tcp: refactor CA_Loss state processing
[deliverable/linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
5ffc02a1 71#include <net/dst.h>
1da177e4
LT
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
1a2449a8 76#include <net/netdma.h>
1da177e4 77
ab32ea5d
BH
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 86int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 88
282f23c6
ED
89/* rfc5961 challenge ack rate limiting */
90int sysctl_tcp_challenge_ack_limit = 100;
91
ab32ea5d
BH
92int sysctl_tcp_stdurg __read_mostly;
93int sysctl_tcp_rfc1337 __read_mostly;
94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 95int sysctl_tcp_frto __read_mostly = 2;
1da177e4 96
7e380175
AP
97int sysctl_tcp_thin_dupack __read_mostly;
98
ab32ea5d 99int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 100int sysctl_tcp_early_retrans __read_mostly = 3;
1da177e4 101
1da177e4
LT
102#define FLAG_DATA 0x01 /* Incoming frame contained data. */
103#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107#define FLAG_DATA_SACKED 0x20 /* New SACK. */
108#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 109#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
2e605294 110#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 111#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 112#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
1da177e4
LT
113
114#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
115#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
116#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
117#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
118
1da177e4 119#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 120#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 121
e905a9ed 122/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 123 * real world.
e905a9ed 124 */
056834d9 125static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 126{
463c84b9 127 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 128 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 129 unsigned int len;
1da177e4 130
e905a9ed 131 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
132
133 /* skb->len may jitter because of SACKs, even if peer
134 * sends good full-sized frames.
135 */
056834d9 136 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
137 if (len >= icsk->icsk_ack.rcv_mss) {
138 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
139 } else {
140 /* Otherwise, we make more careful check taking into account,
141 * that SACKs block is variable.
142 *
143 * "len" is invariant segment length, including TCP header.
144 */
9c70220b 145 len += skb->data - skb_transport_header(skb);
bee7ca9e 146 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
147 /* If PSH is not set, packet should be
148 * full sized, provided peer TCP is not badly broken.
149 * This observation (if it is correct 8)) allows
150 * to handle super-low mtu links fairly.
151 */
152 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 153 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
154 /* Subtract also invariant (if peer is RFC compliant),
155 * tcp header plus fixed timestamp option length.
156 * Resulting "len" is MSS free of SACK jitter.
157 */
463c84b9
ACM
158 len -= tcp_sk(sk)->tcp_header_len;
159 icsk->icsk_ack.last_seg_size = len;
1da177e4 160 if (len == lss) {
463c84b9 161 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
162 return;
163 }
164 }
1ef9696c
AK
165 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 167 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
168 }
169}
170
463c84b9 171static void tcp_incr_quickack(struct sock *sk)
1da177e4 172{
463c84b9 173 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 174 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 175
056834d9
IJ
176 if (quickacks == 0)
177 quickacks = 2;
463c84b9
ACM
178 if (quickacks > icsk->icsk_ack.quick)
179 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
180}
181
1b9f4092 182static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 183{
463c84b9
ACM
184 struct inet_connection_sock *icsk = inet_csk(sk);
185 tcp_incr_quickack(sk);
186 icsk->icsk_ack.pingpong = 0;
187 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
188}
189
190/* Send ACKs quickly, if "quick" count is not exhausted
191 * and the session is not interactive.
192 */
193
a2a385d6 194static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 195{
463c84b9 196 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 197
463c84b9 198 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
199}
200
bdf1ee5d
IJ
201static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
202{
056834d9 203 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
204 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
205}
206
cf533ea5 207static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
208{
209 if (tcp_hdr(skb)->cwr)
210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211}
212
213static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
214{
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216}
217
7a269ffa 218static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 219{
7a269ffa
ED
220 if (!(tp->ecn_flags & TCP_ECN_OK))
221 return;
222
b82d1bb4 223 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 224 case INET_ECN_NOT_ECT:
bdf1ee5d 225 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
226 * and we already seen ECT on a previous segment,
227 * it is probably a retransmit.
228 */
229 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 230 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
231 break;
232 case INET_ECN_CE:
aae06bf5
ED
233 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
234 /* Better not delay acks, sender can have a very low cwnd */
235 tcp_enter_quickack_mode((struct sock *)tp);
236 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
237 }
7a269ffa
ED
238 /* fallinto */
239 default:
240 tp->ecn_flags |= TCP_ECN_SEEN;
bdf1ee5d
IJ
241 }
242}
243
cf533ea5 244static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 245{
056834d9 246 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
247 tp->ecn_flags &= ~TCP_ECN_OK;
248}
249
cf533ea5 250static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 251{
056834d9 252 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
253 tp->ecn_flags &= ~TCP_ECN_OK;
254}
255
a2a385d6 256static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 257{
056834d9 258 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
259 return true;
260 return false;
bdf1ee5d
IJ
261}
262
1da177e4
LT
263/* Buffer size and advertised window tuning.
264 *
265 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
266 */
267
268static void tcp_fixup_sndbuf(struct sock *sk)
269{
87fb4b7b 270 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
1da177e4 271
06a59ecb
ED
272 sndmem *= TCP_INIT_CWND;
273 if (sk->sk_sndbuf < sndmem)
274 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
275}
276
277/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
278 *
279 * All tcp_full_space() is split to two parts: "network" buffer, allocated
280 * forward and advertised in receiver window (tp->rcv_wnd) and
281 * "application buffer", required to isolate scheduling/application
282 * latencies from network.
283 * window_clamp is maximal advertised window. It can be less than
284 * tcp_full_space(), in this case tcp_full_space() - window_clamp
285 * is reserved for "application" buffer. The less window_clamp is
286 * the smoother our behaviour from viewpoint of network, but the lower
287 * throughput and the higher sensitivity of the connection to losses. 8)
288 *
289 * rcv_ssthresh is more strict window_clamp used at "slow start"
290 * phase to predict further behaviour of this connection.
291 * It is used for two goals:
292 * - to enforce header prediction at sender, even when application
293 * requires some significant "application buffer". It is check #1.
294 * - to prevent pruning of receive queue because of misprediction
295 * of receiver window. Check #2.
296 *
297 * The scheme does not work when sender sends good segments opening
caa20d9a 298 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
299 * in common situations. Otherwise, we have to rely on queue collapsing.
300 */
301
302/* Slow part of check#2. */
9e412ba7 303static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 304{
9e412ba7 305 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 306 /* Optimize this! */
dfd4f0ae
ED
307 int truesize = tcp_win_from_space(skb->truesize) >> 1;
308 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
309
310 while (tp->rcv_ssthresh <= window) {
311 if (truesize <= skb->len)
463c84b9 312 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
313
314 truesize >>= 1;
315 window >>= 1;
316 }
317 return 0;
318}
319
cf533ea5 320static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 321{
9e412ba7
IJ
322 struct tcp_sock *tp = tcp_sk(sk);
323
1da177e4
LT
324 /* Check #1 */
325 if (tp->rcv_ssthresh < tp->window_clamp &&
326 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 327 !sk_under_memory_pressure(sk)) {
1da177e4
LT
328 int incr;
329
330 /* Check #2. Increase window, if skb with such overhead
331 * will fit to rcvbuf in future.
332 */
333 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 334 incr = 2 * tp->advmss;
1da177e4 335 else
9e412ba7 336 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
337
338 if (incr) {
4d846f02 339 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
340 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
341 tp->window_clamp);
463c84b9 342 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
343 }
344 }
345}
346
347/* 3. Tuning rcvbuf, when connection enters established state. */
348
349static void tcp_fixup_rcvbuf(struct sock *sk)
350{
e9266a02
ED
351 u32 mss = tcp_sk(sk)->advmss;
352 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
353 int rcvmem;
1da177e4 354
e9266a02
ED
355 /* Limit to 10 segments if mss <= 1460,
356 * or 14600/mss segments, with a minimum of two segments.
1da177e4 357 */
e9266a02
ED
358 if (mss > 1460)
359 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
360
361 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
362 while (tcp_win_from_space(rcvmem) < mss)
1da177e4 363 rcvmem += 128;
e9266a02
ED
364
365 rcvmem *= icwnd;
366
367 if (sk->sk_rcvbuf < rcvmem)
368 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
369}
370
caa20d9a 371/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
372 * established state.
373 */
10467163 374void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
375{
376 struct tcp_sock *tp = tcp_sk(sk);
377 int maxwin;
378
379 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
380 tcp_fixup_rcvbuf(sk);
381 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
382 tcp_fixup_sndbuf(sk);
383
384 tp->rcvq_space.space = tp->rcv_wnd;
385
386 maxwin = tcp_full_space(sk);
387
388 if (tp->window_clamp >= maxwin) {
389 tp->window_clamp = maxwin;
390
391 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
392 tp->window_clamp = max(maxwin -
393 (maxwin >> sysctl_tcp_app_win),
394 4 * tp->advmss);
395 }
396
397 /* Force reservation of one segment. */
398 if (sysctl_tcp_app_win &&
399 tp->window_clamp > 2 * tp->advmss &&
400 tp->window_clamp + tp->advmss > maxwin)
401 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
402
403 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
404 tp->snd_cwnd_stamp = tcp_time_stamp;
405}
406
1da177e4 407/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 408static void tcp_clamp_window(struct sock *sk)
1da177e4 409{
9e412ba7 410 struct tcp_sock *tp = tcp_sk(sk);
6687e988 411 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 412
6687e988 413 icsk->icsk_ack.quick = 0;
1da177e4 414
326f36e9
JH
415 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
416 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
417 !sk_under_memory_pressure(sk) &&
418 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
419 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
420 sysctl_tcp_rmem[2]);
1da177e4 421 }
326f36e9 422 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 423 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
424}
425
40efc6fa
SH
426/* Initialize RCV_MSS value.
427 * RCV_MSS is an our guess about MSS used by the peer.
428 * We haven't any direct information about the MSS.
429 * It's better to underestimate the RCV_MSS rather than overestimate.
430 * Overestimations make us ACKing less frequently than needed.
431 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
432 */
433void tcp_initialize_rcv_mss(struct sock *sk)
434{
cf533ea5 435 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
436 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
437
056834d9 438 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 439 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
440 hint = max(hint, TCP_MIN_MSS);
441
442 inet_csk(sk)->icsk_ack.rcv_mss = hint;
443}
4bc2f18b 444EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 445
1da177e4
LT
446/* Receiver "autotuning" code.
447 *
448 * The algorithm for RTT estimation w/o timestamps is based on
449 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 450 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
451 *
452 * More detail on this code can be found at
631dd1a8 453 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
454 * though this reference is out of date. A new paper
455 * is pending.
456 */
457static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
458{
459 u32 new_sample = tp->rcv_rtt_est.rtt;
460 long m = sample;
461
462 if (m == 0)
463 m = 1;
464
465 if (new_sample != 0) {
466 /* If we sample in larger samples in the non-timestamp
467 * case, we could grossly overestimate the RTT especially
468 * with chatty applications or bulk transfer apps which
469 * are stalled on filesystem I/O.
470 *
471 * Also, since we are only going for a minimum in the
31f34269 472 * non-timestamp case, we do not smooth things out
caa20d9a 473 * else with timestamps disabled convergence takes too
1da177e4
LT
474 * long.
475 */
476 if (!win_dep) {
477 m -= (new_sample >> 3);
478 new_sample += m;
18a223e0
NC
479 } else {
480 m <<= 3;
481 if (m < new_sample)
482 new_sample = m;
483 }
1da177e4 484 } else {
caa20d9a 485 /* No previous measure. */
1da177e4
LT
486 new_sample = m << 3;
487 }
488
489 if (tp->rcv_rtt_est.rtt != new_sample)
490 tp->rcv_rtt_est.rtt = new_sample;
491}
492
493static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
494{
495 if (tp->rcv_rtt_est.time == 0)
496 goto new_measure;
497 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
498 return;
651913ce 499 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
500
501new_measure:
502 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
503 tp->rcv_rtt_est.time = tcp_time_stamp;
504}
505
056834d9
IJ
506static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
507 const struct sk_buff *skb)
1da177e4 508{
463c84b9 509 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
510 if (tp->rx_opt.rcv_tsecr &&
511 (TCP_SKB_CB(skb)->end_seq -
463c84b9 512 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
513 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
514}
515
516/*
517 * This function should be called every time data is copied to user space.
518 * It calculates the appropriate TCP receive buffer space.
519 */
520void tcp_rcv_space_adjust(struct sock *sk)
521{
522 struct tcp_sock *tp = tcp_sk(sk);
523 int time;
524 int space;
e905a9ed 525
1da177e4
LT
526 if (tp->rcvq_space.time == 0)
527 goto new_measure;
e905a9ed 528
1da177e4 529 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 530 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 531 return;
e905a9ed 532
1da177e4
LT
533 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
534
535 space = max(tp->rcvq_space.space, space);
536
537 if (tp->rcvq_space.space != space) {
538 int rcvmem;
539
540 tp->rcvq_space.space = space;
541
6fcf9412
JH
542 if (sysctl_tcp_moderate_rcvbuf &&
543 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
544 int new_clamp = space;
545
546 /* Receive space grows, normalize in order to
547 * take into account packet headers and sk_buff
548 * structure overhead.
549 */
550 space /= tp->advmss;
551 if (!space)
552 space = 1;
87fb4b7b 553 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
1da177e4
LT
554 while (tcp_win_from_space(rcvmem) < tp->advmss)
555 rcvmem += 128;
556 space *= rcvmem;
557 space = min(space, sysctl_tcp_rmem[2]);
558 if (space > sk->sk_rcvbuf) {
559 sk->sk_rcvbuf = space;
560
561 /* Make the window clamp follow along. */
562 tp->window_clamp = new_clamp;
563 }
564 }
565 }
e905a9ed 566
1da177e4
LT
567new_measure:
568 tp->rcvq_space.seq = tp->copied_seq;
569 tp->rcvq_space.time = tcp_time_stamp;
570}
571
572/* There is something which you must keep in mind when you analyze the
573 * behavior of the tp->ato delayed ack timeout interval. When a
574 * connection starts up, we want to ack as quickly as possible. The
575 * problem is that "good" TCP's do slow start at the beginning of data
576 * transmission. The means that until we send the first few ACK's the
577 * sender will sit on his end and only queue most of his data, because
578 * he can only send snd_cwnd unacked packets at any given time. For
579 * each ACK we send, he increments snd_cwnd and transmits more of his
580 * queue. -DaveM
581 */
9e412ba7 582static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 583{
9e412ba7 584 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 585 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
586 u32 now;
587
463c84b9 588 inet_csk_schedule_ack(sk);
1da177e4 589
463c84b9 590 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
591
592 tcp_rcv_rtt_measure(tp);
e905a9ed 593
1da177e4
LT
594 now = tcp_time_stamp;
595
463c84b9 596 if (!icsk->icsk_ack.ato) {
1da177e4
LT
597 /* The _first_ data packet received, initialize
598 * delayed ACK engine.
599 */
463c84b9
ACM
600 tcp_incr_quickack(sk);
601 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 602 } else {
463c84b9 603 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 604
056834d9 605 if (m <= TCP_ATO_MIN / 2) {
1da177e4 606 /* The fastest case is the first. */
463c84b9
ACM
607 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
608 } else if (m < icsk->icsk_ack.ato) {
609 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
610 if (icsk->icsk_ack.ato > icsk->icsk_rto)
611 icsk->icsk_ack.ato = icsk->icsk_rto;
612 } else if (m > icsk->icsk_rto) {
caa20d9a 613 /* Too long gap. Apparently sender failed to
1da177e4
LT
614 * restart window, so that we send ACKs quickly.
615 */
463c84b9 616 tcp_incr_quickack(sk);
3ab224be 617 sk_mem_reclaim(sk);
1da177e4
LT
618 }
619 }
463c84b9 620 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
621
622 TCP_ECN_check_ce(tp, skb);
623
624 if (skb->len >= 128)
9e412ba7 625 tcp_grow_window(sk, skb);
1da177e4
LT
626}
627
1da177e4
LT
628/* Called to compute a smoothed rtt estimate. The data fed to this
629 * routine either comes from timestamps, or from segments that were
630 * known _not_ to have been retransmitted [see Karn/Partridge
631 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
632 * piece by Van Jacobson.
633 * NOTE: the next three routines used to be one big routine.
634 * To save cycles in the RFC 1323 implementation it was better to break
635 * it up into three procedures. -- erics
636 */
2d2abbab 637static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 638{
6687e988 639 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
640 long m = mrtt; /* RTT */
641
1da177e4
LT
642 /* The following amusing code comes from Jacobson's
643 * article in SIGCOMM '88. Note that rtt and mdev
644 * are scaled versions of rtt and mean deviation.
e905a9ed 645 * This is designed to be as fast as possible
1da177e4
LT
646 * m stands for "measurement".
647 *
648 * On a 1990 paper the rto value is changed to:
649 * RTO = rtt + 4 * mdev
650 *
651 * Funny. This algorithm seems to be very broken.
652 * These formulae increase RTO, when it should be decreased, increase
31f34269 653 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
654 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
655 * does not matter how to _calculate_ it. Seems, it was trap
656 * that VJ failed to avoid. 8)
657 */
2de979bd 658 if (m == 0)
1da177e4
LT
659 m = 1;
660 if (tp->srtt != 0) {
661 m -= (tp->srtt >> 3); /* m is now error in rtt est */
662 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
663 if (m < 0) {
664 m = -m; /* m is now abs(error) */
665 m -= (tp->mdev >> 2); /* similar update on mdev */
666 /* This is similar to one of Eifel findings.
667 * Eifel blocks mdev updates when rtt decreases.
668 * This solution is a bit different: we use finer gain
669 * for mdev in this case (alpha*beta).
670 * Like Eifel it also prevents growth of rto,
671 * but also it limits too fast rto decreases,
672 * happening in pure Eifel.
673 */
674 if (m > 0)
675 m >>= 3;
676 } else {
677 m -= (tp->mdev >> 2); /* similar update on mdev */
678 }
679 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
680 if (tp->mdev > tp->mdev_max) {
681 tp->mdev_max = tp->mdev;
682 if (tp->mdev_max > tp->rttvar)
683 tp->rttvar = tp->mdev_max;
684 }
685 if (after(tp->snd_una, tp->rtt_seq)) {
686 if (tp->mdev_max < tp->rttvar)
056834d9 687 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 688 tp->rtt_seq = tp->snd_nxt;
05bb1fad 689 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
690 }
691 } else {
692 /* no previous measure. */
056834d9
IJ
693 tp->srtt = m << 3; /* take the measured time to be rtt */
694 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 695 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
696 tp->rtt_seq = tp->snd_nxt;
697 }
1da177e4
LT
698}
699
700/* Calculate rto without backoff. This is the second half of Van Jacobson's
701 * routine referred to above.
702 */
4aabd8ef 703void tcp_set_rto(struct sock *sk)
1da177e4 704{
463c84b9 705 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
706 /* Old crap is replaced with new one. 8)
707 *
708 * More seriously:
709 * 1. If rtt variance happened to be less 50msec, it is hallucination.
710 * It cannot be less due to utterly erratic ACK generation made
711 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
712 * to do with delayed acks, because at cwnd>2 true delack timeout
713 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 714 * ACKs in some circumstances.
1da177e4 715 */
f1ecd5d9 716 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
717
718 /* 2. Fixups made earlier cannot be right.
719 * If we do not estimate RTO correctly without them,
720 * all the algo is pure shit and should be replaced
caa20d9a 721 * with correct one. It is exactly, which we pretend to do.
1da177e4 722 */
1da177e4 723
ee6aac59
IJ
724 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
725 * guarantees that rto is higher.
726 */
f1ecd5d9 727 tcp_bound_rto(sk);
1da177e4
LT
728}
729
cf533ea5 730__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
731{
732 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
733
22b71c8f 734 if (!cwnd)
442b9635 735 cwnd = TCP_INIT_CWND;
1da177e4
LT
736 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
737}
738
e60402d0
IJ
739/*
740 * Packet counting of FACK is based on in-order assumptions, therefore TCP
741 * disables it when reordering is detected
742 */
4aabd8ef 743void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 744{
85cc391c
IJ
745 /* RFC3517 uses different metric in lost marker => reset on change */
746 if (tcp_is_fack(tp))
747 tp->lost_skb_hint = NULL;
ab56222a 748 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
749}
750
564262c1 751/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
752static void tcp_dsack_seen(struct tcp_sock *tp)
753{
ab56222a 754 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
755}
756
6687e988
ACM
757static void tcp_update_reordering(struct sock *sk, const int metric,
758 const int ts)
1da177e4 759{
6687e988 760 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 761 if (metric > tp->reordering) {
40b215e5
PE
762 int mib_idx;
763
1da177e4
LT
764 tp->reordering = min(TCP_MAX_REORDERING, metric);
765
766 /* This exciting event is worth to be remembered. 8) */
767 if (ts)
40b215e5 768 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 769 else if (tcp_is_reno(tp))
40b215e5 770 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 771 else if (tcp_is_fack(tp))
40b215e5 772 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 773 else
40b215e5
PE
774 mib_idx = LINUX_MIB_TCPSACKREORDER;
775
de0744af 776 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 777#if FASTRETRANS_DEBUG > 1
91df42be
JP
778 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
779 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
780 tp->reordering,
781 tp->fackets_out,
782 tp->sacked_out,
783 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 784#endif
e60402d0 785 tcp_disable_fack(tp);
1da177e4 786 }
eed530b6
YC
787
788 if (metric > 0)
789 tcp_disable_early_retrans(tp);
1da177e4
LT
790}
791
006f582c 792/* This must be called before lost_out is incremented */
c8c213f2
IJ
793static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
794{
006f582c 795 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
796 before(TCP_SKB_CB(skb)->seq,
797 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
798 tp->retransmit_skb_hint = skb;
799
800 if (!tp->lost_out ||
801 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
802 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
803}
804
41ea36e3
IJ
805static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
806{
807 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
808 tcp_verify_retransmit_hint(tp, skb);
809
810 tp->lost_out += tcp_skb_pcount(skb);
811 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
812 }
813}
814
e1aa680f
IJ
815static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
816 struct sk_buff *skb)
006f582c
IJ
817{
818 tcp_verify_retransmit_hint(tp, skb);
819
820 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
821 tp->lost_out += tcp_skb_pcount(skb);
822 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
823 }
824}
825
1da177e4
LT
826/* This procedure tags the retransmission queue when SACKs arrive.
827 *
828 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
829 * Packets in queue with these bits set are counted in variables
830 * sacked_out, retrans_out and lost_out, correspondingly.
831 *
832 * Valid combinations are:
833 * Tag InFlight Description
834 * 0 1 - orig segment is in flight.
835 * S 0 - nothing flies, orig reached receiver.
836 * L 0 - nothing flies, orig lost by net.
837 * R 2 - both orig and retransmit are in flight.
838 * L|R 1 - orig is lost, retransmit is in flight.
839 * S|R 1 - orig reached receiver, retrans is still in flight.
840 * (L|S|R is logically valid, it could occur when L|R is sacked,
841 * but it is equivalent to plain S and code short-curcuits it to S.
842 * L|S is logically invalid, it would mean -1 packet in flight 8))
843 *
844 * These 6 states form finite state machine, controlled by the following events:
845 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
846 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 847 * 3. Loss detection event of two flavors:
1da177e4
LT
848 * A. Scoreboard estimator decided the packet is lost.
849 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
850 * A''. Its FACK modification, head until snd.fack is lost.
851 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
852 * segment was retransmitted.
853 * 4. D-SACK added new rule: D-SACK changes any tag to S.
854 *
855 * It is pleasant to note, that state diagram turns out to be commutative,
856 * so that we are allowed not to be bothered by order of our actions,
857 * when multiple events arrive simultaneously. (see the function below).
858 *
859 * Reordering detection.
860 * --------------------
861 * Reordering metric is maximal distance, which a packet can be displaced
862 * in packet stream. With SACKs we can estimate it:
863 *
864 * 1. SACK fills old hole and the corresponding segment was not
865 * ever retransmitted -> reordering. Alas, we cannot use it
866 * when segment was retransmitted.
867 * 2. The last flaw is solved with D-SACK. D-SACK arrives
868 * for retransmitted and already SACKed segment -> reordering..
869 * Both of these heuristics are not used in Loss state, when we cannot
870 * account for retransmits accurately.
5b3c9882
IJ
871 *
872 * SACK block validation.
873 * ----------------------
874 *
875 * SACK block range validation checks that the received SACK block fits to
876 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
877 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
878 * it means that the receiver is rather inconsistent with itself reporting
879 * SACK reneging when it should advance SND.UNA. Such SACK block this is
880 * perfectly valid, however, in light of RFC2018 which explicitly states
881 * that "SACK block MUST reflect the newest segment. Even if the newest
882 * segment is going to be discarded ...", not that it looks very clever
883 * in case of head skb. Due to potentional receiver driven attacks, we
884 * choose to avoid immediate execution of a walk in write queue due to
885 * reneging and defer head skb's loss recovery to standard loss recovery
886 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
887 *
888 * Implements also blockage to start_seq wrap-around. Problem lies in the
889 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
890 * there's no guarantee that it will be before snd_nxt (n). The problem
891 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
892 * wrap (s_w):
893 *
894 * <- outs wnd -> <- wrapzone ->
895 * u e n u_w e_w s n_w
896 * | | | | | | |
897 * |<------------+------+----- TCP seqno space --------------+---------->|
898 * ...-- <2^31 ->| |<--------...
899 * ...---- >2^31 ------>| |<--------...
900 *
901 * Current code wouldn't be vulnerable but it's better still to discard such
902 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
903 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
904 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
905 * equal to the ideal case (infinite seqno space without wrap caused issues).
906 *
907 * With D-SACK the lower bound is extended to cover sequence space below
908 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 909 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
910 * for the normal SACK blocks, explained above). But there all simplicity
911 * ends, TCP might receive valid D-SACKs below that. As long as they reside
912 * fully below undo_marker they do not affect behavior in anyway and can
913 * therefore be safely ignored. In rare cases (which are more or less
914 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
915 * fragmentation and packet reordering past skb's retransmission. To consider
916 * them correctly, the acceptable range must be extended even more though
917 * the exact amount is rather hard to quantify. However, tp->max_window can
918 * be used as an exaggerated estimate.
1da177e4 919 */
a2a385d6
ED
920static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
921 u32 start_seq, u32 end_seq)
5b3c9882
IJ
922{
923 /* Too far in future, or reversed (interpretation is ambiguous) */
924 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 925 return false;
5b3c9882
IJ
926
927 /* Nasty start_seq wrap-around check (see comments above) */
928 if (!before(start_seq, tp->snd_nxt))
a2a385d6 929 return false;
5b3c9882 930
564262c1 931 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
932 * start_seq == snd_una is non-sensical (see comments above)
933 */
934 if (after(start_seq, tp->snd_una))
a2a385d6 935 return true;
5b3c9882
IJ
936
937 if (!is_dsack || !tp->undo_marker)
a2a385d6 938 return false;
5b3c9882
IJ
939
940 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 941 if (after(end_seq, tp->snd_una))
a2a385d6 942 return false;
5b3c9882
IJ
943
944 if (!before(start_seq, tp->undo_marker))
a2a385d6 945 return true;
5b3c9882
IJ
946
947 /* Too old */
948 if (!after(end_seq, tp->undo_marker))
a2a385d6 949 return false;
5b3c9882
IJ
950
951 /* Undo_marker boundary crossing (overestimates a lot). Known already:
952 * start_seq < undo_marker and end_seq >= undo_marker.
953 */
954 return !before(start_seq, end_seq - tp->max_window);
955}
956
1c1e87ed 957/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 958 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 959 * for reordering! Ugly, but should help.
f785a8e2
IJ
960 *
961 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
962 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
963 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
964 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 965 */
407ef1de 966static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 967{
9f58f3b7 968 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
969 struct tcp_sock *tp = tcp_sk(sk);
970 struct sk_buff *skb;
f785a8e2 971 int cnt = 0;
df2e014b 972 u32 new_low_seq = tp->snd_nxt;
6859d494 973 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
974
975 if (!tcp_is_fack(tp) || !tp->retrans_out ||
976 !after(received_upto, tp->lost_retrans_low) ||
977 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 978 return;
1c1e87ed
IJ
979
980 tcp_for_write_queue(skb, sk) {
981 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
982
983 if (skb == tcp_send_head(sk))
984 break;
f785a8e2 985 if (cnt == tp->retrans_out)
1c1e87ed
IJ
986 break;
987 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
988 continue;
989
f785a8e2
IJ
990 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
991 continue;
992
d0af4160
IJ
993 /* TODO: We would like to get rid of tcp_is_fack(tp) only
994 * constraint here (see above) but figuring out that at
995 * least tp->reordering SACK blocks reside between ack_seq
996 * and received_upto is not easy task to do cheaply with
997 * the available datastructures.
998 *
999 * Whether FACK should check here for tp->reordering segs
1000 * in-between one could argue for either way (it would be
1001 * rather simple to implement as we could count fack_count
1002 * during the walk and do tp->fackets_out - fack_count).
1003 */
1004 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1005 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1006 tp->retrans_out -= tcp_skb_pcount(skb);
1007
006f582c 1008 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1009 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1010 } else {
df2e014b 1011 if (before(ack_seq, new_low_seq))
b08d6cb2 1012 new_low_seq = ack_seq;
f785a8e2 1013 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1014 }
1015 }
b08d6cb2
IJ
1016
1017 if (tp->retrans_out)
1018 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1019}
5b3c9882 1020
a2a385d6
ED
1021static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1022 struct tcp_sack_block_wire *sp, int num_sacks,
1023 u32 prior_snd_una)
d06e021d 1024{
1ed83465 1025 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1026 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1027 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1028 bool dup_sack = false;
d06e021d
DM
1029
1030 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1031 dup_sack = true;
e60402d0 1032 tcp_dsack_seen(tp);
de0744af 1033 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1034 } else if (num_sacks > 1) {
d3e2ce3b
HH
1035 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1036 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1037
1038 if (!after(end_seq_0, end_seq_1) &&
1039 !before(start_seq_0, start_seq_1)) {
a2a385d6 1040 dup_sack = true;
e60402d0 1041 tcp_dsack_seen(tp);
de0744af
PE
1042 NET_INC_STATS_BH(sock_net(sk),
1043 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1044 }
1045 }
1046
1047 /* D-SACK for already forgotten data... Do dumb counting. */
c24f691b 1048 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
d06e021d
DM
1049 !after(end_seq_0, prior_snd_una) &&
1050 after(end_seq_0, tp->undo_marker))
1051 tp->undo_retrans--;
1052
1053 return dup_sack;
1054}
1055
a1197f5a
IJ
1056struct tcp_sacktag_state {
1057 int reord;
1058 int fack_count;
1059 int flag;
1060};
1061
d1935942
IJ
1062/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1063 * the incoming SACK may not exactly match but we can find smaller MSS
1064 * aligned portion of it that matches. Therefore we might need to fragment
1065 * which may fail and creates some hassle (caller must handle error case
1066 * returns).
832d11c5
IJ
1067 *
1068 * FIXME: this could be merged to shift decision code
d1935942 1069 */
0f79efdc 1070static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1071 u32 start_seq, u32 end_seq)
d1935942 1072{
a2a385d6
ED
1073 int err;
1074 bool in_sack;
d1935942 1075 unsigned int pkt_len;
adb92db8 1076 unsigned int mss;
d1935942
IJ
1077
1078 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1079 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1080
1081 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1082 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1083 mss = tcp_skb_mss(skb);
d1935942
IJ
1084 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1085
adb92db8 1086 if (!in_sack) {
d1935942 1087 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1088 if (pkt_len < mss)
1089 pkt_len = mss;
1090 } else {
d1935942 1091 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1092 if (pkt_len < mss)
1093 return -EINVAL;
1094 }
1095
1096 /* Round if necessary so that SACKs cover only full MSSes
1097 * and/or the remaining small portion (if present)
1098 */
1099 if (pkt_len > mss) {
1100 unsigned int new_len = (pkt_len / mss) * mss;
1101 if (!in_sack && new_len < pkt_len) {
1102 new_len += mss;
1103 if (new_len > skb->len)
1104 return 0;
1105 }
1106 pkt_len = new_len;
1107 }
1108 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1109 if (err < 0)
1110 return err;
1111 }
1112
1113 return in_sack;
1114}
1115
cc9a672e
NC
1116/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1117static u8 tcp_sacktag_one(struct sock *sk,
1118 struct tcp_sacktag_state *state, u8 sacked,
1119 u32 start_seq, u32 end_seq,
a2a385d6 1120 bool dup_sack, int pcount)
9e10c47c 1121{
6859d494 1122 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1123 int fack_count = state->fack_count;
9e10c47c
IJ
1124
1125 /* Account D-SACK for retransmitted packet. */
1126 if (dup_sack && (sacked & TCPCB_RETRANS)) {
c24f691b 1127 if (tp->undo_marker && tp->undo_retrans &&
cc9a672e 1128 after(end_seq, tp->undo_marker))
9e10c47c 1129 tp->undo_retrans--;
ede9f3b1 1130 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1131 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1132 }
1133
1134 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1135 if (!after(end_seq, tp->snd_una))
a1197f5a 1136 return sacked;
9e10c47c
IJ
1137
1138 if (!(sacked & TCPCB_SACKED_ACKED)) {
1139 if (sacked & TCPCB_SACKED_RETRANS) {
1140 /* If the segment is not tagged as lost,
1141 * we do not clear RETRANS, believing
1142 * that retransmission is still in flight.
1143 */
1144 if (sacked & TCPCB_LOST) {
a1197f5a 1145 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1146 tp->lost_out -= pcount;
1147 tp->retrans_out -= pcount;
9e10c47c
IJ
1148 }
1149 } else {
1150 if (!(sacked & TCPCB_RETRANS)) {
1151 /* New sack for not retransmitted frame,
1152 * which was in hole. It is reordering.
1153 */
cc9a672e 1154 if (before(start_seq,
9e10c47c 1155 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1156 state->reord = min(fack_count,
1157 state->reord);
9e10c47c
IJ
1158 }
1159
1160 if (sacked & TCPCB_LOST) {
a1197f5a 1161 sacked &= ~TCPCB_LOST;
f58b22fd 1162 tp->lost_out -= pcount;
9e10c47c
IJ
1163 }
1164 }
1165
a1197f5a
IJ
1166 sacked |= TCPCB_SACKED_ACKED;
1167 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1168 tp->sacked_out += pcount;
9e10c47c 1169
f58b22fd 1170 fack_count += pcount;
9e10c47c
IJ
1171
1172 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1173 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1174 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1175 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1176
1177 if (fack_count > tp->fackets_out)
1178 tp->fackets_out = fack_count;
9e10c47c
IJ
1179 }
1180
1181 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1182 * frames and clear it. undo_retrans is decreased above, L|R frames
1183 * are accounted above as well.
1184 */
a1197f5a
IJ
1185 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1186 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1187 tp->retrans_out -= pcount;
9e10c47c
IJ
1188 }
1189
a1197f5a 1190 return sacked;
9e10c47c
IJ
1191}
1192
daef52ba
NC
1193/* Shift newly-SACKed bytes from this skb to the immediately previous
1194 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1195 */
a2a385d6
ED
1196static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1197 struct tcp_sacktag_state *state,
1198 unsigned int pcount, int shifted, int mss,
1199 bool dup_sack)
832d11c5
IJ
1200{
1201 struct tcp_sock *tp = tcp_sk(sk);
50133161 1202 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1203 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1204 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1205
1206 BUG_ON(!pcount);
1207
4c90d3b3
NC
1208 /* Adjust counters and hints for the newly sacked sequence
1209 * range but discard the return value since prev is already
1210 * marked. We must tag the range first because the seq
1211 * advancement below implicitly advances
1212 * tcp_highest_sack_seq() when skb is highest_sack.
1213 */
1214 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1215 start_seq, end_seq, dup_sack, pcount);
1216
1217 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1218 tp->lost_cnt_hint += pcount;
1219
832d11c5
IJ
1220 TCP_SKB_CB(prev)->end_seq += shifted;
1221 TCP_SKB_CB(skb)->seq += shifted;
1222
1223 skb_shinfo(prev)->gso_segs += pcount;
1224 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1225 skb_shinfo(skb)->gso_segs -= pcount;
1226
1227 /* When we're adding to gso_segs == 1, gso_size will be zero,
1228 * in theory this shouldn't be necessary but as long as DSACK
1229 * code can come after this skb later on it's better to keep
1230 * setting gso_size to something.
1231 */
1232 if (!skb_shinfo(prev)->gso_size) {
1233 skb_shinfo(prev)->gso_size = mss;
c9af6db4 1234 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
832d11c5
IJ
1235 }
1236
1237 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1238 if (skb_shinfo(skb)->gso_segs <= 1) {
1239 skb_shinfo(skb)->gso_size = 0;
c9af6db4 1240 skb_shinfo(skb)->gso_type = 0;
832d11c5
IJ
1241 }
1242
832d11c5
IJ
1243 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1244 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1245
832d11c5
IJ
1246 if (skb->len > 0) {
1247 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1248 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1249 return false;
832d11c5
IJ
1250 }
1251
1252 /* Whole SKB was eaten :-) */
1253
92ee76b6
IJ
1254 if (skb == tp->retransmit_skb_hint)
1255 tp->retransmit_skb_hint = prev;
1256 if (skb == tp->scoreboard_skb_hint)
1257 tp->scoreboard_skb_hint = prev;
1258 if (skb == tp->lost_skb_hint) {
1259 tp->lost_skb_hint = prev;
1260 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1261 }
1262
4de075e0 1263 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
832d11c5
IJ
1264 if (skb == tcp_highest_sack(sk))
1265 tcp_advance_highest_sack(sk, skb);
1266
1267 tcp_unlink_write_queue(skb, sk);
1268 sk_wmem_free_skb(sk, skb);
1269
111cc8b9
IJ
1270 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1271
a2a385d6 1272 return true;
832d11c5
IJ
1273}
1274
1275/* I wish gso_size would have a bit more sane initialization than
1276 * something-or-zero which complicates things
1277 */
cf533ea5 1278static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1279{
775ffabf 1280 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1281}
1282
1283/* Shifting pages past head area doesn't work */
cf533ea5 1284static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1285{
1286 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1287}
1288
1289/* Try collapsing SACK blocks spanning across multiple skbs to a single
1290 * skb.
1291 */
1292static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1293 struct tcp_sacktag_state *state,
832d11c5 1294 u32 start_seq, u32 end_seq,
a2a385d6 1295 bool dup_sack)
832d11c5
IJ
1296{
1297 struct tcp_sock *tp = tcp_sk(sk);
1298 struct sk_buff *prev;
1299 int mss;
1300 int pcount = 0;
1301 int len;
1302 int in_sack;
1303
1304 if (!sk_can_gso(sk))
1305 goto fallback;
1306
1307 /* Normally R but no L won't result in plain S */
1308 if (!dup_sack &&
9969ca5f 1309 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1310 goto fallback;
1311 if (!skb_can_shift(skb))
1312 goto fallback;
1313 /* This frame is about to be dropped (was ACKed). */
1314 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1315 goto fallback;
1316
1317 /* Can only happen with delayed DSACK + discard craziness */
1318 if (unlikely(skb == tcp_write_queue_head(sk)))
1319 goto fallback;
1320 prev = tcp_write_queue_prev(sk, skb);
1321
1322 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1323 goto fallback;
1324
1325 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1326 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1327
1328 if (in_sack) {
1329 len = skb->len;
1330 pcount = tcp_skb_pcount(skb);
775ffabf 1331 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1332
1333 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1334 * drop this restriction as unnecessary
1335 */
775ffabf 1336 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1337 goto fallback;
1338 } else {
1339 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1340 goto noop;
1341 /* CHECKME: This is non-MSS split case only?, this will
1342 * cause skipped skbs due to advancing loop btw, original
1343 * has that feature too
1344 */
1345 if (tcp_skb_pcount(skb) <= 1)
1346 goto noop;
1347
1348 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1349 if (!in_sack) {
1350 /* TODO: head merge to next could be attempted here
1351 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1352 * though it might not be worth of the additional hassle
1353 *
1354 * ...we can probably just fallback to what was done
1355 * previously. We could try merging non-SACKed ones
1356 * as well but it probably isn't going to buy off
1357 * because later SACKs might again split them, and
1358 * it would make skb timestamp tracking considerably
1359 * harder problem.
1360 */
1361 goto fallback;
1362 }
1363
1364 len = end_seq - TCP_SKB_CB(skb)->seq;
1365 BUG_ON(len < 0);
1366 BUG_ON(len > skb->len);
1367
1368 /* MSS boundaries should be honoured or else pcount will
1369 * severely break even though it makes things bit trickier.
1370 * Optimize common case to avoid most of the divides
1371 */
1372 mss = tcp_skb_mss(skb);
1373
1374 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1375 * drop this restriction as unnecessary
1376 */
775ffabf 1377 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1378 goto fallback;
1379
1380 if (len == mss) {
1381 pcount = 1;
1382 } else if (len < mss) {
1383 goto noop;
1384 } else {
1385 pcount = len / mss;
1386 len = pcount * mss;
1387 }
1388 }
1389
4648dc97
NC
1390 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1391 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1392 goto fallback;
1393
832d11c5
IJ
1394 if (!skb_shift(prev, skb, len))
1395 goto fallback;
9ec06ff5 1396 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1397 goto out;
1398
1399 /* Hole filled allows collapsing with the next as well, this is very
1400 * useful when hole on every nth skb pattern happens
1401 */
1402 if (prev == tcp_write_queue_tail(sk))
1403 goto out;
1404 skb = tcp_write_queue_next(sk, prev);
1405
f0bc52f3
IJ
1406 if (!skb_can_shift(skb) ||
1407 (skb == tcp_send_head(sk)) ||
1408 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1409 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1410 goto out;
1411
1412 len = skb->len;
1413 if (skb_shift(prev, skb, len)) {
1414 pcount += tcp_skb_pcount(skb);
9ec06ff5 1415 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1416 }
1417
1418out:
a1197f5a 1419 state->fack_count += pcount;
832d11c5
IJ
1420 return prev;
1421
1422noop:
1423 return skb;
1424
1425fallback:
111cc8b9 1426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1427 return NULL;
1428}
1429
68f8353b
IJ
1430static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1431 struct tcp_sack_block *next_dup,
a1197f5a 1432 struct tcp_sacktag_state *state,
68f8353b 1433 u32 start_seq, u32 end_seq,
a2a385d6 1434 bool dup_sack_in)
68f8353b 1435{
832d11c5
IJ
1436 struct tcp_sock *tp = tcp_sk(sk);
1437 struct sk_buff *tmp;
1438
68f8353b
IJ
1439 tcp_for_write_queue_from(skb, sk) {
1440 int in_sack = 0;
a2a385d6 1441 bool dup_sack = dup_sack_in;
68f8353b
IJ
1442
1443 if (skb == tcp_send_head(sk))
1444 break;
1445
1446 /* queue is in-order => we can short-circuit the walk early */
1447 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1448 break;
1449
1450 if ((next_dup != NULL) &&
1451 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1452 in_sack = tcp_match_skb_to_sack(sk, skb,
1453 next_dup->start_seq,
1454 next_dup->end_seq);
1455 if (in_sack > 0)
a2a385d6 1456 dup_sack = true;
68f8353b
IJ
1457 }
1458
832d11c5
IJ
1459 /* skb reference here is a bit tricky to get right, since
1460 * shifting can eat and free both this skb and the next,
1461 * so not even _safe variant of the loop is enough.
1462 */
1463 if (in_sack <= 0) {
a1197f5a
IJ
1464 tmp = tcp_shift_skb_data(sk, skb, state,
1465 start_seq, end_seq, dup_sack);
832d11c5
IJ
1466 if (tmp != NULL) {
1467 if (tmp != skb) {
1468 skb = tmp;
1469 continue;
1470 }
1471
1472 in_sack = 0;
1473 } else {
1474 in_sack = tcp_match_skb_to_sack(sk, skb,
1475 start_seq,
1476 end_seq);
1477 }
1478 }
1479
68f8353b
IJ
1480 if (unlikely(in_sack < 0))
1481 break;
1482
832d11c5 1483 if (in_sack) {
cc9a672e
NC
1484 TCP_SKB_CB(skb)->sacked =
1485 tcp_sacktag_one(sk,
1486 state,
1487 TCP_SKB_CB(skb)->sacked,
1488 TCP_SKB_CB(skb)->seq,
1489 TCP_SKB_CB(skb)->end_seq,
1490 dup_sack,
1491 tcp_skb_pcount(skb));
68f8353b 1492
832d11c5
IJ
1493 if (!before(TCP_SKB_CB(skb)->seq,
1494 tcp_highest_sack_seq(tp)))
1495 tcp_advance_highest_sack(sk, skb);
1496 }
1497
a1197f5a 1498 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1499 }
1500 return skb;
1501}
1502
1503/* Avoid all extra work that is being done by sacktag while walking in
1504 * a normal way
1505 */
1506static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1507 struct tcp_sacktag_state *state,
1508 u32 skip_to_seq)
68f8353b
IJ
1509{
1510 tcp_for_write_queue_from(skb, sk) {
1511 if (skb == tcp_send_head(sk))
1512 break;
1513
e8bae275 1514 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1515 break;
d152a7d8 1516
a1197f5a 1517 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1518 }
1519 return skb;
1520}
1521
1522static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1523 struct sock *sk,
1524 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1525 struct tcp_sacktag_state *state,
1526 u32 skip_to_seq)
68f8353b
IJ
1527{
1528 if (next_dup == NULL)
1529 return skb;
1530
1531 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1532 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1533 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1534 next_dup->start_seq, next_dup->end_seq,
1535 1);
68f8353b
IJ
1536 }
1537
1538 return skb;
1539}
1540
cf533ea5 1541static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1542{
1543 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1544}
1545
1da177e4 1546static int
cf533ea5 1547tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
056834d9 1548 u32 prior_snd_una)
1da177e4
LT
1549{
1550 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1551 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1552 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1553 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1554 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1555 struct tcp_sack_block *cache;
a1197f5a 1556 struct tcp_sacktag_state state;
68f8353b 1557 struct sk_buff *skb;
4389dded 1558 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1559 int used_sacks;
a2a385d6 1560 bool found_dup_sack = false;
68f8353b 1561 int i, j;
fda03fbb 1562 int first_sack_index;
1da177e4 1563
a1197f5a
IJ
1564 state.flag = 0;
1565 state.reord = tp->packets_out;
1566
d738cd8f 1567 if (!tp->sacked_out) {
de83c058
IJ
1568 if (WARN_ON(tp->fackets_out))
1569 tp->fackets_out = 0;
6859d494 1570 tcp_highest_sack_reset(sk);
d738cd8f 1571 }
1da177e4 1572
1ed83465 1573 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1574 num_sacks, prior_snd_una);
1575 if (found_dup_sack)
a1197f5a 1576 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1577
1578 /* Eliminate too old ACKs, but take into
1579 * account more or less fresh ones, they can
1580 * contain valid SACK info.
1581 */
1582 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1583 return 0;
1584