977 before(TCP_SKB_CB(skb)->seq,
1978 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
19b2b486 1979 tp->retransmit_skb_hint = NULL;
d8f4f223
IJ
1980}
1981
1da177e4 1982/* Mark head of queue up as lost. */
9e412ba7 1983static void tcp_mark_head_lost(struct sock *sk,
1da177e4
LT
1984 int packets, u32 high_seq)
1985{
9e412ba7 1986 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1987 struct sk_buff *skb;
6a438bbe 1988 int cnt;
1da177e4 1989
6a438bbe
SH
1990 BUG_TRAP(packets <= tp->packets_out);
1991 if (tp->lost_skb_hint) {
1992 skb = tp->lost_skb_hint;
1993 cnt = tp->lost_cnt_hint;
1994 } else {
fe067e8a 1995 skb = tcp_write_queue_head(sk);
6a438bbe
SH
1996 cnt = 0;
1997 }
1da177e4 1998
fe067e8a
DM
1999 tcp_for_write_queue_from(skb, sk) {
2000 if (skb == tcp_send_head(sk))
2001 break;
6a438bbe
SH
2002 /* TODO: do this better */
2003 /* this is not the most efficient way to do this... */
2004 tp->lost_skb_hint = skb;
2005 tp->lost_cnt_hint = cnt;
2006 cnt += tcp_skb_pcount(skb);
2007 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4 2008 break;
3eec0047 2009 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
1da177e4
LT
2010 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2011 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 2012 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
2013 }
2014 }
005903bc 2015 tcp_verify_left_out(tp);
1da177e4
LT
2016}
2017
2018/* Account newly detected lost packet(s) */
2019
9e412ba7 2020static void tcp_update_scoreboard(struct sock *sk)
1da177e4 2021{
9e412ba7
IJ
2022 struct tcp_sock *tp = tcp_sk(sk);
2023
e60402d0 2024 if (tcp_is_fack(tp)) {
1da177e4
LT
2025 int lost = tp->fackets_out - tp->reordering;
2026 if (lost <= 0)
2027 lost = 1;
9e412ba7 2028 tcp_mark_head_lost(sk, lost, tp->high_seq);
1da177e4 2029 } else {
9e412ba7 2030 tcp_mark_head_lost(sk, 1, tp->high_seq);
1da177e4
LT
2031 }
2032
2033 /* New heuristics: it is possible only after we switched
2034 * to restart timer each time when something is ACKed.
2035 * Hence, we can detect timed out packets during fast
2036 * retransmit without falling to slow start.
2037 */
e60402d0 2038 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
1da177e4
LT
2039 struct sk_buff *skb;
2040
6a438bbe 2041 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
fe067e8a 2042 : tcp_write_queue_head(sk);
6a438bbe 2043
fe067e8a
DM
2044 tcp_for_write_queue_from(skb, sk) {
2045 if (skb == tcp_send_head(sk))
2046 break;
6a438bbe
SH
2047 if (!tcp_skb_timedout(sk, skb))
2048 break;
2049
2050 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
2051 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2052 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 2053 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
2054 }
2055 }
6a438bbe
SH
2056
2057 tp->scoreboard_skb_hint = skb;
2058
005903bc 2059 tcp_verify_left_out(tp);
1da177e4
LT
2060 }
2061}
2062
2063/* CWND moderation, preventing bursts due to too big ACKs
2064 * in dubious situations.
2065 */
2066static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2067{
2068 tp->snd_cwnd = min(tp->snd_cwnd,
2069 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2070 tp->snd_cwnd_stamp = tcp_time_stamp;
2071}
2072
72dc5b92
SH
2073/* Lower bound on congestion window is slow start threshold
2074 * unless congestion avoidance choice decides to overide it.
2075 */
2076static inline u32 tcp_cwnd_min(const struct sock *sk)
2077{
2078 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2079
2080 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2081}
2082
1da177e4 2083/* Decrease cwnd each second ack. */
1e757f99 2084static void tcp_cwnd_down(struct sock *sk, int flag)
1da177e4 2085{
6687e988 2086 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2087 int decr = tp->snd_cwnd_cnt + 1;
1da177e4 2088
49ff4bb4 2089 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
e60402d0 2090 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
1e757f99
IJ
2091 tp->snd_cwnd_cnt = decr&1;
2092 decr >>= 1;
1da177e4 2093
1e757f99
IJ
2094 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2095 tp->snd_cwnd -= decr;
1da177e4 2096
1e757f99
IJ
2097 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2098 tp->snd_cwnd_stamp = tcp_time_stamp;
2099 }
1da177e4
LT
2100}
2101
2102/* Nothing was retransmitted or returned timestamp is less
2103 * than timestamp of the first retransmission.
2104 */
2105static inline int tcp_packet_delayed(struct tcp_sock *tp)
2106{
2107 return !tp->retrans_stamp ||
2108 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2109 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2110}
2111
2112/* Undo procedures. */
2113
2114#if FASTRETRANS_DEBUG > 1
9e412ba7 2115static void DBGUNDO(struct sock *sk, const char *msg)
1da177e4 2116{
9e412ba7 2117 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2118 struct inet_sock *inet = inet_sk(sk);
9e412ba7 2119
1da177e4
LT
2120 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2121 msg,
2122 NIPQUAD(inet->daddr), ntohs(inet->dport),
83ae4088 2123 tp->snd_cwnd, tcp_left_out(tp),
1da177e4
LT
2124 tp->snd_ssthresh, tp->prior_ssthresh,
2125 tp->packets_out);
2126}
2127#else
2128#define DBGUNDO(x...) do { } while (0)
2129#endif
2130
6687e988 2131static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 2132{
6687e988
ACM
2133 struct tcp_sock *tp = tcp_sk(sk);
2134
1da177e4 2135 if (tp->prior_ssthresh) {
6687e988
ACM
2136 const struct inet_connection_sock *icsk = inet_csk(sk);
2137
2138 if (icsk->icsk_ca_ops->undo_cwnd)
2139 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
2140 else
2141 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2142
2143 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2144 tp->snd_ssthresh = tp->prior_ssthresh;
2145 TCP_ECN_withdraw_cwr(tp);
2146 }
2147 } else {
2148 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2149 }
2150 tcp_moderate_cwnd(tp);
2151 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
2152
2153 /* There is something screwy going on with the retrans hints after
2154 an undo */
5af4ec23 2155 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2156}
2157
2158static inline int tcp_may_undo(struct tcp_sock *tp)
2159{
2160 return tp->undo_marker &&
2161 (!tp->undo_retrans || tcp_packet_delayed(tp));
2162}
2163
2164/* People celebrate: "We love our President!" */
9e412ba7 2165static int tcp_try_undo_recovery(struct sock *sk)
1da177e4 2166{
9e412ba7
IJ
2167 struct tcp_sock *tp = tcp_sk(sk);
2168
1da177e4
LT
2169 if (tcp_may_undo(tp)) {
2170 /* Happy end! We did not retransmit anything
2171 * or our original transmission succeeded.
2172 */
9e412ba7 2173 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
6687e988
ACM
2174 tcp_undo_cwr(sk, 1);
2175 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
2176 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2177 else
2178 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2179 tp->undo_marker = 0;
2180 }
e60402d0 2181 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
1da177e4
LT
2182 /* Hold old state until something *above* high_seq
2183 * is ACKed. For Reno it is MUST to prevent false
2184 * fast retransmits (RFC2582). SACK TCP is safe. */
2185 tcp_moderate_cwnd(tp);
2186 return 1;
2187 }
6687e988 2188 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2189 return 0;
2190}
2191
2192/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
9e412ba7 2193static void tcp_try_undo_dsack(struct sock *sk)
1da177e4 2194{
9e412ba7
IJ
2195 struct tcp_sock *tp = tcp_sk(sk);
2196
1da177e4 2197 if (tp->undo_marker && !tp->undo_retrans) {
9e412ba7 2198 DBGUNDO(sk, "D-SACK");
6687e988 2199 tcp_undo_cwr(sk, 1);
1da177e4
LT
2200 tp->undo_marker = 0;
2201 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2202 }
2203}
2204
2205/* Undo during fast recovery after partial ACK. */
2206
9e412ba7 2207static int tcp_try_undo_partial(struct sock *sk, int acked)
1da177e4 2208{
9e412ba7 2209 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2210 /* Partial ACK arrived. Force Hoe's retransmit. */
e60402d0 2211 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
1da177e4
LT
2212
2213 if (tcp_may_undo(tp)) {
2214 /* Plain luck! Hole if filled with delayed
2215 * packet, rather than with a retransmit.
2216 */
2217 if (tp->retrans_out == 0)
2218 tp->retrans_stamp = 0;
2219
6687e988 2220 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4 2221
9e412ba7 2222 DBGUNDO(sk, "Hoe");
6687e988 2223 tcp_undo_cwr(sk, 0);
1da177e4
LT
2224 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2225
2226 /* So... Do not make Hoe's retransmit yet.
2227 * If the first packet was delayed, the rest
2228 * ones are most probably delayed as well.
2229 */
2230 failed = 0;
2231 }
2232 return failed;
2233}
2234
2235/* Undo during loss recovery after partial ACK. */
9e412ba7 2236static int tcp_try_undo_loss(struct sock *sk)
1da177e4 2237{
9e412ba7
IJ
2238 struct tcp_sock *tp = tcp_sk(sk);
2239
1da177e4
LT
2240 if (tcp_may_undo(tp)) {
2241 struct sk_buff *skb;
fe067e8a
DM
2242 tcp_for_write_queue(skb, sk) {
2243 if (skb == tcp_send_head(sk))
2244 break;
1da177e4
LT
2245 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2246 }
6a438bbe 2247
5af4ec23 2248 tcp_clear_all_retrans_hints(tp);
6a438bbe 2249
9e412ba7 2250 DBGUNDO(sk, "partial loss");
1da177e4 2251 tp->lost_out = 0;
6687e988 2252 tcp_undo_cwr(sk, 1);
1da177e4 2253 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 2254 inet_csk(sk)->icsk_retransmits = 0;
1da177e4 2255 tp->undo_marker = 0;
e60402d0 2256 if (tcp_is_sack(tp))
6687e988 2257 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2258 return 1;
2259 }
2260 return 0;
2261}
2262
6687e988 2263static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 2264{
6687e988 2265 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 2266 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 2267 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 2268 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
2269}
2270
9e412ba7 2271static void tcp_try_to_open(struct sock *sk, int flag)
1da177e4 2272{
9e412ba7
IJ
2273 struct tcp_sock *tp = tcp_sk(sk);
2274
86426c22
IJ
2275 tcp_verify_left_out(tp);
2276
1da177e4
LT
2277 if (tp->retrans_out == 0)
2278 tp->retrans_stamp = 0;
2279
2280 if (flag&FLAG_ECE)
3cfe3baa 2281 tcp_enter_cwr(sk, 1);
1da177e4 2282
6687e988 2283 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2284 int state = TCP_CA_Open;
2285
d02596e3 2286 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
1da177e4
LT
2287 state = TCP_CA_Disorder;
2288
6687e988
ACM
2289 if (inet_csk(sk)->icsk_ca_state != state) {
2290 tcp_set_ca_state(sk, state);
1da177e4
LT
2291 tp->high_seq = tp->snd_nxt;
2292 }
2293 tcp_moderate_cwnd(tp);
2294 } else {
1e757f99 2295 tcp_cwnd_down(sk, flag);
1da177e4
LT
2296 }
2297}
2298
5d424d5a
JH
2299static void tcp_mtup_probe_failed(struct sock *sk)
2300{
2301 struct inet_connection_sock *icsk = inet_csk(sk);
2302
2303 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2304 icsk->icsk_mtup.probe_size = 0;
2305}
2306
2307static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2308{
2309 struct tcp_sock *tp = tcp_sk(sk);
2310 struct inet_connection_sock *icsk = inet_csk(sk);
2311
2312 /* FIXME: breaks with very large cwnd */
2313 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2314 tp->snd_cwnd = tp->snd_cwnd *
2315 tcp_mss_to_mtu(sk, tp->mss_cache) /
2316 icsk->icsk_mtup.probe_size;
2317 tp->snd_cwnd_cnt = 0;
2318 tp->snd_cwnd_stamp = tcp_time_stamp;
2319 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2320
2321 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2322 icsk->icsk_mtup.probe_size = 0;
2323 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2324}
2325
2326
1da177e4
LT
2327/* Process an event, which can update packets-in-flight not trivially.
2328 * Main goal of this function is to calculate new estimate for left_out,
2329 * taking into account both packets sitting in receiver's buffer and
2330 * packets lost by network.
2331 *
2332 * Besides that it does CWND reduction, when packet loss is detected
2333 * and changes state of machine.
2334 *
2335 * It does _not_ decide what to send, it is made in function
2336 * tcp_xmit_retransmit_queue().
2337 */
2338static void
1b6d427b 2339tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
1da177e4 2340{
6687e988 2341 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2342 struct tcp_sock *tp = tcp_sk(sk);
2e605294
IJ
2343 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2344 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2345 (tp->fackets_out > tp->reordering));
1da177e4
LT
2346
2347 /* Some technical things:
2348 * 1. Reno does not count dupacks (sacked_out) automatically. */
2349 if (!tp->packets_out)
2350 tp->sacked_out = 0;
91fed7a1
IJ
2351
2352 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
1da177e4
LT
2353 tp->fackets_out = 0;
2354
e905a9ed 2355 /* Now state machine starts.
1da177e4
LT
2356 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2357 if (flag&FLAG_ECE)
2358 tp->prior_ssthresh = 0;
2359
2360 /* B. In all the states check for reneging SACKs. */
463c84b9 2361 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2362 return;
2363
2364 /* C. Process data loss notification, provided it is valid. */
2365 if ((flag&FLAG_DATA_LOST) &&
2366 before(tp->snd_una, tp->high_seq) &&
6687e988 2367 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4 2368 tp->fackets_out > tp->reordering) {
9e412ba7 2369 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
1da177e4
LT
2370 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2371 }
2372
005903bc
IJ
2373 /* D. Check consistency of the current state. */
2374 tcp_verify_left_out(tp);
1da177e4
LT
2375
2376 /* E. Check state exit conditions. State can be terminated
2377 * when high_seq is ACKed. */
6687e988 2378 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2379 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2380 tp->retrans_stamp = 0;
2381 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2382 switch (icsk->icsk_ca_state) {
1da177e4 2383 case TCP_CA_Loss:
6687e988 2384 icsk->icsk_retransmits = 0;
9e412ba7 2385 if (tcp_try_undo_recovery(sk))
1da177e4
LT
2386 return;
2387 break;
2388
2389 case TCP_CA_CWR:
2390 /* CWR is to be held something *above* high_seq
2391 * is ACKed for CWR bit to reach receiver. */
2392 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2393 tcp_complete_cwr(sk);
2394 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2395 }
2396 break;
2397
2398 case TCP_CA_Disorder:
9e412ba7 2399 tcp_try_undo_dsack(sk);
1da177e4
LT
2400 if (!tp->undo_marker ||
2401 /* For SACK case do not Open to allow to undo
2402 * catching for all duplicate ACKs. */
e60402d0 2403 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
1da177e4 2404 tp->undo_marker = 0;
6687e988 2405 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2406 }
2407 break;
2408
2409 case TCP_CA_Recovery:
e60402d0 2410 if (tcp_is_reno(tp))
1da177e4 2411 tcp_reset_reno_sack(tp);
9e412ba7 2412 if (tcp_try_undo_recovery(sk))
1da177e4 2413 return;
6687e988 2414 tcp_complete_cwr(sk);
1da177e4
LT
2415 break;
2416 }
2417 }
2418
2419 /* F. Process state. */
6687e988 2420 switch (icsk->icsk_ca_state) {
1da177e4 2421 case TCP_CA_Recovery:
2e605294 2422 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
e60402d0 2423 if (tcp_is_reno(tp) && is_dupack)
6687e988 2424 tcp_add_reno_sack(sk);
1b6d427b
IJ
2425 } else
2426 do_lost = tcp_try_undo_partial(sk, pkts_acked);
1da177e4
LT
2427 break;
2428 case TCP_CA_Loss:
2429 if (flag&FLAG_DATA_ACKED)
6687e988 2430 icsk->icsk_retransmits = 0;
9e412ba7 2431 if (!tcp_try_undo_loss(sk)) {
1da177e4
LT
2432 tcp_moderate_cwnd(tp);
2433 tcp_xmit_retransmit_queue(sk);
2434 return;
2435 }
6687e988 2436 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2437 return;
2438 /* Loss is undone; fall through to processing in Open state. */
2439 default:
e60402d0 2440 if (tcp_is_reno(tp)) {
2e605294 2441 if (flag & FLAG_SND_UNA_ADVANCED)
1da177e4
LT
2442 tcp_reset_reno_sack(tp);
2443 if (is_dupack)
6687e988 2444 tcp_add_reno_sack(sk);
1da177e4
LT
2445 }
2446
6687e988 2447 if (icsk->icsk_ca_state == TCP_CA_Disorder)
9e412ba7 2448 tcp_try_undo_dsack(sk);
1da177e4 2449
9e412ba7
IJ
2450 if (!tcp_time_to_recover(sk)) {
2451 tcp_try_to_open(sk, flag);
1da177e4
LT
2452 return;
2453 }
2454
5d424d5a
JH
2455 /* MTU probe failure: don't reduce cwnd */
2456 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2457 icsk->icsk_mtup.probe_size &&
0e7b1368 2458 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2459 tcp_mtup_probe_failed(sk);
2460 /* Restores the reduction we did in tcp_mtup_probe() */
2461 tp->snd_cwnd++;
2462 tcp_simple_retransmit(sk);
2463 return;
2464 }
2465
1da177e4
LT
2466 /* Otherwise enter Recovery state */
2467
e60402d0 2468 if (tcp_is_reno(tp))
1da177e4
LT
2469 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2470 else
2471 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2472
2473 tp->high_seq = tp->snd_nxt;
2474 tp->prior_ssthresh = 0;
2475 tp->undo_marker = tp->snd_una;
2476 tp->undo_retrans = tp->retrans_out;
2477
6687e988 2478 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2479 if (!(flag&FLAG_ECE))
6687e988
ACM
2480 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2481 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2482 TCP_ECN_queue_cwr(tp);
2483 }
2484
9772efb9 2485 tp->bytes_acked = 0;
1da177e4 2486 tp->snd_cwnd_cnt = 0;
6687e988 2487 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2488 }
2489
2e605294 2490 if (do_lost || tcp_head_timedout(sk))
9e412ba7 2491 tcp_update_scoreboard(sk);
1e757f99 2492 tcp_cwnd_down(sk, flag);
1da177e4
LT
2493 tcp_xmit_retransmit_queue(sk);
2494}
2495
2496/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2497 * with this code. (Supersedes RFC1323)
1da177e4 2498 */
2d2abbab 2499static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2500{
1da177e4
LT
2501 /* RTTM Rule: A TSecr value received in a segment is used to
2502 * update the averaged RTT measurement only if the segment
2503 * acknowledges some new data, i.e., only if it advances the
2504 * left edge of the send window.
2505 *
2506 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2507 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2508 *
2509 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2510 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2511 * samples are accepted even from very old segments: f.e., when rtt=1
2512 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2513 * answer arrives rto becomes 120 seconds! If at least one of segments
2514 * in window is lost... Voila. --ANK (010210)
2515 */
463c84b9
ACM
2516 struct tcp_sock *tp = tcp_sk(sk);
2517 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2518 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2519 tcp_set_rto(sk);
2520 inet_csk(sk)->icsk_backoff = 0;
2521 tcp_bound_rto(sk);
1da177e4
LT
2522}
2523
2d2abbab 2524static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2525{
2526 /* We don't have a timestamp. Can only use
2527 * packets that are not retransmitted to determine
2528 * rtt estimates. Also, we must not reset the
2529 * backoff for rto until we get a non-retransmitted
2530 * packet. This allows us to deal with a situation
2531 * where the network delay has increased suddenly.
2532 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2533 */
2534
2535 if (flag & FLAG_RETRANS_DATA_ACKED)
2536 return;
2537
2d2abbab 2538 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2539 tcp_set_rto(sk);
2540 inet_csk(sk)->icsk_backoff = 0;
2541 tcp_bound_rto(sk);
1da177e4
LT
2542}
2543
463c84b9 2544static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2545 const s32 seq_rtt)
1da177e4 2546{
463c84b9 2547 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2548 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2549 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2550 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2551 else if (seq_rtt >= 0)
2d2abbab 2552 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2553}
2554
16751347 2555static void tcp_cong_avoid(struct sock *sk, u32 ack,
40efc6fa 2556 u32 in_flight, int good)
1da177e4 2557{
6687e988 2558 const struct inet_connection_sock *icsk = inet_csk(sk);
16751347 2559 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
6687e988 2560 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2561}
2562
1da177e4
LT
2563/* Restart timer after forward progress on connection.
2564 * RFC2988 recommends to restart timer to now+rto.
2565 */
6728e7dc 2566static void tcp_rearm_rto(struct sock *sk)
1da177e4 2567{
9e412ba7
IJ
2568 struct tcp_sock *tp = tcp_sk(sk);
2569
1da177e4 2570 if (!tp->packets_out) {
463c84b9 2571 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2572 } else {
3f421baa 2573 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2574 }
2575}
2576
7c46a03e 2577/* If we get here, the whole TSO packet has not been acked. */
13fcf850 2578static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
2579{
2580 struct tcp_sock *tp = tcp_sk(sk);
7c46a03e 2581 u32 packets_acked;
1da177e4 2582
7c46a03e 2583 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
1da177e4
LT
2584
2585 packets_acked = tcp_skb_pcount(skb);
7c46a03e 2586 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1da177e4
LT
2587 return 0;
2588 packets_acked -= tcp_skb_pcount(skb);
2589
2590 if (packets_acked) {
1da177e4 2591 BUG_ON(tcp_skb_pcount(skb) == 0);
7c46a03e 2592 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
1da177e4
LT
2593 }
2594
13fcf850 2595 return packets_acked;
1da177e4
LT
2596}
2597
7c46a03e
IJ
2598/* Remove acknowledged frames from the retransmission queue. If our packet
2599 * is before the ack sequence we can discard it as it's confirmed to have
2600 * arrived at the other end.
2601 */
2602static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
1da177e4
LT
2603{
2604 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2605 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2606 struct sk_buff *skb;
7c46a03e 2607 u32 now = tcp_time_stamp;
13fcf850 2608 int fully_acked = 1;
7c46a03e 2609 int flag = 0;
6418204f 2610 int prior_packets = tp->packets_out;
7c46a03e 2611 s32 seq_rtt = -1;
b9ce204f 2612 ktime_t last_ackt = net_invalid_timestamp();
1da177e4 2613
7c46a03e 2614 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
e905a9ed 2615 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
13fcf850
IJ
2616 u32 end_seq;
2617 u32 packets_acked;
7c46a03e 2618 u8 sacked = scb->sacked;
1da177e4 2619
1da177e4 2620 if (after(scb->end_seq, tp->snd_una)) {
13fcf850
IJ
2621 if (tcp_skb_pcount(skb) == 1 ||
2622 !after(tp->snd_una, scb->seq))
2623 break;
2624
2625 packets_acked = tcp_tso_acked(sk, skb);
2626 if (!packets_acked)
2627 break;
2628
2629 fully_acked = 0;
2630 end_seq = tp->snd_una;
2631 } else {
2632 packets_acked = tcp_skb_pcount(skb);
2633 end_seq = scb->end_seq;
1da177e4
LT
2634 }
2635
5d424d5a 2636 /* MTU probing checks */
7c46a03e
IJ
2637 if (fully_acked && icsk->icsk_mtup.probe_size &&
2638 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2639 tcp_mtup_probe_success(sk, skb);
5d424d5a
JH
2640 }
2641
1da177e4
LT
2642 if (sacked) {
2643 if (sacked & TCPCB_RETRANS) {
2de979bd 2644 if (sacked & TCPCB_SACKED_RETRANS)
13fcf850 2645 tp->retrans_out -= packets_acked;
7c46a03e 2646 flag |= FLAG_RETRANS_DATA_ACKED;
1da177e4 2647 seq_rtt = -1;
009a2e3e
IJ
2648 if ((flag & FLAG_DATA_ACKED) ||
2649 (packets_acked > 1))
2650 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2d2abbab 2651 } else if (seq_rtt < 0) {
1da177e4 2652 seq_rtt = now - scb->when;
13fcf850
IJ
2653 if (fully_acked)
2654 last_ackt = skb->tstamp;
a61bbcf2 2655 }
7c46a03e 2656
1da177e4 2657 if (sacked & TCPCB_SACKED_ACKED)
13fcf850 2658 tp->sacked_out -= packets_acked;
1da177e4 2659 if (sacked & TCPCB_LOST)
13fcf850 2660 tp->lost_out -= packets_acked;
7c46a03e
IJ
2661
2662 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2663 !before(end_seq, tp->snd_up))
2664 tp->urg_mode = 0;
2d2abbab 2665 } else if (seq_rtt < 0) {
1da177e4 2666 seq_rtt = now - scb->when;
13fcf850
IJ
2667 if (fully_acked)
2668 last_ackt = skb->tstamp;
2d2abbab 2669 }
13fcf850
IJ
2670 tp->packets_out -= packets_acked;
2671
009a2e3e
IJ
2672 /* Initial outgoing SYN's get put onto the write_queue
2673 * just like anything else we transmit. It is not
2674 * true data, and if we misinform our callers that
2675 * this ACK acks real data, we will erroneously exit
2676 * connection startup slow start one packet too
2677 * quickly. This is severely frowned upon behavior.
2678 */
2679 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2680 flag |= FLAG_DATA_ACKED;
2681 } else {
2682 flag |= FLAG_SYN_ACKED;
2683 tp->retrans_stamp = 0;
2684 }
2685
13fcf850
IJ
2686 if (!fully_acked)
2687 break;
2688
fe067e8a 2689 tcp_unlink_write_queue(skb, sk);
1da177e4 2690 sk_stream_free_skb(sk, skb);
5af4ec23 2691 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2692 }
2693
7c46a03e 2694 if (flag & FLAG_ACKED) {
6418204f 2695 u32 pkts_acked = prior_packets - tp->packets_out;
164891aa
SH
2696 const struct tcp_congestion_ops *ca_ops
2697 = inet_csk(sk)->icsk_ca_ops;
2698
7c46a03e 2699 tcp_ack_update_rtt(sk, flag, seq_rtt);
6728e7dc 2700 tcp_rearm_rto(sk);
317a76f9 2701
91fed7a1 2702 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
13fcf850
IJ
2703 /* hint's skb might be NULL but we don't need to care */
2704 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2705 tp->fastpath_cnt_hint);
e60402d0 2706 if (tcp_is_reno(tp))
1b6d427b
IJ
2707 tcp_remove_reno_sacks(sk, pkts_acked);
2708
30cfd0ba
SH
2709 if (ca_ops->pkts_acked) {
2710 s32 rtt_us = -1;
2711
2712 /* Is the ACK triggering packet unambiguous? */
7c46a03e 2713 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
30cfd0ba
SH
2714 /* High resolution needed and available? */
2715 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2716 !ktime_equal(last_ackt,
2717 net_invalid_timestamp()))
2718 rtt_us = ktime_us_delta(ktime_get_real(),
2719 last_ackt);
2720 else if (seq_rtt > 0)
2721 rtt_us = jiffies_to_usecs(seq_rtt);
2722 }
b9ce204f 2723
30cfd0ba
SH
2724 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2725 }
1da177e4
LT
2726 }
2727
2728#if FASTRETRANS_DEBUG > 0
2729 BUG_TRAP((int)tp->sacked_out >= 0);
2730 BUG_TRAP((int)tp->lost_out >= 0);
2731 BUG_TRAP((int)tp->retrans_out >= 0);
e60402d0 2732 if (!tp->packets_out && tcp_is_sack(tp)) {
cfcabdcc 2733 icsk = inet_csk(sk);
1da177e4
LT
2734 if (tp->lost_out) {
2735 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2736 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2737 tp->lost_out = 0;
2738 }
2739 if (tp->sacked_out) {
2740 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2741 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2742 tp->sacked_out = 0;
2743 }
2744 if (tp->retrans_out) {
2745 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2746 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2747 tp->retrans_out = 0;
2748 }
2749 }
2750#endif
2751 *seq_rtt_p = seq_rtt;
7c46a03e 2752 return flag;
1da177e4
LT
2753}
2754
2755static void tcp_ack_probe(struct sock *sk)
2756{
463c84b9
ACM
2757 const struct tcp_sock *tp = tcp_sk(sk);
2758 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2759
2760 /* Was it a usable window open? */
2761
fe067e8a 2762 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1da177e4 2763 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2764 icsk->icsk_backoff = 0;
2765 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2766 /* Socket must be waked up by subsequent tcp_data_snd_check().
2767 * This function is not for random using!
2768 */
2769 } else {
463c84b9 2770 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2771 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2772 TCP_RTO_MAX);
1da177e4
LT
2773 }
2774}
2775
6687e988 2776static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2777{
2778 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2779 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2780}
2781
6687e988 2782static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2783{
6687e988 2784 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2785 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2786 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2787}
2788
2789/* Check that window update is acceptable.
2790 * The function assumes that snd_una<=ack<=snd_next.
2791 */
463c84b9
ACM
2792static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2793 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2794{
2795 return (after(ack, tp->snd_una) ||
2796 after(ack_seq, tp->snd_wl1) ||
2797 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2798}
2799
2800/* Update our send window.
2801 *
2802 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2803 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2804 */
9e412ba7
IJ
2805static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2806 u32 ack_seq)
1da177e4 2807{
9e412ba7 2808 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2809 int flag = 0;
aa8223c7 2810 u32 nwin = ntohs(tcp_hdr(skb)->window);
1da177e4 2811
aa8223c7 2812 if (likely(!tcp_hdr(skb)->syn))
1da177e4
LT
2813 nwin <<= tp->rx_opt.snd_wscale;
2814
2815 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2816 flag |= FLAG_WIN_UPDATE;
2817 tcp_update_wl(tp, ack, ack_seq);
2818
2819 if (tp->snd_wnd != nwin) {
2820 tp->snd_wnd = nwin;
2821
2822 /* Note, it is the only place, where
2823 * fast path is recovered for sending TCP.
2824 */
2ad41065 2825 tp->pred_flags = 0;
9e412ba7 2826 tcp_fast_path_check(sk);
1da177e4
LT
2827
2828 if (nwin > tp->max_window) {
2829 tp->max_window = nwin;
d83d8461 2830 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2831 }
2832 }
2833 }
2834
2835 tp->snd_una = ack;
2836
2837 return flag;
2838}
2839
9ead9a1d
IJ
2840/* A very conservative spurious RTO response algorithm: reduce cwnd and
2841 * continue in congestion avoidance.
2842 */
2843static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2844{
2845 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2846 tp->snd_cwnd_cnt = 0;
16e90681 2847 tp->bytes_acked = 0;
46323655 2848 TCP_ECN_queue_cwr(tp);
9ead9a1d
IJ
2849 tcp_moderate_cwnd(tp);
2850}
2851
3cfe3baa
IJ
2852/* A conservative spurious RTO response algorithm: reduce cwnd using
2853 * rate halving and continue in congestion avoidance.
2854 */
2855static void tcp_ratehalving_spur_to_response(struct sock *sk)
2856{
3cfe3baa 2857 tcp_enter_cwr(sk, 0);
3cfe3baa
IJ
2858}
2859
e317f6f6 2860static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3cfe3baa 2861{
e317f6f6
IJ
2862 if (flag&FLAG_ECE)
2863 tcp_ratehalving_spur_to_response(sk);
2864 else
2865 tcp_undo_cwr(sk, 1);
3cfe3baa
IJ
2866}
2867
30935cf4
IJ
2868/* F-RTO spurious RTO detection algorithm (RFC4138)
2869 *
6408d206
IJ
2870 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2871 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2872 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2873 * On First ACK, send two new segments out.
2874 * On Second ACK, RTO was likely spurious. Do spurious response (response
2875 * algorithm is not part of the F-RTO detection algorithm
2876 * given in RFC4138 but can be selected separately).
2877 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
d551e454
IJ
2878 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2879 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2880 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
30935cf4
IJ
2881 *
2882 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2883 * original window even after we transmit two new data segments.
2884 *
4dc2665e
IJ
2885 * SACK version:
2886 * on first step, wait until first cumulative ACK arrives, then move to
2887 * the second step. In second step, the next ACK decides.
2888 *
30935cf4
IJ
2889 * F-RTO is implemented (mainly) in four functions:
2890 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2891 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2892 * called when tcp_use_frto() showed green light
2893 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2894 * - tcp_enter_frto_loss() is called if there is not enough evidence
2895 * to prove that the RTO is indeed spurious. It transfers the control
2896 * from F-RTO to the conventional RTO recovery
2897 */
2e605294 2898static int tcp_process_frto(struct sock *sk, int flag)
1da177e4
LT
2899{
2900 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2901
005903bc 2902 tcp_verify_left_out(tp);
e905a9ed 2903
7487c48c
IJ
2904 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2905 if (flag&FLAG_DATA_ACKED)
2906 inet_csk(sk)->icsk_retransmits = 0;
2907
009a2e3e
IJ
2908 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2909 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2910 tp->undo_marker = 0;
2911
95c4922b 2912 if (!before(tp->snd_una, tp->frto_highmark)) {
d551e454 2913 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
7c9a4a5b 2914 return 1;
95c4922b
IJ
2915 }
2916
e60402d0 2917 if (!IsSackFrto() || tcp_is_reno(tp)) {
4dc2665e
IJ
2918 /* RFC4138 shortcoming in step 2; should also have case c):
2919 * ACK isn't duplicate nor advances window, e.g., opposite dir
2920 * data, winupdate
2921 */
2e605294 2922 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
4dc2665e
IJ
2923 return 1;
2924
2925 if (!(flag&FLAG_DATA_ACKED)) {
2926 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2927 flag);
2928 return 1;
2929 }
2930 } else {
2931 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2932 /* Prevent sending of new data. */
2933 tp->snd_cwnd = min(tp->snd_cwnd,
2934 tcp_packets_in_flight(tp));
2935 return 1;
2936 }
6408d206 2937
d551e454 2938 if ((tp->frto_counter >= 2) &&
4dc2665e
IJ
2939 (!(flag&FLAG_FORWARD_PROGRESS) ||
2940 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2941 /* RFC4138 shortcoming (see comment above) */
2942 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2943 return 1;
2944
2945 tcp_enter_frto_loss(sk, 3, flag);
2946 return 1;
2947 }
1da177e4
LT
2948 }
2949
2950 if (tp->frto_counter == 1) {
575ee714
IJ
2951 /* Sending of the next skb must be allowed or no FRTO */
2952 if (!tcp_send_head(sk) ||
2953 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2954 tp->snd_una + tp->snd_wnd)) {
d551e454
IJ
2955 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2956 flag);
575ee714
IJ
2957 return 1;
2958 }
2959
1da177e4 2960 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2961 tp->frto_counter = 2;
7c9a4a5b 2962 return 1;
d551e454 2963 } else {
3cfe3baa
IJ
2964 switch (sysctl_tcp_frto_response) {
2965 case 2:
e317f6f6 2966 tcp_undo_spur_to_response(sk, flag);
3cfe3baa
IJ
2967 break;
2968 case 1:
2969 tcp_conservative_spur_to_response(tp);
2970 break;
2971 default:
2972 tcp_ratehalving_spur_to_response(sk);
2973 break;
3ff50b79 2974 }
94d0ea77 2975 tp->frto_counter = 0;
009a2e3e 2976 tp->undo_marker = 0;
912d8f0b 2977 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
1da177e4 2978 }
7c9a4a5b 2979 return 0;
1da177e4
LT
2980}
2981
1da177e4
LT
2982/* This routine deals with incoming acks, but not outgoing ones. */
2983static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2984{
6687e988 2985 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2986 struct tcp_sock *tp = tcp_sk(sk);
2987 u32 prior_snd_una = tp->snd_una;
2988 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2989 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2990 u32 prior_in_flight;
2991 s32 seq_rtt;
2992 int prior_packets;
7c9a4a5b 2993 int frto_cwnd = 0;
1da177e4
LT
2994
2995 /* If the ack is newer than sent or older than previous acks
2996 * then we can probably ignore it.
2997 */
2998 if (after(ack, tp->snd_nxt))
2999 goto uninteresting_ack;
3000
3001 if (before(ack, prior_snd_una))
3002 goto old_ack;
3003
2e605294
IJ
3004 if (after(ack, prior_snd_una))
3005 flag |= FLAG_SND_UNA_ADVANCED;
3006
3fdf3f0c
DO
3007 if (sysctl_tcp_abc) {
3008 if (icsk->icsk_ca_state < TCP_CA_CWR)
3009 tp->bytes_acked += ack - prior_snd_una;
3010 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3011 /* we assume just one segment left network */
3012 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3013 }
9772efb9 3014
1da177e4
LT
3015 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3016 /* Window is constant, pure forward advance.
3017 * No more checks are required.
3018 * Note, we use the fact that SND.UNA>=SND.WL2.
3019 */
3020 tcp_update_wl(tp, ack, ack_seq);
3021 tp->snd_una = ack;
1da177e4
LT
3022 flag |= FLAG_WIN_UPDATE;
3023
6687e988 3024 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 3025
1da177e4
LT
3026 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3027 } else {
3028 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3029 flag |= FLAG_DATA;
3030 else
3031 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3032
9e412ba7 3033 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
1da177e4
LT
3034
3035 if (TCP_SKB_CB(skb)->sacked)
3036 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3037
aa8223c7 3038 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
1da177e4
LT
3039 flag |= FLAG_ECE;
3040
6687e988 3041 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
3042 }
3043
3044 /* We passed data and got it acked, remove any soft error
3045 * log. Something worked...
3046 */
3047 sk->sk_err_soft = 0;
3048 tp->rcv_tstamp = tcp_time_stamp;
3049 prior_packets = tp->packets_out;
3050 if (!prior_packets)
3051 goto no_queue;
3052
3053 prior_in_flight = tcp_packets_in_flight(tp);
3054
3055 /* See if we can take anything off of the retransmit queue. */
2d2abbab 3056 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4 3057
3de96471
IJ
3058 /* Guarantee sacktag reordering detection against wrap-arounds */
3059 if (before(tp->frto_highmark, tp->snd_una))
3060 tp->frto_highmark = 0;
1da177e4 3061 if (tp->frto_counter)
2e605294 3062 frto_cwnd = tcp_process_frto(sk, flag);
1da177e4 3063
6687e988 3064 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 3065 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
3066 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3067 tcp_may_raise_cwnd(sk, flag))
16751347 3068 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
1b6d427b 3069 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
1da177e4 3070 } else {
7c9a4a5b 3071 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
16751347 3072 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
1da177e4
LT
3073 }
3074
3075 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3076 dst_confirm(sk->sk_dst_cache);
3077
3078 return 1;
3079
3080no_queue:
6687e988 3081 icsk->icsk_probes_out = 0;
1da177e4
LT
3082
3083 /* If this ack opens up a zero window, clear backoff. It was
3084 * being used to time the probes, and is probably far higher than
3085 * it needs to be for normal retransmission.
3086 */
fe067e8a 3087 if (tcp_send_head(sk))
1da177e4
LT
3088 tcp_ack_probe(sk);
3089 return 1;
3090
3091old_ack:
3092 if (TCP_SKB_CB(skb)->sacked)
3093 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3094
3095uninteresting_ack:
3096 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3097 return 0;
3098}
3099
3100
3101/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3102 * But, this can also be called on packets in the established flow when
3103 * the fast version below fails.
3104 */
3105void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3106{
3107 unsigned char *ptr;
aa8223c7 3108 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3109 int length=(th->doff*4)-sizeof(struct tcphdr);
3110
3111 ptr = (unsigned char *)(th + 1);
3112 opt_rx->saw_tstamp = 0;
3113
2de979bd 3114 while (length > 0) {
e905a9ed 3115 int opcode=*ptr++;
1da177e4
LT
3116 int opsize;
3117
3118 switch (opcode) {
3119 case TCPOPT_EOL:
3120 return;
3121 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3122 length--;
3123 continue;
3124 default:
3125 opsize=*ptr++;
3126 if (opsize < 2) /* "silly options" */
3127 return;
3128 if (opsize > length)
3129 return; /* don't parse partial options */
2de979bd 3130 switch (opcode) {
1da177e4 3131 case TCPOPT_MSS:
2de979bd 3132 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 3133 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
3134 if (in_mss) {
3135 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3136 in_mss = opt_rx->user_mss;
3137 opt_rx->mss_clamp = in_mss;
3138 }
3139 }
3140 break;
3141 case TCPOPT_WINDOW:
2de979bd 3142 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
1da177e4
LT
3143 if (sysctl_tcp_window_scaling) {
3144 __u8 snd_wscale = *(__u8 *) ptr;
3145 opt_rx->wscale_ok = 1;
3146 if (snd_wscale > 14) {
2de979bd 3147 if (net_ratelimit())
1da177e4
LT
3148 printk(KERN_INFO "tcp_parse_options: Illegal window "
3149 "scaling value %d >14 received.\n",
3150 snd_wscale);
3151 snd_wscale = 14;
3152 }
3153 opt_rx->snd_wscale = snd_wscale;
3154 }
3155 break;
3156 case TCPOPT_TIMESTAMP:
2de979bd 3157 if (opsize==TCPOLEN_TIMESTAMP) {
1da177e4
LT
3158 if ((estab && opt_rx->tstamp_ok) ||
3159 (!estab && sysctl_tcp_timestamps)) {
3160 opt_rx->saw_tstamp = 1;
4f3608b7
AV
3161 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3162 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
3163 }
3164 }
3165 break;
3166 case TCPOPT_SACK_PERM:
2de979bd 3167 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
1da177e4
LT
3168 if (sysctl_tcp_sack) {
3169 opt_rx->sack_ok = 1;
3170 tcp_sack_reset(opt_rx);
3171 }
3172 }
3173 break;
3174
3175 case TCPOPT_SACK:
2de979bd 3176 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1da177e4
LT
3177 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3178 opt_rx->sack_ok) {
3179 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3180 }
d7ea5b91 3181 break;
cfb6eeb4
YH
3182#ifdef CONFIG_TCP_MD5SIG
3183 case TCPOPT_MD5SIG:
3184 /*
3185 * The MD5 Hash has already been
3186 * checked (see tcp_v{4,6}_do_rcv()).
3187 */
3188 break;
3189#endif
3ff50b79
SH
3190 }
3191
e905a9ed
YH
3192 ptr+=opsize-2;
3193 length-=opsize;
3ff50b79 3194 }
1da177e4
LT
3195 }
3196}
3197
3198/* Fast parse options. This hopes to only see timestamps.
3199 * If it is wrong it falls back on tcp_parse_options().
3200 */
40efc6fa
SH
3201static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3202 struct tcp_sock *tp)
1da177e4
LT
3203{
3204 if (th->doff == sizeof(struct tcphdr)>>2) {
3205 tp->rx_opt.saw_tstamp = 0;
3206 return 0;
3207 } else if (tp->rx_opt.tstamp_ok &&
3208 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
3209 __be32 *ptr = (__be32 *)(th + 1);
3210 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3211 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3212 tp->rx_opt.saw_tstamp = 1;
3213 ++ptr;
3214 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3215 ++ptr;
3216 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3217 return 1;
3218 }
3219 }
3220 tcp_parse_options(skb, &tp->rx_opt, 1);
3221 return 1;
3222}
3223
3224static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3225{
3226 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
9d729f72 3227 tp->rx_opt.ts_recent_stamp = get_seconds();
1da177e4
LT
3228}
3229
3230static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3231{
3232 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3233 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3234 * extra check below makes sure this can only happen
3235 * for pure ACK frames. -DaveM
3236 *
3237 * Not only, also it occurs for expired timestamps.
3238 */
3239
2de979bd 3240 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
9d729f72 3241 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
1da177e4
LT
3242 tcp_store_ts_recent(tp);
3243 }
3244}
3245
3246/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3247 *
3248 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3249 * it can pass through stack. So, the following predicate verifies that
3250 * this segment is not used for anything but congestion avoidance or
3251 * fast retransmit. Moreover, we even are able to eliminate most of such
3252 * second order effects, if we apply some small "replay" window (~RTO)
3253 * to timestamp space.
3254 *
3255 * All these measures still do not guarantee that we reject wrapped ACKs
3256 * on networks with high bandwidth, when sequence space is recycled fastly,
3257 * but it guarantees that such events will be very rare and do not affect
3258 * connection seriously. This doesn't look nice, but alas, PAWS is really
3259 * buggy extension.
3260 *
3261 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3262 * states that events when retransmit arrives after original data are rare.
3263 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3264 * the biggest problem on large power networks even with minor reordering.
3265 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3266 * up to bandwidth of 18Gigabit/sec. 8) ]
3267 */
3268
463c84b9 3269static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3270{
463c84b9 3271 struct tcp_sock *tp = tcp_sk(sk);
aa8223c7 3272 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3273 u32 seq = TCP_SKB_CB(skb)->seq;
3274 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3275
3276 return (/* 1. Pure ACK with correct sequence number. */
3277 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3278
3279 /* 2. ... and duplicate ACK. */
3280 ack == tp->snd_una &&
3281
3282 /* 3. ... and does not update window. */
3283 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3284
3285 /* 4. ... and sits in replay window. */
463c84b9 3286 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
3287}
3288
463c84b9 3289static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3290{
463c84b9 3291 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 3292 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
9d729f72 3293 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 3294 !tcp_disordered_ack(sk, skb));
1da177e4
LT
3295}
3296
3297/* Check segment sequence number for validity.
3298 *
3299 * Segment controls are considered valid, if the segment
3300 * fits to the window after truncation to the window. Acceptability
3301 * of data (and SYN, FIN, of course) is checked separately.
3302 * See tcp_data_queue(), for example.
3303 *
3304 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3305 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3306 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3307 * (borrowed from freebsd)
3308 */
3309
3310static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3311{
3312 return !before(end_seq, tp->rcv_wup) &&
3313 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3314}
3315
3316/* When we get a reset we do this. */
3317static void tcp_reset(struct sock *sk)
3318{
3319 /* We want the right error as BSD sees it (and indeed as we do). */
3320 switch (sk->sk_state) {
3321 case TCP_SYN_SENT:
3322 sk->sk_err = ECONNREFUSED;
3323 break;
3324 case TCP_CLOSE_WAIT:
3325 sk->sk_err = EPIPE;
3326 break;
3327 case TCP_CLOSE:
3328 return;
3329 default:
3330 sk->sk_err = ECONNRESET;
3331 }
3332
3333 if (!sock_flag(sk, SOCK_DEAD))
3334 sk->sk_error_report(sk);
3335
3336 tcp_done(sk);
3337}
3338
3339/*
3340 * Process the FIN bit. This now behaves as it is supposed to work
3341 * and the FIN takes effect when it is validly part of sequence
3342 * space. Not before when we get holes.
3343 *
3344 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3345 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3346 * TIME-WAIT)
3347 *
3348 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3349 * close and we go into CLOSING (and later onto TIME-WAIT)
3350 *
3351 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3352 */
3353static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3354{
3355 struct tcp_sock *tp = tcp_sk(sk);
3356
463c84b9 3357 inet_csk_schedule_ack(sk);
1da177e4
LT
3358
3359 sk->sk_shutdown |= RCV_SHUTDOWN;
3360 sock_set_flag(sk, SOCK_DONE);
3361
3362 switch (sk->sk_state) {
3363 case TCP_SYN_RECV:
3364 case TCP_ESTABLISHED:
3365 /* Move to CLOSE_WAIT */
3366 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3367 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3368 break;
3369
3370 case TCP_CLOSE_WAIT:
3371 case TCP_CLOSING:
3372 /* Received a retransmission of the FIN, do
3373 * nothing.
3374 */
3375 break;
3376 case TCP_LAST_ACK:
3377 /* RFC793: Remain in the LAST-ACK state. */
3378 break;
3379
3380 case TCP_FIN_WAIT1:
3381 /* This case occurs when a simultaneous close
3382 * happens, we must ack the received FIN and
3383 * enter the CLOSING state.
3384 */
3385 tcp_send_ack(sk);
3386 tcp_set_state(sk, TCP_CLOSING);
3387 break;
3388 case TCP_FIN_WAIT2:
3389 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3390 tcp_send_ack(sk);
3391 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3392 break;
3393 default:
3394 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3395 * cases we should never reach this piece of code.
3396 */
3397 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3398 __FUNCTION__, sk->sk_state);
3399 break;
3ff50b79 3400 }
1da177e4
LT
3401
3402 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3403 * Probably, we should reset in this case. For now drop them.
3404 */
3405 __skb_queue_purge(&tp->out_of_order_queue);
e60402d0 3406 if (tcp_is_sack(tp))
1da177e4
LT
3407 tcp_sack_reset(&tp->rx_opt);
3408 sk_stream_mem_reclaim(sk);
3409
3410 if (!sock_flag(sk, SOCK_DEAD)) {
3411 sk->sk_state_change(sk);
3412
3413 /* Do not send POLL_HUP for half duplex close. */
3414 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3415 sk->sk_state == TCP_CLOSE)
3416 sk_wake_async(sk, 1, POLL_HUP);
3417 else
3418 sk_wake_async(sk, 1, POLL_IN);
3419 }
3420}
3421
40efc6fa 3422static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3423{
3424 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3425 if (before(seq, sp->start_seq))
3426 sp->start_seq = seq;
3427 if (after(end_seq, sp->end_seq))
3428 sp->end_seq = end_seq;
3429 return 1;
3430 }
3431 return 0;
3432}
3433
40efc6fa 3434static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4 3435{
e60402d0 3436 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3437 if (before(seq, tp->rcv_nxt))
3438 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3439 else
3440 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3441
3442 tp->rx_opt.dsack = 1;
3443 tp->duplicate_sack[0].start_seq = seq;
3444 tp->duplicate_sack[0].end_seq = end_seq;
3445 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3446 }
3447}
3448
40efc6fa 3449static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3450{
3451 if (!tp->rx_opt.dsack)
3452 tcp_dsack_set(tp, seq, end_seq);
3453 else
3454 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3455}
3456
3457static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3458{
3459 struct tcp_sock *tp = tcp_sk(sk);
3460
3461 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3462 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3463 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3464 tcp_enter_quickack_mode(sk);
1da177e4 3465
e60402d0 3466 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3467 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3468
3469 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3470 end_seq = tp->rcv_nxt;
3471 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3472 }
3473 }
3474
3475 tcp_send_ack(sk);
3476}
3477
3478/* These routines update the SACK block as out-of-order packets arrive or
3479 * in-order packets close up the sequence space.
3480 */
3481static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3482{
3483 int this_sack;
3484 struct tcp_sack_block *sp = &tp->selective_acks[0];
3485 struct tcp_sack_block *swalk = sp+1;
3486
3487 /* See if the recent change to the first SACK eats into
3488 * or hits the sequence space of other SACK blocks, if so coalesce.
3489 */
3490 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3491 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3492 int i;
3493
3494 /* Zap SWALK, by moving every further SACK up by one slot.
3495 * Decrease num_sacks.
3496 */
3497 tp->rx_opt.num_sacks--;
3498 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2de979bd 3499 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
1da177e4
LT
3500 sp[i] = sp[i+1];
3501 continue;
3502 }
3503 this_sack++, swalk++;
3504 }
3505}
3506
40efc6fa 3507static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3508{
3509 __u32 tmp;
3510
3511 tmp = sack1->start_seq;
3512 sack1->start_seq = sack2->start_seq;
3513 sack2->start_seq = tmp;
3514
3515 tmp = sack1->end_seq;
3516 sack1->end_seq = sack2->end_seq;
3517 sack2->end_seq = tmp;
3518}
3519
3520static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3521{
3522 struct tcp_sock *tp = tcp_sk(sk);
3523 struct tcp_sack_block *sp = &tp->selective_acks[0];
3524 int cur_sacks = tp->rx_opt.num_sacks;
3525 int this_sack;
3526
3527 if (!cur_sacks)
3528 goto new_sack;
3529
3530 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3531 if (tcp_sack_extend(sp, seq, end_seq)) {
3532 /* Rotate this_sack to the first one. */
3533 for (; this_sack>0; this_sack--, sp--)
3534 tcp_sack_swap(sp, sp-1);
3535 if (cur_sacks > 1)
3536 tcp_sack_maybe_coalesce(tp);
3537 return;
3538 }
3539 }
3540
3541 /* Could not find an adjacent existing SACK, build a new one,
3542 * put it at the front, and shift everyone else down. We
3543 * always know there is at least one SACK present already here.
3544 *
3545 * If the sack array is full, forget about the last one.
3546 */
3547 if (this_sack >= 4) {
3548 this_sack--;
3549 tp->rx_opt.num_sacks--;
3550 sp--;
3551 }
2de979bd 3552 for (; this_sack > 0; this_sack--, sp--)
1da177e4
LT
3553 *sp = *(sp-1);
3554
3555new_sack:
3556 /* Build the new head SACK, and we're done. */
3557 sp->start_seq = seq;
3558 sp->end_seq = end_seq;
3559 tp->rx_opt.num_sacks++;
3560 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3561}
3562
3563/* RCV.NXT advances, some SACKs should be eaten. */
3564
3565static void tcp_sack_remove(struct tcp_sock *tp)
3566{
3567 struct tcp_sack_block *sp = &tp->selective_acks[0];
3568 int num_sacks = tp->rx_opt.num_sacks;
3569 int this_sack;
3570
3571 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3572 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3573 tp->rx_opt.num_sacks = 0;
3574 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3575 return;
3576 }
3577
2de979bd 3578 for (this_sack = 0; this_sack < num_sacks; ) {
1da177e4
LT
3579 /* Check if the start of the sack is covered by RCV.NXT. */
3580 if (!before(tp->rcv_nxt, sp->start_seq)) {
3581 int i;
3582
3583 /* RCV.NXT must cover all the block! */
3584 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3585
3586 /* Zap this SACK, by moving forward any other SACKS. */
3587 for (i=this_sack+1; i < num_sacks; i++)
3588 tp->selective_acks[i-1] = tp->selective_acks[i];
3589 num_sacks--;
3590 continue;
3591 }
3592 this_sack++;
3593 sp++;
3594 }
3595 if (num_sacks != tp->rx_opt.num_sacks) {
3596 tp->rx_opt.num_sacks = num_sacks;
3597 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3598 }
3599}
3600
3601/* This one checks to see if we can put data from the
3602 * out_of_order queue into the receive_queue.
3603 */
3604static void tcp_ofo_queue(struct sock *sk)
3605{
3606 struct tcp_sock *tp = tcp_sk(sk);
3607 __u32 dsack_high = tp->rcv_nxt;
3608 struct sk_buff *skb;
3609
3610 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3611 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3612 break;
3613
3614 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3615 __u32 dsack = dsack_high;
3616 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3617 dsack_high = TCP_SKB_CB(skb)->end_seq;
3618 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3619 }
3620
3621 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3622 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3623 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3624 __kfree_skb(skb);
3625 continue;
3626 }
3627 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3628 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3629 TCP_SKB_CB(skb)->end_seq);
3630
8728b834 3631 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3632 __skb_queue_tail(&sk->sk_receive_queue, skb);
3633 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
aa8223c7
ACM
3634 if (tcp_hdr(skb)->fin)
3635 tcp_fin(skb, sk, tcp_hdr(skb));
1da177e4
LT
3636 }
3637}
3638
3639static int tcp_prune_queue(struct sock *sk);
3640
3641static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3642{
aa8223c7 3643 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3644 struct tcp_sock *tp = tcp_sk(sk);
3645 int eaten = -1;
3646
3647 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3648 goto drop;
3649
1da177e4
LT
3650 __skb_pull(skb, th->doff*4);
3651
3652 TCP_ECN_accept_cwr(tp, skb);
3653
3654 if (tp->rx_opt.dsack) {
3655 tp->rx_opt.dsack = 0;
3656 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3657 4 - tp->rx_opt.tstamp_ok);
3658 }
3659
3660 /* Queue data for delivery to the user.
3661 * Packets in sequence go to the receive queue.
3662 * Out of sequence packets to the out_of_order_queue.
3663 */
3664 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3665 if (tcp_receive_window(tp) == 0)
3666 goto out_of_window;
3667
3668 /* Ok. In sequence. In window. */
3669 if (tp->ucopy.task == current &&
3670 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3671 sock_owned_by_user(sk) && !tp->urg_data) {
3672 int chunk = min_t(unsigned int, skb->len,
3673 tp->ucopy.len);
3674
3675 __set_current_state(TASK_RUNNING);
3676
3677 local_bh_enable();
3678 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3679 tp->ucopy.len -= chunk;
3680 tp->copied_seq += chunk;
3681 eaten = (chunk == skb->len && !th->fin);
3682 tcp_rcv_space_adjust(sk);
3683 }
3684 local_bh_disable();
3685 }
3686
3687 if (eaten <= 0) {
3688queue_and_out:
3689 if (eaten < 0 &&
3690 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3691 !sk_stream_rmem_schedule(sk, skb))) {
3692 if (tcp_prune_queue(sk) < 0 ||
3693 !sk_stream_rmem_schedule(sk, skb))
3694 goto drop;
3695 }
3696 sk_stream_set_owner_r(skb, sk);
3697 __skb_queue_tail(&sk->sk_receive_queue, skb);
3698 }
3699 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2de979bd 3700 if (skb->len)
9e412ba7 3701 tcp_event_data_recv(sk, skb);
2de979bd 3702 if (th->fin)
1da177e4
LT
3703 tcp_fin(skb, sk, th);
3704
b03efcfb 3705 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3706 tcp_ofo_queue(sk);
3707
3708 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3709 * gap in queue is filled.
3710 */
b03efcfb 3711 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3712 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3713 }
3714
3715 if (tp->rx_opt.num_sacks)
3716 tcp_sack_remove(tp);
3717
9e412ba7 3718 tcp_fast_path_check(sk);
1da177e4
LT
3719
3720 if (eaten > 0)
3721 __kfree_skb(skb);
3722 else if (!sock_flag(sk, SOCK_DEAD))
3723 sk->sk_data_ready(sk, 0);
3724 return;
3725 }
3726
3727 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3728 /* A retransmit, 2nd most common case. Force an immediate ack. */
3729 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3730 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3731
3732out_of_window:
463c84b9
ACM
3733 tcp_enter_quickack_mode(sk);
3734 inet_csk_schedule_ack(sk);
1da177e4
LT
3735drop:
3736 __kfree_skb(skb);
3737 return;
3738 }
3739
3740 /* Out of window. F.e. zero window probe. */
3741 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3742 goto out_of_window;
3743
463c84b9 3744 tcp_enter_quickack_mode(sk);
1da177e4
LT
3745
3746 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3747 /* Partial packet, seq < rcv_next < end_seq */
3748 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3749 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3750 TCP_SKB_CB(skb)->end_seq);
3751
3752 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3753
1da177e4
LT
3754 /* If window is closed, drop tail of packet. But after
3755 * remembering D-SACK for its head made in previous line.
3756 */
3757 if (!tcp_receive_window(tp))
3758 goto out_of_window;
3759 goto queue_and_out;
3760 }
3761
3762 TCP_ECN_check_ce(tp, skb);
3763
3764 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3765 !sk_stream_rmem_schedule(sk, skb)) {
3766 if (tcp_prune_queue(sk) < 0 ||
3767 !sk_stream_rmem_schedule(sk, skb))
3768 goto drop;
3769 }
3770
3771 /* Disable header prediction. */
3772 tp->pred_flags = 0;
463c84b9 3773 inet_csk_schedule_ack(sk);
1da177e4
LT
3774
3775 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3776 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3777
3778 sk_stream_set_owner_r(skb, sk);
3779
3780 if (!skb_peek(&tp->out_of_order_queue)) {
3781 /* Initial out of order segment, build 1 SACK. */
e60402d0 3782 if (tcp_is_sack(tp)) {
1da177e4
LT
3783 tp->rx_opt.num_sacks = 1;
3784 tp->rx_opt.dsack = 0;
3785 tp->rx_opt.eff_sacks = 1;
3786 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3787 tp->selective_acks[0].end_seq =
3788 TCP_SKB_CB(skb)->end_seq;
3789 }
3790 __skb_queue_head(&tp->out_of_order_queue,skb);
3791 } else {
3792 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3793 u32 seq = TCP_SKB_CB(skb)->seq;
3794 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3795
3796 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3797 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3798
3799 if (!tp->rx_opt.num_sacks ||
3800 tp->selective_acks[0].end_seq != seq)
3801 goto add_sack;
3802
3803 /* Common case: data arrive in order after hole. */
3804 tp->selective_acks[0].end_seq = end_seq;
3805 return;
3806 }
3807
3808 /* Find place to insert this segment. */
3809 do {
3810 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3811 break;
3812 } while ((skb1 = skb1->prev) !=
3813 (struct sk_buff*)&tp->out_of_order_queue);
3814
3815 /* Do skb overlap to previous one? */
3816 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3817 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3818 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3819 /* All the bits are present. Drop. */
3820 __kfree_skb(skb);
3821 tcp_dsack_set(tp, seq, end_seq);
3822 goto add_sack;
3823 }
3824 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3825 /* Partial overlap. */
3826 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3827 } else {
3828 skb1 = skb1->prev;
3829 }
3830 }
3831 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3832
1da177e4
LT
3833 /* And clean segments covered by new one as whole. */
3834 while ((skb1 = skb->next) !=
3835 (struct sk_buff*)&tp->out_of_order_queue &&
3836 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3837 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3838 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3839 break;
3840 }
8728b834 3841 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3842 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3843 __kfree_skb(skb1);
3844 }
3845
3846add_sack:
e60402d0 3847 if (tcp_is_sack(tp))
1da177e4
LT
3848 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3849 }
3850}
3851
3852/* Collapse contiguous sequence of skbs head..tail with
3853 * sequence numbers start..end.
3854 * Segments with FIN/SYN are not collapsed (only because this
3855 * simplifies code)
3856 */
3857static void
8728b834
DM
3858tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3859 struct sk_buff *head, struct sk_buff *tail,
3860 u32 start, u32 end)
1da177e4
LT
3861{
3862 struct sk_buff *skb;
3863
caa20d9a 3864 /* First, check that queue is collapsible and find
1da177e4
LT
3865 * the point where collapsing can be useful. */
3866 for (skb = head; skb != tail; ) {
3867 /* No new bits? It is possible on ofo queue. */
3868 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3869 struct sk_buff *next = skb->next;
8728b834 3870 __skb_unlink(skb, list);
1da177e4
LT
3871 __kfree_skb(skb);
3872 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3873 skb = next;
3874 continue;
3875 }
3876
3877 /* The first skb to collapse is:
3878 * - not SYN/FIN and
3879 * - bloated or contains data before "start" or
3880 * overlaps to the next one.
3881 */
aa8223c7 3882 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
1da177e4
LT
3883 (tcp_win_from_space(skb->truesize) > skb->len ||
3884 before(TCP_SKB_CB(skb)->seq, start) ||
3885 (skb->next != tail &&
3886 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3887 break;
3888
3889 /* Decided to skip this, advance start seq. */
3890 start = TCP_SKB_CB(skb)->end_seq;
3891 skb = skb->next;
3892 }
aa8223c7 3893 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
1da177e4
LT
3894 return;
3895
3896 while (before(start, end)) {
3897 struct sk_buff *nskb;
3898 int header = skb_headroom(skb);
3899 int copy = SKB_MAX_ORDER(header, 0);
3900
3901 /* Too big header? This can happen with IPv6. */
3902 if (copy < 0)
3903 return;
3904 if (end-start < copy)
3905 copy = end-start;
3906 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3907 if (!nskb)
3908 return;
c51957da 3909
98e399f8 3910 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
9c70220b
ACM
3911 skb_set_network_header(nskb, (skb_network_header(skb) -
3912 skb->head));
3913 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3914 skb->head));
1da177e4
LT
3915 skb_reserve(nskb, header);
3916 memcpy(nskb->head, skb->head, header);
1da177e4
LT
3917 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3918 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3919 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3920 sk_stream_set_owner_r(nskb, sk);
3921
3922 /* Copy data, releasing collapsed skbs. */
3923 while (copy > 0) {
3924 int offset = start - TCP_SKB_CB(skb)->seq;
3925 int size = TCP_SKB_CB(skb)->end_seq - start;
3926
09a62660 3927 BUG_ON(offset < 0);
1da177e4
LT
3928 if (size > 0) {
3929 size = min(copy, size);
3930 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3931 BUG();
3932 TCP_SKB_CB(nskb)->end_seq += size;
3933 copy -= size;
3934 start += size;
3935 }
3936 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3937 struct sk_buff *next = skb->next;
8728b834 3938 __skb_unlink(skb, list);
1da177e4
LT
3939 __kfree_skb(skb);
3940 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3941 skb = next;
aa8223c7
ACM
3942 if (skb == tail ||
3943 tcp_hdr(skb)->syn ||
3944 tcp_hdr(skb)->fin)
1da177e4
LT
3945 return;
3946 }
3947 }
3948 }
3949}
3950
3951/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3952 * and tcp_collapse() them until all the queue is collapsed.
3953 */
3954static void tcp_collapse_ofo_queue(struct sock *sk)
3955{
3956 struct tcp_sock *tp = tcp_sk(sk);
3957 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3958 struct sk_buff *head;
3959 u32 start, end;
3960
3961 if (skb == NULL)
3962 return;
3963
3964 start = TCP_SKB_CB(skb)->seq;
3965 end = TCP_SKB_CB(skb)->end_seq;
3966 head = skb;
3967
3968 for (;;) {
3969 skb = skb->next;
3970
3971 /* Segment is terminated when we see gap or when
3972 * we are at the end of all the queue. */
3973 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3974 after(TCP_SKB_CB(skb)->seq, end) ||
3975 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3976 tcp_collapse(sk, &tp->out_of_order_queue,
3977 head, skb, start, end);
1da177e4
LT
3978 head = skb;
3979 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3980 break;
3981 /* Start new segment */
3982 start = TCP_SKB_CB(skb)->seq;
3983 end = TCP_SKB_CB(skb)->end_seq;
3984 } else {
3985 if (before(TCP_SKB_CB(skb)->seq, start))
3986 start = TCP_SKB_CB(skb)->seq;
3987 if (after(TCP_SKB_CB(skb)->end_seq, end))
3988 end = TCP_SKB_CB(skb)->end_seq;
3989 }
3990 }
3991}
3992
3993/* Reduce allocated memory if we can, trying to get
3994 * the socket within its memory limits again.
3995 *
3996 * Return less than zero if we should start dropping frames
3997 * until the socket owning process reads some of the data
3998 * to stabilize the situation.
3999 */
4000static int tcp_prune_queue(struct sock *sk)
4001{
e905a9ed 4002 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
4003
4004 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4005
4006 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4007
4008 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
9e412ba7 4009 tcp_clamp_window(sk);
1da177e4
LT
4010 else if (tcp_memory_pressure)
4011 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4012
4013 tcp_collapse_ofo_queue(sk);
8728b834
DM
4014 tcp_collapse(sk, &sk->sk_receive_queue,
4015 sk->sk_receive_queue.next,
1da177e4
LT
4016 (struct sk_buff*)&sk->sk_receive_queue,
4017 tp->copied_seq, tp->rcv_nxt);
4018 sk_stream_mem_reclaim(sk);
4019
4020 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4021 return 0;
4022
4023 /* Collapsing did not help, destructive actions follow.
4024 * This must not ever occur. */
4025
4026 /* First, purge the out_of_order queue. */
b03efcfb
DM
4027 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4028 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
4029 __skb_queue_purge(&tp->out_of_order_queue);
4030
4031 /* Reset SACK state. A conforming SACK implementation will
4032 * do the same at a timeout based retransmit. When a connection
4033 * is in a sad state like this, we care only about integrity
4034 * of the connection not performance.
4035 */
e60402d0 4036 if (tcp_is_sack(tp))
1da177e4
LT
4037 tcp_sack_reset(&tp->rx_opt);
4038 sk_stream_mem_reclaim(sk);
4039 }
4040
4041 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4042 return 0;
4043
4044 /* If we are really being abused, tell the caller to silently
4045 * drop receive data on the floor. It will get retransmitted
4046 * and hopefully then we'll have sufficient space.
4047 */
4048 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4049
4050 /* Massive buffer overcommit. */
4051 tp->pred_flags = 0;
4052 return -1;
4053}
4054
4055
4056/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4057 * As additional protections, we do not touch cwnd in retransmission phases,
4058 * and if application hit its sndbuf limit recently.
4059 */
4060void tcp_cwnd_application_limited(struct sock *sk)
4061{
4062 struct tcp_sock *tp = tcp_sk(sk);
4063
6687e988 4064 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
4065 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4066 /* Limited by application or receiver window. */
d254bcdb
IJ
4067 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4068 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 4069 if (win_used < tp->snd_cwnd) {
6687e988 4070 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
4071 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4072 }
4073 tp->snd_cwnd_used = 0;
4074 }
4075 tp->snd_cwnd_stamp = tcp_time_stamp;
4076}
4077
9e412ba7 4078static int tcp_should_expand_sndbuf(struct sock *sk)
0d9901df 4079{
9e412ba7
IJ
4080 struct tcp_sock *tp = tcp_sk(sk);
4081
0d9901df
DM
4082 /* If the user specified a specific send buffer setting, do
4083 * not modify it.
4084 */
4085 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4086 return 0;
4087
4088 /* If we are under global TCP memory pressure, do not expand. */
4089 if (tcp_memory_pressure)
4090 return 0;
4091
4092 /* If we are under soft global TCP memory pressure, do not expand. */
4093 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4094 return 0;
4095
4096 /* If we filled the congestion window, do not expand. */
4097 if (tp->packets_out >= tp->snd_cwnd)
4098 return 0;
4099
4100 return 1;
4101}
1da177e4
LT
4102
4103/* When incoming ACK allowed to free some skb from write_queue,
4104 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4105 * on the exit from tcp input handler.
4106 *
4107 * PROBLEM: sndbuf expansion does not work well with largesend.
4108 */
4109static void tcp_new_space(struct sock *sk)
4110{
4111 struct tcp_sock *tp = tcp_sk(sk);
4112
9e412ba7 4113 if (tcp_should_expand_sndbuf(sk)) {
e905a9ed 4114 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
4115 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4116 demanded = max_t(unsigned int, tp->snd_cwnd,
4117 tp->reordering + 1);
4118 sndmem *= 2*demanded;
4119 if (sndmem > sk->sk_sndbuf)
4120 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4121 tp->snd_cwnd_stamp = tcp_time_stamp;
4122 }
4123
4124 sk->sk_write_space(sk);
4125}
4126
40efc6fa 4127static void tcp_check_space(struct sock *sk)
1da177e4
LT
4128{
4129 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4130 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4131 if (sk->sk_socket &&
4132 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4133 tcp_new_space(sk);
4134 }
4135}
4136
9e412ba7 4137static inline void tcp_data_snd_check(struct sock *sk)
1da177e4 4138{
9e412ba7 4139 tcp_push_pending_frames(sk);
1da177e4
LT
4140 tcp_check_space(sk);
4141}
4142
4143/*
4144 * Check if sending an ack is needed.
4145 */
4146static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4147{
4148 struct tcp_sock *tp = tcp_sk(sk);
4149
4150 /* More than one full frame received... */
463c84b9 4151 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
4152 /* ... and right edge of window advances far enough.
4153 * (tcp_recvmsg() will send ACK otherwise). Or...
4154 */
4155 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4156 /* We ACK each frame or... */
463c84b9 4157 tcp_in_quickack_mode(sk) ||
1da177e4
LT
4158 /* We have out of order data. */
4159 (ofo_possible &&
4160 skb_peek(&tp->out_of_order_queue))) {
4161 /* Then ack it now */
4162 tcp_send_ack(sk);
4163 } else {
4164 /* Else, send delayed ack. */
4165 tcp_send_delayed_ack(sk);
4166 }
4167}
4168
40efc6fa 4169static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 4170{
463c84b9 4171 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
4172 /* We sent a data segment already. */
4173 return;
4174 }
4175 __tcp_ack_snd_check(sk, 1);
4176}
4177
4178/*
4179 * This routine is only called when we have urgent data
caa20d9a 4180 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
4181 * moved inline now as tcp_urg is only called from one
4182 * place. We handle URGent data wrong. We have to - as
4183 * BSD still doesn't use the correction from RFC961.
4184 * For 1003.1g we should support a new option TCP_STDURG to permit
4185 * either form (or just set the sysctl tcp_stdurg).
4186 */
e905a9ed 4187
1da177e4
LT
4188static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4189{
4190 struct tcp_sock *tp = tcp_sk(sk);
4191 u32 ptr = ntohs(th->urg_ptr);
4192
4193 if (ptr && !sysctl_tcp_stdurg)
4194 ptr--;
4195 ptr += ntohl(th->seq);
4196
4197 /* Ignore urgent data that we've already seen and read. */
4198 if (after(tp->copied_seq, ptr))
4199 return;
4200
4201 /* Do not replay urg ptr.
4202 *
4203 * NOTE: interesting situation not covered by specs.
4204 * Misbehaving sender may send urg ptr, pointing to segment,
4205 * which we already have in ofo queue. We are not able to fetch
4206 * such data and will stay in TCP_URG_NOTYET until will be eaten
4207 * by recvmsg(). Seems, we are not obliged to handle such wicked
4208 * situations. But it is worth to think about possibility of some
4209 * DoSes using some hypothetical application level deadlock.
4210 */
4211 if (before(ptr, tp->rcv_nxt))
4212 return;
4213
4214 /* Do we already have a newer (or duplicate) urgent pointer? */
4215 if (tp->urg_data && !after(ptr, tp->urg_seq))
4216 return;
4217
4218 /* Tell the world about our new urgent pointer. */
4219 sk_send_sigurg(sk);
4220
4221 /* We may be adding urgent data when the last byte read was
4222 * urgent. To do this requires some care. We cannot just ignore
4223 * tp->copied_seq since we would read the last urgent byte again
4224 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 4225 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
4226 *
4227 * NOTE. Double Dutch. Rendering to plain English: author of comment
4228 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4229 * and expect that both A and B disappear from stream. This is _wrong_.
4230 * Though this happens in BSD with high probability, this is occasional.
4231 * Any application relying on this is buggy. Note also, that fix "works"
4232 * only in this artificial test. Insert some normal data between A and B and we will
4233 * decline of BSD again. Verdict: it is better to remove to trap
4234 * buggy users.
4235 */
4236 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4237 !sock_flag(sk, SOCK_URGINLINE) &&
4238 tp->copied_seq != tp->rcv_nxt) {
4239 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4240 tp->copied_seq++;
4241 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 4242 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
4243 __kfree_skb(skb);
4244 }
4245 }
4246
4247 tp->urg_data = TCP_URG_NOTYET;
4248 tp->urg_seq = ptr;
4249
4250 /* Disable header prediction. */
4251 tp->pred_flags = 0;
4252}
4253
4254/* This is the 'fast' part of urgent handling. */
4255static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4256{
4257 struct tcp_sock *tp = tcp_sk(sk);
4258
4259 /* Check if we get a new urgent pointer - normally not. */
4260 if (th->urg)
4261 tcp_check_urg(sk,th);
4262
4263 /* Do we wait for any urgent data? - normally not... */
4264 if (tp->urg_data == TCP_URG_NOTYET) {
4265 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4266 th->syn;
4267
e905a9ed 4268 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
4269 if (ptr < skb->len) {
4270 u8 tmp;
4271 if (skb_copy_bits(skb, ptr, &tmp, 1))
4272 BUG();
4273 tp->urg_data = TCP_URG_VALID | tmp;
4274 if (!sock_flag(sk, SOCK_DEAD))
4275 sk->sk_data_ready(sk, 0);
4276 }
4277 }
4278}
4279
4280static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4281{
4282 struct tcp_sock *tp = tcp_sk(sk);
4283 int chunk = skb->len - hlen;
4284 int err;
4285
4286 local_bh_enable();
60476372 4287 if (skb_csum_unnecessary(skb))
1da177e4
LT
4288 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4289 else
4290 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4291 tp->ucopy.iov);
4292
4293 if (!err) {
4294 tp->ucopy.len -= chunk;
4295 tp->copied_seq += chunk;
4296 tcp_rcv_space_adjust(sk);
4297 }
4298
4299 local_bh_disable();
4300 return err;
4301}
4302
b51655b9 4303static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4304{
b51655b9 4305 __sum16 result;
1da177e4
LT
4306
4307 if (sock_owned_by_user(sk)) {
4308 local_bh_enable();
4309 result = __tcp_checksum_complete(skb);
4310 local_bh_disable();
4311 } else {
4312 result = __tcp_checksum_complete(skb);
4313 }
4314 return result;
4315}
4316
40efc6fa 4317static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4318{
60476372 4319 return !skb_csum_unnecessary(skb) &&
1da177e4
LT
4320 __tcp_checksum_complete_user(sk, skb);
4321}
4322
1a2449a8
CL
4323#ifdef CONFIG_NET_DMA
4324static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4325{
4326 struct tcp_sock *tp = tcp_sk(sk);
4327 int chunk = skb->len - hlen;
4328 int dma_cookie;
4329 int copied_early = 0;
4330
4331 if (tp->ucopy.wakeup)
e905a9ed 4332 return 0;
1a2449a8
CL
4333
4334 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4335 tp->ucopy.dma_chan = get_softnet_dma();
4336
60476372 4337 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
1a2449a8
CL
4338
4339 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4340 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4341
4342 if (dma_cookie < 0)
4343 goto out;
4344
4345 tp->ucopy.dma_cookie = dma_cookie;
4346 copied_early = 1;
4347
4348 tp->ucopy.len -= chunk;
4349 tp->copied_seq += chunk;
4350 tcp_rcv_space_adjust(sk);
4351
4352 if ((tp->ucopy.len == 0) ||
aa8223c7 4353 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
1a2449a8
CL
4354 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4355 tp->ucopy.wakeup = 1;
4356 sk->sk_data_ready(sk, 0);
4357 }
4358 } else if (chunk > 0) {
4359 tp->ucopy.wakeup = 1;
4360 sk->sk_data_ready(sk, 0);
4361 }
4362out:
4363 return copied_early;
4364}
4365#endif /* CONFIG_NET_DMA */
4366
1da177e4 4367/*
e905a9ed 4368 * TCP receive function for the ESTABLISHED state.
1da177e4 4369 *
e905a9ed 4370 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4371 * disabled when:
4372 * - A zero window was announced from us - zero window probing
e905a9ed 4373 * is only handled properly in the slow path.
1da177e4
LT
4374 * - Out of order segments arrived.
4375 * - Urgent data is expected.
4376 * - There is no buffer space left
4377 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4378 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4379 * - Data is sent in both directions. Fast path only supports pure senders
4380 * or pure receivers (this means either the sequence number or the ack
4381 * value must stay constant)
4382 * - Unexpected TCP option.
4383 *
e905a9ed 4384 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4385 * receive procedure patterned after RFC793 to handle all cases.
4386 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4387 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4388 * tcp_data_queue when everything is OK.
4389 */
4390int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4391 struct tcphdr *th, unsigned len)
4392{
4393 struct tcp_sock *tp = tcp_sk(sk);
4394
4395 /*
4396 * Header prediction.
e905a9ed 4397 * The code loosely follows the one in the famous
1da177e4 4398 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4399 *
4400 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4401 * on a device interrupt, to call tcp_recv function
4402 * on the receive process context and checksum and copy
4403 * the buffer to user space. smart...
4404 *
e905a9ed 4405 * Our current scheme is not silly either but we take the
1da177e4
LT
4406 * extra cost of the net_bh soft interrupt processing...
4407 * We do checksum and copy also but from device to kernel.
4408 */
4409
4410 tp->rx_opt.saw_tstamp = 0;
4411
4412 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4413 * if header_prediction is to be made
1da177e4
LT
4414 * 'S' will always be tp->tcp_header_len >> 2
4415 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4416 * turn it off (when there are holes in the receive
1da177e4
LT
4417 * space for instance)
4418 * PSH flag is ignored.
4419 */
4420
4421 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4422 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4423 int tcp_header_len = tp->tcp_header_len;
4424
4425 /* Timestamp header prediction: tcp_header_len
4426 * is automatically equal to th->doff*4 due to pred_flags
4427 * match.
4428 */
4429
4430 /* Check timestamp */
4431 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4432 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4433
4434 /* No? Slow path! */
4f3608b7 4435 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4436 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4437 goto slow_path;
4438
4439 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4440 ++ptr;
1da177e4
LT
4441 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4442 ++ptr;
4443 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4444
4445 /* If PAWS failed, check it more carefully in slow path */
4446 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4447 goto slow_path;
4448
4449 /* DO NOT update ts_recent here, if checksum fails
4450 * and timestamp was corrupted part, it will result
4451 * in a hung connection since we will drop all
4452 * future packets due to the PAWS test.
4453 */
4454 }
4455
4456 if (len <= tcp_header_len) {
4457 /* Bulk data transfer: sender */
4458 if (len == tcp_header_len) {
4459 /* Predicted packet is in window by definition.
4460 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4461 * Hence, check seq<=rcv_wup reduces to:
4462 */
4463 if (tcp_header_len ==
4464 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4465 tp->rcv_nxt == tp->rcv_wup)
4466 tcp_store_ts_recent(tp);
4467
1da177e4
LT
4468 /* We know that such packets are checksummed
4469 * on entry.
4470 */
4471 tcp_ack(sk, skb, 0);
e905a9ed 4472 __kfree_skb(skb);
9e412ba7 4473 tcp_data_snd_check(sk);
1da177e4
LT
4474 return 0;
4475 } else { /* Header too small */
4476 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4477 goto discard;
4478 }
4479 } else {
4480 int eaten = 0;
1a2449a8 4481 int copied_early = 0;
1da177e4 4482
1a2449a8
CL
4483 if (tp->copied_seq == tp->rcv_nxt &&
4484 len - tcp_header_len <= tp->ucopy.len) {
4485#ifdef CONFIG_NET_DMA
4486 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4487 copied_early = 1;
4488 eaten = 1;
4489 }
4490#endif
4491 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4492 __set_current_state(TASK_RUNNING);
1da177e4 4493
1a2449a8
CL
4494 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4495 eaten = 1;
4496 }
4497 if (eaten) {
1da177e4
LT
4498 /* Predicted packet is in window by definition.
4499 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4500 * Hence, check seq<=rcv_wup reduces to:
4501 */
4502 if (tcp_header_len ==
4503 (sizeof(struct tcphdr) +
4504 TCPOLEN_TSTAMP_ALIGNED) &&
4505 tp->rcv_nxt == tp->rcv_wup)
4506 tcp_store_ts_recent(tp);
4507
463c84b9 4508 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4509
4510 __skb_pull(skb, tcp_header_len);
4511 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4512 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4513 }
1a2449a8
CL
4514 if (copied_early)
4515 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4516 }
4517 if (!eaten) {
4518 if (tcp_checksum_complete_user(sk, skb))
4519 goto csum_error;
4520
4521 /* Predicted packet is in window by definition.
4522 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4523 * Hence, check seq<=rcv_wup reduces to:
4524 */
4525 if (tcp_header_len ==
4526 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4527 tp->rcv_nxt == tp->rcv_wup)
4528 tcp_store_ts_recent(tp);
4529
463c84b9 4530 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4531
4532 if ((int)skb->truesize > sk->sk_forward_alloc)
4533 goto step5;
4534
4535 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4536
4537 /* Bulk data transfer: receiver */
4538 __skb_pull(skb,tcp_header_len);
4539 __skb_queue_tail(&sk->sk_receive_queue, skb);
4540 sk_stream_set_owner_r(skb, sk);
4541 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4542 }
4543
9e412ba7 4544 tcp_event_data_recv(sk, skb);
1da177e4
LT
4545
4546 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4547 /* Well, only one small jumplet in fast path... */
4548 tcp_ack(sk, skb, FLAG_DATA);
9e412ba7 4549 tcp_data_snd_check(sk);
463c84b9 4550 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4551 goto no_ack;
4552 }
4553
31432412 4554 __tcp_ack_snd_check(sk, 0);
1da177e4 4555no_ack:
1a2449a8
CL
4556#ifdef CONFIG_NET_DMA
4557 if (copied_early)
4558 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4559 else
4560#endif
1da177e4
LT
4561 if (eaten)
4562 __kfree_skb(skb);
4563 else
4564 sk->sk_data_ready(sk, 0);
4565 return 0;
4566 }
4567 }
4568
4569slow_path:
4570 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4571 goto csum_error;
4572
4573 /*
4574 * RFC1323: H1. Apply PAWS check first.
4575 */
4576 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4577 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4578 if (!th->rst) {
4579 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4580 tcp_send_dupack(sk, skb);
4581 goto discard;
4582 }
4583 /* Resets are accepted even if PAWS failed.
4584
4585 ts_recent update must be made after we are sure
4586 that the packet is in window.
4587 */
4588 }
4589
4590 /*
4591 * Standard slow path.
4592 */
4593
4594 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4595 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4596 * (RST) segments are validated by checking their SEQ-fields."
4597 * And page 69: "If an incoming segment is not acceptable,
4598 * an acknowledgment should be sent in reply (unless the RST bit
4599 * is set, if so drop the segment and return)".
4600 */
4601 if (!th->rst)
4602 tcp_send_dupack(sk, skb);
4603 goto discard;
4604 }
4605
2de979bd 4606 if (th->rst) {
1da177e4
LT
4607 tcp_reset(sk);
4608 goto discard;
4609 }
4610
4611 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4612
4613 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4614 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4615 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4616 tcp_reset(sk);
4617 return 1;
4618 }
4619
4620step5:
2de979bd 4621 if (th->ack)
1da177e4
LT
4622 tcp_ack(sk, skb, FLAG_SLOWPATH);
4623
463c84b9 4624 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4625
4626 /* Process urgent data. */
4627 tcp_urg(sk, skb, th);
4628
4629 /* step 7: process the segment text */
4630 tcp_data_queue(sk, skb);
4631
9e412ba7 4632 tcp_data_snd_check(sk);
1da177e4
LT
4633 tcp_ack_snd_check(sk);
4634 return 0;
4635
4636csum_error:
4637 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4638
4639discard:
4640 __kfree_skb(skb);
4641 return 0;
4642}
4643
4644static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4645 struct tcphdr *th, unsigned len)
4646{
4647 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4648 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4649 int saved_clamp = tp->rx_opt.mss_clamp;
4650
4651 tcp_parse_options(skb, &tp->rx_opt, 0);
4652
4653 if (th->ack) {
4654 /* rfc793:
4655 * "If the state is SYN-SENT then
4656 * first check the ACK bit
4657 * If the ACK bit is set
4658 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4659 * a reset (unless the RST bit is set, if so drop
4660 * the segment and return)"
4661 *
4662 * We do not send data with SYN, so that RFC-correct
4663 * test reduces to:
4664 */
4665 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4666 goto reset_and_undo;
4667
4668 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4669 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4670 tcp_time_stamp)) {
4671 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4672 goto reset_and_undo;
4673 }
4674
4675 /* Now ACK is acceptable.
4676 *
4677 * "If the RST bit is set
4678 * If the ACK was acceptable then signal the user "error:
4679 * connection reset", drop the segment, enter CLOSED state,
4680 * delete TCB, and return."
4681 */
4682
4683 if (th->rst) {
4684 tcp_reset(sk);
4685 goto discard;
4686 }
4687
4688 /* rfc793:
4689 * "fifth, if neither of the SYN or RST bits is set then
4690 * drop the segment and return."
4691 *
4692 * See note below!
4693 * --ANK(990513)
4694 */
4695 if (!th->syn)
4696 goto discard_and_undo;
4697
4698 /* rfc793:
4699 * "If the SYN bit is on ...
4700 * are acceptable then ...
4701 * (our SYN has been ACKed), change the connection
4702 * state to ESTABLISHED..."
4703 */
4704
4705 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4706
4707 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4708 tcp_ack(sk, skb, FLAG_SLOWPATH);
4709
4710 /* Ok.. it's good. Set up sequence numbers and
4711 * move to established.
4712 */
4713 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4714 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4715
4716 /* RFC1323: The window in SYN & SYN/ACK segments is
4717 * never scaled.
4718 */
4719 tp->snd_wnd = ntohs(th->window);
4720 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4721
4722 if (!tp->rx_opt.wscale_ok) {
4723 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4724 tp->window_clamp = min(tp->window_clamp, 65535U);
4725 }
4726
4727 if (tp->rx_opt.saw_tstamp) {
4728 tp->rx_opt.tstamp_ok = 1;
4729 tp->tcp_header_len =
4730 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4731 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4732 tcp_store_ts_recent(tp);
4733 } else {
4734 tp->tcp_header_len = sizeof(struct tcphdr);
4735 }
4736
e60402d0
IJ
4737 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4738 tcp_enable_fack(tp);
1da177e4 4739
5d424d5a 4740 tcp_mtup_init(sk);
d83d8461 4741 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4742 tcp_initialize_rcv_mss(sk);
4743
4744 /* Remember, tcp_poll() does not lock socket!
4745 * Change state from SYN-SENT only after copied_seq
4746 * is initialized. */
4747 tp->copied_seq = tp->rcv_nxt;
e16aa207 4748 smp_mb();
1da177e4
LT
4749 tcp_set_state(sk, TCP_ESTABLISHED);
4750
6b877699
VY
4751 security_inet_conn_established(sk, skb);
4752
1da177e4 4753 /* Make sure socket is routed, for correct metrics. */
8292a17a 4754 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4755
4756 tcp_init_metrics(sk);
4757
6687e988 4758 tcp_init_congestion_control(sk);
317a76f9 4759
1da177e4
LT
4760 /* Prevent spurious tcp_cwnd_restart() on first data
4761 * packet.
4762 */
4763 tp->lsndtime = tcp_time_stamp;
4764
4765 tcp_init_buffer_space(sk);
4766
4767 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4768 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4769
4770 if (!tp->rx_opt.snd_wscale)
4771 __tcp_fast_path_on(tp, tp->snd_wnd);
4772 else
4773 tp->pred_flags = 0;
4774
4775 if (!sock_flag(sk, SOCK_DEAD)) {
4776 sk->sk_state_change(sk);
4777 sk_wake_async(sk, 0, POLL_OUT);
4778 }
4779
295f7324
ACM
4780 if (sk->sk_write_pending ||
4781 icsk->icsk_accept_queue.rskq_defer_accept ||
4782 icsk->icsk_ack.pingpong) {
1da177e4
LT
4783 /* Save one ACK. Data will be ready after
4784 * several ticks, if write_pending is set.
4785 *
4786 * It may be deleted, but with this feature tcpdumps
4787 * look so _wonderfully_ clever, that I was not able
4788 * to stand against the temptation 8) --ANK
4789 */
463c84b9 4790 inet_csk_schedule_ack(sk);
295f7324
ACM
4791 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4792 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4793 tcp_incr_quickack(sk);
4794 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4795 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4796 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4797
4798discard:
4799 __kfree_skb(skb);
4800 return 0;
4801 } else {
4802 tcp_send_ack(sk);
4803 }
4804 return -1;
4805 }
4806
4807 /* No ACK in the segment */
4808
4809 if (th->rst) {
4810 /* rfc793:
4811 * "If the RST bit is set
4812 *
4813 * Otherwise (no ACK) drop the segment and return."
4814 */
4815
4816 goto discard_and_undo;
4817 }
4818
4819 /* PAWS check. */
4820 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4821 goto discard_and_undo;
4822
4823 if (th->syn) {
4824 /* We see SYN without ACK. It is attempt of
4825 * simultaneous connect with crossed SYNs.
4826 * Particularly, it can be connect to self.
4827 */
4828 tcp_set_state(sk, TCP_SYN_RECV);
4829
4830 if (tp->rx_opt.saw_tstamp) {
4831 tp->rx_opt.tstamp_ok = 1;
4832 tcp_store_ts_recent(tp);
4833 tp->tcp_header_len =
4834 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4835 } else {
4836 tp->tcp_header_len = sizeof(struct tcphdr);
4837 }
4838
4839 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4840 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4841
4842 /* RFC1323: The window in SYN & SYN/ACK segments is
4843 * never scaled.
4844 */
4845 tp->snd_wnd = ntohs(th->window);
4846 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4847 tp->max_window = tp->snd_wnd;
4848
4849 TCP_ECN_rcv_syn(tp, th);
1da177e4 4850
5d424d5a 4851 tcp_mtup_init(sk);
d83d8461 4852 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4853 tcp_initialize_rcv_mss(sk);
4854
4855
4856 tcp_send_synack(sk);
4857#if 0
4858 /* Note, we could accept data and URG from this segment.
4859 * There are no obstacles to make this.
4860 *
4861 * However, if we ignore data in ACKless segments sometimes,
4862 * we have no reasons to accept it sometimes.
4863 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4864 * is not flawless. So, discard packet for sanity.
4865 * Uncomment this return to process the data.
4866 */
4867 return -1;
4868#else
4869 goto discard;
4870#endif
4871 }
4872 /* "fifth, if neither of the SYN or RST bits is set then
4873 * drop the segment and return."
4874 */
4875
4876discard_and_undo:
4877 tcp_clear_options(&tp->rx_opt);
4878 tp->rx_opt.mss_clamp = saved_clamp;
4879 goto discard;
4880
4881reset_and_undo:
4882 tcp_clear_options(&tp->rx_opt);
4883 tp->rx_opt.mss_clamp = saved_clamp;
4884 return 1;
4885}
4886
4887
4888/*
4889 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4890 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4891 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4892 * address independent.
4893 */
e905a9ed 4894
1da177e4
LT
4895int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4896 struct tcphdr *th, unsigned len)
4897{
4898 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4899 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4900 int queued = 0;
4901
4902 tp->rx_opt.saw_tstamp = 0;
4903
4904 switch (sk->sk_state) {
4905 case TCP_CLOSE:
4906 goto discard;
4907
4908 case TCP_LISTEN:
2de979bd 4909 if (th->ack)
1da177e4
LT
4910 return 1;
4911
2de979bd 4912 if (th->rst)
1da177e4
LT
4913 goto discard;
4914
2de979bd 4915 if (th->syn) {
8292a17a 4916 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4917 return 1;
4918
e905a9ed
YH
4919 /* Now we have several options: In theory there is
4920 * nothing else in the frame. KA9Q has an option to
1da177e4 4921 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4922 * syn up to the [to be] advertised window and
4923 * Solaris 2.1 gives you a protocol error. For now
4924 * we just ignore it, that fits the spec precisely
1da177e4
LT
4925 * and avoids incompatibilities. It would be nice in
4926 * future to drop through and process the data.
4927 *
e905a9ed 4928 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4929 * queue this data.
4930 * But, this leaves one open to an easy denial of
e905a9ed 4931 * service attack, and SYN cookies can't defend
1da177e4 4932 * against this problem. So, we drop the data
fb7e2399
MN
4933 * in the interest of security over speed unless
4934 * it's still in use.
1da177e4 4935 */
fb7e2399
MN
4936 kfree_skb(skb);
4937 return 0;
1da177e4
LT
4938 }
4939 goto discard;
4940
4941 case TCP_SYN_SENT:
1da177e4
LT
4942 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4943 if (queued >= 0)
4944 return queued;
4945
4946 /* Do step6 onward by hand. */
4947 tcp_urg(sk, skb, th);
4948 __kfree_skb(skb);
9e412ba7 4949 tcp_data_snd_check(sk);
1da177e4
LT
4950 return 0;
4951 }
4952
4953 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4954 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4955 if (!th->rst) {
4956 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4957 tcp_send_dupack(sk, skb);
4958 goto discard;
4959 }
4960 /* Reset is accepted even if it did not pass PAWS. */
4961 }
4962
4963 /* step 1: check sequence number */
4964 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4965 if (!th->rst)
4966 tcp_send_dupack(sk, skb);
4967 goto discard;
4968 }
4969
4970 /* step 2: check RST bit */
2de979bd 4971 if (th->rst) {
1da177e4
LT
4972 tcp_reset(sk);
4973 goto discard;
4974 }
4975
4976 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4977
4978 /* step 3: check security and precedence [ignored] */
4979
4980 /* step 4:
4981 *
4982 * Check for a SYN in window.
4983 */
4984 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4985 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4986 tcp_reset(sk);
4987 return 1;
4988 }
4989
4990 /* step 5: check the ACK field */
4991 if (th->ack) {
4992 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4993
2de979bd 4994 switch (sk->sk_state) {
1da177e4
LT
4995 case TCP_SYN_RECV:
4996 if (acceptable) {
4997 tp->copied_seq = tp->rcv_nxt;
e16aa207 4998 smp_mb();
1da177e4
LT
4999 tcp_set_state(sk, TCP_ESTABLISHED);
5000 sk->sk_state_change(sk);
5001
5002 /* Note, that this wakeup is only for marginal
5003 * crossed SYN case. Passively open sockets
5004 * are not waked up, because sk->sk_sleep ==
5005 * NULL and sk->sk_socket == NULL.
5006 */
5007 if (sk->sk_socket) {
5008 sk_wake_async(sk,0,POLL_OUT);
5009 }
5010
5011 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5012 tp->snd_wnd = ntohs(th->window) <<
5013 tp->rx_opt.snd_wscale;
5014 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5015 TCP_SKB_CB(skb)->seq);
5016
5017 /* tcp_ack considers this ACK as duplicate
5018 * and does not calculate rtt.
5019 * Fix it at least with timestamps.
5020 */
5021 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5022 !tp->srtt)
2d2abbab 5023 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
5024
5025 if (tp->rx_opt.tstamp_ok)
5026 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5027
5028 /* Make sure socket is routed, for
5029 * correct metrics.
5030 */
8292a17a 5031 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
5032
5033 tcp_init_metrics(sk);
5034
6687e988 5035 tcp_init_congestion_control(sk);
317a76f9 5036
1da177e4
LT
5037 /* Prevent spurious tcp_cwnd_restart() on
5038 * first data packet.
5039 */
5040 tp->lsndtime = tcp_time_stamp;
5041
5d424d5a 5042 tcp_mtup_init(sk);
1da177e4
LT
5043 tcp_initialize_rcv_mss(sk);
5044 tcp_init_buffer_space(sk);
5045 tcp_fast_path_on(tp);
5046 } else {
5047 return 1;
5048 }
5049 break;
5050
5051 case TCP_FIN_WAIT1:
5052 if (tp->snd_una == tp->write_seq) {
5053 tcp_set_state(sk, TCP_FIN_WAIT2);
5054 sk->sk_shutdown |= SEND_SHUTDOWN;
5055 dst_confirm(sk->sk_dst_cache);
5056
5057 if (!sock_flag(sk, SOCK_DEAD))
5058 /* Wake up lingering close() */
5059 sk->sk_state_change(sk);
5060 else {
5061 int tmo;
5062
5063 if (tp->linger2 < 0 ||
5064 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5065 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5066 tcp_done(sk);
5067 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5068 return 1;
5069 }
5070
463c84b9 5071 tmo = tcp_fin_time(sk);
1da177e4 5072 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 5073 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
5074 } else if (th->fin || sock_owned_by_user(sk)) {
5075 /* Bad case. We could lose such FIN otherwise.
5076 * It is not a big problem, but it looks confusing
5077 * and not so rare event. We still can lose it now,
5078 * if it spins in bh_lock_sock(), but it is really
5079 * marginal case.
5080 */
463c84b9 5081 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
5082 } else {
5083 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5084 goto discard;
5085 }
5086 }
5087 }
5088 break;
5089
5090 case TCP_CLOSING:
5091 if (tp->snd_una == tp->write_seq) {
5092 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5093 goto discard;
5094 }
5095 break;
5096
5097 case TCP_LAST_ACK:
5098 if (tp->snd_una == tp->write_seq) {
5099 tcp_update_metrics(sk);
5100 tcp_done(sk);
5101 goto discard;
5102 }
5103 break;
5104 }
5105 } else
5106 goto discard;
5107
5108 /* step 6: check the URG bit */
5109 tcp_urg(sk, skb, th);
5110
5111 /* step 7: process the segment text */
5112 switch (sk->sk_state) {
5113 case TCP_CLOSE_WAIT:
5114 case TCP_CLOSING:
5115 case TCP_LAST_ACK:
5116 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5117 break;
5118 case TCP_FIN_WAIT1:
5119 case TCP_FIN_WAIT2:
5120 /* RFC 793 says to queue data in these states,
e905a9ed 5121 * RFC 1122 says we MUST send a reset.
1da177e4
LT
5122 * BSD 4.4 also does reset.
5123 */
5124 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5125 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5126 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5127 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5128 tcp_reset(sk);
5129 return 1;
5130 }
5131 }
5132 /* Fall through */
e905a9ed 5133 case TCP_ESTABLISHED:
1da177e4
LT
5134 tcp_data_queue(sk, skb);
5135 queued = 1;
5136 break;
5137 }
5138
5139 /* tcp_data could move socket to TIME-WAIT */
5140 if (sk->sk_state != TCP_CLOSE) {
9e412ba7 5141 tcp_data_snd_check(sk);
1da177e4
LT
5142 tcp_ack_snd_check(sk);
5143 }
5144
e905a9ed 5145 if (!queued) {
1da177e4
LT
5146discard:
5147 __kfree_skb(skb);
5148 }
5149 return 0;
5150}
5151
5152EXPORT_SYMBOL(sysctl_tcp_ecn);
5153EXPORT_SYMBOL(sysctl_tcp_reordering);
5154EXPORT_SYMBOL(tcp_parse_options);
5155EXPORT_SYMBOL(tcp_rcv_established);
5156EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 5157EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.611436 seconds and 5 git commands to generate.