Merge branch 'for-linus' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
1da177e4
LT
105
106#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
109#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
110
111#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114
4dc2665e
IJ
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
1da177e4
LT
117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118
e905a9ed 119/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 120 * real world.
e905a9ed 121 */
40efc6fa
SH
122static void tcp_measure_rcv_mss(struct sock *sk,
123 const struct sk_buff *skb)
1da177e4 124{
463c84b9 125 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 126 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 127 unsigned int len;
1da177e4 128
e905a9ed 129 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
130
131 /* skb->len may jitter because of SACKs, even if peer
132 * sends good full-sized frames.
133 */
ff9b5e0f 134 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
135 if (len >= icsk->icsk_ack.rcv_mss) {
136 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
137 } else {
138 /* Otherwise, we make more careful check taking into account,
139 * that SACKs block is variable.
140 *
141 * "len" is invariant segment length, including TCP header.
142 */
9c70220b 143 len += skb->data - skb_transport_header(skb);
1da177e4
LT
144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 /* If PSH is not set, packet should be
146 * full sized, provided peer TCP is not badly broken.
147 * This observation (if it is correct 8)) allows
148 * to handle super-low mtu links fairly.
149 */
150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 151 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
152 /* Subtract also invariant (if peer is RFC compliant),
153 * tcp header plus fixed timestamp option length.
154 * Resulting "len" is MSS free of SACK jitter.
155 */
463c84b9
ACM
156 len -= tcp_sk(sk)->tcp_header_len;
157 icsk->icsk_ack.last_seg_size = len;
1da177e4 158 if (len == lss) {
463c84b9 159 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
160 return;
161 }
162 }
1ef9696c
AK
163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
166 }
167}
168
463c84b9 169static void tcp_incr_quickack(struct sock *sk)
1da177e4 170{
463c84b9
ACM
171 struct inet_connection_sock *icsk = inet_csk(sk);
172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
173
174 if (quickacks==0)
175 quickacks=2;
463c84b9
ACM
176 if (quickacks > icsk->icsk_ack.quick)
177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
178}
179
463c84b9 180void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 181{
463c84b9
ACM
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 tcp_incr_quickack(sk);
184 icsk->icsk_ack.pingpong = 0;
185 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
186}
187
188/* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
190 */
191
463c84b9 192static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 193{
463c84b9
ACM
194 const struct inet_connection_sock *icsk = inet_csk(sk);
195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
196}
197
198/* Buffer size and advertised window tuning.
199 *
200 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
201 */
202
203static void tcp_fixup_sndbuf(struct sock *sk)
204{
205 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206 sizeof(struct sk_buff);
207
208 if (sk->sk_sndbuf < 3 * sndmem)
209 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
210}
211
212/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
213 *
214 * All tcp_full_space() is split to two parts: "network" buffer, allocated
215 * forward and advertised in receiver window (tp->rcv_wnd) and
216 * "application buffer", required to isolate scheduling/application
217 * latencies from network.
218 * window_clamp is maximal advertised window. It can be less than
219 * tcp_full_space(), in this case tcp_full_space() - window_clamp
220 * is reserved for "application" buffer. The less window_clamp is
221 * the smoother our behaviour from viewpoint of network, but the lower
222 * throughput and the higher sensitivity of the connection to losses. 8)
223 *
224 * rcv_ssthresh is more strict window_clamp used at "slow start"
225 * phase to predict further behaviour of this connection.
226 * It is used for two goals:
227 * - to enforce header prediction at sender, even when application
228 * requires some significant "application buffer". It is check #1.
229 * - to prevent pruning of receive queue because of misprediction
230 * of receiver window. Check #2.
231 *
232 * The scheme does not work when sender sends good segments opening
caa20d9a 233 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
234 * in common situations. Otherwise, we have to rely on queue collapsing.
235 */
236
237/* Slow part of check#2. */
9e412ba7 238static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 239{
9e412ba7 240 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
241 /* Optimize this! */
242 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 243 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
244
245 while (tp->rcv_ssthresh <= window) {
246 if (truesize <= skb->len)
463c84b9 247 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
248
249 truesize >>= 1;
250 window >>= 1;
251 }
252 return 0;
253}
254
9e412ba7 255static void tcp_grow_window(struct sock *sk,
40efc6fa 256 struct sk_buff *skb)
1da177e4 257{
9e412ba7
IJ
258 struct tcp_sock *tp = tcp_sk(sk);
259
1da177e4
LT
260 /* Check #1 */
261 if (tp->rcv_ssthresh < tp->window_clamp &&
262 (int)tp->rcv_ssthresh < tcp_space(sk) &&
263 !tcp_memory_pressure) {
264 int incr;
265
266 /* Check #2. Increase window, if skb with such overhead
267 * will fit to rcvbuf in future.
268 */
269 if (tcp_win_from_space(skb->truesize) <= skb->len)
270 incr = 2*tp->advmss;
271 else
9e412ba7 272 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
273
274 if (incr) {
275 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 276 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
277 }
278 }
279}
280
281/* 3. Tuning rcvbuf, when connection enters established state. */
282
283static void tcp_fixup_rcvbuf(struct sock *sk)
284{
285 struct tcp_sock *tp = tcp_sk(sk);
286 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
287
288 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 289 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
290 * (was 3; 4 is minimum to allow fast retransmit to work.)
291 */
292 while (tcp_win_from_space(rcvmem) < tp->advmss)
293 rcvmem += 128;
294 if (sk->sk_rcvbuf < 4 * rcvmem)
295 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
296}
297
caa20d9a 298/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
299 * established state.
300 */
301static void tcp_init_buffer_space(struct sock *sk)
302{
303 struct tcp_sock *tp = tcp_sk(sk);
304 int maxwin;
305
306 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
307 tcp_fixup_rcvbuf(sk);
308 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
309 tcp_fixup_sndbuf(sk);
310
311 tp->rcvq_space.space = tp->rcv_wnd;
312
313 maxwin = tcp_full_space(sk);
314
315 if (tp->window_clamp >= maxwin) {
316 tp->window_clamp = maxwin;
317
318 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
319 tp->window_clamp = max(maxwin -
320 (maxwin >> sysctl_tcp_app_win),
321 4 * tp->advmss);
322 }
323
324 /* Force reservation of one segment. */
325 if (sysctl_tcp_app_win &&
326 tp->window_clamp > 2 * tp->advmss &&
327 tp->window_clamp + tp->advmss > maxwin)
328 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
329
330 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
331 tp->snd_cwnd_stamp = tcp_time_stamp;
332}
333
1da177e4 334/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 335static void tcp_clamp_window(struct sock *sk)
1da177e4 336{
9e412ba7 337 struct tcp_sock *tp = tcp_sk(sk);
6687e988 338 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 339
6687e988 340 icsk->icsk_ack.quick = 0;
1da177e4 341
326f36e9
JH
342 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344 !tcp_memory_pressure &&
345 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
346 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347 sysctl_tcp_rmem[2]);
1da177e4 348 }
326f36e9 349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 350 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
351}
352
40efc6fa
SH
353
354/* Initialize RCV_MSS value.
355 * RCV_MSS is an our guess about MSS used by the peer.
356 * We haven't any direct information about the MSS.
357 * It's better to underestimate the RCV_MSS rather than overestimate.
358 * Overestimations make us ACKing less frequently than needed.
359 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
360 */
361void tcp_initialize_rcv_mss(struct sock *sk)
362{
363 struct tcp_sock *tp = tcp_sk(sk);
364 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
365
366 hint = min(hint, tp->rcv_wnd/2);
367 hint = min(hint, TCP_MIN_RCVMSS);
368 hint = max(hint, TCP_MIN_MSS);
369
370 inet_csk(sk)->icsk_ack.rcv_mss = hint;
371}
372
1da177e4
LT
373/* Receiver "autotuning" code.
374 *
375 * The algorithm for RTT estimation w/o timestamps is based on
376 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
377 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
378 *
379 * More detail on this code can be found at
380 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
381 * though this reference is out of date. A new paper
382 * is pending.
383 */
384static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
385{
386 u32 new_sample = tp->rcv_rtt_est.rtt;
387 long m = sample;
388
389 if (m == 0)
390 m = 1;
391
392 if (new_sample != 0) {
393 /* If we sample in larger samples in the non-timestamp
394 * case, we could grossly overestimate the RTT especially
395 * with chatty applications or bulk transfer apps which
396 * are stalled on filesystem I/O.
397 *
398 * Also, since we are only going for a minimum in the
31f34269 399 * non-timestamp case, we do not smooth things out
caa20d9a 400 * else with timestamps disabled convergence takes too
1da177e4
LT
401 * long.
402 */
403 if (!win_dep) {
404 m -= (new_sample >> 3);
405 new_sample += m;
406 } else if (m < new_sample)
407 new_sample = m << 3;
408 } else {
caa20d9a 409 /* No previous measure. */
1da177e4
LT
410 new_sample = m << 3;
411 }
412
413 if (tp->rcv_rtt_est.rtt != new_sample)
414 tp->rcv_rtt_est.rtt = new_sample;
415}
416
417static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
418{
419 if (tp->rcv_rtt_est.time == 0)
420 goto new_measure;
421 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
422 return;
423 tcp_rcv_rtt_update(tp,
424 jiffies - tp->rcv_rtt_est.time,
425 1);
426
427new_measure:
428 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
429 tp->rcv_rtt_est.time = tcp_time_stamp;
430}
431
463c84b9 432static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 433{
463c84b9 434 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
435 if (tp->rx_opt.rcv_tsecr &&
436 (TCP_SKB_CB(skb)->end_seq -
463c84b9 437 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
438 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
439}
440
441/*
442 * This function should be called every time data is copied to user space.
443 * It calculates the appropriate TCP receive buffer space.
444 */
445void tcp_rcv_space_adjust(struct sock *sk)
446{
447 struct tcp_sock *tp = tcp_sk(sk);
448 int time;
449 int space;
e905a9ed 450
1da177e4
LT
451 if (tp->rcvq_space.time == 0)
452 goto new_measure;
e905a9ed 453
1da177e4
LT
454 time = tcp_time_stamp - tp->rcvq_space.time;
455 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
456 tp->rcv_rtt_est.rtt == 0)
457 return;
e905a9ed 458
1da177e4
LT
459 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
460
461 space = max(tp->rcvq_space.space, space);
462
463 if (tp->rcvq_space.space != space) {
464 int rcvmem;
465
466 tp->rcvq_space.space = space;
467
6fcf9412
JH
468 if (sysctl_tcp_moderate_rcvbuf &&
469 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
470 int new_clamp = space;
471
472 /* Receive space grows, normalize in order to
473 * take into account packet headers and sk_buff
474 * structure overhead.
475 */
476 space /= tp->advmss;
477 if (!space)
478 space = 1;
479 rcvmem = (tp->advmss + MAX_TCP_HEADER +
480 16 + sizeof(struct sk_buff));
481 while (tcp_win_from_space(rcvmem) < tp->advmss)
482 rcvmem += 128;
483 space *= rcvmem;
484 space = min(space, sysctl_tcp_rmem[2]);
485 if (space > sk->sk_rcvbuf) {
486 sk->sk_rcvbuf = space;
487
488 /* Make the window clamp follow along. */
489 tp->window_clamp = new_clamp;
490 }
491 }
492 }
e905a9ed 493
1da177e4
LT
494new_measure:
495 tp->rcvq_space.seq = tp->copied_seq;
496 tp->rcvq_space.time = tcp_time_stamp;
497}
498
499/* There is something which you must keep in mind when you analyze the
500 * behavior of the tp->ato delayed ack timeout interval. When a
501 * connection starts up, we want to ack as quickly as possible. The
502 * problem is that "good" TCP's do slow start at the beginning of data
503 * transmission. The means that until we send the first few ACK's the
504 * sender will sit on his end and only queue most of his data, because
505 * he can only send snd_cwnd unacked packets at any given time. For
506 * each ACK we send, he increments snd_cwnd and transmits more of his
507 * queue. -DaveM
508 */
9e412ba7 509static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 510{
9e412ba7 511 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 512 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
513 u32 now;
514
463c84b9 515 inet_csk_schedule_ack(sk);
1da177e4 516
463c84b9 517 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
518
519 tcp_rcv_rtt_measure(tp);
e905a9ed 520
1da177e4
LT
521 now = tcp_time_stamp;
522
463c84b9 523 if (!icsk->icsk_ack.ato) {
1da177e4
LT
524 /* The _first_ data packet received, initialize
525 * delayed ACK engine.
526 */
463c84b9
ACM
527 tcp_incr_quickack(sk);
528 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 529 } else {
463c84b9 530 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
531
532 if (m <= TCP_ATO_MIN/2) {
533 /* The fastest case is the first. */
463c84b9
ACM
534 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
535 } else if (m < icsk->icsk_ack.ato) {
536 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
537 if (icsk->icsk_ack.ato > icsk->icsk_rto)
538 icsk->icsk_ack.ato = icsk->icsk_rto;
539 } else if (m > icsk->icsk_rto) {
caa20d9a 540 /* Too long gap. Apparently sender failed to
1da177e4
LT
541 * restart window, so that we send ACKs quickly.
542 */
463c84b9 543 tcp_incr_quickack(sk);
1da177e4
LT
544 sk_stream_mem_reclaim(sk);
545 }
546 }
463c84b9 547 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
548
549 TCP_ECN_check_ce(tp, skb);
550
551 if (skb->len >= 128)
9e412ba7 552 tcp_grow_window(sk, skb);
1da177e4
LT
553}
554
1da177e4
LT
555/* Called to compute a smoothed rtt estimate. The data fed to this
556 * routine either comes from timestamps, or from segments that were
557 * known _not_ to have been retransmitted [see Karn/Partridge
558 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
559 * piece by Van Jacobson.
560 * NOTE: the next three routines used to be one big routine.
561 * To save cycles in the RFC 1323 implementation it was better to break
562 * it up into three procedures. -- erics
563 */
2d2abbab 564static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 565{
6687e988 566 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
567 long m = mrtt; /* RTT */
568
1da177e4
LT
569 /* The following amusing code comes from Jacobson's
570 * article in SIGCOMM '88. Note that rtt and mdev
571 * are scaled versions of rtt and mean deviation.
e905a9ed 572 * This is designed to be as fast as possible
1da177e4
LT
573 * m stands for "measurement".
574 *
575 * On a 1990 paper the rto value is changed to:
576 * RTO = rtt + 4 * mdev
577 *
578 * Funny. This algorithm seems to be very broken.
579 * These formulae increase RTO, when it should be decreased, increase
31f34269 580 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
581 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
582 * does not matter how to _calculate_ it. Seems, it was trap
583 * that VJ failed to avoid. 8)
584 */
2de979bd 585 if (m == 0)
1da177e4
LT
586 m = 1;
587 if (tp->srtt != 0) {
588 m -= (tp->srtt >> 3); /* m is now error in rtt est */
589 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
590 if (m < 0) {
591 m = -m; /* m is now abs(error) */
592 m -= (tp->mdev >> 2); /* similar update on mdev */
593 /* This is similar to one of Eifel findings.
594 * Eifel blocks mdev updates when rtt decreases.
595 * This solution is a bit different: we use finer gain
596 * for mdev in this case (alpha*beta).
597 * Like Eifel it also prevents growth of rto,
598 * but also it limits too fast rto decreases,
599 * happening in pure Eifel.
600 */
601 if (m > 0)
602 m >>= 3;
603 } else {
604 m -= (tp->mdev >> 2); /* similar update on mdev */
605 }
606 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
607 if (tp->mdev > tp->mdev_max) {
608 tp->mdev_max = tp->mdev;
609 if (tp->mdev_max > tp->rttvar)
610 tp->rttvar = tp->mdev_max;
611 }
612 if (after(tp->snd_una, tp->rtt_seq)) {
613 if (tp->mdev_max < tp->rttvar)
614 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
615 tp->rtt_seq = tp->snd_nxt;
616 tp->mdev_max = TCP_RTO_MIN;
617 }
618 } else {
619 /* no previous measure. */
620 tp->srtt = m<<3; /* take the measured time to be rtt */
621 tp->mdev = m<<1; /* make sure rto = 3*rtt */
622 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
623 tp->rtt_seq = tp->snd_nxt;
624 }
1da177e4
LT
625}
626
627/* Calculate rto without backoff. This is the second half of Van Jacobson's
628 * routine referred to above.
629 */
463c84b9 630static inline void tcp_set_rto(struct sock *sk)
1da177e4 631{
463c84b9 632 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
633 /* Old crap is replaced with new one. 8)
634 *
635 * More seriously:
636 * 1. If rtt variance happened to be less 50msec, it is hallucination.
637 * It cannot be less due to utterly erratic ACK generation made
638 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
639 * to do with delayed acks, because at cwnd>2 true delack timeout
640 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 641 * ACKs in some circumstances.
1da177e4 642 */
463c84b9 643 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
644
645 /* 2. Fixups made earlier cannot be right.
646 * If we do not estimate RTO correctly without them,
647 * all the algo is pure shit and should be replaced
caa20d9a 648 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
649 */
650}
651
652/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
653 * guarantees that rto is higher.
654 */
463c84b9 655static inline void tcp_bound_rto(struct sock *sk)
1da177e4 656{
463c84b9
ACM
657 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
658 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
659}
660
661/* Save metrics learned by this TCP session.
662 This function is called only, when TCP finishes successfully
663 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
664 */
665void tcp_update_metrics(struct sock *sk)
666{
667 struct tcp_sock *tp = tcp_sk(sk);
668 struct dst_entry *dst = __sk_dst_get(sk);
669
670 if (sysctl_tcp_nometrics_save)
671 return;
672
673 dst_confirm(dst);
674
675 if (dst && (dst->flags&DST_HOST)) {
6687e988 676 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
677 int m;
678
6687e988 679 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
680 /* This session failed to estimate rtt. Why?
681 * Probably, no packets returned in time.
682 * Reset our results.
683 */
684 if (!(dst_metric_locked(dst, RTAX_RTT)))
685 dst->metrics[RTAX_RTT-1] = 0;
686 return;
687 }
688
689 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
690
691 /* If newly calculated rtt larger than stored one,
692 * store new one. Otherwise, use EWMA. Remember,
693 * rtt overestimation is always better than underestimation.
694 */
695 if (!(dst_metric_locked(dst, RTAX_RTT))) {
696 if (m <= 0)
697 dst->metrics[RTAX_RTT-1] = tp->srtt;
698 else
699 dst->metrics[RTAX_RTT-1] -= (m>>3);
700 }
701
702 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
703 if (m < 0)
704 m = -m;
705
706 /* Scale deviation to rttvar fixed point */
707 m >>= 1;
708 if (m < tp->mdev)
709 m = tp->mdev;
710
711 if (m >= dst_metric(dst, RTAX_RTTVAR))
712 dst->metrics[RTAX_RTTVAR-1] = m;
713 else
714 dst->metrics[RTAX_RTTVAR-1] -=
715 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
716 }
717
718 if (tp->snd_ssthresh >= 0xFFFF) {
719 /* Slow start still did not finish. */
720 if (dst_metric(dst, RTAX_SSTHRESH) &&
721 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
722 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
724 if (!dst_metric_locked(dst, RTAX_CWND) &&
725 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
727 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 728 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
729 /* Cong. avoidance phase, cwnd is reliable. */
730 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
731 dst->metrics[RTAX_SSTHRESH-1] =
732 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
733 if (!dst_metric_locked(dst, RTAX_CWND))
734 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
735 } else {
736 /* Else slow start did not finish, cwnd is non-sense,
737 ssthresh may be also invalid.
738 */
739 if (!dst_metric_locked(dst, RTAX_CWND))
740 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
741 if (dst->metrics[RTAX_SSTHRESH-1] &&
742 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
743 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
744 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
745 }
746
747 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
748 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
749 tp->reordering != sysctl_tcp_reordering)
750 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
751 }
752 }
753}
754
755/* Numbers are taken from RFC2414. */
756__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
757{
758 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
759
760 if (!cwnd) {
c1b4a7e6 761 if (tp->mss_cache > 1460)
1da177e4
LT
762 cwnd = 2;
763 else
c1b4a7e6 764 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
765 }
766 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
767}
768
40efc6fa 769/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 770void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
771{
772 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 773 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
774
775 tp->prior_ssthresh = 0;
776 tp->bytes_acked = 0;
e01f9d77 777 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 778 tp->undo_marker = 0;
3cfe3baa
IJ
779 if (set_ssthresh)
780 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
781 tp->snd_cwnd = min(tp->snd_cwnd,
782 tcp_packets_in_flight(tp) + 1U);
783 tp->snd_cwnd_cnt = 0;
784 tp->high_seq = tp->snd_nxt;
785 tp->snd_cwnd_stamp = tcp_time_stamp;
786 TCP_ECN_queue_cwr(tp);
787
788 tcp_set_ca_state(sk, TCP_CA_CWR);
789 }
790}
791
1da177e4
LT
792/* Initialize metrics on socket. */
793
794static void tcp_init_metrics(struct sock *sk)
795{
796 struct tcp_sock *tp = tcp_sk(sk);
797 struct dst_entry *dst = __sk_dst_get(sk);
798
799 if (dst == NULL)
800 goto reset;
801
802 dst_confirm(dst);
803
804 if (dst_metric_locked(dst, RTAX_CWND))
805 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
806 if (dst_metric(dst, RTAX_SSTHRESH)) {
807 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
808 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
809 tp->snd_ssthresh = tp->snd_cwnd_clamp;
810 }
811 if (dst_metric(dst, RTAX_REORDERING) &&
812 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
813 tp->rx_opt.sack_ok &= ~2;
814 tp->reordering = dst_metric(dst, RTAX_REORDERING);
815 }
816
817 if (dst_metric(dst, RTAX_RTT) == 0)
818 goto reset;
819
820 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
821 goto reset;
822
823 /* Initial rtt is determined from SYN,SYN-ACK.
824 * The segment is small and rtt may appear much
825 * less than real one. Use per-dst memory
826 * to make it more realistic.
827 *
828 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 829 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
830 * packets force peer to delay ACKs and calculation is correct too.
831 * The algorithm is adaptive and, provided we follow specs, it
832 * NEVER underestimate RTT. BUT! If peer tries to make some clever
833 * tricks sort of "quick acks" for time long enough to decrease RTT
834 * to low value, and then abruptly stops to do it and starts to delay
835 * ACKs, wait for troubles.
836 */
837 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
838 tp->srtt = dst_metric(dst, RTAX_RTT);
839 tp->rtt_seq = tp->snd_nxt;
840 }
841 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
842 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
843 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
844 }
463c84b9
ACM
845 tcp_set_rto(sk);
846 tcp_bound_rto(sk);
847 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
848 goto reset;
849 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
850 tp->snd_cwnd_stamp = tcp_time_stamp;
851 return;
852
853reset:
854 /* Play conservative. If timestamps are not
855 * supported, TCP will fail to recalculate correct
856 * rtt, if initial rto is too small. FORGET ALL AND RESET!
857 */
858 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
859 tp->srtt = 0;
860 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 861 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
862 }
863}
864
6687e988
ACM
865static void tcp_update_reordering(struct sock *sk, const int metric,
866 const int ts)
1da177e4 867{
6687e988 868 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
869 if (metric > tp->reordering) {
870 tp->reordering = min(TCP_MAX_REORDERING, metric);
871
872 /* This exciting event is worth to be remembered. 8) */
873 if (ts)
874 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
875 else if (IsReno(tp))
876 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
877 else if (IsFack(tp))
878 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
879 else
880 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
881#if FASTRETRANS_DEBUG > 1
882 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 883 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
884 tp->reordering,
885 tp->fackets_out,
886 tp->sacked_out,
887 tp->undo_marker ? tp->undo_retrans : 0);
888#endif
889 /* Disable FACK yet. */
890 tp->rx_opt.sack_ok &= ~2;
891 }
892}
893
894/* This procedure tags the retransmission queue when SACKs arrive.
895 *
896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897 * Packets in queue with these bits set are counted in variables
898 * sacked_out, retrans_out and lost_out, correspondingly.
899 *
900 * Valid combinations are:
901 * Tag InFlight Description
902 * 0 1 - orig segment is in flight.
903 * S 0 - nothing flies, orig reached receiver.
904 * L 0 - nothing flies, orig lost by net.
905 * R 2 - both orig and retransmit are in flight.
906 * L|R 1 - orig is lost, retransmit is in flight.
907 * S|R 1 - orig reached receiver, retrans is still in flight.
908 * (L|S|R is logically valid, it could occur when L|R is sacked,
909 * but it is equivalent to plain S and code short-curcuits it to S.
910 * L|S is logically invalid, it would mean -1 packet in flight 8))
911 *
912 * These 6 states form finite state machine, controlled by the following events:
913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
915 * 3. Loss detection event of one of three flavors:
916 * A. Scoreboard estimator decided the packet is lost.
917 * A'. Reno "three dupacks" marks head of queue lost.
918 * A''. Its FACK modfication, head until snd.fack is lost.
919 * B. SACK arrives sacking data transmitted after never retransmitted
920 * hole was sent out.
921 * C. SACK arrives sacking SND.NXT at the moment, when the
922 * segment was retransmitted.
923 * 4. D-SACK added new rule: D-SACK changes any tag to S.
924 *
925 * It is pleasant to note, that state diagram turns out to be commutative,
926 * so that we are allowed not to be bothered by order of our actions,
927 * when multiple events arrive simultaneously. (see the function below).
928 *
929 * Reordering detection.
930 * --------------------
931 * Reordering metric is maximal distance, which a packet can be displaced
932 * in packet stream. With SACKs we can estimate it:
933 *
934 * 1. SACK fills old hole and the corresponding segment was not
935 * ever retransmitted -> reordering. Alas, we cannot use it
936 * when segment was retransmitted.
937 * 2. The last flaw is solved with D-SACK. D-SACK arrives
938 * for retransmitted and already SACKed segment -> reordering..
939 * Both of these heuristics are not used in Loss state, when we cannot
940 * account for retransmits accurately.
941 */
942static int
943tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
944{
6687e988 945 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 946 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
947 unsigned char *ptr = (skb_transport_header(ack_skb) +
948 TCP_SKB_CB(ack_skb)->sacked);
269bd27e 949 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 950 struct sk_buff *cached_skb;
1da177e4
LT
951 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
952 int reord = tp->packets_out;
953 int prior_fackets;
954 u32 lost_retrans = 0;
955 int flag = 0;
7769f406 956 int found_dup_sack = 0;
fda03fbb 957 int cached_fack_count;
1da177e4 958 int i;
fda03fbb 959 int first_sack_index;
1da177e4 960
1da177e4
LT
961 if (!tp->sacked_out)
962 tp->fackets_out = 0;
963 prior_fackets = tp->fackets_out;
964
6f74651a
BE
965 /* Check for D-SACK. */
966 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
7769f406 967 found_dup_sack = 1;
6f74651a
BE
968 tp->rx_opt.sack_ok |= 4;
969 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
970 } else if (num_sacks > 1 &&
971 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
972 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
7769f406 973 found_dup_sack = 1;
6f74651a
BE
974 tp->rx_opt.sack_ok |= 4;
975 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
976 }
977
978 /* D-SACK for already forgotten data...
979 * Do dumb counting. */
7769f406 980 if (found_dup_sack &&
6f74651a
BE
981 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
982 after(ntohl(sp[0].end_seq), tp->undo_marker))
983 tp->undo_retrans--;
984
985 /* Eliminate too old ACKs, but take into
986 * account more or less fresh ones, they can
987 * contain valid SACK info.
988 */
989 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
990 return 0;
991
6a438bbe
SH
992 /* SACK fastpath:
993 * if the only SACK change is the increase of the end_seq of
994 * the first block then only apply that SACK block
995 * and use retrans queue hinting otherwise slowpath */
996 flag = 1;
6f74651a
BE
997 for (i = 0; i < num_sacks; i++) {
998 __be32 start_seq = sp[i].start_seq;
999 __be32 end_seq = sp[i].end_seq;
6a438bbe 1000
6f74651a 1001 if (i == 0) {
6a438bbe
SH
1002 if (tp->recv_sack_cache[i].start_seq != start_seq)
1003 flag = 0;
1004 } else {
1005 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1006 (tp->recv_sack_cache[i].end_seq != end_seq))
1007 flag = 0;
1008 }
1009 tp->recv_sack_cache[i].start_seq = start_seq;
1010 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1011 }
8a3c3a97
BE
1012 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1013 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1014 tp->recv_sack_cache[i].start_seq = 0;
1015 tp->recv_sack_cache[i].end_seq = 0;
1016 }
6a438bbe 1017
fda03fbb 1018 first_sack_index = 0;
6a438bbe
SH
1019 if (flag)
1020 num_sacks = 1;
1021 else {
1022 int j;
1023 tp->fastpath_skb_hint = NULL;
1024
1025 /* order SACK blocks to allow in order walk of the retrans queue */
1026 for (i = num_sacks-1; i > 0; i--) {
1027 for (j = 0; j < i; j++){
1028 if (after(ntohl(sp[j].start_seq),
1029 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1030 struct tcp_sack_block_wire tmp;
1031
1032 tmp = sp[j];
1033 sp[j] = sp[j+1];
1034 sp[j+1] = tmp;
fda03fbb
BE
1035
1036 /* Track where the first SACK block goes to */
1037 if (j == first_sack_index)
1038 first_sack_index = j+1;
6a438bbe
SH
1039 }
1040
1041 }
1042 }
1043 }
1044
1045 /* clear flag as used for different purpose in following code */
1046 flag = 0;
1047
fda03fbb
BE
1048 /* Use SACK fastpath hint if valid */
1049 cached_skb = tp->fastpath_skb_hint;
1050 cached_fack_count = tp->fastpath_cnt_hint;
1051 if (!cached_skb) {
fe067e8a 1052 cached_skb = tcp_write_queue_head(sk);
fda03fbb
BE
1053 cached_fack_count = 0;
1054 }
1055
6a438bbe
SH
1056 for (i=0; i<num_sacks; i++, sp++) {
1057 struct sk_buff *skb;
1058 __u32 start_seq = ntohl(sp->start_seq);
1059 __u32 end_seq = ntohl(sp->end_seq);
1060 int fack_count;
7769f406 1061 int dup_sack = (found_dup_sack && (i == first_sack_index));
6a438bbe 1062
fda03fbb
BE
1063 skb = cached_skb;
1064 fack_count = cached_fack_count;
1da177e4
LT
1065
1066 /* Event "B" in the comment above. */
1067 if (after(end_seq, tp->high_seq))
1068 flag |= FLAG_DATA_LOST;
1069
fe067e8a 1070 tcp_for_write_queue_from(skb, sk) {
6475be16
DM
1071 int in_sack, pcount;
1072 u8 sacked;
1da177e4 1073
fe067e8a
DM
1074 if (skb == tcp_send_head(sk))
1075 break;
1076
fda03fbb
BE
1077 cached_skb = skb;
1078 cached_fack_count = fack_count;
1079 if (i == first_sack_index) {
1080 tp->fastpath_skb_hint = skb;
1081 tp->fastpath_cnt_hint = fack_count;
1082 }
6a438bbe 1083
1da177e4
LT
1084 /* The retransmission queue is always in order, so
1085 * we can short-circuit the walk early.
1086 */
6475be16 1087 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1088 break;
1089
3c05d92e
HX
1090 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1091 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1092
6475be16
DM
1093 pcount = tcp_skb_pcount(skb);
1094
3c05d92e
HX
1095 if (pcount > 1 && !in_sack &&
1096 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1097 unsigned int pkt_len;
1098
3c05d92e
HX
1099 in_sack = !after(start_seq,
1100 TCP_SKB_CB(skb)->seq);
1101
1102 if (!in_sack)
6475be16
DM
1103 pkt_len = (start_seq -
1104 TCP_SKB_CB(skb)->seq);
1105 else
1106 pkt_len = (end_seq -
1107 TCP_SKB_CB(skb)->seq);
7967168c 1108 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1109 break;
1110 pcount = tcp_skb_pcount(skb);
1111 }
1112
1113 fack_count += pcount;
1da177e4 1114
6475be16
DM
1115 sacked = TCP_SKB_CB(skb)->sacked;
1116
1da177e4
LT
1117 /* Account D-SACK for retransmitted packet. */
1118 if ((dup_sack && in_sack) &&
1119 (sacked & TCPCB_RETRANS) &&
1120 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1121 tp->undo_retrans--;
1122
1123 /* The frame is ACKed. */
1124 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1125 if (sacked&TCPCB_RETRANS) {
1126 if ((dup_sack && in_sack) &&
1127 (sacked&TCPCB_SACKED_ACKED))
1128 reord = min(fack_count, reord);
1129 } else {
1130 /* If it was in a hole, we detected reordering. */
1131 if (fack_count < prior_fackets &&
1132 !(sacked&TCPCB_SACKED_ACKED))
1133 reord = min(fack_count, reord);
1134 }
1135
1136 /* Nothing to do; acked frame is about to be dropped. */
1137 continue;
1138 }
1139
1140 if ((sacked&TCPCB_SACKED_RETRANS) &&
1141 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1142 (!lost_retrans || after(end_seq, lost_retrans)))
1143 lost_retrans = end_seq;
1144
1145 if (!in_sack)
1146 continue;
1147
1148 if (!(sacked&TCPCB_SACKED_ACKED)) {
1149 if (sacked & TCPCB_SACKED_RETRANS) {
1150 /* If the segment is not tagged as lost,
1151 * we do not clear RETRANS, believing
1152 * that retransmission is still in flight.
1153 */
1154 if (sacked & TCPCB_LOST) {
1155 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1156 tp->lost_out -= tcp_skb_pcount(skb);
1157 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1158
1159 /* clear lost hint */
1160 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1161 }
1162 } else {
1163 /* New sack for not retransmitted frame,
1164 * which was in hole. It is reordering.
1165 */
1166 if (!(sacked & TCPCB_RETRANS) &&
1167 fack_count < prior_fackets)
1168 reord = min(fack_count, reord);
1169
1170 if (sacked & TCPCB_LOST) {
1171 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1172 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1173
1174 /* clear lost hint */
1175 tp->retransmit_skb_hint = NULL;
1da177e4 1176 }
4dc2665e
IJ
1177 /* SACK enhanced F-RTO detection.
1178 * Set flag if and only if non-rexmitted
1179 * segments below frto_highmark are
1180 * SACKed (RFC4138; Appendix B).
1181 * Clearing correct due to in-order walk
1182 */
1183 if (after(end_seq, tp->frto_highmark)) {
1184 flag &= ~FLAG_ONLY_ORIG_SACKED;
1185 } else {
1186 if (!(sacked & TCPCB_RETRANS))
1187 flag |= FLAG_ONLY_ORIG_SACKED;
1188 }
1da177e4
LT
1189 }
1190
1191 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1192 flag |= FLAG_DATA_SACKED;
1193 tp->sacked_out += tcp_skb_pcount(skb);
1194
1195 if (fack_count > tp->fackets_out)
1196 tp->fackets_out = fack_count;
1197 } else {
1198 if (dup_sack && (sacked&TCPCB_RETRANS))
1199 reord = min(fack_count, reord);
1200 }
1201
1202 /* D-SACK. We can detect redundant retransmission
1203 * in S|R and plain R frames and clear it.
1204 * undo_retrans is decreased above, L|R frames
1205 * are accounted above as well.
1206 */
1207 if (dup_sack &&
1208 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1209 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1211 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1212 }
1213 }
1214 }
1215
1216 /* Check for lost retransmit. This superb idea is
1217 * borrowed from "ratehalving". Event "C".
1218 * Later note: FACK people cheated me again 8),
1219 * we have to account for reordering! Ugly,
1220 * but should help.
1221 */
6687e988 1222 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1223 struct sk_buff *skb;
1224
fe067e8a
DM
1225 tcp_for_write_queue(skb, sk) {
1226 if (skb == tcp_send_head(sk))
1227 break;
1da177e4
LT
1228 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1229 break;
1230 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1231 continue;
1232 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1233 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1234 (IsFack(tp) ||
1235 !before(lost_retrans,
1236 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1237 tp->mss_cache))) {
1da177e4
LT
1238 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1239 tp->retrans_out -= tcp_skb_pcount(skb);
1240
6a438bbe
SH
1241 /* clear lost hint */
1242 tp->retransmit_skb_hint = NULL;
1243
1da177e4
LT
1244 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1245 tp->lost_out += tcp_skb_pcount(skb);
1246 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1247 flag |= FLAG_DATA_SACKED;
1248 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1249 }
1250 }
1251 }
1252 }
1253
1254 tp->left_out = tp->sacked_out + tp->lost_out;
1255
288035f9 1256 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1257 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1258 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1259
1260#if FASTRETRANS_DEBUG > 0
1261 BUG_TRAP((int)tp->sacked_out >= 0);
1262 BUG_TRAP((int)tp->lost_out >= 0);
1263 BUG_TRAP((int)tp->retrans_out >= 0);
1264 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1265#endif
1266 return flag;
1267}
1268
575ee714
IJ
1269/* F-RTO can only be used if TCP has never retransmitted anything other than
1270 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
30935cf4 1271 */
46d0de4e 1272int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1273{
1274 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1275 struct sk_buff *skb;
1276
575ee714 1277 if (!sysctl_tcp_frto)
46d0de4e 1278 return 0;
bdaae17d 1279
4dc2665e
IJ
1280 if (IsSackFrto())
1281 return 1;
1282
46d0de4e
IJ
1283 /* Avoid expensive walking of rexmit queue if possible */
1284 if (tp->retrans_out > 1)
1285 return 0;
1286
fe067e8a
DM
1287 skb = tcp_write_queue_head(sk);
1288 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1289 tcp_for_write_queue_from(skb, sk) {
1290 if (skb == tcp_send_head(sk))
1291 break;
46d0de4e
IJ
1292 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1293 return 0;
1294 /* Short-circuit when first non-SACKed skb has been checked */
1295 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1296 break;
1297 }
1298 return 1;
bdaae17d
IJ
1299}
1300
30935cf4
IJ
1301/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1302 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1303 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1304 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1305 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1306 * bits are handled if the Loss state is really to be entered (in
1307 * tcp_enter_frto_loss).
7487c48c
IJ
1308 *
1309 * Do like tcp_enter_loss() would; when RTO expires the second time it
1310 * does:
1311 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1312 */
1313void tcp_enter_frto(struct sock *sk)
1314{
6687e988 1315 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1316 struct tcp_sock *tp = tcp_sk(sk);
1317 struct sk_buff *skb;
1318
7487c48c 1319 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1320 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1321 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1322 !icsk->icsk_retransmits)) {
6687e988 1323 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1324 /* Our state is too optimistic in ssthresh() call because cwnd
1325 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1326 * recovery has not yet completed. Pattern would be this: RTO,
1327 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1328 * up here twice).
1329 * RFC4138 should be more specific on what to do, even though
1330 * RTO is quite unlikely to occur after the first Cumulative ACK
1331 * due to back-off and complexity of triggering events ...
1332 */
1333 if (tp->frto_counter) {
1334 u32 stored_cwnd;
1335 stored_cwnd = tp->snd_cwnd;
1336 tp->snd_cwnd = 2;
1337 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1338 tp->snd_cwnd = stored_cwnd;
1339 } else {
1340 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1341 }
1342 /* ... in theory, cong.control module could do "any tricks" in
1343 * ssthresh(), which means that ca_state, lost bits and lost_out
1344 * counter would have to be faked before the call occurs. We
1345 * consider that too expensive, unlikely and hacky, so modules
1346 * using these in ssthresh() must deal these incompatibility
1347 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1348 */
6687e988 1349 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1350 }
1351
1da177e4
LT
1352 tp->undo_marker = tp->snd_una;
1353 tp->undo_retrans = 0;
1354
fe067e8a 1355 skb = tcp_write_queue_head(sk);
d1a54c6a 1356 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1358 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4
LT
1359 }
1360 tcp_sync_left_out(tp);
1361
4dc2665e
IJ
1362 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1363 * The last condition is necessary at least in tp->frto_counter case.
1364 */
1365 if (IsSackFrto() && (tp->frto_counter ||
1366 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1367 after(tp->high_seq, tp->snd_una)) {
1368 tp->frto_highmark = tp->high_seq;
1369 } else {
1370 tp->frto_highmark = tp->snd_nxt;
1371 }
7b0eb22b
IJ
1372 tcp_set_ca_state(sk, TCP_CA_Disorder);
1373 tp->high_seq = tp->snd_nxt;
7487c48c 1374 tp->frto_counter = 1;
1da177e4
LT
1375}
1376
1377/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1378 * which indicates that we should follow the traditional RTO recovery,
1379 * i.e. mark everything lost and do go-back-N retransmission.
1380 */
d1a54c6a 1381static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1382{
1383 struct tcp_sock *tp = tcp_sk(sk);
1384 struct sk_buff *skb;
1385 int cnt = 0;
1386
1387 tp->sacked_out = 0;
1388 tp->lost_out = 0;
1389 tp->fackets_out = 0;
d1a54c6a 1390 tp->retrans_out = 0;
1da177e4 1391
fe067e8a
DM
1392 tcp_for_write_queue(skb, sk) {
1393 if (skb == tcp_send_head(sk))
1394 break;
1da177e4 1395 cnt += tcp_skb_pcount(skb);
d1a54c6a
IJ
1396 /*
1397 * Count the retransmission made on RTO correctly (only when
1398 * waiting for the first ACK and did not get it)...
1399 */
1400 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
0a9f2a46
IJ
1401 /* For some reason this R-bit might get cleared? */
1402 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1403 tp->retrans_out += tcp_skb_pcount(skb);
d1a54c6a
IJ
1404 /* ...enter this if branch just for the first segment */
1405 flag |= FLAG_DATA_ACKED;
1406 } else {
1407 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1408 }
1da177e4
LT
1409 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1410
1411 /* Do not mark those segments lost that were
1412 * forward transmitted after RTO
1413 */
1414 if (!after(TCP_SKB_CB(skb)->end_seq,
1415 tp->frto_highmark)) {
1416 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1417 tp->lost_out += tcp_skb_pcount(skb);
1418 }
1419 } else {
1420 tp->sacked_out += tcp_skb_pcount(skb);
1421 tp->fackets_out = cnt;
1422 }
1423 }
1424 tcp_sync_left_out(tp);
1425
95c4922b 1426 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1427 tp->snd_cwnd_cnt = 0;
1428 tp->snd_cwnd_stamp = tcp_time_stamp;
1429 tp->undo_marker = 0;
1430 tp->frto_counter = 0;
1431
1432 tp->reordering = min_t(unsigned int, tp->reordering,
1433 sysctl_tcp_reordering);
6687e988 1434 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1435 tp->high_seq = tp->frto_highmark;
1436 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1437
1438 clear_all_retrans_hints(tp);
1da177e4
LT
1439}
1440
1441void tcp_clear_retrans(struct tcp_sock *tp)
1442{
1443 tp->left_out = 0;
1444 tp->retrans_out = 0;
1445
1446 tp->fackets_out = 0;
1447 tp->sacked_out = 0;
1448 tp->lost_out = 0;
1449
1450 tp->undo_marker = 0;
1451 tp->undo_retrans = 0;
1452}
1453
1454/* Enter Loss state. If "how" is not zero, forget all SACK information
1455 * and reset tags completely, otherwise preserve SACKs. If receiver
1456 * dropped its ofo queue, we will know this due to reneging detection.
1457 */
1458void tcp_enter_loss(struct sock *sk, int how)
1459{
6687e988 1460 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1461 struct tcp_sock *tp = tcp_sk(sk);
1462 struct sk_buff *skb;
1463 int cnt = 0;
1464
1465 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1466 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1467 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1468 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1469 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1470 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1471 }
1472 tp->snd_cwnd = 1;
1473 tp->snd_cwnd_cnt = 0;
1474 tp->snd_cwnd_stamp = tcp_time_stamp;
1475
9772efb9 1476 tp->bytes_acked = 0;
1da177e4
LT
1477 tcp_clear_retrans(tp);
1478
1479 /* Push undo marker, if it was plain RTO and nothing
1480 * was retransmitted. */
1481 if (!how)
1482 tp->undo_marker = tp->snd_una;
1483
fe067e8a
DM
1484 tcp_for_write_queue(skb, sk) {
1485 if (skb == tcp_send_head(sk))
1486 break;
1da177e4
LT
1487 cnt += tcp_skb_pcount(skb);
1488 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1489 tp->undo_marker = 0;
1490 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1491 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1492 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1493 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1494 tp->lost_out += tcp_skb_pcount(skb);
1495 } else {
1496 tp->sacked_out += tcp_skb_pcount(skb);
1497 tp->fackets_out = cnt;
1498 }
1499 }
1500 tcp_sync_left_out(tp);
1501
1502 tp->reordering = min_t(unsigned int, tp->reordering,
1503 sysctl_tcp_reordering);
6687e988 1504 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1505 tp->high_seq = tp->snd_nxt;
1506 TCP_ECN_queue_cwr(tp);
580e572a
IJ
1507 /* Abort FRTO algorithm if one is in progress */
1508 tp->frto_counter = 0;
6a438bbe
SH
1509
1510 clear_all_retrans_hints(tp);
1da177e4
LT
1511}
1512
463c84b9 1513static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1514{
1515 struct sk_buff *skb;
1516
1517 /* If ACK arrived pointing to a remembered SACK,
1518 * it means that our remembered SACKs do not reflect
1519 * real state of receiver i.e.
1520 * receiver _host_ is heavily congested (or buggy).
1521 * Do processing similar to RTO timeout.
1522 */
fe067e8a 1523 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1da177e4 1524 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1525 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1526 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1527
1528 tcp_enter_loss(sk, 1);
6687e988 1529 icsk->icsk_retransmits++;
fe067e8a 1530 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
463c84b9 1531 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1532 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1533 return 1;
1534 }
1535 return 0;
1536}
1537
1538static inline int tcp_fackets_out(struct tcp_sock *tp)
1539{
1540 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1541}
1542
463c84b9 1543static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1544{
463c84b9 1545 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1546}
1547
9e412ba7 1548static inline int tcp_head_timedout(struct sock *sk)
1da177e4 1549{
9e412ba7
IJ
1550 struct tcp_sock *tp = tcp_sk(sk);
1551
1da177e4 1552 return tp->packets_out &&
fe067e8a 1553 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1da177e4
LT
1554}
1555
1556/* Linux NewReno/SACK/FACK/ECN state machine.
1557 * --------------------------------------
1558 *
1559 * "Open" Normal state, no dubious events, fast path.
1560 * "Disorder" In all the respects it is "Open",
1561 * but requires a bit more attention. It is entered when
1562 * we see some SACKs or dupacks. It is split of "Open"
1563 * mainly to move some processing from fast path to slow one.
1564 * "CWR" CWND was reduced due to some Congestion Notification event.
1565 * It can be ECN, ICMP source quench, local device congestion.
1566 * "Recovery" CWND was reduced, we are fast-retransmitting.
1567 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1568 *
1569 * tcp_fastretrans_alert() is entered:
1570 * - each incoming ACK, if state is not "Open"
1571 * - when arrived ACK is unusual, namely:
1572 * * SACK
1573 * * Duplicate ACK.
1574 * * ECN ECE.
1575 *
1576 * Counting packets in flight is pretty simple.
1577 *
1578 * in_flight = packets_out - left_out + retrans_out
1579 *
1580 * packets_out is SND.NXT-SND.UNA counted in packets.
1581 *
1582 * retrans_out is number of retransmitted segments.
1583 *
1584 * left_out is number of segments left network, but not ACKed yet.
1585 *
1586 * left_out = sacked_out + lost_out
1587 *
1588 * sacked_out: Packets, which arrived to receiver out of order
1589 * and hence not ACKed. With SACKs this number is simply
1590 * amount of SACKed data. Even without SACKs
1591 * it is easy to give pretty reliable estimate of this number,
1592 * counting duplicate ACKs.
1593 *
1594 * lost_out: Packets lost by network. TCP has no explicit
1595 * "loss notification" feedback from network (for now).
1596 * It means that this number can be only _guessed_.
1597 * Actually, it is the heuristics to predict lossage that
1598 * distinguishes different algorithms.
1599 *
1600 * F.e. after RTO, when all the queue is considered as lost,
1601 * lost_out = packets_out and in_flight = retrans_out.
1602 *
1603 * Essentially, we have now two algorithms counting
1604 * lost packets.
1605 *
1606 * FACK: It is the simplest heuristics. As soon as we decided
1607 * that something is lost, we decide that _all_ not SACKed
1608 * packets until the most forward SACK are lost. I.e.
1609 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1610 * It is absolutely correct estimate, if network does not reorder
1611 * packets. And it loses any connection to reality when reordering
1612 * takes place. We use FACK by default until reordering
1613 * is suspected on the path to this destination.
1614 *
1615 * NewReno: when Recovery is entered, we assume that one segment
1616 * is lost (classic Reno). While we are in Recovery and
1617 * a partial ACK arrives, we assume that one more packet
1618 * is lost (NewReno). This heuristics are the same in NewReno
1619 * and SACK.
1620 *
1621 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1622 * deflation etc. CWND is real congestion window, never inflated, changes
1623 * only according to classic VJ rules.
1624 *
1625 * Really tricky (and requiring careful tuning) part of algorithm
1626 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1627 * The first determines the moment _when_ we should reduce CWND and,
1628 * hence, slow down forward transmission. In fact, it determines the moment
1629 * when we decide that hole is caused by loss, rather than by a reorder.
1630 *
1631 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1632 * holes, caused by lost packets.
1633 *
1634 * And the most logically complicated part of algorithm is undo
1635 * heuristics. We detect false retransmits due to both too early
1636 * fast retransmit (reordering) and underestimated RTO, analyzing
1637 * timestamps and D-SACKs. When we detect that some segments were
1638 * retransmitted by mistake and CWND reduction was wrong, we undo
1639 * window reduction and abort recovery phase. This logic is hidden
1640 * inside several functions named tcp_try_undo_<something>.
1641 */
1642
1643/* This function decides, when we should leave Disordered state
1644 * and enter Recovery phase, reducing congestion window.
1645 *
1646 * Main question: may we further continue forward transmission
1647 * with the same cwnd?
1648 */
9e412ba7 1649static int tcp_time_to_recover(struct sock *sk)
1da177e4 1650{
9e412ba7 1651 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1652 __u32 packets_out;
1653
52c63f1e
IJ
1654 /* Do not perform any recovery during FRTO algorithm */
1655 if (tp->frto_counter)
1656 return 0;
1657
1da177e4
LT
1658 /* Trick#1: The loss is proven. */
1659 if (tp->lost_out)
1660 return 1;
1661
1662 /* Not-A-Trick#2 : Classic rule... */
1663 if (tcp_fackets_out(tp) > tp->reordering)
1664 return 1;
1665
1666 /* Trick#3 : when we use RFC2988 timer restart, fast
1667 * retransmit can be triggered by timeout of queue head.
1668 */
9e412ba7 1669 if (tcp_head_timedout(sk))
1da177e4
LT
1670 return 1;
1671
1672 /* Trick#4: It is still not OK... But will it be useful to delay
1673 * recovery more?
1674 */
1675 packets_out = tp->packets_out;
1676 if (packets_out <= tp->reordering &&
1677 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
9e412ba7 1678 !tcp_may_send_now(sk)) {
1da177e4
LT
1679 /* We have nothing to send. This connection is limited
1680 * either by receiver window or by application.
1681 */
1682 return 1;
1683 }
1684
1685 return 0;
1686}
1687
1688/* If we receive more dupacks than we expected counting segments
1689 * in assumption of absent reordering, interpret this as reordering.
1690 * The only another reason could be bug in receiver TCP.
1691 */
6687e988 1692static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1da177e4 1693{
6687e988 1694 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1695 u32 holes;
1696
1697 holes = max(tp->lost_out, 1U);
1698 holes = min(holes, tp->packets_out);
1699
1700 if ((tp->sacked_out + holes) > tp->packets_out) {
1701 tp->sacked_out = tp->packets_out - holes;
6687e988 1702 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1da177e4
LT
1703 }
1704}
1705
1706/* Emulate SACKs for SACKless connection: account for a new dupack. */
1707
6687e988 1708static void tcp_add_reno_sack(struct sock *sk)
1da177e4 1709{
6687e988 1710 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1711 tp->sacked_out++;
6687e988 1712 tcp_check_reno_reordering(sk, 0);
1da177e4
LT
1713 tcp_sync_left_out(tp);
1714}
1715
1716/* Account for ACK, ACKing some data in Reno Recovery phase. */
1717
9e412ba7 1718static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1da177e4 1719{
9e412ba7
IJ
1720 struct tcp_sock *tp = tcp_sk(sk);
1721
1da177e4
LT
1722 if (acked > 0) {
1723 /* One ACK acked hole. The rest eat duplicate ACKs. */
1724 if (acked-1 >= tp->sacked_out)
1725 tp->sacked_out = 0;
1726 else
1727 tp->sacked_out -= acked-1;
1728 }
6687e988 1729 tcp_check_reno_reordering(sk, acked);
1da177e4
LT
1730 tcp_sync_left_out(tp);
1731}
1732
1733static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1734{
1735 tp->sacked_out = 0;
1736 tp->left_out = tp->lost_out;
1737}
1738
1739/* Mark head of queue up as lost. */
9e412ba7 1740static void tcp_mark_head_lost(struct sock *sk,
1da177e4
LT
1741 int packets, u32 high_seq)
1742{
9e412ba7 1743 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1744 struct sk_buff *skb;
6a438bbe 1745 int cnt;
1da177e4 1746
6a438bbe
SH
1747 BUG_TRAP(packets <= tp->packets_out);
1748 if (tp->lost_skb_hint) {
1749 skb = tp->lost_skb_hint;
1750 cnt = tp->lost_cnt_hint;
1751 } else {
fe067e8a 1752 skb = tcp_write_queue_head(sk);
6a438bbe
SH
1753 cnt = 0;
1754 }
1da177e4 1755
fe067e8a
DM
1756 tcp_for_write_queue_from(skb, sk) {
1757 if (skb == tcp_send_head(sk))
1758 break;
6a438bbe
SH
1759 /* TODO: do this better */
1760 /* this is not the most efficient way to do this... */
1761 tp->lost_skb_hint = skb;
1762 tp->lost_cnt_hint = cnt;
1763 cnt += tcp_skb_pcount(skb);
1764 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1765 break;
1766 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1767 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1768 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1769
1770 /* clear xmit_retransmit_queue hints
1771 * if this is beyond hint */
2de979bd
SH
1772 if (tp->retransmit_skb_hint != NULL &&
1773 before(TCP_SKB_CB(skb)->seq,
1774 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
6a438bbe 1775 tp->retransmit_skb_hint = NULL;
2de979bd 1776
1da177e4
LT
1777 }
1778 }
1779 tcp_sync_left_out(tp);
1780}
1781
1782/* Account newly detected lost packet(s) */
1783
9e412ba7 1784static void tcp_update_scoreboard(struct sock *sk)
1da177e4 1785{
9e412ba7
IJ
1786 struct tcp_sock *tp = tcp_sk(sk);
1787
1da177e4
LT
1788 if (IsFack(tp)) {
1789 int lost = tp->fackets_out - tp->reordering;
1790 if (lost <= 0)
1791 lost = 1;
9e412ba7 1792 tcp_mark_head_lost(sk, lost, tp->high_seq);
1da177e4 1793 } else {
9e412ba7 1794 tcp_mark_head_lost(sk, 1, tp->high_seq);
1da177e4
LT
1795 }
1796
1797 /* New heuristics: it is possible only after we switched
1798 * to restart timer each time when something is ACKed.
1799 * Hence, we can detect timed out packets during fast
1800 * retransmit without falling to slow start.
1801 */
9e412ba7 1802 if (!IsReno(tp) && tcp_head_timedout(sk)) {
1da177e4
LT
1803 struct sk_buff *skb;
1804
6a438bbe 1805 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
fe067e8a 1806 : tcp_write_queue_head(sk);
6a438bbe 1807
fe067e8a
DM
1808 tcp_for_write_queue_from(skb, sk) {
1809 if (skb == tcp_send_head(sk))
1810 break;
6a438bbe
SH
1811 if (!tcp_skb_timedout(sk, skb))
1812 break;
1813
1814 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
1815 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1816 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1817
1818 /* clear xmit_retrans hint */
1819 if (tp->retransmit_skb_hint &&
1820 before(TCP_SKB_CB(skb)->seq,
1821 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1822
1823 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1824 }
1825 }
6a438bbe
SH
1826
1827 tp->scoreboard_skb_hint = skb;
1828
1da177e4
LT
1829 tcp_sync_left_out(tp);
1830 }
1831}
1832
1833/* CWND moderation, preventing bursts due to too big ACKs
1834 * in dubious situations.
1835 */
1836static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1837{
1838 tp->snd_cwnd = min(tp->snd_cwnd,
1839 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1840 tp->snd_cwnd_stamp = tcp_time_stamp;
1841}
1842
72dc5b92
SH
1843/* Lower bound on congestion window is slow start threshold
1844 * unless congestion avoidance choice decides to overide it.
1845 */
1846static inline u32 tcp_cwnd_min(const struct sock *sk)
1847{
1848 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1849
1850 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1851}
1852
1da177e4 1853/* Decrease cwnd each second ack. */
6687e988 1854static void tcp_cwnd_down(struct sock *sk)
1da177e4 1855{
6687e988 1856 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1857 int decr = tp->snd_cwnd_cnt + 1;
1da177e4
LT
1858
1859 tp->snd_cwnd_cnt = decr&1;
1860 decr >>= 1;
1861
72dc5b92 1862 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1da177e4
LT
1863 tp->snd_cwnd -= decr;
1864
1865 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1866 tp->snd_cwnd_stamp = tcp_time_stamp;
1867}
1868
1869/* Nothing was retransmitted or returned timestamp is less
1870 * than timestamp of the first retransmission.
1871 */
1872static inline int tcp_packet_delayed(struct tcp_sock *tp)
1873{
1874 return !tp->retrans_stamp ||
1875 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1876 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1877}
1878
1879/* Undo procedures. */
1880
1881#if FASTRETRANS_DEBUG > 1
9e412ba7 1882static void DBGUNDO(struct sock *sk, const char *msg)
1da177e4 1883{
9e412ba7 1884 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1885 struct inet_sock *inet = inet_sk(sk);
9e412ba7 1886
1da177e4
LT
1887 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1888 msg,
1889 NIPQUAD(inet->daddr), ntohs(inet->dport),
1890 tp->snd_cwnd, tp->left_out,
1891 tp->snd_ssthresh, tp->prior_ssthresh,
1892 tp->packets_out);
1893}
1894#else
1895#define DBGUNDO(x...) do { } while (0)
1896#endif
1897
6687e988 1898static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 1899{
6687e988
ACM
1900 struct tcp_sock *tp = tcp_sk(sk);
1901
1da177e4 1902 if (tp->prior_ssthresh) {
6687e988
ACM
1903 const struct inet_connection_sock *icsk = inet_csk(sk);
1904
1905 if (icsk->icsk_ca_ops->undo_cwnd)
1906 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
1907 else
1908 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1909
1910 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1911 tp->snd_ssthresh = tp->prior_ssthresh;
1912 TCP_ECN_withdraw_cwr(tp);
1913 }
1914 } else {
1915 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1916 }
1917 tcp_moderate_cwnd(tp);
1918 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
1919
1920 /* There is something screwy going on with the retrans hints after
1921 an undo */
1922 clear_all_retrans_hints(tp);
1da177e4
LT
1923}
1924
1925static inline int tcp_may_undo(struct tcp_sock *tp)
1926{
1927 return tp->undo_marker &&
1928 (!tp->undo_retrans || tcp_packet_delayed(tp));
1929}
1930
1931/* People celebrate: "We love our President!" */
9e412ba7 1932static int tcp_try_undo_recovery(struct sock *sk)
1da177e4 1933{
9e412ba7
IJ
1934 struct tcp_sock *tp = tcp_sk(sk);
1935
1da177e4
LT
1936 if (tcp_may_undo(tp)) {
1937 /* Happy end! We did not retransmit anything
1938 * or our original transmission succeeded.
1939 */
9e412ba7 1940 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
6687e988
ACM
1941 tcp_undo_cwr(sk, 1);
1942 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
1943 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1944 else
1945 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1946 tp->undo_marker = 0;
1947 }
1948 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1949 /* Hold old state until something *above* high_seq
1950 * is ACKed. For Reno it is MUST to prevent false
1951 * fast retransmits (RFC2582). SACK TCP is safe. */
1952 tcp_moderate_cwnd(tp);
1953 return 1;
1954 }
6687e988 1955 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1956 return 0;
1957}
1958
1959/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
9e412ba7 1960static void tcp_try_undo_dsack(struct sock *sk)
1da177e4 1961{
9e412ba7
IJ
1962 struct tcp_sock *tp = tcp_sk(sk);
1963
1da177e4 1964 if (tp->undo_marker && !tp->undo_retrans) {
9e412ba7 1965 DBGUNDO(sk, "D-SACK");
6687e988 1966 tcp_undo_cwr(sk, 1);
1da177e4
LT
1967 tp->undo_marker = 0;
1968 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1969 }
1970}
1971
1972/* Undo during fast recovery after partial ACK. */
1973
9e412ba7 1974static int tcp_try_undo_partial(struct sock *sk, int acked)
1da177e4 1975{
9e412ba7 1976 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1977 /* Partial ACK arrived. Force Hoe's retransmit. */
1978 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1979
1980 if (tcp_may_undo(tp)) {
1981 /* Plain luck! Hole if filled with delayed
1982 * packet, rather than with a retransmit.
1983 */
1984 if (tp->retrans_out == 0)
1985 tp->retrans_stamp = 0;
1986
6687e988 1987 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4 1988
9e412ba7 1989 DBGUNDO(sk, "Hoe");
6687e988 1990 tcp_undo_cwr(sk, 0);
1da177e4
LT
1991 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1992
1993 /* So... Do not make Hoe's retransmit yet.
1994 * If the first packet was delayed, the rest
1995 * ones are most probably delayed as well.
1996 */
1997 failed = 0;
1998 }
1999 return failed;
2000}
2001
2002/* Undo during loss recovery after partial ACK. */
9e412ba7 2003static int tcp_try_undo_loss(struct sock *sk)
1da177e4 2004{
9e412ba7
IJ
2005 struct tcp_sock *tp = tcp_sk(sk);
2006
1da177e4
LT
2007 if (tcp_may_undo(tp)) {
2008 struct sk_buff *skb;
fe067e8a
DM
2009 tcp_for_write_queue(skb, sk) {
2010 if (skb == tcp_send_head(sk))
2011 break;
1da177e4
LT
2012 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2013 }
6a438bbe
SH
2014
2015 clear_all_retrans_hints(tp);
2016
9e412ba7 2017 DBGUNDO(sk, "partial loss");
1da177e4
LT
2018 tp->lost_out = 0;
2019 tp->left_out = tp->sacked_out;
6687e988 2020 tcp_undo_cwr(sk, 1);
1da177e4 2021 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 2022 inet_csk(sk)->icsk_retransmits = 0;
1da177e4
LT
2023 tp->undo_marker = 0;
2024 if (!IsReno(tp))
6687e988 2025 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2026 return 1;
2027 }
2028 return 0;
2029}
2030
6687e988 2031static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 2032{
6687e988 2033 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 2034 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 2035 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 2036 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
2037}
2038
9e412ba7 2039static void tcp_try_to_open(struct sock *sk, int flag)
1da177e4 2040{
9e412ba7
IJ
2041 struct tcp_sock *tp = tcp_sk(sk);
2042
af15cc7b 2043 tcp_sync_left_out(tp);
1da177e4
LT
2044
2045 if (tp->retrans_out == 0)
2046 tp->retrans_stamp = 0;
2047
2048 if (flag&FLAG_ECE)
3cfe3baa 2049 tcp_enter_cwr(sk, 1);
1da177e4 2050
6687e988 2051 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2052 int state = TCP_CA_Open;
2053
2054 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2055 state = TCP_CA_Disorder;
2056
6687e988
ACM
2057 if (inet_csk(sk)->icsk_ca_state != state) {
2058 tcp_set_ca_state(sk, state);
1da177e4
LT
2059 tp->high_seq = tp->snd_nxt;
2060 }
2061 tcp_moderate_cwnd(tp);
2062 } else {
6687e988 2063 tcp_cwnd_down(sk);
1da177e4
LT
2064 }
2065}
2066
5d424d5a
JH
2067static void tcp_mtup_probe_failed(struct sock *sk)
2068{
2069 struct inet_connection_sock *icsk = inet_csk(sk);
2070
2071 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2072 icsk->icsk_mtup.probe_size = 0;
2073}
2074
2075static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2076{
2077 struct tcp_sock *tp = tcp_sk(sk);
2078 struct inet_connection_sock *icsk = inet_csk(sk);
2079
2080 /* FIXME: breaks with very large cwnd */
2081 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2082 tp->snd_cwnd = tp->snd_cwnd *
2083 tcp_mss_to_mtu(sk, tp->mss_cache) /
2084 icsk->icsk_mtup.probe_size;
2085 tp->snd_cwnd_cnt = 0;
2086 tp->snd_cwnd_stamp = tcp_time_stamp;
2087 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2088
2089 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2090 icsk->icsk_mtup.probe_size = 0;
2091 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2092}
2093
2094
1da177e4
LT
2095/* Process an event, which can update packets-in-flight not trivially.
2096 * Main goal of this function is to calculate new estimate for left_out,
2097 * taking into account both packets sitting in receiver's buffer and
2098 * packets lost by network.
2099 *
2100 * Besides that it does CWND reduction, when packet loss is detected
2101 * and changes state of machine.
2102 *
2103 * It does _not_ decide what to send, it is made in function
2104 * tcp_xmit_retransmit_queue().
2105 */
2106static void
2107tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2108 int prior_packets, int flag)
2109{
6687e988 2110 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2111 struct tcp_sock *tp = tcp_sk(sk);
2112 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2113
2114 /* Some technical things:
2115 * 1. Reno does not count dupacks (sacked_out) automatically. */
2116 if (!tp->packets_out)
2117 tp->sacked_out = 0;
e905a9ed 2118 /* 2. SACK counts snd_fack in packets inaccurately. */
1da177e4
LT
2119 if (tp->sacked_out == 0)
2120 tp->fackets_out = 0;
2121
e905a9ed 2122 /* Now state machine starts.
1da177e4
LT
2123 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2124 if (flag&FLAG_ECE)
2125 tp->prior_ssthresh = 0;
2126
2127 /* B. In all the states check for reneging SACKs. */
463c84b9 2128 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2129 return;
2130
2131 /* C. Process data loss notification, provided it is valid. */
2132 if ((flag&FLAG_DATA_LOST) &&
2133 before(tp->snd_una, tp->high_seq) &&
6687e988 2134 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4 2135 tp->fackets_out > tp->reordering) {
9e412ba7 2136 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
1da177e4
LT
2137 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2138 }
2139
2140 /* D. Synchronize left_out to current state. */
2141 tcp_sync_left_out(tp);
2142
2143 /* E. Check state exit conditions. State can be terminated
2144 * when high_seq is ACKed. */
6687e988 2145 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2146 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2147 tp->retrans_stamp = 0;
2148 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2149 switch (icsk->icsk_ca_state) {
1da177e4 2150 case TCP_CA_Loss:
6687e988 2151 icsk->icsk_retransmits = 0;
9e412ba7 2152 if (tcp_try_undo_recovery(sk))
1da177e4
LT
2153 return;
2154 break;
2155
2156 case TCP_CA_CWR:
2157 /* CWR is to be held something *above* high_seq
2158 * is ACKed for CWR bit to reach receiver. */
2159 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2160 tcp_complete_cwr(sk);
2161 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2162 }
2163 break;
2164
2165 case TCP_CA_Disorder:
9e412ba7 2166 tcp_try_undo_dsack(sk);
1da177e4
LT
2167 if (!tp->undo_marker ||
2168 /* For SACK case do not Open to allow to undo
2169 * catching for all duplicate ACKs. */
2170 IsReno(tp) || tp->snd_una != tp->high_seq) {
2171 tp->undo_marker = 0;
6687e988 2172 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2173 }
2174 break;
2175
2176 case TCP_CA_Recovery:
2177 if (IsReno(tp))
2178 tcp_reset_reno_sack(tp);
9e412ba7 2179 if (tcp_try_undo_recovery(sk))
1da177e4 2180 return;
6687e988 2181 tcp_complete_cwr(sk);
1da177e4
LT
2182 break;
2183 }
2184 }
2185
2186 /* F. Process state. */
6687e988 2187 switch (icsk->icsk_ca_state) {
1da177e4
LT
2188 case TCP_CA_Recovery:
2189 if (prior_snd_una == tp->snd_una) {
2190 if (IsReno(tp) && is_dupack)
6687e988 2191 tcp_add_reno_sack(sk);
1da177e4
LT
2192 } else {
2193 int acked = prior_packets - tp->packets_out;
2194 if (IsReno(tp))
9e412ba7
IJ
2195 tcp_remove_reno_sacks(sk, acked);
2196 is_dupack = tcp_try_undo_partial(sk, acked);
1da177e4
LT
2197 }
2198 break;
2199 case TCP_CA_Loss:
2200 if (flag&FLAG_DATA_ACKED)
6687e988 2201 icsk->icsk_retransmits = 0;
9e412ba7 2202 if (!tcp_try_undo_loss(sk)) {
1da177e4
LT
2203 tcp_moderate_cwnd(tp);
2204 tcp_xmit_retransmit_queue(sk);
2205 return;
2206 }
6687e988 2207 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2208 return;
2209 /* Loss is undone; fall through to processing in Open state. */
2210 default:
2211 if (IsReno(tp)) {
2212 if (tp->snd_una != prior_snd_una)
2213 tcp_reset_reno_sack(tp);
2214 if (is_dupack)
6687e988 2215 tcp_add_reno_sack(sk);
1da177e4
LT
2216 }
2217
6687e988 2218 if (icsk->icsk_ca_state == TCP_CA_Disorder)
9e412ba7 2219 tcp_try_undo_dsack(sk);
1da177e4 2220
9e412ba7
IJ
2221 if (!tcp_time_to_recover(sk)) {
2222 tcp_try_to_open(sk, flag);
1da177e4
LT
2223 return;
2224 }
2225
5d424d5a
JH
2226 /* MTU probe failure: don't reduce cwnd */
2227 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2228 icsk->icsk_mtup.probe_size &&
0e7b1368 2229 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2230 tcp_mtup_probe_failed(sk);
2231 /* Restores the reduction we did in tcp_mtup_probe() */
2232 tp->snd_cwnd++;
2233 tcp_simple_retransmit(sk);
2234 return;
2235 }
2236
1da177e4
LT
2237 /* Otherwise enter Recovery state */
2238
2239 if (IsReno(tp))
2240 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2241 else
2242 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2243
2244 tp->high_seq = tp->snd_nxt;
2245 tp->prior_ssthresh = 0;
2246 tp->undo_marker = tp->snd_una;
2247 tp->undo_retrans = tp->retrans_out;
2248
6687e988 2249 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2250 if (!(flag&FLAG_ECE))
6687e988
ACM
2251 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2252 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2253 TCP_ECN_queue_cwr(tp);
2254 }
2255
9772efb9 2256 tp->bytes_acked = 0;
1da177e4 2257 tp->snd_cwnd_cnt = 0;
6687e988 2258 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2259 }
2260
9e412ba7
IJ
2261 if (is_dupack || tcp_head_timedout(sk))
2262 tcp_update_scoreboard(sk);
6687e988 2263 tcp_cwnd_down(sk);
1da177e4
LT
2264 tcp_xmit_retransmit_queue(sk);
2265}
2266
2267/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2268 * with this code. (Supersedes RFC1323)
1da177e4 2269 */
2d2abbab 2270static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2271{
1da177e4
LT
2272 /* RTTM Rule: A TSecr value received in a segment is used to
2273 * update the averaged RTT measurement only if the segment
2274 * acknowledges some new data, i.e., only if it advances the
2275 * left edge of the send window.
2276 *
2277 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2278 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2279 *
2280 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2281 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2282 * samples are accepted even from very old segments: f.e., when rtt=1
2283 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2284 * answer arrives rto becomes 120 seconds! If at least one of segments
2285 * in window is lost... Voila. --ANK (010210)
2286 */
463c84b9
ACM
2287 struct tcp_sock *tp = tcp_sk(sk);
2288 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2289 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2290 tcp_set_rto(sk);
2291 inet_csk(sk)->icsk_backoff = 0;
2292 tcp_bound_rto(sk);
1da177e4
LT
2293}
2294
2d2abbab 2295static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2296{
2297 /* We don't have a timestamp. Can only use
2298 * packets that are not retransmitted to determine
2299 * rtt estimates. Also, we must not reset the
2300 * backoff for rto until we get a non-retransmitted
2301 * packet. This allows us to deal with a situation
2302 * where the network delay has increased suddenly.
2303 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2304 */
2305
2306 if (flag & FLAG_RETRANS_DATA_ACKED)
2307 return;
2308
2d2abbab 2309 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2310 tcp_set_rto(sk);
2311 inet_csk(sk)->icsk_backoff = 0;
2312 tcp_bound_rto(sk);
1da177e4
LT
2313}
2314
463c84b9 2315static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2316 const s32 seq_rtt)
1da177e4 2317{
463c84b9 2318 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2319 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2320 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2321 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2322 else if (seq_rtt >= 0)
2d2abbab 2323 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2324}
2325
16751347 2326static void tcp_cong_avoid(struct sock *sk, u32 ack,
40efc6fa 2327 u32 in_flight, int good)
1da177e4 2328{
6687e988 2329 const struct inet_connection_sock *icsk = inet_csk(sk);
16751347 2330 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
6687e988 2331 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2332}
2333
1da177e4
LT
2334/* Restart timer after forward progress on connection.
2335 * RFC2988 recommends to restart timer to now+rto.
2336 */
2337
9e412ba7 2338static void tcp_ack_packets_out(struct sock *sk)
1da177e4 2339{
9e412ba7
IJ
2340 struct tcp_sock *tp = tcp_sk(sk);
2341
1da177e4 2342 if (!tp->packets_out) {
463c84b9 2343 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2344 } else {
3f421baa 2345 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2346 }
2347}
2348
1da177e4
LT
2349static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2350 __u32 now, __s32 *seq_rtt)
2351{
2352 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2353 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2354 __u32 seq = tp->snd_una;
2355 __u32 packets_acked;
2356 int acked = 0;
2357
2358 /* If we get here, the whole TSO packet has not been
2359 * acked.
2360 */
2361 BUG_ON(!after(scb->end_seq, seq));
2362
2363 packets_acked = tcp_skb_pcount(skb);
2364 if (tcp_trim_head(sk, skb, seq - scb->seq))
2365 return 0;
2366 packets_acked -= tcp_skb_pcount(skb);
2367
2368 if (packets_acked) {
2369 __u8 sacked = scb->sacked;
2370
2371 acked |= FLAG_DATA_ACKED;
2372 if (sacked) {
2373 if (sacked & TCPCB_RETRANS) {
2374 if (sacked & TCPCB_SACKED_RETRANS)
2375 tp->retrans_out -= packets_acked;
2376 acked |= FLAG_RETRANS_DATA_ACKED;
2377 *seq_rtt = -1;
2378 } else if (*seq_rtt < 0)
2379 *seq_rtt = now - scb->when;
2380 if (sacked & TCPCB_SACKED_ACKED)
2381 tp->sacked_out -= packets_acked;
2382 if (sacked & TCPCB_LOST)
2383 tp->lost_out -= packets_acked;
2384 if (sacked & TCPCB_URG) {
2385 if (tp->urg_mode &&
2386 !before(seq, tp->snd_up))
2387 tp->urg_mode = 0;
2388 }
2389 } else if (*seq_rtt < 0)
2390 *seq_rtt = now - scb->when;
2391
2392 if (tp->fackets_out) {
2393 __u32 dval = min(tp->fackets_out, packets_acked);
2394 tp->fackets_out -= dval;
2395 }
2396 tp->packets_out -= packets_acked;
2397
2398 BUG_ON(tcp_skb_pcount(skb) == 0);
2399 BUG_ON(!before(scb->seq, scb->end_seq));
2400 }
2401
2402 return acked;
2403}
2404
1da177e4 2405/* Remove acknowledged frames from the retransmission queue. */
2d2abbab 2406static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
1da177e4
LT
2407{
2408 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2409 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2410 struct sk_buff *skb;
2411 __u32 now = tcp_time_stamp;
2412 int acked = 0;
6418204f 2413 int prior_packets = tp->packets_out;
1da177e4 2414 __s32 seq_rtt = -1;
b9ce204f 2415 ktime_t last_ackt = net_invalid_timestamp();
1da177e4 2416
fe067e8a
DM
2417 while ((skb = tcp_write_queue_head(sk)) &&
2418 skb != tcp_send_head(sk)) {
e905a9ed 2419 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2420 __u8 sacked = scb->sacked;
2421
2422 /* If our packet is before the ack sequence we can
2423 * discard it as it's confirmed to have arrived at
2424 * the other end.
2425 */
2426 if (after(scb->end_seq, tp->snd_una)) {
cb83199a
DM
2427 if (tcp_skb_pcount(skb) > 1 &&
2428 after(tp->snd_una, scb->seq))
1da177e4
LT
2429 acked |= tcp_tso_acked(sk, skb,
2430 now, &seq_rtt);
2431 break;
2432 }
2433
2434 /* Initial outgoing SYN's get put onto the write_queue
2435 * just like anything else we transmit. It is not
2436 * true data, and if we misinform our callers that
2437 * this ACK acks real data, we will erroneously exit
2438 * connection startup slow start one packet too
2439 * quickly. This is severely frowned upon behavior.
2440 */
2441 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2442 acked |= FLAG_DATA_ACKED;
2443 } else {
2444 acked |= FLAG_SYN_ACKED;
2445 tp->retrans_stamp = 0;
2446 }
2447
5d424d5a
JH
2448 /* MTU probing checks */
2449 if (icsk->icsk_mtup.probe_size) {
0e7b1368 2450 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
5d424d5a
JH
2451 tcp_mtup_probe_success(sk, skb);
2452 }
2453 }
2454
1da177e4
LT
2455 if (sacked) {
2456 if (sacked & TCPCB_RETRANS) {
2de979bd 2457 if (sacked & TCPCB_SACKED_RETRANS)
1da177e4
LT
2458 tp->retrans_out -= tcp_skb_pcount(skb);
2459 acked |= FLAG_RETRANS_DATA_ACKED;
2460 seq_rtt = -1;
2d2abbab 2461 } else if (seq_rtt < 0) {
1da177e4 2462 seq_rtt = now - scb->when;
164891aa 2463 last_ackt = skb->tstamp;
a61bbcf2 2464 }
1da177e4
LT
2465 if (sacked & TCPCB_SACKED_ACKED)
2466 tp->sacked_out -= tcp_skb_pcount(skb);
2467 if (sacked & TCPCB_LOST)
2468 tp->lost_out -= tcp_skb_pcount(skb);
2469 if (sacked & TCPCB_URG) {
2470 if (tp->urg_mode &&
2471 !before(scb->end_seq, tp->snd_up))
2472 tp->urg_mode = 0;
2473 }
2d2abbab 2474 } else if (seq_rtt < 0) {
1da177e4 2475 seq_rtt = now - scb->when;
164891aa 2476 last_ackt = skb->tstamp;
2d2abbab 2477 }
1da177e4
LT
2478 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2479 tcp_packets_out_dec(tp, skb);
fe067e8a 2480 tcp_unlink_write_queue(skb, sk);
1da177e4 2481 sk_stream_free_skb(sk, skb);
6a438bbe 2482 clear_all_retrans_hints(tp);
1da177e4
LT
2483 }
2484
2485 if (acked&FLAG_ACKED) {
6418204f 2486 u32 pkts_acked = prior_packets - tp->packets_out;
164891aa
SH
2487 const struct tcp_congestion_ops *ca_ops
2488 = inet_csk(sk)->icsk_ca_ops;
2489
2d2abbab 2490 tcp_ack_update_rtt(sk, acked, seq_rtt);
9e412ba7 2491 tcp_ack_packets_out(sk);
317a76f9 2492
b9ce204f
IJ
2493 /* Is the ACK triggering packet unambiguous? */
2494 if (acked & FLAG_RETRANS_DATA_ACKED)
2495 last_ackt = net_invalid_timestamp();
2496
164891aa
SH
2497 if (ca_ops->pkts_acked)
2498 ca_ops->pkts_acked(sk, pkts_acked, last_ackt);
1da177e4
LT
2499 }
2500
2501#if FASTRETRANS_DEBUG > 0
2502 BUG_TRAP((int)tp->sacked_out >= 0);
2503 BUG_TRAP((int)tp->lost_out >= 0);
2504 BUG_TRAP((int)tp->retrans_out >= 0);
2505 if (!tp->packets_out && tp->rx_opt.sack_ok) {
6687e988 2506 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2507 if (tp->lost_out) {
2508 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2509 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2510 tp->lost_out = 0;
2511 }
2512 if (tp->sacked_out) {
2513 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2514 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2515 tp->sacked_out = 0;
2516 }
2517 if (tp->retrans_out) {
2518 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2519 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2520 tp->retrans_out = 0;
2521 }
2522 }
2523#endif
2524 *seq_rtt_p = seq_rtt;
2525 return acked;
2526}
2527
2528static void tcp_ack_probe(struct sock *sk)
2529{
463c84b9
ACM
2530 const struct tcp_sock *tp = tcp_sk(sk);
2531 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2532
2533 /* Was it a usable window open? */
2534
fe067e8a 2535 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1da177e4 2536 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2537 icsk->icsk_backoff = 0;
2538 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2539 /* Socket must be waked up by subsequent tcp_data_snd_check().
2540 * This function is not for random using!
2541 */
2542 } else {
463c84b9 2543 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2544 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2545 TCP_RTO_MAX);
1da177e4
LT
2546 }
2547}
2548
6687e988 2549static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2550{
2551 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2552 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2553}
2554
6687e988 2555static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2556{
6687e988 2557 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2558 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2559 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2560}
2561
2562/* Check that window update is acceptable.
2563 * The function assumes that snd_una<=ack<=snd_next.
2564 */
463c84b9
ACM
2565static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2566 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2567{
2568 return (after(ack, tp->snd_una) ||
2569 after(ack_seq, tp->snd_wl1) ||
2570 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2571}
2572
2573/* Update our send window.
2574 *
2575 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2576 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2577 */
9e412ba7
IJ
2578static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2579 u32 ack_seq)
1da177e4 2580{
9e412ba7 2581 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2582 int flag = 0;
aa8223c7 2583 u32 nwin = ntohs(tcp_hdr(skb)->window);
1da177e4 2584
aa8223c7 2585 if (likely(!tcp_hdr(skb)->syn))
1da177e4
LT
2586 nwin <<= tp->rx_opt.snd_wscale;
2587
2588 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2589 flag |= FLAG_WIN_UPDATE;
2590 tcp_update_wl(tp, ack, ack_seq);
2591
2592 if (tp->snd_wnd != nwin) {
2593 tp->snd_wnd = nwin;
2594
2595 /* Note, it is the only place, where
2596 * fast path is recovered for sending TCP.
2597 */
2ad41065 2598 tp->pred_flags = 0;
9e412ba7 2599 tcp_fast_path_check(sk);
1da177e4
LT
2600
2601 if (nwin > tp->max_window) {
2602 tp->max_window = nwin;
d83d8461 2603 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2604 }
2605 }
2606 }
2607
2608 tp->snd_una = ack;
2609
2610 return flag;
2611}
2612
9ead9a1d
IJ
2613/* A very conservative spurious RTO response algorithm: reduce cwnd and
2614 * continue in congestion avoidance.
2615 */
2616static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2617{
2618 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2619 tp->snd_cwnd_cnt = 0;
46323655 2620 TCP_ECN_queue_cwr(tp);
9ead9a1d
IJ
2621 tcp_moderate_cwnd(tp);
2622}
2623
3cfe3baa
IJ
2624/* A conservative spurious RTO response algorithm: reduce cwnd using
2625 * rate halving and continue in congestion avoidance.
2626 */
2627static void tcp_ratehalving_spur_to_response(struct sock *sk)
2628{
3cfe3baa 2629 tcp_enter_cwr(sk, 0);
3cfe3baa
IJ
2630}
2631
e317f6f6 2632static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3cfe3baa 2633{
e317f6f6
IJ
2634 if (flag&FLAG_ECE)
2635 tcp_ratehalving_spur_to_response(sk);
2636 else
2637 tcp_undo_cwr(sk, 1);
3cfe3baa
IJ
2638}
2639
30935cf4
IJ
2640/* F-RTO spurious RTO detection algorithm (RFC4138)
2641 *
6408d206
IJ
2642 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2643 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2644 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2645 * On First ACK, send two new segments out.
2646 * On Second ACK, RTO was likely spurious. Do spurious response (response
2647 * algorithm is not part of the F-RTO detection algorithm
2648 * given in RFC4138 but can be selected separately).
2649 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
d551e454
IJ
2650 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2651 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2652 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
30935cf4
IJ
2653 *
2654 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2655 * original window even after we transmit two new data segments.
2656 *
4dc2665e
IJ
2657 * SACK version:
2658 * on first step, wait until first cumulative ACK arrives, then move to
2659 * the second step. In second step, the next ACK decides.
2660 *
30935cf4
IJ
2661 * F-RTO is implemented (mainly) in four functions:
2662 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2663 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2664 * called when tcp_use_frto() showed green light
2665 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2666 * - tcp_enter_frto_loss() is called if there is not enough evidence
2667 * to prove that the RTO is indeed spurious. It transfers the control
2668 * from F-RTO to the conventional RTO recovery
2669 */
7c9a4a5b 2670static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
1da177e4
LT
2671{
2672 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2673
1da177e4 2674 tcp_sync_left_out(tp);
e905a9ed 2675
7487c48c
IJ
2676 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2677 if (flag&FLAG_DATA_ACKED)
2678 inet_csk(sk)->icsk_retransmits = 0;
2679
95c4922b 2680 if (!before(tp->snd_una, tp->frto_highmark)) {
d551e454 2681 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
7c9a4a5b 2682 return 1;
95c4922b
IJ
2683 }
2684
4dc2665e
IJ
2685 if (!IsSackFrto() || IsReno(tp)) {
2686 /* RFC4138 shortcoming in step 2; should also have case c):
2687 * ACK isn't duplicate nor advances window, e.g., opposite dir
2688 * data, winupdate
2689 */
2690 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2691 !(flag&FLAG_FORWARD_PROGRESS))
2692 return 1;
2693
2694 if (!(flag&FLAG_DATA_ACKED)) {
2695 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2696 flag);
2697 return 1;
2698 }
2699 } else {
2700 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2701 /* Prevent sending of new data. */
2702 tp->snd_cwnd = min(tp->snd_cwnd,
2703 tcp_packets_in_flight(tp));
2704 return 1;
2705 }
6408d206 2706
d551e454 2707 if ((tp->frto_counter >= 2) &&
4dc2665e
IJ
2708 (!(flag&FLAG_FORWARD_PROGRESS) ||
2709 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2710 /* RFC4138 shortcoming (see comment above) */
2711 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2712 return 1;
2713
2714 tcp_enter_frto_loss(sk, 3, flag);
2715 return 1;
2716 }
1da177e4
LT
2717 }
2718
2719 if (tp->frto_counter == 1) {
575ee714
IJ
2720 /* Sending of the next skb must be allowed or no FRTO */
2721 if (!tcp_send_head(sk) ||
2722 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2723 tp->snd_una + tp->snd_wnd)) {
d551e454
IJ
2724 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2725 flag);
575ee714
IJ
2726 return 1;
2727 }
2728
1da177e4 2729 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2730 tp->frto_counter = 2;
7c9a4a5b 2731 return 1;
d551e454 2732 } else {
3cfe3baa
IJ
2733 switch (sysctl_tcp_frto_response) {
2734 case 2:
e317f6f6 2735 tcp_undo_spur_to_response(sk, flag);
3cfe3baa
IJ
2736 break;
2737 case 1:
2738 tcp_conservative_spur_to_response(tp);
2739 break;
2740 default:
2741 tcp_ratehalving_spur_to_response(sk);
2742 break;
3ff50b79 2743 }
94d0ea77 2744 tp->frto_counter = 0;
1da177e4 2745 }
7c9a4a5b 2746 return 0;
1da177e4
LT
2747}
2748
1da177e4
LT
2749/* This routine deals with incoming acks, but not outgoing ones. */
2750static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2751{
6687e988 2752 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2753 struct tcp_sock *tp = tcp_sk(sk);
2754 u32 prior_snd_una = tp->snd_una;
2755 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2756 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2757 u32 prior_in_flight;
2758 s32 seq_rtt;
2759 int prior_packets;
7c9a4a5b 2760 int frto_cwnd = 0;
1da177e4
LT
2761
2762 /* If the ack is newer than sent or older than previous acks
2763 * then we can probably ignore it.
2764 */
2765 if (after(ack, tp->snd_nxt))
2766 goto uninteresting_ack;
2767
2768 if (before(ack, prior_snd_una))
2769 goto old_ack;
2770
3fdf3f0c
DO
2771 if (sysctl_tcp_abc) {
2772 if (icsk->icsk_ca_state < TCP_CA_CWR)
2773 tp->bytes_acked += ack - prior_snd_una;
2774 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2775 /* we assume just one segment left network */
2776 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2777 }
9772efb9 2778
1da177e4
LT
2779 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2780 /* Window is constant, pure forward advance.
2781 * No more checks are required.
2782 * Note, we use the fact that SND.UNA>=SND.WL2.
2783 */
2784 tcp_update_wl(tp, ack, ack_seq);
2785 tp->snd_una = ack;
1da177e4
LT
2786 flag |= FLAG_WIN_UPDATE;
2787
6687e988 2788 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2789
1da177e4
LT
2790 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2791 } else {
2792 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2793 flag |= FLAG_DATA;
2794 else
2795 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2796
9e412ba7 2797 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
1da177e4
LT
2798
2799 if (TCP_SKB_CB(skb)->sacked)
2800 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2801
aa8223c7 2802 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
1da177e4
LT
2803 flag |= FLAG_ECE;
2804
6687e988 2805 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
2806 }
2807
2808 /* We passed data and got it acked, remove any soft error
2809 * log. Something worked...
2810 */
2811 sk->sk_err_soft = 0;
2812 tp->rcv_tstamp = tcp_time_stamp;
2813 prior_packets = tp->packets_out;
2814 if (!prior_packets)
2815 goto no_queue;
2816
2817 prior_in_flight = tcp_packets_in_flight(tp);
2818
2819 /* See if we can take anything off of the retransmit queue. */
2d2abbab 2820 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4
LT
2821
2822 if (tp->frto_counter)
7c9a4a5b 2823 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
1da177e4 2824
6687e988 2825 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 2826 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
2827 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2828 tcp_may_raise_cwnd(sk, flag))
16751347 2829 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
1da177e4
LT
2830 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2831 } else {
7c9a4a5b 2832 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
16751347 2833 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
1da177e4
LT
2834 }
2835
2836 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2837 dst_confirm(sk->sk_dst_cache);
2838
2839 return 1;
2840
2841no_queue:
6687e988 2842 icsk->icsk_probes_out = 0;
1da177e4
LT
2843
2844 /* If this ack opens up a zero window, clear backoff. It was
2845 * being used to time the probes, and is probably far higher than
2846 * it needs to be for normal retransmission.
2847 */
fe067e8a 2848 if (tcp_send_head(sk))
1da177e4
LT
2849 tcp_ack_probe(sk);
2850 return 1;
2851
2852old_ack:
2853 if (TCP_SKB_CB(skb)->sacked)
2854 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2855
2856uninteresting_ack:
2857 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2858 return 0;
2859}
2860
2861
2862/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2863 * But, this can also be called on packets in the established flow when
2864 * the fast version below fails.
2865 */
2866void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2867{
2868 unsigned char *ptr;
aa8223c7 2869 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
2870 int length=(th->doff*4)-sizeof(struct tcphdr);
2871
2872 ptr = (unsigned char *)(th + 1);
2873 opt_rx->saw_tstamp = 0;
2874
2de979bd 2875 while (length > 0) {
e905a9ed 2876 int opcode=*ptr++;
1da177e4
LT
2877 int opsize;
2878
2879 switch (opcode) {
2880 case TCPOPT_EOL:
2881 return;
2882 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2883 length--;
2884 continue;
2885 default:
2886 opsize=*ptr++;
2887 if (opsize < 2) /* "silly options" */
2888 return;
2889 if (opsize > length)
2890 return; /* don't parse partial options */
2de979bd 2891 switch (opcode) {
1da177e4 2892 case TCPOPT_MSS:
2de979bd 2893 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 2894 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
2895 if (in_mss) {
2896 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2897 in_mss = opt_rx->user_mss;
2898 opt_rx->mss_clamp = in_mss;
2899 }
2900 }
2901 break;
2902 case TCPOPT_WINDOW:
2de979bd 2903 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
1da177e4
LT
2904 if (sysctl_tcp_window_scaling) {
2905 __u8 snd_wscale = *(__u8 *) ptr;
2906 opt_rx->wscale_ok = 1;
2907 if (snd_wscale > 14) {
2de979bd 2908 if (net_ratelimit())
1da177e4
LT
2909 printk(KERN_INFO "tcp_parse_options: Illegal window "
2910 "scaling value %d >14 received.\n",
2911 snd_wscale);
2912 snd_wscale = 14;
2913 }
2914 opt_rx->snd_wscale = snd_wscale;
2915 }
2916 break;
2917 case TCPOPT_TIMESTAMP:
2de979bd 2918 if (opsize==TCPOLEN_TIMESTAMP) {
1da177e4
LT
2919 if ((estab && opt_rx->tstamp_ok) ||
2920 (!estab && sysctl_tcp_timestamps)) {
2921 opt_rx->saw_tstamp = 1;
4f3608b7
AV
2922 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2923 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
2924 }
2925 }
2926 break;
2927 case TCPOPT_SACK_PERM:
2de979bd 2928 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
1da177e4
LT
2929 if (sysctl_tcp_sack) {
2930 opt_rx->sack_ok = 1;
2931 tcp_sack_reset(opt_rx);
2932 }
2933 }
2934 break;
2935
2936 case TCPOPT_SACK:
2de979bd 2937 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1da177e4
LT
2938 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2939 opt_rx->sack_ok) {
2940 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2941 }
d7ea5b91 2942 break;
cfb6eeb4
YH
2943#ifdef CONFIG_TCP_MD5SIG
2944 case TCPOPT_MD5SIG:
2945 /*
2946 * The MD5 Hash has already been
2947 * checked (see tcp_v{4,6}_do_rcv()).
2948 */
2949 break;
2950#endif
3ff50b79
SH
2951 }
2952
e905a9ed
YH
2953 ptr+=opsize-2;
2954 length-=opsize;
3ff50b79 2955 }
1da177e4
LT
2956 }
2957}
2958
2959/* Fast parse options. This hopes to only see timestamps.
2960 * If it is wrong it falls back on tcp_parse_options().
2961 */
40efc6fa
SH
2962static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2963 struct tcp_sock *tp)
1da177e4
LT
2964{
2965 if (th->doff == sizeof(struct tcphdr)>>2) {
2966 tp->rx_opt.saw_tstamp = 0;
2967 return 0;
2968 } else if (tp->rx_opt.tstamp_ok &&
2969 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
2970 __be32 *ptr = (__be32 *)(th + 1);
2971 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
2972 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2973 tp->rx_opt.saw_tstamp = 1;
2974 ++ptr;
2975 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2976 ++ptr;
2977 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2978 return 1;
2979 }
2980 }
2981 tcp_parse_options(skb, &tp->rx_opt, 1);
2982 return 1;
2983}
2984
2985static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2986{
2987 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
9d729f72 2988 tp->rx_opt.ts_recent_stamp = get_seconds();
1da177e4
LT
2989}
2990
2991static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2992{
2993 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2994 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2995 * extra check below makes sure this can only happen
2996 * for pure ACK frames. -DaveM
2997 *
2998 * Not only, also it occurs for expired timestamps.
2999 */
3000
2de979bd 3001 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
9d729f72 3002 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
1da177e4
LT
3003 tcp_store_ts_recent(tp);
3004 }
3005}
3006
3007/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3008 *
3009 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3010 * it can pass through stack. So, the following predicate verifies that
3011 * this segment is not used for anything but congestion avoidance or
3012 * fast retransmit. Moreover, we even are able to eliminate most of such
3013 * second order effects, if we apply some small "replay" window (~RTO)
3014 * to timestamp space.
3015 *
3016 * All these measures still do not guarantee that we reject wrapped ACKs
3017 * on networks with high bandwidth, when sequence space is recycled fastly,
3018 * but it guarantees that such events will be very rare and do not affect
3019 * connection seriously. This doesn't look nice, but alas, PAWS is really
3020 * buggy extension.
3021 *
3022 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3023 * states that events when retransmit arrives after original data are rare.
3024 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3025 * the biggest problem on large power networks even with minor reordering.
3026 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3027 * up to bandwidth of 18Gigabit/sec. 8) ]
3028 */
3029
463c84b9 3030static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3031{
463c84b9 3032 struct tcp_sock *tp = tcp_sk(sk);
aa8223c7 3033 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3034 u32 seq = TCP_SKB_CB(skb)->seq;
3035 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3036
3037 return (/* 1. Pure ACK with correct sequence number. */
3038 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3039
3040 /* 2. ... and duplicate ACK. */
3041 ack == tp->snd_una &&
3042
3043 /* 3. ... and does not update window. */
3044 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3045
3046 /* 4. ... and sits in replay window. */
463c84b9 3047 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
3048}
3049
463c84b9 3050static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3051{
463c84b9 3052 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 3053 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
9d729f72 3054 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 3055 !tcp_disordered_ack(sk, skb));
1da177e4
LT
3056}
3057
3058/* Check segment sequence number for validity.
3059 *
3060 * Segment controls are considered valid, if the segment
3061 * fits to the window after truncation to the window. Acceptability
3062 * of data (and SYN, FIN, of course) is checked separately.
3063 * See tcp_data_queue(), for example.
3064 *
3065 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3066 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3067 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3068 * (borrowed from freebsd)
3069 */
3070
3071static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3072{
3073 return !before(end_seq, tp->rcv_wup) &&
3074 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3075}
3076
3077/* When we get a reset we do this. */
3078static void tcp_reset(struct sock *sk)
3079{
3080 /* We want the right error as BSD sees it (and indeed as we do). */
3081 switch (sk->sk_state) {
3082 case TCP_SYN_SENT:
3083 sk->sk_err = ECONNREFUSED;
3084 break;
3085 case TCP_CLOSE_WAIT:
3086 sk->sk_err = EPIPE;
3087 break;
3088 case TCP_CLOSE:
3089 return;
3090 default:
3091 sk->sk_err = ECONNRESET;
3092 }
3093
3094 if (!sock_flag(sk, SOCK_DEAD))
3095 sk->sk_error_report(sk);
3096
3097 tcp_done(sk);
3098}
3099
3100/*
3101 * Process the FIN bit. This now behaves as it is supposed to work
3102 * and the FIN takes effect when it is validly part of sequence
3103 * space. Not before when we get holes.
3104 *
3105 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3106 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3107 * TIME-WAIT)
3108 *
3109 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3110 * close and we go into CLOSING (and later onto TIME-WAIT)
3111 *
3112 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3113 */
3114static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3115{
3116 struct tcp_sock *tp = tcp_sk(sk);
3117
463c84b9 3118 inet_csk_schedule_ack(sk);
1da177e4
LT
3119
3120 sk->sk_shutdown |= RCV_SHUTDOWN;
3121 sock_set_flag(sk, SOCK_DONE);
3122
3123 switch (sk->sk_state) {
3124 case TCP_SYN_RECV:
3125 case TCP_ESTABLISHED:
3126 /* Move to CLOSE_WAIT */
3127 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3128 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3129 break;
3130
3131 case TCP_CLOSE_WAIT:
3132 case TCP_CLOSING:
3133 /* Received a retransmission of the FIN, do
3134 * nothing.
3135 */
3136 break;
3137 case TCP_LAST_ACK:
3138 /* RFC793: Remain in the LAST-ACK state. */
3139 break;
3140
3141 case TCP_FIN_WAIT1:
3142 /* This case occurs when a simultaneous close
3143 * happens, we must ack the received FIN and
3144 * enter the CLOSING state.
3145 */
3146 tcp_send_ack(sk);
3147 tcp_set_state(sk, TCP_CLOSING);
3148 break;
3149 case TCP_FIN_WAIT2:
3150 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3151 tcp_send_ack(sk);
3152 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3153 break;
3154 default:
3155 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3156 * cases we should never reach this piece of code.
3157 */
3158 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3159 __FUNCTION__, sk->sk_state);
3160 break;
3ff50b79 3161 }
1da177e4
LT
3162
3163 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3164 * Probably, we should reset in this case. For now drop them.
3165 */
3166 __skb_queue_purge(&tp->out_of_order_queue);
3167 if (tp->rx_opt.sack_ok)
3168 tcp_sack_reset(&tp->rx_opt);
3169 sk_stream_mem_reclaim(sk);
3170
3171 if (!sock_flag(sk, SOCK_DEAD)) {
3172 sk->sk_state_change(sk);
3173
3174 /* Do not send POLL_HUP for half duplex close. */
3175 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3176 sk->sk_state == TCP_CLOSE)
3177 sk_wake_async(sk, 1, POLL_HUP);
3178 else
3179 sk_wake_async(sk, 1, POLL_IN);
3180 }
3181}
3182
40efc6fa 3183static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3184{
3185 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3186 if (before(seq, sp->start_seq))
3187 sp->start_seq = seq;
3188 if (after(end_seq, sp->end_seq))
3189 sp->end_seq = end_seq;
3190 return 1;
3191 }
3192 return 0;
3193}
3194
40efc6fa 3195static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3196{
3197 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3198 if (before(seq, tp->rcv_nxt))
3199 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3200 else
3201 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3202
3203 tp->rx_opt.dsack = 1;
3204 tp->duplicate_sack[0].start_seq = seq;
3205 tp->duplicate_sack[0].end_seq = end_seq;
3206 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3207 }
3208}
3209
40efc6fa 3210static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3211{
3212 if (!tp->rx_opt.dsack)
3213 tcp_dsack_set(tp, seq, end_seq);
3214 else
3215 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3216}
3217
3218static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3219{
3220 struct tcp_sock *tp = tcp_sk(sk);
3221
3222 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3223 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3224 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3225 tcp_enter_quickack_mode(sk);
1da177e4
LT
3226
3227 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3228 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3229
3230 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3231 end_seq = tp->rcv_nxt;
3232 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3233 }
3234 }
3235
3236 tcp_send_ack(sk);
3237}
3238
3239/* These routines update the SACK block as out-of-order packets arrive or
3240 * in-order packets close up the sequence space.
3241 */
3242static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3243{
3244 int this_sack;
3245 struct tcp_sack_block *sp = &tp->selective_acks[0];
3246 struct tcp_sack_block *swalk = sp+1;
3247
3248 /* See if the recent change to the first SACK eats into
3249 * or hits the sequence space of other SACK blocks, if so coalesce.
3250 */
3251 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3252 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3253 int i;
3254
3255 /* Zap SWALK, by moving every further SACK up by one slot.
3256 * Decrease num_sacks.
3257 */
3258 tp->rx_opt.num_sacks--;
3259 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2de979bd 3260 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
1da177e4
LT
3261 sp[i] = sp[i+1];
3262 continue;
3263 }
3264 this_sack++, swalk++;
3265 }
3266}
3267
40efc6fa 3268static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3269{
3270 __u32 tmp;
3271
3272 tmp = sack1->start_seq;
3273 sack1->start_seq = sack2->start_seq;
3274 sack2->start_seq = tmp;
3275
3276 tmp = sack1->end_seq;
3277 sack1->end_seq = sack2->end_seq;
3278 sack2->end_seq = tmp;
3279}
3280
3281static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3282{
3283 struct tcp_sock *tp = tcp_sk(sk);
3284 struct tcp_sack_block *sp = &tp->selective_acks[0];
3285 int cur_sacks = tp->rx_opt.num_sacks;
3286 int this_sack;
3287
3288 if (!cur_sacks)
3289 goto new_sack;
3290
3291 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3292 if (tcp_sack_extend(sp, seq, end_seq)) {
3293 /* Rotate this_sack to the first one. */
3294 for (; this_sack>0; this_sack--, sp--)
3295 tcp_sack_swap(sp, sp-1);
3296 if (cur_sacks > 1)
3297 tcp_sack_maybe_coalesce(tp);
3298 return;
3299 }
3300 }
3301
3302 /* Could not find an adjacent existing SACK, build a new one,
3303 * put it at the front, and shift everyone else down. We
3304 * always know there is at least one SACK present already here.
3305 *
3306 * If the sack array is full, forget about the last one.
3307 */
3308 if (this_sack >= 4) {
3309 this_sack--;
3310 tp->rx_opt.num_sacks--;
3311 sp--;
3312 }
2de979bd 3313 for (; this_sack > 0; this_sack--, sp--)
1da177e4
LT
3314 *sp = *(sp-1);
3315
3316new_sack:
3317 /* Build the new head SACK, and we're done. */
3318 sp->start_seq = seq;
3319 sp->end_seq = end_seq;
3320 tp->rx_opt.num_sacks++;
3321 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3322}
3323
3324/* RCV.NXT advances, some SACKs should be eaten. */
3325
3326static void tcp_sack_remove(struct tcp_sock *tp)
3327{
3328 struct tcp_sack_block *sp = &tp->selective_acks[0];
3329 int num_sacks = tp->rx_opt.num_sacks;
3330 int this_sack;
3331
3332 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3333 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3334 tp->rx_opt.num_sacks = 0;
3335 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3336 return;
3337 }
3338
2de979bd 3339 for (this_sack = 0; this_sack < num_sacks; ) {
1da177e4
LT
3340 /* Check if the start of the sack is covered by RCV.NXT. */
3341 if (!before(tp->rcv_nxt, sp->start_seq)) {
3342 int i;
3343
3344 /* RCV.NXT must cover all the block! */
3345 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3346
3347 /* Zap this SACK, by moving forward any other SACKS. */
3348 for (i=this_sack+1; i < num_sacks; i++)
3349 tp->selective_acks[i-1] = tp->selective_acks[i];
3350 num_sacks--;
3351 continue;
3352 }
3353 this_sack++;
3354 sp++;
3355 }
3356 if (num_sacks != tp->rx_opt.num_sacks) {
3357 tp->rx_opt.num_sacks = num_sacks;
3358 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3359 }
3360}
3361
3362/* This one checks to see if we can put data from the
3363 * out_of_order queue into the receive_queue.
3364 */
3365static void tcp_ofo_queue(struct sock *sk)
3366{
3367 struct tcp_sock *tp = tcp_sk(sk);
3368 __u32 dsack_high = tp->rcv_nxt;
3369 struct sk_buff *skb;
3370
3371 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3372 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3373 break;
3374
3375 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3376 __u32 dsack = dsack_high;
3377 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3378 dsack_high = TCP_SKB_CB(skb)->end_seq;
3379 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3380 }
3381
3382 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3383 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3384 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3385 __kfree_skb(skb);
3386 continue;
3387 }
3388 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3389 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3390 TCP_SKB_CB(skb)->end_seq);
3391
8728b834 3392 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3393 __skb_queue_tail(&sk->sk_receive_queue, skb);
3394 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
aa8223c7
ACM
3395 if (tcp_hdr(skb)->fin)
3396 tcp_fin(skb, sk, tcp_hdr(skb));
1da177e4
LT
3397 }
3398}
3399
3400static int tcp_prune_queue(struct sock *sk);
3401
3402static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3403{
aa8223c7 3404 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3405 struct tcp_sock *tp = tcp_sk(sk);
3406 int eaten = -1;
3407
3408 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3409 goto drop;
3410
1da177e4
LT
3411 __skb_pull(skb, th->doff*4);
3412
3413 TCP_ECN_accept_cwr(tp, skb);
3414
3415 if (tp->rx_opt.dsack) {
3416 tp->rx_opt.dsack = 0;
3417 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3418 4 - tp->rx_opt.tstamp_ok);
3419 }
3420
3421 /* Queue data for delivery to the user.
3422 * Packets in sequence go to the receive queue.
3423 * Out of sequence packets to the out_of_order_queue.
3424 */
3425 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3426 if (tcp_receive_window(tp) == 0)
3427 goto out_of_window;
3428
3429 /* Ok. In sequence. In window. */
3430 if (tp->ucopy.task == current &&
3431 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3432 sock_owned_by_user(sk) && !tp->urg_data) {
3433 int chunk = min_t(unsigned int, skb->len,
3434 tp->ucopy.len);
3435
3436 __set_current_state(TASK_RUNNING);
3437
3438 local_bh_enable();
3439 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3440 tp->ucopy.len -= chunk;
3441 tp->copied_seq += chunk;
3442 eaten = (chunk == skb->len && !th->fin);
3443 tcp_rcv_space_adjust(sk);
3444 }
3445 local_bh_disable();
3446 }
3447
3448 if (eaten <= 0) {
3449queue_and_out:
3450 if (eaten < 0 &&
3451 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3452 !sk_stream_rmem_schedule(sk, skb))) {
3453 if (tcp_prune_queue(sk) < 0 ||
3454 !sk_stream_rmem_schedule(sk, skb))
3455 goto drop;
3456 }
3457 sk_stream_set_owner_r(skb, sk);
3458 __skb_queue_tail(&sk->sk_receive_queue, skb);
3459 }
3460 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2de979bd 3461 if (skb->len)
9e412ba7 3462 tcp_event_data_recv(sk, skb);
2de979bd 3463 if (th->fin)
1da177e4
LT
3464 tcp_fin(skb, sk, th);
3465
b03efcfb 3466 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3467 tcp_ofo_queue(sk);
3468
3469 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3470 * gap in queue is filled.
3471 */
b03efcfb 3472 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3473 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3474 }
3475
3476 if (tp->rx_opt.num_sacks)
3477 tcp_sack_remove(tp);
3478
9e412ba7 3479 tcp_fast_path_check(sk);
1da177e4
LT
3480
3481 if (eaten > 0)
3482 __kfree_skb(skb);
3483 else if (!sock_flag(sk, SOCK_DEAD))
3484 sk->sk_data_ready(sk, 0);
3485 return;
3486 }
3487
3488 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3489 /* A retransmit, 2nd most common case. Force an immediate ack. */
3490 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3491 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3492
3493out_of_window:
463c84b9
ACM
3494 tcp_enter_quickack_mode(sk);
3495 inet_csk_schedule_ack(sk);
1da177e4
LT
3496drop:
3497 __kfree_skb(skb);
3498 return;
3499 }
3500
3501 /* Out of window. F.e. zero window probe. */
3502 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3503 goto out_of_window;
3504
463c84b9 3505 tcp_enter_quickack_mode(sk);
1da177e4
LT
3506
3507 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3508 /* Partial packet, seq < rcv_next < end_seq */
3509 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3510 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3511 TCP_SKB_CB(skb)->end_seq);
3512
3513 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3514
1da177e4
LT
3515 /* If window is closed, drop tail of packet. But after
3516 * remembering D-SACK for its head made in previous line.
3517 */
3518 if (!tcp_receive_window(tp))
3519 goto out_of_window;
3520 goto queue_and_out;
3521 }
3522
3523 TCP_ECN_check_ce(tp, skb);
3524
3525 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3526 !sk_stream_rmem_schedule(sk, skb)) {
3527 if (tcp_prune_queue(sk) < 0 ||
3528 !sk_stream_rmem_schedule(sk, skb))
3529 goto drop;
3530 }
3531
3532 /* Disable header prediction. */
3533 tp->pred_flags = 0;
463c84b9 3534 inet_csk_schedule_ack(sk);
1da177e4
LT
3535
3536 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3537 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3538
3539 sk_stream_set_owner_r(skb, sk);
3540
3541 if (!skb_peek(&tp->out_of_order_queue)) {
3542 /* Initial out of order segment, build 1 SACK. */
3543 if (tp->rx_opt.sack_ok) {
3544 tp->rx_opt.num_sacks = 1;
3545 tp->rx_opt.dsack = 0;
3546 tp->rx_opt.eff_sacks = 1;
3547 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3548 tp->selective_acks[0].end_seq =
3549 TCP_SKB_CB(skb)->end_seq;
3550 }
3551 __skb_queue_head(&tp->out_of_order_queue,skb);
3552 } else {
3553 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3554 u32 seq = TCP_SKB_CB(skb)->seq;
3555 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3556
3557 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3558 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3559
3560 if (!tp->rx_opt.num_sacks ||
3561 tp->selective_acks[0].end_seq != seq)
3562 goto add_sack;
3563
3564 /* Common case: data arrive in order after hole. */
3565 tp->selective_acks[0].end_seq = end_seq;
3566 return;
3567 }
3568
3569 /* Find place to insert this segment. */
3570 do {
3571 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3572 break;
3573 } while ((skb1 = skb1->prev) !=
3574 (struct sk_buff*)&tp->out_of_order_queue);
3575
3576 /* Do skb overlap to previous one? */
3577 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3578 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3579 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3580 /* All the bits are present. Drop. */
3581 __kfree_skb(skb);
3582 tcp_dsack_set(tp, seq, end_seq);
3583 goto add_sack;
3584 }
3585 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3586 /* Partial overlap. */
3587 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3588 } else {
3589 skb1 = skb1->prev;
3590 }
3591 }
3592 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3593
1da177e4
LT
3594 /* And clean segments covered by new one as whole. */
3595 while ((skb1 = skb->next) !=
3596 (struct sk_buff*)&tp->out_of_order_queue &&
3597 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3598 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3599 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3600 break;
3601 }
8728b834 3602 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3603 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3604 __kfree_skb(skb1);
3605 }
3606
3607add_sack:
3608 if (tp->rx_opt.sack_ok)
3609 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3610 }
3611}
3612
3613/* Collapse contiguous sequence of skbs head..tail with
3614 * sequence numbers start..end.
3615 * Segments with FIN/SYN are not collapsed (only because this
3616 * simplifies code)
3617 */
3618static void
8728b834
DM
3619tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3620 struct sk_buff *head, struct sk_buff *tail,
3621 u32 start, u32 end)
1da177e4
LT
3622{
3623 struct sk_buff *skb;
3624
caa20d9a 3625 /* First, check that queue is collapsible and find
1da177e4
LT
3626 * the point where collapsing can be useful. */
3627 for (skb = head; skb != tail; ) {
3628 /* No new bits? It is possible on ofo queue. */
3629 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3630 struct sk_buff *next = skb->next;
8728b834 3631 __skb_unlink(skb, list);
1da177e4
LT
3632 __kfree_skb(skb);
3633 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3634 skb = next;
3635 continue;
3636 }
3637
3638 /* The first skb to collapse is:
3639 * - not SYN/FIN and
3640 * - bloated or contains data before "start" or
3641 * overlaps to the next one.
3642 */
aa8223c7 3643 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
1da177e4
LT
3644 (tcp_win_from_space(skb->truesize) > skb->len ||
3645 before(TCP_SKB_CB(skb)->seq, start) ||
3646 (skb->next != tail &&
3647 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3648 break;
3649
3650 /* Decided to skip this, advance start seq. */
3651 start = TCP_SKB_CB(skb)->end_seq;
3652 skb = skb->next;
3653 }
aa8223c7 3654 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
1da177e4
LT
3655 return;
3656
3657 while (before(start, end)) {
3658 struct sk_buff *nskb;
3659 int header = skb_headroom(skb);
3660 int copy = SKB_MAX_ORDER(header, 0);
3661
3662 /* Too big header? This can happen with IPv6. */
3663 if (copy < 0)
3664 return;
3665 if (end-start < copy)
3666 copy = end-start;
3667 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3668 if (!nskb)
3669 return;
c51957da 3670
98e399f8 3671 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
9c70220b
ACM
3672 skb_set_network_header(nskb, (skb_network_header(skb) -
3673 skb->head));
3674 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3675 skb->head));
1da177e4
LT
3676 skb_reserve(nskb, header);
3677 memcpy(nskb->head, skb->head, header);
1da177e4
LT
3678 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3679 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3680 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3681 sk_stream_set_owner_r(nskb, sk);
3682
3683 /* Copy data, releasing collapsed skbs. */
3684 while (copy > 0) {
3685 int offset = start - TCP_SKB_CB(skb)->seq;
3686 int size = TCP_SKB_CB(skb)->end_seq - start;
3687
09a62660 3688 BUG_ON(offset < 0);
1da177e4
LT
3689 if (size > 0) {
3690 size = min(copy, size);
3691 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3692 BUG();
3693 TCP_SKB_CB(nskb)->end_seq += size;
3694 copy -= size;
3695 start += size;
3696 }
3697 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3698 struct sk_buff *next = skb->next;
8728b834 3699 __skb_unlink(skb, list);
1da177e4
LT
3700 __kfree_skb(skb);
3701 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3702 skb = next;
aa8223c7
ACM
3703 if (skb == tail ||
3704 tcp_hdr(skb)->syn ||
3705 tcp_hdr(skb)->fin)
1da177e4
LT
3706 return;
3707 }
3708 }
3709 }
3710}
3711
3712/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3713 * and tcp_collapse() them until all the queue is collapsed.
3714 */
3715static void tcp_collapse_ofo_queue(struct sock *sk)
3716{
3717 struct tcp_sock *tp = tcp_sk(sk);
3718 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3719 struct sk_buff *head;
3720 u32 start, end;
3721
3722 if (skb == NULL)
3723 return;
3724
3725 start = TCP_SKB_CB(skb)->seq;
3726 end = TCP_SKB_CB(skb)->end_seq;
3727 head = skb;
3728
3729 for (;;) {
3730 skb = skb->next;
3731
3732 /* Segment is terminated when we see gap or when
3733 * we are at the end of all the queue. */
3734 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3735 after(TCP_SKB_CB(skb)->seq, end) ||
3736 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3737 tcp_collapse(sk, &tp->out_of_order_queue,
3738 head, skb, start, end);
1da177e4
LT
3739 head = skb;
3740 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3741 break;
3742 /* Start new segment */
3743 start = TCP_SKB_CB(skb)->seq;
3744 end = TCP_SKB_CB(skb)->end_seq;
3745 } else {
3746 if (before(TCP_SKB_CB(skb)->seq, start))
3747 start = TCP_SKB_CB(skb)->seq;
3748 if (after(TCP_SKB_CB(skb)->end_seq, end))
3749 end = TCP_SKB_CB(skb)->end_seq;
3750 }
3751 }
3752}
3753
3754/* Reduce allocated memory if we can, trying to get
3755 * the socket within its memory limits again.
3756 *
3757 * Return less than zero if we should start dropping frames
3758 * until the socket owning process reads some of the data
3759 * to stabilize the situation.
3760 */
3761static int tcp_prune_queue(struct sock *sk)
3762{
e905a9ed 3763 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3764
3765 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3766
3767 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3768
3769 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
9e412ba7 3770 tcp_clamp_window(sk);
1da177e4
LT
3771 else if (tcp_memory_pressure)
3772 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3773
3774 tcp_collapse_ofo_queue(sk);
8728b834
DM
3775 tcp_collapse(sk, &sk->sk_receive_queue,
3776 sk->sk_receive_queue.next,
1da177e4
LT
3777 (struct sk_buff*)&sk->sk_receive_queue,
3778 tp->copied_seq, tp->rcv_nxt);
3779 sk_stream_mem_reclaim(sk);
3780
3781 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3782 return 0;
3783
3784 /* Collapsing did not help, destructive actions follow.
3785 * This must not ever occur. */
3786
3787 /* First, purge the out_of_order queue. */
b03efcfb
DM
3788 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3789 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3790 __skb_queue_purge(&tp->out_of_order_queue);
3791
3792 /* Reset SACK state. A conforming SACK implementation will
3793 * do the same at a timeout based retransmit. When a connection
3794 * is in a sad state like this, we care only about integrity
3795 * of the connection not performance.
3796 */
3797 if (tp->rx_opt.sack_ok)
3798 tcp_sack_reset(&tp->rx_opt);
3799 sk_stream_mem_reclaim(sk);
3800 }
3801
3802 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3803 return 0;
3804
3805 /* If we are really being abused, tell the caller to silently
3806 * drop receive data on the floor. It will get retransmitted
3807 * and hopefully then we'll have sufficient space.
3808 */
3809 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3810
3811 /* Massive buffer overcommit. */
3812 tp->pred_flags = 0;
3813 return -1;
3814}
3815
3816
3817/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3818 * As additional protections, we do not touch cwnd in retransmission phases,
3819 * and if application hit its sndbuf limit recently.
3820 */
3821void tcp_cwnd_application_limited(struct sock *sk)
3822{
3823 struct tcp_sock *tp = tcp_sk(sk);
3824
6687e988 3825 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
3826 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3827 /* Limited by application or receiver window. */
d254bcdb
IJ
3828 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3829 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 3830 if (win_used < tp->snd_cwnd) {
6687e988 3831 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
3832 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3833 }
3834 tp->snd_cwnd_used = 0;
3835 }
3836 tp->snd_cwnd_stamp = tcp_time_stamp;
3837}
3838
9e412ba7 3839static int tcp_should_expand_sndbuf(struct sock *sk)
0d9901df 3840{
9e412ba7
IJ
3841 struct tcp_sock *tp = tcp_sk(sk);
3842
0d9901df
DM
3843 /* If the user specified a specific send buffer setting, do
3844 * not modify it.
3845 */
3846 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3847 return 0;
3848
3849 /* If we are under global TCP memory pressure, do not expand. */
3850 if (tcp_memory_pressure)
3851 return 0;
3852
3853 /* If we are under soft global TCP memory pressure, do not expand. */
3854 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3855 return 0;
3856
3857 /* If we filled the congestion window, do not expand. */
3858 if (tp->packets_out >= tp->snd_cwnd)
3859 return 0;
3860
3861 return 1;
3862}
1da177e4
LT
3863
3864/* When incoming ACK allowed to free some skb from write_queue,
3865 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3866 * on the exit from tcp input handler.
3867 *
3868 * PROBLEM: sndbuf expansion does not work well with largesend.
3869 */
3870static void tcp_new_space(struct sock *sk)
3871{
3872 struct tcp_sock *tp = tcp_sk(sk);
3873
9e412ba7 3874 if (tcp_should_expand_sndbuf(sk)) {
e905a9ed 3875 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
3876 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3877 demanded = max_t(unsigned int, tp->snd_cwnd,
3878 tp->reordering + 1);
3879 sndmem *= 2*demanded;
3880 if (sndmem > sk->sk_sndbuf)
3881 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3882 tp->snd_cwnd_stamp = tcp_time_stamp;
3883 }
3884
3885 sk->sk_write_space(sk);
3886}
3887
40efc6fa 3888static void tcp_check_space(struct sock *sk)
1da177e4
LT
3889{
3890 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3891 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3892 if (sk->sk_socket &&
3893 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3894 tcp_new_space(sk);
3895 }
3896}
3897
9e412ba7 3898static inline void tcp_data_snd_check(struct sock *sk)
1da177e4 3899{
9e412ba7 3900 tcp_push_pending_frames(sk);
1da177e4
LT
3901 tcp_check_space(sk);
3902}
3903
3904/*
3905 * Check if sending an ack is needed.
3906 */
3907static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3908{
3909 struct tcp_sock *tp = tcp_sk(sk);
3910
3911 /* More than one full frame received... */
463c84b9 3912 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
3913 /* ... and right edge of window advances far enough.
3914 * (tcp_recvmsg() will send ACK otherwise). Or...
3915 */
3916 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3917 /* We ACK each frame or... */
463c84b9 3918 tcp_in_quickack_mode(sk) ||
1da177e4
LT
3919 /* We have out of order data. */
3920 (ofo_possible &&
3921 skb_peek(&tp->out_of_order_queue))) {
3922 /* Then ack it now */
3923 tcp_send_ack(sk);
3924 } else {
3925 /* Else, send delayed ack. */
3926 tcp_send_delayed_ack(sk);
3927 }
3928}
3929
40efc6fa 3930static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 3931{
463c84b9 3932 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
3933 /* We sent a data segment already. */
3934 return;
3935 }
3936 __tcp_ack_snd_check(sk, 1);
3937}
3938
3939/*
3940 * This routine is only called when we have urgent data
caa20d9a 3941 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
3942 * moved inline now as tcp_urg is only called from one
3943 * place. We handle URGent data wrong. We have to - as
3944 * BSD still doesn't use the correction from RFC961.
3945 * For 1003.1g we should support a new option TCP_STDURG to permit
3946 * either form (or just set the sysctl tcp_stdurg).
3947 */
e905a9ed 3948
1da177e4
LT
3949static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3950{
3951 struct tcp_sock *tp = tcp_sk(sk);
3952 u32 ptr = ntohs(th->urg_ptr);
3953
3954 if (ptr && !sysctl_tcp_stdurg)
3955 ptr--;
3956 ptr += ntohl(th->seq);
3957
3958 /* Ignore urgent data that we've already seen and read. */
3959 if (after(tp->copied_seq, ptr))
3960 return;
3961
3962 /* Do not replay urg ptr.
3963 *
3964 * NOTE: interesting situation not covered by specs.
3965 * Misbehaving sender may send urg ptr, pointing to segment,
3966 * which we already have in ofo queue. We are not able to fetch
3967 * such data and will stay in TCP_URG_NOTYET until will be eaten
3968 * by recvmsg(). Seems, we are not obliged to handle such wicked
3969 * situations. But it is worth to think about possibility of some
3970 * DoSes using some hypothetical application level deadlock.
3971 */
3972 if (before(ptr, tp->rcv_nxt))
3973 return;
3974
3975 /* Do we already have a newer (or duplicate) urgent pointer? */
3976 if (tp->urg_data && !after(ptr, tp->urg_seq))
3977 return;
3978
3979 /* Tell the world about our new urgent pointer. */
3980 sk_send_sigurg(sk);
3981
3982 /* We may be adding urgent data when the last byte read was
3983 * urgent. To do this requires some care. We cannot just ignore
3984 * tp->copied_seq since we would read the last urgent byte again
3985 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 3986 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
3987 *
3988 * NOTE. Double Dutch. Rendering to plain English: author of comment
3989 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3990 * and expect that both A and B disappear from stream. This is _wrong_.
3991 * Though this happens in BSD with high probability, this is occasional.
3992 * Any application relying on this is buggy. Note also, that fix "works"
3993 * only in this artificial test. Insert some normal data between A and B and we will
3994 * decline of BSD again. Verdict: it is better to remove to trap
3995 * buggy users.
3996 */
3997 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3998 !sock_flag(sk, SOCK_URGINLINE) &&
3999 tp->copied_seq != tp->rcv_nxt) {
4000 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4001 tp->copied_seq++;
4002 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 4003 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
4004 __kfree_skb(skb);
4005 }
4006 }
4007
4008 tp->urg_data = TCP_URG_NOTYET;
4009 tp->urg_seq = ptr;
4010
4011 /* Disable header prediction. */
4012 tp->pred_flags = 0;
4013}
4014
4015/* This is the 'fast' part of urgent handling. */
4016static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4017{
4018 struct tcp_sock *tp = tcp_sk(sk);
4019
4020 /* Check if we get a new urgent pointer - normally not. */
4021 if (th->urg)
4022 tcp_check_urg(sk,th);
4023
4024 /* Do we wait for any urgent data? - normally not... */
4025 if (tp->urg_data == TCP_URG_NOTYET) {
4026 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4027 th->syn;
4028
e905a9ed 4029 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
4030 if (ptr < skb->len) {
4031 u8 tmp;
4032 if (skb_copy_bits(skb, ptr, &tmp, 1))
4033 BUG();
4034 tp->urg_data = TCP_URG_VALID | tmp;
4035 if (!sock_flag(sk, SOCK_DEAD))
4036 sk->sk_data_ready(sk, 0);
4037 }
4038 }
4039}
4040
4041static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4042{
4043 struct tcp_sock *tp = tcp_sk(sk);
4044 int chunk = skb->len - hlen;
4045 int err;
4046
4047 local_bh_enable();
60476372 4048 if (skb_csum_unnecessary(skb))
1da177e4
LT
4049 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4050 else
4051 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4052 tp->ucopy.iov);
4053
4054 if (!err) {
4055 tp->ucopy.len -= chunk;
4056 tp->copied_seq += chunk;
4057 tcp_rcv_space_adjust(sk);
4058 }
4059
4060 local_bh_disable();
4061 return err;
4062}
4063
b51655b9 4064static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4065{
b51655b9 4066 __sum16 result;
1da177e4
LT
4067
4068 if (sock_owned_by_user(sk)) {
4069 local_bh_enable();
4070 result = __tcp_checksum_complete(skb);
4071 local_bh_disable();
4072 } else {
4073 result = __tcp_checksum_complete(skb);
4074 }
4075 return result;
4076}
4077
40efc6fa 4078static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4079{
60476372 4080 return !skb_csum_unnecessary(skb) &&
1da177e4
LT
4081 __tcp_checksum_complete_user(sk, skb);
4082}
4083
1a2449a8
CL
4084#ifdef CONFIG_NET_DMA
4085static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4086{
4087 struct tcp_sock *tp = tcp_sk(sk);
4088 int chunk = skb->len - hlen;
4089 int dma_cookie;
4090 int copied_early = 0;
4091
4092 if (tp->ucopy.wakeup)
e905a9ed 4093 return 0;
1a2449a8
CL
4094
4095 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4096 tp->ucopy.dma_chan = get_softnet_dma();
4097
60476372 4098 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
1a2449a8
CL
4099
4100 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4101 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4102
4103 if (dma_cookie < 0)
4104 goto out;
4105
4106 tp->ucopy.dma_cookie = dma_cookie;
4107 copied_early = 1;
4108
4109 tp->ucopy.len -= chunk;
4110 tp->copied_seq += chunk;
4111 tcp_rcv_space_adjust(sk);
4112
4113 if ((tp->ucopy.len == 0) ||
aa8223c7 4114 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
1a2449a8
CL
4115 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4116 tp->ucopy.wakeup = 1;
4117 sk->sk_data_ready(sk, 0);
4118 }
4119 } else if (chunk > 0) {
4120 tp->ucopy.wakeup = 1;
4121 sk->sk_data_ready(sk, 0);
4122 }
4123out:
4124 return copied_early;
4125}
4126#endif /* CONFIG_NET_DMA */
4127
1da177e4 4128/*
e905a9ed 4129 * TCP receive function for the ESTABLISHED state.
1da177e4 4130 *
e905a9ed 4131 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4132 * disabled when:
4133 * - A zero window was announced from us - zero window probing
e905a9ed 4134 * is only handled properly in the slow path.
1da177e4
LT
4135 * - Out of order segments arrived.
4136 * - Urgent data is expected.
4137 * - There is no buffer space left
4138 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4139 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4140 * - Data is sent in both directions. Fast path only supports pure senders
4141 * or pure receivers (this means either the sequence number or the ack
4142 * value must stay constant)
4143 * - Unexpected TCP option.
4144 *
e905a9ed 4145 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4146 * receive procedure patterned after RFC793 to handle all cases.
4147 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4148 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4149 * tcp_data_queue when everything is OK.
4150 */
4151int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4152 struct tcphdr *th, unsigned len)
4153{
4154 struct tcp_sock *tp = tcp_sk(sk);
4155
4156 /*
4157 * Header prediction.
e905a9ed 4158 * The code loosely follows the one in the famous
1da177e4 4159 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4160 *
4161 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4162 * on a device interrupt, to call tcp_recv function
4163 * on the receive process context and checksum and copy
4164 * the buffer to user space. smart...
4165 *
e905a9ed 4166 * Our current scheme is not silly either but we take the
1da177e4
LT
4167 * extra cost of the net_bh soft interrupt processing...
4168 * We do checksum and copy also but from device to kernel.
4169 */
4170
4171 tp->rx_opt.saw_tstamp = 0;
4172
4173 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4174 * if header_prediction is to be made
1da177e4
LT
4175 * 'S' will always be tp->tcp_header_len >> 2
4176 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4177 * turn it off (when there are holes in the receive
1da177e4
LT
4178 * space for instance)
4179 * PSH flag is ignored.
4180 */
4181
4182 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4183 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4184 int tcp_header_len = tp->tcp_header_len;
4185
4186 /* Timestamp header prediction: tcp_header_len
4187 * is automatically equal to th->doff*4 due to pred_flags
4188 * match.
4189 */
4190
4191 /* Check timestamp */
4192 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4193 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4194
4195 /* No? Slow path! */
4f3608b7 4196 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4197 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4198 goto slow_path;
4199
4200 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4201 ++ptr;
1da177e4
LT
4202 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4203 ++ptr;
4204 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4205
4206 /* If PAWS failed, check it more carefully in slow path */
4207 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4208 goto slow_path;
4209
4210 /* DO NOT update ts_recent here, if checksum fails
4211 * and timestamp was corrupted part, it will result
4212 * in a hung connection since we will drop all
4213 * future packets due to the PAWS test.
4214 */
4215 }
4216
4217 if (len <= tcp_header_len) {
4218 /* Bulk data transfer: sender */
4219 if (len == tcp_header_len) {
4220 /* Predicted packet is in window by definition.
4221 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4222 * Hence, check seq<=rcv_wup reduces to:
4223 */
4224 if (tcp_header_len ==
4225 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4226 tp->rcv_nxt == tp->rcv_wup)
4227 tcp_store_ts_recent(tp);
4228
1da177e4
LT
4229 /* We know that such packets are checksummed
4230 * on entry.
4231 */
4232 tcp_ack(sk, skb, 0);
e905a9ed 4233 __kfree_skb(skb);
9e412ba7 4234 tcp_data_snd_check(sk);
1da177e4
LT
4235 return 0;
4236 } else { /* Header too small */
4237 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4238 goto discard;
4239 }
4240 } else {
4241 int eaten = 0;
1a2449a8 4242 int copied_early = 0;
1da177e4 4243
1a2449a8
CL
4244 if (tp->copied_seq == tp->rcv_nxt &&
4245 len - tcp_header_len <= tp->ucopy.len) {
4246#ifdef CONFIG_NET_DMA
4247 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4248 copied_early = 1;
4249 eaten = 1;
4250 }
4251#endif
4252 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4253 __set_current_state(TASK_RUNNING);
1da177e4 4254
1a2449a8
CL
4255 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4256 eaten = 1;
4257 }
4258 if (eaten) {
1da177e4
LT
4259 /* Predicted packet is in window by definition.
4260 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4261 * Hence, check seq<=rcv_wup reduces to:
4262 */
4263 if (tcp_header_len ==
4264 (sizeof(struct tcphdr) +
4265 TCPOLEN_TSTAMP_ALIGNED) &&
4266 tp->rcv_nxt == tp->rcv_wup)
4267 tcp_store_ts_recent(tp);
4268
463c84b9 4269 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4270
4271 __skb_pull(skb, tcp_header_len);
4272 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4273 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4274 }
1a2449a8
CL
4275 if (copied_early)
4276 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4277 }
4278 if (!eaten) {
4279 if (tcp_checksum_complete_user(sk, skb))
4280 goto csum_error;
4281
4282 /* Predicted packet is in window by definition.
4283 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4284 * Hence, check seq<=rcv_wup reduces to:
4285 */
4286 if (tcp_header_len ==
4287 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4288 tp->rcv_nxt == tp->rcv_wup)
4289 tcp_store_ts_recent(tp);
4290
463c84b9 4291 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4292
4293 if ((int)skb->truesize > sk->sk_forward_alloc)
4294 goto step5;
4295
4296 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4297
4298 /* Bulk data transfer: receiver */
4299 __skb_pull(skb,tcp_header_len);
4300 __skb_queue_tail(&sk->sk_receive_queue, skb);
4301 sk_stream_set_owner_r(skb, sk);
4302 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4303 }
4304
9e412ba7 4305 tcp_event_data_recv(sk, skb);
1da177e4
LT
4306
4307 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4308 /* Well, only one small jumplet in fast path... */
4309 tcp_ack(sk, skb, FLAG_DATA);
9e412ba7 4310 tcp_data_snd_check(sk);
463c84b9 4311 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4312 goto no_ack;
4313 }
4314
31432412 4315 __tcp_ack_snd_check(sk, 0);
1da177e4 4316no_ack:
1a2449a8
CL
4317#ifdef CONFIG_NET_DMA
4318 if (copied_early)
4319 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4320 else
4321#endif
1da177e4
LT
4322 if (eaten)
4323 __kfree_skb(skb);
4324 else
4325 sk->sk_data_ready(sk, 0);
4326 return 0;
4327 }
4328 }
4329
4330slow_path:
4331 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4332 goto csum_error;
4333
4334 /*
4335 * RFC1323: H1. Apply PAWS check first.
4336 */
4337 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4338 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4339 if (!th->rst) {
4340 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4341 tcp_send_dupack(sk, skb);
4342 goto discard;
4343 }
4344 /* Resets are accepted even if PAWS failed.
4345
4346 ts_recent update must be made after we are sure
4347 that the packet is in window.
4348 */
4349 }
4350
4351 /*
4352 * Standard slow path.
4353 */
4354
4355 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4356 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4357 * (RST) segments are validated by checking their SEQ-fields."
4358 * And page 69: "If an incoming segment is not acceptable,
4359 * an acknowledgment should be sent in reply (unless the RST bit
4360 * is set, if so drop the segment and return)".
4361 */
4362 if (!th->rst)
4363 tcp_send_dupack(sk, skb);
4364 goto discard;
4365 }
4366
2de979bd 4367 if (th->rst) {
1da177e4
LT
4368 tcp_reset(sk);
4369 goto discard;
4370 }
4371
4372 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4373
4374 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4375 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4376 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4377 tcp_reset(sk);
4378 return 1;
4379 }
4380
4381step5:
2de979bd 4382 if (th->ack)
1da177e4
LT
4383 tcp_ack(sk, skb, FLAG_SLOWPATH);
4384
463c84b9 4385 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4386
4387 /* Process urgent data. */
4388 tcp_urg(sk, skb, th);
4389
4390 /* step 7: process the segment text */
4391 tcp_data_queue(sk, skb);
4392
9e412ba7 4393 tcp_data_snd_check(sk);
1da177e4
LT
4394 tcp_ack_snd_check(sk);
4395 return 0;
4396
4397csum_error:
4398 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4399
4400discard:
4401 __kfree_skb(skb);
4402 return 0;
4403}
4404
4405static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4406 struct tcphdr *th, unsigned len)
4407{
4408 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4409 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4410 int saved_clamp = tp->rx_opt.mss_clamp;
4411
4412 tcp_parse_options(skb, &tp->rx_opt, 0);
4413
4414 if (th->ack) {
4415 /* rfc793:
4416 * "If the state is SYN-SENT then
4417 * first check the ACK bit
4418 * If the ACK bit is set
4419 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4420 * a reset (unless the RST bit is set, if so drop
4421 * the segment and return)"
4422 *
4423 * We do not send data with SYN, so that RFC-correct
4424 * test reduces to:
4425 */
4426 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4427 goto reset_and_undo;
4428
4429 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4430 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4431 tcp_time_stamp)) {
4432 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4433 goto reset_and_undo;
4434 }
4435
4436 /* Now ACK is acceptable.
4437 *
4438 * "If the RST bit is set
4439 * If the ACK was acceptable then signal the user "error:
4440 * connection reset", drop the segment, enter CLOSED state,
4441 * delete TCB, and return."
4442 */
4443
4444 if (th->rst) {
4445 tcp_reset(sk);
4446 goto discard;
4447 }
4448
4449 /* rfc793:
4450 * "fifth, if neither of the SYN or RST bits is set then
4451 * drop the segment and return."
4452 *
4453 * See note below!
4454 * --ANK(990513)
4455 */
4456 if (!th->syn)
4457 goto discard_and_undo;
4458
4459 /* rfc793:
4460 * "If the SYN bit is on ...
4461 * are acceptable then ...
4462 * (our SYN has been ACKed), change the connection
4463 * state to ESTABLISHED..."
4464 */
4465
4466 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4467
4468 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4469 tcp_ack(sk, skb, FLAG_SLOWPATH);
4470
4471 /* Ok.. it's good. Set up sequence numbers and
4472 * move to established.
4473 */
4474 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4475 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4476
4477 /* RFC1323: The window in SYN & SYN/ACK segments is
4478 * never scaled.
4479 */
4480 tp->snd_wnd = ntohs(th->window);
4481 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4482
4483 if (!tp->rx_opt.wscale_ok) {
4484 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4485 tp->window_clamp = min(tp->window_clamp, 65535U);
4486 }
4487
4488 if (tp->rx_opt.saw_tstamp) {
4489 tp->rx_opt.tstamp_ok = 1;
4490 tp->tcp_header_len =
4491 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4492 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4493 tcp_store_ts_recent(tp);
4494 } else {
4495 tp->tcp_header_len = sizeof(struct tcphdr);
4496 }
4497
4498 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4499 tp->rx_opt.sack_ok |= 2;
4500
5d424d5a 4501 tcp_mtup_init(sk);
d83d8461 4502 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4503 tcp_initialize_rcv_mss(sk);
4504
4505 /* Remember, tcp_poll() does not lock socket!
4506 * Change state from SYN-SENT only after copied_seq
4507 * is initialized. */
4508 tp->copied_seq = tp->rcv_nxt;
e16aa207 4509 smp_mb();
1da177e4
LT
4510 tcp_set_state(sk, TCP_ESTABLISHED);
4511
6b877699
VY
4512 security_inet_conn_established(sk, skb);
4513
1da177e4 4514 /* Make sure socket is routed, for correct metrics. */
8292a17a 4515 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4516
4517 tcp_init_metrics(sk);
4518
6687e988 4519 tcp_init_congestion_control(sk);
317a76f9 4520
1da177e4
LT
4521 /* Prevent spurious tcp_cwnd_restart() on first data
4522 * packet.
4523 */
4524 tp->lsndtime = tcp_time_stamp;
4525
4526 tcp_init_buffer_space(sk);
4527
4528 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4529 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4530
4531 if (!tp->rx_opt.snd_wscale)
4532 __tcp_fast_path_on(tp, tp->snd_wnd);
4533 else
4534 tp->pred_flags = 0;
4535
4536 if (!sock_flag(sk, SOCK_DEAD)) {
4537 sk->sk_state_change(sk);
4538 sk_wake_async(sk, 0, POLL_OUT);
4539 }
4540
295f7324
ACM
4541 if (sk->sk_write_pending ||
4542 icsk->icsk_accept_queue.rskq_defer_accept ||
4543 icsk->icsk_ack.pingpong) {
1da177e4
LT
4544 /* Save one ACK. Data will be ready after
4545 * several ticks, if write_pending is set.
4546 *
4547 * It may be deleted, but with this feature tcpdumps
4548 * look so _wonderfully_ clever, that I was not able
4549 * to stand against the temptation 8) --ANK
4550 */
463c84b9 4551 inet_csk_schedule_ack(sk);
295f7324
ACM
4552 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4553 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4554 tcp_incr_quickack(sk);
4555 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4556 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4557 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4558
4559discard:
4560 __kfree_skb(skb);
4561 return 0;
4562 } else {
4563 tcp_send_ack(sk);
4564 }
4565 return -1;
4566 }
4567
4568 /* No ACK in the segment */
4569
4570 if (th->rst) {
4571 /* rfc793:
4572 * "If the RST bit is set
4573 *
4574 * Otherwise (no ACK) drop the segment and return."
4575 */
4576
4577 goto discard_and_undo;
4578 }
4579
4580 /* PAWS check. */
4581 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4582 goto discard_and_undo;
4583
4584 if (th->syn) {
4585 /* We see SYN without ACK. It is attempt of
4586 * simultaneous connect with crossed SYNs.
4587 * Particularly, it can be connect to self.
4588 */
4589 tcp_set_state(sk, TCP_SYN_RECV);
4590
4591 if (tp->rx_opt.saw_tstamp) {
4592 tp->rx_opt.tstamp_ok = 1;
4593 tcp_store_ts_recent(tp);
4594 tp->tcp_header_len =
4595 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4596 } else {
4597 tp->tcp_header_len = sizeof(struct tcphdr);
4598 }
4599
4600 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4601 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4602
4603 /* RFC1323: The window in SYN & SYN/ACK segments is
4604 * never scaled.
4605 */
4606 tp->snd_wnd = ntohs(th->window);
4607 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4608 tp->max_window = tp->snd_wnd;
4609
4610 TCP_ECN_rcv_syn(tp, th);
1da177e4 4611
5d424d5a 4612 tcp_mtup_init(sk);
d83d8461 4613 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4614 tcp_initialize_rcv_mss(sk);
4615
4616
4617 tcp_send_synack(sk);
4618#if 0
4619 /* Note, we could accept data and URG from this segment.
4620 * There are no obstacles to make this.
4621 *
4622 * However, if we ignore data in ACKless segments sometimes,
4623 * we have no reasons to accept it sometimes.
4624 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4625 * is not flawless. So, discard packet for sanity.
4626 * Uncomment this return to process the data.
4627 */
4628 return -1;
4629#else
4630 goto discard;
4631#endif
4632 }
4633 /* "fifth, if neither of the SYN or RST bits is set then
4634 * drop the segment and return."
4635 */
4636
4637discard_and_undo:
4638 tcp_clear_options(&tp->rx_opt);
4639 tp->rx_opt.mss_clamp = saved_clamp;
4640 goto discard;
4641
4642reset_and_undo:
4643 tcp_clear_options(&tp->rx_opt);
4644 tp->rx_opt.mss_clamp = saved_clamp;
4645 return 1;
4646}
4647
4648
4649/*
4650 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4651 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4652 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4653 * address independent.
4654 */
e905a9ed 4655
1da177e4
LT
4656int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4657 struct tcphdr *th, unsigned len)
4658{
4659 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4660 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4661 int queued = 0;
4662
4663 tp->rx_opt.saw_tstamp = 0;
4664
4665 switch (sk->sk_state) {
4666 case TCP_CLOSE:
4667 goto discard;
4668
4669 case TCP_LISTEN:
2de979bd 4670 if (th->ack)
1da177e4
LT
4671 return 1;
4672
2de979bd 4673 if (th->rst)
1da177e4
LT
4674 goto discard;
4675
2de979bd 4676 if (th->syn) {
8292a17a 4677 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4678 return 1;
4679
e905a9ed
YH
4680 /* Now we have several options: In theory there is
4681 * nothing else in the frame. KA9Q has an option to
1da177e4 4682 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4683 * syn up to the [to be] advertised window and
4684 * Solaris 2.1 gives you a protocol error. For now
4685 * we just ignore it, that fits the spec precisely
1da177e4
LT
4686 * and avoids incompatibilities. It would be nice in
4687 * future to drop through and process the data.
4688 *
e905a9ed 4689 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4690 * queue this data.
4691 * But, this leaves one open to an easy denial of
e905a9ed 4692 * service attack, and SYN cookies can't defend
1da177e4 4693 * against this problem. So, we drop the data
fb7e2399
MN
4694 * in the interest of security over speed unless
4695 * it's still in use.
1da177e4 4696 */
fb7e2399
MN
4697 kfree_skb(skb);
4698 return 0;
1da177e4
LT
4699 }
4700 goto discard;
4701
4702 case TCP_SYN_SENT:
1da177e4
LT
4703 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4704 if (queued >= 0)
4705 return queued;
4706
4707 /* Do step6 onward by hand. */
4708 tcp_urg(sk, skb, th);
4709 __kfree_skb(skb);
9e412ba7 4710 tcp_data_snd_check(sk);
1da177e4
LT
4711 return 0;
4712 }
4713
4714 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4715 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4716 if (!th->rst) {
4717 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4718 tcp_send_dupack(sk, skb);
4719 goto discard;
4720 }
4721 /* Reset is accepted even if it did not pass PAWS. */
4722 }
4723
4724 /* step 1: check sequence number */
4725 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4726 if (!th->rst)
4727 tcp_send_dupack(sk, skb);
4728 goto discard;
4729 }
4730
4731 /* step 2: check RST bit */
2de979bd 4732 if (th->rst) {
1da177e4
LT
4733 tcp_reset(sk);
4734 goto discard;
4735 }
4736
4737 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4738
4739 /* step 3: check security and precedence [ignored] */
4740
4741 /* step 4:
4742 *
4743 * Check for a SYN in window.
4744 */
4745 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4746 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4747 tcp_reset(sk);
4748 return 1;
4749 }
4750
4751 /* step 5: check the ACK field */
4752 if (th->ack) {
4753 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4754
2de979bd 4755 switch (sk->sk_state) {
1da177e4
LT
4756 case TCP_SYN_RECV:
4757 if (acceptable) {
4758 tp->copied_seq = tp->rcv_nxt;
e16aa207 4759 smp_mb();
1da177e4
LT
4760 tcp_set_state(sk, TCP_ESTABLISHED);
4761 sk->sk_state_change(sk);
4762
4763 /* Note, that this wakeup is only for marginal
4764 * crossed SYN case. Passively open sockets
4765 * are not waked up, because sk->sk_sleep ==
4766 * NULL and sk->sk_socket == NULL.
4767 */
4768 if (sk->sk_socket) {
4769 sk_wake_async(sk,0,POLL_OUT);
4770 }
4771
4772 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4773 tp->snd_wnd = ntohs(th->window) <<
4774 tp->rx_opt.snd_wscale;
4775 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4776 TCP_SKB_CB(skb)->seq);
4777
4778 /* tcp_ack considers this ACK as duplicate
4779 * and does not calculate rtt.
4780 * Fix it at least with timestamps.
4781 */
4782 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4783 !tp->srtt)
2d2abbab 4784 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4785
4786 if (tp->rx_opt.tstamp_ok)
4787 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4788
4789 /* Make sure socket is routed, for
4790 * correct metrics.
4791 */
8292a17a 4792 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4793
4794 tcp_init_metrics(sk);
4795
6687e988 4796 tcp_init_congestion_control(sk);
317a76f9 4797
1da177e4
LT
4798 /* Prevent spurious tcp_cwnd_restart() on
4799 * first data packet.
4800 */
4801 tp->lsndtime = tcp_time_stamp;
4802
5d424d5a 4803 tcp_mtup_init(sk);
1da177e4
LT
4804 tcp_initialize_rcv_mss(sk);
4805 tcp_init_buffer_space(sk);
4806 tcp_fast_path_on(tp);
4807 } else {
4808 return 1;
4809 }
4810 break;
4811
4812 case TCP_FIN_WAIT1:
4813 if (tp->snd_una == tp->write_seq) {
4814 tcp_set_state(sk, TCP_FIN_WAIT2);
4815 sk->sk_shutdown |= SEND_SHUTDOWN;
4816 dst_confirm(sk->sk_dst_cache);
4817
4818 if (!sock_flag(sk, SOCK_DEAD))
4819 /* Wake up lingering close() */
4820 sk->sk_state_change(sk);
4821 else {
4822 int tmo;
4823
4824 if (tp->linger2 < 0 ||
4825 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4826 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4827 tcp_done(sk);
4828 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4829 return 1;
4830 }
4831
463c84b9 4832 tmo = tcp_fin_time(sk);
1da177e4 4833 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 4834 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
4835 } else if (th->fin || sock_owned_by_user(sk)) {
4836 /* Bad case. We could lose such FIN otherwise.
4837 * It is not a big problem, but it looks confusing
4838 * and not so rare event. We still can lose it now,
4839 * if it spins in bh_lock_sock(), but it is really
4840 * marginal case.
4841 */
463c84b9 4842 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
4843 } else {
4844 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4845 goto discard;
4846 }
4847 }
4848 }
4849 break;
4850
4851 case TCP_CLOSING:
4852 if (tp->snd_una == tp->write_seq) {
4853 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4854 goto discard;
4855 }
4856 break;
4857
4858 case TCP_LAST_ACK:
4859 if (tp->snd_una == tp->write_seq) {
4860 tcp_update_metrics(sk);
4861 tcp_done(sk);
4862 goto discard;
4863 }
4864 break;
4865 }
4866 } else
4867 goto discard;
4868
4869 /* step 6: check the URG bit */
4870 tcp_urg(sk, skb, th);
4871
4872 /* step 7: process the segment text */
4873 switch (sk->sk_state) {
4874 case TCP_CLOSE_WAIT:
4875 case TCP_CLOSING:
4876 case TCP_LAST_ACK:
4877 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4878 break;
4879 case TCP_FIN_WAIT1:
4880 case TCP_FIN_WAIT2:
4881 /* RFC 793 says to queue data in these states,
e905a9ed 4882 * RFC 1122 says we MUST send a reset.
1da177e4
LT
4883 * BSD 4.4 also does reset.
4884 */
4885 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4886 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4887 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4888 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4889 tcp_reset(sk);
4890 return 1;
4891 }
4892 }
4893 /* Fall through */
e905a9ed 4894 case TCP_ESTABLISHED:
1da177e4
LT
4895 tcp_data_queue(sk, skb);
4896 queued = 1;
4897 break;
4898 }
4899
4900 /* tcp_data could move socket to TIME-WAIT */
4901 if (sk->sk_state != TCP_CLOSE) {
9e412ba7 4902 tcp_data_snd_check(sk);
1da177e4
LT
4903 tcp_ack_snd_check(sk);
4904 }
4905
e905a9ed 4906 if (!queued) {
1da177e4
LT
4907discard:
4908 __kfree_skb(skb);
4909 }
4910 return 0;
4911}
4912
4913EXPORT_SYMBOL(sysctl_tcp_ecn);
4914EXPORT_SYMBOL(sysctl_tcp_reordering);
4915EXPORT_SYMBOL(tcp_parse_options);
4916EXPORT_SYMBOL(tcp_rcv_established);
4917EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 4918EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.612912 seconds and 5 git commands to generate.