net/*: use linux/kernel.h swap()
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
1da177e4
LT
64#include <linux/mm.h>
65#include <linux/module.h>
66#include <linux/sysctl.h>
a0bffffc 67#include <linux/kernel.h>
5ffc02a1 68#include <net/dst.h>
1da177e4
LT
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 88int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
009a2e3e 107#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
cadbd031 108#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
1da177e4
LT
109
110#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
113#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 114#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 115
1da177e4 116#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 117#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 118
e905a9ed 119/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 120 * real world.
e905a9ed 121 */
056834d9 122static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 123{
463c84b9 124 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 125 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 126 unsigned int len;
1da177e4 127
e905a9ed 128 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
129
130 /* skb->len may jitter because of SACKs, even if peer
131 * sends good full-sized frames.
132 */
056834d9 133 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
134 if (len >= icsk->icsk_ack.rcv_mss) {
135 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
136 } else {
137 /* Otherwise, we make more careful check taking into account,
138 * that SACKs block is variable.
139 *
140 * "len" is invariant segment length, including TCP header.
141 */
9c70220b 142 len += skb->data - skb_transport_header(skb);
1da177e4
LT
143 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144 /* If PSH is not set, packet should be
145 * full sized, provided peer TCP is not badly broken.
146 * This observation (if it is correct 8)) allows
147 * to handle super-low mtu links fairly.
148 */
149 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 150 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
151 /* Subtract also invariant (if peer is RFC compliant),
152 * tcp header plus fixed timestamp option length.
153 * Resulting "len" is MSS free of SACK jitter.
154 */
463c84b9
ACM
155 len -= tcp_sk(sk)->tcp_header_len;
156 icsk->icsk_ack.last_seg_size = len;
1da177e4 157 if (len == lss) {
463c84b9 158 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
159 return;
160 }
161 }
1ef9696c
AK
162 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
165 }
166}
167
463c84b9 168static void tcp_incr_quickack(struct sock *sk)
1da177e4 169{
463c84b9
ACM
170 struct inet_connection_sock *icsk = inet_csk(sk);
171 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 172
056834d9
IJ
173 if (quickacks == 0)
174 quickacks = 2;
463c84b9
ACM
175 if (quickacks > icsk->icsk_ack.quick)
176 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
177}
178
463c84b9 179void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 180{
463c84b9
ACM
181 struct inet_connection_sock *icsk = inet_csk(sk);
182 tcp_incr_quickack(sk);
183 icsk->icsk_ack.pingpong = 0;
184 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
185}
186
187/* Send ACKs quickly, if "quick" count is not exhausted
188 * and the session is not interactive.
189 */
190
463c84b9 191static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 192{
463c84b9
ACM
193 const struct inet_connection_sock *icsk = inet_csk(sk);
194 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
195}
196
bdf1ee5d
IJ
197static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198{
056834d9 199 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
200 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
201}
202
203static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204{
205 if (tcp_hdr(skb)->cwr)
206 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
207}
208
209static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210{
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212}
213
214static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215{
056834d9 216 if (tp->ecn_flags & TCP_ECN_OK) {
bdf1ee5d
IJ
217 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219 /* Funny extension: if ECT is not set on a segment,
220 * it is surely retransmit. It is not in ECN RFC,
221 * but Linux follows this rule. */
222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223 tcp_enter_quickack_mode((struct sock *)tp);
224 }
225}
226
227static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228{
056834d9 229 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
230 tp->ecn_flags &= ~TCP_ECN_OK;
231}
232
233static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234{
056834d9 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
236 tp->ecn_flags &= ~TCP_ECN_OK;
237}
238
239static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240{
056834d9 241 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
bdf1ee5d
IJ
242 return 1;
243 return 0;
244}
245
1da177e4
LT
246/* Buffer size and advertised window tuning.
247 *
248 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
249 */
250
251static void tcp_fixup_sndbuf(struct sock *sk)
252{
253 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254 sizeof(struct sk_buff);
255
256 if (sk->sk_sndbuf < 3 * sndmem)
257 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
258}
259
260/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 *
262 * All tcp_full_space() is split to two parts: "network" buffer, allocated
263 * forward and advertised in receiver window (tp->rcv_wnd) and
264 * "application buffer", required to isolate scheduling/application
265 * latencies from network.
266 * window_clamp is maximal advertised window. It can be less than
267 * tcp_full_space(), in this case tcp_full_space() - window_clamp
268 * is reserved for "application" buffer. The less window_clamp is
269 * the smoother our behaviour from viewpoint of network, but the lower
270 * throughput and the higher sensitivity of the connection to losses. 8)
271 *
272 * rcv_ssthresh is more strict window_clamp used at "slow start"
273 * phase to predict further behaviour of this connection.
274 * It is used for two goals:
275 * - to enforce header prediction at sender, even when application
276 * requires some significant "application buffer". It is check #1.
277 * - to prevent pruning of receive queue because of misprediction
278 * of receiver window. Check #2.
279 *
280 * The scheme does not work when sender sends good segments opening
caa20d9a 281 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
282 * in common situations. Otherwise, we have to rely on queue collapsing.
283 */
284
285/* Slow part of check#2. */
9e412ba7 286static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 287{
9e412ba7 288 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 289 /* Optimize this! */
dfd4f0ae
ED
290 int truesize = tcp_win_from_space(skb->truesize) >> 1;
291 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
292
293 while (tp->rcv_ssthresh <= window) {
294 if (truesize <= skb->len)
463c84b9 295 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
296
297 truesize >>= 1;
298 window >>= 1;
299 }
300 return 0;
301}
302
056834d9 303static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
1da177e4 304{
9e412ba7
IJ
305 struct tcp_sock *tp = tcp_sk(sk);
306
1da177e4
LT
307 /* Check #1 */
308 if (tp->rcv_ssthresh < tp->window_clamp &&
309 (int)tp->rcv_ssthresh < tcp_space(sk) &&
310 !tcp_memory_pressure) {
311 int incr;
312
313 /* Check #2. Increase window, if skb with such overhead
314 * will fit to rcvbuf in future.
315 */
316 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 317 incr = 2 * tp->advmss;
1da177e4 318 else
9e412ba7 319 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
320
321 if (incr) {
056834d9
IJ
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323 tp->window_clamp);
463c84b9 324 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
325 }
326 }
327}
328
329/* 3. Tuning rcvbuf, when connection enters established state. */
330
331static void tcp_fixup_rcvbuf(struct sock *sk)
332{
333 struct tcp_sock *tp = tcp_sk(sk);
334 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335
336 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 337 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
338 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 */
340 while (tcp_win_from_space(rcvmem) < tp->advmss)
341 rcvmem += 128;
342 if (sk->sk_rcvbuf < 4 * rcvmem)
343 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
344}
345
caa20d9a 346/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
347 * established state.
348 */
349static void tcp_init_buffer_space(struct sock *sk)
350{
351 struct tcp_sock *tp = tcp_sk(sk);
352 int maxwin;
353
354 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355 tcp_fixup_rcvbuf(sk);
356 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357 tcp_fixup_sndbuf(sk);
358
359 tp->rcvq_space.space = tp->rcv_wnd;
360
361 maxwin = tcp_full_space(sk);
362
363 if (tp->window_clamp >= maxwin) {
364 tp->window_clamp = maxwin;
365
366 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367 tp->window_clamp = max(maxwin -
368 (maxwin >> sysctl_tcp_app_win),
369 4 * tp->advmss);
370 }
371
372 /* Force reservation of one segment. */
373 if (sysctl_tcp_app_win &&
374 tp->window_clamp > 2 * tp->advmss &&
375 tp->window_clamp + tp->advmss > maxwin)
376 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377
378 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379 tp->snd_cwnd_stamp = tcp_time_stamp;
380}
381
1da177e4 382/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 383static void tcp_clamp_window(struct sock *sk)
1da177e4 384{
9e412ba7 385 struct tcp_sock *tp = tcp_sk(sk);
6687e988 386 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 387
6687e988 388 icsk->icsk_ack.quick = 0;
1da177e4 389
326f36e9
JH
390 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392 !tcp_memory_pressure &&
393 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395 sysctl_tcp_rmem[2]);
1da177e4 396 }
326f36e9 397 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 398 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
399}
400
40efc6fa
SH
401/* Initialize RCV_MSS value.
402 * RCV_MSS is an our guess about MSS used by the peer.
403 * We haven't any direct information about the MSS.
404 * It's better to underestimate the RCV_MSS rather than overestimate.
405 * Overestimations make us ACKing less frequently than needed.
406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 */
408void tcp_initialize_rcv_mss(struct sock *sk)
409{
410 struct tcp_sock *tp = tcp_sk(sk);
411 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412
056834d9 413 hint = min(hint, tp->rcv_wnd / 2);
40efc6fa
SH
414 hint = min(hint, TCP_MIN_RCVMSS);
415 hint = max(hint, TCP_MIN_MSS);
416
417 inet_csk(sk)->icsk_ack.rcv_mss = hint;
418}
419
1da177e4
LT
420/* Receiver "autotuning" code.
421 *
422 * The algorithm for RTT estimation w/o timestamps is based on
423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 *
426 * More detail on this code can be found at
427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428 * though this reference is out of date. A new paper
429 * is pending.
430 */
431static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432{
433 u32 new_sample = tp->rcv_rtt_est.rtt;
434 long m = sample;
435
436 if (m == 0)
437 m = 1;
438
439 if (new_sample != 0) {
440 /* If we sample in larger samples in the non-timestamp
441 * case, we could grossly overestimate the RTT especially
442 * with chatty applications or bulk transfer apps which
443 * are stalled on filesystem I/O.
444 *
445 * Also, since we are only going for a minimum in the
31f34269 446 * non-timestamp case, we do not smooth things out
caa20d9a 447 * else with timestamps disabled convergence takes too
1da177e4
LT
448 * long.
449 */
450 if (!win_dep) {
451 m -= (new_sample >> 3);
452 new_sample += m;
453 } else if (m < new_sample)
454 new_sample = m << 3;
455 } else {
caa20d9a 456 /* No previous measure. */
1da177e4
LT
457 new_sample = m << 3;
458 }
459
460 if (tp->rcv_rtt_est.rtt != new_sample)
461 tp->rcv_rtt_est.rtt = new_sample;
462}
463
464static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465{
466 if (tp->rcv_rtt_est.time == 0)
467 goto new_measure;
468 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469 return;
056834d9 470 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
1da177e4
LT
471
472new_measure:
473 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474 tp->rcv_rtt_est.time = tcp_time_stamp;
475}
476
056834d9
IJ
477static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478 const struct sk_buff *skb)
1da177e4 479{
463c84b9 480 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
481 if (tp->rx_opt.rcv_tsecr &&
482 (TCP_SKB_CB(skb)->end_seq -
463c84b9 483 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
484 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
485}
486
487/*
488 * This function should be called every time data is copied to user space.
489 * It calculates the appropriate TCP receive buffer space.
490 */
491void tcp_rcv_space_adjust(struct sock *sk)
492{
493 struct tcp_sock *tp = tcp_sk(sk);
494 int time;
495 int space;
e905a9ed 496
1da177e4
LT
497 if (tp->rcvq_space.time == 0)
498 goto new_measure;
e905a9ed 499
1da177e4 500 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 501 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 502 return;
e905a9ed 503
1da177e4
LT
504 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505
506 space = max(tp->rcvq_space.space, space);
507
508 if (tp->rcvq_space.space != space) {
509 int rcvmem;
510
511 tp->rcvq_space.space = space;
512
6fcf9412
JH
513 if (sysctl_tcp_moderate_rcvbuf &&
514 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
515 int new_clamp = space;
516
517 /* Receive space grows, normalize in order to
518 * take into account packet headers and sk_buff
519 * structure overhead.
520 */
521 space /= tp->advmss;
522 if (!space)
523 space = 1;
524 rcvmem = (tp->advmss + MAX_TCP_HEADER +
525 16 + sizeof(struct sk_buff));
526 while (tcp_win_from_space(rcvmem) < tp->advmss)
527 rcvmem += 128;
528 space *= rcvmem;
529 space = min(space, sysctl_tcp_rmem[2]);
530 if (space > sk->sk_rcvbuf) {
531 sk->sk_rcvbuf = space;
532
533 /* Make the window clamp follow along. */
534 tp->window_clamp = new_clamp;
535 }
536 }
537 }
e905a9ed 538
1da177e4
LT
539new_measure:
540 tp->rcvq_space.seq = tp->copied_seq;
541 tp->rcvq_space.time = tcp_time_stamp;
542}
543
544/* There is something which you must keep in mind when you analyze the
545 * behavior of the tp->ato delayed ack timeout interval. When a
546 * connection starts up, we want to ack as quickly as possible. The
547 * problem is that "good" TCP's do slow start at the beginning of data
548 * transmission. The means that until we send the first few ACK's the
549 * sender will sit on his end and only queue most of his data, because
550 * he can only send snd_cwnd unacked packets at any given time. For
551 * each ACK we send, he increments snd_cwnd and transmits more of his
552 * queue. -DaveM
553 */
9e412ba7 554static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 555{
9e412ba7 556 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 557 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
558 u32 now;
559
463c84b9 560 inet_csk_schedule_ack(sk);
1da177e4 561
463c84b9 562 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
563
564 tcp_rcv_rtt_measure(tp);
e905a9ed 565
1da177e4
LT
566 now = tcp_time_stamp;
567
463c84b9 568 if (!icsk->icsk_ack.ato) {
1da177e4
LT
569 /* The _first_ data packet received, initialize
570 * delayed ACK engine.
571 */
463c84b9
ACM
572 tcp_incr_quickack(sk);
573 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 574 } else {
463c84b9 575 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 576
056834d9 577 if (m <= TCP_ATO_MIN / 2) {
1da177e4 578 /* The fastest case is the first. */
463c84b9
ACM
579 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580 } else if (m < icsk->icsk_ack.ato) {
581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582 if (icsk->icsk_ack.ato > icsk->icsk_rto)
583 icsk->icsk_ack.ato = icsk->icsk_rto;
584 } else if (m > icsk->icsk_rto) {
caa20d9a 585 /* Too long gap. Apparently sender failed to
1da177e4
LT
586 * restart window, so that we send ACKs quickly.
587 */
463c84b9 588 tcp_incr_quickack(sk);
3ab224be 589 sk_mem_reclaim(sk);
1da177e4
LT
590 }
591 }
463c84b9 592 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
593
594 TCP_ECN_check_ce(tp, skb);
595
596 if (skb->len >= 128)
9e412ba7 597 tcp_grow_window(sk, skb);
1da177e4
LT
598}
599
05bb1fad
DM
600static u32 tcp_rto_min(struct sock *sk)
601{
602 struct dst_entry *dst = __sk_dst_get(sk);
603 u32 rto_min = TCP_RTO_MIN;
604
5c127c58 605 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
c1e20f7c 606 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
05bb1fad
DM
607 return rto_min;
608}
609
1da177e4
LT
610/* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
618 */
2d2abbab 619static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 620{
6687e988 621 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
622 long m = mrtt; /* RTT */
623
1da177e4
LT
624 /* The following amusing code comes from Jacobson's
625 * article in SIGCOMM '88. Note that rtt and mdev
626 * are scaled versions of rtt and mean deviation.
e905a9ed 627 * This is designed to be as fast as possible
1da177e4
LT
628 * m stands for "measurement".
629 *
630 * On a 1990 paper the rto value is changed to:
631 * RTO = rtt + 4 * mdev
632 *
633 * Funny. This algorithm seems to be very broken.
634 * These formulae increase RTO, when it should be decreased, increase
31f34269 635 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 * does not matter how to _calculate_ it. Seems, it was trap
638 * that VJ failed to avoid. 8)
639 */
2de979bd 640 if (m == 0)
1da177e4
LT
641 m = 1;
642 if (tp->srtt != 0) {
643 m -= (tp->srtt >> 3); /* m is now error in rtt est */
644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
645 if (m < 0) {
646 m = -m; /* m is now abs(error) */
647 m -= (tp->mdev >> 2); /* similar update on mdev */
648 /* This is similar to one of Eifel findings.
649 * Eifel blocks mdev updates when rtt decreases.
650 * This solution is a bit different: we use finer gain
651 * for mdev in this case (alpha*beta).
652 * Like Eifel it also prevents growth of rto,
653 * but also it limits too fast rto decreases,
654 * happening in pure Eifel.
655 */
656 if (m > 0)
657 m >>= 3;
658 } else {
659 m -= (tp->mdev >> 2); /* similar update on mdev */
660 }
661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
662 if (tp->mdev > tp->mdev_max) {
663 tp->mdev_max = tp->mdev;
664 if (tp->mdev_max > tp->rttvar)
665 tp->rttvar = tp->mdev_max;
666 }
667 if (after(tp->snd_una, tp->rtt_seq)) {
668 if (tp->mdev_max < tp->rttvar)
056834d9 669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 670 tp->rtt_seq = tp->snd_nxt;
05bb1fad 671 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
672 }
673 } else {
674 /* no previous measure. */
056834d9
IJ
675 tp->srtt = m << 3; /* take the measured time to be rtt */
676 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
678 tp->rtt_seq = tp->snd_nxt;
679 }
1da177e4
LT
680}
681
682/* Calculate rto without backoff. This is the second half of Van Jacobson's
683 * routine referred to above.
684 */
463c84b9 685static inline void tcp_set_rto(struct sock *sk)
1da177e4 686{
463c84b9 687 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
688 /* Old crap is replaced with new one. 8)
689 *
690 * More seriously:
691 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 * It cannot be less due to utterly erratic ACK generation made
693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 * to do with delayed acks, because at cwnd>2 true delack timeout
695 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 696 * ACKs in some circumstances.
1da177e4 697 */
463c84b9 698 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
699
700 /* 2. Fixups made earlier cannot be right.
701 * If we do not estimate RTO correctly without them,
702 * all the algo is pure shit and should be replaced
caa20d9a 703 * with correct one. It is exactly, which we pretend to do.
1da177e4 704 */
1da177e4 705
ee6aac59
IJ
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
708 */
463c84b9
ACM
709 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
710 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
711}
712
713/* Save metrics learned by this TCP session.
714 This function is called only, when TCP finishes successfully
715 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716 */
717void tcp_update_metrics(struct sock *sk)
718{
719 struct tcp_sock *tp = tcp_sk(sk);
720 struct dst_entry *dst = __sk_dst_get(sk);
721
722 if (sysctl_tcp_nometrics_save)
723 return;
724
725 dst_confirm(dst);
726
056834d9 727 if (dst && (dst->flags & DST_HOST)) {
6687e988 728 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 729 int m;
c1e20f7c 730 unsigned long rtt;
1da177e4 731
6687e988 732 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
733 /* This session failed to estimate rtt. Why?
734 * Probably, no packets returned in time.
735 * Reset our results.
736 */
737 if (!(dst_metric_locked(dst, RTAX_RTT)))
056834d9 738 dst->metrics[RTAX_RTT - 1] = 0;
1da177e4
LT
739 return;
740 }
741
c1e20f7c
SH
742 rtt = dst_metric_rtt(dst, RTAX_RTT);
743 m = rtt - tp->srtt;
1da177e4
LT
744
745 /* If newly calculated rtt larger than stored one,
746 * store new one. Otherwise, use EWMA. Remember,
747 * rtt overestimation is always better than underestimation.
748 */
749 if (!(dst_metric_locked(dst, RTAX_RTT))) {
750 if (m <= 0)
c1e20f7c 751 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
1da177e4 752 else
c1e20f7c 753 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
1da177e4
LT
754 }
755
756 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
c1e20f7c 757 unsigned long var;
1da177e4
LT
758 if (m < 0)
759 m = -m;
760
761 /* Scale deviation to rttvar fixed point */
762 m >>= 1;
763 if (m < tp->mdev)
764 m = tp->mdev;
765
c1e20f7c
SH
766 var = dst_metric_rtt(dst, RTAX_RTTVAR);
767 if (m >= var)
768 var = m;
1da177e4 769 else
c1e20f7c
SH
770 var -= (var - m) >> 2;
771
772 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
1da177e4
LT
773 }
774
775 if (tp->snd_ssthresh >= 0xFFFF) {
776 /* Slow start still did not finish. */
777 if (dst_metric(dst, RTAX_SSTHRESH) &&
778 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781 if (!dst_metric_locked(dst, RTAX_CWND) &&
782 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
056834d9 783 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
1da177e4 784 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 785 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
786 /* Cong. avoidance phase, cwnd is reliable. */
787 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788 dst->metrics[RTAX_SSTHRESH-1] =
789 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790 if (!dst_metric_locked(dst, RTAX_CWND))
5ffc02a1 791 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
1da177e4
LT
792 } else {
793 /* Else slow start did not finish, cwnd is non-sense,
794 ssthresh may be also invalid.
795 */
796 if (!dst_metric_locked(dst, RTAX_CWND))
5ffc02a1
SS
797 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
798 if (dst_metric(dst, RTAX_SSTHRESH) &&
1da177e4 799 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
5ffc02a1 800 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
1da177e4
LT
801 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802 }
803
804 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
5ffc02a1 805 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
1da177e4
LT
806 tp->reordering != sysctl_tcp_reordering)
807 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808 }
809 }
810}
811
410e27a4
GR
812/* Numbers are taken from RFC3390.
813 *
814 * John Heffner states:
815 *
816 * The RFC specifies a window of no more than 4380 bytes
817 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
818 * is a bit misleading because they use a clamp at 4380 bytes
819 * rather than use a multiplier in the relevant range.
820 */
1da177e4
LT
821__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822{
823 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824
410e27a4
GR
825 if (!cwnd) {
826 if (tp->mss_cache > 1460)
827 cwnd = 2;
828 else
829 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830 }
1da177e4
LT
831 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832}
833
40efc6fa 834/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 835void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
836{
837 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 838 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
839
840 tp->prior_ssthresh = 0;
841 tp->bytes_acked = 0;
e01f9d77 842 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 843 tp->undo_marker = 0;
3cfe3baa
IJ
844 if (set_ssthresh)
845 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
846 tp->snd_cwnd = min(tp->snd_cwnd,
847 tcp_packets_in_flight(tp) + 1U);
848 tp->snd_cwnd_cnt = 0;
849 tp->high_seq = tp->snd_nxt;
850 tp->snd_cwnd_stamp = tcp_time_stamp;
851 TCP_ECN_queue_cwr(tp);
852
853 tcp_set_ca_state(sk, TCP_CA_CWR);
854 }
855}
856
e60402d0
IJ
857/*
858 * Packet counting of FACK is based on in-order assumptions, therefore TCP
859 * disables it when reordering is detected
860 */
861static void tcp_disable_fack(struct tcp_sock *tp)
862{
85cc391c
IJ
863 /* RFC3517 uses different metric in lost marker => reset on change */
864 if (tcp_is_fack(tp))
865 tp->lost_skb_hint = NULL;
e60402d0
IJ
866 tp->rx_opt.sack_ok &= ~2;
867}
868
564262c1 869/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
870static void tcp_dsack_seen(struct tcp_sock *tp)
871{
872 tp->rx_opt.sack_ok |= 4;
873}
874
1da177e4
LT
875/* Initialize metrics on socket. */
876
877static void tcp_init_metrics(struct sock *sk)
878{
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 896 tcp_disable_fack(tp);
1da177e4
LT
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
c1e20f7c 903 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
1da177e4
LT
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 912 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
c1e20f7c
SH
920 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
1da177e4
LT
922 tp->rtt_seq = tp->snd_nxt;
923 }
c1e20f7c
SH
924 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
488faa2a 926 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4 927 }
463c84b9 928 tcp_set_rto(sk);
463c84b9 929 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
930 goto reset;
931 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932 tp->snd_cwnd_stamp = tcp_time_stamp;
933 return;
934
935reset:
936 /* Play conservative. If timestamps are not
937 * supported, TCP will fail to recalculate correct
938 * rtt, if initial rto is too small. FORGET ALL AND RESET!
939 */
940 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
941 tp->srtt = 0;
942 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 943 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
944 }
945}
946
6687e988
ACM
947static void tcp_update_reordering(struct sock *sk, const int metric,
948 const int ts)
1da177e4 949{
6687e988 950 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 951 if (metric > tp->reordering) {
40b215e5
PE
952 int mib_idx;
953
1da177e4
LT
954 tp->reordering = min(TCP_MAX_REORDERING, metric);
955
956 /* This exciting event is worth to be remembered. 8) */
957 if (ts)
40b215e5 958 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 959 else if (tcp_is_reno(tp))
40b215e5 960 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 961 else if (tcp_is_fack(tp))
40b215e5 962 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 963 else
40b215e5
PE
964 mib_idx = LINUX_MIB_TCPSACKREORDER;
965
de0744af 966 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4
LT
967#if FASTRETRANS_DEBUG > 1
968 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 969 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
970 tp->reordering,
971 tp->fackets_out,
972 tp->sacked_out,
973 tp->undo_marker ? tp->undo_retrans : 0);
974#endif
e60402d0 975 tcp_disable_fack(tp);
1da177e4
LT
976 }
977}
978
006f582c 979/* This must be called before lost_out is incremented */
c8c213f2
IJ
980static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
981{
006f582c 982 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
983 before(TCP_SKB_CB(skb)->seq,
984 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
985 tp->retransmit_skb_hint = skb;
986
987 if (!tp->lost_out ||
988 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
989 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
990}
991
41ea36e3
IJ
992static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
993{
994 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
995 tcp_verify_retransmit_hint(tp, skb);
996
997 tp->lost_out += tcp_skb_pcount(skb);
998 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
999 }
1000}
1001
e1aa680f
IJ
1002static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1003 struct sk_buff *skb)
006f582c
IJ
1004{
1005 tcp_verify_retransmit_hint(tp, skb);
1006
1007 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1008 tp->lost_out += tcp_skb_pcount(skb);
1009 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1010 }
1011}
1012
1da177e4
LT
1013/* This procedure tags the retransmission queue when SACKs arrive.
1014 *
1015 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1016 * Packets in queue with these bits set are counted in variables
1017 * sacked_out, retrans_out and lost_out, correspondingly.
1018 *
1019 * Valid combinations are:
1020 * Tag InFlight Description
1021 * 0 1 - orig segment is in flight.
1022 * S 0 - nothing flies, orig reached receiver.
1023 * L 0 - nothing flies, orig lost by net.
1024 * R 2 - both orig and retransmit are in flight.
1025 * L|R 1 - orig is lost, retransmit is in flight.
1026 * S|R 1 - orig reached receiver, retrans is still in flight.
1027 * (L|S|R is logically valid, it could occur when L|R is sacked,
1028 * but it is equivalent to plain S and code short-curcuits it to S.
1029 * L|S is logically invalid, it would mean -1 packet in flight 8))
1030 *
1031 * These 6 states form finite state machine, controlled by the following events:
1032 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1033 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1034 * 3. Loss detection event of one of three flavors:
1035 * A. Scoreboard estimator decided the packet is lost.
1036 * A'. Reno "three dupacks" marks head of queue lost.
1037 * A''. Its FACK modfication, head until snd.fack is lost.
1038 * B. SACK arrives sacking data transmitted after never retransmitted
1039 * hole was sent out.
1040 * C. SACK arrives sacking SND.NXT at the moment, when the
1041 * segment was retransmitted.
1042 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1043 *
1044 * It is pleasant to note, that state diagram turns out to be commutative,
1045 * so that we are allowed not to be bothered by order of our actions,
1046 * when multiple events arrive simultaneously. (see the function below).
1047 *
1048 * Reordering detection.
1049 * --------------------
1050 * Reordering metric is maximal distance, which a packet can be displaced
1051 * in packet stream. With SACKs we can estimate it:
1052 *
1053 * 1. SACK fills old hole and the corresponding segment was not
1054 * ever retransmitted -> reordering. Alas, we cannot use it
1055 * when segment was retransmitted.
1056 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1057 * for retransmitted and already SACKed segment -> reordering..
1058 * Both of these heuristics are not used in Loss state, when we cannot
1059 * account for retransmits accurately.
5b3c9882
IJ
1060 *
1061 * SACK block validation.
1062 * ----------------------
1063 *
1064 * SACK block range validation checks that the received SACK block fits to
1065 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1066 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1067 * it means that the receiver is rather inconsistent with itself reporting
1068 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1069 * perfectly valid, however, in light of RFC2018 which explicitly states
1070 * that "SACK block MUST reflect the newest segment. Even if the newest
1071 * segment is going to be discarded ...", not that it looks very clever
1072 * in case of head skb. Due to potentional receiver driven attacks, we
1073 * choose to avoid immediate execution of a walk in write queue due to
1074 * reneging and defer head skb's loss recovery to standard loss recovery
1075 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1076 *
1077 * Implements also blockage to start_seq wrap-around. Problem lies in the
1078 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1079 * there's no guarantee that it will be before snd_nxt (n). The problem
1080 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1081 * wrap (s_w):
1082 *
1083 * <- outs wnd -> <- wrapzone ->
1084 * u e n u_w e_w s n_w
1085 * | | | | | | |
1086 * |<------------+------+----- TCP seqno space --------------+---------->|
1087 * ...-- <2^31 ->| |<--------...
1088 * ...---- >2^31 ------>| |<--------...
1089 *
1090 * Current code wouldn't be vulnerable but it's better still to discard such
1091 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1092 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1093 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1094 * equal to the ideal case (infinite seqno space without wrap caused issues).
1095 *
1096 * With D-SACK the lower bound is extended to cover sequence space below
1097 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1098 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1099 * for the normal SACK blocks, explained above). But there all simplicity
1100 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1101 * fully below undo_marker they do not affect behavior in anyway and can
1102 * therefore be safely ignored. In rare cases (which are more or less
1103 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1104 * fragmentation and packet reordering past skb's retransmission. To consider
1105 * them correctly, the acceptable range must be extended even more though
1106 * the exact amount is rather hard to quantify. However, tp->max_window can
1107 * be used as an exaggerated estimate.
1da177e4 1108 */
5b3c9882
IJ
1109static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1110 u32 start_seq, u32 end_seq)
1111{
1112 /* Too far in future, or reversed (interpretation is ambiguous) */
1113 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1114 return 0;
1115
1116 /* Nasty start_seq wrap-around check (see comments above) */
1117 if (!before(start_seq, tp->snd_nxt))
1118 return 0;
1119
564262c1 1120 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1121 * start_seq == snd_una is non-sensical (see comments above)
1122 */
1123 if (after(start_seq, tp->snd_una))
1124 return 1;
1125
1126 if (!is_dsack || !tp->undo_marker)
1127 return 0;
1128
1129 /* ...Then it's D-SACK, and must reside below snd_una completely */
1130 if (!after(end_seq, tp->snd_una))
1131 return 0;
1132
1133 if (!before(start_seq, tp->undo_marker))
1134 return 1;
1135
1136 /* Too old */
1137 if (!after(end_seq, tp->undo_marker))
1138 return 0;
1139
1140 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1141 * start_seq < undo_marker and end_seq >= undo_marker.
1142 */
1143 return !before(start_seq, end_seq - tp->max_window);
1144}
1145
1c1e87ed
IJ
1146/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1147 * Event "C". Later note: FACK people cheated me again 8), we have to account
1148 * for reordering! Ugly, but should help.
f785a8e2
IJ
1149 *
1150 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1151 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1152 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1153 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1154 */
407ef1de 1155static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1156{
9f58f3b7 1157 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1158 struct tcp_sock *tp = tcp_sk(sk);
1159 struct sk_buff *skb;
f785a8e2 1160 int cnt = 0;
df2e014b 1161 u32 new_low_seq = tp->snd_nxt;
6859d494 1162 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1163
1164 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1165 !after(received_upto, tp->lost_retrans_low) ||
1166 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1167 return;
1c1e87ed
IJ
1168
1169 tcp_for_write_queue(skb, sk) {
1170 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1171
1172 if (skb == tcp_send_head(sk))
1173 break;
f785a8e2 1174 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1175 break;
1176 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1177 continue;
1178
f785a8e2
IJ
1179 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1180 continue;
1181
d0af4160
IJ
1182 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1183 * constraint here (see above) but figuring out that at
1184 * least tp->reordering SACK blocks reside between ack_seq
1185 * and received_upto is not easy task to do cheaply with
1186 * the available datastructures.
1187 *
1188 * Whether FACK should check here for tp->reordering segs
1189 * in-between one could argue for either way (it would be
1190 * rather simple to implement as we could count fack_count
1191 * during the walk and do tp->fackets_out - fack_count).
1192 */
1193 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1194 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1195 tp->retrans_out -= tcp_skb_pcount(skb);
1196
006f582c 1197 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1198 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1199 } else {
df2e014b 1200 if (before(ack_seq, new_low_seq))
b08d6cb2 1201 new_low_seq = ack_seq;
f785a8e2 1202 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1203 }
1204 }
b08d6cb2
IJ
1205
1206 if (tp->retrans_out)
1207 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1208}
5b3c9882 1209
1ed83465 1210static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
d06e021d
DM
1211 struct tcp_sack_block_wire *sp, int num_sacks,
1212 u32 prior_snd_una)
1213{
1ed83465 1214 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1215 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1216 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
d06e021d
DM
1217 int dup_sack = 0;
1218
1219 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1220 dup_sack = 1;
e60402d0 1221 tcp_dsack_seen(tp);
de0744af 1222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1223 } else if (num_sacks > 1) {
d3e2ce3b
HH
1224 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1225 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1226
1227 if (!after(end_seq_0, end_seq_1) &&
1228 !before(start_seq_0, start_seq_1)) {
1229 dup_sack = 1;
e60402d0 1230 tcp_dsack_seen(tp);
de0744af
PE
1231 NET_INC_STATS_BH(sock_net(sk),
1232 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1233 }
1234 }
1235
1236 /* D-SACK for already forgotten data... Do dumb counting. */
1237 if (dup_sack &&
1238 !after(end_seq_0, prior_snd_una) &&
1239 after(end_seq_0, tp->undo_marker))
1240 tp->undo_retrans--;
1241
1242 return dup_sack;
1243}
1244
a1197f5a
IJ
1245struct tcp_sacktag_state {
1246 int reord;
1247 int fack_count;
1248 int flag;
1249};
1250
d1935942
IJ
1251/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1252 * the incoming SACK may not exactly match but we can find smaller MSS
1253 * aligned portion of it that matches. Therefore we might need to fragment
1254 * which may fail and creates some hassle (caller must handle error case
1255 * returns).
832d11c5
IJ
1256 *
1257 * FIXME: this could be merged to shift decision code
d1935942 1258 */
0f79efdc
AB
1259static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1260 u32 start_seq, u32 end_seq)
d1935942
IJ
1261{
1262 int in_sack, err;
1263 unsigned int pkt_len;
adb92db8 1264 unsigned int mss;
d1935942
IJ
1265
1266 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1267 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1268
1269 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1270 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1271 mss = tcp_skb_mss(skb);
d1935942
IJ
1272 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1273
adb92db8 1274 if (!in_sack) {
d1935942 1275 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1276 if (pkt_len < mss)
1277 pkt_len = mss;
1278 } else {
d1935942 1279 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1280 if (pkt_len < mss)
1281 return -EINVAL;
1282 }
1283
1284 /* Round if necessary so that SACKs cover only full MSSes
1285 * and/or the remaining small portion (if present)
1286 */
1287 if (pkt_len > mss) {
1288 unsigned int new_len = (pkt_len / mss) * mss;
1289 if (!in_sack && new_len < pkt_len) {
1290 new_len += mss;
1291 if (new_len > skb->len)
1292 return 0;
1293 }
1294 pkt_len = new_len;
1295 }
1296 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1297 if (err < 0)
1298 return err;
1299 }
1300
1301 return in_sack;
1302}
1303
a1197f5a
IJ
1304static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1305 struct tcp_sacktag_state *state,
1306 int dup_sack, int pcount)
9e10c47c 1307{
6859d494 1308 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c 1309 u8 sacked = TCP_SKB_CB(skb)->sacked;
a1197f5a 1310 int fack_count = state->fack_count;
9e10c47c
IJ
1311
1312 /* Account D-SACK for retransmitted packet. */
1313 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1314 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1315 tp->undo_retrans--;
ede9f3b1 1316 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1317 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1318 }
1319
1320 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1321 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
a1197f5a 1322 return sacked;
9e10c47c
IJ
1323
1324 if (!(sacked & TCPCB_SACKED_ACKED)) {
1325 if (sacked & TCPCB_SACKED_RETRANS) {
1326 /* If the segment is not tagged as lost,
1327 * we do not clear RETRANS, believing
1328 * that retransmission is still in flight.
1329 */
1330 if (sacked & TCPCB_LOST) {
a1197f5a 1331 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1332 tp->lost_out -= pcount;
1333 tp->retrans_out -= pcount;
9e10c47c
IJ
1334 }
1335 } else {
1336 if (!(sacked & TCPCB_RETRANS)) {
1337 /* New sack for not retransmitted frame,
1338 * which was in hole. It is reordering.
1339 */
1340 if (before(TCP_SKB_CB(skb)->seq,
1341 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1342 state->reord = min(fack_count,
1343 state->reord);
9e10c47c
IJ
1344
1345 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1346 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
a1197f5a 1347 state->flag |= FLAG_ONLY_ORIG_SACKED;
9e10c47c
IJ
1348 }
1349
1350 if (sacked & TCPCB_LOST) {
a1197f5a 1351 sacked &= ~TCPCB_LOST;
f58b22fd 1352 tp->lost_out -= pcount;
9e10c47c
IJ
1353 }
1354 }
1355
a1197f5a
IJ
1356 sacked |= TCPCB_SACKED_ACKED;
1357 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1358 tp->sacked_out += pcount;
9e10c47c 1359
f58b22fd 1360 fack_count += pcount;
9e10c47c
IJ
1361
1362 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1363 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1364 before(TCP_SKB_CB(skb)->seq,
1365 TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1366 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1367
1368 if (fack_count > tp->fackets_out)
1369 tp->fackets_out = fack_count;
9e10c47c
IJ
1370 }
1371
1372 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1373 * frames and clear it. undo_retrans is decreased above, L|R frames
1374 * are accounted above as well.
1375 */
a1197f5a
IJ
1376 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1377 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1378 tp->retrans_out -= pcount;
9e10c47c
IJ
1379 }
1380
a1197f5a 1381 return sacked;
9e10c47c
IJ
1382}
1383
50133161 1384static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
a1197f5a 1385 struct tcp_sacktag_state *state,
9ec06ff5
IJ
1386 unsigned int pcount, int shifted, int mss,
1387 int dup_sack)
832d11c5
IJ
1388{
1389 struct tcp_sock *tp = tcp_sk(sk);
50133161 1390 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
832d11c5
IJ
1391
1392 BUG_ON(!pcount);
1393
92ee76b6
IJ
1394 /* Tweak before seqno plays */
1395 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1396 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1397 tp->lost_cnt_hint += pcount;
1398
832d11c5
IJ
1399 TCP_SKB_CB(prev)->end_seq += shifted;
1400 TCP_SKB_CB(skb)->seq += shifted;
1401
1402 skb_shinfo(prev)->gso_segs += pcount;
1403 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1404 skb_shinfo(skb)->gso_segs -= pcount;
1405
1406 /* When we're adding to gso_segs == 1, gso_size will be zero,
1407 * in theory this shouldn't be necessary but as long as DSACK
1408 * code can come after this skb later on it's better to keep
1409 * setting gso_size to something.
1410 */
1411 if (!skb_shinfo(prev)->gso_size) {
1412 skb_shinfo(prev)->gso_size = mss;
1413 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1414 }
1415
1416 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1417 if (skb_shinfo(skb)->gso_segs <= 1) {
1418 skb_shinfo(skb)->gso_size = 0;
1419 skb_shinfo(skb)->gso_type = 0;
1420 }
1421
a1197f5a 1422 /* We discard results */
9ec06ff5 1423 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
832d11c5
IJ
1424
1425 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1426 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1427
832d11c5
IJ
1428 if (skb->len > 0) {
1429 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
832d11c5
IJ
1431 return 0;
1432 }
1433
1434 /* Whole SKB was eaten :-) */
1435
92ee76b6
IJ
1436 if (skb == tp->retransmit_skb_hint)
1437 tp->retransmit_skb_hint = prev;
1438 if (skb == tp->scoreboard_skb_hint)
1439 tp->scoreboard_skb_hint = prev;
1440 if (skb == tp->lost_skb_hint) {
1441 tp->lost_skb_hint = prev;
1442 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1443 }
1444
832d11c5
IJ
1445 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1446 if (skb == tcp_highest_sack(sk))
1447 tcp_advance_highest_sack(sk, skb);
1448
1449 tcp_unlink_write_queue(skb, sk);
1450 sk_wmem_free_skb(sk, skb);
1451
111cc8b9
IJ
1452 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1453
832d11c5
IJ
1454 return 1;
1455}
1456
1457/* I wish gso_size would have a bit more sane initialization than
1458 * something-or-zero which complicates things
1459 */
775ffabf 1460static int tcp_skb_seglen(struct sk_buff *skb)
832d11c5 1461{
775ffabf 1462 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1463}
1464
1465/* Shifting pages past head area doesn't work */
1466static int skb_can_shift(struct sk_buff *skb)
1467{
1468 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1469}
1470
1471/* Try collapsing SACK blocks spanning across multiple skbs to a single
1472 * skb.
1473 */
1474static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1475 struct tcp_sacktag_state *state,
832d11c5 1476 u32 start_seq, u32 end_seq,
a1197f5a 1477 int dup_sack)
832d11c5
IJ
1478{
1479 struct tcp_sock *tp = tcp_sk(sk);
1480 struct sk_buff *prev;
1481 int mss;
1482 int pcount = 0;
1483 int len;
1484 int in_sack;
1485
1486 if (!sk_can_gso(sk))
1487 goto fallback;
1488
1489 /* Normally R but no L won't result in plain S */
1490 if (!dup_sack &&
9969ca5f 1491 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1492 goto fallback;
1493 if (!skb_can_shift(skb))
1494 goto fallback;
1495 /* This frame is about to be dropped (was ACKed). */
1496 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1497 goto fallback;
1498
1499 /* Can only happen with delayed DSACK + discard craziness */
1500 if (unlikely(skb == tcp_write_queue_head(sk)))
1501 goto fallback;
1502 prev = tcp_write_queue_prev(sk, skb);
1503
1504 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1505 goto fallback;
1506
1507 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1508 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1509
1510 if (in_sack) {
1511 len = skb->len;
1512 pcount = tcp_skb_pcount(skb);
775ffabf 1513 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1514
1515 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1516 * drop this restriction as unnecessary
1517 */
775ffabf 1518 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1519 goto fallback;
1520 } else {
1521 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1522 goto noop;
1523 /* CHECKME: This is non-MSS split case only?, this will
1524 * cause skipped skbs due to advancing loop btw, original
1525 * has that feature too
1526 */
1527 if (tcp_skb_pcount(skb) <= 1)
1528 goto noop;
1529
1530 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1531 if (!in_sack) {
1532 /* TODO: head merge to next could be attempted here
1533 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1534 * though it might not be worth of the additional hassle
1535 *
1536 * ...we can probably just fallback to what was done
1537 * previously. We could try merging non-SACKed ones
1538 * as well but it probably isn't going to buy off
1539 * because later SACKs might again split them, and
1540 * it would make skb timestamp tracking considerably
1541 * harder problem.
1542 */
1543 goto fallback;
1544 }
1545
1546 len = end_seq - TCP_SKB_CB(skb)->seq;
1547 BUG_ON(len < 0);
1548 BUG_ON(len > skb->len);
1549
1550 /* MSS boundaries should be honoured or else pcount will
1551 * severely break even though it makes things bit trickier.
1552 * Optimize common case to avoid most of the divides
1553 */
1554 mss = tcp_skb_mss(skb);
1555
1556 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1557 * drop this restriction as unnecessary
1558 */
775ffabf 1559 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1560 goto fallback;
1561
1562 if (len == mss) {
1563 pcount = 1;
1564 } else if (len < mss) {
1565 goto noop;
1566 } else {
1567 pcount = len / mss;
1568 len = pcount * mss;
1569 }
1570 }
1571
1572 if (!skb_shift(prev, skb, len))
1573 goto fallback;
9ec06ff5 1574 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1575 goto out;
1576
1577 /* Hole filled allows collapsing with the next as well, this is very
1578 * useful when hole on every nth skb pattern happens
1579 */
1580 if (prev == tcp_write_queue_tail(sk))
1581 goto out;
1582 skb = tcp_write_queue_next(sk, prev);
1583
f0bc52f3
IJ
1584 if (!skb_can_shift(skb) ||
1585 (skb == tcp_send_head(sk)) ||
1586 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1587 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1588 goto out;
1589
1590 len = skb->len;
1591 if (skb_shift(prev, skb, len)) {
1592 pcount += tcp_skb_pcount(skb);
9ec06ff5 1593 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1594 }
1595
1596out:
a1197f5a 1597 state->fack_count += pcount;
832d11c5
IJ
1598 return prev;
1599
1600noop:
1601 return skb;
1602
1603fallback:
111cc8b9 1604 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1605 return NULL;
1606}
1607
68f8353b
IJ
1608static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1609 struct tcp_sack_block *next_dup,
a1197f5a 1610 struct tcp_sacktag_state *state,
68f8353b 1611 u32 start_seq, u32 end_seq,
a1197f5a 1612 int dup_sack_in)
68f8353b 1613{
832d11c5
IJ
1614 struct tcp_sock *tp = tcp_sk(sk);
1615 struct sk_buff *tmp;
1616
68f8353b
IJ
1617 tcp_for_write_queue_from(skb, sk) {
1618 int in_sack = 0;
1619 int dup_sack = dup_sack_in;
1620
1621 if (skb == tcp_send_head(sk))
1622 break;
1623
1624 /* queue is in-order => we can short-circuit the walk early */
1625 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1626 break;
1627
1628 if ((next_dup != NULL) &&
1629 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1630 in_sack = tcp_match_skb_to_sack(sk, skb,
1631 next_dup->start_seq,
1632 next_dup->end_seq);
1633 if (in_sack > 0)
1634 dup_sack = 1;
1635 }
1636
832d11c5
IJ
1637 /* skb reference here is a bit tricky to get right, since
1638 * shifting can eat and free both this skb and the next,
1639 * so not even _safe variant of the loop is enough.
1640 */
1641 if (in_sack <= 0) {
a1197f5a
IJ
1642 tmp = tcp_shift_skb_data(sk, skb, state,
1643 start_seq, end_seq, dup_sack);
832d11c5
IJ
1644 if (tmp != NULL) {
1645 if (tmp != skb) {
1646 skb = tmp;
1647 continue;
1648 }
1649
1650 in_sack = 0;
1651 } else {
1652 in_sack = tcp_match_skb_to_sack(sk, skb,
1653 start_seq,
1654 end_seq);
1655 }
1656 }
1657
68f8353b
IJ
1658 if (unlikely(in_sack < 0))
1659 break;
1660
832d11c5 1661 if (in_sack) {
a1197f5a
IJ
1662 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1663 state,
1664 dup_sack,
1665 tcp_skb_pcount(skb));
68f8353b 1666
832d11c5
IJ
1667 if (!before(TCP_SKB_CB(skb)->seq,
1668 tcp_highest_sack_seq(tp)))
1669 tcp_advance_highest_sack(sk, skb);
1670 }
1671
a1197f5a 1672 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1673 }
1674 return skb;
1675}
1676
1677/* Avoid all extra work that is being done by sacktag while walking in
1678 * a normal way
1679 */
1680static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1681 struct tcp_sacktag_state *state,
1682 u32 skip_to_seq)
68f8353b
IJ
1683{
1684 tcp_for_write_queue_from(skb, sk) {
1685 if (skb == tcp_send_head(sk))
1686 break;
1687
e8bae275 1688 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1689 break;
d152a7d8 1690
a1197f5a 1691 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1692 }
1693 return skb;
1694}
1695
1696static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1697 struct sock *sk,
1698 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1699 struct tcp_sacktag_state *state,
1700 u32 skip_to_seq)
68f8353b
IJ
1701{
1702 if (next_dup == NULL)
1703 return skb;
1704
1705 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1706 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1707 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1708 next_dup->start_seq, next_dup->end_seq,
1709 1);
68f8353b
IJ
1710 }
1711
1712 return skb;
1713}
1714
1715static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1716{
1717 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1718}
1719
1da177e4 1720static int
056834d9
IJ
1721tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1722 u32 prior_snd_una)
1da177e4 1723{
6687e988 1724 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1725 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1726 unsigned char *ptr = (skb_transport_header(ack_skb) +
1727 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1728 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1729 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1730 struct tcp_sack_block *cache;
a1197f5a 1731 struct tcp_sacktag_state state;
68f8353b 1732 struct sk_buff *skb;
4389dded 1733 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1734 int used_sacks;
7769f406 1735 int found_dup_sack = 0;
68f8353b 1736 int i, j;
fda03fbb 1737 int first_sack_index;
1da177e4 1738
a1197f5a
IJ
1739 state.flag = 0;
1740 state.reord = tp->packets_out;
1741
d738cd8f 1742 if (!tp->sacked_out) {
de83c058
IJ
1743 if (WARN_ON(tp->fackets_out))
1744 tp->fackets_out = 0;
6859d494 1745 tcp_highest_sack_reset(sk);
d738cd8f 1746 }
1da177e4 1747
1ed83465 1748 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1749 num_sacks, prior_snd_una);
1750 if (found_dup_sack)
a1197f5a 1751 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1752
1753 /* Eliminate too old ACKs, but take into
1754 * account more or less fresh ones, they can
1755 * contain valid SACK info.
1756 */
1757 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1758 return 0;
1759