SUNRPC: Remove duplicate universal address generation
[deliverable/linux.git] / net / sunrpc / xprtrdma / transport.c
CommitLineData
f58851e6
TT
1/*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 *
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
21 *
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * transport.c
42 *
43 * This file contains the top-level implementation of an RPC RDMA
44 * transport.
45 *
46 * Naming convention: functions beginning with xprt_ are part of the
47 * transport switch. All others are RPC RDMA internal.
48 */
49
50#include <linux/module.h>
51#include <linux/init.h>
52#include <linux/seq_file.h>
53
54#include "xprt_rdma.h"
55
56#ifdef RPC_DEBUG
57# define RPCDBG_FACILITY RPCDBG_TRANS
58#endif
59
60MODULE_LICENSE("Dual BSD/GPL");
61
62MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
63MODULE_AUTHOR("Network Appliance, Inc.");
64
65/*
66 * tunables
67 */
68
69static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
70static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
71static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
72static unsigned int xprt_rdma_inline_write_padding;
3197d309 73static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
9191ca3b 74 int xprt_rdma_pad_optimize = 0;
f58851e6
TT
75
76#ifdef RPC_DEBUG
77
78static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
79static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
80static unsigned int zero;
81static unsigned int max_padding = PAGE_SIZE;
82static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
83static unsigned int max_memreg = RPCRDMA_LAST - 1;
84
85static struct ctl_table_header *sunrpc_table_header;
86
87static ctl_table xr_tunables_table[] = {
88 {
cfcb43ff 89 .ctl_name = CTL_UNNUMBERED,
f58851e6
TT
90 .procname = "rdma_slot_table_entries",
91 .data = &xprt_rdma_slot_table_entries,
92 .maxlen = sizeof(unsigned int),
93 .mode = 0644,
94 .proc_handler = &proc_dointvec_minmax,
95 .strategy = &sysctl_intvec,
96 .extra1 = &min_slot_table_size,
97 .extra2 = &max_slot_table_size
98 },
99 {
cfcb43ff 100 .ctl_name = CTL_UNNUMBERED,
f58851e6
TT
101 .procname = "rdma_max_inline_read",
102 .data = &xprt_rdma_max_inline_read,
103 .maxlen = sizeof(unsigned int),
104 .mode = 0644,
105 .proc_handler = &proc_dointvec,
106 .strategy = &sysctl_intvec,
107 },
108 {
cfcb43ff 109 .ctl_name = CTL_UNNUMBERED,
f58851e6
TT
110 .procname = "rdma_max_inline_write",
111 .data = &xprt_rdma_max_inline_write,
112 .maxlen = sizeof(unsigned int),
113 .mode = 0644,
114 .proc_handler = &proc_dointvec,
115 .strategy = &sysctl_intvec,
116 },
117 {
cfcb43ff 118 .ctl_name = CTL_UNNUMBERED,
f58851e6
TT
119 .procname = "rdma_inline_write_padding",
120 .data = &xprt_rdma_inline_write_padding,
121 .maxlen = sizeof(unsigned int),
122 .mode = 0644,
123 .proc_handler = &proc_dointvec_minmax,
124 .strategy = &sysctl_intvec,
125 .extra1 = &zero,
126 .extra2 = &max_padding,
127 },
128 {
cfcb43ff 129 .ctl_name = CTL_UNNUMBERED,
f58851e6
TT
130 .procname = "rdma_memreg_strategy",
131 .data = &xprt_rdma_memreg_strategy,
132 .maxlen = sizeof(unsigned int),
133 .mode = 0644,
134 .proc_handler = &proc_dointvec_minmax,
135 .strategy = &sysctl_intvec,
136 .extra1 = &min_memreg,
137 .extra2 = &max_memreg,
138 },
9191ca3b
TT
139 {
140 .ctl_name = CTL_UNNUMBERED,
141 .procname = "rdma_pad_optimize",
142 .data = &xprt_rdma_pad_optimize,
143 .maxlen = sizeof(unsigned int),
144 .mode = 0644,
145 .proc_handler = &proc_dointvec,
146 },
f58851e6
TT
147 {
148 .ctl_name = 0,
149 },
150};
151
152static ctl_table sunrpc_table[] = {
153 {
154 .ctl_name = CTL_SUNRPC,
155 .procname = "sunrpc",
156 .mode = 0555,
157 .child = xr_tunables_table
158 },
159 {
160 .ctl_name = 0,
161 },
162};
163
164#endif
165
166static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
167
168static void
169xprt_rdma_format_addresses(struct rpc_xprt *xprt)
170{
171 struct sockaddr_in *addr = (struct sockaddr_in *)
172 &rpcx_to_rdmad(xprt).addr;
173 char *buf;
174
175 buf = kzalloc(20, GFP_KERNEL);
176 if (buf)
21454aaa 177 snprintf(buf, 20, "%pI4", &addr->sin_addr.s_addr);
f58851e6
TT
178 xprt->address_strings[RPC_DISPLAY_ADDR] = buf;
179
180 buf = kzalloc(8, GFP_KERNEL);
181 if (buf)
182 snprintf(buf, 8, "%u", ntohs(addr->sin_port));
183 xprt->address_strings[RPC_DISPLAY_PORT] = buf;
184
185 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
186
187 buf = kzalloc(48, GFP_KERNEL);
188 if (buf)
21454aaa
HH
189 snprintf(buf, 48, "addr=%pI4 port=%u proto=%s",
190 &addr->sin_addr.s_addr,
f58851e6
TT
191 ntohs(addr->sin_port), "rdma");
192 xprt->address_strings[RPC_DISPLAY_ALL] = buf;
193
194 buf = kzalloc(10, GFP_KERNEL);
195 if (buf)
196 snprintf(buf, 10, "%02x%02x%02x%02x",
197 NIPQUAD(addr->sin_addr.s_addr));
198 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = buf;
199
200 buf = kzalloc(8, GFP_KERNEL);
201 if (buf)
202 snprintf(buf, 8, "%4hx", ntohs(addr->sin_port));
203 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = buf;
204
f58851e6
TT
205 /* netid */
206 xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
207}
208
209static void
210xprt_rdma_free_addresses(struct rpc_xprt *xprt)
211{
33e01dc7
CL
212 unsigned int i;
213
214 for (i = 0; i < RPC_DISPLAY_MAX; i++)
215 switch (i) {
216 case RPC_DISPLAY_PROTO:
217 case RPC_DISPLAY_NETID:
218 continue;
219 default:
220 kfree(xprt->address_strings[i]);
221 }
f58851e6
TT
222}
223
224static void
225xprt_rdma_connect_worker(struct work_struct *work)
226{
227 struct rpcrdma_xprt *r_xprt =
228 container_of(work, struct rpcrdma_xprt, rdma_connect.work);
229 struct rpc_xprt *xprt = &r_xprt->xprt;
230 int rc = 0;
231
232 if (!xprt->shutdown) {
233 xprt_clear_connected(xprt);
234
235 dprintk("RPC: %s: %sconnect\n", __func__,
236 r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
237 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
238 if (rc)
239 goto out;
240 }
241 goto out_clear;
242
243out:
244 xprt_wake_pending_tasks(xprt, rc);
245
246out_clear:
247 dprintk("RPC: %s: exit\n", __func__);
248 xprt_clear_connecting(xprt);
249}
250
251/*
252 * xprt_rdma_destroy
253 *
254 * Destroy the xprt.
255 * Free all memory associated with the object, including its own.
256 * NOTE: none of the *destroy methods free memory for their top-level
257 * objects, even though they may have allocated it (they do free
258 * private memory). It's up to the caller to handle it. In this
259 * case (RDMA transport), all structure memory is inlined with the
260 * struct rpcrdma_xprt.
261 */
262static void
263xprt_rdma_destroy(struct rpc_xprt *xprt)
264{
265 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
266 int rc;
267
268 dprintk("RPC: %s: called\n", __func__);
269
270 cancel_delayed_work(&r_xprt->rdma_connect);
271 flush_scheduled_work();
272
273 xprt_clear_connected(xprt);
274
275 rpcrdma_buffer_destroy(&r_xprt->rx_buf);
276 rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
277 if (rc)
278 dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
279 __func__, rc);
280 rpcrdma_ia_close(&r_xprt->rx_ia);
281
282 xprt_rdma_free_addresses(xprt);
283
284 kfree(xprt->slot);
285 xprt->slot = NULL;
286 kfree(xprt);
287
288 dprintk("RPC: %s: returning\n", __func__);
289
290 module_put(THIS_MODULE);
291}
292
2881ae74
TM
293static const struct rpc_timeout xprt_rdma_default_timeout = {
294 .to_initval = 60 * HZ,
295 .to_maxval = 60 * HZ,
296};
297
f58851e6
TT
298/**
299 * xprt_setup_rdma - Set up transport to use RDMA
300 *
301 * @args: rpc transport arguments
302 */
303static struct rpc_xprt *
304xprt_setup_rdma(struct xprt_create *args)
305{
306 struct rpcrdma_create_data_internal cdata;
307 struct rpc_xprt *xprt;
308 struct rpcrdma_xprt *new_xprt;
309 struct rpcrdma_ep *new_ep;
310 struct sockaddr_in *sin;
311 int rc;
312
313 if (args->addrlen > sizeof(xprt->addr)) {
314 dprintk("RPC: %s: address too large\n", __func__);
315 return ERR_PTR(-EBADF);
316 }
317
318 xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL);
319 if (xprt == NULL) {
320 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
321 __func__);
322 return ERR_PTR(-ENOMEM);
323 }
324
325 xprt->max_reqs = xprt_rdma_slot_table_entries;
326 xprt->slot = kcalloc(xprt->max_reqs,
327 sizeof(struct rpc_rqst), GFP_KERNEL);
328 if (xprt->slot == NULL) {
f58851e6
TT
329 dprintk("RPC: %s: couldn't allocate %d slots\n",
330 __func__, xprt->max_reqs);
d5cd9787 331 kfree(xprt);
f58851e6
TT
332 return ERR_PTR(-ENOMEM);
333 }
334
335 /* 60 second timeout, no retries */
ba7392bb 336 xprt->timeout = &xprt_rdma_default_timeout;
f58851e6
TT
337 xprt->bind_timeout = (60U * HZ);
338 xprt->connect_timeout = (60U * HZ);
339 xprt->reestablish_timeout = (5U * HZ);
340 xprt->idle_timeout = (5U * 60 * HZ);
341
342 xprt->resvport = 0; /* privileged port not needed */
343 xprt->tsh_size = 0; /* RPC-RDMA handles framing */
344 xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
345 xprt->ops = &xprt_rdma_procs;
346
347 /*
348 * Set up RDMA-specific connect data.
349 */
350
351 /* Put server RDMA address in local cdata */
352 memcpy(&cdata.addr, args->dstaddr, args->addrlen);
353
354 /* Ensure xprt->addr holds valid server TCP (not RDMA)
355 * address, for any side protocols which peek at it */
356 xprt->prot = IPPROTO_TCP;
357 xprt->addrlen = args->addrlen;
358 memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
359
360 sin = (struct sockaddr_in *)&cdata.addr;
361 if (ntohs(sin->sin_port) != 0)
362 xprt_set_bound(xprt);
363
21454aaa
HH
364 dprintk("RPC: %s: %pI4:%u\n",
365 __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
f58851e6
TT
366
367 /* Set max requests */
368 cdata.max_requests = xprt->max_reqs;
369
370 /* Set some length limits */
371 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
372 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
373
374 cdata.inline_wsize = xprt_rdma_max_inline_write;
375 if (cdata.inline_wsize > cdata.wsize)
376 cdata.inline_wsize = cdata.wsize;
377
378 cdata.inline_rsize = xprt_rdma_max_inline_read;
379 if (cdata.inline_rsize > cdata.rsize)
380 cdata.inline_rsize = cdata.rsize;
381
382 cdata.padding = xprt_rdma_inline_write_padding;
383
384 /*
385 * Create new transport instance, which includes initialized
386 * o ia
387 * o endpoint
388 * o buffers
389 */
390
391 new_xprt = rpcx_to_rdmax(xprt);
392
393 rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
394 xprt_rdma_memreg_strategy);
395 if (rc)
396 goto out1;
397
398 /*
399 * initialize and create ep
400 */
401 new_xprt->rx_data = cdata;
402 new_ep = &new_xprt->rx_ep;
403 new_ep->rep_remote_addr = cdata.addr;
404
405 rc = rpcrdma_ep_create(&new_xprt->rx_ep,
406 &new_xprt->rx_ia, &new_xprt->rx_data);
407 if (rc)
408 goto out2;
409
410 /*
411 * Allocate pre-registered send and receive buffers for headers and
412 * any inline data. Also specify any padding which will be provided
413 * from a preregistered zero buffer.
414 */
415 rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
416 &new_xprt->rx_data);
417 if (rc)
418 goto out3;
419
420 /*
421 * Register a callback for connection events. This is necessary because
422 * connection loss notification is async. We also catch connection loss
423 * when reaping receives.
424 */
425 INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
426 new_ep->rep_func = rpcrdma_conn_func;
427 new_ep->rep_xprt = xprt;
428
429 xprt_rdma_format_addresses(xprt);
430
431 if (!try_module_get(THIS_MODULE))
432 goto out4;
433
434 return xprt;
435
436out4:
437 xprt_rdma_free_addresses(xprt);
438 rc = -EINVAL;
439out3:
440 (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
441out2:
442 rpcrdma_ia_close(&new_xprt->rx_ia);
443out1:
444 kfree(xprt->slot);
445 kfree(xprt);
446 return ERR_PTR(rc);
447}
448
449/*
450 * Close a connection, during shutdown or timeout/reconnect
451 */
452static void
453xprt_rdma_close(struct rpc_xprt *xprt)
454{
455 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
456
457 dprintk("RPC: %s: closing\n", __func__);
08ca0dce
TT
458 if (r_xprt->rx_ep.rep_connected > 0)
459 xprt->reestablish_timeout = 0;
62da3b24 460 xprt_disconnect_done(xprt);
f58851e6
TT
461 (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
462}
463
464static void
465xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
466{
467 struct sockaddr_in *sap;
468
469 sap = (struct sockaddr_in *)&xprt->addr;
470 sap->sin_port = htons(port);
471 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
472 sap->sin_port = htons(port);
473 dprintk("RPC: %s: %u\n", __func__, port);
474}
475
476static void
477xprt_rdma_connect(struct rpc_task *task)
478{
479 struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
480 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
481
482 if (!xprt_test_and_set_connecting(xprt)) {
483 if (r_xprt->rx_ep.rep_connected != 0) {
484 /* Reconnect */
485 schedule_delayed_work(&r_xprt->rdma_connect,
486 xprt->reestablish_timeout);
08ca0dce
TT
487 xprt->reestablish_timeout <<= 1;
488 if (xprt->reestablish_timeout > (30 * HZ))
489 xprt->reestablish_timeout = (30 * HZ);
490 else if (xprt->reestablish_timeout < (5 * HZ))
491 xprt->reestablish_timeout = (5 * HZ);
f58851e6
TT
492 } else {
493 schedule_delayed_work(&r_xprt->rdma_connect, 0);
494 if (!RPC_IS_ASYNC(task))
495 flush_scheduled_work();
496 }
497 }
498}
499
500static int
501xprt_rdma_reserve_xprt(struct rpc_task *task)
502{
503 struct rpc_xprt *xprt = task->tk_xprt;
504 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
505 int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
506
507 /* == RPC_CWNDSCALE @ init, but *after* setup */
508 if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
509 r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
510 dprintk("RPC: %s: cwndscale %lu\n", __func__,
511 r_xprt->rx_buf.rb_cwndscale);
512 BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
513 }
514 xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
515 return xprt_reserve_xprt_cong(task);
516}
517
518/*
519 * The RDMA allocate/free functions need the task structure as a place
520 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
521 * sequence. For this reason, the recv buffers are attached to send
522 * buffers for portions of the RPC. Note that the RPC layer allocates
523 * both send and receive buffers in the same call. We may register
524 * the receive buffer portion when using reply chunks.
525 */
526static void *
527xprt_rdma_allocate(struct rpc_task *task, size_t size)
528{
529 struct rpc_xprt *xprt = task->tk_xprt;
530 struct rpcrdma_req *req, *nreq;
531
532 req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
533 BUG_ON(NULL == req);
534
535 if (size > req->rl_size) {
536 dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
537 "prog %d vers %d proc %d\n",
538 __func__, size, req->rl_size,
539 task->tk_client->cl_prog, task->tk_client->cl_vers,
540 task->tk_msg.rpc_proc->p_proc);
541 /*
542 * Outgoing length shortage. Our inline write max must have
543 * been configured to perform direct i/o.
544 *
545 * This is therefore a large metadata operation, and the
546 * allocate call was made on the maximum possible message,
547 * e.g. containing long filename(s) or symlink data. In
548 * fact, while these metadata operations *might* carry
549 * large outgoing payloads, they rarely *do*. However, we
550 * have to commit to the request here, so reallocate and
551 * register it now. The data path will never require this
552 * reallocation.
553 *
554 * If the allocation or registration fails, the RPC framework
555 * will (doggedly) retry.
556 */
557 if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
558 RPCRDMA_BOUNCEBUFFERS) {
559 /* forced to "pure inline" */
560 dprintk("RPC: %s: too much data (%zd) for inline "
561 "(r/w max %d/%d)\n", __func__, size,
562 rpcx_to_rdmad(xprt).inline_rsize,
563 rpcx_to_rdmad(xprt).inline_wsize);
564 size = req->rl_size;
565 rpc_exit(task, -EIO); /* fail the operation */
566 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
567 goto out;
568 }
569 if (task->tk_flags & RPC_TASK_SWAPPER)
570 nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
571 else
572 nreq = kmalloc(sizeof *req + size, GFP_NOFS);
573 if (nreq == NULL)
574 goto outfail;
575
576 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
577 nreq->rl_base, size + sizeof(struct rpcrdma_req)
578 - offsetof(struct rpcrdma_req, rl_base),
579 &nreq->rl_handle, &nreq->rl_iov)) {
580 kfree(nreq);
581 goto outfail;
582 }
583 rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
584 nreq->rl_size = size;
585 nreq->rl_niovs = 0;
586 nreq->rl_nchunks = 0;
587 nreq->rl_buffer = (struct rpcrdma_buffer *)req;
588 nreq->rl_reply = req->rl_reply;
589 memcpy(nreq->rl_segments,
590 req->rl_segments, sizeof nreq->rl_segments);
591 /* flag the swap with an unused field */
592 nreq->rl_iov.length = 0;
593 req->rl_reply = NULL;
594 req = nreq;
595 }
596 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
597out:
575448bd 598 req->rl_connect_cookie = 0; /* our reserved value */
f58851e6
TT
599 return req->rl_xdr_buf;
600
601outfail:
602 rpcrdma_buffer_put(req);
603 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
604 return NULL;
605}
606
607/*
608 * This function returns all RDMA resources to the pool.
609 */
610static void
611xprt_rdma_free(void *buffer)
612{
613 struct rpcrdma_req *req;
614 struct rpcrdma_xprt *r_xprt;
615 struct rpcrdma_rep *rep;
616 int i;
617
618 if (buffer == NULL)
619 return;
620
621 req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
ee1a2c56
TT
622 if (req->rl_iov.length == 0) { /* see allocate above */
623 r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
624 struct rpcrdma_xprt, rx_buf);
625 } else
626 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
f58851e6
TT
627 rep = req->rl_reply;
628
629 dprintk("RPC: %s: called on 0x%p%s\n",
630 __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
631
632 /*
633 * Finish the deregistration. When using mw bind, this was
634 * begun in rpcrdma_reply_handler(). In all other modes, we
635 * do it here, in thread context. The process is considered
636 * complete when the rr_func vector becomes NULL - this
637 * was put in place during rpcrdma_reply_handler() - the wait
638 * call below will not block if the dereg is "done". If
639 * interrupted, our framework will clean up.
640 */
641 for (i = 0; req->rl_nchunks;) {
642 --req->rl_nchunks;
643 i += rpcrdma_deregister_external(
644 &req->rl_segments[i], r_xprt, NULL);
645 }
646
647 if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
648 rep->rr_func = NULL; /* abandon the callback */
649 req->rl_reply = NULL;
650 }
651
652 if (req->rl_iov.length == 0) { /* see allocate above */
653 struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
654 oreq->rl_reply = req->rl_reply;
655 (void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
656 req->rl_handle,
657 &req->rl_iov);
658 kfree(req);
659 req = oreq;
660 }
661
662 /* Put back request+reply buffers */
663 rpcrdma_buffer_put(req);
664}
665
666/*
667 * send_request invokes the meat of RPC RDMA. It must do the following:
668 * 1. Marshal the RPC request into an RPC RDMA request, which means
669 * putting a header in front of data, and creating IOVs for RDMA
670 * from those in the request.
671 * 2. In marshaling, detect opportunities for RDMA, and use them.
672 * 3. Post a recv message to set up asynch completion, then send
673 * the request (rpcrdma_ep_post).
674 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
675 */
676
677static int
678xprt_rdma_send_request(struct rpc_task *task)
679{
680 struct rpc_rqst *rqst = task->tk_rqstp;
681 struct rpc_xprt *xprt = task->tk_xprt;
682 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
683 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
684
685 /* marshal the send itself */
686 if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
687 r_xprt->rx_stats.failed_marshal_count++;
688 dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
689 __func__);
690 return -EIO;
691 }
692
693 if (req->rl_reply == NULL) /* e.g. reconnection */
694 rpcrdma_recv_buffer_get(req);
695
696 if (req->rl_reply) {
697 req->rl_reply->rr_func = rpcrdma_reply_handler;
698 /* this need only be done once, but... */
699 req->rl_reply->rr_xprt = xprt;
700 }
701
575448bd
TT
702 /* Must suppress retransmit to maintain credits */
703 if (req->rl_connect_cookie == xprt->connect_cookie)
704 goto drop_connection;
705 req->rl_connect_cookie = xprt->connect_cookie;
706
707 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
708 goto drop_connection;
f58851e6 709
ad0e9e01 710 task->tk_bytes_sent += rqst->rq_snd_buf.len;
f58851e6
TT
711 rqst->rq_bytes_sent = 0;
712 return 0;
575448bd
TT
713
714drop_connection:
715 xprt_disconnect_done(xprt);
716 return -ENOTCONN; /* implies disconnect */
f58851e6
TT
717}
718
719static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
720{
721 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
722 long idle_time = 0;
723
724 if (xprt_connected(xprt))
725 idle_time = (long)(jiffies - xprt->last_used) / HZ;
726
727 seq_printf(seq,
728 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
729 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
730
731 0, /* need a local port? */
732 xprt->stat.bind_count,
733 xprt->stat.connect_count,
734 xprt->stat.connect_time,
735 idle_time,
736 xprt->stat.sends,
737 xprt->stat.recvs,
738 xprt->stat.bad_xids,
739 xprt->stat.req_u,
740 xprt->stat.bklog_u,
741
742 r_xprt->rx_stats.read_chunk_count,
743 r_xprt->rx_stats.write_chunk_count,
744 r_xprt->rx_stats.reply_chunk_count,
745 r_xprt->rx_stats.total_rdma_request,
746 r_xprt->rx_stats.total_rdma_reply,
747 r_xprt->rx_stats.pullup_copy_count,
748 r_xprt->rx_stats.fixup_copy_count,
749 r_xprt->rx_stats.hardway_register_count,
750 r_xprt->rx_stats.failed_marshal_count,
751 r_xprt->rx_stats.bad_reply_count);
752}
753
754/*
755 * Plumbing for rpc transport switch and kernel module
756 */
757
758static struct rpc_xprt_ops xprt_rdma_procs = {
759 .reserve_xprt = xprt_rdma_reserve_xprt,
760 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
761 .release_request = xprt_release_rqst_cong, /* ditto */
762 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
763 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
764 .set_port = xprt_rdma_set_port,
765 .connect = xprt_rdma_connect,
766 .buf_alloc = xprt_rdma_allocate,
767 .buf_free = xprt_rdma_free,
768 .send_request = xprt_rdma_send_request,
769 .close = xprt_rdma_close,
770 .destroy = xprt_rdma_destroy,
771 .print_stats = xprt_rdma_print_stats
772};
773
774static struct xprt_class xprt_rdma = {
775 .list = LIST_HEAD_INIT(xprt_rdma.list),
776 .name = "rdma",
777 .owner = THIS_MODULE,
778 .ident = XPRT_TRANSPORT_RDMA,
779 .setup = xprt_setup_rdma,
780};
781
782static void __exit xprt_rdma_cleanup(void)
783{
784 int rc;
785
b3cd8d45 786 dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
f58851e6
TT
787#ifdef RPC_DEBUG
788 if (sunrpc_table_header) {
789 unregister_sysctl_table(sunrpc_table_header);
790 sunrpc_table_header = NULL;
791 }
792#endif
793 rc = xprt_unregister_transport(&xprt_rdma);
794 if (rc)
795 dprintk("RPC: %s: xprt_unregister returned %i\n",
796 __func__, rc);
797}
798
799static int __init xprt_rdma_init(void)
800{
801 int rc;
802
803 rc = xprt_register_transport(&xprt_rdma);
804
805 if (rc)
806 return rc;
807
808 dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
809
810 dprintk(KERN_INFO "Defaults:\n");
811 dprintk(KERN_INFO "\tSlots %d\n"
812 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
813 xprt_rdma_slot_table_entries,
814 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
815 dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
816 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
817
818#ifdef RPC_DEBUG
819 if (!sunrpc_table_header)
820 sunrpc_table_header = register_sysctl_table(sunrpc_table);
821#endif
822 return 0;
823}
824
825module_init(xprt_rdma_init);
826module_exit(xprt_rdma_cleanup);
This page took 0.215161 seconds and 5 git commands to generate.