Proportional Rate Reduction for TCP.
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
1da177e4 64#include <linux/mm.h>
5a0e3ad6 65#include <linux/slab.h>
1da177e4
LT
66#include <linux/module.h>
67#include <linux/sysctl.h>
a0bffffc 68#include <linux/kernel.h>
5ffc02a1 69#include <net/dst.h>
1da177e4
LT
70#include <net/tcp.h>
71#include <net/inet_common.h>
72#include <linux/ipsec.h>
73#include <asm/unaligned.h>
1a2449a8 74#include <net/netdma.h>
1da177e4 75
ab32ea5d
BH
76int sysctl_tcp_timestamps __read_mostly = 1;
77int sysctl_tcp_window_scaling __read_mostly = 1;
78int sysctl_tcp_sack __read_mostly = 1;
79int sysctl_tcp_fack __read_mostly = 1;
80int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 81EXPORT_SYMBOL(sysctl_tcp_reordering);
255cac91 82int sysctl_tcp_ecn __read_mostly = 2;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_ecn);
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
86int sysctl_tcp_adv_win_scale __read_mostly = 2;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 88
ab32ea5d
BH
89int sysctl_tcp_stdurg __read_mostly;
90int sysctl_tcp_rfc1337 __read_mostly;
91int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 92int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 93int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 94int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 95
7e380175
AP
96int sysctl_tcp_thin_dupack __read_mostly;
97
ab32ea5d
BH
98int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99int sysctl_tcp_abc __read_mostly;
1da177e4 100
1da177e4
LT
101#define FLAG_DATA 0x01 /* Incoming frame contained data. */
102#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106#define FLAG_DATA_SACKED 0x20 /* New SACK. */
107#define FLAG_ECE 0x40 /* ECE in this ACK */
108#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 110#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 111#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 112#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
009a2e3e 113#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
cadbd031 114#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
1da177e4
LT
115
116#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 120#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 121
1da177e4 122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 124
e905a9ed 125/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 126 * real world.
e905a9ed 127 */
056834d9 128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 129{
463c84b9 130 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 132 unsigned int len;
1da177e4 133
e905a9ed 134 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
135
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
138 */
056834d9 139 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
145 *
146 * "len" is invariant segment length, including TCP header.
147 */
9c70220b 148 len += skb->data - skb_transport_header(skb);
bee7ca9e 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
154 */
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
160 */
463c84b9
ACM
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
1da177e4 163 if (len == lss) {
463c84b9 164 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
165 return;
166 }
167 }
1ef9696c
AK
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
171 }
172}
173
463c84b9 174static void tcp_incr_quickack(struct sock *sk)
1da177e4 175{
463c84b9
ACM
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 178
056834d9
IJ
179 if (quickacks == 0)
180 quickacks = 2;
463c84b9
ACM
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
183}
184
1b9f4092 185static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 186{
463c84b9
ACM
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
191}
192
193/* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
463c84b9 197static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 198{
463c84b9
ACM
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
201}
202
bdf1ee5d
IJ
203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204{
056834d9 205 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207}
208
209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210{
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216{
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221{
056834d9 222 if (tp->ecn_flags & TCP_ECN_OK) {
bdf1ee5d
IJ
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 tcp_enter_quickack_mode((struct sock *)tp);
230 }
231}
232
233static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234{
056834d9 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
236 tp->ecn_flags &= ~TCP_ECN_OK;
237}
238
239static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240{
056834d9 241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
242 tp->ecn_flags &= ~TCP_ECN_OK;
243}
244
245static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246{
056834d9 247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
bdf1ee5d
IJ
248 return 1;
249 return 0;
250}
251
1da177e4
LT
252/* Buffer size and advertised window tuning.
253 *
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255 */
256
257static void tcp_fixup_sndbuf(struct sock *sk)
258{
259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 sizeof(struct sk_buff);
261
8d987e5c
ED
262 if (sk->sk_sndbuf < 3 * sndmem) {
263 sk->sk_sndbuf = 3 * sndmem;
264 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265 sk->sk_sndbuf = sysctl_tcp_wmem[2];
266 }
1da177e4
LT
267}
268
269/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270 *
271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
272 * forward and advertised in receiver window (tp->rcv_wnd) and
273 * "application buffer", required to isolate scheduling/application
274 * latencies from network.
275 * window_clamp is maximal advertised window. It can be less than
276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
277 * is reserved for "application" buffer. The less window_clamp is
278 * the smoother our behaviour from viewpoint of network, but the lower
279 * throughput and the higher sensitivity of the connection to losses. 8)
280 *
281 * rcv_ssthresh is more strict window_clamp used at "slow start"
282 * phase to predict further behaviour of this connection.
283 * It is used for two goals:
284 * - to enforce header prediction at sender, even when application
285 * requires some significant "application buffer". It is check #1.
286 * - to prevent pruning of receive queue because of misprediction
287 * of receiver window. Check #2.
288 *
289 * The scheme does not work when sender sends good segments opening
caa20d9a 290 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
291 * in common situations. Otherwise, we have to rely on queue collapsing.
292 */
293
294/* Slow part of check#2. */
9e412ba7 295static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 296{
9e412ba7 297 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 298 /* Optimize this! */
dfd4f0ae
ED
299 int truesize = tcp_win_from_space(skb->truesize) >> 1;
300 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
301
302 while (tp->rcv_ssthresh <= window) {
303 if (truesize <= skb->len)
463c84b9 304 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
305
306 truesize >>= 1;
307 window >>= 1;
308 }
309 return 0;
310}
311
056834d9 312static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
1da177e4 313{
9e412ba7
IJ
314 struct tcp_sock *tp = tcp_sk(sk);
315
1da177e4
LT
316 /* Check #1 */
317 if (tp->rcv_ssthresh < tp->window_clamp &&
318 (int)tp->rcv_ssthresh < tcp_space(sk) &&
319 !tcp_memory_pressure) {
320 int incr;
321
322 /* Check #2. Increase window, if skb with such overhead
323 * will fit to rcvbuf in future.
324 */
325 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 326 incr = 2 * tp->advmss;
1da177e4 327 else
9e412ba7 328 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
329
330 if (incr) {
056834d9
IJ
331 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332 tp->window_clamp);
463c84b9 333 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
334 }
335 }
336}
337
338/* 3. Tuning rcvbuf, when connection enters established state. */
339
340static void tcp_fixup_rcvbuf(struct sock *sk)
341{
342 struct tcp_sock *tp = tcp_sk(sk);
343 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
344
345 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 346 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
347 * (was 3; 4 is minimum to allow fast retransmit to work.)
348 */
349 while (tcp_win_from_space(rcvmem) < tp->advmss)
350 rcvmem += 128;
351 if (sk->sk_rcvbuf < 4 * rcvmem)
352 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
353}
354
caa20d9a 355/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
356 * established state.
357 */
358static void tcp_init_buffer_space(struct sock *sk)
359{
360 struct tcp_sock *tp = tcp_sk(sk);
361 int maxwin;
362
363 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364 tcp_fixup_rcvbuf(sk);
365 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366 tcp_fixup_sndbuf(sk);
367
368 tp->rcvq_space.space = tp->rcv_wnd;
369
370 maxwin = tcp_full_space(sk);
371
372 if (tp->window_clamp >= maxwin) {
373 tp->window_clamp = maxwin;
374
375 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376 tp->window_clamp = max(maxwin -
377 (maxwin >> sysctl_tcp_app_win),
378 4 * tp->advmss);
379 }
380
381 /* Force reservation of one segment. */
382 if (sysctl_tcp_app_win &&
383 tp->window_clamp > 2 * tp->advmss &&
384 tp->window_clamp + tp->advmss > maxwin)
385 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
386
387 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388 tp->snd_cwnd_stamp = tcp_time_stamp;
389}
390
1da177e4 391/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 392static void tcp_clamp_window(struct sock *sk)
1da177e4 393{
9e412ba7 394 struct tcp_sock *tp = tcp_sk(sk);
6687e988 395 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 396
6687e988 397 icsk->icsk_ack.quick = 0;
1da177e4 398
326f36e9
JH
399 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401 !tcp_memory_pressure &&
8d987e5c 402 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
326f36e9
JH
403 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404 sysctl_tcp_rmem[2]);
1da177e4 405 }
326f36e9 406 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 407 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
408}
409
40efc6fa
SH
410/* Initialize RCV_MSS value.
411 * RCV_MSS is an our guess about MSS used by the peer.
412 * We haven't any direct information about the MSS.
413 * It's better to underestimate the RCV_MSS rather than overestimate.
414 * Overestimations make us ACKing less frequently than needed.
415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
416 */
417void tcp_initialize_rcv_mss(struct sock *sk)
418{
419 struct tcp_sock *tp = tcp_sk(sk);
420 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
421
056834d9 422 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 423 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
424 hint = max(hint, TCP_MIN_MSS);
425
426 inet_csk(sk)->icsk_ack.rcv_mss = hint;
427}
4bc2f18b 428EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 429
1da177e4
LT
430/* Receiver "autotuning" code.
431 *
432 * The algorithm for RTT estimation w/o timestamps is based on
433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 434 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
435 *
436 * More detail on this code can be found at
631dd1a8 437 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
438 * though this reference is out of date. A new paper
439 * is pending.
440 */
441static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
442{
443 u32 new_sample = tp->rcv_rtt_est.rtt;
444 long m = sample;
445
446 if (m == 0)
447 m = 1;
448
449 if (new_sample != 0) {
450 /* If we sample in larger samples in the non-timestamp
451 * case, we could grossly overestimate the RTT especially
452 * with chatty applications or bulk transfer apps which
453 * are stalled on filesystem I/O.
454 *
455 * Also, since we are only going for a minimum in the
31f34269 456 * non-timestamp case, we do not smooth things out
caa20d9a 457 * else with timestamps disabled convergence takes too
1da177e4
LT
458 * long.
459 */
460 if (!win_dep) {
461 m -= (new_sample >> 3);
462 new_sample += m;
463 } else if (m < new_sample)
464 new_sample = m << 3;
465 } else {
caa20d9a 466 /* No previous measure. */
1da177e4
LT
467 new_sample = m << 3;
468 }
469
470 if (tp->rcv_rtt_est.rtt != new_sample)
471 tp->rcv_rtt_est.rtt = new_sample;
472}
473
474static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
475{
476 if (tp->rcv_rtt_est.time == 0)
477 goto new_measure;
478 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479 return;
056834d9 480 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
1da177e4
LT
481
482new_measure:
483 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484 tp->rcv_rtt_est.time = tcp_time_stamp;
485}
486
056834d9
IJ
487static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488 const struct sk_buff *skb)
1da177e4 489{
463c84b9 490 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
491 if (tp->rx_opt.rcv_tsecr &&
492 (TCP_SKB_CB(skb)->end_seq -
463c84b9 493 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
494 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495}
496
497/*
498 * This function should be called every time data is copied to user space.
499 * It calculates the appropriate TCP receive buffer space.
500 */
501void tcp_rcv_space_adjust(struct sock *sk)
502{
503 struct tcp_sock *tp = tcp_sk(sk);
504 int time;
505 int space;
e905a9ed 506
1da177e4
LT
507 if (tp->rcvq_space.time == 0)
508 goto new_measure;
e905a9ed 509
1da177e4 510 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 511 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 512 return;
e905a9ed 513
1da177e4
LT
514 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
515
516 space = max(tp->rcvq_space.space, space);
517
518 if (tp->rcvq_space.space != space) {
519 int rcvmem;
520
521 tp->rcvq_space.space = space;
522
6fcf9412
JH
523 if (sysctl_tcp_moderate_rcvbuf &&
524 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
525 int new_clamp = space;
526
527 /* Receive space grows, normalize in order to
528 * take into account packet headers and sk_buff
529 * structure overhead.
530 */
531 space /= tp->advmss;
532 if (!space)
533 space = 1;
534 rcvmem = (tp->advmss + MAX_TCP_HEADER +
535 16 + sizeof(struct sk_buff));
536 while (tcp_win_from_space(rcvmem) < tp->advmss)
537 rcvmem += 128;
538 space *= rcvmem;
539 space = min(space, sysctl_tcp_rmem[2]);
540 if (space > sk->sk_rcvbuf) {
541 sk->sk_rcvbuf = space;
542
543 /* Make the window clamp follow along. */
544 tp->window_clamp = new_clamp;
545 }
546 }
547 }
e905a9ed 548
1da177e4
LT
549new_measure:
550 tp->rcvq_space.seq = tp->copied_seq;
551 tp->rcvq_space.time = tcp_time_stamp;
552}
553
554/* There is something which you must keep in mind when you analyze the
555 * behavior of the tp->ato delayed ack timeout interval. When a
556 * connection starts up, we want to ack as quickly as possible. The
557 * problem is that "good" TCP's do slow start at the beginning of data
558 * transmission. The means that until we send the first few ACK's the
559 * sender will sit on his end and only queue most of his data, because
560 * he can only send snd_cwnd unacked packets at any given time. For
561 * each ACK we send, he increments snd_cwnd and transmits more of his
562 * queue. -DaveM
563 */
9e412ba7 564static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 565{
9e412ba7 566 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 567 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
568 u32 now;
569
463c84b9 570 inet_csk_schedule_ack(sk);
1da177e4 571
463c84b9 572 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
573
574 tcp_rcv_rtt_measure(tp);
e905a9ed 575
1da177e4
LT
576 now = tcp_time_stamp;
577
463c84b9 578 if (!icsk->icsk_ack.ato) {
1da177e4
LT
579 /* The _first_ data packet received, initialize
580 * delayed ACK engine.
581 */
463c84b9
ACM
582 tcp_incr_quickack(sk);
583 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 584 } else {
463c84b9 585 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 586
056834d9 587 if (m <= TCP_ATO_MIN / 2) {
1da177e4 588 /* The fastest case is the first. */
463c84b9
ACM
589 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590 } else if (m < icsk->icsk_ack.ato) {
591 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592 if (icsk->icsk_ack.ato > icsk->icsk_rto)
593 icsk->icsk_ack.ato = icsk->icsk_rto;
594 } else if (m > icsk->icsk_rto) {
caa20d9a 595 /* Too long gap. Apparently sender failed to
1da177e4
LT
596 * restart window, so that we send ACKs quickly.
597 */
463c84b9 598 tcp_incr_quickack(sk);
3ab224be 599 sk_mem_reclaim(sk);
1da177e4
LT
600 }
601 }
463c84b9 602 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
603
604 TCP_ECN_check_ce(tp, skb);
605
606 if (skb->len >= 128)
9e412ba7 607 tcp_grow_window(sk, skb);
1da177e4
LT
608}
609
1da177e4
LT
610/* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
618 */
2d2abbab 619static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 620{
6687e988 621 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
622 long m = mrtt; /* RTT */
623
1da177e4
LT
624 /* The following amusing code comes from Jacobson's
625 * article in SIGCOMM '88. Note that rtt and mdev
626 * are scaled versions of rtt and mean deviation.
e905a9ed 627 * This is designed to be as fast as possible
1da177e4
LT
628 * m stands for "measurement".
629 *
630 * On a 1990 paper the rto value is changed to:
631 * RTO = rtt + 4 * mdev
632 *
633 * Funny. This algorithm seems to be very broken.
634 * These formulae increase RTO, when it should be decreased, increase
31f34269 635 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 * does not matter how to _calculate_ it. Seems, it was trap
638 * that VJ failed to avoid. 8)
639 */
2de979bd 640 if (m == 0)
1da177e4
LT
641 m = 1;
642 if (tp->srtt != 0) {
643 m -= (tp->srtt >> 3); /* m is now error in rtt est */
644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
645 if (m < 0) {
646 m = -m; /* m is now abs(error) */
647 m -= (tp->mdev >> 2); /* similar update on mdev */
648 /* This is similar to one of Eifel findings.
649 * Eifel blocks mdev updates when rtt decreases.
650 * This solution is a bit different: we use finer gain
651 * for mdev in this case (alpha*beta).
652 * Like Eifel it also prevents growth of rto,
653 * but also it limits too fast rto decreases,
654 * happening in pure Eifel.
655 */
656 if (m > 0)
657 m >>= 3;
658 } else {
659 m -= (tp->mdev >> 2); /* similar update on mdev */
660 }
661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
662 if (tp->mdev > tp->mdev_max) {
663 tp->mdev_max = tp->mdev;
664 if (tp->mdev_max > tp->rttvar)
665 tp->rttvar = tp->mdev_max;
666 }
667 if (after(tp->snd_una, tp->rtt_seq)) {
668 if (tp->mdev_max < tp->rttvar)
056834d9 669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 670 tp->rtt_seq = tp->snd_nxt;
05bb1fad 671 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
672 }
673 } else {
674 /* no previous measure. */
056834d9
IJ
675 tp->srtt = m << 3; /* take the measured time to be rtt */
676 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
678 tp->rtt_seq = tp->snd_nxt;
679 }
1da177e4
LT
680}
681
682/* Calculate rto without backoff. This is the second half of Van Jacobson's
683 * routine referred to above.
684 */
463c84b9 685static inline void tcp_set_rto(struct sock *sk)
1da177e4 686{
463c84b9 687 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
688 /* Old crap is replaced with new one. 8)
689 *
690 * More seriously:
691 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 * It cannot be less due to utterly erratic ACK generation made
693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 * to do with delayed acks, because at cwnd>2 true delack timeout
695 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 696 * ACKs in some circumstances.
1da177e4 697 */
f1ecd5d9 698 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
699
700 /* 2. Fixups made earlier cannot be right.
701 * If we do not estimate RTO correctly without them,
702 * all the algo is pure shit and should be replaced
caa20d9a 703 * with correct one. It is exactly, which we pretend to do.
1da177e4 704 */
1da177e4 705
ee6aac59
IJ
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
708 */
f1ecd5d9 709 tcp_bound_rto(sk);
1da177e4
LT
710}
711
712/* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715 */
716void tcp_update_metrics(struct sock *sk)
717{
718 struct tcp_sock *tp = tcp_sk(sk);
719 struct dst_entry *dst = __sk_dst_get(sk);
720
721 if (sysctl_tcp_nometrics_save)
722 return;
723
724 dst_confirm(dst);
725
056834d9 726 if (dst && (dst->flags & DST_HOST)) {
6687e988 727 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 728 int m;
c1e20f7c 729 unsigned long rtt;
1da177e4 730
6687e988 731 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
734 * Reset our results.
735 */
736 if (!(dst_metric_locked(dst, RTAX_RTT)))
defb3519 737 dst_metric_set(dst, RTAX_RTT, 0);
1da177e4
LT
738 return;
739 }
740
c1e20f7c
SH
741 rtt = dst_metric_rtt(dst, RTAX_RTT);
742 m = rtt - tp->srtt;
1da177e4
LT
743
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
747 */
748 if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 if (m <= 0)
c1e20f7c 750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
1da177e4 751 else
c1e20f7c 752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
1da177e4
LT
753 }
754
755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
c1e20f7c 756 unsigned long var;
1da177e4
LT
757 if (m < 0)
758 m = -m;
759
760 /* Scale deviation to rttvar fixed point */
761 m >>= 1;
762 if (m < tp->mdev)
763 m = tp->mdev;
764
c1e20f7c
SH
765 var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 if (m >= var)
767 var = m;
1da177e4 768 else
c1e20f7c
SH
769 var -= (var - m) >> 2;
770
771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
1da177e4
LT
772 }
773
0b6a05c1 774 if (tcp_in_initial_slowstart(tp)) {
1da177e4
LT
775 /* Slow start still did not finish. */
776 if (dst_metric(dst, RTAX_SSTHRESH) &&
777 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
defb3519 779 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
1da177e4
LT
780 if (!dst_metric_locked(dst, RTAX_CWND) &&
781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
defb3519 782 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
1da177e4 783 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 784 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
defb3519
DM
787 dst_metric_set(dst, RTAX_SSTHRESH,
788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
1da177e4 789 if (!dst_metric_locked(dst, RTAX_CWND))
defb3519
DM
790 dst_metric_set(dst, RTAX_CWND,
791 (dst_metric(dst, RTAX_CWND) +
792 tp->snd_cwnd) >> 1);
1da177e4
LT
793 } else {
794 /* Else slow start did not finish, cwnd is non-sense,
795 ssthresh may be also invalid.
796 */
797 if (!dst_metric_locked(dst, RTAX_CWND))
defb3519
DM
798 dst_metric_set(dst, RTAX_CWND,
799 (dst_metric(dst, RTAX_CWND) +
800 tp->snd_ssthresh) >> 1);
5ffc02a1 801 if (dst_metric(dst, RTAX_SSTHRESH) &&
1da177e4 802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
5ffc02a1 803 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
defb3519 804 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
1da177e4
LT
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
5ffc02a1 808 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
1da177e4 809 tp->reordering != sysctl_tcp_reordering)
defb3519 810 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
1da177e4
LT
811 }
812 }
813}
814
1da177e4
LT
815__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
816{
817 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
818
22b71c8f 819 if (!cwnd)
442b9635 820 cwnd = TCP_INIT_CWND;
1da177e4
LT
821 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822}
823
40efc6fa 824/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 825void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
826{
827 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 828 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
829
830 tp->prior_ssthresh = 0;
831 tp->bytes_acked = 0;
e01f9d77 832 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 833 tp->undo_marker = 0;
3cfe3baa
IJ
834 if (set_ssthresh)
835 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
836 tp->snd_cwnd = min(tp->snd_cwnd,
837 tcp_packets_in_flight(tp) + 1U);
838 tp->snd_cwnd_cnt = 0;
839 tp->high_seq = tp->snd_nxt;
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 TCP_ECN_queue_cwr(tp);
842
843 tcp_set_ca_state(sk, TCP_CA_CWR);
844 }
845}
846
e60402d0
IJ
847/*
848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
849 * disables it when reordering is detected
850 */
851static void tcp_disable_fack(struct tcp_sock *tp)
852{
85cc391c
IJ
853 /* RFC3517 uses different metric in lost marker => reset on change */
854 if (tcp_is_fack(tp))
855 tp->lost_skb_hint = NULL;
e60402d0
IJ
856 tp->rx_opt.sack_ok &= ~2;
857}
858
564262c1 859/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
860static void tcp_dsack_seen(struct tcp_sock *tp)
861{
862 tp->rx_opt.sack_ok |= 4;
863}
864
1da177e4
LT
865/* Initialize metrics on socket. */
866
867static void tcp_init_metrics(struct sock *sk)
868{
869 struct tcp_sock *tp = tcp_sk(sk);
870 struct dst_entry *dst = __sk_dst_get(sk);
871
872 if (dst == NULL)
873 goto reset;
874
875 dst_confirm(dst);
876
877 if (dst_metric_locked(dst, RTAX_CWND))
878 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879 if (dst_metric(dst, RTAX_SSTHRESH)) {
880 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882 tp->snd_ssthresh = tp->snd_cwnd_clamp;
9ad7c049
JC
883 } else {
884 /* ssthresh may have been reduced unnecessarily during.
885 * 3WHS. Restore it back to its initial default.
886 */
887 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1da177e4
LT
888 }
889 if (dst_metric(dst, RTAX_REORDERING) &&
890 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 891 tcp_disable_fack(tp);
1da177e4
LT
892 tp->reordering = dst_metric(dst, RTAX_REORDERING);
893 }
894
9ad7c049 895 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
1da177e4
LT
896 goto reset;
897
898 /* Initial rtt is determined from SYN,SYN-ACK.
899 * The segment is small and rtt may appear much
900 * less than real one. Use per-dst memory
901 * to make it more realistic.
902 *
903 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 904 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
905 * packets force peer to delay ACKs and calculation is correct too.
906 * The algorithm is adaptive and, provided we follow specs, it
907 * NEVER underestimate RTT. BUT! If peer tries to make some clever
908 * tricks sort of "quick acks" for time long enough to decrease RTT
909 * to low value, and then abruptly stops to do it and starts to delay
910 * ACKs, wait for troubles.
911 */
c1e20f7c
SH
912 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
913 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
1da177e4
LT
914 tp->rtt_seq = tp->snd_nxt;
915 }
c1e20f7c
SH
916 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
917 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
488faa2a 918 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4 919 }
463c84b9 920 tcp_set_rto(sk);
1da177e4 921reset:
9ad7c049
JC
922 if (tp->srtt == 0) {
923 /* RFC2988bis: We've failed to get a valid RTT sample from
924 * 3WHS. This is most likely due to retransmission,
925 * including spurious one. Reset the RTO back to 3secs
926 * from the more aggressive 1sec to avoid more spurious
927 * retransmission.
d9f4fbaf 928 */
9ad7c049
JC
929 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
930 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
1da177e4 931 }
9ad7c049
JC
932 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
933 * retransmitted. In light of RFC2988bis' more aggressive 1sec
934 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
935 * retransmission has occurred.
936 */
937 if (tp->total_retrans > 1)
938 tp->snd_cwnd = 1;
939 else
940 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
d9f4fbaf 941 tp->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
942}
943
6687e988
ACM
944static void tcp_update_reordering(struct sock *sk, const int metric,
945 const int ts)
1da177e4 946{
6687e988 947 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 948 if (metric > tp->reordering) {
40b215e5
PE
949 int mib_idx;
950
1da177e4
LT
951 tp->reordering = min(TCP_MAX_REORDERING, metric);
952
953 /* This exciting event is worth to be remembered. 8) */
954 if (ts)
40b215e5 955 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 956 else if (tcp_is_reno(tp))
40b215e5 957 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 958 else if (tcp_is_fack(tp))
40b215e5 959 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 960 else
40b215e5
PE
961 mib_idx = LINUX_MIB_TCPSACKREORDER;
962
de0744af 963 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4
LT
964#if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971#endif
e60402d0 972 tcp_disable_fack(tp);
1da177e4
LT
973 }
974}
975
006f582c 976/* This must be called before lost_out is incremented */
c8c213f2
IJ
977static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
978{
006f582c 979 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
980 before(TCP_SKB_CB(skb)->seq,
981 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
982 tp->retransmit_skb_hint = skb;
983
984 if (!tp->lost_out ||
985 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
986 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
987}
988
41ea36e3
IJ
989static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
990{
991 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
992 tcp_verify_retransmit_hint(tp, skb);
993
994 tp->lost_out += tcp_skb_pcount(skb);
995 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
996 }
997}
998
e1aa680f
IJ
999static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1000 struct sk_buff *skb)
006f582c
IJ
1001{
1002 tcp_verify_retransmit_hint(tp, skb);
1003
1004 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1005 tp->lost_out += tcp_skb_pcount(skb);
1006 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007 }
1008}
1009
1da177e4
LT
1010/* This procedure tags the retransmission queue when SACKs arrive.
1011 *
1012 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1013 * Packets in queue with these bits set are counted in variables
1014 * sacked_out, retrans_out and lost_out, correspondingly.
1015 *
1016 * Valid combinations are:
1017 * Tag InFlight Description
1018 * 0 1 - orig segment is in flight.
1019 * S 0 - nothing flies, orig reached receiver.
1020 * L 0 - nothing flies, orig lost by net.
1021 * R 2 - both orig and retransmit are in flight.
1022 * L|R 1 - orig is lost, retransmit is in flight.
1023 * S|R 1 - orig reached receiver, retrans is still in flight.
1024 * (L|S|R is logically valid, it could occur when L|R is sacked,
1025 * but it is equivalent to plain S and code short-curcuits it to S.
1026 * L|S is logically invalid, it would mean -1 packet in flight 8))
1027 *
1028 * These 6 states form finite state machine, controlled by the following events:
1029 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1030 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1031 * 3. Loss detection event of one of three flavors:
1032 * A. Scoreboard estimator decided the packet is lost.
1033 * A'. Reno "three dupacks" marks head of queue lost.
1034 * A''. Its FACK modfication, head until snd.fack is lost.
1035 * B. SACK arrives sacking data transmitted after never retransmitted
1036 * hole was sent out.
1037 * C. SACK arrives sacking SND.NXT at the moment, when the
1038 * segment was retransmitted.
1039 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1040 *
1041 * It is pleasant to note, that state diagram turns out to be commutative,
1042 * so that we are allowed not to be bothered by order of our actions,
1043 * when multiple events arrive simultaneously. (see the function below).
1044 *
1045 * Reordering detection.
1046 * --------------------
1047 * Reordering metric is maximal distance, which a packet can be displaced
1048 * in packet stream. With SACKs we can estimate it:
1049 *
1050 * 1. SACK fills old hole and the corresponding segment was not
1051 * ever retransmitted -> reordering. Alas, we cannot use it
1052 * when segment was retransmitted.
1053 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1054 * for retransmitted and already SACKed segment -> reordering..
1055 * Both of these heuristics are not used in Loss state, when we cannot
1056 * account for retransmits accurately.
5b3c9882
IJ
1057 *
1058 * SACK block validation.
1059 * ----------------------
1060 *
1061 * SACK block range validation checks that the received SACK block fits to
1062 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1063 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1064 * it means that the receiver is rather inconsistent with itself reporting
1065 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1066 * perfectly valid, however, in light of RFC2018 which explicitly states
1067 * that "SACK block MUST reflect the newest segment. Even if the newest
1068 * segment is going to be discarded ...", not that it looks very clever
1069 * in case of head skb. Due to potentional receiver driven attacks, we
1070 * choose to avoid immediate execution of a walk in write queue due to
1071 * reneging and defer head skb's loss recovery to standard loss recovery
1072 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1073 *
1074 * Implements also blockage to start_seq wrap-around. Problem lies in the
1075 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1076 * there's no guarantee that it will be before snd_nxt (n). The problem
1077 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1078 * wrap (s_w):
1079 *
1080 * <- outs wnd -> <- wrapzone ->
1081 * u e n u_w e_w s n_w
1082 * | | | | | | |
1083 * |<------------+------+----- TCP seqno space --------------+---------->|
1084 * ...-- <2^31 ->| |<--------...
1085 * ...---- >2^31 ------>| |<--------...
1086 *
1087 * Current code wouldn't be vulnerable but it's better still to discard such
1088 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1089 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1090 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1091 * equal to the ideal case (infinite seqno space without wrap caused issues).
1092 *
1093 * With D-SACK the lower bound is extended to cover sequence space below
1094 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1095 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1096 * for the normal SACK blocks, explained above). But there all simplicity
1097 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1098 * fully below undo_marker they do not affect behavior in anyway and can
1099 * therefore be safely ignored. In rare cases (which are more or less
1100 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1101 * fragmentation and packet reordering past skb's retransmission. To consider
1102 * them correctly, the acceptable range must be extended even more though
1103 * the exact amount is rather hard to quantify. However, tp->max_window can
1104 * be used as an exaggerated estimate.
1da177e4 1105 */
5b3c9882
IJ
1106static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1107 u32 start_seq, u32 end_seq)
1108{
1109 /* Too far in future, or reversed (interpretation is ambiguous) */
1110 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1111 return 0;
1112
1113 /* Nasty start_seq wrap-around check (see comments above) */
1114 if (!before(start_seq, tp->snd_nxt))
1115 return 0;
1116
564262c1 1117 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1118 * start_seq == snd_una is non-sensical (see comments above)
1119 */
1120 if (after(start_seq, tp->snd_una))
1121 return 1;
1122
1123 if (!is_dsack || !tp->undo_marker)
1124 return 0;
1125
1126 /* ...Then it's D-SACK, and must reside below snd_una completely */
1127 if (!after(end_seq, tp->snd_una))
1128 return 0;
1129
1130 if (!before(start_seq, tp->undo_marker))
1131 return 1;
1132
1133 /* Too old */
1134 if (!after(end_seq, tp->undo_marker))
1135 return 0;
1136
1137 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1138 * start_seq < undo_marker and end_seq >= undo_marker.
1139 */
1140 return !before(start_seq, end_seq - tp->max_window);
1141}
1142
1c1e87ed
IJ
1143/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1144 * Event "C". Later note: FACK people cheated me again 8), we have to account
1145 * for reordering! Ugly, but should help.
f785a8e2
IJ
1146 *
1147 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1148 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1149 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1150 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1151 */
407ef1de 1152static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1153{
9f58f3b7 1154 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1155 struct tcp_sock *tp = tcp_sk(sk);
1156 struct sk_buff *skb;
f785a8e2 1157 int cnt = 0;
df2e014b 1158 u32 new_low_seq = tp->snd_nxt;
6859d494 1159 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1160
1161 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1162 !after(received_upto, tp->lost_retrans_low) ||
1163 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1164 return;
1c1e87ed
IJ
1165
1166 tcp_for_write_queue(skb, sk) {
1167 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1168
1169 if (skb == tcp_send_head(sk))
1170 break;
f785a8e2 1171 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1172 break;
1173 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1174 continue;
1175
f785a8e2
IJ
1176 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1177 continue;
1178
d0af4160
IJ
1179 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1180 * constraint here (see above) but figuring out that at
1181 * least tp->reordering SACK blocks reside between ack_seq
1182 * and received_upto is not easy task to do cheaply with
1183 * the available datastructures.
1184 *
1185 * Whether FACK should check here for tp->reordering segs
1186 * in-between one could argue for either way (it would be
1187 * rather simple to implement as we could count fack_count
1188 * during the walk and do tp->fackets_out - fack_count).
1189 */
1190 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1191 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1192 tp->retrans_out -= tcp_skb_pcount(skb);
1193
006f582c 1194 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1195 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1196 } else {
df2e014b 1197 if (before(ack_seq, new_low_seq))
b08d6cb2 1198 new_low_seq = ack_seq;
f785a8e2 1199 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1200 }
1201 }
b08d6cb2
IJ
1202
1203 if (tp->retrans_out)
1204 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1205}
5b3c9882 1206
1ed83465 1207static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
d06e021d
DM
1208 struct tcp_sack_block_wire *sp, int num_sacks,
1209 u32 prior_snd_una)
1210{
1ed83465 1211 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1212 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1213 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
d06e021d
DM
1214 int dup_sack = 0;
1215
1216 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1217 dup_sack = 1;
e60402d0 1218 tcp_dsack_seen(tp);
de0744af 1219 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1220 } else if (num_sacks > 1) {
d3e2ce3b
HH
1221 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1223
1224 if (!after(end_seq_0, end_seq_1) &&
1225 !before(start_seq_0, start_seq_1)) {
1226 dup_sack = 1;
e60402d0 1227 tcp_dsack_seen(tp);
de0744af
PE
1228 NET_INC_STATS_BH(sock_net(sk),
1229 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1230 }
1231 }
1232
1233 /* D-SACK for already forgotten data... Do dumb counting. */
c24f691b 1234 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
d06e021d
DM
1235 !after(end_seq_0, prior_snd_una) &&
1236 after(end_seq_0, tp->undo_marker))
1237 tp->undo_retrans--;
1238
1239 return dup_sack;
1240}
1241
a1197f5a
IJ
1242struct tcp_sacktag_state {
1243 int reord;
1244 int fack_count;
1245 int flag;
1246};
1247
d1935942
IJ
1248/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249 * the incoming SACK may not exactly match but we can find smaller MSS
1250 * aligned portion of it that matches. Therefore we might need to fragment
1251 * which may fail and creates some hassle (caller must handle error case
1252 * returns).
832d11c5
IJ
1253 *
1254 * FIXME: this could be merged to shift decision code
d1935942 1255 */
0f79efdc
AB
1256static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257 u32 start_seq, u32 end_seq)
d1935942
IJ
1258{
1259 int in_sack, err;
1260 unsigned int pkt_len;
adb92db8 1261 unsigned int mss;
d1935942
IJ
1262
1263 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1264 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1265
1266 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1267 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1268 mss = tcp_skb_mss(skb);
d1935942
IJ
1269 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1270
adb92db8 1271 if (!in_sack) {
d1935942 1272 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1273 if (pkt_len < mss)
1274 pkt_len = mss;
1275 } else {
d1935942 1276 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1277 if (pkt_len < mss)
1278 return -EINVAL;
1279 }
1280
1281 /* Round if necessary so that SACKs cover only full MSSes
1282 * and/or the remaining small portion (if present)
1283 */
1284 if (pkt_len > mss) {
1285 unsigned int new_len = (pkt_len / mss) * mss;
1286 if (!in_sack && new_len < pkt_len) {
1287 new_len += mss;
1288 if (new_len > skb->len)
1289 return 0;
1290 }
1291 pkt_len = new_len;
1292 }
1293 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1294 if (err < 0)
1295 return err;
1296 }
1297
1298 return in_sack;
1299}
1300
a1197f5a
IJ
1301static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1302 struct tcp_sacktag_state *state,
1303 int dup_sack, int pcount)
9e10c47c 1304{
6859d494 1305 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c 1306 u8 sacked = TCP_SKB_CB(skb)->sacked;
a1197f5a 1307 int fack_count = state->fack_count;
9e10c47c
IJ
1308
1309 /* Account D-SACK for retransmitted packet. */
1310 if (dup_sack && (sacked & TCPCB_RETRANS)) {
c24f691b
YC
1311 if (tp->undo_marker && tp->undo_retrans &&
1312 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
9e10c47c 1313 tp->undo_retrans--;
ede9f3b1 1314 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1315 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1316 }
1317
1318 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1319 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
a1197f5a 1320 return sacked;
9e10c47c
IJ
1321
1322 if (!(sacked & TCPCB_SACKED_ACKED)) {
1323 if (sacked & TCPCB_SACKED_RETRANS) {
1324 /* If the segment is not tagged as lost,
1325 * we do not clear RETRANS, believing
1326 * that retransmission is still in flight.
1327 */
1328 if (sacked & TCPCB_LOST) {
a1197f5a 1329 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1330 tp->lost_out -= pcount;
1331 tp->retrans_out -= pcount;
9e10c47c
IJ
1332 }
1333 } else {
1334 if (!(sacked & TCPCB_RETRANS)) {
1335 /* New sack for not retransmitted frame,
1336 * which was in hole. It is reordering.
1337 */
1338 if (before(TCP_SKB_CB(skb)->seq,
1339 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1340 state->reord = min(fack_count,
1341 state->reord);
9e10c47c
IJ
1342
1343 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1344 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
a1197f5a 1345 state->flag |= FLAG_ONLY_ORIG_SACKED;
9e10c47c
IJ
1346 }
1347
1348 if (sacked & TCPCB_LOST) {
a1197f5a 1349 sacked &= ~TCPCB_LOST;
f58b22fd 1350 tp->lost_out -= pcount;
9e10c47c
IJ
1351 }
1352 }
1353
a1197f5a
IJ
1354 sacked |= TCPCB_SACKED_ACKED;
1355 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1356 tp->sacked_out += pcount;
9e10c47c 1357
f58b22fd 1358 fack_count += pcount;
9e10c47c
IJ
1359
1360 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1361 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1362 before(TCP_SKB_CB(skb)->seq,
1363 TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1364 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1365
1366 if (fack_count > tp->fackets_out)
1367 tp->fackets_out = fack_count;
9e10c47c
IJ
1368 }
1369
1370 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1371 * frames and clear it. undo_retrans is decreased above, L|R frames
1372 * are accounted above as well.
1373 */
a1197f5a
IJ
1374 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1375 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1376 tp->retrans_out -= pcount;
9e10c47c
IJ
1377 }
1378
a1197f5a 1379 return sacked;
9e10c47c
IJ
1380}
1381
50133161 1382static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
a1197f5a 1383 struct tcp_sacktag_state *state,
9ec06ff5
IJ
1384 unsigned int pcount, int shifted, int mss,
1385 int dup_sack)
832d11c5
IJ
1386{
1387 struct tcp_sock *tp = tcp_sk(sk);
50133161 1388 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
832d11c5
IJ
1389
1390 BUG_ON(!pcount);
1391
92ee76b6
IJ
1392 /* Tweak before seqno plays */
1393 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1394 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1395 tp->lost_cnt_hint += pcount;
1396
832d11c5
IJ
1397 TCP_SKB_CB(prev)->end_seq += shifted;
1398 TCP_SKB_CB(skb)->seq += shifted;
1399
1400 skb_shinfo(prev)->gso_segs += pcount;
1401 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1402 skb_shinfo(skb)->gso_segs -= pcount;
1403
1404 /* When we're adding to gso_segs == 1, gso_size will be zero,
1405 * in theory this shouldn't be necessary but as long as DSACK
1406 * code can come after this skb later on it's better to keep
1407 * setting gso_size to something.
1408 */
1409 if (!skb_shinfo(prev)->gso_size) {
1410 skb_shinfo(prev)->gso_size = mss;
1411 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1412 }
1413
1414 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1415 if (skb_shinfo(skb)->gso_segs <= 1) {
1416 skb_shinfo(skb)->gso_size = 0;
1417 skb_shinfo(skb)->gso_type = 0;
1418 }
1419
a1197f5a 1420 /* We discard results */
9ec06ff5 1421 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
832d11c5
IJ
1422
1423 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1424 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1425
832d11c5
IJ
1426 if (skb->len > 0) {
1427 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1428 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
832d11c5
IJ
1429 return 0;
1430 }
1431
1432 /* Whole SKB was eaten :-) */
1433
92ee76b6
IJ
1434 if (skb == tp->retransmit_skb_hint)
1435 tp->retransmit_skb_hint = prev;
1436 if (skb == tp->scoreboard_skb_hint)
1437 tp->scoreboard_skb_hint = prev;
1438 if (skb == tp->lost_skb_hint) {
1439 tp->lost_skb_hint = prev;
1440 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1441 }
1442
832d11c5
IJ
1443 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1444 if (skb == tcp_highest_sack(sk))
1445 tcp_advance_highest_sack(sk, skb);
1446
1447 tcp_unlink_write_queue(skb, sk);
1448 sk_wmem_free_skb(sk, skb);
1449
111cc8b9
IJ
1450 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1451
832d11c5
IJ
1452 return 1;
1453}
1454
1455/* I wish gso_size would have a bit more sane initialization than
1456 * something-or-zero which complicates things
1457 */
775ffabf 1458static int tcp_skb_seglen(struct sk_buff *skb)
832d11c5 1459{
775ffabf 1460 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1461}
1462
1463/* Shifting pages past head area doesn't work */
1464static int skb_can_shift(struct sk_buff *skb)
1465{
1466 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1467}
1468
1469/* Try collapsing SACK blocks spanning across multiple skbs to a single
1470 * skb.
1471 */
1472static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1473 struct tcp_sacktag_state *state,
832d11c5 1474 u32 start_seq, u32 end_seq,
a1197f5a 1475 int dup_sack)
832d11c5
IJ
1476{
1477 struct tcp_sock *tp = tcp_sk(sk);
1478 struct sk_buff *prev;
1479 int mss;
1480 int pcount = 0;
1481 int len;
1482 int in_sack;
1483
1484 if (!sk_can_gso(sk))
1485 goto fallback;
1486
1487 /* Normally R but no L won't result in plain S */
1488 if (!dup_sack &&
9969ca5f 1489 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1490 goto fallback;
1491 if (!skb_can_shift(skb))
1492 goto fallback;
1493 /* This frame is about to be dropped (was ACKed). */
1494 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1495 goto fallback;
1496
1497 /* Can only happen with delayed DSACK + discard craziness */
1498 if (unlikely(skb == tcp_write_queue_head(sk)))
1499 goto fallback;
1500 prev = tcp_write_queue_prev(sk, skb);
1501
1502 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1503 goto fallback;
1504
1505 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1506 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1507
1508 if (in_sack) {
1509 len = skb->len;
1510 pcount = tcp_skb_pcount(skb);
775ffabf 1511 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1512
1513 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1514 * drop this restriction as unnecessary
1515 */
775ffabf 1516 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1517 goto fallback;
1518 } else {
1519 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1520 goto noop;
1521 /* CHECKME: This is non-MSS split case only?, this will
1522 * cause skipped skbs due to advancing loop btw, original
1523 * has that feature too
1524 */
1525 if (tcp_skb_pcount(skb) <= 1)
1526 goto noop;
1527
1528 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1529 if (!in_sack) {
1530 /* TODO: head merge to next could be attempted here
1531 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1532 * though it might not be worth of the additional hassle
1533 *
1534 * ...we can probably just fallback to what was done
1535 * previously. We could try merging non-SACKed ones
1536 * as well but it probably isn't going to buy off
1537 * because later SACKs might again split them, and
1538 * it would make skb timestamp tracking considerably
1539 * harder problem.
1540 */
1541 goto fallback;
1542 }
1543
1544 len = end_seq - TCP_SKB_CB(skb)->seq;
1545 BUG_ON(len < 0);
1546 BUG_ON(len > skb->len);
1547
1548 /* MSS boundaries should be honoured or else pcount will
1549 * severely break even though it makes things bit trickier.
1550 * Optimize common case to avoid most of the divides
1551 */
1552 mss = tcp_skb_mss(skb);
1553
1554 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1555 * drop this restriction as unnecessary
1556 */
775ffabf 1557 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1558 goto fallback;
1559
1560 if (len == mss) {
1561 pcount = 1;
1562 } else if (len < mss) {
1563 goto noop;
1564 } else {
1565 pcount = len / mss;
1566 len = pcount * mss;
1567 }
1568 }
1569
1570 if (!skb_shift(prev, skb, len))
1571 goto fallback;
9ec06ff5 1572 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1573 goto out;
1574
1575 /* Hole filled allows collapsing with the next as well, this is very
1576 * useful when hole on every nth skb pattern happens
1577 */
1578 if (prev == tcp_write_queue_tail(sk))
1579 goto out;
1580 skb = tcp_write_queue_next(sk, prev);
1581
f0bc52f3
IJ
1582 if (!skb_can_shift(skb) ||
1583 (skb == tcp_send_head(sk)) ||
1584 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1585 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1586 goto out;
1587
1588 len = skb->len;
1589 if (skb_shift(prev, skb, len)) {
1590 pcount += tcp_skb_pcount(skb);
9ec06ff5 1591 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1592 }
1593
1594out:
a1197f5a 1595 state->fack_count += pcount;
832d11c5
IJ
1596 return prev;
1597
1598noop:
1599 return skb;
1600
1601fallback:
111cc8b9 1602 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1603 return NULL;
1604}
1605
68f8353b
IJ
1606static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1607 struct tcp_sack_block *next_dup,
a1197f5a 1608 struct tcp_sacktag_state *state,
68f8353b 1609 u32 start_seq, u32 end_seq,
a1197f5a 1610 int dup_sack_in)
68f8353b 1611{
832d11c5
IJ
1612 struct tcp_sock *tp = tcp_sk(sk);
1613 struct sk_buff *tmp;
1614
68f8353b
IJ
1615 tcp_for_write_queue_from(skb, sk) {
1616 int in_sack = 0;
1617 int dup_sack = dup_sack_in;
1618
1619 if (skb == tcp_send_head(sk))
1620 break;
1621
1622 /* queue is in-order => we can short-circuit the walk early */
1623 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1624 break;
1625
1626 if ((next_dup != NULL) &&
1627 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1628 in_sack = tcp_match_skb_to_sack(sk, skb,
1629 next_dup->start_seq,
1630 next_dup->end_seq);
1631 if (in_sack > 0)
1632 dup_sack = 1;
1633 }
1634
832d11c5
IJ
1635 /* skb reference here is a bit tricky to get right, since
1636 * shifting can eat and free both this skb and the next,
1637 * so not even _safe variant of the loop is enough.
1638 */
1639 if (in_sack <= 0) {
a1197f5a
IJ
1640 tmp = tcp_shift_skb_data(sk, skb, state,
1641 start_seq, end_seq, dup_sack);
832d11c5
IJ
1642 if (tmp != NULL) {
1643 if (tmp != skb) {
1644 skb = tmp;
1645 continue;
1646 }
1647
1648 in_sack = 0;
1649 } else {
1650 in_sack = tcp_match_skb_to_sack(sk, skb,
1651 start_seq,
1652 end_seq);
1653 }
1654 }
1655
68f8353b
IJ
1656 if (unlikely(in_sack < 0))
1657 break;
1658
832d11c5 1659 if (in_sack) {
a1197f5a
IJ
1660 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1661 state,
1662 dup_sack,
1663 tcp_skb_pcount(skb));
68f8353b 1664
832d11c5
IJ
1665 if (!before(TCP_SKB_CB(skb)->seq,
1666 tcp_highest_sack_seq(tp)))
1667 tcp_advance_highest_sack(sk, skb);
1668 }
1669
a1197f5a 1670 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1671 }
1672 return skb;
1673}
1674
1675/* Avoid all extra work that is being done by sacktag while walking in
1676 * a normal way
1677 */
1678static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1679 struct tcp_sacktag_state *state,
1680 u32 skip_to_seq)
68f8353b
IJ
1681{
1682 tcp_for_write_queue_from(skb, sk) {
1683 if (skb == tcp_send_head(sk))
1684 break;
1685
e8bae275 1686 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1687 break;
d152a7d8 1688
a1197f5a 1689 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1690 }
1691 return skb;
1692}
1693
1694static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1695 struct sock *sk,
1696 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1697 struct tcp_sacktag_state *state,
1698 u32 skip_to_seq)
68f8353b
IJ
1699{
1700 if (next_dup == NULL)
1701 return skb;
1702
1703 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1704 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1705 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1706 next_dup->start_seq, next_dup->end_seq,
1707 1);
68f8353b
IJ
1708 }
1709
1710 return skb;
1711}
1712
1713static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1714{
1715 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1716}
1717
1da177e4 1718static int
056834d9
IJ
1719tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1720 u32 prior_snd_una)
1da177e4 1721{
6687e988 1722 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1723 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1724 unsigned char *ptr = (skb_transport_header(ack_skb) +
1725 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1726 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1727 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1728 struct tcp_sack_block *cache;
a1197f5a 1729 struct tcp_sacktag_state state;
68f8353b 1730 struct sk_buff *skb;
4389dded 1731 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1732 int used_sacks;
7769f406 1733 int found_dup_sack = 0;
68f8353b 1734 int i, j;
fda03fbb 1735 int first_sack_index;
1da177e4 1736
a1197f5a
IJ
1737 state.flag = 0;
1738 state.reord = tp->packets_out;
1739
d738cd8f 1740 if (!tp->sacked_out) {
de83c058
IJ
1741 if (WARN_ON(tp->fackets_out))
1742 tp->fackets_out = 0;
6859d494 1743 tcp_highest_sack_reset(sk);
d738cd8f 1744 }
1da177e4 1745
1ed83465 1746 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1747 num_sacks, prior_snd_una);
1748 if (found_dup_sack)
a1197f5a 1749 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1750
1751 /* Eliminate too old ACKs, but take into
1752 * account more or less fresh ones, they can
1753 * contain valid SACK info.
1754 */
1755 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1756 return 0;
1757