[cpu]
[deliverable/binutils-gdb.git] / opcodes / arc-opc.c
CommitLineData
252b5132 1/* Opcode table for the ARC.
47b0e7ad 2 Copyright 1994, 1995, 1997, 1998, 2000, 2001, 2002, 2004, 2005
060d22b0 3 Free Software Foundation, Inc.
252b5132 4 Contributed by Doug Evans (dje@cygnus.com).
bcee8eb8 5
252b5132
RH
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
0d2bcfaf 17 along with this program; if not, write to the Free Software Foundation,
f4321104 18 Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
252b5132 19
5bd67f35 20#include "sysdep.h"
252b5132 21#include <stdio.h>
0d2bcfaf 22#include "ansidecl.h"
d943fe33 23#include "bfd.h"
252b5132 24#include "opcode/arc.h"
47b0e7ad 25#include "opintl.h"
252b5132 26
47b0e7ad
NC
27enum operand {OP_NONE,OP_REG,OP_SHIMM,OP_LIMM};
28
29#define OPERANDS 3
30
31enum operand ls_operand[OPERANDS];
32
33struct arc_opcode *arc_ext_opcodes;
34struct arc_ext_operand_value *arc_ext_operands;
35
36#define LS_VALUE 0
37#define LS_DEST 0
38#define LS_BASE 1
39#define LS_OFFSET 2
40
41/* Given a format letter, yields the index into `arc_operands'.
42 eg: arc_operand_map['a'] = REGA. */
43unsigned char arc_operand_map[256];
44
45/* Nonzero if we've seen an 'f' suffix (in certain insns). */
46static int flag_p;
47
48/* Nonzero if we've finished processing the 'f' suffix. */
49static int flagshimm_handled_p;
50
51/* Nonzero if we've seen a 'a' suffix (address writeback). */
52static int addrwb_p;
53
54/* Nonzero if we've seen a 'q' suffix (condition code). */
55static int cond_p;
56
57/* Nonzero if we've inserted a nullify condition. */
58static int nullify_p;
59
60/* The value of the a nullify condition we inserted. */
61static int nullify;
62
63/* Nonzero if we've inserted jumpflags. */
64static int jumpflags_p;
65
66/* Nonzero if we've inserted a shimm. */
67static int shimm_p;
68
69/* The value of the shimm we inserted (each insn only gets one but it can
70 appear multiple times). */
71static int shimm;
72
73/* Nonzero if we've inserted a limm (during assembly) or seen a limm
74 (during disassembly). */
75static int limm_p;
76
77/* The value of the limm we inserted. Each insn only gets one but it can
78 appear multiple times. */
79static long limm;
80\f
252b5132 81#define INSERT_FN(fn) \
47b0e7ad
NC
82static arc_insn fn (arc_insn, const struct arc_operand *, \
83 int, const struct arc_operand_value *, long, \
84 const char **)
85
252b5132 86#define EXTRACT_FN(fn) \
47b0e7ad
NC
87static long fn (arc_insn *, const struct arc_operand *, \
88 int, const struct arc_operand_value **, int *)
252b5132
RH
89
90INSERT_FN (insert_reg);
91INSERT_FN (insert_shimmfinish);
92INSERT_FN (insert_limmfinish);
0d2bcfaf
NC
93INSERT_FN (insert_offset);
94INSERT_FN (insert_base);
95INSERT_FN (insert_st_syntax);
96INSERT_FN (insert_ld_syntax);
97INSERT_FN (insert_addr_wb);
252b5132 98INSERT_FN (insert_flag);
0d2bcfaf 99INSERT_FN (insert_nullify);
252b5132
RH
100INSERT_FN (insert_flagfinish);
101INSERT_FN (insert_cond);
102INSERT_FN (insert_forcelimm);
103INSERT_FN (insert_reladdr);
104INSERT_FN (insert_absaddr);
0d2bcfaf 105INSERT_FN (insert_jumpflags);
252b5132
RH
106INSERT_FN (insert_unopmacro);
107
108EXTRACT_FN (extract_reg);
0d2bcfaf
NC
109EXTRACT_FN (extract_ld_offset);
110EXTRACT_FN (extract_ld_syntax);
111EXTRACT_FN (extract_st_offset);
112EXTRACT_FN (extract_st_syntax);
252b5132
RH
113EXTRACT_FN (extract_flag);
114EXTRACT_FN (extract_cond);
115EXTRACT_FN (extract_reladdr);
0d2bcfaf 116EXTRACT_FN (extract_jumpflags);
252b5132
RH
117EXTRACT_FN (extract_unopmacro);
118
119/* Various types of ARC operands, including insn suffixes. */
120
121/* Insn format values:
122
123 'a' REGA register A field
124 'b' REGB register B field
125 'c' REGC register C field
126 'S' SHIMMFINISH finish inserting a shimm value
127 'L' LIMMFINISH finish inserting a limm value
0d2bcfaf
NC
128 'o' OFFSET offset in st insns
129 'O' OFFSET offset in ld insns
130 '0' SYNTAX_ST_NE enforce store insn syntax, no errors
131 '1' SYNTAX_LD_NE enforce load insn syntax, no errors
132 '2' SYNTAX_ST enforce store insn syntax, errors, last pattern only
133 '3' SYNTAX_LD enforce load insn syntax, errors, last pattern only
134 's' BASE base in st insn
252b5132
RH
135 'f' FLAG F flag
136 'F' FLAGFINISH finish inserting the F flag
137 'G' FLAGINSN insert F flag in "flag" insn
138 'n' DELAY N field (nullify field)
139 'q' COND condition code field
140 'Q' FORCELIMM set `cond_p' to 1 to ensure a constant is a limm
141 'B' BRANCH branch address (22 bit pc relative)
142 'J' JUMP jump address (26 bit absolute)
0d2bcfaf 143 'j' JUMPFLAGS optional high order bits of 'J'
252b5132
RH
144 'z' SIZE1 size field in ld a,[b,c]
145 'Z' SIZE10 size field in ld a,[b,shimm]
146 'y' SIZE22 size field in st c,[b,shimm]
147 'x' SIGN0 sign extend field ld a,[b,c]
148 'X' SIGN9 sign extend field ld a,[b,shimm]
149 'w' ADDRESS3 write-back field in ld a,[b,c]
150 'W' ADDRESS12 write-back field in ld a,[b,shimm]
151 'v' ADDRESS24 write-back field in st c,[b,shimm]
152 'e' CACHEBYPASS5 cache bypass in ld a,[b,c]
153 'E' CACHEBYPASS14 cache bypass in ld a,[b,shimm]
154 'D' CACHEBYPASS26 cache bypass in st c,[b,shimm]
155 'U' UNOPMACRO fake operand to copy REGB to REGC for unop macros
156
157 The following modifiers may appear between the % and char (eg: %.f):
158
159 '.' MODDOT '.' prefix must be present
160 'r' REG generic register value, for register table
161 'A' AUXREG auxiliary register in lr a,[b], sr c,[b]
162
163 Fields are:
164
0d2bcfaf 165 CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN */
252b5132
RH
166
167const struct arc_operand arc_operands[] =
168{
47b0e7ad 169/* Place holder (??? not sure if needed). */
252b5132 170#define UNUSED 0
0d2bcfaf 171 { 0, 0, 0, 0, 0, 0 },
252b5132 172
47b0e7ad 173/* Register A or shimm/limm indicator. */
252b5132 174#define REGA (UNUSED + 1)
0d2bcfaf 175 { 'a', 6, ARC_SHIFT_REGA, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
252b5132 176
47b0e7ad 177/* Register B or shimm/limm indicator. */
252b5132 178#define REGB (REGA + 1)
0d2bcfaf 179 { 'b', 6, ARC_SHIFT_REGB, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
252b5132 180
47b0e7ad 181/* Register C or shimm/limm indicator. */
252b5132 182#define REGC (REGB + 1)
0d2bcfaf 183 { 'c', 6, ARC_SHIFT_REGC, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
252b5132 184
47b0e7ad 185/* Fake operand used to insert shimm value into most instructions. */
252b5132
RH
186#define SHIMMFINISH (REGC + 1)
187 { 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 },
188
47b0e7ad 189/* Fake operand used to insert limm value into most instructions. */
252b5132
RH
190#define LIMMFINISH (SHIMMFINISH + 1)
191 { 'L', 32, 32, ARC_OPERAND_ADDRESS + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_limmfinish, 0 },
192
47b0e7ad 193/* Shimm operand when there is no reg indicator (st). */
0d2bcfaf
NC
194#define ST_OFFSET (LIMMFINISH + 1)
195 { 'o', 9, 0, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_STORE, insert_offset, extract_st_offset },
196
47b0e7ad 197/* Shimm operand when there is no reg indicator (ld). */
0d2bcfaf
NC
198#define LD_OFFSET (ST_OFFSET + 1)
199 { 'O', 9, 0,ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_LOAD, insert_offset, extract_ld_offset },
200
47b0e7ad 201/* Operand for base. */
0d2bcfaf
NC
202#define BASE (LD_OFFSET + 1)
203 { 's', 6, ARC_SHIFT_REGB, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED, insert_base, extract_reg},
252b5132 204
0d2bcfaf
NC
205/* 0 enforce syntax for st insns. */
206#define SYNTAX_ST_NE (BASE + 1)
207 { '0', 9, 0, ARC_OPERAND_FAKE, insert_st_syntax, extract_st_syntax },
252b5132 208
0d2bcfaf
NC
209/* 1 enforce syntax for ld insns. */
210#define SYNTAX_LD_NE (SYNTAX_ST_NE + 1)
211 { '1', 9, 0, ARC_OPERAND_FAKE, insert_ld_syntax, extract_ld_syntax },
212
213/* 0 enforce syntax for st insns. */
214#define SYNTAX_ST (SYNTAX_LD_NE + 1)
215 { '2', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_st_syntax, extract_st_syntax },
216
217/* 0 enforce syntax for ld insns. */
218#define SYNTAX_LD (SYNTAX_ST + 1)
219 { '3', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_ld_syntax, extract_ld_syntax },
220
47b0e7ad 221/* Flag update bit (insertion is defered until we know how). */
0d2bcfaf 222#define FLAG (SYNTAX_LD + 1)
252b5132
RH
223 { 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag },
224
47b0e7ad 225/* Fake utility operand to finish 'f' suffix handling. */
252b5132
RH
226#define FLAGFINISH (FLAG + 1)
227 { 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 },
228
47b0e7ad 229/* Fake utility operand to set the 'f' flag for the "flag" insn. */
252b5132
RH
230#define FLAGINSN (FLAGFINISH + 1)
231 { 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 },
232
47b0e7ad 233/* Branch delay types. */
252b5132 234#define DELAY (FLAGINSN + 1)
0d2bcfaf 235 { 'n', 2, 5, ARC_OPERAND_SUFFIX , insert_nullify, 0 },
252b5132 236
47b0e7ad 237/* Conditions. */
252b5132
RH
238#define COND (DELAY + 1)
239 { 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond },
240
47b0e7ad 241/* Set `cond_p' to 1 to ensure a constant is treated as a limm. */
252b5132 242#define FORCELIMM (COND + 1)
0d2bcfaf 243 { 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm, 0 },
252b5132 244
47b0e7ad 245/* Branch address; b, bl, and lp insns. */
252b5132 246#define BRANCH (FORCELIMM + 1)
0d2bcfaf 247 { 'B', 20, 7, (ARC_OPERAND_RELATIVE_BRANCH + ARC_OPERAND_SIGNED) | ARC_OPERAND_ERROR, insert_reladdr, extract_reladdr },
252b5132 248
47b0e7ad 249/* Jump address; j insn (this is basically the same as 'L' except that the
0d2bcfaf 250 value is right shifted by 2). */
252b5132 251#define JUMP (BRANCH + 1)
0d2bcfaf
NC
252 { 'J', 24, 32, ARC_OPERAND_ERROR | (ARC_OPERAND_ABSOLUTE_BRANCH + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE), insert_absaddr, 0 },
253
47b0e7ad 254/* Jump flags; j{,l} insn value or'ed into 'J' addr for flag values. */
0d2bcfaf
NC
255#define JUMPFLAGS (JUMP + 1)
256 { 'j', 6, 26, ARC_OPERAND_JUMPFLAGS | ARC_OPERAND_ERROR, insert_jumpflags, extract_jumpflags },
252b5132 257
47b0e7ad 258/* Size field, stored in bit 1,2. */
0d2bcfaf
NC
259#define SIZE1 (JUMPFLAGS + 1)
260 { 'z', 2, 1, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 261
47b0e7ad 262/* Size field, stored in bit 10,11. */
252b5132 263#define SIZE10 (SIZE1 + 1)
0d2bcfaf 264 { 'Z', 2, 10, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 265
47b0e7ad 266/* Size field, stored in bit 22,23. */
252b5132 267#define SIZE22 (SIZE10 + 1)
0d2bcfaf 268 { 'y', 2, 22, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 269
47b0e7ad 270/* Sign extend field, stored in bit 0. */
252b5132 271#define SIGN0 (SIZE22 + 1)
0d2bcfaf 272 { 'x', 1, 0, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 273
47b0e7ad 274/* Sign extend field, stored in bit 9. */
252b5132 275#define SIGN9 (SIGN0 + 1)
0d2bcfaf 276 { 'X', 1, 9, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 277
47b0e7ad 278/* Address write back, stored in bit 3. */
252b5132 279#define ADDRESS3 (SIGN9 + 1)
0d2bcfaf 280 { 'w', 1, 3, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
252b5132 281
47b0e7ad 282/* Address write back, stored in bit 12. */
252b5132 283#define ADDRESS12 (ADDRESS3 + 1)
0d2bcfaf 284 { 'W', 1, 12, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
252b5132 285
47b0e7ad 286/* Address write back, stored in bit 24. */
252b5132 287#define ADDRESS24 (ADDRESS12 + 1)
0d2bcfaf 288 { 'v', 1, 24, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
252b5132 289
47b0e7ad 290/* Cache bypass, stored in bit 5. */
252b5132 291#define CACHEBYPASS5 (ADDRESS24 + 1)
0d2bcfaf 292 { 'e', 1, 5, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 293
47b0e7ad 294/* Cache bypass, stored in bit 14. */
252b5132 295#define CACHEBYPASS14 (CACHEBYPASS5 + 1)
0d2bcfaf 296 { 'E', 1, 14, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 297
47b0e7ad 298/* Cache bypass, stored in bit 26. */
252b5132 299#define CACHEBYPASS26 (CACHEBYPASS14 + 1)
0d2bcfaf 300 { 'D', 1, 26, ARC_OPERAND_SUFFIX, 0, 0 },
252b5132 301
47b0e7ad 302/* Unop macro, used to copy REGB to REGC. */
252b5132
RH
303#define UNOPMACRO (CACHEBYPASS26 + 1)
304 { 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro },
305
306/* '.' modifier ('.' required). */
307#define MODDOT (UNOPMACRO + 1)
0d2bcfaf 308 { '.', 1, 0, ARC_MOD_DOT, 0, 0 },
252b5132
RH
309
310/* Dummy 'r' modifier for the register table.
311 It's called a "dummy" because there's no point in inserting an 'r' into all
312 the %a/%b/%c occurrences in the insn table. */
313#define REG (MODDOT + 1)
0d2bcfaf 314 { 'r', 6, 0, ARC_MOD_REG, 0, 0 },
252b5132
RH
315
316/* Known auxiliary register modifier (stored in shimm field). */
317#define AUXREG (REG + 1)
0d2bcfaf 318 { 'A', 9, 0, ARC_MOD_AUXREG, 0, 0 },
252b5132 319
47b0e7ad 320/* End of list place holder. */
0d2bcfaf 321 { 0, 0, 0, 0, 0, 0 }
252b5132
RH
322};
323\f
47b0e7ad
NC
324/* Insert a value into a register field.
325 If REG is NULL, then this is actually a constant.
252b5132 326
47b0e7ad 327 We must also handle auxiliary registers for lr/sr insns. */
252b5132 328
47b0e7ad
NC
329static arc_insn
330insert_reg (arc_insn insn,
331 const struct arc_operand *operand,
332 int mods,
333 const struct arc_operand_value *reg,
334 long value,
335 const char **errmsg)
0d2bcfaf 336{
47b0e7ad
NC
337 static char buf[100];
338 enum operand op_type = OP_NONE;
252b5132 339
47b0e7ad
NC
340 if (reg == NULL)
341 {
342 /* We have a constant that also requires a value stored in a register
343 field. Handle these by updating the register field and saving the
344 value for later handling by either %S (shimm) or %L (limm). */
0d2bcfaf 345
47b0e7ad
NC
346 /* Try to use a shimm value before a limm one. */
347 if (ARC_SHIMM_CONST_P (value)
348 /* If we've seen a conditional suffix we have to use a limm. */
349 && !cond_p
350 /* If we already have a shimm value that is different than ours
351 we have to use a limm. */
352 && (!shimm_p || shimm == value))
353 {
354 int marker;
252b5132 355
47b0e7ad
NC
356 op_type = OP_SHIMM;
357 /* Forget about shimm as dest mlm. */
0d2bcfaf 358
47b0e7ad
NC
359 if ('a' != operand->fmt)
360 {
361 shimm_p = 1;
362 shimm = value;
363 flagshimm_handled_p = 1;
364 marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM;
365 }
366 else
367 {
368 /* Don't request flag setting on shimm as dest. */
369 marker = ARC_REG_SHIMM;
370 }
371 insn |= marker << operand->shift;
372 /* insn |= value & 511; - done later. */
373 }
374 /* We have to use a limm. If we've already seen one they must match. */
375 else if (!limm_p || limm == value)
376 {
377 op_type = OP_LIMM;
378 limm_p = 1;
379 limm = value;
380 insn |= ARC_REG_LIMM << operand->shift;
381 /* The constant is stored later. */
382 }
383 else
384 *errmsg = _("unable to fit different valued constants into instruction");
385 }
386 else
387 {
388 /* We have to handle both normal and auxiliary registers. */
0d2bcfaf 389
47b0e7ad
NC
390 if (reg->type == AUXREG)
391 {
392 if (!(mods & ARC_MOD_AUXREG))
393 *errmsg = _("auxiliary register not allowed here");
394 else
395 {
396 if ((insn & I(-1)) == I(2)) /* Check for use validity. */
397 {
398 if (reg->flags & ARC_REGISTER_READONLY)
399 *errmsg = _("attempt to set readonly register");
400 }
401 else
402 {
403 if (reg->flags & ARC_REGISTER_WRITEONLY)
404 *errmsg = _("attempt to read writeonly register");
405 }
406 insn |= ARC_REG_SHIMM << operand->shift;
407 insn |= reg->value << arc_operands[reg->type].shift;
408 }
409 }
410 else
411 {
412 /* check for use validity. */
413 if ('a' == operand->fmt || ((insn & I(-1)) < I(2)))
414 {
415 if (reg->flags & ARC_REGISTER_READONLY)
416 *errmsg = _("attempt to set readonly register");
417 }
418 if ('a' != operand->fmt)
419 {
420 if (reg->flags & ARC_REGISTER_WRITEONLY)
421 *errmsg = _("attempt to read writeonly register");
422 }
423 /* We should never get an invalid register number here. */
424 if ((unsigned int) reg->value > 60)
425 {
426 sprintf (buf, _("invalid register number `%d'"), reg->value);
427 *errmsg = buf;
428 }
429 insn |= reg->value << operand->shift;
430 op_type = OP_REG;
431 }
432 }
0d2bcfaf 433
47b0e7ad
NC
434 switch (operand->fmt)
435 {
436 case 'a':
437 ls_operand[LS_DEST] = op_type;
438 break;
439 case 's':
440 ls_operand[LS_BASE] = op_type;
441 break;
442 case 'c':
443 if ((insn & I(-1)) == I(2))
444 ls_operand[LS_VALUE] = op_type;
445 else
446 ls_operand[LS_OFFSET] = op_type;
447 break;
448 case 'o': case 'O':
449 ls_operand[LS_OFFSET] = op_type;
450 break;
451 }
0d2bcfaf 452
47b0e7ad
NC
453 return insn;
454}
252b5132 455
47b0e7ad 456/* Called when we see an 'f' flag. */
252b5132 457
47b0e7ad
NC
458static arc_insn
459insert_flag (arc_insn insn,
460 const struct arc_operand *operand ATTRIBUTE_UNUSED,
461 int mods ATTRIBUTE_UNUSED,
462 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
463 long value ATTRIBUTE_UNUSED,
464 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 465{
47b0e7ad
NC
466 /* We can't store anything in the insn until we've parsed the registers.
467 Just record the fact that we've got this flag. `insert_reg' will use it
468 to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100). */
469 flag_p = 1;
470 return insn;
471}
252b5132 472
47b0e7ad 473/* Called when we see an nullify condition. */
252b5132 474
47b0e7ad
NC
475static arc_insn
476insert_nullify (arc_insn insn,
477 const struct arc_operand *operand,
478 int mods ATTRIBUTE_UNUSED,
479 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
480 long value,
481 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 482{
47b0e7ad
NC
483 nullify_p = 1;
484 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
485 nullify = value;
486 return insn;
252b5132
RH
487}
488
47b0e7ad
NC
489/* Called after completely building an insn to ensure the 'f' flag gets set
490 properly. This is needed because we don't know how to set this flag until
491 we've parsed the registers. */
252b5132 492
47b0e7ad
NC
493static arc_insn
494insert_flagfinish (arc_insn insn,
495 const struct arc_operand *operand,
496 int mods ATTRIBUTE_UNUSED,
497 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
498 long value ATTRIBUTE_UNUSED,
499 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 500{
47b0e7ad 501 if (flag_p && !flagshimm_handled_p)
252b5132 502 {
47b0e7ad
NC
503 if (shimm_p)
504 abort ();
505 flagshimm_handled_p = 1;
506 insn |= (1 << operand->shift);
252b5132 507 }
47b0e7ad 508 return insn;
252b5132
RH
509}
510
47b0e7ad 511/* Called when we see a conditional flag (eg: .eq). */
252b5132 512
47b0e7ad
NC
513static arc_insn
514insert_cond (arc_insn insn,
515 const struct arc_operand *operand,
516 int mods ATTRIBUTE_UNUSED,
517 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
518 long value,
519 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 520{
47b0e7ad
NC
521 cond_p = 1;
522 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
523 return insn;
252b5132
RH
524}
525
47b0e7ad
NC
526/* Used in the "j" instruction to prevent constants from being interpreted as
527 shimm values (which the jump insn doesn't accept). This can also be used
528 to force the use of limm values in other situations (eg: ld r0,[foo] uses
529 this).
530 ??? The mechanism is sound. Access to it is a bit klunky right now. */
252b5132 531
47b0e7ad
NC
532static arc_insn
533insert_forcelimm (arc_insn insn,
534 const struct arc_operand *operand ATTRIBUTE_UNUSED,
535 int mods ATTRIBUTE_UNUSED,
536 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
537 long value ATTRIBUTE_UNUSED,
538 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 539{
47b0e7ad
NC
540 cond_p = 1;
541 return insn;
252b5132
RH
542}
543
47b0e7ad
NC
544static arc_insn
545insert_addr_wb (arc_insn insn,
546 const struct arc_operand *operand,
547 int mods ATTRIBUTE_UNUSED,
548 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
549 long value ATTRIBUTE_UNUSED,
550 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 551{
47b0e7ad
NC
552 addrwb_p = 1 << operand->shift;
553 return insn;
0d2bcfaf
NC
554}
555
556static arc_insn
47b0e7ad
NC
557insert_base (arc_insn insn,
558 const struct arc_operand *operand,
559 int mods,
560 const struct arc_operand_value *reg,
561 long value,
562 const char **errmsg)
0d2bcfaf
NC
563{
564 if (reg != NULL)
565 {
566 arc_insn myinsn;
567 myinsn = insert_reg (0, operand,mods, reg, value, errmsg) >> operand->shift;
568 insn |= B(myinsn);
bcee8eb8 569 ls_operand[LS_BASE] = OP_REG;
0d2bcfaf
NC
570 }
571 else if (ARC_SHIMM_CONST_P (value) && !cond_p)
572 {
573 if (shimm_p && value != shimm)
bcee8eb8 574 {
47b0e7ad 575 /* Convert the previous shimm operand to a limm. */
bcee8eb8
AM
576 limm_p = 1;
577 limm = shimm;
47b0e7ad 578 insn &= ~C(-1); /* We know where the value is in insn. */
bcee8eb8
AM
579 insn |= C(ARC_REG_LIMM);
580 ls_operand[LS_VALUE] = OP_LIMM;
581 }
0d2bcfaf
NC
582 insn |= ARC_REG_SHIMM << operand->shift;
583 shimm_p = 1;
584 shimm = value;
585 ls_operand[LS_BASE] = OP_SHIMM;
d81acc42 586 ls_operand[LS_OFFSET] = OP_SHIMM;
0d2bcfaf
NC
587 }
588 else
589 {
590 if (limm_p && value != limm)
bcee8eb8 591 {
47b0e7ad 592 *errmsg = _("too many long constants");
bcee8eb8
AM
593 return insn;
594 }
0d2bcfaf
NC
595 limm_p = 1;
596 limm = value;
597 insn |= B(ARC_REG_LIMM);
598 ls_operand[LS_BASE] = OP_LIMM;
599 }
600
601 return insn;
602}
603
604/* Used in ld/st insns to handle the offset field. We don't try to
605 match operand syntax here. we catch bad combinations later. */
252b5132
RH
606
607static arc_insn
47b0e7ad
NC
608insert_offset (arc_insn insn,
609 const struct arc_operand *operand,
610 int mods,
611 const struct arc_operand_value *reg,
612 long value,
613 const char **errmsg)
252b5132
RH
614{
615 long minval, maxval;
252b5132
RH
616
617 if (reg != NULL)
618 {
0d2bcfaf
NC
619 arc_insn myinsn;
620 myinsn = insert_reg (0,operand,mods,reg,value,errmsg) >> operand->shift;
621 ls_operand[LS_OFFSET] = OP_REG;
47b0e7ad
NC
622 if (operand->flags & ARC_OPERAND_LOAD) /* Not if store, catch it later. */
623 if ((insn & I(-1)) != I(1)) /* Not if opcode == 1, catch it later. */
624 insn |= C (myinsn);
252b5132
RH
625 }
626 else
627 {
628 /* This is *way* more general than necessary, but maybe some day it'll
629 be useful. */
630 if (operand->flags & ARC_OPERAND_SIGNED)
631 {
632 minval = -(1 << (operand->bits - 1));
633 maxval = (1 << (operand->bits - 1)) - 1;
634 }
635 else
636 {
637 minval = 0;
638 maxval = (1 << operand->bits) - 1;
639 }
0d2bcfaf 640 if ((cond_p && !limm_p) || (value < minval || value > maxval))
252b5132 641 {
bcee8eb8 642 if (limm_p && value != limm)
47b0e7ad
NC
643 *errmsg = _("too many long constants");
644
bcee8eb8
AM
645 else
646 {
647 limm_p = 1;
648 limm = value;
649 if (operand->flags & ARC_OPERAND_STORE)
650 insn |= B(ARC_REG_LIMM);
651 if (operand->flags & ARC_OPERAND_LOAD)
652 insn |= C(ARC_REG_LIMM);
653 ls_operand[LS_OFFSET] = OP_LIMM;
654 }
252b5132
RH
655 }
656 else
bcee8eb8 657 {
0d2bcfaf
NC
658 if ((value < minval || value > maxval))
659 *errmsg = "need too many limms";
bcee8eb8 660 else if (shimm_p && value != shimm)
0d2bcfaf 661 {
47b0e7ad
NC
662 /* Check for bad operand combinations
663 before we lose info about them. */
0d2bcfaf
NC
664 if ((insn & I(-1)) == I(1))
665 {
47b0e7ad 666 *errmsg = _("to many shimms in load");
0d2bcfaf
NC
667 goto out;
668 }
669 if (limm_p && operand->flags & ARC_OPERAND_LOAD)
670 {
47b0e7ad 671 *errmsg = _("too many long constants");
0d2bcfaf
NC
672 goto out;
673 }
47b0e7ad 674 /* Convert what we thought was a shimm to a limm. */
0d2bcfaf
NC
675 limm_p = 1;
676 limm = shimm;
47b0e7ad
NC
677 if (ls_operand[LS_VALUE] == OP_SHIMM
678 && operand->flags & ARC_OPERAND_STORE)
0d2bcfaf
NC
679 {
680 insn &= ~C(-1);
681 insn |= C(ARC_REG_LIMM);
682 ls_operand[LS_VALUE] = OP_LIMM;
683 }
47b0e7ad
NC
684 if (ls_operand[LS_BASE] == OP_SHIMM
685 && operand->flags & ARC_OPERAND_STORE)
0d2bcfaf
NC
686 {
687 insn &= ~B(-1);
688 insn |= B(ARC_REG_LIMM);
689 ls_operand[LS_BASE] = OP_LIMM;
690 }
691 }
692 shimm = value;
693 shimm_p = 1;
694 ls_operand[LS_OFFSET] = OP_SHIMM;
bcee8eb8 695 }
252b5132 696 }
0d2bcfaf 697 out:
252b5132
RH
698 return insn;
699}
700
0d2bcfaf
NC
701/* Used in st insns to do final disasemble syntax check. */
702
703static long
47b0e7ad
NC
704extract_st_syntax (arc_insn *insn,
705 const struct arc_operand *operand ATTRIBUTE_UNUSED,
706 int mods ATTRIBUTE_UNUSED,
707 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
708 int *invalid)
0d2bcfaf
NC
709{
710#define ST_SYNTAX(V,B,O) \
711((ls_operand[LS_VALUE] == (V) && \
712 ls_operand[LS_BASE] == (B) && \
713 ls_operand[LS_OFFSET] == (O)))
bcee8eb8
AM
714
715 if (!((ST_SYNTAX(OP_REG,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
0d2bcfaf
NC
716 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
717 || (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
718 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (insn[0] & 511) == 0)
719 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
720 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_SHIMM)
721 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
bcee8eb8 722 || (ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
0d2bcfaf
NC
723 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
724 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
725 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
726 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
727 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE)
728 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
729 *invalid = 1;
730 return 0;
731}
732
733int
47b0e7ad 734arc_limm_fixup_adjust (arc_insn insn)
0d2bcfaf
NC
735{
736 int retval = 0;
737
47b0e7ad 738 /* Check for st shimm,[limm]. */
0d2bcfaf 739 if ((insn & (I(-1) | C(-1) | B(-1))) ==
bcee8eb8 740 (I(2) | C(ARC_REG_SHIMM) | B(ARC_REG_LIMM)))
0d2bcfaf
NC
741 {
742 retval = insn & 0x1ff;
47b0e7ad 743 if (retval & 0x100) /* Sign extend 9 bit offset. */
0d2bcfaf
NC
744 retval |= ~0x1ff;
745 }
47b0e7ad 746 return -retval; /* Negate offset for return. */
0d2bcfaf
NC
747}
748
749/* Used in st insns to do final syntax check. */
750
751static arc_insn
47b0e7ad
NC
752insert_st_syntax (arc_insn insn,
753 const struct arc_operand *operand ATTRIBUTE_UNUSED,
754 int mods ATTRIBUTE_UNUSED,
755 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
756 long value ATTRIBUTE_UNUSED,
757 const char **errmsg)
0d2bcfaf 758{
47b0e7ad 759 if (ST_SYNTAX (OP_SHIMM,OP_REG,OP_NONE) && shimm != 0)
0d2bcfaf 760 {
47b0e7ad 761 /* Change an illegal insn into a legal one, it's easier to
0d2bcfaf
NC
762 do it here than to try to handle it during operand scan. */
763 limm_p = 1;
764 limm = shimm;
765 shimm_p = 0;
766 shimm = 0;
767 insn = insn & ~(C(-1) | 511);
768 insn |= ARC_REG_LIMM << ARC_SHIFT_REGC;
769 ls_operand[LS_VALUE] = OP_LIMM;
770 }
771
47b0e7ad
NC
772 if (ST_SYNTAX (OP_REG, OP_SHIMM, OP_NONE)
773 || ST_SYNTAX (OP_LIMM, OP_SHIMM, OP_NONE))
0d2bcfaf 774 {
47b0e7ad
NC
775 /* Try to salvage this syntax. */
776 if (shimm & 0x1) /* Odd shimms won't work. */
bcee8eb8 777 {
47b0e7ad
NC
778 if (limm_p) /* Do we have a limm already? */
779 *errmsg = _("impossible store");
780
bcee8eb8
AM
781 limm_p = 1;
782 limm = shimm;
783 shimm = 0;
784 shimm_p = 0;
785 insn = insn & ~(B(-1) | 511);
786 insn |= B(ARC_REG_LIMM);
787 ls_operand[LS_BASE] = OP_LIMM;
788 }
789 else
790 {
791 shimm >>= 1;
792 insn = insn & ~511;
793 insn |= shimm;
794 ls_operand[LS_OFFSET] = OP_SHIMM;
795 }
0d2bcfaf
NC
796 }
797 if (ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE))
47b0e7ad
NC
798 limm += arc_limm_fixup_adjust(insn);
799
800 if (! (ST_SYNTAX (OP_REG,OP_REG,OP_NONE)
801 || ST_SYNTAX (OP_REG,OP_LIMM,OP_NONE)
802 || ST_SYNTAX (OP_REG,OP_REG,OP_SHIMM)
803 || ST_SYNTAX (OP_REG,OP_SHIMM,OP_SHIMM)
804 || (ST_SYNTAX (OP_SHIMM,OP_SHIMM,OP_NONE) && (shimm == 0))
805 || ST_SYNTAX (OP_SHIMM,OP_LIMM,OP_NONE)
806 || ST_SYNTAX (OP_SHIMM,OP_REG,OP_NONE)
807 || ST_SYNTAX (OP_SHIMM,OP_REG,OP_SHIMM)
808 || ST_SYNTAX (OP_SHIMM,OP_SHIMM,OP_SHIMM)
809 || ST_SYNTAX (OP_LIMM,OP_SHIMM,OP_SHIMM)
810 || ST_SYNTAX (OP_LIMM,OP_REG,OP_NONE)
811 || ST_SYNTAX (OP_LIMM,OP_REG,OP_SHIMM)))
812 *errmsg = _("st operand error");
0d2bcfaf
NC
813 if (addrwb_p)
814 {
815 if (ls_operand[LS_BASE] != OP_REG)
47b0e7ad 816 *errmsg = _("address writeback not allowed");
0d2bcfaf
NC
817 insn |= addrwb_p;
818 }
819 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm)
47b0e7ad 820 *errmsg = _("store value must be zero");
0d2bcfaf
NC
821 return insn;
822}
823
824/* Used in ld insns to do final syntax check. */
252b5132
RH
825
826static arc_insn
47b0e7ad
NC
827insert_ld_syntax (arc_insn insn,
828 const struct arc_operand *operand ATTRIBUTE_UNUSED,
829 int mods ATTRIBUTE_UNUSED,
830 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
831 long value ATTRIBUTE_UNUSED,
832 const char **errmsg)
252b5132 833{
47b0e7ad
NC
834#define LD_SYNTAX(D, B, O) \
835 ( (ls_operand[LS_DEST] == (D) \
836 && ls_operand[LS_BASE] == (B) \
837 && ls_operand[LS_OFFSET] == (O)))
0d2bcfaf 838
47b0e7ad 839 int test = insn & I (-1);
0d2bcfaf 840
47b0e7ad 841 if (!(test == I (1)))
bcee8eb8
AM
842 {
843 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
844 || ls_operand[LS_OFFSET] == OP_SHIMM))
47b0e7ad 845 *errmsg = _("invalid load/shimm insn");
bcee8eb8 846 }
0d2bcfaf
NC
847 if (!(LD_SYNTAX(OP_REG,OP_REG,OP_NONE)
848 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
849 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
850 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
851 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
bcee8eb8 852 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
0d2bcfaf 853 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
47b0e7ad 854 *errmsg = _("ld operand error");
0d2bcfaf
NC
855 if (addrwb_p)
856 {
857 if (ls_operand[LS_BASE] != OP_REG)
47b0e7ad 858 *errmsg = _("address writeback not allowed");
0d2bcfaf
NC
859 insn |= addrwb_p;
860 }
252b5132
RH
861 return insn;
862}
863
0d2bcfaf
NC
864/* Used in ld insns to do final syntax check. */
865
866static long
47b0e7ad
NC
867extract_ld_syntax (arc_insn *insn,
868 const struct arc_operand *operand ATTRIBUTE_UNUSED,
869 int mods ATTRIBUTE_UNUSED,
870 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
871 int *invalid)
0d2bcfaf
NC
872{
873 int test = insn[0] & I(-1);
874
875 if (!(test == I(1)))
876 {
bcee8eb8
AM
877 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
878 || ls_operand[LS_OFFSET] == OP_SHIMM))
0d2bcfaf
NC
879 *invalid = 1;
880 }
47b0e7ad
NC
881 if (!( (LD_SYNTAX (OP_REG, OP_REG, OP_NONE) && (test == I(1)))
882 || LD_SYNTAX (OP_REG, OP_REG, OP_REG)
883 || LD_SYNTAX (OP_REG, OP_REG, OP_SHIMM)
884 || (LD_SYNTAX (OP_REG, OP_REG, OP_LIMM) && !(test == I(1)))
885 || (LD_SYNTAX (OP_REG, OP_LIMM, OP_REG) && !(test == I(1)))
886 || (LD_SYNTAX (OP_REG, OP_SHIMM, OP_NONE) && (shimm == 0))
887 || LD_SYNTAX (OP_REG, OP_SHIMM, OP_SHIMM)
888 || (LD_SYNTAX (OP_REG, OP_LIMM, OP_NONE) && (test == I(1)))))
0d2bcfaf
NC
889 *invalid = 1;
890 return 0;
891}
892
252b5132
RH
893/* Called at the end of processing normal insns (eg: add) to insert a shimm
894 value (if present) into the insn. */
895
896static arc_insn
47b0e7ad
NC
897insert_shimmfinish (arc_insn insn,
898 const struct arc_operand *operand,
899 int mods ATTRIBUTE_UNUSED,
900 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
901 long value ATTRIBUTE_UNUSED,
902 const char **errmsg ATTRIBUTE_UNUSED)
252b5132
RH
903{
904 if (shimm_p)
905 insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift;
906 return insn;
907}
908
909/* Called at the end of processing normal insns (eg: add) to insert a limm
910 value (if present) into the insn.
911
912 Note that this function is only intended to handle instructions (with 4 byte
913 immediate operands). It is not intended to handle data. */
914
915/* ??? Actually, there's nothing for us to do as we can't call frag_more, the
916 caller must do that. The extract fns take a pointer to two words. The
917 insert fns could be converted and then we could do something useful, but
918 then the reloc handlers would have to know to work on the second word of
919 a 2 word quantity. That's too much so we don't handle them. */
920
921static arc_insn
47b0e7ad
NC
922insert_limmfinish (arc_insn insn,
923 const struct arc_operand *operand ATTRIBUTE_UNUSED,
924 int mods ATTRIBUTE_UNUSED,
925 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
926 long value ATTRIBUTE_UNUSED,
927 const char **errmsg ATTRIBUTE_UNUSED)
252b5132 928{
0d2bcfaf
NC
929 return insn;
930}
931
932static arc_insn
47b0e7ad
NC
933insert_jumpflags (arc_insn insn,
934 const struct arc_operand *operand,
935 int mods ATTRIBUTE_UNUSED,
936 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
937 long value,
938 const char **errmsg)
0d2bcfaf
NC
939{
940 if (!flag_p)
47b0e7ad
NC
941 *errmsg = _("jump flags, but no .f seen");
942
943 else if (!limm_p)
944 *errmsg = _("jump flags, but no limm addr");
945
946 else if (limm & 0xfc000000)
947 *errmsg = _("flag bits of jump address limm lost");
948
949 else if (limm & 0x03000000)
950 *errmsg = _("attempt to set HR bits");
951
952 else if ((value & ((1 << operand->bits) - 1)) != value)
953 *errmsg = _("bad jump flags value");
954
955 jumpflags_p = 1;
bcee8eb8
AM
956 limm = ((limm & ((1 << operand->shift) - 1))
957 | ((value & ((1 << operand->bits) - 1)) << operand->shift));
252b5132
RH
958 return insn;
959}
960
961/* Called at the end of unary operand macros to copy the B field to C. */
962
963static arc_insn
47b0e7ad
NC
964insert_unopmacro (arc_insn insn,
965 const struct arc_operand *operand,
966 int mods ATTRIBUTE_UNUSED,
967 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
968 long value ATTRIBUTE_UNUSED,
969 const char **errmsg ATTRIBUTE_UNUSED)
252b5132
RH
970{
971 insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift;
972 return insn;
973}
974
975/* Insert a relative address for a branch insn (b, bl, or lp). */
976
977static arc_insn
47b0e7ad
NC
978insert_reladdr (arc_insn insn,
979 const struct arc_operand *operand,
980 int mods ATTRIBUTE_UNUSED,
981 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
982 long value,
983 const char **errmsg)
252b5132
RH
984{
985 if (value & 3)
47b0e7ad 986 *errmsg = _("branch address not on 4 byte boundary");
252b5132
RH
987 insn |= ((value >> 2) & ((1 << operand->bits) - 1)) << operand->shift;
988 return insn;
989}
990
991/* Insert a limm value as a 26 bit address right shifted 2 into the insn.
992
993 Note that this function is only intended to handle instructions (with 4 byte
994 immediate operands). It is not intended to handle data. */
995
0d2bcfaf 996/* ??? Actually, there's little for us to do as we can't call frag_more, the
252b5132
RH
997 caller must do that. The extract fns take a pointer to two words. The
998 insert fns could be converted and then we could do something useful, but
999 then the reloc handlers would have to know to work on the second word of
0d2bcfaf
NC
1000 a 2 word quantity. That's too much so we don't handle them.
1001
1002 We do check for correct usage of the nullify suffix, or we
1003 set the default correctly, though. */
252b5132
RH
1004
1005static arc_insn
47b0e7ad
NC
1006insert_absaddr (arc_insn insn,
1007 const struct arc_operand *operand ATTRIBUTE_UNUSED,
1008 int mods ATTRIBUTE_UNUSED,
1009 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
1010 long value ATTRIBUTE_UNUSED,
1011 const char **errmsg)
252b5132
RH
1012{
1013 if (limm_p)
0d2bcfaf 1014 {
47b0e7ad
NC
1015 /* If it is a jump and link, .jd must be specified. */
1016 if (insn & R (-1, 9, 1))
0d2bcfaf
NC
1017 {
1018 if (!nullify_p)
47b0e7ad
NC
1019 insn |= 0x02 << 5; /* Default nullify to .jd. */
1020
1021 else if (nullify != 0x02)
1022 *errmsg = _("must specify .jd or no nullify suffix");
0d2bcfaf
NC
1023 }
1024 }
252b5132
RH
1025 return insn;
1026}
1027\f
1028/* Extraction functions.
1029
1030 The suffix extraction functions' return value is redundant since it can be
1031 obtained from (*OPVAL)->value. However, the boolean suffixes don't have
1032 a suffix table entry for the "false" case, so values of zero must be
1033 obtained from the return value (*OPVAL == NULL). */
1034
252b5132
RH
1035/* Called by the disassembler before printing an instruction. */
1036
1037void
47b0e7ad
NC
1038arc_opcode_init_extract (void)
1039{
1040 arc_opcode_init_insert ();
1041}
1042
1043static const struct arc_operand_value *
1044lookup_register (int type, long regno)
252b5132 1045{
47b0e7ad
NC
1046 const struct arc_operand_value *r,*end;
1047 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1048
1049 while (ext_oper)
1050 {
1051 if (ext_oper->operand.type == type && ext_oper->operand.value == regno)
1052 return (&ext_oper->operand);
1053 ext_oper = ext_oper->next;
1054 }
1055
1056 if (type == REG)
1057 return &arc_reg_names[regno];
1058
1059 /* ??? This is a little slow and can be speeded up. */
1060 for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count;
1061 r < end; ++r)
1062 if (type == r->type && regno == r->value)
1063 return r;
1064 return 0;
252b5132
RH
1065}
1066
1067/* As we're extracting registers, keep an eye out for the 'f' indicator
1068 (ARC_REG_SHIMM_UPDATE). If we find a register (not a constant marker,
1069 like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register.
1070
1071 We must also handle auxiliary registers for lr/sr insns. They are just
1072 constants with special names. */
1073
1074static long
47b0e7ad
NC
1075extract_reg (arc_insn *insn,
1076 const struct arc_operand *operand,
1077 int mods,
1078 const struct arc_operand_value **opval,
1079 int *invalid ATTRIBUTE_UNUSED)
252b5132
RH
1080{
1081 int regno;
1082 long value;
0d2bcfaf 1083 enum operand op_type;
252b5132
RH
1084
1085 /* Get the register number. */
0d2bcfaf 1086 regno = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
252b5132
RH
1087
1088 /* Is it a constant marker? */
1089 if (regno == ARC_REG_SHIMM)
1090 {
0d2bcfaf 1091 op_type = OP_SHIMM;
47b0e7ad 1092 /* Always return zero if dest is a shimm mlm. */
0d2bcfaf
NC
1093
1094 if ('a' != operand->fmt)
1095 {
1096 value = *insn & 511;
1097 if ((operand->flags & ARC_OPERAND_SIGNED)
1098 && (value & 256))
1099 value -= 512;
1100 if (!flagshimm_handled_p)
1101 flag_p = 0;
1102 flagshimm_handled_p = 1;
1103 }
1104 else
47b0e7ad 1105 value = 0;
252b5132
RH
1106 }
1107 else if (regno == ARC_REG_SHIMM_UPDATE)
1108 {
0d2bcfaf
NC
1109 op_type = OP_SHIMM;
1110
47b0e7ad 1111 /* Always return zero if dest is a shimm mlm. */
0d2bcfaf
NC
1112 if ('a' != operand->fmt)
1113 {
1114 value = *insn & 511;
1115 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1116 value -= 512;
1117 }
1118 else
47b0e7ad
NC
1119 value = 0;
1120
252b5132
RH
1121 flag_p = 1;
1122 flagshimm_handled_p = 1;
1123 }
1124 else if (regno == ARC_REG_LIMM)
1125 {
0d2bcfaf 1126 op_type = OP_LIMM;
252b5132
RH
1127 value = insn[1];
1128 limm_p = 1;
47b0e7ad
NC
1129
1130 /* If this is a jump instruction (j,jl), show new pc correctly. */
bcee8eb8 1131 if (0x07 == ((*insn & I(-1)) >> 27))
47b0e7ad 1132 value = (value & 0xffffff);
252b5132 1133 }
47b0e7ad 1134
252b5132
RH
1135 /* It's a register, set OPVAL (that's the only way we distinguish registers
1136 from constants here). */
1137 else
1138 {
1139 const struct arc_operand_value *reg = lookup_register (REG, regno);
47b0e7ad 1140
0d2bcfaf 1141 op_type = OP_REG;
252b5132 1142
47b0e7ad
NC
1143 if (reg == NULL)
1144 abort ();
1145 if (opval != NULL)
1146 *opval = reg;
1147 value = regno;
1148 }
1149
1150 /* If this field takes an auxiliary register, see if it's a known one. */
1151 if ((mods & ARC_MOD_AUXREG)
1152 && ARC_REG_CONSTANT_P (regno))
1153 {
1154 const struct arc_operand_value *reg = lookup_register (AUXREG, value);
1155
1156 /* This is really a constant, but tell the caller it has a special
1157 name. */
1158 if (reg != NULL && opval != NULL)
1159 *opval = reg;
1160 }
1161
1162 switch(operand->fmt)
1163 {
1164 case 'a':
1165 ls_operand[LS_DEST] = op_type;
1166 break;
1167 case 's':
1168 ls_operand[LS_BASE] = op_type;
1169 break;
1170 case 'c':
1171 if ((insn[0]& I(-1)) == I(2))
1172 ls_operand[LS_VALUE] = op_type;
1173 else
1174 ls_operand[LS_OFFSET] = op_type;
1175 break;
1176 case 'o': case 'O':
1177 ls_operand[LS_OFFSET] = op_type;
1178 break;
1179 }
1180
1181 return value;
1182}
1183
1184/* Return the value of the "flag update" field for shimm insns.
1185 This value is actually stored in the register field. */
1186
1187static long
1188extract_flag (arc_insn *insn,
1189 const struct arc_operand *operand,
1190 int mods ATTRIBUTE_UNUSED,
1191 const struct arc_operand_value **opval,
1192 int *invalid ATTRIBUTE_UNUSED)
1193{
1194 int f;
1195 const struct arc_operand_value *val;
1196
1197 if (flagshimm_handled_p)
1198 f = flag_p != 0;
1199 else
1200 f = (*insn & (1 << operand->shift)) != 0;
1201
1202 /* There is no text for zero values. */
1203 if (f == 0)
1204 return 0;
1205 flag_p = 1;
1206 val = arc_opcode_lookup_suffix (operand, 1);
1207 if (opval != NULL && val != NULL)
1208 *opval = val;
1209 return val->value;
1210}
1211
1212/* Extract the condition code (if it exists).
1213 If we've seen a shimm value in this insn (meaning that the insn can't have
1214 a condition code field), then we don't store anything in OPVAL and return
1215 zero. */
1216
1217static long
1218extract_cond (arc_insn *insn,
1219 const struct arc_operand *operand,
1220 int mods ATTRIBUTE_UNUSED,
1221 const struct arc_operand_value **opval,
1222 int *invalid ATTRIBUTE_UNUSED)
1223{
1224 long cond;
1225 const struct arc_operand_value *val;
1226
1227 if (flagshimm_handled_p)
1228 return 0;
1229
1230 cond = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1231 val = arc_opcode_lookup_suffix (operand, cond);
1232
1233 /* Ignore NULL values of `val'. Several condition code values are
1234 reserved for extensions. */
1235 if (opval != NULL && val != NULL)
1236 *opval = val;
1237 return cond;
1238}
1239
1240/* Extract a branch address.
1241 We return the value as a real address (not right shifted by 2). */
1242
1243static long
1244extract_reladdr (arc_insn *insn,
1245 const struct arc_operand *operand,
1246 int mods ATTRIBUTE_UNUSED,
1247 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1248 int *invalid ATTRIBUTE_UNUSED)
1249{
1250 long addr;
1251
1252 addr = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1253 if ((operand->flags & ARC_OPERAND_SIGNED)
1254 && (addr & (1 << (operand->bits - 1))))
1255 addr -= 1 << operand->bits;
1256 return addr << 2;
1257}
1258
1259/* Extract the flags bits from a j or jl long immediate. */
1260
1261static long
1262extract_jumpflags (arc_insn *insn,
1263 const struct arc_operand *operand,
1264 int mods ATTRIBUTE_UNUSED,
1265 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1266 int *invalid)
1267{
1268 if (!flag_p || !limm_p)
1269 *invalid = 1;
1270 return ((flag_p && limm_p)
1271 ? (insn[1] >> operand->shift) & ((1 << operand->bits) -1): 0);
1272}
1273
1274/* Extract st insn's offset. */
1275
1276static long
1277extract_st_offset (arc_insn *insn,
1278 const struct arc_operand *operand,
1279 int mods ATTRIBUTE_UNUSED,
1280 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1281 int *invalid)
1282{
1283 int value = 0;
1284
1285 if (ls_operand[LS_VALUE] != OP_SHIMM || ls_operand[LS_BASE] != OP_LIMM)
1286 {
1287 value = insn[0] & 511;
1288 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1289 value -= 512;
1290 if (value)
1291 ls_operand[LS_OFFSET] = OP_SHIMM;
1292 }
1293 else
1294 *invalid = 1;
1295
1296 return value;
1297}
1298
1299/* Extract ld insn's offset. */
1300
1301static long
1302extract_ld_offset (arc_insn *insn,
1303 const struct arc_operand *operand,
1304 int mods,
1305 const struct arc_operand_value **opval,
1306 int *invalid)
1307{
1308 int test = insn[0] & I(-1);
1309 int value;
1310
1311 if (test)
1312 {
1313 value = insn[0] & 511;
1314 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1315 value -= 512;
1316 if (value)
1317 ls_operand[LS_OFFSET] = OP_SHIMM;
1318
1319 return value;
1320 }
1321 /* If it isn't in the insn, it's concealed behind reg 'c'. */
1322 return extract_reg (insn, &arc_operands[arc_operand_map['c']],
1323 mods, opval, invalid);
1324}
1325
1326/* The only thing this does is set the `invalid' flag if B != C.
1327 This is needed because the "mov" macro appears before it's real insn "and"
1328 and we don't want the disassembler to confuse them. */
1329
1330static long
1331extract_unopmacro (arc_insn *insn,
1332 const struct arc_operand *operand ATTRIBUTE_UNUSED,
1333 int mods ATTRIBUTE_UNUSED,
1334 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1335 int *invalid)
1336{
1337 /* This misses the case where B == ARC_REG_SHIMM_UPDATE &&
1338 C == ARC_REG_SHIMM (or vice versa). No big deal. Those insns will get
1339 printed as "and"s. */
1340 if (((*insn >> ARC_SHIFT_REGB) & ARC_MASK_REG)
1341 != ((*insn >> ARC_SHIFT_REGC) & ARC_MASK_REG))
1342 if (invalid != NULL)
1343 *invalid = 1;
1344 return 0;
1345}
1346\f
1347/* ARC instructions.
1348
1349 Longer versions of insns must appear before shorter ones (if gas sees
1350 "lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is
1351 junk). This isn't necessary for `ld' because of the trailing ']'.
1352
1353 Instructions that are really macros based on other insns must appear
1354 before the real insn so they're chosen when disassembling. Eg: The `mov'
1355 insn is really the `and' insn. */
1356
1357struct arc_opcode arc_opcodes[] =
1358{
1359 /* Base case instruction set (core versions 5-8). */
1360
1361 /* "mov" is really an "and". */
1362 { "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12), ARC_MACH_5, 0, 0 },
1363 /* "asl" is really an "add". */
1364 { "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
1365 /* "lsl" is really an "add". */
1366 { "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
1367 /* "nop" is really an "xor". */
1368 { "nop", 0x7fffffff, 0x7fffffff, ARC_MACH_5, 0, 0 },
1369 /* "rlc" is really an "adc". */
1370 { "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9), ARC_MACH_5, 0, 0 },
1371 { "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9), ARC_MACH_5, 0, 0 },
1372 { "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8), ARC_MACH_5, 0, 0 },
1373 { "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12), ARC_MACH_5, 0, 0 },
1374 { "asr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(1), ARC_MACH_5, 0, 0 },
1375 { "bic%.q%.f %a,%b,%c%F%S%L", I(-1), I(14), ARC_MACH_5, 0, 0 },
1376 { "b%q%.n %B", I(-1), I(4), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1377 { "bl%q%.n %B", I(-1), I(5), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1378 { "extb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(7), ARC_MACH_5, 0, 0 },
1379 { "extw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(8), ARC_MACH_5, 0, 0 },
1380 { "flag%.q %b%G%S%L", I(-1)|A(-1)|C(-1), I(3)|A(ARC_REG_SHIMM_UPDATE)|C(0), ARC_MACH_5, 0, 0 },
1381 { "brk", 0x1ffffe00, 0x1ffffe00, ARC_MACH_7, 0, 0 },
1382 { "sleep", 0x1ffffe01, 0x1ffffe01, ARC_MACH_7, 0, 0 },
1383 { "swi", 0x1ffffe02, 0x1ffffe02, ARC_MACH_8, 0, 0 },
1384 /* %Q: force cond_p=1 -> no shimm values. This insn allows an
1385 optional flags spec. */
1386 { "j%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1387 { "j%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1388 /* This insn allows an optional flags spec. */
1389 { "jl%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1390 { "jl%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1391 /* Put opcode 1 ld insns first so shimm gets prefered over limm.
1392 "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
1393 { "ld%Z%.X%.W%.E %a,[%s]%S%L%1", I(-1)|R(-1,13,1)|R(-1,0,511), I(1)|R(0,13,1)|R(0,0,511), ARC_MACH_5, 0, 0 },
1394 { "ld%z%.x%.w%.e %a,[%s]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
1395 { "ld%z%.x%.w%.e %a,[%s,%O]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
1396 { "ld%Z%.X%.W%.E %a,[%s,%O]%S%L%3", I(-1)|R(-1,13,1), I(1)|R(0,13,1), ARC_MACH_5, 0, 0 },
1397 { "lp%q%.n %B", I(-1), I(6), ARC_MACH_5, 0, 0 },
1398 { "lr %a,[%Ab]%S%L", I(-1)|C(-1), I(1)|C(0x10), ARC_MACH_5, 0, 0 },
1399 { "lsr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(2), ARC_MACH_5, 0, 0 },
1400 { "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13), ARC_MACH_5, 0, 0 },
1401 { "ror%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(3), ARC_MACH_5, 0, 0 },
1402 { "rrc%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(4), ARC_MACH_5, 0, 0 },
1403 { "sbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(11), ARC_MACH_5, 0, 0 },
1404 { "sexb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(5), ARC_MACH_5, 0, 0 },
1405 { "sexw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(6), ARC_MACH_5, 0, 0 },
1406 { "sr %c,[%Ab]%S%L", I(-1)|A(-1), I(2)|A(0x10), ARC_MACH_5, 0, 0 },
1407 /* "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
1408 { "st%y%.v%.D %c,[%s]%L%S%0", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
1409 { "st%y%.v%.D %c,[%s,%o]%S%L%2", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
1410 { "sub%.q%.f %a,%b,%c%F%S%L", I(-1), I(10), ARC_MACH_5, 0, 0 },
1411 { "xor%.q%.f %a,%b,%c%F%S%L", I(-1), I(15), ARC_MACH_5, 0, 0 }
1412};
1413
1414const int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]);
1415
1416const struct arc_operand_value arc_reg_names[] =
1417{
1418 /* Core register set r0-r63. */
1419
1420 /* r0-r28 - general purpose registers. */
1421 { "r0", 0, REG, 0 }, { "r1", 1, REG, 0 }, { "r2", 2, REG, 0 },
1422 { "r3", 3, REG, 0 }, { "r4", 4, REG, 0 }, { "r5", 5, REG, 0 },
1423 { "r6", 6, REG, 0 }, { "r7", 7, REG, 0 }, { "r8", 8, REG, 0 },
1424 { "r9", 9, REG, 0 }, { "r10", 10, REG, 0 }, { "r11", 11, REG, 0 },
1425 { "r12", 12, REG, 0 }, { "r13", 13, REG, 0 }, { "r14", 14, REG, 0 },
1426 { "r15", 15, REG, 0 }, { "r16", 16, REG, 0 }, { "r17", 17, REG, 0 },
1427 { "r18", 18, REG, 0 }, { "r19", 19, REG, 0 }, { "r20", 20, REG, 0 },
1428 { "r21", 21, REG, 0 }, { "r22", 22, REG, 0 }, { "r23", 23, REG, 0 },
1429 { "r24", 24, REG, 0 }, { "r25", 25, REG, 0 }, { "r26", 26, REG, 0 },
1430 { "r27", 27, REG, 0 }, { "r28", 28, REG, 0 },
1431 /* Maskable interrupt link register. */
1432 { "ilink1", 29, REG, 0 },
1433 /* Maskable interrupt link register. */
1434 { "ilink2", 30, REG, 0 },
1435 /* Branch-link register. */
1436 { "blink", 31, REG, 0 },
1437
1438 /* r32-r59 reserved for extensions. */
1439 { "r32", 32, REG, 0 }, { "r33", 33, REG, 0 }, { "r34", 34, REG, 0 },
1440 { "r35", 35, REG, 0 }, { "r36", 36, REG, 0 }, { "r37", 37, REG, 0 },
1441 { "r38", 38, REG, 0 }, { "r39", 39, REG, 0 }, { "r40", 40, REG, 0 },
1442 { "r41", 41, REG, 0 }, { "r42", 42, REG, 0 }, { "r43", 43, REG, 0 },
1443 { "r44", 44, REG, 0 }, { "r45", 45, REG, 0 }, { "r46", 46, REG, 0 },
1444 { "r47", 47, REG, 0 }, { "r48", 48, REG, 0 }, { "r49", 49, REG, 0 },
1445 { "r50", 50, REG, 0 }, { "r51", 51, REG, 0 }, { "r52", 52, REG, 0 },
1446 { "r53", 53, REG, 0 }, { "r54", 54, REG, 0 }, { "r55", 55, REG, 0 },
1447 { "r56", 56, REG, 0 }, { "r57", 57, REG, 0 }, { "r58", 58, REG, 0 },
1448 { "r59", 59, REG, 0 },
1449
1450 /* Loop count register (24 bits). */
1451 { "lp_count", 60, REG, 0 },
1452 /* Short immediate data indicator setting flags. */
1453 { "r61", 61, REG, ARC_REGISTER_READONLY },
1454 /* Long immediate data indicator setting flags. */
1455 { "r62", 62, REG, ARC_REGISTER_READONLY },
1456 /* Short immediate data indicator not setting flags. */
1457 { "r63", 63, REG, ARC_REGISTER_READONLY },
1458
1459 /* Small-data base register. */
1460 { "gp", 26, REG, 0 },
1461 /* Frame pointer. */
1462 { "fp", 27, REG, 0 },
1463 /* Stack pointer. */
1464 { "sp", 28, REG, 0 },
1465
1466 { "r29", 29, REG, 0 },
1467 { "r30", 30, REG, 0 },
1468 { "r31", 31, REG, 0 },
1469 { "r60", 60, REG, 0 },
1470
1471 /* Auxiliary register set. */
1472
1473 /* Auxiliary register address map:
1474 0xffffffff-0xffffff00 (-1..-256) - customer shimm allocation
1475 0xfffffeff-0x80000000 - customer limm allocation
1476 0x7fffffff-0x00000100 - ARC limm allocation
1477 0x000000ff-0x00000000 - ARC shimm allocation */
1478
1479 /* Base case auxiliary registers (shimm address). */
1480 { "status", 0x00, AUXREG, 0 },
1481 { "semaphore", 0x01, AUXREG, 0 },
1482 { "lp_start", 0x02, AUXREG, 0 },
1483 { "lp_end", 0x03, AUXREG, 0 },
1484 { "identity", 0x04, AUXREG, ARC_REGISTER_READONLY },
1485 { "debug", 0x05, AUXREG, 0 },
1486};
1487
1488const int arc_reg_names_count =
1489 sizeof (arc_reg_names) / sizeof (arc_reg_names[0]);
1490
1491/* The suffix table.
1492 Operands with the same name must be stored together. */
1493
1494const struct arc_operand_value arc_suffixes[] =
1495{
1496 /* Entry 0 is special, default values aren't printed by the disassembler. */
1497 { "", 0, -1, 0 },
1498
1499 /* Base case condition codes. */
1500 { "al", 0, COND, 0 },
1501 { "ra", 0, COND, 0 },
1502 { "eq", 1, COND, 0 },
1503 { "z", 1, COND, 0 },
1504 { "ne", 2, COND, 0 },
1505 { "nz", 2, COND, 0 },
1506 { "pl", 3, COND, 0 },
1507 { "p", 3, COND, 0 },
1508 { "mi", 4, COND, 0 },
1509 { "n", 4, COND, 0 },
1510 { "cs", 5, COND, 0 },
1511 { "c", 5, COND, 0 },
1512 { "lo", 5, COND, 0 },
1513 { "cc", 6, COND, 0 },
1514 { "nc", 6, COND, 0 },
1515 { "hs", 6, COND, 0 },
1516 { "vs", 7, COND, 0 },
1517 { "v", 7, COND, 0 },
1518 { "vc", 8, COND, 0 },
1519 { "nv", 8, COND, 0 },
1520 { "gt", 9, COND, 0 },
1521 { "ge", 10, COND, 0 },
1522 { "lt", 11, COND, 0 },
1523 { "le", 12, COND, 0 },
1524 { "hi", 13, COND, 0 },
1525 { "ls", 14, COND, 0 },
1526 { "pnz", 15, COND, 0 },
1527
1528 /* Condition codes 16-31 reserved for extensions. */
1529
1530 { "f", 1, FLAG, 0 },
1531
1532 { "nd", ARC_DELAY_NONE, DELAY, 0 },
1533 { "d", ARC_DELAY_NORMAL, DELAY, 0 },
1534 { "jd", ARC_DELAY_JUMP, DELAY, 0 },
1535
1536 { "b", 1, SIZE1, 0 },
1537 { "b", 1, SIZE10, 0 },
1538 { "b", 1, SIZE22, 0 },
1539 { "w", 2, SIZE1, 0 },
1540 { "w", 2, SIZE10, 0 },
1541 { "w", 2, SIZE22, 0 },
1542 { "x", 1, SIGN0, 0 },
1543 { "x", 1, SIGN9, 0 },
1544 { "a", 1, ADDRESS3, 0 },
1545 { "a", 1, ADDRESS12, 0 },
1546 { "a", 1, ADDRESS24, 0 },
252b5132 1547
47b0e7ad
NC
1548 { "di", 1, CACHEBYPASS5, 0 },
1549 { "di", 1, CACHEBYPASS14, 0 },
1550 { "di", 1, CACHEBYPASS26, 0 },
1551};
252b5132 1552
47b0e7ad
NC
1553const int arc_suffixes_count =
1554 sizeof (arc_suffixes) / sizeof (arc_suffixes[0]);
252b5132 1555
47b0e7ad
NC
1556/* Indexed by first letter of opcode. Points to chain of opcodes with same
1557 first letter. */
1558static struct arc_opcode *opcode_map[26 + 1];
252b5132 1559
47b0e7ad
NC
1560/* Indexed by insn code. Points to chain of opcodes with same insn code. */
1561static struct arc_opcode *icode_map[32];
1562\f
1563/* Configuration flags. */
252b5132 1564
47b0e7ad
NC
1565/* Various ARC_HAVE_XXX bits. */
1566static int cpu_type;
252b5132 1567
47b0e7ad 1568/* Translate a bfd_mach_arc_xxx value to a ARC_MACH_XXX value. */
252b5132 1569
47b0e7ad
NC
1570int
1571arc_get_opcode_mach (int bfd_mach, int big_p)
1572{
1573 static int mach_type_map[] =
1574 {
1575 ARC_MACH_5,
1576 ARC_MACH_6,
1577 ARC_MACH_7,
1578 ARC_MACH_8
1579 };
1580 return mach_type_map[bfd_mach - bfd_mach_arc_5] | (big_p ? ARC_MACH_BIG : 0);
252b5132
RH
1581}
1582
47b0e7ad
NC
1583/* Initialize any tables that need it.
1584 Must be called once at start up (or when first needed).
252b5132 1585
47b0e7ad
NC
1586 FLAGS is a set of bits that say what version of the cpu we have,
1587 and in particular at least (one of) ARC_MACH_XXX. */
1588
1589void
1590arc_opcode_init_tables (int flags)
252b5132 1591{
47b0e7ad 1592 static int init_p = 0;
252b5132 1593
47b0e7ad 1594 cpu_type = flags;
252b5132 1595
47b0e7ad
NC
1596 /* We may be intentionally called more than once (for example gdb will call
1597 us each time the user switches cpu). These tables only need to be init'd
1598 once though. */
1599 if (!init_p)
1600 {
1601 int i,n;
252b5132 1602
47b0e7ad
NC
1603 memset (arc_operand_map, 0, sizeof (arc_operand_map));
1604 n = sizeof (arc_operands) / sizeof (arc_operands[0]);
1605 for (i = 0; i < n; ++i)
1606 arc_operand_map[arc_operands[i].fmt] = i;
252b5132 1607
47b0e7ad
NC
1608 memset (opcode_map, 0, sizeof (opcode_map));
1609 memset (icode_map, 0, sizeof (icode_map));
1610 /* Scan the table backwards so macros appear at the front. */
1611 for (i = arc_opcodes_count - 1; i >= 0; --i)
1612 {
1613 int opcode_hash = ARC_HASH_OPCODE (arc_opcodes[i].syntax);
1614 int icode_hash = ARC_HASH_ICODE (arc_opcodes[i].value);
252b5132 1615
47b0e7ad
NC
1616 arc_opcodes[i].next_asm = opcode_map[opcode_hash];
1617 opcode_map[opcode_hash] = &arc_opcodes[i];
252b5132 1618
47b0e7ad
NC
1619 arc_opcodes[i].next_dis = icode_map[icode_hash];
1620 icode_map[icode_hash] = &arc_opcodes[i];
1621 }
1622
1623 init_p = 1;
1624 }
252b5132
RH
1625}
1626
47b0e7ad
NC
1627/* Return non-zero if OPCODE is supported on the specified cpu.
1628 Cpu selection is made when calling `arc_opcode_init_tables'. */
1629
1630int
1631arc_opcode_supported (const struct arc_opcode *opcode)
0d2bcfaf 1632{
47b0e7ad
NC
1633 if (ARC_OPCODE_CPU (opcode->flags) <= cpu_type)
1634 return 1;
1635 return 0;
0d2bcfaf
NC
1636}
1637
47b0e7ad 1638/* Return the first insn in the chain for assembling INSN. */
0d2bcfaf 1639
47b0e7ad
NC
1640const struct arc_opcode *
1641arc_opcode_lookup_asm (const char *insn)
0d2bcfaf 1642{
47b0e7ad
NC
1643 return opcode_map[ARC_HASH_OPCODE (insn)];
1644}
0d2bcfaf 1645
47b0e7ad
NC
1646/* Return the first insn in the chain for disassembling INSN. */
1647
1648const struct arc_opcode *
1649arc_opcode_lookup_dis (unsigned int insn)
1650{
1651 return icode_map[ARC_HASH_ICODE (insn)];
0d2bcfaf
NC
1652}
1653
47b0e7ad 1654/* Called by the assembler before parsing an instruction. */
0d2bcfaf 1655
47b0e7ad
NC
1656void
1657arc_opcode_init_insert (void)
0d2bcfaf 1658{
47b0e7ad 1659 int i;
0d2bcfaf 1660
47b0e7ad
NC
1661 for(i = 0; i < OPERANDS; i++)
1662 ls_operand[i] = OP_NONE;
1663
1664 flag_p = 0;
1665 flagshimm_handled_p = 0;
1666 cond_p = 0;
1667 addrwb_p = 0;
1668 shimm_p = 0;
1669 limm_p = 0;
1670 jumpflags_p = 0;
1671 nullify_p = 0;
1672 nullify = 0; /* The default is important. */
0d2bcfaf
NC
1673}
1674
47b0e7ad
NC
1675/* Called by the assembler to see if the insn has a limm operand.
1676 Also called by the disassembler to see if the insn contains a limm. */
252b5132 1677
47b0e7ad
NC
1678int
1679arc_opcode_limm_p (long *limmp)
252b5132 1680{
47b0e7ad
NC
1681 if (limmp)
1682 *limmp = limm;
1683 return limm_p;
252b5132
RH
1684}
1685
1686/* Utility for the extraction functions to return the index into
1687 `arc_suffixes'. */
1688
1689const struct arc_operand_value *
47b0e7ad 1690arc_opcode_lookup_suffix (const struct arc_operand *type, int value)
252b5132 1691{
47b0e7ad 1692 const struct arc_operand_value *v,*end;
0d2bcfaf
NC
1693 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1694
1695 while (ext_oper)
1696 {
1697 if (type == &arc_operands[ext_oper->operand.type]
1698 && value == ext_oper->operand.value)
1699 return (&ext_oper->operand);
1700 ext_oper = ext_oper->next;
1701 }
252b5132
RH
1702
1703 /* ??? This is a little slow and can be speeded up. */
252b5132
RH
1704 for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v)
1705 if (type == &arc_operands[v->type]
1706 && value == v->value)
1707 return v;
1708 return 0;
1709}
1710
0d2bcfaf 1711int
47b0e7ad 1712arc_insn_is_j (arc_insn insn)
0d2bcfaf
NC
1713{
1714 return (insn & (I(-1))) == I(0x7);
1715}
1716
1717int
47b0e7ad 1718arc_insn_not_jl (arc_insn insn)
0d2bcfaf 1719{
bcee8eb8
AM
1720 return ((insn & (I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1)))
1721 != (I(0x7) | R(-1,9,1)));
0d2bcfaf
NC
1722}
1723
1724int
47b0e7ad 1725arc_operand_type (int opertype)
0d2bcfaf
NC
1726{
1727 switch (opertype)
1728 {
1729 case 0:
47b0e7ad 1730 return COND;
0d2bcfaf
NC
1731 break;
1732 case 1:
47b0e7ad 1733 return REG;
0d2bcfaf
NC
1734 break;
1735 case 2:
47b0e7ad 1736 return AUXREG;
0d2bcfaf
NC
1737 break;
1738 }
1739 return -1;
1740}
1741
1742struct arc_operand_value *
47b0e7ad 1743get_ext_suffix (char *s)
0d2bcfaf
NC
1744{
1745 struct arc_ext_operand_value *suffix = arc_ext_operands;
1746
1747 while (suffix)
1748 {
1749 if ((COND == suffix->operand.type)
1750 && !strcmp(s,suffix->operand.name))
1751 return(&suffix->operand);
1752 suffix = suffix->next;
1753 }
bcee8eb8 1754 return NULL;
0d2bcfaf
NC
1755}
1756
1757int
47b0e7ad 1758arc_get_noshortcut_flag (void)
0d2bcfaf 1759{
bcee8eb8 1760 return ARC_REGISTER_NOSHORT_CUT;
0d2bcfaf 1761}
This page took 0.35843 seconds and 4 git commands to generate.