SELinux: remove the unused ae.used
[deliverable/linux.git] / security / selinux / avc.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
95fff33b 5 * James Morris <jmorris@redhat.com>
1da177e4
LT
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
95fff33b 8 * Replaced the avc_lock spinlock by RCU.
1da177e4
LT
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
95fff33b 14 * as published by the Free Software Foundation.
1da177e4
LT
15 */
16#include <linux/types.h>
17#include <linux/stddef.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/dcache.h>
22#include <linux/init.h>
23#include <linux/skbuff.h>
24#include <linux/percpu.h>
25#include <net/sock.h>
26#include <linux/un.h>
27#include <net/af_unix.h>
28#include <linux/ip.h>
29#include <linux/audit.h>
30#include <linux/ipv6.h>
31#include <net/ipv6.h>
32#include "avc.h"
33#include "avc_ss.h"
34
5c458998 35static const struct av_perm_to_string av_perm_to_string[] = {
1da177e4
LT
36#define S_(c, v, s) { c, v, s },
37#include "av_perm_to_string.h"
38#undef S_
39};
40
1da177e4
LT
41static const char *class_to_string[] = {
42#define S_(s) s,
43#include "class_to_string.h"
44#undef S_
45};
1da177e4 46
95fff33b 47#define TB_(s) static const char *s[] = {
1da177e4
LT
48#define TE_(s) };
49#define S_(s) s,
50#include "common_perm_to_string.h"
51#undef TB_
52#undef TE_
53#undef S_
54
5c458998 55static const struct av_inherit av_inherit[] = {
76f7ba35
EP
56#define S_(c, i, b) { .tclass = c,\
57 .common_pts = common_##i##_perm_to_string,\
58 .common_base = b },
1da177e4
LT
59#include "av_inherit.h"
60#undef S_
61};
62
5c458998 63const struct selinux_class_perm selinux_class_perm = {
76f7ba35
EP
64 .av_perm_to_string = av_perm_to_string,
65 .av_pts_len = ARRAY_SIZE(av_perm_to_string),
66 .class_to_string = class_to_string,
67 .cts_len = ARRAY_SIZE(class_to_string),
68 .av_inherit = av_inherit,
69 .av_inherit_len = ARRAY_SIZE(av_inherit)
5c458998
CS
70};
71
1da177e4
LT
72#define AVC_CACHE_SLOTS 512
73#define AVC_DEF_CACHE_THRESHOLD 512
74#define AVC_CACHE_RECLAIM 16
75
76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
95fff33b 77#define avc_cache_stats_incr(field) \
1da177e4
LT
78do { \
79 per_cpu(avc_cache_stats, get_cpu()).field++; \
80 put_cpu(); \
81} while (0)
82#else
83#define avc_cache_stats_incr(field) do {} while (0)
84#endif
85
86struct avc_entry {
87 u32 ssid;
88 u32 tsid;
89 u16 tclass;
90 struct av_decision avd;
1da177e4
LT
91};
92
93struct avc_node {
94 struct avc_entry ae;
95 struct list_head list;
95fff33b 96 struct rcu_head rhead;
1da177e4
LT
97};
98
99struct avc_cache {
100 struct list_head slots[AVC_CACHE_SLOTS];
101 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
102 atomic_t lru_hint; /* LRU hint for reclaim scan */
103 atomic_t active_nodes;
104 u32 latest_notif; /* latest revocation notification */
105};
106
107struct avc_callback_node {
108 int (*callback) (u32 event, u32 ssid, u32 tsid,
95fff33b
EP
109 u16 tclass, u32 perms,
110 u32 *out_retained);
1da177e4
LT
111 u32 events;
112 u32 ssid;
113 u32 tsid;
114 u16 tclass;
115 u32 perms;
116 struct avc_callback_node *next;
117};
118
119/* Exported via selinufs */
120unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
121
122#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
123DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
124#endif
125
126static struct avc_cache avc_cache;
127static struct avc_callback_node *avc_callbacks;
e18b890b 128static struct kmem_cache *avc_node_cachep;
1da177e4
LT
129
130static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
131{
132 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
133}
134
135/**
136 * avc_dump_av - Display an access vector in human-readable form.
137 * @tclass: target security class
138 * @av: access vector
139 */
d9250dea 140void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
1da177e4
LT
141{
142 const char **common_pts = NULL;
143 u32 common_base = 0;
144 int i, i2, perm;
145
146 if (av == 0) {
147 audit_log_format(ab, " null");
148 return;
149 }
150
151 for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
152 if (av_inherit[i].tclass == tclass) {
153 common_pts = av_inherit[i].common_pts;
154 common_base = av_inherit[i].common_base;
155 break;
156 }
157 }
158
159 audit_log_format(ab, " {");
160 i = 0;
161 perm = 1;
162 while (perm < common_base) {
163 if (perm & av) {
164 audit_log_format(ab, " %s", common_pts[i]);
165 av &= ~perm;
166 }
167 i++;
168 perm <<= 1;
169 }
170
171 while (i < sizeof(av) * 8) {
172 if (perm & av) {
173 for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
174 if ((av_perm_to_string[i2].tclass == tclass) &&
175 (av_perm_to_string[i2].value == perm))
176 break;
177 }
178 if (i2 < ARRAY_SIZE(av_perm_to_string)) {
179 audit_log_format(ab, " %s",
180 av_perm_to_string[i2].name);
181 av &= ~perm;
182 }
183 }
184 i++;
185 perm <<= 1;
186 }
187
188 if (av)
189 audit_log_format(ab, " 0x%x", av);
190
191 audit_log_format(ab, " }");
192}
193
194/**
195 * avc_dump_query - Display a SID pair and a class in human-readable form.
196 * @ssid: source security identifier
197 * @tsid: target security identifier
198 * @tclass: target security class
199 */
200static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
201{
202 int rc;
203 char *scontext;
204 u32 scontext_len;
205
95fff33b 206 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
1da177e4
LT
207 if (rc)
208 audit_log_format(ab, "ssid=%d", ssid);
209 else {
210 audit_log_format(ab, "scontext=%s", scontext);
211 kfree(scontext);
212 }
213
214 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
215 if (rc)
216 audit_log_format(ab, " tsid=%d", tsid);
217 else {
218 audit_log_format(ab, " tcontext=%s", scontext);
219 kfree(scontext);
220 }
a764ae4b
SS
221
222 BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
1da177e4
LT
223 audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
224}
225
226/**
227 * avc_init - Initialize the AVC.
228 *
229 * Initialize the access vector cache.
230 */
231void __init avc_init(void)
232{
233 int i;
234
235 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
236 INIT_LIST_HEAD(&avc_cache.slots[i]);
237 spin_lock_init(&avc_cache.slots_lock[i]);
238 }
239 atomic_set(&avc_cache.active_nodes, 0);
240 atomic_set(&avc_cache.lru_hint, 0);
241
242 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
20c2df83 243 0, SLAB_PANIC, NULL);
1da177e4 244
9ad9ad38 245 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
1da177e4
LT
246}
247
248int avc_get_hash_stats(char *page)
249{
250 int i, chain_len, max_chain_len, slots_used;
251 struct avc_node *node;
252
253 rcu_read_lock();
254
255 slots_used = 0;
256 max_chain_len = 0;
257 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
258 if (!list_empty(&avc_cache.slots[i])) {
259 slots_used++;
260 chain_len = 0;
261 list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
262 chain_len++;
263 if (chain_len > max_chain_len)
264 max_chain_len = chain_len;
265 }
266 }
267
268 rcu_read_unlock();
269
270 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
271 "longest chain: %d\n",
272 atomic_read(&avc_cache.active_nodes),
273 slots_used, AVC_CACHE_SLOTS, max_chain_len);
274}
275
276static void avc_node_free(struct rcu_head *rhead)
277{
278 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
279 kmem_cache_free(avc_node_cachep, node);
280 avc_cache_stats_incr(frees);
281}
282
283static void avc_node_delete(struct avc_node *node)
284{
285 list_del_rcu(&node->list);
286 call_rcu(&node->rhead, avc_node_free);
287 atomic_dec(&avc_cache.active_nodes);
288}
289
290static void avc_node_kill(struct avc_node *node)
291{
292 kmem_cache_free(avc_node_cachep, node);
293 avc_cache_stats_incr(frees);
294 atomic_dec(&avc_cache.active_nodes);
295}
296
297static void avc_node_replace(struct avc_node *new, struct avc_node *old)
298{
299 list_replace_rcu(&old->list, &new->list);
300 call_rcu(&old->rhead, avc_node_free);
301 atomic_dec(&avc_cache.active_nodes);
302}
303
304static inline int avc_reclaim_node(void)
305{
306 struct avc_node *node;
307 int hvalue, try, ecx;
308 unsigned long flags;
309
95fff33b 310 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
1da177e4
LT
311 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
312
313 if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
314 continue;
315
61844250 316 rcu_read_lock();
1da177e4 317 list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
906d27d9
EP
318 avc_node_delete(node);
319 avc_cache_stats_incr(reclaims);
320 ecx++;
321 if (ecx >= AVC_CACHE_RECLAIM) {
322 rcu_read_unlock();
323 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
324 goto out;
1da177e4
LT
325 }
326 }
61844250 327 rcu_read_unlock();
1da177e4
LT
328 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
329 }
330out:
331 return ecx;
332}
333
334static struct avc_node *avc_alloc_node(void)
335{
336 struct avc_node *node;
337
c3762229 338 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
1da177e4
LT
339 if (!node)
340 goto out;
341
1da177e4
LT
342 INIT_RCU_HEAD(&node->rhead);
343 INIT_LIST_HEAD(&node->list);
1da177e4
LT
344 avc_cache_stats_incr(allocations);
345
346 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
347 avc_reclaim_node();
348
349out:
350 return node;
351}
352
353static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
354{
355 node->ae.ssid = ssid;
356 node->ae.tsid = tsid;
357 node->ae.tclass = tclass;
358 memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
359}
360
361static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
362{
363 struct avc_node *node, *ret = NULL;
364 int hvalue;
365
366 hvalue = avc_hash(ssid, tsid, tclass);
367 list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
368 if (ssid == node->ae.ssid &&
369 tclass == node->ae.tclass &&
370 tsid == node->ae.tsid) {
371 ret = node;
372 break;
373 }
374 }
375
1da177e4
LT
376 return ret;
377}
378
379/**
380 * avc_lookup - Look up an AVC entry.
381 * @ssid: source security identifier
382 * @tsid: target security identifier
383 * @tclass: target security class
384 * @requested: requested permissions, interpreted based on @tclass
385 *
386 * Look up an AVC entry that is valid for the
387 * @requested permissions between the SID pair
388 * (@ssid, @tsid), interpreting the permissions
389 * based on @tclass. If a valid AVC entry exists,
390 * then this function return the avc_node.
391 * Otherwise, this function returns NULL.
392 */
393static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
394{
395 struct avc_node *node;
396
397 avc_cache_stats_incr(lookups);
398 node = avc_search_node(ssid, tsid, tclass);
399
400 if (node && ((node->ae.avd.decided & requested) == requested)) {
401 avc_cache_stats_incr(hits);
402 goto out;
403 }
404
405 node = NULL;
406 avc_cache_stats_incr(misses);
407out:
408 return node;
409}
410
411static int avc_latest_notif_update(int seqno, int is_insert)
412{
413 int ret = 0;
414 static DEFINE_SPINLOCK(notif_lock);
415 unsigned long flag;
416
417 spin_lock_irqsave(&notif_lock, flag);
418 if (is_insert) {
419 if (seqno < avc_cache.latest_notif) {
744ba35e 420 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
1da177e4
LT
421 seqno, avc_cache.latest_notif);
422 ret = -EAGAIN;
423 }
424 } else {
425 if (seqno > avc_cache.latest_notif)
426 avc_cache.latest_notif = seqno;
427 }
428 spin_unlock_irqrestore(&notif_lock, flag);
429
430 return ret;
431}
432
433/**
434 * avc_insert - Insert an AVC entry.
435 * @ssid: source security identifier
436 * @tsid: target security identifier
437 * @tclass: target security class
438 * @ae: AVC entry
439 *
440 * Insert an AVC entry for the SID pair
441 * (@ssid, @tsid) and class @tclass.
442 * The access vectors and the sequence number are
443 * normally provided by the security server in
444 * response to a security_compute_av() call. If the
445 * sequence number @ae->avd.seqno is not less than the latest
446 * revocation notification, then the function copies
447 * the access vectors into a cache entry, returns
448 * avc_node inserted. Otherwise, this function returns NULL.
449 */
450static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
451{
452 struct avc_node *pos, *node = NULL;
453 int hvalue;
454 unsigned long flag;
455
456 if (avc_latest_notif_update(ae->avd.seqno, 1))
457 goto out;
458
459 node = avc_alloc_node();
460 if (node) {
461 hvalue = avc_hash(ssid, tsid, tclass);
462 avc_node_populate(node, ssid, tsid, tclass, ae);
463
464 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
465 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
466 if (pos->ae.ssid == ssid &&
467 pos->ae.tsid == tsid &&
468 pos->ae.tclass == tclass) {
95fff33b 469 avc_node_replace(node, pos);
1da177e4
LT
470 goto found;
471 }
472 }
473 list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
474found:
475 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
476 }
477out:
478 return node;
479}
480
481static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
b5bf6c55 482 struct in6_addr *addr, __be16 port,
1da177e4
LT
483 char *name1, char *name2)
484{
485 if (!ipv6_addr_any(addr))
5b095d98 486 audit_log_format(ab, " %s=%pI6", name1, addr);
1da177e4
LT
487 if (port)
488 audit_log_format(ab, " %s=%d", name2, ntohs(port));
489}
490
87fcd70d 491static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
b5bf6c55 492 __be16 port, char *name1, char *name2)
1da177e4
LT
493{
494 if (addr)
3685f25d 495 audit_log_format(ab, " %s=%pI4", name1, &addr);
1da177e4
LT
496 if (port)
497 audit_log_format(ab, " %s=%d", name2, ntohs(port));
498}
499
500/**
501 * avc_audit - Audit the granting or denial of permissions.
502 * @ssid: source security identifier
503 * @tsid: target security identifier
504 * @tclass: target security class
505 * @requested: requested permissions
506 * @avd: access vector decisions
507 * @result: result from avc_has_perm_noaudit
508 * @a: auxiliary audit data
509 *
510 * Audit the granting or denial of permissions in accordance
511 * with the policy. This function is typically called by
512 * avc_has_perm() after a permission check, but can also be
513 * called directly by callers who use avc_has_perm_noaudit()
514 * in order to separate the permission check from the auditing.
515 * For example, this separation is useful when the permission check must
516 * be performed under a lock, to allow the lock to be released
517 * before calling the auditing code.
518 */
519void avc_audit(u32 ssid, u32 tsid,
95fff33b
EP
520 u16 tclass, u32 requested,
521 struct av_decision *avd, int result, struct avc_audit_data *a)
1da177e4 522{
cd77b821 523 struct task_struct *tsk = current;
1da177e4
LT
524 struct inode *inode = NULL;
525 u32 denied, audited;
526 struct audit_buffer *ab;
527
528 denied = requested & ~avd->allowed;
529 if (denied) {
530 audited = denied;
531 if (!(audited & avd->auditdeny))
532 return;
533 } else if (result) {
534 audited = denied = requested;
95fff33b 535 } else {
1da177e4
LT
536 audited = requested;
537 if (!(audited & avd->auditallow))
538 return;
539 }
540
9ad9ad38 541 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
1da177e4
LT
542 if (!ab)
543 return; /* audit_panic has been called */
544 audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
95fff33b 545 avc_dump_av(ab, tclass, audited);
1da177e4 546 audit_log_format(ab, " for ");
cd77b821
DW
547 if (a && a->tsk)
548 tsk = a->tsk;
7b5d781c 549 if (tsk && tsk->pid) {
cd77b821
DW
550 audit_log_format(ab, " pid=%d comm=", tsk->pid);
551 audit_log_untrustedstring(ab, tsk->comm);
552 }
1da177e4
LT
553 if (a) {
554 switch (a->type) {
555 case AVC_AUDIT_DATA_IPC:
556 audit_log_format(ab, " key=%d", a->u.ipc_id);
557 break;
558 case AVC_AUDIT_DATA_CAP:
559 audit_log_format(ab, " capability=%d", a->u.cap);
560 break;
561 case AVC_AUDIT_DATA_FS:
44707fdf
JB
562 if (a->u.fs.path.dentry) {
563 struct dentry *dentry = a->u.fs.path.dentry;
564 if (a->u.fs.path.mnt) {
565 audit_log_d_path(ab, "path=",
566 &a->u.fs.path);
4259fa01
AV
567 } else {
568 audit_log_format(ab, " name=");
569 audit_log_untrustedstring(ab, dentry->d_name.name);
570 }
1da177e4
LT
571 inode = dentry->d_inode;
572 } else if (a->u.fs.inode) {
573 struct dentry *dentry;
574 inode = a->u.fs.inode;
575 dentry = d_find_alias(inode);
576 if (dentry) {
37ca5389
SS
577 audit_log_format(ab, " name=");
578 audit_log_untrustedstring(ab, dentry->d_name.name);
1da177e4
LT
579 dput(dentry);
580 }
581 }
582 if (inode)
13bddc2e 583 audit_log_format(ab, " dev=%s ino=%lu",
1da177e4
LT
584 inode->i_sb->s_id,
585 inode->i_ino);
586 break;
587 case AVC_AUDIT_DATA_NET:
588 if (a->u.net.sk) {
589 struct sock *sk = a->u.net.sk;
590 struct unix_sock *u;
591 int len = 0;
592 char *p = NULL;
593
594 switch (sk->sk_family) {
595 case AF_INET: {
596 struct inet_sock *inet = inet_sk(sk);
597
598 avc_print_ipv4_addr(ab, inet->rcv_saddr,
599 inet->sport,
600 "laddr", "lport");
601 avc_print_ipv4_addr(ab, inet->daddr,
602 inet->dport,
603 "faddr", "fport");
604 break;
605 }
606 case AF_INET6: {
607 struct inet_sock *inet = inet_sk(sk);
608 struct ipv6_pinfo *inet6 = inet6_sk(sk);
609
610 avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
611 inet->sport,
612 "laddr", "lport");
613 avc_print_ipv6_addr(ab, &inet6->daddr,
614 inet->dport,
615 "faddr", "fport");
616 break;
617 }
618 case AF_UNIX:
619 u = unix_sk(sk);
620 if (u->dentry) {
44707fdf
JB
621 struct path path = {
622 .dentry = u->dentry,
623 .mnt = u->mnt
624 };
4259fa01 625 audit_log_d_path(ab, "path=",
44707fdf 626 &path);
1da177e4
LT
627 break;
628 }
629 if (!u->addr)
630 break;
631 len = u->addr->len-sizeof(short);
632 p = &u->addr->name->sun_path[0];
37ca5389 633 audit_log_format(ab, " path=");
1da177e4 634 if (*p)
37ca5389 635 audit_log_untrustedstring(ab, p);
1da177e4 636 else
b556f8ad 637 audit_log_n_hex(ab, p, len);
1da177e4
LT
638 break;
639 }
640 }
95fff33b 641
1da177e4
LT
642 switch (a->u.net.family) {
643 case AF_INET:
644 avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
645 a->u.net.sport,
646 "saddr", "src");
647 avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
648 a->u.net.dport,
649 "daddr", "dest");
650 break;
651 case AF_INET6:
652 avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
653 a->u.net.sport,
654 "saddr", "src");
655 avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
656 a->u.net.dport,
657 "daddr", "dest");
658 break;
659 }
da5645a2
PM
660 if (a->u.net.netif > 0) {
661 struct net_device *dev;
662
663 /* NOTE: we always use init's namespace */
664 dev = dev_get_by_index(&init_net,
665 a->u.net.netif);
666 if (dev) {
667 audit_log_format(ab, " netif=%s",
668 dev->name);
669 dev_put(dev);
670 }
671 }
1da177e4
LT
672 break;
673 }
674 }
675 audit_log_format(ab, " ");
676 avc_dump_query(ab, ssid, tsid, tclass);
677 audit_log_end(ab);
678}
679
680/**
681 * avc_add_callback - Register a callback for security events.
682 * @callback: callback function
683 * @events: security events
684 * @ssid: source security identifier or %SECSID_WILD
685 * @tsid: target security identifier or %SECSID_WILD
686 * @tclass: target security class
687 * @perms: permissions
688 *
689 * Register a callback function for events in the set @events
690 * related to the SID pair (@ssid, @tsid) and
691 * and the permissions @perms, interpreting
692 * @perms based on @tclass. Returns %0 on success or
693 * -%ENOMEM if insufficient memory exists to add the callback.
694 */
695int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
95fff33b
EP
696 u16 tclass, u32 perms,
697 u32 *out_retained),
698 u32 events, u32 ssid, u32 tsid,
699 u16 tclass, u32 perms)
1da177e4
LT
700{
701 struct avc_callback_node *c;
702 int rc = 0;
703
704 c = kmalloc(sizeof(*c), GFP_ATOMIC);
705 if (!c) {
706 rc = -ENOMEM;
707 goto out;
708 }
709
710 c->callback = callback;
711 c->events = events;
712 c->ssid = ssid;
713 c->tsid = tsid;
714 c->perms = perms;
715 c->next = avc_callbacks;
716 avc_callbacks = c;
717out:
718 return rc;
719}
720
721static inline int avc_sidcmp(u32 x, u32 y)
722{
723 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
724}
725
726/**
727 * avc_update_node Update an AVC entry
728 * @event : Updating event
729 * @perms : Permission mask bits
730 * @ssid,@tsid,@tclass : identifier of an AVC entry
a5dda683 731 * @seqno : sequence number when decision was made
1da177e4
LT
732 *
733 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
734 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
735 * otherwise, this function update the AVC entry. The original AVC-entry object
736 * will release later by RCU.
737 */
a5dda683
EP
738static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
739 u32 seqno)
1da177e4
LT
740{
741 int hvalue, rc = 0;
742 unsigned long flag;
743 struct avc_node *pos, *node, *orig = NULL;
744
745 node = avc_alloc_node();
746 if (!node) {
747 rc = -ENOMEM;
748 goto out;
749 }
750
751 /* Lock the target slot */
752 hvalue = avc_hash(ssid, tsid, tclass);
753 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
754
95fff33b
EP
755 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
756 if (ssid == pos->ae.ssid &&
757 tsid == pos->ae.tsid &&
a5dda683
EP
758 tclass == pos->ae.tclass &&
759 seqno == pos->ae.avd.seqno){
1da177e4
LT
760 orig = pos;
761 break;
762 }
763 }
764
765 if (!orig) {
766 rc = -ENOENT;
767 avc_node_kill(node);
768 goto out_unlock;
769 }
770
771 /*
772 * Copy and replace original node.
773 */
774
775 avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
776
777 switch (event) {
778 case AVC_CALLBACK_GRANT:
779 node->ae.avd.allowed |= perms;
780 break;
781 case AVC_CALLBACK_TRY_REVOKE:
782 case AVC_CALLBACK_REVOKE:
783 node->ae.avd.allowed &= ~perms;
784 break;
785 case AVC_CALLBACK_AUDITALLOW_ENABLE:
786 node->ae.avd.auditallow |= perms;
787 break;
788 case AVC_CALLBACK_AUDITALLOW_DISABLE:
789 node->ae.avd.auditallow &= ~perms;
790 break;
791 case AVC_CALLBACK_AUDITDENY_ENABLE:
792 node->ae.avd.auditdeny |= perms;
793 break;
794 case AVC_CALLBACK_AUDITDENY_DISABLE:
795 node->ae.avd.auditdeny &= ~perms;
796 break;
797 }
798 avc_node_replace(node, orig);
799out_unlock:
800 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
801out:
802 return rc;
803}
804
805/**
806 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
807 * @seqno: policy sequence number
808 */
809int avc_ss_reset(u32 seqno)
810{
811 struct avc_callback_node *c;
376bd9cb 812 int i, rc = 0, tmprc;
1da177e4
LT
813 unsigned long flag;
814 struct avc_node *node;
815
816 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
817 spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
61844250
PM
818 /*
819 * With preemptable RCU, the outer spinlock does not
820 * prevent RCU grace periods from ending.
821 */
822 rcu_read_lock();
1da177e4
LT
823 list_for_each_entry(node, &avc_cache.slots[i], list)
824 avc_node_delete(node);
61844250 825 rcu_read_unlock();
1da177e4
LT
826 spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
827 }
828
829 for (c = avc_callbacks; c; c = c->next) {
830 if (c->events & AVC_CALLBACK_RESET) {
376bd9cb 831 tmprc = c->callback(AVC_CALLBACK_RESET,
95fff33b 832 0, 0, 0, 0, NULL);
376bd9cb
DG
833 /* save the first error encountered for the return
834 value and continue processing the callbacks */
835 if (!rc)
836 rc = tmprc;
1da177e4
LT
837 }
838 }
839
840 avc_latest_notif_update(seqno, 0);
1da177e4
LT
841 return rc;
842}
843
844/**
845 * avc_has_perm_noaudit - Check permissions but perform no auditing.
846 * @ssid: source security identifier
847 * @tsid: target security identifier
848 * @tclass: target security class
849 * @requested: requested permissions, interpreted based on @tclass
2c3c05db 850 * @flags: AVC_STRICT or 0
1da177e4
LT
851 * @avd: access vector decisions
852 *
853 * Check the AVC to determine whether the @requested permissions are granted
854 * for the SID pair (@ssid, @tsid), interpreting the permissions
855 * based on @tclass, and call the security server on a cache miss to obtain
856 * a new decision and add it to the cache. Return a copy of the decisions
857 * in @avd. Return %0 if all @requested permissions are granted,
858 * -%EACCES if any permissions are denied, or another -errno upon
859 * other errors. This function is typically called by avc_has_perm(),
860 * but may also be called directly to separate permission checking from
861 * auditing, e.g. in cases where a lock must be held for the check but
862 * should be released for the auditing.
863 */
864int avc_has_perm_noaudit(u32 ssid, u32 tsid,
2c3c05db
SS
865 u16 tclass, u32 requested,
866 unsigned flags,
867 struct av_decision *avd)
1da177e4
LT
868{
869 struct avc_node *node;
870 struct avc_entry entry, *p_ae;
871 int rc = 0;
872 u32 denied;
873
eda4f69c
EP
874 BUG_ON(!requested);
875
1da177e4
LT
876 rcu_read_lock();
877
878 node = avc_lookup(ssid, tsid, tclass, requested);
879 if (!node) {
880 rcu_read_unlock();
95fff33b 881 rc = security_compute_av(ssid, tsid, tclass, requested, &entry.avd);
1da177e4
LT
882 if (rc)
883 goto out;
884 rcu_read_lock();
95fff33b 885 node = avc_insert(ssid, tsid, tclass, &entry);
1da177e4
LT
886 }
887
888 p_ae = node ? &node->ae : &entry;
889
890 if (avd)
891 memcpy(avd, &p_ae->avd, sizeof(*avd));
892
893 denied = requested & ~(p_ae->avd.allowed);
894
eda4f69c 895 if (denied) {
64dbf074 896 if (flags & AVC_STRICT)
1da177e4 897 rc = -EACCES;
64dbf074
EP
898 else if (!selinux_enforcing || security_permissive_sid(ssid))
899 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
a5dda683 900 tsid, tclass, p_ae->avd.seqno);
1da177e4 901 else
64dbf074 902 rc = -EACCES;
1da177e4
LT
903 }
904
905 rcu_read_unlock();
906out:
907 return rc;
908}
909
910/**
911 * avc_has_perm - Check permissions and perform any appropriate auditing.
912 * @ssid: source security identifier
913 * @tsid: target security identifier
914 * @tclass: target security class
915 * @requested: requested permissions, interpreted based on @tclass
916 * @auditdata: auxiliary audit data
917 *
918 * Check the AVC to determine whether the @requested permissions are granted
919 * for the SID pair (@ssid, @tsid), interpreting the permissions
920 * based on @tclass, and call the security server on a cache miss to obtain
921 * a new decision and add it to the cache. Audit the granting or denial of
922 * permissions in accordance with the policy. Return %0 if all @requested
923 * permissions are granted, -%EACCES if any permissions are denied, or
924 * another -errno upon other errors.
925 */
926int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
95fff33b 927 u32 requested, struct avc_audit_data *auditdata)
1da177e4
LT
928{
929 struct av_decision avd;
930 int rc;
931
2c3c05db 932 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1da177e4
LT
933 avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
934 return rc;
935}
788e7dd4
YN
936
937u32 avc_policy_seqno(void)
938{
939 return avc_cache.latest_notif;
940}
This page took 0.400935 seconds and 5 git commands to generate.