[ICSK]: Generalise tcp_listen_{start,stop}
[deliverable/linux.git] / net / ipv4 / tcp_minisocks.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23#include <linux/config.h>
24#include <linux/mm.h>
25#include <linux/module.h>
26#include <linux/sysctl.h>
27#include <linux/workqueue.h>
28#include <net/tcp.h>
29#include <net/inet_common.h>
30#include <net/xfrm.h>
31
32#ifdef CONFIG_SYSCTL
33#define SYNC_INIT 0 /* let the user enable it */
34#else
35#define SYNC_INIT 1
36#endif
37
38int sysctl_tcp_tw_recycle;
39int sysctl_tcp_max_tw_buckets = NR_FILE*2;
40
41int sysctl_tcp_syncookies = SYNC_INIT;
42int sysctl_tcp_abort_on_overflow;
43
8feaf0c0 44static void tcp_tw_schedule(struct inet_timewait_sock *tw, int timeo);
1da177e4
LT
45
46static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
47{
48 if (seq == s_win)
49 return 1;
50 if (after(end_seq, s_win) && before(seq, e_win))
51 return 1;
52 return (seq == e_win && seq == end_seq);
53}
54
55/* New-style handling of TIME_WAIT sockets. */
56
57int tcp_tw_count;
58
1da177e4
LT
59/*
60 * * Main purpose of TIME-WAIT state is to close connection gracefully,
61 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
62 * (and, probably, tail of data) and one or more our ACKs are lost.
63 * * What is TIME-WAIT timeout? It is associated with maximal packet
64 * lifetime in the internet, which results in wrong conclusion, that
65 * it is set to catch "old duplicate segments" wandering out of their path.
66 * It is not quite correct. This timeout is calculated so that it exceeds
67 * maximal retransmission timeout enough to allow to lose one (or more)
68 * segments sent by peer and our ACKs. This time may be calculated from RTO.
69 * * When TIME-WAIT socket receives RST, it means that another end
70 * finally closed and we are allowed to kill TIME-WAIT too.
71 * * Second purpose of TIME-WAIT is catching old duplicate segments.
72 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
73 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
74 * * If we invented some more clever way to catch duplicates
75 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
76 *
77 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
78 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
79 * from the very beginning.
80 *
81 * NOTE. With recycling (and later with fin-wait-2) TW bucket
82 * is _not_ stateless. It means, that strictly speaking we must
83 * spinlock it. I do not want! Well, probability of misbehaviour
84 * is ridiculously low and, seems, we could use some mb() tricks
85 * to avoid misread sequence numbers, states etc. --ANK
86 */
87enum tcp_tw_status
8feaf0c0
ACM
88tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
89 const struct tcphdr *th)
1da177e4 90{
8feaf0c0 91 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1da177e4
LT
92 struct tcp_options_received tmp_opt;
93 int paws_reject = 0;
94
95 tmp_opt.saw_tstamp = 0;
8feaf0c0 96 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
1da177e4
LT
97 tcp_parse_options(skb, &tmp_opt, 0);
98
99 if (tmp_opt.saw_tstamp) {
8feaf0c0
ACM
100 tmp_opt.ts_recent = tcptw->tw_ts_recent;
101 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
1da177e4
LT
102 paws_reject = tcp_paws_check(&tmp_opt, th->rst);
103 }
104 }
105
106 if (tw->tw_substate == TCP_FIN_WAIT2) {
107 /* Just repeat all the checks of tcp_rcv_state_process() */
108
109 /* Out of window, send ACK */
110 if (paws_reject ||
111 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
8feaf0c0
ACM
112 tcptw->tw_rcv_nxt,
113 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
1da177e4
LT
114 return TCP_TW_ACK;
115
116 if (th->rst)
117 goto kill;
118
8feaf0c0 119 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
1da177e4
LT
120 goto kill_with_rst;
121
122 /* Dup ACK? */
8feaf0c0 123 if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
1da177e4 124 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
8feaf0c0 125 inet_twsk_put(tw);
1da177e4
LT
126 return TCP_TW_SUCCESS;
127 }
128
129 /* New data or FIN. If new data arrive after half-duplex close,
130 * reset.
131 */
132 if (!th->fin ||
8feaf0c0 133 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
1da177e4
LT
134kill_with_rst:
135 tcp_tw_deschedule(tw);
8feaf0c0 136 inet_twsk_put(tw);
1da177e4
LT
137 return TCP_TW_RST;
138 }
139
140 /* FIN arrived, enter true time-wait state. */
8feaf0c0
ACM
141 tw->tw_substate = TCP_TIME_WAIT;
142 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1da177e4 143 if (tmp_opt.saw_tstamp) {
8feaf0c0
ACM
144 tcptw->tw_ts_recent_stamp = xtime.tv_sec;
145 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
1da177e4
LT
146 }
147
148 /* I am shamed, but failed to make it more elegant.
149 * Yes, it is direct reference to IP, which is impossible
150 * to generalize to IPv6. Taking into account that IPv6
151 * do not undertsnad recycling in any case, it not
152 * a big problem in practice. --ANK */
153 if (tw->tw_family == AF_INET &&
8feaf0c0 154 sysctl_tcp_tw_recycle && tcptw->tw_ts_recent_stamp &&
1da177e4
LT
155 tcp_v4_tw_remember_stamp(tw))
156 tcp_tw_schedule(tw, tw->tw_timeout);
157 else
158 tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
159 return TCP_TW_ACK;
160 }
161
162 /*
163 * Now real TIME-WAIT state.
164 *
165 * RFC 1122:
166 * "When a connection is [...] on TIME-WAIT state [...]
167 * [a TCP] MAY accept a new SYN from the remote TCP to
168 * reopen the connection directly, if it:
169 *
170 * (1) assigns its initial sequence number for the new
171 * connection to be larger than the largest sequence
172 * number it used on the previous connection incarnation,
173 * and
174 *
175 * (2) returns to TIME-WAIT state if the SYN turns out
176 * to be an old duplicate".
177 */
178
179 if (!paws_reject &&
8feaf0c0 180 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
1da177e4
LT
181 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
182 /* In window segment, it may be only reset or bare ack. */
183
184 if (th->rst) {
185 /* This is TIME_WAIT assasination, in two flavors.
186 * Oh well... nobody has a sufficient solution to this
187 * protocol bug yet.
188 */
189 if (sysctl_tcp_rfc1337 == 0) {
190kill:
191 tcp_tw_deschedule(tw);
8feaf0c0 192 inet_twsk_put(tw);
1da177e4
LT
193 return TCP_TW_SUCCESS;
194 }
195 }
196 tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
197
198 if (tmp_opt.saw_tstamp) {
8feaf0c0
ACM
199 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
200 tcptw->tw_ts_recent_stamp = xtime.tv_sec;
1da177e4
LT
201 }
202
8feaf0c0 203 inet_twsk_put(tw);
1da177e4
LT
204 return TCP_TW_SUCCESS;
205 }
206
207 /* Out of window segment.
208
209 All the segments are ACKed immediately.
210
211 The only exception is new SYN. We accept it, if it is
212 not old duplicate and we are not in danger to be killed
213 by delayed old duplicates. RFC check is that it has
214 newer sequence number works at rates <40Mbit/sec.
215 However, if paws works, it is reliable AND even more,
216 we even may relax silly seq space cutoff.
217
218 RED-PEN: we violate main RFC requirement, if this SYN will appear
219 old duplicate (i.e. we receive RST in reply to SYN-ACK),
220 we must return socket to time-wait state. It is not good,
221 but not fatal yet.
222 */
223
224 if (th->syn && !th->rst && !th->ack && !paws_reject &&
8feaf0c0
ACM
225 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
226 (tmp_opt.saw_tstamp &&
227 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
228 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
1da177e4
LT
229 if (isn == 0)
230 isn++;
231 TCP_SKB_CB(skb)->when = isn;
232 return TCP_TW_SYN;
233 }
234
235 if (paws_reject)
236 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
237
238 if(!th->rst) {
239 /* In this case we must reset the TIMEWAIT timer.
240 *
241 * If it is ACKless SYN it may be both old duplicate
242 * and new good SYN with random sequence number <rcv_nxt.
243 * Do not reschedule in the last case.
244 */
245 if (paws_reject || th->ack)
246 tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
247
248 /* Send ACK. Note, we do not put the bucket,
249 * it will be released by caller.
250 */
251 return TCP_TW_ACK;
252 }
8feaf0c0 253 inet_twsk_put(tw);
1da177e4
LT
254 return TCP_TW_SUCCESS;
255}
256
1da177e4
LT
257/*
258 * Move a socket to time-wait or dead fin-wait-2 state.
259 */
260void tcp_time_wait(struct sock *sk, int state, int timeo)
261{
8feaf0c0
ACM
262 struct inet_timewait_sock *tw = NULL;
263 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
264 int recycle_ok = 0;
265
266 if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp)
267 recycle_ok = tp->af_specific->remember_stamp(sk);
268
269 if (tcp_tw_count < sysctl_tcp_max_tw_buckets)
c676270b 270 tw = inet_twsk_alloc(sk, state);
1da177e4 271
8feaf0c0
ACM
272 if (tw != NULL) {
273 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
463c84b9
ACM
274 const struct inet_connection_sock *icsk = inet_csk(sk);
275 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
8feaf0c0 276
1da177e4 277 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
8feaf0c0
ACM
278 tcptw->tw_rcv_nxt = tp->rcv_nxt;
279 tcptw->tw_snd_nxt = tp->snd_nxt;
280 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
281 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
282 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
1da177e4
LT
283
284#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
285 if (tw->tw_family == PF_INET6) {
286 struct ipv6_pinfo *np = inet6_sk(sk);
8feaf0c0 287 struct tcp6_timewait_sock *tcp6tw = tcp6_twsk((struct sock *)tw);
1da177e4 288
8feaf0c0
ACM
289 ipv6_addr_copy(&tcp6tw->tw_v6_daddr, &np->daddr);
290 ipv6_addr_copy(&tcp6tw->tw_v6_rcv_saddr, &np->rcv_saddr);
291 tw->tw_ipv6only = np->ipv6only;
c676270b 292 }
1da177e4
LT
293#endif
294 /* Linkage updates. */
e48c414e 295 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
1da177e4
LT
296
297 /* Get the TIME_WAIT timeout firing. */
298 if (timeo < rto)
299 timeo = rto;
300
301 if (recycle_ok) {
302 tw->tw_timeout = rto;
303 } else {
304 tw->tw_timeout = TCP_TIMEWAIT_LEN;
305 if (state == TCP_TIME_WAIT)
306 timeo = TCP_TIMEWAIT_LEN;
307 }
308
309 tcp_tw_schedule(tw, timeo);
8feaf0c0 310 inet_twsk_put(tw);
1da177e4
LT
311 } else {
312 /* Sorry, if we're out of memory, just CLOSE this
313 * socket up. We've got bigger problems than
314 * non-graceful socket closings.
315 */
316 if (net_ratelimit())
317 printk(KERN_INFO "TCP: time wait bucket table overflow\n");
318 }
319
320 tcp_update_metrics(sk);
321 tcp_done(sk);
322}
323
324/* Kill off TIME_WAIT sockets once their lifetime has expired. */
325static int tcp_tw_death_row_slot;
326
327static void tcp_twkill(unsigned long);
328
329/* TIME_WAIT reaping mechanism. */
330#define TCP_TWKILL_SLOTS 8 /* Please keep this a power of 2. */
331#define TCP_TWKILL_PERIOD (TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS)
332
333#define TCP_TWKILL_QUOTA 100
334
335static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS];
336static DEFINE_SPINLOCK(tw_death_lock);
337static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0);
338static void twkill_work(void *);
339static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL);
340static u32 twkill_thread_slots;
341
342/* Returns non-zero if quota exceeded. */
343static int tcp_do_twkill_work(int slot, unsigned int quota)
344{
8feaf0c0 345 struct inet_timewait_sock *tw;
1da177e4
LT
346 struct hlist_node *node;
347 unsigned int killed;
348 int ret;
349
350 /* NOTE: compare this to previous version where lock
351 * was released after detaching chain. It was racy,
352 * because tw buckets are scheduled in not serialized context
353 * in 2.3 (with netfilter), and with softnet it is common, because
354 * soft irqs are not sequenced.
355 */
356 killed = 0;
357 ret = 0;
358rescan:
8feaf0c0
ACM
359 inet_twsk_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) {
360 __inet_twsk_del_dead_node(tw);
1da177e4 361 spin_unlock(&tw_death_lock);
e48c414e 362 __inet_twsk_kill(tw, &tcp_hashinfo);
8feaf0c0 363 inet_twsk_put(tw);
1da177e4
LT
364 killed++;
365 spin_lock(&tw_death_lock);
366 if (killed > quota) {
367 ret = 1;
368 break;
369 }
370
371 /* While we dropped tw_death_lock, another cpu may have
372 * killed off the next TW bucket in the list, therefore
373 * do a fresh re-read of the hlist head node with the
374 * lock reacquired. We still use the hlist traversal
375 * macro in order to get the prefetches.
376 */
377 goto rescan;
378 }
379
380 tcp_tw_count -= killed;
381 NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed);
382
383 return ret;
384}
385
386static void tcp_twkill(unsigned long dummy)
387{
388 int need_timer, ret;
389
390 spin_lock(&tw_death_lock);
391
392 if (tcp_tw_count == 0)
393 goto out;
394
395 need_timer = 0;
396 ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA);
397 if (ret) {
398 twkill_thread_slots |= (1 << tcp_tw_death_row_slot);
399 mb();
400 schedule_work(&tcp_twkill_work);
401 need_timer = 1;
402 } else {
403 /* We purged the entire slot, anything left? */
404 if (tcp_tw_count)
405 need_timer = 1;
406 }
407 tcp_tw_death_row_slot =
408 ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1));
409 if (need_timer)
410 mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD);
411out:
412 spin_unlock(&tw_death_lock);
413}
414
415extern void twkill_slots_invalid(void);
416
417static void twkill_work(void *dummy)
418{
419 int i;
420
421 if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8))
422 twkill_slots_invalid();
423
424 while (twkill_thread_slots) {
425 spin_lock_bh(&tw_death_lock);
426 for (i = 0; i < TCP_TWKILL_SLOTS; i++) {
427 if (!(twkill_thread_slots & (1 << i)))
428 continue;
429
430 while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) {
431 if (need_resched()) {
432 spin_unlock_bh(&tw_death_lock);
433 schedule();
434 spin_lock_bh(&tw_death_lock);
435 }
436 }
437
438 twkill_thread_slots &= ~(1 << i);
439 }
440 spin_unlock_bh(&tw_death_lock);
441 }
442}
443
444/* These are always called from BH context. See callers in
445 * tcp_input.c to verify this.
446 */
447
448/* This is for handling early-kills of TIME_WAIT sockets. */
8feaf0c0 449void tcp_tw_deschedule(struct inet_timewait_sock *tw)
1da177e4
LT
450{
451 spin_lock(&tw_death_lock);
8feaf0c0
ACM
452 if (inet_twsk_del_dead_node(tw)) {
453 inet_twsk_put(tw);
1da177e4
LT
454 if (--tcp_tw_count == 0)
455 del_timer(&tcp_tw_timer);
456 }
457 spin_unlock(&tw_death_lock);
e48c414e 458 __inet_twsk_kill(tw, &tcp_hashinfo);
1da177e4
LT
459}
460
461/* Short-time timewait calendar */
462
463static int tcp_twcal_hand = -1;
464static int tcp_twcal_jiffie;
465static void tcp_twcal_tick(unsigned long);
466static struct timer_list tcp_twcal_timer =
467 TIMER_INITIALIZER(tcp_twcal_tick, 0, 0);
468static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS];
469
8feaf0c0 470static void tcp_tw_schedule(struct inet_timewait_sock *tw, const int timeo)
1da177e4
LT
471{
472 struct hlist_head *list;
473 int slot;
474
475 /* timeout := RTO * 3.5
476 *
477 * 3.5 = 1+2+0.5 to wait for two retransmits.
478 *
479 * RATIONALE: if FIN arrived and we entered TIME-WAIT state,
480 * our ACK acking that FIN can be lost. If N subsequent retransmitted
481 * FINs (or previous seqments) are lost (probability of such event
482 * is p^(N+1), where p is probability to lose single packet and
483 * time to detect the loss is about RTO*(2^N - 1) with exponential
484 * backoff). Normal timewait length is calculated so, that we
485 * waited at least for one retransmitted FIN (maximal RTO is 120sec).
486 * [ BTW Linux. following BSD, violates this requirement waiting
487 * only for 60sec, we should wait at least for 240 secs.
488 * Well, 240 consumes too much of resources 8)
489 * ]
490 * This interval is not reduced to catch old duplicate and
491 * responces to our wandering segments living for two MSLs.
492 * However, if we use PAWS to detect
493 * old duplicates, we can reduce the interval to bounds required
494 * by RTO, rather than MSL. So, if peer understands PAWS, we
495 * kill tw bucket after 3.5*RTO (it is important that this number
496 * is greater than TS tick!) and detect old duplicates with help
497 * of PAWS.
498 */
499 slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK;
500
501 spin_lock(&tw_death_lock);
502
503 /* Unlink it, if it was scheduled */
8feaf0c0 504 if (inet_twsk_del_dead_node(tw))
1da177e4
LT
505 tcp_tw_count--;
506 else
507 atomic_inc(&tw->tw_refcnt);
508
509 if (slot >= TCP_TW_RECYCLE_SLOTS) {
510 /* Schedule to slow timer */
511 if (timeo >= TCP_TIMEWAIT_LEN) {
512 slot = TCP_TWKILL_SLOTS-1;
513 } else {
514 slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD;
515 if (slot >= TCP_TWKILL_SLOTS)
516 slot = TCP_TWKILL_SLOTS-1;
517 }
518 tw->tw_ttd = jiffies + timeo;
519 slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1);
520 list = &tcp_tw_death_row[slot];
521 } else {
522 tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK);
523
524 if (tcp_twcal_hand < 0) {
525 tcp_twcal_hand = 0;
526 tcp_twcal_jiffie = jiffies;
527 tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK);
528 add_timer(&tcp_twcal_timer);
529 } else {
530 if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK)))
531 mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK));
532 slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1);
533 }
534 list = &tcp_twcal_row[slot];
535 }
536
537 hlist_add_head(&tw->tw_death_node, list);
538
539 if (tcp_tw_count++ == 0)
540 mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
541 spin_unlock(&tw_death_lock);
542}
543
544void tcp_twcal_tick(unsigned long dummy)
545{
546 int n, slot;
547 unsigned long j;
548 unsigned long now = jiffies;
549 int killed = 0;
550 int adv = 0;
551
552 spin_lock(&tw_death_lock);
553 if (tcp_twcal_hand < 0)
554 goto out;
555
556 slot = tcp_twcal_hand;
557 j = tcp_twcal_jiffie;
558
559 for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) {
560 if (time_before_eq(j, now)) {
561 struct hlist_node *node, *safe;
8feaf0c0 562 struct inet_timewait_sock *tw;
1da177e4 563
8feaf0c0
ACM
564 inet_twsk_for_each_inmate_safe(tw, node, safe,
565 &tcp_twcal_row[slot]) {
566 __inet_twsk_del_dead_node(tw);
e48c414e 567 __inet_twsk_kill(tw, &tcp_hashinfo);
8feaf0c0 568 inet_twsk_put(tw);
1da177e4
LT
569 killed++;
570 }
571 } else {
572 if (!adv) {
573 adv = 1;
574 tcp_twcal_jiffie = j;
575 tcp_twcal_hand = slot;
576 }
577
578 if (!hlist_empty(&tcp_twcal_row[slot])) {
579 mod_timer(&tcp_twcal_timer, j);
580 goto out;
581 }
582 }
583 j += (1<<TCP_TW_RECYCLE_TICK);
584 slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1);
585 }
586 tcp_twcal_hand = -1;
587
588out:
589 if ((tcp_tw_count -= killed) == 0)
590 del_timer(&tcp_tw_timer);
591 NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed);
592 spin_unlock(&tw_death_lock);
593}
594
595/* This is not only more efficient than what we used to do, it eliminates
596 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
597 *
598 * Actually, we could lots of memory writes here. tp of listening
599 * socket contains all necessary default parameters.
600 */
60236fdd 601struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
1da177e4 602{
9f1d2604 603 struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
1da177e4 604
87d11ceb 605 if (newsk != NULL) {
9f1d2604 606 const struct inet_request_sock *ireq = inet_rsk(req);
2e6599cb 607 struct tcp_request_sock *treq = tcp_rsk(req);
9f1d2604 608 struct inet_connection_sock *newicsk = inet_csk(sk);
1da177e4 609 struct tcp_sock *newtp;
1da177e4 610
1da177e4
LT
611 /* Now setup tcp_sock */
612 newtp = tcp_sk(newsk);
613 newtp->pred_flags = 0;
2e6599cb 614 newtp->rcv_nxt = treq->rcv_isn + 1;
87d11ceb 615 newtp->snd_nxt = newtp->snd_una = newtp->snd_sml = treq->snt_isn + 1;
1da177e4
LT
616
617 tcp_prequeue_init(newtp);
618
2e6599cb 619 tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
1da177e4 620
1da177e4
LT
621 newtp->srtt = 0;
622 newtp->mdev = TCP_TIMEOUT_INIT;
463c84b9 623 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
624
625 newtp->packets_out = 0;
626 newtp->left_out = 0;
627 newtp->retrans_out = 0;
628 newtp->sacked_out = 0;
629 newtp->fackets_out = 0;
630 newtp->snd_ssthresh = 0x7fffffff;
631
632 /* So many TCP implementations out there (incorrectly) count the
633 * initial SYN frame in their delayed-ACK and congestion control
634 * algorithms that we must have the following bandaid to talk
635 * efficiently to them. -DaveM
636 */
637 newtp->snd_cwnd = 2;
638 newtp->snd_cwnd_cnt = 0;
639
640 newtp->frto_counter = 0;
641 newtp->frto_highmark = 0;
642
317a76f9
SH
643 newtp->ca_ops = &tcp_reno;
644
1da177e4
LT
645 tcp_set_ca_state(newtp, TCP_CA_Open);
646 tcp_init_xmit_timers(newsk);
647 skb_queue_head_init(&newtp->out_of_order_queue);
2e6599cb
ACM
648 newtp->rcv_wup = treq->rcv_isn + 1;
649 newtp->write_seq = treq->snt_isn + 1;
1da177e4 650 newtp->pushed_seq = newtp->write_seq;
2e6599cb 651 newtp->copied_seq = treq->rcv_isn + 1;
1da177e4
LT
652
653 newtp->rx_opt.saw_tstamp = 0;
654
655 newtp->rx_opt.dsack = 0;
656 newtp->rx_opt.eff_sacks = 0;
657
658 newtp->probes_out = 0;
659 newtp->rx_opt.num_sacks = 0;
660 newtp->urg_data = 0;
1da177e4 661
1da177e4 662 if (sock_flag(newsk, SOCK_KEEPOPEN))
463c84b9
ACM
663 inet_csk_reset_keepalive_timer(newsk,
664 keepalive_time_when(newtp));
1da177e4 665
2e6599cb
ACM
666 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
667 if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
1da177e4
LT
668 if (sysctl_tcp_fack)
669 newtp->rx_opt.sack_ok |= 2;
670 }
671 newtp->window_clamp = req->window_clamp;
672 newtp->rcv_ssthresh = req->rcv_wnd;
673 newtp->rcv_wnd = req->rcv_wnd;
2e6599cb 674 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
1da177e4 675 if (newtp->rx_opt.wscale_ok) {
2e6599cb
ACM
676 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
677 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
1da177e4
LT
678 } else {
679 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
680 newtp->window_clamp = min(newtp->window_clamp, 65535U);
681 }
682 newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
683 newtp->max_window = newtp->snd_wnd;
684
685 if (newtp->rx_opt.tstamp_ok) {
686 newtp->rx_opt.ts_recent = req->ts_recent;
687 newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
688 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
689 } else {
690 newtp->rx_opt.ts_recent_stamp = 0;
691 newtp->tcp_header_len = sizeof(struct tcphdr);
692 }
693 if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
463c84b9 694 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
1da177e4
LT
695 newtp->rx_opt.mss_clamp = req->mss;
696 TCP_ECN_openreq_child(newtp, req);
697 if (newtp->ecn_flags&TCP_ECN_OK)
698 sock_set_flag(newsk, SOCK_NO_LARGESEND);
699
1da177e4
LT
700 TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
701 }
702 return newsk;
703}
704
705/*
706 * Process an incoming packet for SYN_RECV sockets represented
60236fdd 707 * as a request_sock.
1da177e4
LT
708 */
709
710struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
60236fdd
ACM
711 struct request_sock *req,
712 struct request_sock **prev)
1da177e4
LT
713{
714 struct tcphdr *th = skb->h.th;
715 struct tcp_sock *tp = tcp_sk(sk);
716 u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
717 int paws_reject = 0;
718 struct tcp_options_received tmp_opt;
719 struct sock *child;
720
721 tmp_opt.saw_tstamp = 0;
722 if (th->doff > (sizeof(struct tcphdr)>>2)) {
723 tcp_parse_options(skb, &tmp_opt, 0);
724
725 if (tmp_opt.saw_tstamp) {
726 tmp_opt.ts_recent = req->ts_recent;
727 /* We do not store true stamp, but it is not required,
728 * it can be estimated (approximately)
729 * from another data.
730 */
731 tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
732 paws_reject = tcp_paws_check(&tmp_opt, th->rst);
733 }
734 }
735
736 /* Check for pure retransmitted SYN. */
2e6599cb 737 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
1da177e4
LT
738 flg == TCP_FLAG_SYN &&
739 !paws_reject) {
740 /*
741 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
742 * this case on figure 6 and figure 8, but formal
743 * protocol description says NOTHING.
744 * To be more exact, it says that we should send ACK,
745 * because this segment (at least, if it has no data)
746 * is out of window.
747 *
748 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
749 * describe SYN-RECV state. All the description
750 * is wrong, we cannot believe to it and should
751 * rely only on common sense and implementation
752 * experience.
753 *
754 * Enforce "SYN-ACK" according to figure 8, figure 6
755 * of RFC793, fixed by RFC1122.
756 */
60236fdd 757 req->rsk_ops->rtx_syn_ack(sk, req, NULL);
1da177e4
LT
758 return NULL;
759 }
760
761 /* Further reproduces section "SEGMENT ARRIVES"
762 for state SYN-RECEIVED of RFC793.
763 It is broken, however, it does not work only
764 when SYNs are crossed.
765
766 You would think that SYN crossing is impossible here, since
767 we should have a SYN_SENT socket (from connect()) on our end,
768 but this is not true if the crossed SYNs were sent to both
769 ends by a malicious third party. We must defend against this,
770 and to do that we first verify the ACK (as per RFC793, page
771 36) and reset if it is invalid. Is this a true full defense?
772 To convince ourselves, let us consider a way in which the ACK
773 test can still pass in this 'malicious crossed SYNs' case.
774 Malicious sender sends identical SYNs (and thus identical sequence
775 numbers) to both A and B:
776
777 A: gets SYN, seq=7
778 B: gets SYN, seq=7
779
780 By our good fortune, both A and B select the same initial
781 send sequence number of seven :-)
782
783 A: sends SYN|ACK, seq=7, ack_seq=8
784 B: sends SYN|ACK, seq=7, ack_seq=8
785
786 So we are now A eating this SYN|ACK, ACK test passes. So
787 does sequence test, SYN is truncated, and thus we consider
788 it a bare ACK.
789
790 If tp->defer_accept, we silently drop this bare ACK. Otherwise,
791 we create an established connection. Both ends (listening sockets)
792 accept the new incoming connection and try to talk to each other. 8-)
793
794 Note: This case is both harmless, and rare. Possibility is about the
795 same as us discovering intelligent life on another plant tomorrow.
796
797 But generally, we should (RFC lies!) to accept ACK
798 from SYNACK both here and in tcp_rcv_state_process().
799 tcp_rcv_state_process() does not, hence, we do not too.
800
801 Note that the case is absolutely generic:
802 we cannot optimize anything here without
803 violating protocol. All the checks must be made
804 before attempt to create socket.
805 */
806
807 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
808 * and the incoming segment acknowledges something not yet
809 * sent (the segment carries an unaccaptable ACK) ...
810 * a reset is sent."
811 *
812 * Invalid ACK: reset will be sent by listening socket
813 */
814 if ((flg & TCP_FLAG_ACK) &&
2e6599cb 815 (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
1da177e4
LT
816 return sk;
817
818 /* Also, it would be not so bad idea to check rcv_tsecr, which
819 * is essentially ACK extension and too early or too late values
820 * should cause reset in unsynchronized states.
821 */
822
823 /* RFC793: "first check sequence number". */
824
825 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
2e6599cb 826 tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
1da177e4
LT
827 /* Out of window: send ACK and drop. */
828 if (!(flg & TCP_FLAG_RST))
60236fdd 829 req->rsk_ops->send_ack(skb, req);
1da177e4
LT
830 if (paws_reject)
831 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
832 return NULL;
833 }
834
835 /* In sequence, PAWS is OK. */
836
2e6599cb 837 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
1da177e4
LT
838 req->ts_recent = tmp_opt.rcv_tsval;
839
2e6599cb 840 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
1da177e4 841 /* Truncate SYN, it is out of window starting
2e6599cb 842 at tcp_rsk(req)->rcv_isn + 1. */
1da177e4
LT
843 flg &= ~TCP_FLAG_SYN;
844 }
845
846 /* RFC793: "second check the RST bit" and
847 * "fourth, check the SYN bit"
848 */
849 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
850 goto embryonic_reset;
851
852 /* ACK sequence verified above, just make sure ACK is
853 * set. If ACK not set, just silently drop the packet.
854 */
855 if (!(flg & TCP_FLAG_ACK))
856 return NULL;
857
858 /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
2e6599cb
ACM
859 if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
860 inet_rsk(req)->acked = 1;
1da177e4
LT
861 return NULL;
862 }
863
864 /* OK, ACK is valid, create big socket and
865 * feed this segment to it. It will repeat all
866 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
867 * ESTABLISHED STATE. If it will be dropped after
868 * socket is created, wait for troubles.
869 */
870 child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
871 if (child == NULL)
872 goto listen_overflow;
873
463c84b9
ACM
874 inet_csk_reqsk_queue_unlink(sk, req, prev);
875 inet_csk_reqsk_queue_removed(sk, req);
1da177e4 876
463c84b9 877 inet_csk_reqsk_queue_add(sk, req, child);
1da177e4
LT
878 return child;
879
880 listen_overflow:
881 if (!sysctl_tcp_abort_on_overflow) {
2e6599cb 882 inet_rsk(req)->acked = 1;
1da177e4
LT
883 return NULL;
884 }
885
886 embryonic_reset:
887 NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
888 if (!(flg & TCP_FLAG_RST))
60236fdd 889 req->rsk_ops->send_reset(skb);
1da177e4 890
463c84b9 891 inet_csk_reqsk_queue_drop(sk, req, prev);
1da177e4
LT
892 return NULL;
893}
894
895/*
896 * Queue segment on the new socket if the new socket is active,
897 * otherwise we just shortcircuit this and continue with
898 * the new socket.
899 */
900
901int tcp_child_process(struct sock *parent, struct sock *child,
902 struct sk_buff *skb)
903{
904 int ret = 0;
905 int state = child->sk_state;
906
907 if (!sock_owned_by_user(child)) {
908 ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
909
910 /* Wakeup parent, send SIGIO */
911 if (state == TCP_SYN_RECV && child->sk_state != state)
912 parent->sk_data_ready(parent, 0);
913 } else {
914 /* Alas, it is possible again, because we do lookup
915 * in main socket hash table and lock on listening
916 * socket does not protect us more.
917 */
918 sk_add_backlog(child, skb);
919 }
920
921 bh_unlock_sock(child);
922 sock_put(child);
923 return ret;
924}
925
926EXPORT_SYMBOL(tcp_check_req);
927EXPORT_SYMBOL(tcp_child_process);
928EXPORT_SYMBOL(tcp_create_openreq_child);
929EXPORT_SYMBOL(tcp_timewait_state_process);
930EXPORT_SYMBOL(tcp_tw_deschedule);
This page took 0.143983 seconds and 5 git commands to generate.