VSOCK: Introduce VM Sockets
[deliverable/linux.git] / net / vmw_vsock / af_vsock.c
CommitLineData
d021c344
AK
1/*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16/* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the SS_LISTEN state. When a connection
40 * request is received (the second kind of socket mentioned above), we create a
41 * new socket and refer to it as a pending socket. These pending sockets are
42 * placed on the pending connection list of the listener socket. When future
43 * packets are received for the address the listener socket is bound to, we
44 * check if the source of the packet is from one that has an existing pending
45 * connection. If it does, we process the packet for the pending socket. When
46 * that socket reaches the connected state, it is removed from the listener
47 * socket's pending list and enqueued in the listener socket's accept queue.
48 * Callers of accept(2) will accept connected sockets from the listener socket's
49 * accept queue. If the socket cannot be accepted for some reason then it is
50 * marked rejected. Once the connection is accepted, it is owned by the user
51 * process and the responsibility for cleanup falls with that user process.
52 *
53 * - It is possible that these pending sockets will never reach the connected
54 * state; in fact, we may never receive another packet after the connection
55 * request. Because of this, we must schedule a cleanup function to run in the
56 * future, after some amount of time passes where a connection should have been
57 * established. This function ensures that the socket is off all lists so it
58 * cannot be retrieved, then drops all references to the socket so it is cleaned
59 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
60 * function will also cleanup rejected sockets, those that reach the connected
61 * state but leave it before they have been accepted.
62 *
63 * - Sockets created by user action will be cleaned up when the user process
64 * calls close(2), causing our release implementation to be called. Our release
65 * implementation will perform some cleanup then drop the last reference so our
66 * sk_destruct implementation is invoked. Our sk_destruct implementation will
67 * perform additional cleanup that's common for both types of sockets.
68 *
69 * - A socket's reference count is what ensures that the structure won't be
70 * freed. Each entry in a list (such as the "global" bound and connected tables
71 * and the listener socket's pending list and connected queue) ensures a
72 * reference. When we defer work until process context and pass a socket as our
73 * argument, we must ensure the reference count is increased to ensure the
74 * socket isn't freed before the function is run; the deferred function will
75 * then drop the reference.
76 */
77
78#include <linux/types.h>
79
80#define EXPORT_SYMTAB
81#include <linux/bitops.h>
82#include <linux/cred.h>
83#include <linux/init.h>
84#include <linux/io.h>
85#include <linux/kernel.h>
86#include <linux/kmod.h>
87#include <linux/list.h>
88#include <linux/miscdevice.h>
89#include <linux/module.h>
90#include <linux/mutex.h>
91#include <linux/net.h>
92#include <linux/poll.h>
93#include <linux/skbuff.h>
94#include <linux/smp.h>
95#include <linux/socket.h>
96#include <linux/stddef.h>
97#include <linux/unistd.h>
98#include <linux/wait.h>
99#include <linux/workqueue.h>
100#include <net/sock.h>
101
102#include "af_vsock.h"
103#include "vsock_version.h"
104
105static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
106static void vsock_sk_destruct(struct sock *sk);
107static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
108
109/* Protocol family. */
110static struct proto vsock_proto = {
111 .name = "AF_VSOCK",
112 .owner = THIS_MODULE,
113 .obj_size = sizeof(struct vsock_sock),
114};
115
116/* The default peer timeout indicates how long we will wait for a peer response
117 * to a control message.
118 */
119#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
120
121#define SS_LISTEN 255
122
123static const struct vsock_transport *transport;
124static DEFINE_MUTEX(vsock_register_mutex);
125
126/**** EXPORTS ****/
127
128/* Get the ID of the local context. This is transport dependent. */
129
130int vm_sockets_get_local_cid(void)
131{
132 return transport->get_local_cid();
133}
134EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
135
136/**** UTILS ****/
137
138/* Each bound VSocket is stored in the bind hash table and each connected
139 * VSocket is stored in the connected hash table.
140 *
141 * Unbound sockets are all put on the same list attached to the end of the hash
142 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
143 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
144 * represents the list that addr hashes to).
145 *
146 * Specifically, we initialize the vsock_bind_table array to a size of
147 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
148 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
149 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
150 * mods with VSOCK_HASH_SIZE - 1 to ensure this.
151 */
152#define VSOCK_HASH_SIZE 251
153#define MAX_PORT_RETRIES 24
154
155#define VSOCK_HASH(addr) ((addr)->svm_port % (VSOCK_HASH_SIZE - 1))
156#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
157#define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
158
159/* XXX This can probably be implemented in a better way. */
160#define VSOCK_CONN_HASH(src, dst) \
161 (((src)->svm_cid ^ (dst)->svm_port) % (VSOCK_HASH_SIZE - 1))
162#define vsock_connected_sockets(src, dst) \
163 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
164#define vsock_connected_sockets_vsk(vsk) \
165 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
166
167static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
168static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
169static DEFINE_SPINLOCK(vsock_table_lock);
170
171static __init void vsock_init_tables(void)
172{
173 int i;
174
175 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
176 INIT_LIST_HEAD(&vsock_bind_table[i]);
177
178 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
179 INIT_LIST_HEAD(&vsock_connected_table[i]);
180}
181
182static void __vsock_insert_bound(struct list_head *list,
183 struct vsock_sock *vsk)
184{
185 sock_hold(&vsk->sk);
186 list_add(&vsk->bound_table, list);
187}
188
189static void __vsock_insert_connected(struct list_head *list,
190 struct vsock_sock *vsk)
191{
192 sock_hold(&vsk->sk);
193 list_add(&vsk->connected_table, list);
194}
195
196static void __vsock_remove_bound(struct vsock_sock *vsk)
197{
198 list_del_init(&vsk->bound_table);
199 sock_put(&vsk->sk);
200}
201
202static void __vsock_remove_connected(struct vsock_sock *vsk)
203{
204 list_del_init(&vsk->connected_table);
205 sock_put(&vsk->sk);
206}
207
208static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
209{
210 struct vsock_sock *vsk;
211
212 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
213 if (vsock_addr_equals_addr_any(addr, &vsk->local_addr))
214 return sk_vsock(vsk);
215
216 return NULL;
217}
218
219static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
220 struct sockaddr_vm *dst)
221{
222 struct vsock_sock *vsk;
223
224 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
225 connected_table) {
226 if (vsock_addr_equals_addr(src, &vsk->remote_addr)
227 && vsock_addr_equals_addr(dst, &vsk->local_addr)) {
228 return sk_vsock(vsk);
229 }
230 }
231
232 return NULL;
233}
234
235static bool __vsock_in_bound_table(struct vsock_sock *vsk)
236{
237 return !list_empty(&vsk->bound_table);
238}
239
240static bool __vsock_in_connected_table(struct vsock_sock *vsk)
241{
242 return !list_empty(&vsk->connected_table);
243}
244
245static void vsock_insert_unbound(struct vsock_sock *vsk)
246{
247 spin_lock_bh(&vsock_table_lock);
248 __vsock_insert_bound(vsock_unbound_sockets, vsk);
249 spin_unlock_bh(&vsock_table_lock);
250}
251
252void vsock_insert_connected(struct vsock_sock *vsk)
253{
254 struct list_head *list = vsock_connected_sockets(
255 &vsk->remote_addr, &vsk->local_addr);
256
257 spin_lock_bh(&vsock_table_lock);
258 __vsock_insert_connected(list, vsk);
259 spin_unlock_bh(&vsock_table_lock);
260}
261EXPORT_SYMBOL_GPL(vsock_insert_connected);
262
263void vsock_remove_bound(struct vsock_sock *vsk)
264{
265 spin_lock_bh(&vsock_table_lock);
266 __vsock_remove_bound(vsk);
267 spin_unlock_bh(&vsock_table_lock);
268}
269EXPORT_SYMBOL_GPL(vsock_remove_bound);
270
271void vsock_remove_connected(struct vsock_sock *vsk)
272{
273 spin_lock_bh(&vsock_table_lock);
274 __vsock_remove_connected(vsk);
275 spin_unlock_bh(&vsock_table_lock);
276}
277EXPORT_SYMBOL_GPL(vsock_remove_connected);
278
279struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
280{
281 struct sock *sk;
282
283 spin_lock_bh(&vsock_table_lock);
284 sk = __vsock_find_bound_socket(addr);
285 if (sk)
286 sock_hold(sk);
287
288 spin_unlock_bh(&vsock_table_lock);
289
290 return sk;
291}
292EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
293
294struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
295 struct sockaddr_vm *dst)
296{
297 struct sock *sk;
298
299 spin_lock_bh(&vsock_table_lock);
300 sk = __vsock_find_connected_socket(src, dst);
301 if (sk)
302 sock_hold(sk);
303
304 spin_unlock_bh(&vsock_table_lock);
305
306 return sk;
307}
308EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
309
310static bool vsock_in_bound_table(struct vsock_sock *vsk)
311{
312 bool ret;
313
314 spin_lock_bh(&vsock_table_lock);
315 ret = __vsock_in_bound_table(vsk);
316 spin_unlock_bh(&vsock_table_lock);
317
318 return ret;
319}
320
321static bool vsock_in_connected_table(struct vsock_sock *vsk)
322{
323 bool ret;
324
325 spin_lock_bh(&vsock_table_lock);
326 ret = __vsock_in_connected_table(vsk);
327 spin_unlock_bh(&vsock_table_lock);
328
329 return ret;
330}
331
332void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
333{
334 int i;
335
336 spin_lock_bh(&vsock_table_lock);
337
338 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
339 struct vsock_sock *vsk;
340 list_for_each_entry(vsk, &vsock_connected_table[i],
341 connected_table);
342 fn(sk_vsock(vsk));
343 }
344
345 spin_unlock_bh(&vsock_table_lock);
346}
347EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
348
349void vsock_add_pending(struct sock *listener, struct sock *pending)
350{
351 struct vsock_sock *vlistener;
352 struct vsock_sock *vpending;
353
354 vlistener = vsock_sk(listener);
355 vpending = vsock_sk(pending);
356
357 sock_hold(pending);
358 sock_hold(listener);
359 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
360}
361EXPORT_SYMBOL_GPL(vsock_add_pending);
362
363void vsock_remove_pending(struct sock *listener, struct sock *pending)
364{
365 struct vsock_sock *vpending = vsock_sk(pending);
366
367 list_del_init(&vpending->pending_links);
368 sock_put(listener);
369 sock_put(pending);
370}
371EXPORT_SYMBOL_GPL(vsock_remove_pending);
372
373void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
374{
375 struct vsock_sock *vlistener;
376 struct vsock_sock *vconnected;
377
378 vlistener = vsock_sk(listener);
379 vconnected = vsock_sk(connected);
380
381 sock_hold(connected);
382 sock_hold(listener);
383 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
384}
385EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
386
387static struct sock *vsock_dequeue_accept(struct sock *listener)
388{
389 struct vsock_sock *vlistener;
390 struct vsock_sock *vconnected;
391
392 vlistener = vsock_sk(listener);
393
394 if (list_empty(&vlistener->accept_queue))
395 return NULL;
396
397 vconnected = list_entry(vlistener->accept_queue.next,
398 struct vsock_sock, accept_queue);
399
400 list_del_init(&vconnected->accept_queue);
401 sock_put(listener);
402 /* The caller will need a reference on the connected socket so we let
403 * it call sock_put().
404 */
405
406 return sk_vsock(vconnected);
407}
408
409static bool vsock_is_accept_queue_empty(struct sock *sk)
410{
411 struct vsock_sock *vsk = vsock_sk(sk);
412 return list_empty(&vsk->accept_queue);
413}
414
415static bool vsock_is_pending(struct sock *sk)
416{
417 struct vsock_sock *vsk = vsock_sk(sk);
418 return !list_empty(&vsk->pending_links);
419}
420
421static int vsock_send_shutdown(struct sock *sk, int mode)
422{
423 return transport->shutdown(vsock_sk(sk), mode);
424}
425
426void vsock_pending_work(struct work_struct *work)
427{
428 struct sock *sk;
429 struct sock *listener;
430 struct vsock_sock *vsk;
431 bool cleanup;
432
433 vsk = container_of(work, struct vsock_sock, dwork.work);
434 sk = sk_vsock(vsk);
435 listener = vsk->listener;
436 cleanup = true;
437
438 lock_sock(listener);
439 lock_sock(sk);
440
441 if (vsock_is_pending(sk)) {
442 vsock_remove_pending(listener, sk);
443 } else if (!vsk->rejected) {
444 /* We are not on the pending list and accept() did not reject
445 * us, so we must have been accepted by our user process. We
446 * just need to drop our references to the sockets and be on
447 * our way.
448 */
449 cleanup = false;
450 goto out;
451 }
452
453 listener->sk_ack_backlog--;
454
455 /* We need to remove ourself from the global connected sockets list so
456 * incoming packets can't find this socket, and to reduce the reference
457 * count.
458 */
459 if (vsock_in_connected_table(vsk))
460 vsock_remove_connected(vsk);
461
462 sk->sk_state = SS_FREE;
463
464out:
465 release_sock(sk);
466 release_sock(listener);
467 if (cleanup)
468 sock_put(sk);
469
470 sock_put(sk);
471 sock_put(listener);
472}
473EXPORT_SYMBOL_GPL(vsock_pending_work);
474
475/**** SOCKET OPERATIONS ****/
476
477static int __vsock_bind_stream(struct vsock_sock *vsk,
478 struct sockaddr_vm *addr)
479{
480 static u32 port = LAST_RESERVED_PORT + 1;
481 struct sockaddr_vm new_addr;
482
483 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
484
485 if (addr->svm_port == VMADDR_PORT_ANY) {
486 bool found = false;
487 unsigned int i;
488
489 for (i = 0; i < MAX_PORT_RETRIES; i++) {
490 if (port <= LAST_RESERVED_PORT)
491 port = LAST_RESERVED_PORT + 1;
492
493 new_addr.svm_port = port++;
494
495 if (!__vsock_find_bound_socket(&new_addr)) {
496 found = true;
497 break;
498 }
499 }
500
501 if (!found)
502 return -EADDRNOTAVAIL;
503 } else {
504 /* If port is in reserved range, ensure caller
505 * has necessary privileges.
506 */
507 if (addr->svm_port <= LAST_RESERVED_PORT &&
508 !capable(CAP_NET_BIND_SERVICE)) {
509 return -EACCES;
510 }
511
512 if (__vsock_find_bound_socket(&new_addr))
513 return -EADDRINUSE;
514 }
515
516 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
517
518 /* Remove stream sockets from the unbound list and add them to the hash
519 * table for easy lookup by its address. The unbound list is simply an
520 * extra entry at the end of the hash table, a trick used by AF_UNIX.
521 */
522 __vsock_remove_bound(vsk);
523 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
524
525 return 0;
526}
527
528static int __vsock_bind_dgram(struct vsock_sock *vsk,
529 struct sockaddr_vm *addr)
530{
531 return transport->dgram_bind(vsk, addr);
532}
533
534static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
535{
536 struct vsock_sock *vsk = vsock_sk(sk);
537 u32 cid;
538 int retval;
539
540 /* First ensure this socket isn't already bound. */
541 if (vsock_addr_bound(&vsk->local_addr))
542 return -EINVAL;
543
544 /* Now bind to the provided address or select appropriate values if
545 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
546 * like AF_INET prevents binding to a non-local IP address (in most
547 * cases), we only allow binding to the local CID.
548 */
549 cid = transport->get_local_cid();
550 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
551 return -EADDRNOTAVAIL;
552
553 switch (sk->sk_socket->type) {
554 case SOCK_STREAM:
555 spin_lock_bh(&vsock_table_lock);
556 retval = __vsock_bind_stream(vsk, addr);
557 spin_unlock_bh(&vsock_table_lock);
558 break;
559
560 case SOCK_DGRAM:
561 retval = __vsock_bind_dgram(vsk, addr);
562 break;
563
564 default:
565 retval = -EINVAL;
566 break;
567 }
568
569 return retval;
570}
571
572struct sock *__vsock_create(struct net *net,
573 struct socket *sock,
574 struct sock *parent,
575 gfp_t priority,
576 unsigned short type)
577{
578 struct sock *sk;
579 struct vsock_sock *psk;
580 struct vsock_sock *vsk;
581
582 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto);
583 if (!sk)
584 return NULL;
585
586 sock_init_data(sock, sk);
587
588 /* sk->sk_type is normally set in sock_init_data, but only if sock is
589 * non-NULL. We make sure that our sockets always have a type by
590 * setting it here if needed.
591 */
592 if (!sock)
593 sk->sk_type = type;
594
595 vsk = vsock_sk(sk);
596 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
597 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
598
599 sk->sk_destruct = vsock_sk_destruct;
600 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
601 sk->sk_state = 0;
602 sock_reset_flag(sk, SOCK_DONE);
603
604 INIT_LIST_HEAD(&vsk->bound_table);
605 INIT_LIST_HEAD(&vsk->connected_table);
606 vsk->listener = NULL;
607 INIT_LIST_HEAD(&vsk->pending_links);
608 INIT_LIST_HEAD(&vsk->accept_queue);
609 vsk->rejected = false;
610 vsk->sent_request = false;
611 vsk->ignore_connecting_rst = false;
612 vsk->peer_shutdown = 0;
613
614 psk = parent ? vsock_sk(parent) : NULL;
615 if (parent) {
616 vsk->trusted = psk->trusted;
617 vsk->owner = get_cred(psk->owner);
618 vsk->connect_timeout = psk->connect_timeout;
619 } else {
620 vsk->trusted = capable(CAP_NET_ADMIN);
621 vsk->owner = get_current_cred();
622 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
623 }
624
625 if (transport->init(vsk, psk) < 0) {
626 sk_free(sk);
627 return NULL;
628 }
629
630 if (sock)
631 vsock_insert_unbound(vsk);
632
633 return sk;
634}
635EXPORT_SYMBOL_GPL(__vsock_create);
636
637static void __vsock_release(struct sock *sk)
638{
639 if (sk) {
640 struct sk_buff *skb;
641 struct sock *pending;
642 struct vsock_sock *vsk;
643
644 vsk = vsock_sk(sk);
645 pending = NULL; /* Compiler warning. */
646
647 if (vsock_in_bound_table(vsk))
648 vsock_remove_bound(vsk);
649
650 if (vsock_in_connected_table(vsk))
651 vsock_remove_connected(vsk);
652
653 transport->release(vsk);
654
655 lock_sock(sk);
656 sock_orphan(sk);
657 sk->sk_shutdown = SHUTDOWN_MASK;
658
659 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
660 kfree_skb(skb);
661
662 /* Clean up any sockets that never were accepted. */
663 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
664 __vsock_release(pending);
665 sock_put(pending);
666 }
667
668 release_sock(sk);
669 sock_put(sk);
670 }
671}
672
673static void vsock_sk_destruct(struct sock *sk)
674{
675 struct vsock_sock *vsk = vsock_sk(sk);
676
677 transport->destruct(vsk);
678
679 /* When clearing these addresses, there's no need to set the family and
680 * possibly register the address family with the kernel.
681 */
682 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
683 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
684
685 put_cred(vsk->owner);
686}
687
688static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
689{
690 int err;
691
692 err = sock_queue_rcv_skb(sk, skb);
693 if (err)
694 kfree_skb(skb);
695
696 return err;
697}
698
699s64 vsock_stream_has_data(struct vsock_sock *vsk)
700{
701 return transport->stream_has_data(vsk);
702}
703EXPORT_SYMBOL_GPL(vsock_stream_has_data);
704
705s64 vsock_stream_has_space(struct vsock_sock *vsk)
706{
707 return transport->stream_has_space(vsk);
708}
709EXPORT_SYMBOL_GPL(vsock_stream_has_space);
710
711static int vsock_release(struct socket *sock)
712{
713 __vsock_release(sock->sk);
714 sock->sk = NULL;
715 sock->state = SS_FREE;
716
717 return 0;
718}
719
720static int
721vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
722{
723 int err;
724 struct sock *sk;
725 struct sockaddr_vm *vm_addr;
726
727 sk = sock->sk;
728
729 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
730 return -EINVAL;
731
732 lock_sock(sk);
733 err = __vsock_bind(sk, vm_addr);
734 release_sock(sk);
735
736 return err;
737}
738
739static int vsock_getname(struct socket *sock,
740 struct sockaddr *addr, int *addr_len, int peer)
741{
742 int err;
743 struct sock *sk;
744 struct vsock_sock *vsk;
745 struct sockaddr_vm *vm_addr;
746
747 sk = sock->sk;
748 vsk = vsock_sk(sk);
749 err = 0;
750
751 lock_sock(sk);
752
753 if (peer) {
754 if (sock->state != SS_CONNECTED) {
755 err = -ENOTCONN;
756 goto out;
757 }
758 vm_addr = &vsk->remote_addr;
759 } else {
760 vm_addr = &vsk->local_addr;
761 }
762
763 if (!vm_addr) {
764 err = -EINVAL;
765 goto out;
766 }
767
768 /* sys_getsockname() and sys_getpeername() pass us a
769 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
770 * that macro is defined in socket.c instead of .h, so we hardcode its
771 * value here.
772 */
773 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
774 memcpy(addr, vm_addr, sizeof(*vm_addr));
775 *addr_len = sizeof(*vm_addr);
776
777out:
778 release_sock(sk);
779 return err;
780}
781
782static int vsock_shutdown(struct socket *sock, int mode)
783{
784 int err;
785 struct sock *sk;
786
787 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
788 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
789 * here like the other address families do. Note also that the
790 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
791 * which is what we want.
792 */
793 mode++;
794
795 if ((mode & ~SHUTDOWN_MASK) || !mode)
796 return -EINVAL;
797
798 /* If this is a STREAM socket and it is not connected then bail out
799 * immediately. If it is a DGRAM socket then we must first kick the
800 * socket so that it wakes up from any sleeping calls, for example
801 * recv(), and then afterwards return the error.
802 */
803
804 sk = sock->sk;
805 if (sock->state == SS_UNCONNECTED) {
806 err = -ENOTCONN;
807 if (sk->sk_type == SOCK_STREAM)
808 return err;
809 } else {
810 sock->state = SS_DISCONNECTING;
811 err = 0;
812 }
813
814 /* Receive and send shutdowns are treated alike. */
815 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
816 if (mode) {
817 lock_sock(sk);
818 sk->sk_shutdown |= mode;
819 sk->sk_state_change(sk);
820 release_sock(sk);
821
822 if (sk->sk_type == SOCK_STREAM) {
823 sock_reset_flag(sk, SOCK_DONE);
824 vsock_send_shutdown(sk, mode);
825 }
826 }
827
828 return err;
829}
830
831static unsigned int vsock_poll(struct file *file, struct socket *sock,
832 poll_table *wait)
833{
834 struct sock *sk;
835 unsigned int mask;
836 struct vsock_sock *vsk;
837
838 sk = sock->sk;
839 vsk = vsock_sk(sk);
840
841 poll_wait(file, sk_sleep(sk), wait);
842 mask = 0;
843
844 if (sk->sk_err)
845 /* Signify that there has been an error on this socket. */
846 mask |= POLLERR;
847
848 /* INET sockets treat local write shutdown and peer write shutdown as a
849 * case of POLLHUP set.
850 */
851 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
852 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
853 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
854 mask |= POLLHUP;
855 }
856
857 if (sk->sk_shutdown & RCV_SHUTDOWN ||
858 vsk->peer_shutdown & SEND_SHUTDOWN) {
859 mask |= POLLRDHUP;
860 }
861
862 if (sock->type == SOCK_DGRAM) {
863 /* For datagram sockets we can read if there is something in
864 * the queue and write as long as the socket isn't shutdown for
865 * sending.
866 */
867 if (!skb_queue_empty(&sk->sk_receive_queue) ||
868 (sk->sk_shutdown & RCV_SHUTDOWN)) {
869 mask |= POLLIN | POLLRDNORM;
870 }
871
872 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
873 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
874
875 } else if (sock->type == SOCK_STREAM) {
876 lock_sock(sk);
877
878 /* Listening sockets that have connections in their accept
879 * queue can be read.
880 */
881 if (sk->sk_state == SS_LISTEN
882 && !vsock_is_accept_queue_empty(sk))
883 mask |= POLLIN | POLLRDNORM;
884
885 /* If there is something in the queue then we can read. */
886 if (transport->stream_is_active(vsk) &&
887 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
888 bool data_ready_now = false;
889 int ret = transport->notify_poll_in(
890 vsk, 1, &data_ready_now);
891 if (ret < 0) {
892 mask |= POLLERR;
893 } else {
894 if (data_ready_now)
895 mask |= POLLIN | POLLRDNORM;
896
897 }
898 }
899
900 /* Sockets whose connections have been closed, reset, or
901 * terminated should also be considered read, and we check the
902 * shutdown flag for that.
903 */
904 if (sk->sk_shutdown & RCV_SHUTDOWN ||
905 vsk->peer_shutdown & SEND_SHUTDOWN) {
906 mask |= POLLIN | POLLRDNORM;
907 }
908
909 /* Connected sockets that can produce data can be written. */
910 if (sk->sk_state == SS_CONNECTED) {
911 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
912 bool space_avail_now = false;
913 int ret = transport->notify_poll_out(
914 vsk, 1, &space_avail_now);
915 if (ret < 0) {
916 mask |= POLLERR;
917 } else {
918 if (space_avail_now)
919 /* Remove POLLWRBAND since INET
920 * sockets are not setting it.
921 */
922 mask |= POLLOUT | POLLWRNORM;
923
924 }
925 }
926 }
927
928 /* Simulate INET socket poll behaviors, which sets
929 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
930 * but local send is not shutdown.
931 */
932 if (sk->sk_state == SS_UNCONNECTED) {
933 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
934 mask |= POLLOUT | POLLWRNORM;
935
936 }
937
938 release_sock(sk);
939 }
940
941 return mask;
942}
943
944static int vsock_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock,
945 struct msghdr *msg, size_t len)
946{
947 int err;
948 struct sock *sk;
949 struct vsock_sock *vsk;
950 struct sockaddr_vm *remote_addr;
951
952 if (msg->msg_flags & MSG_OOB)
953 return -EOPNOTSUPP;
954
955 /* For now, MSG_DONTWAIT is always assumed... */
956 err = 0;
957 sk = sock->sk;
958 vsk = vsock_sk(sk);
959
960 lock_sock(sk);
961
962 if (!vsock_addr_bound(&vsk->local_addr)) {
963 struct sockaddr_vm local_addr;
964
965 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
966 err = __vsock_bind(sk, &local_addr);
967 if (err != 0)
968 goto out;
969
970 }
971
972 /* If the provided message contains an address, use that. Otherwise
973 * fall back on the socket's remote handle (if it has been connected).
974 */
975 if (msg->msg_name &&
976 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
977 &remote_addr) == 0) {
978 /* Ensure this address is of the right type and is a valid
979 * destination.
980 */
981
982 if (remote_addr->svm_cid == VMADDR_CID_ANY)
983 remote_addr->svm_cid = transport->get_local_cid();
984
985 if (!vsock_addr_bound(remote_addr)) {
986 err = -EINVAL;
987 goto out;
988 }
989 } else if (sock->state == SS_CONNECTED) {
990 remote_addr = &vsk->remote_addr;
991
992 if (remote_addr->svm_cid == VMADDR_CID_ANY)
993 remote_addr->svm_cid = transport->get_local_cid();
994
995 /* XXX Should connect() or this function ensure remote_addr is
996 * bound?
997 */
998 if (!vsock_addr_bound(&vsk->remote_addr)) {
999 err = -EINVAL;
1000 goto out;
1001 }
1002 } else {
1003 err = -EINVAL;
1004 goto out;
1005 }
1006
1007 if (!transport->dgram_allow(remote_addr->svm_cid,
1008 remote_addr->svm_port)) {
1009 err = -EINVAL;
1010 goto out;
1011 }
1012
1013 err = transport->dgram_enqueue(vsk, remote_addr, msg->msg_iov, len);
1014
1015out:
1016 release_sock(sk);
1017 return err;
1018}
1019
1020static int vsock_dgram_connect(struct socket *sock,
1021 struct sockaddr *addr, int addr_len, int flags)
1022{
1023 int err;
1024 struct sock *sk;
1025 struct vsock_sock *vsk;
1026 struct sockaddr_vm *remote_addr;
1027
1028 sk = sock->sk;
1029 vsk = vsock_sk(sk);
1030
1031 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1032 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1033 lock_sock(sk);
1034 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1035 VMADDR_PORT_ANY);
1036 sock->state = SS_UNCONNECTED;
1037 release_sock(sk);
1038 return 0;
1039 } else if (err != 0)
1040 return -EINVAL;
1041
1042 lock_sock(sk);
1043
1044 if (!vsock_addr_bound(&vsk->local_addr)) {
1045 struct sockaddr_vm local_addr;
1046
1047 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
1048 err = __vsock_bind(sk, &local_addr);
1049 if (err != 0)
1050 goto out;
1051
1052 }
1053
1054 if (!transport->dgram_allow(remote_addr->svm_cid,
1055 remote_addr->svm_port)) {
1056 err = -EINVAL;
1057 goto out;
1058 }
1059
1060 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1061 sock->state = SS_CONNECTED;
1062
1063out:
1064 release_sock(sk);
1065 return err;
1066}
1067
1068static int vsock_dgram_recvmsg(struct kiocb *kiocb, struct socket *sock,
1069 struct msghdr *msg, size_t len, int flags)
1070{
1071 return transport->dgram_dequeue(kiocb, vsock_sk(sock->sk), msg, len,
1072 flags);
1073}
1074
1075static const struct proto_ops vsock_dgram_ops = {
1076 .family = PF_VSOCK,
1077 .owner = THIS_MODULE,
1078 .release = vsock_release,
1079 .bind = vsock_bind,
1080 .connect = vsock_dgram_connect,
1081 .socketpair = sock_no_socketpair,
1082 .accept = sock_no_accept,
1083 .getname = vsock_getname,
1084 .poll = vsock_poll,
1085 .ioctl = sock_no_ioctl,
1086 .listen = sock_no_listen,
1087 .shutdown = vsock_shutdown,
1088 .setsockopt = sock_no_setsockopt,
1089 .getsockopt = sock_no_getsockopt,
1090 .sendmsg = vsock_dgram_sendmsg,
1091 .recvmsg = vsock_dgram_recvmsg,
1092 .mmap = sock_no_mmap,
1093 .sendpage = sock_no_sendpage,
1094};
1095
1096static void vsock_connect_timeout(struct work_struct *work)
1097{
1098 struct sock *sk;
1099 struct vsock_sock *vsk;
1100
1101 vsk = container_of(work, struct vsock_sock, dwork.work);
1102 sk = sk_vsock(vsk);
1103
1104 lock_sock(sk);
1105 if (sk->sk_state == SS_CONNECTING &&
1106 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1107 sk->sk_state = SS_UNCONNECTED;
1108 sk->sk_err = ETIMEDOUT;
1109 sk->sk_error_report(sk);
1110 }
1111 release_sock(sk);
1112
1113 sock_put(sk);
1114}
1115
1116static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1117 int addr_len, int flags)
1118{
1119 int err;
1120 struct sock *sk;
1121 struct vsock_sock *vsk;
1122 struct sockaddr_vm *remote_addr;
1123 long timeout;
1124 DEFINE_WAIT(wait);
1125
1126 err = 0;
1127 sk = sock->sk;
1128 vsk = vsock_sk(sk);
1129
1130 lock_sock(sk);
1131
1132 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1133 switch (sock->state) {
1134 case SS_CONNECTED:
1135 err = -EISCONN;
1136 goto out;
1137 case SS_DISCONNECTING:
1138 err = -EINVAL;
1139 goto out;
1140 case SS_CONNECTING:
1141 /* This continues on so we can move sock into the SS_CONNECTED
1142 * state once the connection has completed (at which point err
1143 * will be set to zero also). Otherwise, we will either wait
1144 * for the connection or return -EALREADY should this be a
1145 * non-blocking call.
1146 */
1147 err = -EALREADY;
1148 break;
1149 default:
1150 if ((sk->sk_state == SS_LISTEN) ||
1151 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1152 err = -EINVAL;
1153 goto out;
1154 }
1155
1156 /* The hypervisor and well-known contexts do not have socket
1157 * endpoints.
1158 */
1159 if (!transport->stream_allow(remote_addr->svm_cid,
1160 remote_addr->svm_port)) {
1161 err = -ENETUNREACH;
1162 goto out;
1163 }
1164
1165 /* Set the remote address that we are connecting to. */
1166 memcpy(&vsk->remote_addr, remote_addr,
1167 sizeof(vsk->remote_addr));
1168
1169 /* Autobind this socket to the local address if necessary. */
1170 if (!vsock_addr_bound(&vsk->local_addr)) {
1171 struct sockaddr_vm local_addr;
1172
1173 vsock_addr_init(&local_addr, VMADDR_CID_ANY,
1174 VMADDR_PORT_ANY);
1175 err = __vsock_bind(sk, &local_addr);
1176 if (err != 0)
1177 goto out;
1178
1179 }
1180
1181 sk->sk_state = SS_CONNECTING;
1182
1183 err = transport->connect(vsk);
1184 if (err < 0)
1185 goto out;
1186
1187 /* Mark sock as connecting and set the error code to in
1188 * progress in case this is a non-blocking connect.
1189 */
1190 sock->state = SS_CONNECTING;
1191 err = -EINPROGRESS;
1192 }
1193
1194 /* The receive path will handle all communication until we are able to
1195 * enter the connected state. Here we wait for the connection to be
1196 * completed or a notification of an error.
1197 */
1198 timeout = vsk->connect_timeout;
1199 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1200
1201 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1202 if (flags & O_NONBLOCK) {
1203 /* If we're not going to block, we schedule a timeout
1204 * function to generate a timeout on the connection
1205 * attempt, in case the peer doesn't respond in a
1206 * timely manner. We hold on to the socket until the
1207 * timeout fires.
1208 */
1209 sock_hold(sk);
1210 INIT_DELAYED_WORK(&vsk->dwork,
1211 vsock_connect_timeout);
1212 schedule_delayed_work(&vsk->dwork, timeout);
1213
1214 /* Skip ahead to preserve error code set above. */
1215 goto out_wait;
1216 }
1217
1218 release_sock(sk);
1219 timeout = schedule_timeout(timeout);
1220 lock_sock(sk);
1221
1222 if (signal_pending(current)) {
1223 err = sock_intr_errno(timeout);
1224 goto out_wait_error;
1225 } else if (timeout == 0) {
1226 err = -ETIMEDOUT;
1227 goto out_wait_error;
1228 }
1229
1230 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1231 }
1232
1233 if (sk->sk_err) {
1234 err = -sk->sk_err;
1235 goto out_wait_error;
1236 } else
1237 err = 0;
1238
1239out_wait:
1240 finish_wait(sk_sleep(sk), &wait);
1241out:
1242 release_sock(sk);
1243 return err;
1244
1245out_wait_error:
1246 sk->sk_state = SS_UNCONNECTED;
1247 sock->state = SS_UNCONNECTED;
1248 goto out_wait;
1249}
1250
1251static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1252{
1253 struct sock *listener;
1254 int err;
1255 struct sock *connected;
1256 struct vsock_sock *vconnected;
1257 long timeout;
1258 DEFINE_WAIT(wait);
1259
1260 err = 0;
1261 listener = sock->sk;
1262
1263 lock_sock(listener);
1264
1265 if (sock->type != SOCK_STREAM) {
1266 err = -EOPNOTSUPP;
1267 goto out;
1268 }
1269
1270 if (listener->sk_state != SS_LISTEN) {
1271 err = -EINVAL;
1272 goto out;
1273 }
1274
1275 /* Wait for children sockets to appear; these are the new sockets
1276 * created upon connection establishment.
1277 */
1278 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1279 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1280
1281 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1282 listener->sk_err == 0) {
1283 release_sock(listener);
1284 timeout = schedule_timeout(timeout);
1285 lock_sock(listener);
1286
1287 if (signal_pending(current)) {
1288 err = sock_intr_errno(timeout);
1289 goto out_wait;
1290 } else if (timeout == 0) {
1291 err = -EAGAIN;
1292 goto out_wait;
1293 }
1294
1295 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1296 }
1297
1298 if (listener->sk_err)
1299 err = -listener->sk_err;
1300
1301 if (connected) {
1302 listener->sk_ack_backlog--;
1303
1304 lock_sock(connected);
1305 vconnected = vsock_sk(connected);
1306
1307 /* If the listener socket has received an error, then we should
1308 * reject this socket and return. Note that we simply mark the
1309 * socket rejected, drop our reference, and let the cleanup
1310 * function handle the cleanup; the fact that we found it in
1311 * the listener's accept queue guarantees that the cleanup
1312 * function hasn't run yet.
1313 */
1314 if (err) {
1315 vconnected->rejected = true;
1316 release_sock(connected);
1317 sock_put(connected);
1318 goto out_wait;
1319 }
1320
1321 newsock->state = SS_CONNECTED;
1322 sock_graft(connected, newsock);
1323 release_sock(connected);
1324 sock_put(connected);
1325 }
1326
1327out_wait:
1328 finish_wait(sk_sleep(listener), &wait);
1329out:
1330 release_sock(listener);
1331 return err;
1332}
1333
1334static int vsock_listen(struct socket *sock, int backlog)
1335{
1336 int err;
1337 struct sock *sk;
1338 struct vsock_sock *vsk;
1339
1340 sk = sock->sk;
1341
1342 lock_sock(sk);
1343
1344 if (sock->type != SOCK_STREAM) {
1345 err = -EOPNOTSUPP;
1346 goto out;
1347 }
1348
1349 if (sock->state != SS_UNCONNECTED) {
1350 err = -EINVAL;
1351 goto out;
1352 }
1353
1354 vsk = vsock_sk(sk);
1355
1356 if (!vsock_addr_bound(&vsk->local_addr)) {
1357 err = -EINVAL;
1358 goto out;
1359 }
1360
1361 sk->sk_max_ack_backlog = backlog;
1362 sk->sk_state = SS_LISTEN;
1363
1364 err = 0;
1365
1366out:
1367 release_sock(sk);
1368 return err;
1369}
1370
1371static int vsock_stream_setsockopt(struct socket *sock,
1372 int level,
1373 int optname,
1374 char __user *optval,
1375 unsigned int optlen)
1376{
1377 int err;
1378 struct sock *sk;
1379 struct vsock_sock *vsk;
1380 u64 val;
1381
1382 if (level != AF_VSOCK)
1383 return -ENOPROTOOPT;
1384
1385#define COPY_IN(_v) \
1386 do { \
1387 if (optlen < sizeof(_v)) { \
1388 err = -EINVAL; \
1389 goto exit; \
1390 } \
1391 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1392 err = -EFAULT; \
1393 goto exit; \
1394 } \
1395 } while (0)
1396
1397 err = 0;
1398 sk = sock->sk;
1399 vsk = vsock_sk(sk);
1400
1401 lock_sock(sk);
1402
1403 switch (optname) {
1404 case SO_VM_SOCKETS_BUFFER_SIZE:
1405 COPY_IN(val);
1406 transport->set_buffer_size(vsk, val);
1407 break;
1408
1409 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1410 COPY_IN(val);
1411 transport->set_max_buffer_size(vsk, val);
1412 break;
1413
1414 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1415 COPY_IN(val);
1416 transport->set_min_buffer_size(vsk, val);
1417 break;
1418
1419 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1420 struct timeval tv;
1421 COPY_IN(tv);
1422 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1423 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1424 vsk->connect_timeout = tv.tv_sec * HZ +
1425 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1426 if (vsk->connect_timeout == 0)
1427 vsk->connect_timeout =
1428 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1429
1430 } else {
1431 err = -ERANGE;
1432 }
1433 break;
1434 }
1435
1436 default:
1437 err = -ENOPROTOOPT;
1438 break;
1439 }
1440
1441#undef COPY_IN
1442
1443exit:
1444 release_sock(sk);
1445 return err;
1446}
1447
1448static int vsock_stream_getsockopt(struct socket *sock,
1449 int level, int optname,
1450 char __user *optval,
1451 int __user *optlen)
1452{
1453 int err;
1454 int len;
1455 struct sock *sk;
1456 struct vsock_sock *vsk;
1457 u64 val;
1458
1459 if (level != AF_VSOCK)
1460 return -ENOPROTOOPT;
1461
1462 err = get_user(len, optlen);
1463 if (err != 0)
1464 return err;
1465
1466#define COPY_OUT(_v) \
1467 do { \
1468 if (len < sizeof(_v)) \
1469 return -EINVAL; \
1470 \
1471 len = sizeof(_v); \
1472 if (copy_to_user(optval, &_v, len) != 0) \
1473 return -EFAULT; \
1474 \
1475 } while (0)
1476
1477 err = 0;
1478 sk = sock->sk;
1479 vsk = vsock_sk(sk);
1480
1481 switch (optname) {
1482 case SO_VM_SOCKETS_BUFFER_SIZE:
1483 val = transport->get_buffer_size(vsk);
1484 COPY_OUT(val);
1485 break;
1486
1487 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1488 val = transport->get_max_buffer_size(vsk);
1489 COPY_OUT(val);
1490 break;
1491
1492 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1493 val = transport->get_min_buffer_size(vsk);
1494 COPY_OUT(val);
1495 break;
1496
1497 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1498 struct timeval tv;
1499 tv.tv_sec = vsk->connect_timeout / HZ;
1500 tv.tv_usec =
1501 (vsk->connect_timeout -
1502 tv.tv_sec * HZ) * (1000000 / HZ);
1503 COPY_OUT(tv);
1504 break;
1505 }
1506 default:
1507 return -ENOPROTOOPT;
1508 }
1509
1510 err = put_user(len, optlen);
1511 if (err != 0)
1512 return -EFAULT;
1513
1514#undef COPY_OUT
1515
1516 return 0;
1517}
1518
1519static int vsock_stream_sendmsg(struct kiocb *kiocb, struct socket *sock,
1520 struct msghdr *msg, size_t len)
1521{
1522 struct sock *sk;
1523 struct vsock_sock *vsk;
1524 ssize_t total_written;
1525 long timeout;
1526 int err;
1527 struct vsock_transport_send_notify_data send_data;
1528
1529 DEFINE_WAIT(wait);
1530
1531 sk = sock->sk;
1532 vsk = vsock_sk(sk);
1533 total_written = 0;
1534 err = 0;
1535
1536 if (msg->msg_flags & MSG_OOB)
1537 return -EOPNOTSUPP;
1538
1539 lock_sock(sk);
1540
1541 /* Callers should not provide a destination with stream sockets. */
1542 if (msg->msg_namelen) {
1543 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1544 goto out;
1545 }
1546
1547 /* Send data only if both sides are not shutdown in the direction. */
1548 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1549 vsk->peer_shutdown & RCV_SHUTDOWN) {
1550 err = -EPIPE;
1551 goto out;
1552 }
1553
1554 if (sk->sk_state != SS_CONNECTED ||
1555 !vsock_addr_bound(&vsk->local_addr)) {
1556 err = -ENOTCONN;
1557 goto out;
1558 }
1559
1560 if (!vsock_addr_bound(&vsk->remote_addr)) {
1561 err = -EDESTADDRREQ;
1562 goto out;
1563 }
1564
1565 /* Wait for room in the produce queue to enqueue our user's data. */
1566 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1567
1568 err = transport->notify_send_init(vsk, &send_data);
1569 if (err < 0)
1570 goto out;
1571
1572 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1573
1574 while (total_written < len) {
1575 ssize_t written;
1576
1577 while (vsock_stream_has_space(vsk) == 0 &&
1578 sk->sk_err == 0 &&
1579 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1580 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1581
1582 /* Don't wait for non-blocking sockets. */
1583 if (timeout == 0) {
1584 err = -EAGAIN;
1585 goto out_wait;
1586 }
1587
1588 err = transport->notify_send_pre_block(vsk, &send_data);
1589 if (err < 0)
1590 goto out_wait;
1591
1592 release_sock(sk);
1593 timeout = schedule_timeout(timeout);
1594 lock_sock(sk);
1595 if (signal_pending(current)) {
1596 err = sock_intr_errno(timeout);
1597 goto out_wait;
1598 } else if (timeout == 0) {
1599 err = -EAGAIN;
1600 goto out_wait;
1601 }
1602
1603 prepare_to_wait(sk_sleep(sk), &wait,
1604 TASK_INTERRUPTIBLE);
1605 }
1606
1607 /* These checks occur both as part of and after the loop
1608 * conditional since we need to check before and after
1609 * sleeping.
1610 */
1611 if (sk->sk_err) {
1612 err = -sk->sk_err;
1613 goto out_wait;
1614 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1615 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1616 err = -EPIPE;
1617 goto out_wait;
1618 }
1619
1620 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1621 if (err < 0)
1622 goto out_wait;
1623
1624 /* Note that enqueue will only write as many bytes as are free
1625 * in the produce queue, so we don't need to ensure len is
1626 * smaller than the queue size. It is the caller's
1627 * responsibility to check how many bytes we were able to send.
1628 */
1629
1630 written = transport->stream_enqueue(
1631 vsk, msg->msg_iov,
1632 len - total_written);
1633 if (written < 0) {
1634 err = -ENOMEM;
1635 goto out_wait;
1636 }
1637
1638 total_written += written;
1639
1640 err = transport->notify_send_post_enqueue(
1641 vsk, written, &send_data);
1642 if (err < 0)
1643 goto out_wait;
1644
1645 }
1646
1647out_wait:
1648 if (total_written > 0)
1649 err = total_written;
1650 finish_wait(sk_sleep(sk), &wait);
1651out:
1652 release_sock(sk);
1653 return err;
1654}
1655
1656
1657static int
1658vsock_stream_recvmsg(struct kiocb *kiocb,
1659 struct socket *sock,
1660 struct msghdr *msg, size_t len, int flags)
1661{
1662 struct sock *sk;
1663 struct vsock_sock *vsk;
1664 int err;
1665 size_t target;
1666 ssize_t copied;
1667 long timeout;
1668 struct vsock_transport_recv_notify_data recv_data;
1669
1670 DEFINE_WAIT(wait);
1671
1672 sk = sock->sk;
1673 vsk = vsock_sk(sk);
1674 err = 0;
1675
1676 lock_sock(sk);
1677
1678 if (sk->sk_state != SS_CONNECTED) {
1679 /* Recvmsg is supposed to return 0 if a peer performs an
1680 * orderly shutdown. Differentiate between that case and when a
1681 * peer has not connected or a local shutdown occured with the
1682 * SOCK_DONE flag.
1683 */
1684 if (sock_flag(sk, SOCK_DONE))
1685 err = 0;
1686 else
1687 err = -ENOTCONN;
1688
1689 goto out;
1690 }
1691
1692 if (flags & MSG_OOB) {
1693 err = -EOPNOTSUPP;
1694 goto out;
1695 }
1696
1697 /* We don't check peer_shutdown flag here since peer may actually shut
1698 * down, but there can be data in the queue that a local socket can
1699 * receive.
1700 */
1701 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1702 err = 0;
1703 goto out;
1704 }
1705
1706 /* It is valid on Linux to pass in a zero-length receive buffer. This
1707 * is not an error. We may as well bail out now.
1708 */
1709 if (!len) {
1710 err = 0;
1711 goto out;
1712 }
1713
1714 /* We must not copy less than target bytes into the user's buffer
1715 * before returning successfully, so we wait for the consume queue to
1716 * have that much data to consume before dequeueing. Note that this
1717 * makes it impossible to handle cases where target is greater than the
1718 * queue size.
1719 */
1720 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1721 if (target >= transport->stream_rcvhiwat(vsk)) {
1722 err = -ENOMEM;
1723 goto out;
1724 }
1725 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1726 copied = 0;
1727
1728 err = transport->notify_recv_init(vsk, target, &recv_data);
1729 if (err < 0)
1730 goto out;
1731
1732 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1733
1734 while (1) {
1735 s64 ready = vsock_stream_has_data(vsk);
1736
1737 if (ready < 0) {
1738 /* Invalid queue pair content. XXX This should be
1739 * changed to a connection reset in a later change.
1740 */
1741
1742 err = -ENOMEM;
1743 goto out_wait;
1744 } else if (ready > 0) {
1745 ssize_t read;
1746
1747 err = transport->notify_recv_pre_dequeue(
1748 vsk, target, &recv_data);
1749 if (err < 0)
1750 break;
1751
1752 read = transport->stream_dequeue(
1753 vsk, msg->msg_iov,
1754 len - copied, flags);
1755 if (read < 0) {
1756 err = -ENOMEM;
1757 break;
1758 }
1759
1760 copied += read;
1761
1762 err = transport->notify_recv_post_dequeue(
1763 vsk, target, read,
1764 !(flags & MSG_PEEK), &recv_data);
1765 if (err < 0)
1766 goto out_wait;
1767
1768 if (read >= target || flags & MSG_PEEK)
1769 break;
1770
1771 target -= read;
1772 } else {
1773 if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN)
1774 || (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1775 break;
1776 }
1777 /* Don't wait for non-blocking sockets. */
1778 if (timeout == 0) {
1779 err = -EAGAIN;
1780 break;
1781 }
1782
1783 err = transport->notify_recv_pre_block(
1784 vsk, target, &recv_data);
1785 if (err < 0)
1786 break;
1787
1788 release_sock(sk);
1789 timeout = schedule_timeout(timeout);
1790 lock_sock(sk);
1791
1792 if (signal_pending(current)) {
1793 err = sock_intr_errno(timeout);
1794 break;
1795 } else if (timeout == 0) {
1796 err = -EAGAIN;
1797 break;
1798 }
1799
1800 prepare_to_wait(sk_sleep(sk), &wait,
1801 TASK_INTERRUPTIBLE);
1802 }
1803 }
1804
1805 if (sk->sk_err)
1806 err = -sk->sk_err;
1807 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1808 err = 0;
1809
1810 if (copied > 0) {
1811 /* We only do these additional bookkeeping/notification steps
1812 * if we actually copied something out of the queue pair
1813 * instead of just peeking ahead.
1814 */
1815
1816 if (!(flags & MSG_PEEK)) {
1817 /* If the other side has shutdown for sending and there
1818 * is nothing more to read, then modify the socket
1819 * state.
1820 */
1821 if (vsk->peer_shutdown & SEND_SHUTDOWN) {
1822 if (vsock_stream_has_data(vsk) <= 0) {
1823 sk->sk_state = SS_UNCONNECTED;
1824 sock_set_flag(sk, SOCK_DONE);
1825 sk->sk_state_change(sk);
1826 }
1827 }
1828 }
1829 err = copied;
1830 }
1831
1832out_wait:
1833 finish_wait(sk_sleep(sk), &wait);
1834out:
1835 release_sock(sk);
1836 return err;
1837}
1838
1839static const struct proto_ops vsock_stream_ops = {
1840 .family = PF_VSOCK,
1841 .owner = THIS_MODULE,
1842 .release = vsock_release,
1843 .bind = vsock_bind,
1844 .connect = vsock_stream_connect,
1845 .socketpair = sock_no_socketpair,
1846 .accept = vsock_accept,
1847 .getname = vsock_getname,
1848 .poll = vsock_poll,
1849 .ioctl = sock_no_ioctl,
1850 .listen = vsock_listen,
1851 .shutdown = vsock_shutdown,
1852 .setsockopt = vsock_stream_setsockopt,
1853 .getsockopt = vsock_stream_getsockopt,
1854 .sendmsg = vsock_stream_sendmsg,
1855 .recvmsg = vsock_stream_recvmsg,
1856 .mmap = sock_no_mmap,
1857 .sendpage = sock_no_sendpage,
1858};
1859
1860static int vsock_create(struct net *net, struct socket *sock,
1861 int protocol, int kern)
1862{
1863 if (!sock)
1864 return -EINVAL;
1865
1866 if (protocol)
1867 return -EPROTONOSUPPORT;
1868
1869 switch (sock->type) {
1870 case SOCK_DGRAM:
1871 sock->ops = &vsock_dgram_ops;
1872 break;
1873 case SOCK_STREAM:
1874 sock->ops = &vsock_stream_ops;
1875 break;
1876 default:
1877 return -ESOCKTNOSUPPORT;
1878 }
1879
1880 sock->state = SS_UNCONNECTED;
1881
1882 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM;
1883}
1884
1885static const struct net_proto_family vsock_family_ops = {
1886 .family = AF_VSOCK,
1887 .create = vsock_create,
1888 .owner = THIS_MODULE,
1889};
1890
1891static long vsock_dev_do_ioctl(struct file *filp,
1892 unsigned int cmd, void __user *ptr)
1893{
1894 u32 __user *p = ptr;
1895 int retval = 0;
1896
1897 switch (cmd) {
1898 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1899 if (put_user(transport->get_local_cid(), p) != 0)
1900 retval = -EFAULT;
1901 break;
1902
1903 default:
1904 pr_err("Unknown ioctl %d\n", cmd);
1905 retval = -EINVAL;
1906 }
1907
1908 return retval;
1909}
1910
1911static long vsock_dev_ioctl(struct file *filp,
1912 unsigned int cmd, unsigned long arg)
1913{
1914 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1915}
1916
1917#ifdef CONFIG_COMPAT
1918static long vsock_dev_compat_ioctl(struct file *filp,
1919 unsigned int cmd, unsigned long arg)
1920{
1921 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1922}
1923#endif
1924
1925static const struct file_operations vsock_device_ops = {
1926 .owner = THIS_MODULE,
1927 .unlocked_ioctl = vsock_dev_ioctl,
1928#ifdef CONFIG_COMPAT
1929 .compat_ioctl = vsock_dev_compat_ioctl,
1930#endif
1931 .open = nonseekable_open,
1932};
1933
1934static struct miscdevice vsock_device = {
1935 .name = "vsock",
1936 .minor = MISC_DYNAMIC_MINOR,
1937 .fops = &vsock_device_ops,
1938};
1939
1940static int __vsock_core_init(void)
1941{
1942 int err;
1943
1944 vsock_init_tables();
1945
1946 err = misc_register(&vsock_device);
1947 if (err) {
1948 pr_err("Failed to register misc device\n");
1949 return -ENOENT;
1950 }
1951
1952 err = proto_register(&vsock_proto, 1); /* we want our slab */
1953 if (err) {
1954 pr_err("Cannot register vsock protocol\n");
1955 goto err_misc_deregister;
1956 }
1957
1958 err = sock_register(&vsock_family_ops);
1959 if (err) {
1960 pr_err("could not register af_vsock (%d) address family: %d\n",
1961 AF_VSOCK, err);
1962 goto err_unregister_proto;
1963 }
1964
1965 return 0;
1966
1967err_unregister_proto:
1968 proto_unregister(&vsock_proto);
1969err_misc_deregister:
1970 misc_deregister(&vsock_device);
1971 return err;
1972}
1973
1974int vsock_core_init(const struct vsock_transport *t)
1975{
1976 int retval = mutex_lock_interruptible(&vsock_register_mutex);
1977 if (retval)
1978 return retval;
1979
1980 if (transport) {
1981 retval = -EBUSY;
1982 goto out;
1983 }
1984
1985 transport = t;
1986 retval = __vsock_core_init();
1987 if (retval)
1988 transport = NULL;
1989
1990out:
1991 mutex_unlock(&vsock_register_mutex);
1992 return retval;
1993}
1994EXPORT_SYMBOL_GPL(vsock_core_init);
1995
1996void vsock_core_exit(void)
1997{
1998 mutex_lock(&vsock_register_mutex);
1999
2000 misc_deregister(&vsock_device);
2001 sock_unregister(AF_VSOCK);
2002 proto_unregister(&vsock_proto);
2003
2004 /* We do not want the assignment below re-ordered. */
2005 mb();
2006 transport = NULL;
2007
2008 mutex_unlock(&vsock_register_mutex);
2009}
2010EXPORT_SYMBOL_GPL(vsock_core_exit);
2011
2012MODULE_AUTHOR("VMware, Inc.");
2013MODULE_DESCRIPTION("VMware Virtual Socket Family");
2014MODULE_VERSION(VSOCK_DRIVER_VERSION_STRING);
2015MODULE_LICENSE("GPL v2");
This page took 0.094798 seconds and 5 git commands to generate.