Merge branch 'oprofile-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
1da177e4
LT
64#include <linux/mm.h>
65#include <linux/module.h>
66#include <linux/sysctl.h>
a0bffffc 67#include <linux/kernel.h>
5ffc02a1 68#include <net/dst.h>
1da177e4
LT
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 88int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
009a2e3e 107#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
cadbd031 108#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
1da177e4
LT
109
110#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
113#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 114#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 115
1da177e4 116#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 117#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 118
e905a9ed 119/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 120 * real world.
e905a9ed 121 */
056834d9 122static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 123{
463c84b9 124 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 125 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 126 unsigned int len;
1da177e4 127
e905a9ed 128 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
129
130 /* skb->len may jitter because of SACKs, even if peer
131 * sends good full-sized frames.
132 */
056834d9 133 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
134 if (len >= icsk->icsk_ack.rcv_mss) {
135 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
136 } else {
137 /* Otherwise, we make more careful check taking into account,
138 * that SACKs block is variable.
139 *
140 * "len" is invariant segment length, including TCP header.
141 */
9c70220b 142 len += skb->data - skb_transport_header(skb);
1da177e4
LT
143 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144 /* If PSH is not set, packet should be
145 * full sized, provided peer TCP is not badly broken.
146 * This observation (if it is correct 8)) allows
147 * to handle super-low mtu links fairly.
148 */
149 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 150 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
151 /* Subtract also invariant (if peer is RFC compliant),
152 * tcp header plus fixed timestamp option length.
153 * Resulting "len" is MSS free of SACK jitter.
154 */
463c84b9
ACM
155 len -= tcp_sk(sk)->tcp_header_len;
156 icsk->icsk_ack.last_seg_size = len;
1da177e4 157 if (len == lss) {
463c84b9 158 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
159 return;
160 }
161 }
1ef9696c
AK
162 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
165 }
166}
167
463c84b9 168static void tcp_incr_quickack(struct sock *sk)
1da177e4 169{
463c84b9
ACM
170 struct inet_connection_sock *icsk = inet_csk(sk);
171 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 172
056834d9
IJ
173 if (quickacks == 0)
174 quickacks = 2;
463c84b9
ACM
175 if (quickacks > icsk->icsk_ack.quick)
176 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
177}
178
463c84b9 179void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 180{
463c84b9
ACM
181 struct inet_connection_sock *icsk = inet_csk(sk);
182 tcp_incr_quickack(sk);
183 icsk->icsk_ack.pingpong = 0;
184 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
185}
186
187/* Send ACKs quickly, if "quick" count is not exhausted
188 * and the session is not interactive.
189 */
190
463c84b9 191static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 192{
463c84b9
ACM
193 const struct inet_connection_sock *icsk = inet_csk(sk);
194 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
195}
196
bdf1ee5d
IJ
197static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198{
056834d9 199 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
200 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
201}
202
203static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204{
205 if (tcp_hdr(skb)->cwr)
206 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
207}
208
209static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210{
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212}
213
214static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215{
056834d9 216 if (tp->ecn_flags & TCP_ECN_OK) {
bdf1ee5d
IJ
217 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219 /* Funny extension: if ECT is not set on a segment,
220 * it is surely retransmit. It is not in ECN RFC,
221 * but Linux follows this rule. */
222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223 tcp_enter_quickack_mode((struct sock *)tp);
224 }
225}
226
227static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228{
056834d9 229 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
230 tp->ecn_flags &= ~TCP_ECN_OK;
231}
232
233static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234{
056834d9 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
236 tp->ecn_flags &= ~TCP_ECN_OK;
237}
238
239static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240{
056834d9 241 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
bdf1ee5d
IJ
242 return 1;
243 return 0;
244}
245
1da177e4
LT
246/* Buffer size and advertised window tuning.
247 *
248 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
249 */
250
251static void tcp_fixup_sndbuf(struct sock *sk)
252{
253 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254 sizeof(struct sk_buff);
255
256 if (sk->sk_sndbuf < 3 * sndmem)
257 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
258}
259
260/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 *
262 * All tcp_full_space() is split to two parts: "network" buffer, allocated
263 * forward and advertised in receiver window (tp->rcv_wnd) and
264 * "application buffer", required to isolate scheduling/application
265 * latencies from network.
266 * window_clamp is maximal advertised window. It can be less than
267 * tcp_full_space(), in this case tcp_full_space() - window_clamp
268 * is reserved for "application" buffer. The less window_clamp is
269 * the smoother our behaviour from viewpoint of network, but the lower
270 * throughput and the higher sensitivity of the connection to losses. 8)
271 *
272 * rcv_ssthresh is more strict window_clamp used at "slow start"
273 * phase to predict further behaviour of this connection.
274 * It is used for two goals:
275 * - to enforce header prediction at sender, even when application
276 * requires some significant "application buffer". It is check #1.
277 * - to prevent pruning of receive queue because of misprediction
278 * of receiver window. Check #2.
279 *
280 * The scheme does not work when sender sends good segments opening
caa20d9a 281 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
282 * in common situations. Otherwise, we have to rely on queue collapsing.
283 */
284
285/* Slow part of check#2. */
9e412ba7 286static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 287{
9e412ba7 288 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 289 /* Optimize this! */
dfd4f0ae
ED
290 int truesize = tcp_win_from_space(skb->truesize) >> 1;
291 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
292
293 while (tp->rcv_ssthresh <= window) {
294 if (truesize <= skb->len)
463c84b9 295 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
296
297 truesize >>= 1;
298 window >>= 1;
299 }
300 return 0;
301}
302
056834d9 303static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
1da177e4 304{
9e412ba7
IJ
305 struct tcp_sock *tp = tcp_sk(sk);
306
1da177e4
LT
307 /* Check #1 */
308 if (tp->rcv_ssthresh < tp->window_clamp &&
309 (int)tp->rcv_ssthresh < tcp_space(sk) &&
310 !tcp_memory_pressure) {
311 int incr;
312
313 /* Check #2. Increase window, if skb with such overhead
314 * will fit to rcvbuf in future.
315 */
316 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 317 incr = 2 * tp->advmss;
1da177e4 318 else
9e412ba7 319 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
320
321 if (incr) {
056834d9
IJ
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323 tp->window_clamp);
463c84b9 324 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
325 }
326 }
327}
328
329/* 3. Tuning rcvbuf, when connection enters established state. */
330
331static void tcp_fixup_rcvbuf(struct sock *sk)
332{
333 struct tcp_sock *tp = tcp_sk(sk);
334 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335
336 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 337 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
338 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 */
340 while (tcp_win_from_space(rcvmem) < tp->advmss)
341 rcvmem += 128;
342 if (sk->sk_rcvbuf < 4 * rcvmem)
343 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
344}
345
caa20d9a 346/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
347 * established state.
348 */
349static void tcp_init_buffer_space(struct sock *sk)
350{
351 struct tcp_sock *tp = tcp_sk(sk);
352 int maxwin;
353
354 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355 tcp_fixup_rcvbuf(sk);
356 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357 tcp_fixup_sndbuf(sk);
358
359 tp->rcvq_space.space = tp->rcv_wnd;
360
361 maxwin = tcp_full_space(sk);
362
363 if (tp->window_clamp >= maxwin) {
364 tp->window_clamp = maxwin;
365
366 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367 tp->window_clamp = max(maxwin -
368 (maxwin >> sysctl_tcp_app_win),
369 4 * tp->advmss);
370 }
371
372 /* Force reservation of one segment. */
373 if (sysctl_tcp_app_win &&
374 tp->window_clamp > 2 * tp->advmss &&
375 tp->window_clamp + tp->advmss > maxwin)
376 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377
378 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379 tp->snd_cwnd_stamp = tcp_time_stamp;
380}
381
1da177e4 382/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 383static void tcp_clamp_window(struct sock *sk)
1da177e4 384{
9e412ba7 385 struct tcp_sock *tp = tcp_sk(sk);
6687e988 386 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 387
6687e988 388 icsk->icsk_ack.quick = 0;
1da177e4 389
326f36e9
JH
390 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392 !tcp_memory_pressure &&
393 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395 sysctl_tcp_rmem[2]);
1da177e4 396 }
326f36e9 397 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 398 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
399}
400
40efc6fa
SH
401/* Initialize RCV_MSS value.
402 * RCV_MSS is an our guess about MSS used by the peer.
403 * We haven't any direct information about the MSS.
404 * It's better to underestimate the RCV_MSS rather than overestimate.
405 * Overestimations make us ACKing less frequently than needed.
406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 */
408void tcp_initialize_rcv_mss(struct sock *sk)
409{
410 struct tcp_sock *tp = tcp_sk(sk);
411 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412
056834d9 413 hint = min(hint, tp->rcv_wnd / 2);
40efc6fa
SH
414 hint = min(hint, TCP_MIN_RCVMSS);
415 hint = max(hint, TCP_MIN_MSS);
416
417 inet_csk(sk)->icsk_ack.rcv_mss = hint;
418}
419
1da177e4
LT
420/* Receiver "autotuning" code.
421 *
422 * The algorithm for RTT estimation w/o timestamps is based on
423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 *
426 * More detail on this code can be found at
427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428 * though this reference is out of date. A new paper
429 * is pending.
430 */
431static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432{
433 u32 new_sample = tp->rcv_rtt_est.rtt;
434 long m = sample;
435
436 if (m == 0)
437 m = 1;
438
439 if (new_sample != 0) {
440 /* If we sample in larger samples in the non-timestamp
441 * case, we could grossly overestimate the RTT especially
442 * with chatty applications or bulk transfer apps which
443 * are stalled on filesystem I/O.
444 *
445 * Also, since we are only going for a minimum in the
31f34269 446 * non-timestamp case, we do not smooth things out
caa20d9a 447 * else with timestamps disabled convergence takes too
1da177e4
LT
448 * long.
449 */
450 if (!win_dep) {
451 m -= (new_sample >> 3);
452 new_sample += m;
453 } else if (m < new_sample)
454 new_sample = m << 3;
455 } else {
caa20d9a 456 /* No previous measure. */
1da177e4
LT
457 new_sample = m << 3;
458 }
459
460 if (tp->rcv_rtt_est.rtt != new_sample)
461 tp->rcv_rtt_est.rtt = new_sample;
462}
463
464static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465{
466 if (tp->rcv_rtt_est.time == 0)
467 goto new_measure;
468 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469 return;
056834d9 470 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
1da177e4
LT
471
472new_measure:
473 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474 tp->rcv_rtt_est.time = tcp_time_stamp;
475}
476
056834d9
IJ
477static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478 const struct sk_buff *skb)
1da177e4 479{
463c84b9 480 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
481 if (tp->rx_opt.rcv_tsecr &&
482 (TCP_SKB_CB(skb)->end_seq -
463c84b9 483 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
484 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
485}
486
487/*
488 * This function should be called every time data is copied to user space.
489 * It calculates the appropriate TCP receive buffer space.
490 */
491void tcp_rcv_space_adjust(struct sock *sk)
492{
493 struct tcp_sock *tp = tcp_sk(sk);
494 int time;
495 int space;
e905a9ed 496
1da177e4
LT
497 if (tp->rcvq_space.time == 0)
498 goto new_measure;
e905a9ed 499
1da177e4 500 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 501 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 502 return;
e905a9ed 503
1da177e4
LT
504 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505
506 space = max(tp->rcvq_space.space, space);
507
508 if (tp->rcvq_space.space != space) {
509 int rcvmem;
510
511 tp->rcvq_space.space = space;
512
6fcf9412
JH
513 if (sysctl_tcp_moderate_rcvbuf &&
514 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
515 int new_clamp = space;
516
517 /* Receive space grows, normalize in order to
518 * take into account packet headers and sk_buff
519 * structure overhead.
520 */
521 space /= tp->advmss;
522 if (!space)
523 space = 1;
524 rcvmem = (tp->advmss + MAX_TCP_HEADER +
525 16 + sizeof(struct sk_buff));
526 while (tcp_win_from_space(rcvmem) < tp->advmss)
527 rcvmem += 128;
528 space *= rcvmem;
529 space = min(space, sysctl_tcp_rmem[2]);
530 if (space > sk->sk_rcvbuf) {
531 sk->sk_rcvbuf = space;
532
533 /* Make the window clamp follow along. */
534 tp->window_clamp = new_clamp;
535 }
536 }
537 }
e905a9ed 538
1da177e4
LT
539new_measure:
540 tp->rcvq_space.seq = tp->copied_seq;
541 tp->rcvq_space.time = tcp_time_stamp;
542}
543
544/* There is something which you must keep in mind when you analyze the
545 * behavior of the tp->ato delayed ack timeout interval. When a
546 * connection starts up, we want to ack as quickly as possible. The
547 * problem is that "good" TCP's do slow start at the beginning of data
548 * transmission. The means that until we send the first few ACK's the
549 * sender will sit on his end and only queue most of his data, because
550 * he can only send snd_cwnd unacked packets at any given time. For
551 * each ACK we send, he increments snd_cwnd and transmits more of his
552 * queue. -DaveM
553 */
9e412ba7 554static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 555{
9e412ba7 556 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 557 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
558 u32 now;
559
463c84b9 560 inet_csk_schedule_ack(sk);
1da177e4 561
463c84b9 562 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
563
564 tcp_rcv_rtt_measure(tp);
e905a9ed 565
1da177e4
LT
566 now = tcp_time_stamp;
567
463c84b9 568 if (!icsk->icsk_ack.ato) {
1da177e4
LT
569 /* The _first_ data packet received, initialize
570 * delayed ACK engine.
571 */
463c84b9
ACM
572 tcp_incr_quickack(sk);
573 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 574 } else {
463c84b9 575 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 576
056834d9 577 if (m <= TCP_ATO_MIN / 2) {
1da177e4 578 /* The fastest case is the first. */
463c84b9
ACM
579 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580 } else if (m < icsk->icsk_ack.ato) {
581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582 if (icsk->icsk_ack.ato > icsk->icsk_rto)
583 icsk->icsk_ack.ato = icsk->icsk_rto;
584 } else if (m > icsk->icsk_rto) {
caa20d9a 585 /* Too long gap. Apparently sender failed to
1da177e4
LT
586 * restart window, so that we send ACKs quickly.
587 */
463c84b9 588 tcp_incr_quickack(sk);
3ab224be 589 sk_mem_reclaim(sk);
1da177e4
LT
590 }
591 }
463c84b9 592 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
593
594 TCP_ECN_check_ce(tp, skb);
595
596 if (skb->len >= 128)
9e412ba7 597 tcp_grow_window(sk, skb);
1da177e4
LT
598}
599
1da177e4
LT
600/* Called to compute a smoothed rtt estimate. The data fed to this
601 * routine either comes from timestamps, or from segments that were
602 * known _not_ to have been retransmitted [see Karn/Partridge
603 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604 * piece by Van Jacobson.
605 * NOTE: the next three routines used to be one big routine.
606 * To save cycles in the RFC 1323 implementation it was better to break
607 * it up into three procedures. -- erics
608 */
2d2abbab 609static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 610{
6687e988 611 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
612 long m = mrtt; /* RTT */
613
1da177e4
LT
614 /* The following amusing code comes from Jacobson's
615 * article in SIGCOMM '88. Note that rtt and mdev
616 * are scaled versions of rtt and mean deviation.
e905a9ed 617 * This is designed to be as fast as possible
1da177e4
LT
618 * m stands for "measurement".
619 *
620 * On a 1990 paper the rto value is changed to:
621 * RTO = rtt + 4 * mdev
622 *
623 * Funny. This algorithm seems to be very broken.
624 * These formulae increase RTO, when it should be decreased, increase
31f34269 625 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
626 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
627 * does not matter how to _calculate_ it. Seems, it was trap
628 * that VJ failed to avoid. 8)
629 */
2de979bd 630 if (m == 0)
1da177e4
LT
631 m = 1;
632 if (tp->srtt != 0) {
633 m -= (tp->srtt >> 3); /* m is now error in rtt est */
634 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
635 if (m < 0) {
636 m = -m; /* m is now abs(error) */
637 m -= (tp->mdev >> 2); /* similar update on mdev */
638 /* This is similar to one of Eifel findings.
639 * Eifel blocks mdev updates when rtt decreases.
640 * This solution is a bit different: we use finer gain
641 * for mdev in this case (alpha*beta).
642 * Like Eifel it also prevents growth of rto,
643 * but also it limits too fast rto decreases,
644 * happening in pure Eifel.
645 */
646 if (m > 0)
647 m >>= 3;
648 } else {
649 m -= (tp->mdev >> 2); /* similar update on mdev */
650 }
651 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
652 if (tp->mdev > tp->mdev_max) {
653 tp->mdev_max = tp->mdev;
654 if (tp->mdev_max > tp->rttvar)
655 tp->rttvar = tp->mdev_max;
656 }
657 if (after(tp->snd_una, tp->rtt_seq)) {
658 if (tp->mdev_max < tp->rttvar)
056834d9 659 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 660 tp->rtt_seq = tp->snd_nxt;
05bb1fad 661 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
662 }
663 } else {
664 /* no previous measure. */
056834d9
IJ
665 tp->srtt = m << 3; /* take the measured time to be rtt */
666 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 667 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
668 tp->rtt_seq = tp->snd_nxt;
669 }
1da177e4
LT
670}
671
672/* Calculate rto without backoff. This is the second half of Van Jacobson's
673 * routine referred to above.
674 */
463c84b9 675static inline void tcp_set_rto(struct sock *sk)
1da177e4 676{
463c84b9 677 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
678 /* Old crap is replaced with new one. 8)
679 *
680 * More seriously:
681 * 1. If rtt variance happened to be less 50msec, it is hallucination.
682 * It cannot be less due to utterly erratic ACK generation made
683 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
684 * to do with delayed acks, because at cwnd>2 true delack timeout
685 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 686 * ACKs in some circumstances.
1da177e4 687 */
463c84b9 688 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
689
690 /* 2. Fixups made earlier cannot be right.
691 * If we do not estimate RTO correctly without them,
692 * all the algo is pure shit and should be replaced
caa20d9a 693 * with correct one. It is exactly, which we pretend to do.
1da177e4 694 */
1da177e4 695
ee6aac59
IJ
696 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
697 * guarantees that rto is higher.
698 */
463c84b9
ACM
699 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
700 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
701}
702
703/* Save metrics learned by this TCP session.
704 This function is called only, when TCP finishes successfully
705 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
706 */
707void tcp_update_metrics(struct sock *sk)
708{
709 struct tcp_sock *tp = tcp_sk(sk);
710 struct dst_entry *dst = __sk_dst_get(sk);
711
712 if (sysctl_tcp_nometrics_save)
713 return;
714
715 dst_confirm(dst);
716
056834d9 717 if (dst && (dst->flags & DST_HOST)) {
6687e988 718 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 719 int m;
c1e20f7c 720 unsigned long rtt;
1da177e4 721
6687e988 722 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
723 /* This session failed to estimate rtt. Why?
724 * Probably, no packets returned in time.
725 * Reset our results.
726 */
727 if (!(dst_metric_locked(dst, RTAX_RTT)))
056834d9 728 dst->metrics[RTAX_RTT - 1] = 0;
1da177e4
LT
729 return;
730 }
731
c1e20f7c
SH
732 rtt = dst_metric_rtt(dst, RTAX_RTT);
733 m = rtt - tp->srtt;
1da177e4
LT
734
735 /* If newly calculated rtt larger than stored one,
736 * store new one. Otherwise, use EWMA. Remember,
737 * rtt overestimation is always better than underestimation.
738 */
739 if (!(dst_metric_locked(dst, RTAX_RTT))) {
740 if (m <= 0)
c1e20f7c 741 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
1da177e4 742 else
c1e20f7c 743 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
1da177e4
LT
744 }
745
746 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
c1e20f7c 747 unsigned long var;
1da177e4
LT
748 if (m < 0)
749 m = -m;
750
751 /* Scale deviation to rttvar fixed point */
752 m >>= 1;
753 if (m < tp->mdev)
754 m = tp->mdev;
755
c1e20f7c
SH
756 var = dst_metric_rtt(dst, RTAX_RTTVAR);
757 if (m >= var)
758 var = m;
1da177e4 759 else
c1e20f7c
SH
760 var -= (var - m) >> 2;
761
762 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
1da177e4
LT
763 }
764
765 if (tp->snd_ssthresh >= 0xFFFF) {
766 /* Slow start still did not finish. */
767 if (dst_metric(dst, RTAX_SSTHRESH) &&
768 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
769 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
770 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
771 if (!dst_metric_locked(dst, RTAX_CWND) &&
772 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
056834d9 773 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
1da177e4 774 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 775 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
776 /* Cong. avoidance phase, cwnd is reliable. */
777 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
778 dst->metrics[RTAX_SSTHRESH-1] =
779 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
780 if (!dst_metric_locked(dst, RTAX_CWND))
5ffc02a1 781 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
1da177e4
LT
782 } else {
783 /* Else slow start did not finish, cwnd is non-sense,
784 ssthresh may be also invalid.
785 */
786 if (!dst_metric_locked(dst, RTAX_CWND))
5ffc02a1
SS
787 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
788 if (dst_metric(dst, RTAX_SSTHRESH) &&
1da177e4 789 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
5ffc02a1 790 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
1da177e4
LT
791 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
792 }
793
794 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
5ffc02a1 795 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
1da177e4
LT
796 tp->reordering != sysctl_tcp_reordering)
797 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
798 }
799 }
800}
801
410e27a4
GR
802/* Numbers are taken from RFC3390.
803 *
804 * John Heffner states:
805 *
806 * The RFC specifies a window of no more than 4380 bytes
807 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
808 * is a bit misleading because they use a clamp at 4380 bytes
809 * rather than use a multiplier in the relevant range.
810 */
1da177e4
LT
811__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
812{
813 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
814
410e27a4
GR
815 if (!cwnd) {
816 if (tp->mss_cache > 1460)
817 cwnd = 2;
818 else
819 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
820 }
1da177e4
LT
821 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822}
823
40efc6fa 824/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 825void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
826{
827 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 828 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
829
830 tp->prior_ssthresh = 0;
831 tp->bytes_acked = 0;
e01f9d77 832 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 833 tp->undo_marker = 0;
3cfe3baa
IJ
834 if (set_ssthresh)
835 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
836 tp->snd_cwnd = min(tp->snd_cwnd,
837 tcp_packets_in_flight(tp) + 1U);
838 tp->snd_cwnd_cnt = 0;
839 tp->high_seq = tp->snd_nxt;
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 TCP_ECN_queue_cwr(tp);
842
843 tcp_set_ca_state(sk, TCP_CA_CWR);
844 }
845}
846
e60402d0
IJ
847/*
848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
849 * disables it when reordering is detected
850 */
851static void tcp_disable_fack(struct tcp_sock *tp)
852{
85cc391c
IJ
853 /* RFC3517 uses different metric in lost marker => reset on change */
854 if (tcp_is_fack(tp))
855 tp->lost_skb_hint = NULL;
e60402d0
IJ
856 tp->rx_opt.sack_ok &= ~2;
857}
858
564262c1 859/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
860static void tcp_dsack_seen(struct tcp_sock *tp)
861{
862 tp->rx_opt.sack_ok |= 4;
863}
864
1da177e4
LT
865/* Initialize metrics on socket. */
866
867static void tcp_init_metrics(struct sock *sk)
868{
869 struct tcp_sock *tp = tcp_sk(sk);
870 struct dst_entry *dst = __sk_dst_get(sk);
871
872 if (dst == NULL)
873 goto reset;
874
875 dst_confirm(dst);
876
877 if (dst_metric_locked(dst, RTAX_CWND))
878 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879 if (dst_metric(dst, RTAX_SSTHRESH)) {
880 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882 tp->snd_ssthresh = tp->snd_cwnd_clamp;
883 }
884 if (dst_metric(dst, RTAX_REORDERING) &&
885 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 886 tcp_disable_fack(tp);
1da177e4
LT
887 tp->reordering = dst_metric(dst, RTAX_REORDERING);
888 }
889
890 if (dst_metric(dst, RTAX_RTT) == 0)
891 goto reset;
892
c1e20f7c 893 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
1da177e4
LT
894 goto reset;
895
896 /* Initial rtt is determined from SYN,SYN-ACK.
897 * The segment is small and rtt may appear much
898 * less than real one. Use per-dst memory
899 * to make it more realistic.
900 *
901 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 902 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
903 * packets force peer to delay ACKs and calculation is correct too.
904 * The algorithm is adaptive and, provided we follow specs, it
905 * NEVER underestimate RTT. BUT! If peer tries to make some clever
906 * tricks sort of "quick acks" for time long enough to decrease RTT
907 * to low value, and then abruptly stops to do it and starts to delay
908 * ACKs, wait for troubles.
909 */
c1e20f7c
SH
910 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
911 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
1da177e4
LT
912 tp->rtt_seq = tp->snd_nxt;
913 }
c1e20f7c
SH
914 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
915 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
488faa2a 916 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4 917 }
463c84b9 918 tcp_set_rto(sk);
463c84b9 919 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4 920 goto reset;
86bcebaf
IJ
921
922cwnd:
1da177e4
LT
923 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
924 tp->snd_cwnd_stamp = tcp_time_stamp;
925 return;
926
927reset:
928 /* Play conservative. If timestamps are not
929 * supported, TCP will fail to recalculate correct
930 * rtt, if initial rto is too small. FORGET ALL AND RESET!
931 */
932 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
933 tp->srtt = 0;
934 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 935 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4 936 }
86bcebaf 937 goto cwnd;
1da177e4
LT
938}
939
6687e988
ACM
940static void tcp_update_reordering(struct sock *sk, const int metric,
941 const int ts)
1da177e4 942{
6687e988 943 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 944 if (metric > tp->reordering) {
40b215e5
PE
945 int mib_idx;
946
1da177e4
LT
947 tp->reordering = min(TCP_MAX_REORDERING, metric);
948
949 /* This exciting event is worth to be remembered. 8) */
950 if (ts)
40b215e5 951 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 952 else if (tcp_is_reno(tp))
40b215e5 953 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 954 else if (tcp_is_fack(tp))
40b215e5 955 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 956 else
40b215e5
PE
957 mib_idx = LINUX_MIB_TCPSACKREORDER;
958
de0744af 959 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4
LT
960#if FASTRETRANS_DEBUG > 1
961 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 962 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
963 tp->reordering,
964 tp->fackets_out,
965 tp->sacked_out,
966 tp->undo_marker ? tp->undo_retrans : 0);
967#endif
e60402d0 968 tcp_disable_fack(tp);
1da177e4
LT
969 }
970}
971
006f582c 972/* This must be called before lost_out is incremented */
c8c213f2
IJ
973static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
974{
006f582c 975 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
976 before(TCP_SKB_CB(skb)->seq,
977 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
978 tp->retransmit_skb_hint = skb;
979
980 if (!tp->lost_out ||
981 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
982 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
983}
984
41ea36e3
IJ
985static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
986{
987 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
988 tcp_verify_retransmit_hint(tp, skb);
989
990 tp->lost_out += tcp_skb_pcount(skb);
991 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
992 }
993}
994
e1aa680f
IJ
995static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
996 struct sk_buff *skb)
006f582c
IJ
997{
998 tcp_verify_retransmit_hint(tp, skb);
999
1000 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1001 tp->lost_out += tcp_skb_pcount(skb);
1002 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1003 }
1004}
1005
1da177e4
LT
1006/* This procedure tags the retransmission queue when SACKs arrive.
1007 *
1008 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1009 * Packets in queue with these bits set are counted in variables
1010 * sacked_out, retrans_out and lost_out, correspondingly.
1011 *
1012 * Valid combinations are:
1013 * Tag InFlight Description
1014 * 0 1 - orig segment is in flight.
1015 * S 0 - nothing flies, orig reached receiver.
1016 * L 0 - nothing flies, orig lost by net.
1017 * R 2 - both orig and retransmit are in flight.
1018 * L|R 1 - orig is lost, retransmit is in flight.
1019 * S|R 1 - orig reached receiver, retrans is still in flight.
1020 * (L|S|R is logically valid, it could occur when L|R is sacked,
1021 * but it is equivalent to plain S and code short-curcuits it to S.
1022 * L|S is logically invalid, it would mean -1 packet in flight 8))
1023 *
1024 * These 6 states form finite state machine, controlled by the following events:
1025 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1026 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1027 * 3. Loss detection event of one of three flavors:
1028 * A. Scoreboard estimator decided the packet is lost.
1029 * A'. Reno "three dupacks" marks head of queue lost.
1030 * A''. Its FACK modfication, head until snd.fack is lost.
1031 * B. SACK arrives sacking data transmitted after never retransmitted
1032 * hole was sent out.
1033 * C. SACK arrives sacking SND.NXT at the moment, when the
1034 * segment was retransmitted.
1035 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1036 *
1037 * It is pleasant to note, that state diagram turns out to be commutative,
1038 * so that we are allowed not to be bothered by order of our actions,
1039 * when multiple events arrive simultaneously. (see the function below).
1040 *
1041 * Reordering detection.
1042 * --------------------
1043 * Reordering metric is maximal distance, which a packet can be displaced
1044 * in packet stream. With SACKs we can estimate it:
1045 *
1046 * 1. SACK fills old hole and the corresponding segment was not
1047 * ever retransmitted -> reordering. Alas, we cannot use it
1048 * when segment was retransmitted.
1049 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1050 * for retransmitted and already SACKed segment -> reordering..
1051 * Both of these heuristics are not used in Loss state, when we cannot
1052 * account for retransmits accurately.
5b3c9882
IJ
1053 *
1054 * SACK block validation.
1055 * ----------------------
1056 *
1057 * SACK block range validation checks that the received SACK block fits to
1058 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1059 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1060 * it means that the receiver is rather inconsistent with itself reporting
1061 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1062 * perfectly valid, however, in light of RFC2018 which explicitly states
1063 * that "SACK block MUST reflect the newest segment. Even if the newest
1064 * segment is going to be discarded ...", not that it looks very clever
1065 * in case of head skb. Due to potentional receiver driven attacks, we
1066 * choose to avoid immediate execution of a walk in write queue due to
1067 * reneging and defer head skb's loss recovery to standard loss recovery
1068 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1069 *
1070 * Implements also blockage to start_seq wrap-around. Problem lies in the
1071 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1072 * there's no guarantee that it will be before snd_nxt (n). The problem
1073 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1074 * wrap (s_w):
1075 *
1076 * <- outs wnd -> <- wrapzone ->
1077 * u e n u_w e_w s n_w
1078 * | | | | | | |
1079 * |<------------+------+----- TCP seqno space --------------+---------->|
1080 * ...-- <2^31 ->| |<--------...
1081 * ...---- >2^31 ------>| |<--------...
1082 *
1083 * Current code wouldn't be vulnerable but it's better still to discard such
1084 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1085 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1086 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1087 * equal to the ideal case (infinite seqno space without wrap caused issues).
1088 *
1089 * With D-SACK the lower bound is extended to cover sequence space below
1090 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1091 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1092 * for the normal SACK blocks, explained above). But there all simplicity
1093 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1094 * fully below undo_marker they do not affect behavior in anyway and can
1095 * therefore be safely ignored. In rare cases (which are more or less
1096 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1097 * fragmentation and packet reordering past skb's retransmission. To consider
1098 * them correctly, the acceptable range must be extended even more though
1099 * the exact amount is rather hard to quantify. However, tp->max_window can
1100 * be used as an exaggerated estimate.
1da177e4 1101 */
5b3c9882
IJ
1102static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1103 u32 start_seq, u32 end_seq)
1104{
1105 /* Too far in future, or reversed (interpretation is ambiguous) */
1106 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1107 return 0;
1108
1109 /* Nasty start_seq wrap-around check (see comments above) */
1110 if (!before(start_seq, tp->snd_nxt))
1111 return 0;
1112
564262c1 1113 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1114 * start_seq == snd_una is non-sensical (see comments above)
1115 */
1116 if (after(start_seq, tp->snd_una))
1117 return 1;
1118
1119 if (!is_dsack || !tp->undo_marker)
1120 return 0;
1121
1122 /* ...Then it's D-SACK, and must reside below snd_una completely */
1123 if (!after(end_seq, tp->snd_una))
1124 return 0;
1125
1126 if (!before(start_seq, tp->undo_marker))
1127 return 1;
1128
1129 /* Too old */
1130 if (!after(end_seq, tp->undo_marker))
1131 return 0;
1132
1133 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1134 * start_seq < undo_marker and end_seq >= undo_marker.
1135 */
1136 return !before(start_seq, end_seq - tp->max_window);
1137}
1138
1c1e87ed
IJ
1139/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1140 * Event "C". Later note: FACK people cheated me again 8), we have to account
1141 * for reordering! Ugly, but should help.
f785a8e2
IJ
1142 *
1143 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1144 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1145 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1146 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1147 */
407ef1de 1148static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1149{
9f58f3b7 1150 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1151 struct tcp_sock *tp = tcp_sk(sk);
1152 struct sk_buff *skb;
f785a8e2 1153 int cnt = 0;
df2e014b 1154 u32 new_low_seq = tp->snd_nxt;
6859d494 1155 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1156
1157 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1158 !after(received_upto, tp->lost_retrans_low) ||
1159 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1160 return;
1c1e87ed
IJ
1161
1162 tcp_for_write_queue(skb, sk) {
1163 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1164
1165 if (skb == tcp_send_head(sk))
1166 break;
f785a8e2 1167 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1168 break;
1169 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1170 continue;
1171
f785a8e2
IJ
1172 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1173 continue;
1174
d0af4160
IJ
1175 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1176 * constraint here (see above) but figuring out that at
1177 * least tp->reordering SACK blocks reside between ack_seq
1178 * and received_upto is not easy task to do cheaply with
1179 * the available datastructures.
1180 *
1181 * Whether FACK should check here for tp->reordering segs
1182 * in-between one could argue for either way (it would be
1183 * rather simple to implement as we could count fack_count
1184 * during the walk and do tp->fackets_out - fack_count).
1185 */
1186 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1187 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1188 tp->retrans_out -= tcp_skb_pcount(skb);
1189
006f582c 1190 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1191 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1192 } else {
df2e014b 1193 if (before(ack_seq, new_low_seq))
b08d6cb2 1194 new_low_seq = ack_seq;
f785a8e2 1195 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1196 }
1197 }
b08d6cb2
IJ
1198
1199 if (tp->retrans_out)
1200 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1201}
5b3c9882 1202
1ed83465 1203static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
d06e021d
DM
1204 struct tcp_sack_block_wire *sp, int num_sacks,
1205 u32 prior_snd_una)
1206{
1ed83465 1207 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1208 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1209 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
d06e021d
DM
1210 int dup_sack = 0;
1211
1212 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1213 dup_sack = 1;
e60402d0 1214 tcp_dsack_seen(tp);
de0744af 1215 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1216 } else if (num_sacks > 1) {
d3e2ce3b
HH
1217 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1218 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1219
1220 if (!after(end_seq_0, end_seq_1) &&
1221 !before(start_seq_0, start_seq_1)) {
1222 dup_sack = 1;
e60402d0 1223 tcp_dsack_seen(tp);
de0744af
PE
1224 NET_INC_STATS_BH(sock_net(sk),
1225 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1226 }
1227 }
1228
1229 /* D-SACK for already forgotten data... Do dumb counting. */
1230 if (dup_sack &&
1231 !after(end_seq_0, prior_snd_una) &&
1232 after(end_seq_0, tp->undo_marker))
1233 tp->undo_retrans--;
1234
1235 return dup_sack;
1236}
1237
a1197f5a
IJ
1238struct tcp_sacktag_state {
1239 int reord;
1240 int fack_count;
1241 int flag;
1242};
1243
d1935942
IJ
1244/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1245 * the incoming SACK may not exactly match but we can find smaller MSS
1246 * aligned portion of it that matches. Therefore we might need to fragment
1247 * which may fail and creates some hassle (caller must handle error case
1248 * returns).
832d11c5
IJ
1249 *
1250 * FIXME: this could be merged to shift decision code
d1935942 1251 */
0f79efdc
AB
1252static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1253 u32 start_seq, u32 end_seq)
d1935942
IJ
1254{
1255 int in_sack, err;
1256 unsigned int pkt_len;
adb92db8 1257 unsigned int mss;
d1935942
IJ
1258
1259 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1260 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1261
1262 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1263 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1264 mss = tcp_skb_mss(skb);
d1935942
IJ
1265 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1266
adb92db8 1267 if (!in_sack) {
d1935942 1268 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1269 if (pkt_len < mss)
1270 pkt_len = mss;
1271 } else {
d1935942 1272 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1273 if (pkt_len < mss)
1274 return -EINVAL;
1275 }
1276
1277 /* Round if necessary so that SACKs cover only full MSSes
1278 * and/or the remaining small portion (if present)
1279 */
1280 if (pkt_len > mss) {
1281 unsigned int new_len = (pkt_len / mss) * mss;
1282 if (!in_sack && new_len < pkt_len) {
1283 new_len += mss;
1284 if (new_len > skb->len)
1285 return 0;
1286 }
1287 pkt_len = new_len;
1288 }
1289 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1290 if (err < 0)
1291 return err;
1292 }
1293
1294 return in_sack;
1295}
1296
a1197f5a
IJ
1297static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1298 struct tcp_sacktag_state *state,
1299 int dup_sack, int pcount)
9e10c47c 1300{
6859d494 1301 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c 1302 u8 sacked = TCP_SKB_CB(skb)->sacked;
a1197f5a 1303 int fack_count = state->fack_count;
9e10c47c
IJ
1304
1305 /* Account D-SACK for retransmitted packet. */
1306 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1307 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1308 tp->undo_retrans--;
ede9f3b1 1309 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1310 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1311 }
1312
1313 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1314 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
a1197f5a 1315 return sacked;
9e10c47c
IJ
1316
1317 if (!(sacked & TCPCB_SACKED_ACKED)) {
1318 if (sacked & TCPCB_SACKED_RETRANS) {
1319 /* If the segment is not tagged as lost,
1320 * we do not clear RETRANS, believing
1321 * that retransmission is still in flight.
1322 */
1323 if (sacked & TCPCB_LOST) {
a1197f5a 1324 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1325 tp->lost_out -= pcount;
1326 tp->retrans_out -= pcount;
9e10c47c
IJ
1327 }
1328 } else {
1329 if (!(sacked & TCPCB_RETRANS)) {
1330 /* New sack for not retransmitted frame,
1331 * which was in hole. It is reordering.
1332 */
1333 if (before(TCP_SKB_CB(skb)->seq,
1334 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1335 state->reord = min(fack_count,
1336 state->reord);
9e10c47c
IJ
1337
1338 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1339 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
a1197f5a 1340 state->flag |= FLAG_ONLY_ORIG_SACKED;
9e10c47c
IJ
1341 }
1342
1343 if (sacked & TCPCB_LOST) {
a1197f5a 1344 sacked &= ~TCPCB_LOST;
f58b22fd 1345 tp->lost_out -= pcount;
9e10c47c
IJ
1346 }
1347 }
1348
a1197f5a
IJ
1349 sacked |= TCPCB_SACKED_ACKED;
1350 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1351 tp->sacked_out += pcount;
9e10c47c 1352
f58b22fd 1353 fack_count += pcount;
9e10c47c
IJ
1354
1355 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1356 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1357 before(TCP_SKB_CB(skb)->seq,
1358 TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1359 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1360
1361 if (fack_count > tp->fackets_out)
1362 tp->fackets_out = fack_count;
9e10c47c
IJ
1363 }
1364
1365 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1366 * frames and clear it. undo_retrans is decreased above, L|R frames
1367 * are accounted above as well.
1368 */
a1197f5a
IJ
1369 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1370 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1371 tp->retrans_out -= pcount;
9e10c47c
IJ
1372 }
1373
a1197f5a 1374 return sacked;
9e10c47c
IJ
1375}
1376
50133161 1377static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
a1197f5a 1378 struct tcp_sacktag_state *state,
9ec06ff5
IJ
1379 unsigned int pcount, int shifted, int mss,
1380 int dup_sack)
832d11c5
IJ
1381{
1382 struct tcp_sock *tp = tcp_sk(sk);
50133161 1383 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
832d11c5
IJ
1384
1385 BUG_ON(!pcount);
1386
92ee76b6
IJ
1387 /* Tweak before seqno plays */
1388 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1389 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1390 tp->lost_cnt_hint += pcount;
1391
832d11c5
IJ
1392 TCP_SKB_CB(prev)->end_seq += shifted;
1393 TCP_SKB_CB(skb)->seq += shifted;
1394
1395 skb_shinfo(prev)->gso_segs += pcount;
1396 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1397 skb_shinfo(skb)->gso_segs -= pcount;
1398
1399 /* When we're adding to gso_segs == 1, gso_size will be zero,
1400 * in theory this shouldn't be necessary but as long as DSACK
1401 * code can come after this skb later on it's better to keep
1402 * setting gso_size to something.
1403 */
1404 if (!skb_shinfo(prev)->gso_size) {
1405 skb_shinfo(prev)->gso_size = mss;
1406 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1407 }
1408
1409 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1410 if (skb_shinfo(skb)->gso_segs <= 1) {
1411 skb_shinfo(skb)->gso_size = 0;
1412 skb_shinfo(skb)->gso_type = 0;
1413 }
1414
a1197f5a 1415 /* We discard results */
9ec06ff5 1416 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
832d11c5
IJ
1417
1418 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1419 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1420
832d11c5
IJ
1421 if (skb->len > 0) {
1422 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1423 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
832d11c5
IJ
1424 return 0;
1425 }
1426
1427 /* Whole SKB was eaten :-) */
1428
92ee76b6
IJ
1429 if (skb == tp->retransmit_skb_hint)
1430 tp->retransmit_skb_hint = prev;
1431 if (skb == tp->scoreboard_skb_hint)
1432 tp->scoreboard_skb_hint = prev;
1433 if (skb == tp->lost_skb_hint) {
1434 tp->lost_skb_hint = prev;
1435 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1436 }
1437
832d11c5
IJ
1438 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1439 if (skb == tcp_highest_sack(sk))
1440 tcp_advance_highest_sack(sk, skb);
1441
1442 tcp_unlink_write_queue(skb, sk);
1443 sk_wmem_free_skb(sk, skb);
1444
111cc8b9
IJ
1445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1446
832d11c5
IJ
1447 return 1;
1448}
1449
1450/* I wish gso_size would have a bit more sane initialization than
1451 * something-or-zero which complicates things
1452 */
775ffabf 1453static int tcp_skb_seglen(struct sk_buff *skb)
832d11c5 1454{
775ffabf 1455 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1456}
1457
1458/* Shifting pages past head area doesn't work */
1459static int skb_can_shift(struct sk_buff *skb)
1460{
1461 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1462}
1463
1464/* Try collapsing SACK blocks spanning across multiple skbs to a single
1465 * skb.
1466 */
1467static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1468 struct tcp_sacktag_state *state,
832d11c5 1469 u32 start_seq, u32 end_seq,
a1197f5a 1470 int dup_sack)
832d11c5
IJ
1471{
1472 struct tcp_sock *tp = tcp_sk(sk);
1473 struct sk_buff *prev;
1474 int mss;
1475 int pcount = 0;
1476 int len;
1477 int in_sack;
1478
1479 if (!sk_can_gso(sk))
1480 goto fallback;
1481
1482 /* Normally R but no L won't result in plain S */
1483 if (!dup_sack &&
9969ca5f 1484 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1485 goto fallback;
1486 if (!skb_can_shift(skb))
1487 goto fallback;
1488 /* This frame is about to be dropped (was ACKed). */
1489 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1490 goto fallback;
1491
1492 /* Can only happen with delayed DSACK + discard craziness */
1493 if (unlikely(skb == tcp_write_queue_head(sk)))
1494 goto fallback;
1495 prev = tcp_write_queue_prev(sk, skb);
1496
1497 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1498 goto fallback;
1499
1500 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1501 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1502
1503 if (in_sack) {
1504 len = skb->len;
1505 pcount = tcp_skb_pcount(skb);
775ffabf 1506 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1507
1508 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1509 * drop this restriction as unnecessary
1510 */
775ffabf 1511 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1512 goto fallback;
1513 } else {
1514 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1515 goto noop;
1516 /* CHECKME: This is non-MSS split case only?, this will
1517 * cause skipped skbs due to advancing loop btw, original
1518 * has that feature too
1519 */
1520 if (tcp_skb_pcount(skb) <= 1)
1521 goto noop;
1522
1523 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1524 if (!in_sack) {
1525 /* TODO: head merge to next could be attempted here
1526 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1527 * though it might not be worth of the additional hassle
1528 *
1529 * ...we can probably just fallback to what was done
1530 * previously. We could try merging non-SACKed ones
1531 * as well but it probably isn't going to buy off
1532 * because later SACKs might again split them, and
1533 * it would make skb timestamp tracking considerably
1534 * harder problem.
1535 */
1536 goto fallback;
1537 }
1538
1539 len = end_seq - TCP_SKB_CB(skb)->seq;
1540 BUG_ON(len < 0);
1541 BUG_ON(len > skb->len);
1542
1543 /* MSS boundaries should be honoured or else pcount will
1544 * severely break even though it makes things bit trickier.
1545 * Optimize common case to avoid most of the divides
1546 */
1547 mss = tcp_skb_mss(skb);
1548
1549 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1550 * drop this restriction as unnecessary
1551 */
775ffabf 1552 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1553 goto fallback;
1554
1555 if (len == mss) {
1556 pcount = 1;
1557 } else if (len < mss) {
1558 goto noop;
1559 } else {
1560 pcount = len / mss;
1561 len = pcount * mss;
1562 }
1563 }
1564
1565 if (!skb_shift(prev, skb, len))
1566 goto fallback;
9ec06ff5 1567 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1568 goto out;
1569
1570 /* Hole filled allows collapsing with the next as well, this is very
1571 * useful when hole on every nth skb pattern happens
1572 */
1573 if (prev == tcp_write_queue_tail(sk))
1574 goto out;
1575 skb = tcp_write_queue_next(sk, prev);
1576
f0bc52f3
IJ
1577 if (!skb_can_shift(skb) ||
1578 (skb == tcp_send_head(sk)) ||
1579 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1580 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1581 goto out;
1582
1583 len = skb->len;
1584 if (skb_shift(prev, skb, len)) {
1585 pcount += tcp_skb_pcount(skb);
9ec06ff5 1586 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1587 }
1588
1589out:
a1197f5a 1590 state->fack_count += pcount;
832d11c5
IJ
1591 return prev;
1592
1593noop:
1594 return skb;
1595
1596fallback:
111cc8b9 1597 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1598 return NULL;
1599}
1600
68f8353b
IJ
1601static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1602 struct tcp_sack_block *next_dup,
a1197f5a 1603 struct tcp_sacktag_state *state,
68f8353b 1604 u32 start_seq, u32 end_seq,
a1197f5a 1605 int dup_sack_in)
68f8353b 1606{
832d11c5
IJ
1607 struct tcp_sock *tp = tcp_sk(sk);
1608 struct sk_buff *tmp;
1609
68f8353b
IJ
1610 tcp_for_write_queue_from(skb, sk) {
1611 int in_sack = 0;
1612 int dup_sack = dup_sack_in;
1613
1614 if (skb == tcp_send_head(sk))
1615 break;
1616
1617 /* queue is in-order => we can short-circuit the walk early */
1618 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1619 break;
1620
1621 if ((next_dup != NULL) &&
1622 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1623 in_sack = tcp_match_skb_to_sack(sk, skb,
1624 next_dup->start_seq,
1625 next_dup->end_seq);
1626 if (in_sack > 0)
1627 dup_sack = 1;
1628 }
1629
832d11c5
IJ
1630 /* skb reference here is a bit tricky to get right, since
1631 * shifting can eat and free both this skb and the next,
1632 * so not even _safe variant of the loop is enough.
1633 */
1634 if (in_sack <= 0) {
a1197f5a
IJ
1635 tmp = tcp_shift_skb_data(sk, skb, state,
1636 start_seq, end_seq, dup_sack);
832d11c5
IJ
1637 if (tmp != NULL) {
1638 if (tmp != skb) {
1639 skb = tmp;
1640 continue;
1641 }
1642
1643 in_sack = 0;
1644 } else {
1645 in_sack = tcp_match_skb_to_sack(sk, skb,
1646 start_seq,
1647 end_seq);
1648 }
1649 }
1650
68f8353b
IJ
1651 if (unlikely(in_sack < 0))
1652 break;
1653
832d11c5 1654 if (in_sack) {
a1197f5a
IJ
1655 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1656 state,
1657 dup_sack,
1658 tcp_skb_pcount(skb));
68f8353b 1659
832d11c5
IJ
1660 if (!before(TCP_SKB_CB(skb)->seq,
1661 tcp_highest_sack_seq(tp)))
1662 tcp_advance_highest_sack(sk, skb);
1663 }
1664
a1197f5a 1665 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1666 }
1667 return skb;
1668}
1669
1670/* Avoid all extra work that is being done by sacktag while walking in
1671 * a normal way
1672 */
1673static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1674 struct tcp_sacktag_state *state,
1675 u32 skip_to_seq)
68f8353b
IJ
1676{
1677 tcp_for_write_queue_from(skb, sk) {
1678 if (skb == tcp_send_head(sk))
1679 break;
1680
e8bae275 1681 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1682 break;
d152a7d8 1683
a1197f5a 1684 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1685 }
1686 return skb;
1687}
1688
1689static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1690 struct sock *sk,
1691 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1692 struct tcp_sacktag_state *state,
1693 u32 skip_to_seq)
68f8353b
IJ
1694{
1695 if (next_dup == NULL)
1696 return skb;
1697
1698 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1699 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1700 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1701 next_dup->start_seq, next_dup->end_seq,
1702 1);
68f8353b
IJ
1703 }
1704
1705 return skb;
1706}
1707
1708static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1709{
1710 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1711}
1712
1da177e4 1713static int
056834d9
IJ
1714tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1715 u32 prior_snd_una)
1da177e4 1716{
6687e988 1717 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1718 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1719 unsigned char *ptr = (skb_transport_header(ack_skb) +
1720 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1721 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1722 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1723 struct tcp_sack_block *cache;
a1197f5a 1724 struct tcp_sacktag_state state;
68f8353b 1725 struct sk_buff *skb;
4389dded 1726 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1727 int used_sacks;
7769f406 1728 int found_dup_sack = 0;
68f8353b 1729 int i, j;
fda03fbb 1730 int first_sack_index;
1da177e4 1731
a1197f5a
IJ
1732 state.flag = 0;
1733 state.reord = tp->packets_out;
1734
d738cd8f 1735 if (!tp->sacked_out) {
de83c058
IJ
1736 if (WARN_ON(tp->fackets_out))
1737 tp->fackets_out = 0;
6859d494 1738 tcp_highest_sack_reset(sk);
d738cd8f 1739 }
1da177e4 1740
1ed83465 1741 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1742 num_sacks, prior_snd_una);
1743 if (found_dup_sack)
a1197f5a 1744 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1745
1746 /* Eliminate too old ACKs, but take into
1747 * account more or less fresh ones, they can
1748 * contain valid SACK info.
1749 */
1750 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1751 return 0;
1752