macvlan: add a salt to mc_hash()
[deliverable/linux.git] / net / sctp / auth.c
CommitLineData
60c778b2 1/* SCTP kernel implementation
1f485649
VY
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3 *
60c778b2 4 * This file is part of the SCTP kernel implementation
1f485649 5 *
60c778b2 6 * This SCTP implementation is free software;
1f485649
VY
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
60c778b2 12 * This SCTP implementation is distributed in the hope that it
1f485649
VY
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
22 *
23 * Please send any bug reports or fixes you make to the
24 * email address(es):
25 * lksctp developers <lksctp-developers@lists.sourceforge.net>
26 *
27 * Or submit a bug report through the following website:
28 * http://www.sf.net/projects/lksctp
29 *
30 * Written or modified by:
31 * Vlad Yasevich <vladislav.yasevich@hp.com>
32 *
33 * Any bugs reported given to us we will try to fix... any fixes shared will
34 * be incorporated into the next SCTP release.
35 */
36
5a0e3ad6 37#include <linux/slab.h>
1f485649
VY
38#include <linux/types.h>
39#include <linux/crypto.h>
40#include <linux/scatterlist.h>
41#include <net/sctp/sctp.h>
42#include <net/sctp/auth.h>
43
44static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
45 {
46 /* id 0 is reserved. as all 0 */
47 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
48 },
49 {
50 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
51 .hmac_name="hmac(sha1)",
52 .hmac_len = SCTP_SHA1_SIG_SIZE,
53 },
54 {
55 /* id 2 is reserved as well */
56 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
57 },
b7e0fe9f 58#if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
1f485649
VY
59 {
60 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
61 .hmac_name="hmac(sha256)",
62 .hmac_len = SCTP_SHA256_SIG_SIZE,
63 }
b7e0fe9f 64#endif
1f485649
VY
65};
66
67
68void sctp_auth_key_put(struct sctp_auth_bytes *key)
69{
70 if (!key)
71 return;
72
73 if (atomic_dec_and_test(&key->refcnt)) {
74 kfree(key);
75 SCTP_DBG_OBJCNT_DEC(keys);
76 }
77}
78
79/* Create a new key structure of a given length */
80static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
81{
82 struct sctp_auth_bytes *key;
83
30c2235c 84 /* Verify that we are not going to overflow INT_MAX */
c89304b8 85 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
30c2235c
VY
86 return NULL;
87
1f485649
VY
88 /* Allocate the shared key */
89 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
90 if (!key)
91 return NULL;
92
93 key->len = key_len;
94 atomic_set(&key->refcnt, 1);
95 SCTP_DBG_OBJCNT_INC(keys);
96
97 return key;
98}
99
100/* Create a new shared key container with a give key id */
101struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
102{
103 struct sctp_shared_key *new;
104
105 /* Allocate the shared key container */
106 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
107 if (!new)
108 return NULL;
109
110 INIT_LIST_HEAD(&new->key_list);
111 new->key_id = key_id;
112
113 return new;
114}
115
25985edc 116/* Free the shared key structure */
8ad7c62b 117static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
1f485649
VY
118{
119 BUG_ON(!list_empty(&sh_key->key_list));
120 sctp_auth_key_put(sh_key->key);
121 sh_key->key = NULL;
122 kfree(sh_key);
123}
124
25985edc 125/* Destroy the entire key list. This is done during the
1f485649
VY
126 * associon and endpoint free process.
127 */
128void sctp_auth_destroy_keys(struct list_head *keys)
129{
130 struct sctp_shared_key *ep_key;
131 struct sctp_shared_key *tmp;
132
133 if (list_empty(keys))
134 return;
135
136 key_for_each_safe(ep_key, tmp, keys) {
137 list_del_init(&ep_key->key_list);
138 sctp_auth_shkey_free(ep_key);
139 }
140}
141
142/* Compare two byte vectors as numbers. Return values
143 * are:
144 * 0 - vectors are equal
025dfdaf
FS
145 * < 0 - vector 1 is smaller than vector2
146 * > 0 - vector 1 is greater than vector2
1f485649
VY
147 *
148 * Algorithm is:
149 * This is performed by selecting the numerically smaller key vector...
150 * If the key vectors are equal as numbers but differ in length ...
151 * the shorter vector is considered smaller
152 *
153 * Examples (with small values):
154 * 000123456789 > 123456789 (first number is longer)
155 * 000123456789 < 234567891 (second number is larger numerically)
156 * 123456789 > 2345678 (first number is both larger & longer)
157 */
158static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
159 struct sctp_auth_bytes *vector2)
160{
161 int diff;
162 int i;
163 const __u8 *longer;
164
165 diff = vector1->len - vector2->len;
166 if (diff) {
167 longer = (diff > 0) ? vector1->data : vector2->data;
168
169 /* Check to see if the longer number is
170 * lead-zero padded. If it is not, it
171 * is automatically larger numerically.
172 */
173 for (i = 0; i < abs(diff); i++ ) {
174 if (longer[i] != 0)
175 return diff;
176 }
177 }
178
179 /* lengths are the same, compare numbers */
180 return memcmp(vector1->data, vector2->data, vector1->len);
181}
182
183/*
184 * Create a key vector as described in SCTP-AUTH, Section 6.1
185 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
186 * parameter sent by each endpoint are concatenated as byte vectors.
187 * These parameters include the parameter type, parameter length, and
188 * the parameter value, but padding is omitted; all padding MUST be
189 * removed from this concatenation before proceeding with further
190 * computation of keys. Parameters which were not sent are simply
191 * omitted from the concatenation process. The resulting two vectors
192 * are called the two key vectors.
193 */
194static struct sctp_auth_bytes *sctp_auth_make_key_vector(
195 sctp_random_param_t *random,
196 sctp_chunks_param_t *chunks,
197 sctp_hmac_algo_param_t *hmacs,
198 gfp_t gfp)
199{
200 struct sctp_auth_bytes *new;
201 __u32 len;
202 __u32 offset = 0;
241448c2 203 __u16 random_len, hmacs_len, chunks_len = 0;
1f485649 204
241448c2
DB
205 random_len = ntohs(random->param_hdr.length);
206 hmacs_len = ntohs(hmacs->param_hdr.length);
207 if (chunks)
208 chunks_len = ntohs(chunks->param_hdr.length);
209
210 len = random_len + hmacs_len + chunks_len;
1f485649
VY
211
212 new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
213 if (!new)
214 return NULL;
215
216 new->len = len;
217
241448c2
DB
218 memcpy(new->data, random, random_len);
219 offset += random_len;
1f485649
VY
220
221 if (chunks) {
241448c2
DB
222 memcpy(new->data + offset, chunks, chunks_len);
223 offset += chunks_len;
1f485649
VY
224 }
225
241448c2 226 memcpy(new->data + offset, hmacs, hmacs_len);
1f485649
VY
227
228 return new;
229}
230
231
232/* Make a key vector based on our local parameters */
8ad7c62b 233static struct sctp_auth_bytes *sctp_auth_make_local_vector(
1f485649
VY
234 const struct sctp_association *asoc,
235 gfp_t gfp)
236{
237 return sctp_auth_make_key_vector(
238 (sctp_random_param_t*)asoc->c.auth_random,
239 (sctp_chunks_param_t*)asoc->c.auth_chunks,
240 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
241 gfp);
242}
243
244/* Make a key vector based on peer's parameters */
8ad7c62b 245static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
1f485649
VY
246 const struct sctp_association *asoc,
247 gfp_t gfp)
248{
249 return sctp_auth_make_key_vector(asoc->peer.peer_random,
250 asoc->peer.peer_chunks,
251 asoc->peer.peer_hmacs,
252 gfp);
253}
254
255
256/* Set the value of the association shared key base on the parameters
257 * given. The algorithm is:
258 * From the endpoint pair shared keys and the key vectors the
259 * association shared keys are computed. This is performed by selecting
260 * the numerically smaller key vector and concatenating it to the
261 * endpoint pair shared key, and then concatenating the numerically
262 * larger key vector to that. The result of the concatenation is the
263 * association shared key.
264 */
265static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
266 struct sctp_shared_key *ep_key,
267 struct sctp_auth_bytes *first_vector,
268 struct sctp_auth_bytes *last_vector,
269 gfp_t gfp)
270{
271 struct sctp_auth_bytes *secret;
272 __u32 offset = 0;
273 __u32 auth_len;
274
275 auth_len = first_vector->len + last_vector->len;
276 if (ep_key->key)
277 auth_len += ep_key->key->len;
278
279 secret = sctp_auth_create_key(auth_len, gfp);
280 if (!secret)
281 return NULL;
282
283 if (ep_key->key) {
284 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
285 offset += ep_key->key->len;
286 }
287
288 memcpy(secret->data + offset, first_vector->data, first_vector->len);
289 offset += first_vector->len;
290
291 memcpy(secret->data + offset, last_vector->data, last_vector->len);
292
293 return secret;
294}
295
296/* Create an association shared key. Follow the algorithm
297 * described in SCTP-AUTH, Section 6.1
298 */
299static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
300 const struct sctp_association *asoc,
301 struct sctp_shared_key *ep_key,
302 gfp_t gfp)
303{
304 struct sctp_auth_bytes *local_key_vector;
305 struct sctp_auth_bytes *peer_key_vector;
306 struct sctp_auth_bytes *first_vector,
307 *last_vector;
308 struct sctp_auth_bytes *secret = NULL;
309 int cmp;
310
311
312 /* Now we need to build the key vectors
313 * SCTP-AUTH , Section 6.1
314 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
315 * parameter sent by each endpoint are concatenated as byte vectors.
316 * These parameters include the parameter type, parameter length, and
317 * the parameter value, but padding is omitted; all padding MUST be
318 * removed from this concatenation before proceeding with further
319 * computation of keys. Parameters which were not sent are simply
320 * omitted from the concatenation process. The resulting two vectors
321 * are called the two key vectors.
322 */
323
324 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
325 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
326
327 if (!peer_key_vector || !local_key_vector)
328 goto out;
329
25985edc 330 /* Figure out the order in which the key_vectors will be
1f485649
VY
331 * added to the endpoint shared key.
332 * SCTP-AUTH, Section 6.1:
333 * This is performed by selecting the numerically smaller key
334 * vector and concatenating it to the endpoint pair shared
335 * key, and then concatenating the numerically larger key
336 * vector to that. If the key vectors are equal as numbers
337 * but differ in length, then the concatenation order is the
338 * endpoint shared key, followed by the shorter key vector,
339 * followed by the longer key vector. Otherwise, the key
340 * vectors are identical, and may be concatenated to the
341 * endpoint pair key in any order.
342 */
343 cmp = sctp_auth_compare_vectors(local_key_vector,
344 peer_key_vector);
345 if (cmp < 0) {
346 first_vector = local_key_vector;
347 last_vector = peer_key_vector;
348 } else {
349 first_vector = peer_key_vector;
350 last_vector = local_key_vector;
351 }
352
353 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
354 gfp);
355out:
356 kfree(local_key_vector);
357 kfree(peer_key_vector);
358
359 return secret;
360}
361
362/*
363 * Populate the association overlay list with the list
364 * from the endpoint.
365 */
366int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
367 struct sctp_association *asoc,
368 gfp_t gfp)
369{
370 struct sctp_shared_key *sh_key;
371 struct sctp_shared_key *new;
372
373 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
374
375 key_for_each(sh_key, &ep->endpoint_shared_keys) {
376 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
377 if (!new)
378 goto nomem;
379
380 new->key = sh_key->key;
381 sctp_auth_key_hold(new->key);
382 list_add(&new->key_list, &asoc->endpoint_shared_keys);
383 }
384
385 return 0;
386
387nomem:
388 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
389 return -ENOMEM;
390}
391
392
393/* Public interface to creat the association shared key.
394 * See code above for the algorithm.
395 */
396int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
397{
e1fc3b14 398 struct net *net = sock_net(asoc->base.sk);
1f485649
VY
399 struct sctp_auth_bytes *secret;
400 struct sctp_shared_key *ep_key;
401
402 /* If we don't support AUTH, or peer is not capable
403 * we don't need to do anything.
404 */
e1fc3b14 405 if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
1f485649
VY
406 return 0;
407
408 /* If the key_id is non-zero and we couldn't find an
409 * endpoint pair shared key, we can't compute the
410 * secret.
411 * For key_id 0, endpoint pair shared key is a NULL key.
412 */
413 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
414 BUG_ON(!ep_key);
415
416 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
417 if (!secret)
418 return -ENOMEM;
419
420 sctp_auth_key_put(asoc->asoc_shared_key);
421 asoc->asoc_shared_key = secret;
422
423 return 0;
424}
425
426
427/* Find the endpoint pair shared key based on the key_id */
428struct sctp_shared_key *sctp_auth_get_shkey(
429 const struct sctp_association *asoc,
430 __u16 key_id)
431{
7cc08b55 432 struct sctp_shared_key *key;
1f485649
VY
433
434 /* First search associations set of endpoint pair shared keys */
435 key_for_each(key, &asoc->endpoint_shared_keys) {
436 if (key->key_id == key_id)
7cc08b55 437 return key;
1f485649
VY
438 }
439
7cc08b55 440 return NULL;
1f485649
VY
441}
442
443/*
444 * Initialize all the possible digest transforms that we can use. Right now
445 * now, the supported digests are SHA1 and SHA256. We do this here once
446 * because of the restrictiong that transforms may only be allocated in
447 * user context. This forces us to pre-allocated all possible transforms
448 * at the endpoint init time.
449 */
450int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
451{
e1fc3b14 452 struct net *net = sock_net(ep->base.sk);
1f485649
VY
453 struct crypto_hash *tfm = NULL;
454 __u16 id;
455
456 /* if the transforms are already allocted, we are done */
e1fc3b14 457 if (!net->sctp.auth_enable) {
1f485649
VY
458 ep->auth_hmacs = NULL;
459 return 0;
460 }
461
462 if (ep->auth_hmacs)
463 return 0;
464
465 /* Allocated the array of pointers to transorms */
466 ep->auth_hmacs = kzalloc(
467 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
468 gfp);
469 if (!ep->auth_hmacs)
470 return -ENOMEM;
471
472 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
473
474 /* See is we support the id. Supported IDs have name and
475 * length fields set, so that we can allocated and use
476 * them. We can safely just check for name, for without the
477 * name, we can't allocate the TFM.
478 */
479 if (!sctp_hmac_list[id].hmac_name)
480 continue;
481
482 /* If this TFM has been allocated, we are all set */
483 if (ep->auth_hmacs[id])
484 continue;
485
486 /* Allocate the ID */
487 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
488 CRYPTO_ALG_ASYNC);
489 if (IS_ERR(tfm))
490 goto out_err;
491
492 ep->auth_hmacs[id] = tfm;
493 }
494
495 return 0;
496
497out_err:
73ac36ea 498 /* Clean up any successful allocations */
1f485649
VY
499 sctp_auth_destroy_hmacs(ep->auth_hmacs);
500 return -ENOMEM;
501}
502
503/* Destroy the hmac tfm array */
504void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
505{
506 int i;
507
508 if (!auth_hmacs)
509 return;
510
511 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
512 {
513 if (auth_hmacs[i])
514 crypto_free_hash(auth_hmacs[i]);
515 }
516 kfree(auth_hmacs);
517}
518
519
520struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
521{
522 return &sctp_hmac_list[hmac_id];
523}
524
525/* Get an hmac description information that we can use to build
526 * the AUTH chunk
527 */
528struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
529{
530 struct sctp_hmac_algo_param *hmacs;
531 __u16 n_elt;
532 __u16 id = 0;
533 int i;
534
535 /* If we have a default entry, use it */
536 if (asoc->default_hmac_id)
537 return &sctp_hmac_list[asoc->default_hmac_id];
538
539 /* Since we do not have a default entry, find the first entry
540 * we support and return that. Do not cache that id.
541 */
542 hmacs = asoc->peer.peer_hmacs;
543 if (!hmacs)
544 return NULL;
545
546 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
547 for (i = 0; i < n_elt; i++) {
548 id = ntohs(hmacs->hmac_ids[i]);
549
550 /* Check the id is in the supported range */
51e97a12
DR
551 if (id > SCTP_AUTH_HMAC_ID_MAX) {
552 id = 0;
1f485649 553 continue;
51e97a12 554 }
1f485649
VY
555
556 /* See is we support the id. Supported IDs have name and
557 * length fields set, so that we can allocated and use
558 * them. We can safely just check for name, for without the
559 * name, we can't allocate the TFM.
560 */
51e97a12
DR
561 if (!sctp_hmac_list[id].hmac_name) {
562 id = 0;
1f485649 563 continue;
51e97a12 564 }
1f485649
VY
565
566 break;
567 }
568
569 if (id == 0)
570 return NULL;
571
572 return &sctp_hmac_list[id];
573}
574
d06f6082 575static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
1f485649
VY
576{
577 int found = 0;
578 int i;
579
580 for (i = 0; i < n_elts; i++) {
581 if (hmac_id == hmacs[i]) {
582 found = 1;
583 break;
584 }
585 }
586
587 return found;
588}
589
590/* See if the HMAC_ID is one that we claim as supported */
591int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
d06f6082 592 __be16 hmac_id)
1f485649
VY
593{
594 struct sctp_hmac_algo_param *hmacs;
595 __u16 n_elt;
596
597 if (!asoc)
598 return 0;
599
600 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
601 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
602
603 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
604}
605
606
607/* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
608 * Section 6.1:
609 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
610 * algorithm it supports.
611 */
612void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
613 struct sctp_hmac_algo_param *hmacs)
614{
615 struct sctp_endpoint *ep;
616 __u16 id;
617 int i;
618 int n_params;
619
620 /* if the default id is already set, use it */
621 if (asoc->default_hmac_id)
622 return;
623
624 n_params = (ntohs(hmacs->param_hdr.length)
625 - sizeof(sctp_paramhdr_t)) >> 1;
626 ep = asoc->ep;
627 for (i = 0; i < n_params; i++) {
628 id = ntohs(hmacs->hmac_ids[i]);
629
630 /* Check the id is in the supported range */
631 if (id > SCTP_AUTH_HMAC_ID_MAX)
632 continue;
633
634 /* If this TFM has been allocated, use this id */
635 if (ep->auth_hmacs[id]) {
636 asoc->default_hmac_id = id;
637 break;
638 }
639 }
640}
641
642
643/* Check to see if the given chunk is supposed to be authenticated */
644static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
645{
646 unsigned short len;
647 int found = 0;
648 int i;
649
555d3d5d 650 if (!param || param->param_hdr.length == 0)
1f485649
VY
651 return 0;
652
653 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
654
655 /* SCTP-AUTH, Section 3.2
656 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
657 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
658 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
659 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
660 */
661 for (i = 0; !found && i < len; i++) {
662 switch (param->chunks[i]) {
663 case SCTP_CID_INIT:
664 case SCTP_CID_INIT_ACK:
665 case SCTP_CID_SHUTDOWN_COMPLETE:
666 case SCTP_CID_AUTH:
667 break;
668
669 default:
670 if (param->chunks[i] == chunk)
671 found = 1;
672 break;
673 }
674 }
675
676 return found;
677}
678
679/* Check if peer requested that this chunk is authenticated */
680int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
681{
e1fc3b14
EB
682 struct net *net;
683 if (!asoc)
684 return 0;
685
686 net = sock_net(asoc->base.sk);
687 if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
1f485649
VY
688 return 0;
689
690 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
691}
692
693/* Check if we requested that peer authenticate this chunk. */
694int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
695{
e1fc3b14
EB
696 struct net *net;
697 if (!asoc)
698 return 0;
699
700 net = sock_net(asoc->base.sk);
02644a17 701 if (!net->sctp.auth_enable)
1f485649
VY
702 return 0;
703
704 return __sctp_auth_cid(chunk,
705 (struct sctp_chunks_param *)asoc->c.auth_chunks);
706}
707
708/* SCTP-AUTH: Section 6.2:
709 * The sender MUST calculate the MAC as described in RFC2104 [2] using
710 * the hash function H as described by the MAC Identifier and the shared
711 * association key K based on the endpoint pair shared key described by
712 * the shared key identifier. The 'data' used for the computation of
713 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
714 * zero (as shown in Figure 6) followed by all chunks that are placed
715 * after the AUTH chunk in the SCTP packet.
716 */
717void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
718 struct sk_buff *skb,
719 struct sctp_auth_chunk *auth,
720 gfp_t gfp)
721{
722 struct scatterlist sg;
723 struct hash_desc desc;
724 struct sctp_auth_bytes *asoc_key;
725 __u16 key_id, hmac_id;
726 __u8 *digest;
727 unsigned char *end;
728 int free_key = 0;
729
730 /* Extract the info we need:
731 * - hmac id
732 * - key id
733 */
734 key_id = ntohs(auth->auth_hdr.shkey_id);
735 hmac_id = ntohs(auth->auth_hdr.hmac_id);
736
737 if (key_id == asoc->active_key_id)
738 asoc_key = asoc->asoc_shared_key;
739 else {
740 struct sctp_shared_key *ep_key;
741
742 ep_key = sctp_auth_get_shkey(asoc, key_id);
743 if (!ep_key)
744 return;
745
746 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
747 if (!asoc_key)
748 return;
749
750 free_key = 1;
751 }
752
753 /* set up scatter list */
754 end = skb_tail_pointer(skb);
68e3f5dd 755 sg_init_one(&sg, auth, end - (unsigned char *)auth);
1f485649
VY
756
757 desc.tfm = asoc->ep->auth_hmacs[hmac_id];
758 desc.flags = 0;
759
760 digest = auth->auth_hdr.hmac;
761 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
762 goto free;
763
764 crypto_hash_digest(&desc, &sg, sg.length, digest);
765
766free:
767 if (free_key)
768 sctp_auth_key_put(asoc_key);
769}
65b07e5d
VY
770
771/* API Helpers */
772
773/* Add a chunk to the endpoint authenticated chunk list */
774int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
775{
776 struct sctp_chunks_param *p = ep->auth_chunk_list;
777 __u16 nchunks;
778 __u16 param_len;
779
780 /* If this chunk is already specified, we are done */
781 if (__sctp_auth_cid(chunk_id, p))
782 return 0;
783
784 /* Check if we can add this chunk to the array */
785 param_len = ntohs(p->param_hdr.length);
786 nchunks = param_len - sizeof(sctp_paramhdr_t);
787 if (nchunks == SCTP_NUM_CHUNK_TYPES)
788 return -EINVAL;
789
790 p->chunks[nchunks] = chunk_id;
791 p->param_hdr.length = htons(param_len + 1);
792 return 0;
793}
794
795/* Add hmac identifires to the endpoint list of supported hmac ids */
796int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
797 struct sctp_hmacalgo *hmacs)
798{
799 int has_sha1 = 0;
800 __u16 id;
801 int i;
802
803 /* Scan the list looking for unsupported id. Also make sure that
804 * SHA1 is specified.
805 */
806 for (i = 0; i < hmacs->shmac_num_idents; i++) {
807 id = hmacs->shmac_idents[i];
808
d9724055
VY
809 if (id > SCTP_AUTH_HMAC_ID_MAX)
810 return -EOPNOTSUPP;
811
65b07e5d
VY
812 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
813 has_sha1 = 1;
814
815 if (!sctp_hmac_list[id].hmac_name)
816 return -EOPNOTSUPP;
817 }
818
819 if (!has_sha1)
820 return -EINVAL;
821
822 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
823 hmacs->shmac_num_idents * sizeof(__u16));
824 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
825 hmacs->shmac_num_idents * sizeof(__u16));
826 return 0;
827}
828
829/* Set a new shared key on either endpoint or association. If the
830 * the key with a same ID already exists, replace the key (remove the
831 * old key and add a new one).
832 */
833int sctp_auth_set_key(struct sctp_endpoint *ep,
834 struct sctp_association *asoc,
835 struct sctp_authkey *auth_key)
836{
837 struct sctp_shared_key *cur_key = NULL;
838 struct sctp_auth_bytes *key;
839 struct list_head *sh_keys;
840 int replace = 0;
841
842 /* Try to find the given key id to see if
843 * we are doing a replace, or adding a new key
844 */
845 if (asoc)
846 sh_keys = &asoc->endpoint_shared_keys;
847 else
848 sh_keys = &ep->endpoint_shared_keys;
849
850 key_for_each(cur_key, sh_keys) {
851 if (cur_key->key_id == auth_key->sca_keynumber) {
852 replace = 1;
853 break;
854 }
855 }
856
857 /* If we are not replacing a key id, we need to allocate
858 * a shared key.
859 */
860 if (!replace) {
861 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
862 GFP_KERNEL);
863 if (!cur_key)
864 return -ENOMEM;
865 }
866
867 /* Create a new key data based on the info passed in */
7e8616d8 868 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
65b07e5d
VY
869 if (!key)
870 goto nomem;
871
7e8616d8 872 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
65b07e5d
VY
873
874 /* If we are replacing, remove the old keys data from the
875 * key id. If we are adding new key id, add it to the
876 * list.
877 */
878 if (replace)
879 sctp_auth_key_put(cur_key->key);
880 else
881 list_add(&cur_key->key_list, sh_keys);
882
883 cur_key->key = key;
884 sctp_auth_key_hold(key);
885
886 return 0;
887nomem:
888 if (!replace)
889 sctp_auth_shkey_free(cur_key);
890
891 return -ENOMEM;
892}
893
894int sctp_auth_set_active_key(struct sctp_endpoint *ep,
895 struct sctp_association *asoc,
896 __u16 key_id)
897{
898 struct sctp_shared_key *key;
899 struct list_head *sh_keys;
900 int found = 0;
901
902 /* The key identifier MUST correst to an existing key */
903 if (asoc)
904 sh_keys = &asoc->endpoint_shared_keys;
905 else
906 sh_keys = &ep->endpoint_shared_keys;
907
908 key_for_each(key, sh_keys) {
909 if (key->key_id == key_id) {
910 found = 1;
911 break;
912 }
913 }
914
915 if (!found)
916 return -EINVAL;
917
918 if (asoc) {
919 asoc->active_key_id = key_id;
920 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
921 } else
922 ep->active_key_id = key_id;
923
924 return 0;
925}
926
927int sctp_auth_del_key_id(struct sctp_endpoint *ep,
928 struct sctp_association *asoc,
929 __u16 key_id)
930{
931 struct sctp_shared_key *key;
932 struct list_head *sh_keys;
933 int found = 0;
934
935 /* The key identifier MUST NOT be the current active key
936 * The key identifier MUST correst to an existing key
937 */
938 if (asoc) {
939 if (asoc->active_key_id == key_id)
940 return -EINVAL;
941
942 sh_keys = &asoc->endpoint_shared_keys;
943 } else {
944 if (ep->active_key_id == key_id)
945 return -EINVAL;
946
947 sh_keys = &ep->endpoint_shared_keys;
948 }
949
950 key_for_each(key, sh_keys) {
951 if (key->key_id == key_id) {
952 found = 1;
953 break;
954 }
955 }
956
957 if (!found)
958 return -EINVAL;
959
960 /* Delete the shared key */
961 list_del_init(&key->key_list);
962 sctp_auth_shkey_free(key);
963
964 return 0;
965}
This page took 0.403059 seconds and 5 git commands to generate.