2000-03-21 Eli Zaretskii <eliz@is.elta.co.il>
[deliverable/binutils-gdb.git] / sim / mips / interp.c
CommitLineData
c906108c
SS
1/*> interp.c <*/
2/* Simulator for the MIPS architecture.
3
4 This file is part of the MIPS sim
5
6 THIS SOFTWARE IS NOT COPYRIGHTED
7
8 Cygnus offers the following for use in the public domain. Cygnus
9 makes no warranty with regard to the software or it's performance
10 and the user accepts the software "AS IS" with all faults.
11
12 CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
13 THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
14 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
15
16 $Revision$
17 $Date$
18
19NOTEs:
20
21The IDT monitor (found on the VR4300 board), seems to lie about
22register contents. It seems to treat the registers as sign-extended
2332-bit values. This cause *REAL* problems when single-stepping 64-bit
24code on the hardware.
25
26*/
27
28/* The TRACE manifests enable the provision of extra features. If they
29 are not defined then a simpler (quicker) simulator is constructed
30 without the required run-time checks, etc. */
31#if 1 /* 0 to allow user build selection, 1 to force inclusion */
32#define TRACE (1)
33#endif
34
35#include "bfd.h"
36#include "sim-main.h"
37#include "sim-utils.h"
38#include "sim-options.h"
39#include "sim-assert.h"
40#include "sim-hw.h"
41
42#include "itable.h"
43
44
45#include "config.h"
46
47#include <stdio.h>
48#include <stdarg.h>
49#include <ansidecl.h>
50#include <ctype.h>
51#include <limits.h>
52#include <math.h>
53#ifdef HAVE_STDLIB_H
54#include <stdlib.h>
55#endif
56#ifdef HAVE_STRING_H
57#include <string.h>
58#else
59#ifdef HAVE_STRINGS_H
60#include <strings.h>
61#endif
62#endif
63
64#include "getopt.h"
65#include "libiberty.h"
66#include "bfd.h"
67#include "callback.h" /* GDB simulator callback interface */
68#include "remote-sim.h" /* GDB simulator interface */
69
70#include "sysdep.h"
71
72#ifndef PARAMS
73#define PARAMS(x)
74#endif
75
76char* pr_addr PARAMS ((SIM_ADDR addr));
77char* pr_uword64 PARAMS ((uword64 addr));
78
79
80/* Within interp.c we refer to the sim_state and sim_cpu directly. */
81#define CPU cpu
82#define SD sd
83
84
85/* The following reserved instruction value is used when a simulator
86 trap is required. NOTE: Care must be taken, since this value may be
87 used in later revisions of the MIPS ISA. */
88
89#define RSVD_INSTRUCTION (0x00000005)
90#define RSVD_INSTRUCTION_MASK (0xFC00003F)
91
92#define RSVD_INSTRUCTION_ARG_SHIFT 6
93#define RSVD_INSTRUCTION_ARG_MASK 0xFFFFF
94
95
96/* Bits in the Debug register */
97#define Debug_DBD 0x80000000 /* Debug Branch Delay */
98#define Debug_DM 0x40000000 /* Debug Mode */
99#define Debug_DBp 0x00000002 /* Debug Breakpoint indicator */
100
101/*---------------------------------------------------------------------------*/
102/*-- GDB simulator interface ------------------------------------------------*/
103/*---------------------------------------------------------------------------*/
104
105static void ColdReset PARAMS((SIM_DESC sd));
106
107/*---------------------------------------------------------------------------*/
108
109
110
111#define DELAYSLOT() {\
112 if (STATE & simDELAYSLOT)\
113 sim_io_eprintf(sd,"Delay slot already activated (branch in delay slot?)\n");\
114 STATE |= simDELAYSLOT;\
115 }
116
117#define JALDELAYSLOT() {\
118 DELAYSLOT ();\
119 STATE |= simJALDELAYSLOT;\
120 }
121
122#define NULLIFY() {\
123 STATE &= ~simDELAYSLOT;\
124 STATE |= simSKIPNEXT;\
125 }
126
127#define CANCELDELAYSLOT() {\
128 DSSTATE = 0;\
129 STATE &= ~(simDELAYSLOT | simJALDELAYSLOT);\
130 }
131
132#define INDELAYSLOT() ((STATE & simDELAYSLOT) != 0)
133#define INJALDELAYSLOT() ((STATE & simJALDELAYSLOT) != 0)
134
adf40b2e
JM
135/* Note that the monitor code essentially assumes this layout of memory.
136 If you change these, change the monitor code, too. */
c906108c
SS
137#define K0BASE (0x80000000)
138#define K0SIZE (0x20000000)
139#define K1BASE (0xA0000000)
140#define K1SIZE (0x20000000)
adf40b2e
JM
141
142/* Simple run-time monitor support.
143
144 We emulate the monitor by placing magic reserved instructions at
145 the monitor's entry points; when we hit these instructions, instead
146 of raising an exception (as we would normally), we look at the
147 instruction and perform the appropriate monitory operation.
148
149 `*_monitor_base' are the physical addresses at which the corresponding
150 monitor vectors are located. `0' means none. By default,
151 install all three.
152 The RSVD_INSTRUCTION... macros specify the magic instructions we
153 use at the monitor entry points. */
154static int firmware_option_p = 0;
155static SIM_ADDR idt_monitor_base = 0xBFC00000;
156static SIM_ADDR pmon_monitor_base = 0xBFC00500;
157static SIM_ADDR lsipmon_monitor_base = 0xBFC00200;
158
159static SIM_RC sim_firmware_command (SIM_DESC sd, char* arg);
160
161
c906108c
SS
162#define MEM_SIZE (2 << 20)
163
164
165#if defined(TRACE)
166static char *tracefile = "trace.din"; /* default filename for trace log */
167FILE *tracefh = NULL;
168static void open_trace PARAMS((SIM_DESC sd));
169#endif /* TRACE */
170
171static const char * get_insn_name (sim_cpu *, int);
172
173/* simulation target board. NULL=canonical */
174static char* board = NULL;
175
176
177static DECLARE_OPTION_HANDLER (mips_option_handler);
178
179enum {
180 OPTION_DINERO_TRACE = OPTION_START,
181 OPTION_DINERO_FILE,
adf40b2e 182 OPTION_FIRMWARE,
c906108c
SS
183 OPTION_BOARD
184};
185
186
187static SIM_RC
188mips_option_handler (sd, cpu, opt, arg, is_command)
189 SIM_DESC sd;
190 sim_cpu *cpu;
191 int opt;
192 char *arg;
193 int is_command;
194{
195 int cpu_nr;
196 switch (opt)
197 {
198 case OPTION_DINERO_TRACE: /* ??? */
199#if defined(TRACE)
200 /* Eventually the simTRACE flag could be treated as a toggle, to
201 allow external control of the program points being traced
202 (i.e. only from main onwards, excluding the run-time setup,
203 etc.). */
204 for (cpu_nr = 0; cpu_nr < MAX_NR_PROCESSORS; cpu_nr++)
205 {
206 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
207 if (arg == NULL)
208 STATE |= simTRACE;
209 else if (strcmp (arg, "yes") == 0)
210 STATE |= simTRACE;
211 else if (strcmp (arg, "no") == 0)
212 STATE &= ~simTRACE;
213 else if (strcmp (arg, "on") == 0)
214 STATE |= simTRACE;
215 else if (strcmp (arg, "off") == 0)
216 STATE &= ~simTRACE;
217 else
218 {
219 fprintf (stderr, "Unrecognized dinero-trace option `%s'\n", arg);
220 return SIM_RC_FAIL;
221 }
222 }
223 return SIM_RC_OK;
224#else /* !TRACE */
225 fprintf(stderr,"\
226Simulator constructed without dinero tracing support (for performance).\n\
227Re-compile simulator with \"-DTRACE\" to enable this option.\n");
228 return SIM_RC_FAIL;
229#endif /* !TRACE */
230
231 case OPTION_DINERO_FILE:
232#if defined(TRACE)
233 if (optarg != NULL) {
234 char *tmp;
235 tmp = (char *)malloc(strlen(optarg) + 1);
236 if (tmp == NULL)
237 {
238 sim_io_printf(sd,"Failed to allocate buffer for tracefile name \"%s\"\n",optarg);
239 return SIM_RC_FAIL;
240 }
241 else {
242 strcpy(tmp,optarg);
243 tracefile = tmp;
244 sim_io_printf(sd,"Placing trace information into file \"%s\"\n",tracefile);
245 }
246 }
247#endif /* TRACE */
248 return SIM_RC_OK;
249
adf40b2e
JM
250 case OPTION_FIRMWARE:
251 return sim_firmware_command (sd, arg);
252
c906108c
SS
253 case OPTION_BOARD:
254 {
255 if (arg)
256 {
257 board = zalloc(strlen(arg) + 1);
258 strcpy(board, arg);
259 }
260 return SIM_RC_OK;
261 }
262 }
263
264 return SIM_RC_OK;
265}
266
267
268static const OPTION mips_options[] =
269{
270 { {"dinero-trace", optional_argument, NULL, OPTION_DINERO_TRACE},
271 '\0', "on|off", "Enable dinero tracing",
272 mips_option_handler },
273 { {"dinero-file", required_argument, NULL, OPTION_DINERO_FILE},
274 '\0', "FILE", "Write dinero trace to FILE",
275 mips_option_handler },
adf40b2e
JM
276 { {"firmware", required_argument, NULL, OPTION_FIRMWARE},
277 '\0', "[idt|pmon|lsipmon|none][@ADDRESS]", "Emulate ROM monitor",
278 mips_option_handler },
c906108c
SS
279 { {"board", required_argument, NULL, OPTION_BOARD},
280 '\0', "none" /* rely on compile-time string concatenation for other options */
281
282#define BOARD_JMR3904 "jmr3904"
283 "|" BOARD_JMR3904
284#define BOARD_JMR3904_PAL "jmr3904pal"
285 "|" BOARD_JMR3904_PAL
286#define BOARD_JMR3904_DEBUG "jmr3904debug"
287 "|" BOARD_JMR3904_DEBUG
43e526b9
JM
288#define BOARD_BSP "bsp"
289 "|" BOARD_BSP
c906108c
SS
290
291 , "Customize simulation for a particular board.", mips_option_handler },
292
293 { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
294};
295
296
297int interrupt_pending;
298
299void
300interrupt_event (SIM_DESC sd, void *data)
301{
302 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
303 address_word cia = CIA_GET (cpu);
304 if (SR & status_IE)
305 {
306 interrupt_pending = 0;
307 SignalExceptionInterrupt (1); /* interrupt "1" */
308 }
309 else if (!interrupt_pending)
310 sim_events_schedule (sd, 1, interrupt_event, data);
311}
312
313
314/*---------------------------------------------------------------------------*/
315/*-- Device registration hook -----------------------------------------------*/
316/*---------------------------------------------------------------------------*/
317static void device_init(SIM_DESC sd) {
318#ifdef DEVICE_INIT
319 extern void register_devices(SIM_DESC);
320 register_devices(sd);
321#endif
322}
323
324/*---------------------------------------------------------------------------*/
325/*-- GDB simulator interface ------------------------------------------------*/
326/*---------------------------------------------------------------------------*/
327
328SIM_DESC
329sim_open (kind, cb, abfd, argv)
330 SIM_OPEN_KIND kind;
331 host_callback *cb;
332 struct _bfd *abfd;
333 char **argv;
334{
335 SIM_DESC sd = sim_state_alloc (kind, cb);
336 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
337
338 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
339
340 /* FIXME: watchpoints code shouldn't need this */
341 STATE_WATCHPOINTS (sd)->pc = &(PC);
342 STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
343 STATE_WATCHPOINTS (sd)->interrupt_handler = interrupt_event;
344
345 /* Initialize the mechanism for doing insn profiling. */
346 CPU_INSN_NAME (cpu) = get_insn_name;
347 CPU_MAX_INSNS (cpu) = nr_itable_entries;
348
349 STATE = 0;
350
351 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
352 return 0;
353 sim_add_option_table (sd, NULL, mips_options);
354
355
356 /* getopt will print the error message so we just have to exit if this fails.
357 FIXME: Hmmm... in the case of gdb we need getopt to call
358 print_filtered. */
359 if (sim_parse_args (sd, argv) != SIM_RC_OK)
360 {
361 /* Uninstall the modules to avoid memory leaks,
362 file descriptor leaks, etc. */
363 sim_module_uninstall (sd);
364 return 0;
365 }
366
367 /* handle board-specific memory maps */
368 if (board == NULL)
369 {
370 /* Allocate core managed memory */
371
adf40b2e 372
c906108c
SS
373 /* For compatibility with the old code - under this (at level one)
374 are the kernel spaces K0 & K1. Both of these map to a single
375 smaller sub region */
376 sim_do_command(sd," memory region 0x7fff8000,0x8000") ; /* MTZ- 32 k stack */
377 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx%%0x%lx,0x%0x",
378 K1BASE, K0SIZE,
379 MEM_SIZE, /* actual size */
380 K0BASE);
381
382 device_init(sd);
383 }
43e526b9
JM
384 else if (board != NULL
385 && (strcmp(board, BOARD_BSP) == 0))
386 {
387 int i;
388
389 STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
390
391 /* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */
392 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
393 0x9FC00000,
394 4 * 1024 * 1024, /* 4 MB */
395 0xBFC00000);
396
397 /* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */
398 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
399 0x80000000,
400 4 * 1024 * 1024, /* 4 MB */
401 0xA0000000);
402
403 /* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */
404 for (i=0; i<8; i++) /* 32 MB total */
405 {
406 unsigned size = 4 * 1024 * 1024; /* 4 MB */
407 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
408 0x88000000 + (i * size),
409 size,
410 0xA8000000 + (i * size));
411 }
412 }
c906108c 413#if (WITH_HW)
43e526b9
JM
414 else if (board != NULL
415 && (strcmp(board, BOARD_JMR3904) == 0 ||
416 strcmp(board, BOARD_JMR3904_PAL) == 0 ||
417 strcmp(board, BOARD_JMR3904_DEBUG) == 0))
c906108c
SS
418 {
419 /* match VIRTUAL memory layout of JMR-TX3904 board */
420 int i;
421
adf40b2e
JM
422 /* --- disable monitor unless forced on by user --- */
423
424 if (! firmware_option_p)
425 {
426 idt_monitor_base = 0;
427 pmon_monitor_base = 0;
428 lsipmon_monitor_base = 0;
429 }
430
c906108c
SS
431 /* --- environment --- */
432
433 STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
434
435 /* --- memory --- */
436
437 /* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */
438 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
439 0x9FC00000,
440 4 * 1024 * 1024, /* 4 MB */
441 0xBFC00000);
442
443 /* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */
444 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
445 0x80000000,
446 4 * 1024 * 1024, /* 4 MB */
447 0xA0000000);
448
449 /* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */
450 for (i=0; i<8; i++) /* 32 MB total */
451 {
452 unsigned size = 4 * 1024 * 1024; /* 4 MB */
453 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
454 0x88000000 + (i * size),
455 size,
456 0xA8000000 + (i * size));
457 }
458
459 /* Dummy memory regions for unsimulated devices */
460
d4f3574e 461 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFE000, 0x01c); /* EBIF */
c906108c
SS
462 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFF9000, 0x200); /* EBIF */
463 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFF500, 0x300); /* PIO */
d4f3574e 464 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFF8000, 0x804); /* DRAMC */
d4f3574e 465 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB1000000, 0x400); /* ISA I/O */
c2d11a7d
JM
466 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2100000, 0x004); /* ISA ctl */
467 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2500000, 0x004); /* LED/switch */
d4f3574e
SS
468 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2700000, 0x004); /* RTC */
469 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB3C00000, 0x004); /* RTC */
c906108c
SS
470
471 /* --- simulated devices --- */
472 sim_hw_parse (sd, "/tx3904irc@0xffffc000/reg 0xffffc000 0x20");
473 sim_hw_parse (sd, "/tx3904cpu");
474 sim_hw_parse (sd, "/tx3904tmr@0xfffff000/reg 0xfffff000 0x100");
475 sim_hw_parse (sd, "/tx3904tmr@0xfffff100/reg 0xfffff100 0x100");
476 sim_hw_parse (sd, "/tx3904tmr@0xfffff200/reg 0xfffff200 0x100");
477 sim_hw_parse (sd, "/tx3904sio@0xfffff300/reg 0xfffff300 0x100");
478 {
479 /* FIXME: poking at dv-sockser internals, use tcp backend if
480 --sockser_addr option was given.*/
481 extern char* sockser_addr;
482 if(sockser_addr == NULL)
483 sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend stdio");
484 else
485 sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend tcp");
486 }
487 sim_hw_parse (sd, "/tx3904sio@0xfffff400/reg 0xfffff400 0x100");
488 sim_hw_parse (sd, "/tx3904sio@0xfffff400/backend stdio");
489
490 /* -- device connections --- */
491 sim_hw_parse (sd, "/tx3904irc > ip level /tx3904cpu");
492 sim_hw_parse (sd, "/tx3904tmr@0xfffff000 > int tmr0 /tx3904irc");
493 sim_hw_parse (sd, "/tx3904tmr@0xfffff100 > int tmr1 /tx3904irc");
494 sim_hw_parse (sd, "/tx3904tmr@0xfffff200 > int tmr2 /tx3904irc");
495 sim_hw_parse (sd, "/tx3904sio@0xfffff300 > int sio0 /tx3904irc");
496 sim_hw_parse (sd, "/tx3904sio@0xfffff400 > int sio1 /tx3904irc");
497
498 /* add PAL timer & I/O module */
499 if(! strcmp(board, BOARD_JMR3904_PAL))
500 {
501 /* the device */
502 sim_hw_parse (sd, "/pal@0xffff0000");
503 sim_hw_parse (sd, "/pal@0xffff0000/reg 0xffff0000 64");
504
505 /* wire up interrupt ports to irc */
506 sim_hw_parse (sd, "/pal@0x31000000 > countdown tmr0 /tx3904irc");
507 sim_hw_parse (sd, "/pal@0x31000000 > timer tmr1 /tx3904irc");
508 sim_hw_parse (sd, "/pal@0x31000000 > int int0 /tx3904irc");
509 }
510
511 if(! strcmp(board, BOARD_JMR3904_DEBUG))
512 {
513 /* -- DEBUG: glue interrupt generators --- */
514 sim_hw_parse (sd, "/glue@0xffff0000/reg 0xffff0000 0x50");
515 sim_hw_parse (sd, "/glue@0xffff0000 > int0 int0 /tx3904irc");
516 sim_hw_parse (sd, "/glue@0xffff0000 > int1 int1 /tx3904irc");
517 sim_hw_parse (sd, "/glue@0xffff0000 > int2 int2 /tx3904irc");
518 sim_hw_parse (sd, "/glue@0xffff0000 > int3 int3 /tx3904irc");
519 sim_hw_parse (sd, "/glue@0xffff0000 > int4 int4 /tx3904irc");
520 sim_hw_parse (sd, "/glue@0xffff0000 > int5 int5 /tx3904irc");
521 sim_hw_parse (sd, "/glue@0xffff0000 > int6 int6 /tx3904irc");
522 sim_hw_parse (sd, "/glue@0xffff0000 > int7 int7 /tx3904irc");
523 sim_hw_parse (sd, "/glue@0xffff0000 > int8 dmac0 /tx3904irc");
524 sim_hw_parse (sd, "/glue@0xffff0000 > int9 dmac1 /tx3904irc");
525 sim_hw_parse (sd, "/glue@0xffff0000 > int10 dmac2 /tx3904irc");
526 sim_hw_parse (sd, "/glue@0xffff0000 > int11 dmac3 /tx3904irc");
527 sim_hw_parse (sd, "/glue@0xffff0000 > int12 sio0 /tx3904irc");
528 sim_hw_parse (sd, "/glue@0xffff0000 > int13 sio1 /tx3904irc");
529 sim_hw_parse (sd, "/glue@0xffff0000 > int14 tmr0 /tx3904irc");
530 sim_hw_parse (sd, "/glue@0xffff0000 > int15 tmr1 /tx3904irc");
531 sim_hw_parse (sd, "/glue@0xffff0000 > int16 tmr2 /tx3904irc");
532 sim_hw_parse (sd, "/glue@0xffff0000 > int17 nmi /tx3904cpu");
533 }
534
535 device_init(sd);
536 }
537#endif
538
539
540 /* check for/establish the a reference program image */
541 if (sim_analyze_program (sd,
542 (STATE_PROG_ARGV (sd) != NULL
543 ? *STATE_PROG_ARGV (sd)
544 : NULL),
545 abfd) != SIM_RC_OK)
546 {
547 sim_module_uninstall (sd);
548 return 0;
549 }
550
551 /* Configure/verify the target byte order and other runtime
552 configuration options */
553 if (sim_config (sd) != SIM_RC_OK)
554 {
555 sim_module_uninstall (sd);
556 return 0;
557 }
558
559 if (sim_post_argv_init (sd) != SIM_RC_OK)
560 {
561 /* Uninstall the modules to avoid memory leaks,
562 file descriptor leaks, etc. */
563 sim_module_uninstall (sd);
564 return 0;
565 }
566
567 /* verify assumptions the simulator made about the host type system.
568 This macro does not return if there is a problem */
569 SIM_ASSERT (sizeof(int) == (4 * sizeof(char)));
570 SIM_ASSERT (sizeof(word64) == (8 * sizeof(char)));
571
572 /* This is NASTY, in that we are assuming the size of specific
573 registers: */
574 {
575 int rn;
576 for (rn = 0; (rn < (LAST_EMBED_REGNUM + 1)); rn++)
577 {
578 if (rn < 32)
579 cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
580 else if ((rn >= FGRIDX) && (rn < (FGRIDX + NR_FGR)))
581 cpu->register_widths[rn] = WITH_TARGET_FLOATING_POINT_BITSIZE;
582 else if ((rn >= 33) && (rn <= 37))
583 cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
584 else if ((rn == SRIDX)
585 || (rn == FCR0IDX)
586 || (rn == FCR31IDX)
587 || ((rn >= 72) && (rn <= 89)))
588 cpu->register_widths[rn] = 32;
589 else
590 cpu->register_widths[rn] = 0;
591 }
592
593
594 }
595
596#if defined(TRACE)
597 if (STATE & simTRACE)
598 open_trace(sd);
599#endif /* TRACE */
600
adf40b2e
JM
601 /*
602 sim_io_eprintf (sd, "idt@%x pmon@%x lsipmon@%x\n",
603 idt_monitor_base,
604 pmon_monitor_base,
605 lsipmon_monitor_base);
606 */
c906108c
SS
607
608 /* Write the monitor trap address handlers into the monitor (eeprom)
609 address space. This can only be done once the target endianness
610 has been determined. */
adf40b2e
JM
611 if (idt_monitor_base != 0)
612 {
613 unsigned loop;
614 unsigned idt_monitor_size = 1 << 11;
615
616 /* the default monitor region */
617 sim_do_commandf (sd, "memory region 0x%x,0x%x",
618 idt_monitor_base, idt_monitor_size);
619
620 /* Entry into the IDT monitor is via fixed address vectors, and
621 not using machine instructions. To avoid clashing with use of
622 the MIPS TRAP system, we place our own (simulator specific)
623 "undefined" instructions into the relevant vector slots. */
624 for (loop = 0; (loop < idt_monitor_size); loop += 4)
625 {
626 address_word vaddr = (idt_monitor_base + loop);
627 unsigned32 insn = (RSVD_INSTRUCTION |
628 (((loop >> 2) & RSVD_INSTRUCTION_ARG_MASK)
629 << RSVD_INSTRUCTION_ARG_SHIFT));
630 H2T (insn);
631 sim_write (sd, vaddr, (char *)&insn, sizeof (insn));
632 }
633 }
634
635 if ((pmon_monitor_base != 0) || (lsipmon_monitor_base != 0))
636 {
c906108c
SS
637 /* The PMON monitor uses the same address space, but rather than
638 branching into it the address of a routine is loaded. We can
639 cheat for the moment, and direct the PMON routine to IDT style
640 instructions within the monitor space. This relies on the IDT
641 monitor not using the locations from 0xBFC00500 onwards as its
642 entry points.*/
adf40b2e
JM
643 unsigned loop;
644 for (loop = 0; (loop < 24); loop++)
645 {
646 unsigned32 value = ((0x500 - 8) / 8); /* default UNDEFINED reason code */
647 switch (loop)
648 {
c906108c
SS
649 case 0: /* read */
650 value = 7;
651 break;
652 case 1: /* write */
653 value = 8;
654 break;
655 case 2: /* open */
656 value = 6;
657 break;
658 case 3: /* close */
659 value = 10;
660 break;
661 case 5: /* printf */
662 value = ((0x500 - 16) / 8); /* not an IDT reason code */
663 break;
664 case 8: /* cliexit */
665 value = 17;
666 break;
667 case 11: /* flush_cache */
668 value = 28;
669 break;
670 }
adf40b2e
JM
671
672 SIM_ASSERT (idt_monitor_base != 0);
673 value = ((unsigned int) idt_monitor_base + (value * 8));
c906108c 674 H2T (value);
c906108c 675
adf40b2e
JM
676 if (pmon_monitor_base != 0)
677 {
678 address_word vaddr = (pmon_monitor_base + (loop * 4));
679 sim_write (sd, vaddr, (char *)&value, sizeof (value));
680 }
681
682 if (lsipmon_monitor_base != 0)
683 {
684 address_word vaddr = (lsipmon_monitor_base + (loop * 4));
685 sim_write (sd, vaddr, (char *)&value, sizeof (value));
686 }
c906108c 687 }
adf40b2e
JM
688
689 /* Write an abort sequence into the TRAP (common) exception vector
690 addresses. This is to catch code executing a TRAP (et.al.)
691 instruction without installing a trap handler. */
692 if ((idt_monitor_base != 0) ||
693 (pmon_monitor_base != 0) ||
694 (lsipmon_monitor_base != 0))
695 {
696 unsigned32 halt[2] = { 0x2404002f /* addiu r4, r0, 47 */,
697 HALT_INSTRUCTION /* BREAK */ };
698 H2T (halt[0]);
699 H2T (halt[1]);
700 sim_write (sd, 0x80000000, (char *) halt, sizeof (halt));
701 sim_write (sd, 0x80000180, (char *) halt, sizeof (halt));
702 sim_write (sd, 0x80000200, (char *) halt, sizeof (halt));
703 /* XXX: Write here unconditionally? */
704 sim_write (sd, 0xBFC00200, (char *) halt, sizeof (halt));
705 sim_write (sd, 0xBFC00380, (char *) halt, sizeof (halt));
706 sim_write (sd, 0xBFC00400, (char *) halt, sizeof (halt));
707 }
c906108c
SS
708 }
709
710
711
712 return sd;
713}
714
715#if defined(TRACE)
716static void
717open_trace(sd)
718 SIM_DESC sd;
719{
720 tracefh = fopen(tracefile,"wb+");
721 if (tracefh == NULL)
722 {
723 sim_io_eprintf(sd,"Failed to create file \"%s\", writing trace information to stderr.\n",tracefile);
724 tracefh = stderr;
725 }
726}
727#endif /* TRACE */
728
729/* Return name of an insn, used by insn profiling. */
730static const char *
731get_insn_name (sim_cpu *cpu, int i)
732{
733 return itable[i].name;
734}
735
736void
737sim_close (sd, quitting)
738 SIM_DESC sd;
739 int quitting;
740{
741#ifdef DEBUG
742 printf("DBG: sim_close: entered (quitting = %d)\n",quitting);
743#endif
744
745
746 /* "quitting" is non-zero if we cannot hang on errors */
747
748 /* shut down modules */
749 sim_module_uninstall (sd);
750
751 /* Ensure that any resources allocated through the callback
752 mechanism are released: */
753 sim_io_shutdown (sd);
754
755#if defined(TRACE)
756 if (tracefh != NULL && tracefh != stderr)
757 fclose(tracefh);
758 tracefh = NULL;
759#endif /* TRACE */
760
761 /* FIXME - free SD */
762
763 return;
764}
765
766
767int
768sim_write (sd,addr,buffer,size)
769 SIM_DESC sd;
770 SIM_ADDR addr;
771 unsigned char *buffer;
772 int size;
773{
774 int index;
775 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
776
777 /* Return the number of bytes written, or zero if error. */
778#ifdef DEBUG
779 sim_io_printf(sd,"sim_write(0x%s,buffer,%d);\n",pr_addr(addr),size);
780#endif
781
782 /* We use raw read and write routines, since we do not want to count
783 the GDB memory accesses in our statistics gathering. */
784
785 for (index = 0; index < size; index++)
786 {
787 address_word vaddr = (address_word)addr + index;
788 address_word paddr;
789 int cca;
790 if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isSTORE, &paddr, &cca, isRAW))
791 break;
792 if (sim_core_write_buffer (SD, CPU, read_map, buffer + index, paddr, 1) != 1)
793 break;
794 }
795
796 return(index);
797}
798
799int
800sim_read (sd,addr,buffer,size)
801 SIM_DESC sd;
802 SIM_ADDR addr;
803 unsigned char *buffer;
804 int size;
805{
806 int index;
807 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
808
809 /* Return the number of bytes read, or zero if error. */
810#ifdef DEBUG
811 sim_io_printf(sd,"sim_read(0x%s,buffer,%d);\n",pr_addr(addr),size);
812#endif /* DEBUG */
813
814 for (index = 0; (index < size); index++)
815 {
816 address_word vaddr = (address_word)addr + index;
817 address_word paddr;
818 int cca;
819 if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isLOAD, &paddr, &cca, isRAW))
820 break;
821 if (sim_core_read_buffer (SD, CPU, read_map, buffer + index, paddr, 1) != 1)
822 break;
823 }
824
825 return(index);
826}
827
828int
829sim_store_register (sd,rn,memory,length)
830 SIM_DESC sd;
831 int rn;
832 unsigned char *memory;
833 int length;
834{
835 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
836 /* NOTE: gdb (the client) stores registers in target byte order
837 while the simulator uses host byte order */
838#ifdef DEBUG
839 sim_io_printf(sd,"sim_store_register(%d,*memory=0x%s);\n",rn,pr_addr(*((SIM_ADDR *)memory)));
840#endif /* DEBUG */
841
842 /* Unfortunately this suffers from the same problem as the register
843 numbering one. We need to know what the width of each logical
844 register number is for the architecture being simulated. */
845
846 if (cpu->register_widths[rn] == 0)
847 {
848 sim_io_eprintf(sd,"Invalid register width for %d (register store ignored)\n",rn);
849 return 0;
850 }
851
852
853
854 if (rn >= FGRIDX && rn < FGRIDX + NR_FGR)
855 {
7a292a7a 856 cpu->fpr_state[rn - FGRIDX] = fmt_uninterpreted;
c906108c
SS
857 if (cpu->register_widths[rn] == 32)
858 {
a0b3c4fd
JM
859 if (length == 8)
860 {
861 cpu->fgr[rn - FGRIDX] =
862 (unsigned32) T2H_8 (*(unsigned64*)memory);
863 return 8;
864 }
865 else
866 {
867 cpu->fgr[rn - FGRIDX] = T2H_4 (*(unsigned32*)memory);
868 return 4;
869 }
c906108c
SS
870 }
871 else
872 {
873 cpu->fgr[rn - FGRIDX] = T2H_8 (*(unsigned64*)memory);
874 return 8;
875 }
876 }
877
878 if (cpu->register_widths[rn] == 32)
879 {
a0b3c4fd
JM
880 if (length == 8)
881 {
882 cpu->registers[rn] =
883 (unsigned32) T2H_8 (*(unsigned64*)memory);
884 return 8;
885 }
886 else
887 {
888 cpu->registers[rn] = T2H_4 (*(unsigned32*)memory);
889 return 4;
890 }
c906108c
SS
891 }
892 else
893 {
894 cpu->registers[rn] = T2H_8 (*(unsigned64*)memory);
895 return 8;
896 }
897
898 return 0;
899}
900
901int
902sim_fetch_register (sd,rn,memory,length)
903 SIM_DESC sd;
904 int rn;
905 unsigned char *memory;
906 int length;
907{
908 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
909 /* NOTE: gdb (the client) stores registers in target byte order
910 while the simulator uses host byte order */
911#ifdef DEBUG
912#if 0 /* FIXME: doesn't compile */
913 sim_io_printf(sd,"sim_fetch_register(%d=0x%s,mem) : place simulator registers into memory\n",rn,pr_addr(registers[rn]));
914#endif
915#endif /* DEBUG */
916
917 if (cpu->register_widths[rn] == 0)
918 {
919 sim_io_eprintf (sd, "Invalid register width for %d (register fetch ignored)\n",rn);
920 return 0;
921 }
922
923
924
925 /* Any floating point register */
926 if (rn >= FGRIDX && rn < FGRIDX + NR_FGR)
927 {
928 if (cpu->register_widths[rn] == 32)
929 {
a0b3c4fd
JM
930 if (length == 8)
931 {
932 *(unsigned64*)memory =
933 H2T_8 ((unsigned32) (cpu->fgr[rn - FGRIDX]));
934 return 8;
935 }
936 else
937 {
938 *(unsigned32*)memory = H2T_4 (cpu->fgr[rn - FGRIDX]);
939 return 4;
940 }
c906108c
SS
941 }
942 else
943 {
944 *(unsigned64*)memory = H2T_8 (cpu->fgr[rn - FGRIDX]);
945 return 8;
946 }
947 }
948
949 if (cpu->register_widths[rn] == 32)
950 {
a0b3c4fd
JM
951 if (length == 8)
952 {
953 *(unsigned64*)memory =
954 H2T_8 ((unsigned32) (cpu->registers[rn]));
955 return 8;
956 }
957 else
958 {
959 *(unsigned32*)memory = H2T_4 ((unsigned32)(cpu->registers[rn]));
960 return 4;
961 }
c906108c
SS
962 }
963 else
964 {
965 *(unsigned64*)memory = H2T_8 ((unsigned64)(cpu->registers[rn]));
966 return 8;
967 }
968
969 return 0;
970}
971
972
973SIM_RC
974sim_create_inferior (sd, abfd, argv,env)
975 SIM_DESC sd;
976 struct _bfd *abfd;
977 char **argv;
978 char **env;
979{
980
981#ifdef DEBUG
982#if 0 /* FIXME: doesn't compile */
983 printf("DBG: sim_create_inferior entered: start_address = 0x%s\n",
984 pr_addr(PC));
985#endif
986#endif /* DEBUG */
987
988 ColdReset(sd);
989
990 if (abfd != NULL)
991 {
992 /* override PC value set by ColdReset () */
993 int cpu_nr;
994 for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
995 {
996 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
997 CIA_SET (cpu, (unsigned64) bfd_get_start_address (abfd));
998 }
999 }
1000
1001#if 0 /* def DEBUG */
1002 if (argv || env)
1003 {
1004 /* We should really place the argv slot values into the argument
1005 registers, and onto the stack as required. However, this
1006 assumes that we have a stack defined, which is not
1007 necessarily true at the moment. */
1008 char **cptr;
1009 sim_io_printf(sd,"sim_create_inferior() : passed arguments ignored\n");
1010 for (cptr = argv; (cptr && *cptr); cptr++)
1011 printf("DBG: arg \"%s\"\n",*cptr);
1012 }
1013#endif /* DEBUG */
1014
1015 return SIM_RC_OK;
1016}
1017
1018void
1019sim_do_command (sd,cmd)
1020 SIM_DESC sd;
1021 char *cmd;
1022{
1023 if (sim_args_command (sd, cmd) != SIM_RC_OK)
1024 sim_io_printf (sd, "Error: \"%s\" is not a valid MIPS simulator command.\n",
1025 cmd);
1026}
1027
1028/*---------------------------------------------------------------------------*/
1029/*-- Private simulator support interface ------------------------------------*/
1030/*---------------------------------------------------------------------------*/
1031
1032/* Read a null terminated string from memory, return in a buffer */
1033static char *
1034fetch_str (SIM_DESC sd,
1035 address_word addr)
1036{
1037 char *buf;
1038 int nr = 0;
1039 char null;
1040 while (sim_read (sd, addr + nr, &null, 1) == 1 && null != 0)
1041 nr++;
1042 buf = NZALLOC (char, nr + 1);
1043 sim_read (sd, addr, buf, nr);
1044 return buf;
1045}
1046
adf40b2e
JM
1047
1048/* Implements the "sim firmware" command:
1049 sim firmware NAME[@ADDRESS] --- emulate ROM monitor named NAME.
1050 NAME can be idt, pmon, or lsipmon. If omitted, ADDRESS
1051 defaults to the normal address for that monitor.
1052 sim firmware none --- don't emulate any ROM monitor. Useful
1053 if you need a clean address space. */
1054static SIM_RC
1055sim_firmware_command (SIM_DESC sd, char *arg)
1056{
1057 int address_present = 0;
1058 SIM_ADDR address;
1059
1060 /* Signal occurrence of this option. */
1061 firmware_option_p = 1;
1062
1063 /* Parse out the address, if present. */
1064 {
1065 char *p = strchr (arg, '@');
1066 if (p)
1067 {
1068 char *q;
1069 address_present = 1;
1070 p ++; /* skip over @ */
1071
1072 address = strtoul (p, &q, 0);
1073 if (*q != '\0')
1074 {
1075 sim_io_printf (sd, "Invalid address given to the"
1076 "`sim firmware NAME@ADDRESS' command: %s\n",
1077 p);
1078 return SIM_RC_FAIL;
1079 }
1080 }
1081 else
1082 address_present = 0;
1083 }
1084
1085 if (! strncmp (arg, "idt", 3))
1086 {
1087 idt_monitor_base = address_present ? address : 0xBFC00000;
1088 pmon_monitor_base = 0;
1089 lsipmon_monitor_base = 0;
1090 }
1091 else if (! strncmp (arg, "pmon", 4))
1092 {
1093 /* pmon uses indirect calls. Hook into implied idt. */
1094 pmon_monitor_base = address_present ? address : 0xBFC00500;
1095 idt_monitor_base = pmon_monitor_base - 0x500;
1096 lsipmon_monitor_base = 0;
1097 }
1098 else if (! strncmp (arg, "lsipmon", 7))
1099 {
1100 /* lsipmon uses indirect calls. Hook into implied idt. */
1101 pmon_monitor_base = 0;
1102 lsipmon_monitor_base = address_present ? address : 0xBFC00200;
1103 idt_monitor_base = lsipmon_monitor_base - 0x200;
1104 }
1105 else if (! strncmp (arg, "none", 4))
1106 {
1107 if (address_present)
1108 {
1109 sim_io_printf (sd,
1110 "The `sim firmware none' command does "
1111 "not take an `ADDRESS' argument.\n");
1112 return SIM_RC_FAIL;
1113 }
1114 idt_monitor_base = 0;
1115 pmon_monitor_base = 0;
1116 lsipmon_monitor_base = 0;
1117 }
1118 else
1119 {
1120 sim_io_printf (sd, "\
1121Unrecognized name given to the `sim firmware NAME' command: %s\n\
1122Recognized firmware names are: `idt', `pmon', `lsipmon', and `none'.\n",
1123 arg);
1124 return SIM_RC_FAIL;
1125 }
1126
1127 return SIM_RC_OK;
1128}
1129
1130
1131
c906108c
SS
1132/* Simple monitor interface (currently setup for the IDT and PMON monitors) */
1133void
1134sim_monitor (SIM_DESC sd,
1135 sim_cpu *cpu,
1136 address_word cia,
1137 unsigned int reason)
1138{
1139#ifdef DEBUG
1140 printf("DBG: sim_monitor: entered (reason = %d)\n",reason);
1141#endif /* DEBUG */
1142
1143 /* The IDT monitor actually allows two instructions per vector
1144 slot. However, the simulator currently causes a trap on each
1145 individual instruction. We cheat, and lose the bottom bit. */
1146 reason >>= 1;
1147
1148 /* The following callback functions are available, however the
1149 monitor we are simulating does not make use of them: get_errno,
1150 isatty, lseek, rename, system, time and unlink */
1151 switch (reason)
1152 {
1153
1154 case 6: /* int open(char *path,int flags) */
1155 {
1156 char *path = fetch_str (sd, A0);
1157 V0 = sim_io_open (sd, path, (int)A1);
1158 zfree (path);
1159 break;
1160 }
1161
1162 case 7: /* int read(int file,char *ptr,int len) */
1163 {
1164 int fd = A0;
1165 int nr = A2;
1166 char *buf = zalloc (nr);
1167 V0 = sim_io_read (sd, fd, buf, nr);
1168 sim_write (sd, A1, buf, nr);
1169 zfree (buf);
1170 }
1171 break;
1172
1173 case 8: /* int write(int file,char *ptr,int len) */
1174 {
1175 int fd = A0;
1176 int nr = A2;
1177 char *buf = zalloc (nr);
1178 sim_read (sd, A1, buf, nr);
1179 V0 = sim_io_write (sd, fd, buf, nr);
1180 zfree (buf);
1181 break;
1182 }
1183
1184 case 10: /* int close(int file) */
1185 {
1186 V0 = sim_io_close (sd, (int)A0);
1187 break;
1188 }
1189
1190 case 2: /* Densan monitor: char inbyte(int waitflag) */
1191 {
1192 if (A0 == 0) /* waitflag == NOWAIT */
1193 V0 = (unsigned_word)-1;
1194 }
1195 /* Drop through to case 11 */
1196
1197 case 11: /* char inbyte(void) */
1198 {
1199 char tmp;
43e526b9
JM
1200 /* ensure that all output has gone... */
1201 sim_io_flush_stdout (sd);
c906108c
SS
1202 if (sim_io_read_stdin (sd, &tmp, sizeof(char)) != sizeof(char))
1203 {
1204 sim_io_error(sd,"Invalid return from character read");
1205 V0 = (unsigned_word)-1;
1206 }
1207 else
1208 V0 = (unsigned_word)tmp;
1209 break;
1210 }
1211
1212 case 3: /* Densan monitor: void co(char chr) */
1213 case 12: /* void outbyte(char chr) : write a byte to "stdout" */
1214 {
1215 char tmp = (char)(A0 & 0xFF);
1216 sim_io_write_stdout (sd, &tmp, sizeof(char));
1217 break;
1218 }
1219
1220 case 17: /* void _exit() */
1221 {
1222 sim_io_eprintf (sd, "sim_monitor(17): _exit(int reason) to be coded\n");
1223 sim_engine_halt (SD, CPU, NULL, NULL_CIA, sim_exited,
1224 (unsigned int)(A0 & 0xFFFFFFFF));
1225 break;
1226 }
1227
1228 case 28 : /* PMON flush_cache */
1229 break;
1230
1231 case 55: /* void get_mem_info(unsigned int *ptr) */
1232 /* in: A0 = pointer to three word memory location */
1233 /* out: [A0 + 0] = size */
1234 /* [A0 + 4] = instruction cache size */
1235 /* [A0 + 8] = data cache size */
1236 {
1237 unsigned_4 value = MEM_SIZE /* FIXME STATE_MEM_SIZE (sd) */;
1238 unsigned_4 zero = 0;
1239 H2T (value);
1240 sim_write (sd, A0 + 0, (char *)&value, 4);
1241 sim_write (sd, A0 + 4, (char *)&zero, 4);
1242 sim_write (sd, A0 + 8, (char *)&zero, 4);
1243 /* sim_io_eprintf (sd, "sim: get_mem_info() depreciated\n"); */
1244 break;
1245 }
1246
1247 case 158 : /* PMON printf */
1248 /* in: A0 = pointer to format string */
1249 /* A1 = optional argument 1 */
1250 /* A2 = optional argument 2 */
1251 /* A3 = optional argument 3 */
1252 /* out: void */
1253 /* The following is based on the PMON printf source */
1254 {
1255 address_word s = A0;
1256 char c;
1257 signed_word *ap = &A1; /* 1st argument */
1258 /* This isn't the quickest way, since we call the host print
1259 routine for every character almost. But it does avoid
1260 having to allocate and manage a temporary string buffer. */
1261 /* TODO: Include check that we only use three arguments (A1,
1262 A2 and A3) */
1263 while (sim_read (sd, s++, &c, 1) && c != '\0')
1264 {
1265 if (c == '%')
1266 {
1267 char tmp[40];
1268 enum {FMT_RJUST, FMT_LJUST, FMT_RJUST0, FMT_CENTER} fmt = FMT_RJUST;
1269 int width = 0, trunc = 0, haddot = 0, longlong = 0;
1270 while (sim_read (sd, s++, &c, 1) && c != '\0')
1271 {
1272 if (strchr ("dobxXulscefg%", c))
1273 break;
1274 else if (c == '-')
1275 fmt = FMT_LJUST;
1276 else if (c == '0')
1277 fmt = FMT_RJUST0;
1278 else if (c == '~')
1279 fmt = FMT_CENTER;
1280 else if (c == '*')
1281 {
1282 if (haddot)
1283 trunc = (int)*ap++;
1284 else
1285 width = (int)*ap++;
1286 }
1287 else if (c >= '1' && c <= '9')
1288 {
1289 address_word t = s;
1290 unsigned int n;
1291 while (sim_read (sd, s++, &c, 1) == 1 && isdigit (c))
1292 tmp[s - t] = c;
1293 tmp[s - t] = '\0';
1294 n = (unsigned int)strtol(tmp,NULL,10);
1295 if (haddot)
1296 trunc = n;
1297 else
1298 width = n;
1299 s--;
1300 }
1301 else if (c == '.')
1302 haddot = 1;
1303 }
1304 switch (c)
1305 {
1306 case '%':
1307 sim_io_printf (sd, "%%");
1308 break;
1309 case 's':
1310 if ((int)*ap != 0)
1311 {
1312 address_word p = *ap++;
1313 char ch;
1314 while (sim_read (sd, p++, &ch, 1) == 1 && ch != '\0')
1315 sim_io_printf(sd, "%c", ch);
1316 }
1317 else
1318 sim_io_printf(sd,"(null)");
1319 break;
1320 case 'c':
1321 sim_io_printf (sd, "%c", (int)*ap++);
1322 break;
1323 default:
1324 if (c == 'l')
1325 {
1326 sim_read (sd, s++, &c, 1);
1327 if (c == 'l')
1328 {
1329 longlong = 1;
1330 sim_read (sd, s++, &c, 1);
1331 }
1332 }
1333 if (strchr ("dobxXu", c))
1334 {
1335 word64 lv = (word64) *ap++;
1336 if (c == 'b')
1337 sim_io_printf(sd,"<binary not supported>");
1338 else
1339 {
1340 sprintf (tmp, "%%%s%c", longlong ? "ll" : "", c);
1341 if (longlong)
1342 sim_io_printf(sd, tmp, lv);
1343 else
1344 sim_io_printf(sd, tmp, (int)lv);
1345 }
1346 }
1347 else if (strchr ("eEfgG", c))
1348 {
1349 double dbl = *(double*)(ap++);
1350 sprintf (tmp, "%%%d.%d%c", width, trunc, c);
1351 sim_io_printf (sd, tmp, dbl);
1352 trunc = 0;
1353 }
1354 }
1355 }
1356 else
1357 sim_io_printf(sd, "%c", c);
1358 }
1359 break;
1360 }
1361
1362 default:
1363 sim_io_error (sd, "TODO: sim_monitor(%d) : PC = 0x%s\n",
1364 reason, pr_addr(cia));
1365 break;
1366 }
1367 return;
1368}
1369
1370/* Store a word into memory. */
1371
1372static void
1373store_word (SIM_DESC sd,
1374 sim_cpu *cpu,
1375 address_word cia,
1376 uword64 vaddr,
1377 signed_word val)
1378{
1379 address_word paddr;
1380 int uncached;
1381
1382 if ((vaddr & 3) != 0)
1383 SignalExceptionAddressStore ();
1384 else
1385 {
1386 if (AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached,
1387 isTARGET, isREAL))
1388 {
1389 const uword64 mask = 7;
1390 uword64 memval;
1391 unsigned int byte;
1392
1393 paddr = (paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2));
1394 byte = (vaddr & mask) ^ (BigEndianCPU << 2);
1395 memval = ((uword64) val) << (8 * byte);
1396 StoreMemory (uncached, AccessLength_WORD, memval, 0, paddr, vaddr,
1397 isREAL);
1398 }
1399 }
1400}
1401
1402/* Load a word from memory. */
1403
1404static signed_word
1405load_word (SIM_DESC sd,
1406 sim_cpu *cpu,
1407 address_word cia,
1408 uword64 vaddr)
1409{
1410 if ((vaddr & 3) != 0)
1411 {
1412 SIM_CORE_SIGNAL (SD, cpu, cia, read_map, AccessLength_WORD+1, vaddr, read_transfer, sim_core_unaligned_signal);
1413 }
1414 else
1415 {
1416 address_word paddr;
1417 int uncached;
1418
1419 if (AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached,
1420 isTARGET, isREAL))
1421 {
1422 const uword64 mask = 0x7;
1423 const unsigned int reverse = ReverseEndian ? 1 : 0;
1424 const unsigned int bigend = BigEndianCPU ? 1 : 0;
1425 uword64 memval;
1426 unsigned int byte;
1427
1428 paddr = (paddr & ~mask) | ((paddr & mask) ^ (reverse << 2));
1429 LoadMemory (&memval,NULL,uncached, AccessLength_WORD, paddr, vaddr,
1430 isDATA, isREAL);
1431 byte = (vaddr & mask) ^ (bigend << 2);
1432 return SIGNEXTEND (((memval >> (8 * byte)) & 0xffffffff), 32);
1433 }
1434 }
1435
1436 return 0;
1437}
1438
1439/* Simulate the mips16 entry and exit pseudo-instructions. These
1440 would normally be handled by the reserved instruction exception
1441 code, but for ease of simulation we just handle them directly. */
1442
1443static void
1444mips16_entry (SIM_DESC sd,
1445 sim_cpu *cpu,
1446 address_word cia,
1447 unsigned int insn)
1448{
1449 int aregs, sregs, rreg;
1450
1451#ifdef DEBUG
1452 printf("DBG: mips16_entry: entered (insn = 0x%08X)\n",insn);
1453#endif /* DEBUG */
1454
1455 aregs = (insn & 0x700) >> 8;
1456 sregs = (insn & 0x0c0) >> 6;
1457 rreg = (insn & 0x020) >> 5;
1458
1459 /* This should be checked by the caller. */
1460 if (sregs == 3)
1461 abort ();
1462
1463 if (aregs < 5)
1464 {
1465 int i;
1466 signed_word tsp;
1467
1468 /* This is the entry pseudo-instruction. */
1469
1470 for (i = 0; i < aregs; i++)
1471 store_word (SD, CPU, cia, (uword64) (SP + 4 * i), GPR[i + 4]);
1472
1473 tsp = SP;
1474 SP -= 32;
1475
1476 if (rreg)
1477 {
1478 tsp -= 4;
1479 store_word (SD, CPU, cia, (uword64) tsp, RA);
1480 }
1481
1482 for (i = 0; i < sregs; i++)
1483 {
1484 tsp -= 4;
1485 store_word (SD, CPU, cia, (uword64) tsp, GPR[16 + i]);
1486 }
1487 }
1488 else
1489 {
1490 int i;
1491 signed_word tsp;
1492
1493 /* This is the exit pseudo-instruction. */
1494
1495 tsp = SP + 32;
1496
1497 if (rreg)
1498 {
1499 tsp -= 4;
1500 RA = load_word (SD, CPU, cia, (uword64) tsp);
1501 }
1502
1503 for (i = 0; i < sregs; i++)
1504 {
1505 tsp -= 4;
1506 GPR[i + 16] = load_word (SD, CPU, cia, (uword64) tsp);
1507 }
1508
1509 SP += 32;
1510
1511 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1512 {
1513 if (aregs == 5)
1514 {
1515 FGR[0] = WORD64LO (GPR[4]);
1516 FPR_STATE[0] = fmt_uninterpreted;
1517 }
1518 else if (aregs == 6)
1519 {
1520 FGR[0] = WORD64LO (GPR[5]);
1521 FGR[1] = WORD64LO (GPR[4]);
1522 FPR_STATE[0] = fmt_uninterpreted;
1523 FPR_STATE[1] = fmt_uninterpreted;
1524 }
1525 }
1526
1527 PC = RA;
1528 }
1529
1530}
1531
1532/*-- trace support ----------------------------------------------------------*/
1533
1534/* The TRACE support is provided (if required) in the memory accessing
1535 routines. Since we are also providing the architecture specific
1536 features, the architecture simulation code can also deal with
1537 notifying the TRACE world of cache flushes, etc. Similarly we do
1538 not need to provide profiling support in the simulator engine,
1539 since we can sample in the instruction fetch control loop. By
1540 defining the TRACE manifest, we add tracing as a run-time
1541 option. */
1542
1543#if defined(TRACE)
1544/* Tracing by default produces "din" format (as required by
1545 dineroIII). Each line of such a trace file *MUST* have a din label
1546 and address field. The rest of the line is ignored, so comments can
1547 be included if desired. The first field is the label which must be
1548 one of the following values:
1549
1550 0 read data
1551 1 write data
1552 2 instruction fetch
1553 3 escape record (treated as unknown access type)
1554 4 escape record (causes cache flush)
1555
1556 The address field is a 32bit (lower-case) hexadecimal address
1557 value. The address should *NOT* be preceded by "0x".
1558
1559 The size of the memory transfer is not important when dealing with
1560 cache lines (as long as no more than a cache line can be
1561 transferred in a single operation :-), however more information
1562 could be given following the dineroIII requirement to allow more
1563 complete memory and cache simulators to provide better
1564 results. i.e. the University of Pisa has a cache simulator that can
1565 also take bus size and speed as (variable) inputs to calculate
1566 complete system performance (a much more useful ability when trying
1567 to construct an end product, rather than a processor). They
1568 currently have an ARM version of their tool called ChARM. */
1569
1570
1571void
1572dotrace (SIM_DESC sd,
1573 sim_cpu *cpu,
1574 FILE *tracefh,
1575 int type,
1576 SIM_ADDR address,
1577 int width,
1578 char *comment,...)
1579{
1580 if (STATE & simTRACE) {
1581 va_list ap;
1582 fprintf(tracefh,"%d %s ; width %d ; ",
1583 type,
1584 pr_addr(address),
1585 width);
1586 va_start(ap,comment);
1587 vfprintf(tracefh,comment,ap);
1588 va_end(ap);
1589 fprintf(tracefh,"\n");
1590 }
1591 /* NOTE: Since the "din" format will only accept 32bit addresses, and
1592 we may be generating 64bit ones, we should put the hi-32bits of the
1593 address into the comment field. */
1594
1595 /* TODO: Provide a buffer for the trace lines. We can then avoid
1596 performing writes until the buffer is filled, or the file is
1597 being closed. */
1598
1599 /* NOTE: We could consider adding a comment field to the "din" file
1600 produced using type 3 markers (unknown access). This would then
1601 allow information about the program that the "din" is for, and
1602 the MIPs world that was being simulated, to be placed into the
1603 trace file. */
1604
1605 return;
1606}
1607#endif /* TRACE */
1608
1609/*---------------------------------------------------------------------------*/
1610/*-- simulator engine -------------------------------------------------------*/
1611/*---------------------------------------------------------------------------*/
1612
1613static void
1614ColdReset (SIM_DESC sd)
1615{
1616 int cpu_nr;
1617 for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
1618 {
1619 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
1620 /* RESET: Fixed PC address: */
1621 PC = (unsigned_word) UNSIGNED64 (0xFFFFFFFFBFC00000);
1622 /* The reset vector address is in the unmapped, uncached memory space. */
1623
1624 SR &= ~(status_SR | status_TS | status_RP);
1625 SR |= (status_ERL | status_BEV);
1626
1627 /* Cheat and allow access to the complete register set immediately */
1628 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT
1629 && WITH_TARGET_WORD_BITSIZE == 64)
1630 SR |= status_FR; /* 64bit registers */
1631
1632 /* Ensure that any instructions with pending register updates are
1633 cleared: */
1634 PENDING_INVALIDATE();
1635
1636 /* Initialise the FPU registers to the unknown state */
1637 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1638 {
1639 int rn;
1640 for (rn = 0; (rn < 32); rn++)
1641 FPR_STATE[rn] = fmt_uninterpreted;
1642 }
1643
1644 }
1645}
1646
1647
1648
1649
1650/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
1651/* Signal an exception condition. This will result in an exception
1652 that aborts the instruction. The instruction operation pseudocode
1653 will never see a return from this function call. */
1654
1655void
1656signal_exception (SIM_DESC sd,
1657 sim_cpu *cpu,
1658 address_word cia,
1659 int exception,...)
1660{
1661 /* int vector; */
1662
1663#ifdef DEBUG
1664 sim_io_printf(sd,"DBG: SignalException(%d) PC = 0x%s\n",exception,pr_addr(cia));
1665#endif /* DEBUG */
1666
1667 /* Ensure that any active atomic read/modify/write operation will fail: */
1668 LLBIT = 0;
1669
1670 /* Save registers before interrupt dispatching */
1671#ifdef SIM_CPU_EXCEPTION_TRIGGER
1672 SIM_CPU_EXCEPTION_TRIGGER(sd, cpu, cia);
1673#endif
1674
1675 switch (exception) {
1676
1677 case DebugBreakPoint :
1678 if (! (Debug & Debug_DM))
1679 {
1680 if (INDELAYSLOT())
1681 {
1682 CANCELDELAYSLOT();
1683
1684 Debug |= Debug_DBD; /* signaled from within in delay slot */
1685 DEPC = cia - 4; /* reference the branch instruction */
1686 }
1687 else
1688 {
1689 Debug &= ~Debug_DBD; /* not signaled from within a delay slot */
1690 DEPC = cia;
1691 }
1692
1693 Debug |= Debug_DM; /* in debugging mode */
1694 Debug |= Debug_DBp; /* raising a DBp exception */
1695 PC = 0xBFC00200;
1696 sim_engine_restart (SD, CPU, NULL, NULL_CIA);
1697 }
1698 break;
1699
1700 case ReservedInstruction :
1701 {
1702 va_list ap;
1703 unsigned int instruction;
1704 va_start(ap,exception);
1705 instruction = va_arg(ap,unsigned int);
1706 va_end(ap);
1707 /* Provide simple monitor support using ReservedInstruction
1708 exceptions. The following code simulates the fixed vector
1709 entry points into the IDT monitor by causing a simulator
1710 trap, performing the monitor operation, and returning to
1711 the address held in the $ra register (standard PCS return
1712 address). This means we only need to pre-load the vector
1713 space with suitable instruction values. For systems were
1714 actual trap instructions are used, we would not need to
1715 perform this magic. */
1716 if ((instruction & RSVD_INSTRUCTION_MASK) == RSVD_INSTRUCTION)
1717 {
1718 sim_monitor (SD, CPU, cia, ((instruction >> RSVD_INSTRUCTION_ARG_SHIFT) & RSVD_INSTRUCTION_ARG_MASK) );
1719 /* NOTE: This assumes that a branch-and-link style
1720 instruction was used to enter the vector (which is the
1721 case with the current IDT monitor). */
1722 sim_engine_restart (SD, CPU, NULL, RA);
1723 }
1724 /* Look for the mips16 entry and exit instructions, and
1725 simulate a handler for them. */
1726 else if ((cia & 1) != 0
1727 && (instruction & 0xf81f) == 0xe809
1728 && (instruction & 0x0c0) != 0x0c0)
1729 {
1730 mips16_entry (SD, CPU, cia, instruction);
1731 sim_engine_restart (sd, NULL, NULL, NULL_CIA);
1732 }
1733 /* else fall through to normal exception processing */
1734 sim_io_eprintf(sd,"ReservedInstruction at PC = 0x%s\n", pr_addr (cia));
1735 }
1736
1737 default:
1738 /* Store exception code into current exception id variable (used
1739 by exit code): */
1740
1741 /* TODO: If not simulating exceptions then stop the simulator
1742 execution. At the moment we always stop the simulation. */
1743
1744#ifdef SUBTARGET_R3900
1745 /* update interrupt-related registers */
1746
1747 /* insert exception code in bits 6:2 */
1748 CAUSE = LSMASKED32(CAUSE, 31, 7) | LSINSERTED32(exception, 6, 2);
1749 /* shift IE/KU history bits left */
1750 SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 3, 0), 5, 2);
1751
1752 if (STATE & simDELAYSLOT)
1753 {
1754 STATE &= ~simDELAYSLOT;
1755 CAUSE |= cause_BD;
1756 EPC = (cia - 4); /* reference the branch instruction */
1757 }
1758 else
1759 EPC = cia;
1760
1761 if (SR & status_BEV)
1762 PC = (signed)0xBFC00000 + 0x180;
1763 else
1764 PC = (signed)0x80000000 + 0x080;
1765#else
1766 /* See figure 5-17 for an outline of the code below */
1767 if (! (SR & status_EXL))
1768 {
1769 CAUSE = (exception << 2);
1770 if (STATE & simDELAYSLOT)
1771 {
1772 STATE &= ~simDELAYSLOT;
1773 CAUSE |= cause_BD;
1774 EPC = (cia - 4); /* reference the branch instruction */
1775 }
1776 else
1777 EPC = cia;
1778 /* FIXME: TLB et.al. */
1779 /* vector = 0x180; */
1780 }
1781 else
1782 {
1783 CAUSE = (exception << 2);
1784 /* vector = 0x180; */
1785 }
1786 SR |= status_EXL;
1787 /* Store exception code into current exception id variable (used
1788 by exit code): */
1789
1790 if (SR & status_BEV)
1791 PC = (signed)0xBFC00200 + 0x180;
1792 else
1793 PC = (signed)0x80000000 + 0x180;
1794#endif
1795
1796 switch ((CAUSE >> 2) & 0x1F)
1797 {
1798 case Interrupt:
1799 /* Interrupts arrive during event processing, no need to
1800 restart */
1801 return;
1802
1803 case NMIReset:
1804 /* Ditto */
1805#ifdef SUBTARGET_3900
1806 /* Exception vector: BEV=0 BFC00000 / BEF=1 BFC00000 */
1807 PC = (signed)0xBFC00000;
1808#endif SUBTARGET_3900
1809 return;
1810
1811 case TLBModification:
1812 case TLBLoad:
1813 case TLBStore:
1814 case AddressLoad:
1815 case AddressStore:
1816 case InstructionFetch:
1817 case DataReference:
1818 /* The following is so that the simulator will continue from the
1819 exception handler address. */
1820 sim_engine_halt (SD, CPU, NULL, PC,
1821 sim_stopped, SIM_SIGBUS);
1822
1823 case ReservedInstruction:
1824 case CoProcessorUnusable:
1825 PC = EPC;
1826 sim_engine_halt (SD, CPU, NULL, PC,
1827 sim_stopped, SIM_SIGILL);
1828
1829 case IntegerOverflow:
1830 case FPE:
1831 sim_engine_halt (SD, CPU, NULL, PC,
1832 sim_stopped, SIM_SIGFPE);
1833
1834 case BreakPoint:
1835 sim_engine_halt (SD, CPU, NULL, PC, sim_stopped, SIM_SIGTRAP);
1836 break;
1837
1838 case SystemCall:
1839 case Trap:
1840 sim_engine_restart (SD, CPU, NULL, PC);
1841 break;
1842
1843 case Watch:
1844 PC = EPC;
1845 sim_engine_halt (SD, CPU, NULL, PC,
1846 sim_stopped, SIM_SIGTRAP);
1847
1848 default : /* Unknown internal exception */
1849 PC = EPC;
1850 sim_engine_halt (SD, CPU, NULL, PC,
1851 sim_stopped, SIM_SIGABRT);
1852
1853 }
1854
1855 case SimulatorFault:
1856 {
1857 va_list ap;
1858 char *msg;
1859 va_start(ap,exception);
1860 msg = va_arg(ap,char *);
1861 va_end(ap);
1862 sim_engine_abort (SD, CPU, NULL_CIA,
1863 "FATAL: Simulator error \"%s\"\n",msg);
1864 }
1865 }
1866
1867 return;
1868}
1869
1870
1871
1872#if defined(WARN_RESULT)
1873/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
1874/* This function indicates that the result of the operation is
1875 undefined. However, this should not affect the instruction
1876 stream. All that is meant to happen is that the destination
1877 register is set to an undefined result. To keep the simulator
1878 simple, we just don't bother updating the destination register, so
1879 the overall result will be undefined. If desired we can stop the
1880 simulator by raising a pseudo-exception. */
1881#define UndefinedResult() undefined_result (sd,cia)
1882static void
1883undefined_result(sd,cia)
1884 SIM_DESC sd;
1885 address_word cia;
1886{
1887 sim_io_eprintf(sd,"UndefinedResult: PC = 0x%s\n",pr_addr(cia));
1888#if 0 /* Disabled for the moment, since it actually happens a lot at the moment. */
1889 state |= simSTOP;
1890#endif
1891 return;
1892}
1893#endif /* WARN_RESULT */
1894
1895/*-- FPU support routines ---------------------------------------------------*/
1896
1897/* Numbers are held in normalized form. The SINGLE and DOUBLE binary
1898 formats conform to ANSI/IEEE Std 754-1985. */
1899/* SINGLE precision floating:
1900 * seeeeeeeefffffffffffffffffffffff
1901 * s = 1bit = sign
1902 * e = 8bits = exponent
1903 * f = 23bits = fraction
1904 */
1905/* SINGLE precision fixed:
1906 * siiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1907 * s = 1bit = sign
1908 * i = 31bits = integer
1909 */
1910/* DOUBLE precision floating:
1911 * seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff
1912 * s = 1bit = sign
1913 * e = 11bits = exponent
1914 * f = 52bits = fraction
1915 */
1916/* DOUBLE precision fixed:
1917 * siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1918 * s = 1bit = sign
1919 * i = 63bits = integer
1920 */
1921
1922/* Extract sign-bit: */
1923#define FP_S_s(v) (((v) & ((unsigned)1 << 31)) ? 1 : 0)
1924#define FP_D_s(v) (((v) & ((uword64)1 << 63)) ? 1 : 0)
1925/* Extract biased exponent: */
1926#define FP_S_be(v) (((v) >> 23) & 0xFF)
1927#define FP_D_be(v) (((v) >> 52) & 0x7FF)
1928/* Extract unbiased Exponent: */
1929#define FP_S_e(v) (FP_S_be(v) - 0x7F)
1930#define FP_D_e(v) (FP_D_be(v) - 0x3FF)
1931/* Extract complete fraction field: */
1932#define FP_S_f(v) ((v) & ~((unsigned)0x1FF << 23))
1933#define FP_D_f(v) ((v) & ~((uword64)0xFFF << 52))
1934/* Extract numbered fraction bit: */
1935#define FP_S_fb(b,v) (((v) & (1 << (23 - (b)))) ? 1 : 0)
1936#define FP_D_fb(b,v) (((v) & (1 << (52 - (b)))) ? 1 : 0)
1937
1938/* Explicit QNaN values used when value required: */
1939#define FPQNaN_SINGLE (0x7FBFFFFF)
1940#define FPQNaN_WORD (0x7FFFFFFF)
1941#define FPQNaN_DOUBLE (((uword64)0x7FF7FFFF << 32) | 0xFFFFFFFF)
1942#define FPQNaN_LONG (((uword64)0x7FFFFFFF << 32) | 0xFFFFFFFF)
1943
1944/* Explicit Infinity values used when required: */
1945#define FPINF_SINGLE (0x7F800000)
1946#define FPINF_DOUBLE (((uword64)0x7FF00000 << 32) | 0x00000000)
1947
1948#define RMMODE(v) (((v) == FP_RM_NEAREST) ? "Round" : (((v) == FP_RM_TOZERO) ? "Trunc" : (((v) == FP_RM_TOPINF) ? "Ceil" : "Floor")))
1949#define DOFMT(v) (((v) == fmt_single) ? "single" : (((v) == fmt_double) ? "double" : (((v) == fmt_word) ? "word" : (((v) == fmt_long) ? "long" : (((v) == fmt_unknown) ? "<unknown>" : (((v) == fmt_uninterpreted) ? "<uninterpreted>" : (((v) == fmt_uninterpreted_32) ? "<uninterpreted_32>" : (((v) == fmt_uninterpreted_64) ? "<uninterpreted_64>" : "<format error>"))))))))
1950
1951uword64
1952value_fpr (SIM_DESC sd,
1953 sim_cpu *cpu,
1954 address_word cia,
1955 int fpr,
1956 FP_formats fmt)
1957{
1958 uword64 value = 0;
1959 int err = 0;
1960
1961 /* Treat unused register values, as fixed-point 64bit values: */
1962 if ((fmt == fmt_uninterpreted) || (fmt == fmt_unknown))
1963#if 1
1964 /* If request to read data as "uninterpreted", then use the current
1965 encoding: */
1966 fmt = FPR_STATE[fpr];
1967#else
1968 fmt = fmt_long;
1969#endif
1970
1971 /* For values not yet accessed, set to the desired format: */
1972 if (FPR_STATE[fpr] == fmt_uninterpreted) {
1973 FPR_STATE[fpr] = fmt;
1974#ifdef DEBUG
1975 printf("DBG: Register %d was fmt_uninterpreted. Now %s\n",fpr,DOFMT(fmt));
1976#endif /* DEBUG */
1977 }
1978 if (fmt != FPR_STATE[fpr]) {
1979 sim_io_eprintf(sd,"FPR %d (format %s) being accessed with format %s - setting to unknown (PC = 0x%s)\n",fpr,DOFMT(FPR_STATE[fpr]),DOFMT(fmt),pr_addr(cia));
1980 FPR_STATE[fpr] = fmt_unknown;
1981 }
1982
1983 if (FPR_STATE[fpr] == fmt_unknown) {
1984 /* Set QNaN value: */
1985 switch (fmt) {
1986 case fmt_single:
1987 value = FPQNaN_SINGLE;
1988 break;
1989
1990 case fmt_double:
1991 value = FPQNaN_DOUBLE;
1992 break;
1993
1994 case fmt_word:
1995 value = FPQNaN_WORD;
1996 break;
1997
1998 case fmt_long:
1999 value = FPQNaN_LONG;
2000 break;
2001
2002 default:
2003 err = -1;
2004 break;
2005 }
2006 } else if (SizeFGR() == 64) {
2007 switch (fmt) {
2008 case fmt_single:
2009 case fmt_word:
2010 value = (FGR[fpr] & 0xFFFFFFFF);
2011 break;
2012
2013 case fmt_uninterpreted:
2014 case fmt_double:
2015 case fmt_long:
2016 value = FGR[fpr];
2017 break;
2018
2019 default :
2020 err = -1;
2021 break;
2022 }
2023 } else {
2024 switch (fmt) {
2025 case fmt_single:
2026 case fmt_word:
2027 value = (FGR[fpr] & 0xFFFFFFFF);
2028 break;
2029
2030 case fmt_uninterpreted:
2031 case fmt_double:
2032 case fmt_long:
2033 if ((fpr & 1) == 0) { /* even registers only */
2034#ifdef DEBUG
2035 printf("DBG: ValueFPR: FGR[%d] = %s, FGR[%d] = %s\n",
2036 fpr+1, pr_uword64( (uword64) FGR[fpr+1] ),
2037 fpr, pr_uword64( (uword64) FGR[fpr] ));
2038#endif
2039 value = ((((uword64)FGR[fpr+1]) << 32) | (FGR[fpr] & 0xFFFFFFFF));
2040 } else {
2041 SignalException(ReservedInstruction,0);
2042 }
2043 break;
2044
2045 default :
2046 err = -1;
2047 break;
2048 }
2049 }
2050
2051 if (err)
2052 SignalExceptionSimulatorFault ("Unrecognised FP format in ValueFPR()");
2053
2054#ifdef DEBUG
2055 printf("DBG: ValueFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d\n",fpr,DOFMT(fmt),pr_uword64(value),pr_addr(cia),SizeFGR());
2056#endif /* DEBUG */
2057
2058 return(value);
2059}
2060
2061void
2062store_fpr (SIM_DESC sd,
2063 sim_cpu *cpu,
2064 address_word cia,
2065 int fpr,
2066 FP_formats fmt,
2067 uword64 value)
2068{
2069 int err = 0;
2070
2071#ifdef DEBUG
2072 printf("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d,\n",fpr,DOFMT(fmt),pr_uword64(value),pr_addr(cia),SizeFGR());
2073#endif /* DEBUG */
2074
2075 if (SizeFGR() == 64) {
2076 switch (fmt) {
2077 case fmt_uninterpreted_32:
2078 fmt = fmt_uninterpreted;
2079 case fmt_single :
2080 case fmt_word :
a3027dd7
FCE
2081 if (STATE_VERBOSE_P(SD))
2082 sim_io_eprintf (SD, "Warning: PC 0x%s: interp.c store_fpr DEADCODE\n",
2083 pr_addr(cia));
c906108c
SS
2084 FGR[fpr] = (((uword64)0xDEADC0DE << 32) | (value & 0xFFFFFFFF));
2085 FPR_STATE[fpr] = fmt;
2086 break;
2087
2088 case fmt_uninterpreted_64:
2089 fmt = fmt_uninterpreted;
2090 case fmt_uninterpreted:
2091 case fmt_double :
2092 case fmt_long :
2093 FGR[fpr] = value;
2094 FPR_STATE[fpr] = fmt;
2095 break;
2096
2097 default :
2098 FPR_STATE[fpr] = fmt_unknown;
2099 err = -1;
2100 break;
2101 }
2102 } else {
2103 switch (fmt) {
2104 case fmt_uninterpreted_32:
2105 fmt = fmt_uninterpreted;
2106 case fmt_single :
2107 case fmt_word :
2108 FGR[fpr] = (value & 0xFFFFFFFF);
2109 FPR_STATE[fpr] = fmt;
2110 break;
2111
2112 case fmt_uninterpreted_64:
2113 fmt = fmt_uninterpreted;
2114 case fmt_uninterpreted:
2115 case fmt_double :
2116 case fmt_long :
2117 if ((fpr & 1) == 0) { /* even register number only */
2118 FGR[fpr+1] = (value >> 32);
2119 FGR[fpr] = (value & 0xFFFFFFFF);
2120 FPR_STATE[fpr + 1] = fmt;
2121 FPR_STATE[fpr] = fmt;
2122 } else {
2123 FPR_STATE[fpr] = fmt_unknown;
2124 FPR_STATE[fpr + 1] = fmt_unknown;
2125 SignalException(ReservedInstruction,0);
2126 }
2127 break;
2128
2129 default :
2130 FPR_STATE[fpr] = fmt_unknown;
2131 err = -1;
2132 break;
2133 }
2134 }
2135#if defined(WARN_RESULT)
2136 else
2137 UndefinedResult();
2138#endif /* WARN_RESULT */
2139
2140 if (err)
2141 SignalExceptionSimulatorFault ("Unrecognised FP format in StoreFPR()");
2142
2143#ifdef DEBUG
2144 printf("DBG: StoreFPR: fpr[%d] = 0x%s (format %s)\n",fpr,pr_uword64(FGR[fpr]),DOFMT(fmt));
2145#endif /* DEBUG */
2146
2147 return;
2148}
2149
2150int
2151NaN(op,fmt)
2152 uword64 op;
2153 FP_formats fmt;
2154{
2155 int boolean = 0;
2156 switch (fmt) {
2157 case fmt_single:
2158 case fmt_word:
2159 {
2160 sim_fpu wop;
2161 sim_fpu_32to (&wop, op);
2162 boolean = sim_fpu_is_nan (&wop);
2163 break;
2164 }
2165 case fmt_double:
2166 case fmt_long:
2167 {
2168 sim_fpu wop;
2169 sim_fpu_64to (&wop, op);
2170 boolean = sim_fpu_is_nan (&wop);
2171 break;
2172 }
2173 default:
2174 fprintf (stderr, "Bad switch\n");
2175 abort ();
2176 }
2177
2178#ifdef DEBUG
2179printf("DBG: NaN: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
2180#endif /* DEBUG */
2181
2182 return(boolean);
2183}
2184
2185int
2186Infinity(op,fmt)
2187 uword64 op;
2188 FP_formats fmt;
2189{
2190 int boolean = 0;
2191
2192#ifdef DEBUG
2193 printf("DBG: Infinity: format %s 0x%s\n",DOFMT(fmt),pr_addr(op));
2194#endif /* DEBUG */
2195
2196 switch (fmt) {
2197 case fmt_single:
2198 {
2199 sim_fpu wop;
2200 sim_fpu_32to (&wop, op);
2201 boolean = sim_fpu_is_infinity (&wop);
2202 break;
2203 }
2204 case fmt_double:
2205 {
2206 sim_fpu wop;
2207 sim_fpu_64to (&wop, op);
2208 boolean = sim_fpu_is_infinity (&wop);
2209 break;
2210 }
2211 default:
2212 printf("DBG: TODO: unrecognised format (%s) for Infinity check\n",DOFMT(fmt));
2213 break;
2214 }
2215
2216#ifdef DEBUG
2217 printf("DBG: Infinity: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
2218#endif /* DEBUG */
2219
2220 return(boolean);
2221}
2222
2223int
2224Less(op1,op2,fmt)
2225 uword64 op1;
2226 uword64 op2;
2227 FP_formats fmt;
2228{
2229 int boolean = 0;
2230
2231 /* Argument checking already performed by the FPCOMPARE code */
2232
2233#ifdef DEBUG
2234 printf("DBG: Less: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2235#endif /* DEBUG */
2236
2237 /* The format type should already have been checked: */
2238 switch (fmt) {
2239 case fmt_single:
2240 {
2241 sim_fpu wop1;
2242 sim_fpu wop2;
2243 sim_fpu_32to (&wop1, op1);
2244 sim_fpu_32to (&wop2, op2);
2245 boolean = sim_fpu_is_lt (&wop1, &wop2);
2246 break;
2247 }
2248 case fmt_double:
2249 {
2250 sim_fpu wop1;
2251 sim_fpu wop2;
2252 sim_fpu_64to (&wop1, op1);
2253 sim_fpu_64to (&wop2, op2);
2254 boolean = sim_fpu_is_lt (&wop1, &wop2);
2255 break;
2256 }
2257 default:
2258 fprintf (stderr, "Bad switch\n");
2259 abort ();
2260 }
2261
2262#ifdef DEBUG
2263 printf("DBG: Less: returning %d (format = %s)\n",boolean,DOFMT(fmt));
2264#endif /* DEBUG */
2265
2266 return(boolean);
2267}
2268
2269int
2270Equal(op1,op2,fmt)
2271 uword64 op1;
2272 uword64 op2;
2273 FP_formats fmt;
2274{
2275 int boolean = 0;
2276
2277 /* Argument checking already performed by the FPCOMPARE code */
2278
2279#ifdef DEBUG
2280 printf("DBG: Equal: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2281#endif /* DEBUG */
2282
2283 /* The format type should already have been checked: */
2284 switch (fmt) {
2285 case fmt_single:
2286 {
2287 sim_fpu wop1;
2288 sim_fpu wop2;
2289 sim_fpu_32to (&wop1, op1);
2290 sim_fpu_32to (&wop2, op2);
2291 boolean = sim_fpu_is_eq (&wop1, &wop2);
2292 break;
2293 }
2294 case fmt_double:
2295 {
2296 sim_fpu wop1;
2297 sim_fpu wop2;
2298 sim_fpu_64to (&wop1, op1);
2299 sim_fpu_64to (&wop2, op2);
2300 boolean = sim_fpu_is_eq (&wop1, &wop2);
2301 break;
2302 }
2303 default:
2304 fprintf (stderr, "Bad switch\n");
2305 abort ();
2306 }
2307
2308#ifdef DEBUG
2309 printf("DBG: Equal: returning %d (format = %s)\n",boolean,DOFMT(fmt));
2310#endif /* DEBUG */
2311
2312 return(boolean);
2313}
2314
2315uword64
2316AbsoluteValue(op,fmt)
2317 uword64 op;
2318 FP_formats fmt;
2319{
2320 uword64 result = 0;
2321
2322#ifdef DEBUG
2323 printf("DBG: AbsoluteValue: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
2324#endif /* DEBUG */
2325
2326 /* The format type should already have been checked: */
2327 switch (fmt) {
2328 case fmt_single:
2329 {
2330 sim_fpu wop;
2331 unsigned32 ans;
2332 sim_fpu_32to (&wop, op);
2333 sim_fpu_abs (&wop, &wop);
2334 sim_fpu_to32 (&ans, &wop);
2335 result = ans;
2336 break;
2337 }
2338 case fmt_double:
2339 {
2340 sim_fpu wop;
2341 unsigned64 ans;
2342 sim_fpu_64to (&wop, op);
2343 sim_fpu_abs (&wop, &wop);
2344 sim_fpu_to64 (&ans, &wop);
2345 result = ans;
2346 break;
2347 }
2348 default:
2349 fprintf (stderr, "Bad switch\n");
2350 abort ();
2351 }
2352
2353 return(result);
2354}
2355
2356uword64
2357Negate(op,fmt)
2358 uword64 op;
2359 FP_formats fmt;
2360{
2361 uword64 result = 0;
2362
2363#ifdef DEBUG
2364 printf("DBG: Negate: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
2365#endif /* DEBUG */
2366
2367 /* The format type should already have been checked: */
2368 switch (fmt) {
2369 case fmt_single:
2370 {
2371 sim_fpu wop;
2372 unsigned32 ans;
2373 sim_fpu_32to (&wop, op);
2374 sim_fpu_neg (&wop, &wop);
2375 sim_fpu_to32 (&ans, &wop);
2376 result = ans;
2377 break;
2378 }
2379 case fmt_double:
2380 {
2381 sim_fpu wop;
2382 unsigned64 ans;
2383 sim_fpu_64to (&wop, op);
2384 sim_fpu_neg (&wop, &wop);
2385 sim_fpu_to64 (&ans, &wop);
2386 result = ans;
2387 break;
2388 }
2389 default:
2390 fprintf (stderr, "Bad switch\n");
2391 abort ();
2392 }
2393
2394 return(result);
2395}
2396
2397uword64
2398Add(op1,op2,fmt)
2399 uword64 op1;
2400 uword64 op2;
2401 FP_formats fmt;
2402{
2403 uword64 result = 0;
2404
2405#ifdef DEBUG
2406 printf("DBG: Add: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2407#endif /* DEBUG */
2408
2409 /* The registers must specify FPRs valid for operands of type
2410 "fmt". If they are not valid, the result is undefined. */
2411
2412 /* The format type should already have been checked: */
2413 switch (fmt) {
2414 case fmt_single:
2415 {
2416 sim_fpu wop1;
2417 sim_fpu wop2;
2418 sim_fpu ans;
2419 unsigned32 res;
2420 sim_fpu_32to (&wop1, op1);
2421 sim_fpu_32to (&wop2, op2);
2422 sim_fpu_add (&ans, &wop1, &wop2);
2423 sim_fpu_to32 (&res, &ans);
2424 result = res;
2425 break;
2426 }
2427 case fmt_double:
2428 {
2429 sim_fpu wop1;
2430 sim_fpu wop2;
2431 sim_fpu ans;
2432 unsigned64 res;
2433 sim_fpu_64to (&wop1, op1);
2434 sim_fpu_64to (&wop2, op2);
2435 sim_fpu_add (&ans, &wop1, &wop2);
2436 sim_fpu_to64 (&res, &ans);
2437 result = res;
2438 break;
2439 }
2440 default:
2441 fprintf (stderr, "Bad switch\n");
2442 abort ();
2443 }
2444
2445#ifdef DEBUG
2446 printf("DBG: Add: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2447#endif /* DEBUG */
2448
2449 return(result);
2450}
2451
2452uword64
2453Sub(op1,op2,fmt)
2454 uword64 op1;
2455 uword64 op2;
2456 FP_formats fmt;
2457{
2458 uword64 result = 0;
2459
2460#ifdef DEBUG
2461 printf("DBG: Sub: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2462#endif /* DEBUG */
2463
2464 /* The registers must specify FPRs valid for operands of type
2465 "fmt". If they are not valid, the result is undefined. */
2466
2467 /* The format type should already have been checked: */
2468 switch (fmt) {
2469 case fmt_single:
2470 {
2471 sim_fpu wop1;
2472 sim_fpu wop2;
2473 sim_fpu ans;
2474 unsigned32 res;
2475 sim_fpu_32to (&wop1, op1);
2476 sim_fpu_32to (&wop2, op2);
2477 sim_fpu_sub (&ans, &wop1, &wop2);
2478 sim_fpu_to32 (&res, &ans);
2479 result = res;
2480 }
2481 break;
2482 case fmt_double:
2483 {
2484 sim_fpu wop1;
2485 sim_fpu wop2;
2486 sim_fpu ans;
2487 unsigned64 res;
2488 sim_fpu_64to (&wop1, op1);
2489 sim_fpu_64to (&wop2, op2);
2490 sim_fpu_sub (&ans, &wop1, &wop2);
2491 sim_fpu_to64 (&res, &ans);
2492 result = res;
2493 }
2494 break;
2495 default:
2496 fprintf (stderr, "Bad switch\n");
2497 abort ();
2498 }
2499
2500#ifdef DEBUG
2501 printf("DBG: Sub: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2502#endif /* DEBUG */
2503
2504 return(result);
2505}
2506
2507uword64
2508Multiply(op1,op2,fmt)
2509 uword64 op1;
2510 uword64 op2;
2511 FP_formats fmt;
2512{
2513 uword64 result = 0;
2514
2515#ifdef DEBUG
2516 printf("DBG: Multiply: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2517#endif /* DEBUG */
2518
2519 /* The registers must specify FPRs valid for operands of type
2520 "fmt". If they are not valid, the result is undefined. */
2521
2522 /* The format type should already have been checked: */
2523 switch (fmt) {
2524 case fmt_single:
2525 {
2526 sim_fpu wop1;
2527 sim_fpu wop2;
2528 sim_fpu ans;
2529 unsigned32 res;
2530 sim_fpu_32to (&wop1, op1);
2531 sim_fpu_32to (&wop2, op2);
2532 sim_fpu_mul (&ans, &wop1, &wop2);
2533 sim_fpu_to32 (&res, &ans);
2534 result = res;
2535 break;
2536 }
2537 case fmt_double:
2538 {
2539 sim_fpu wop1;
2540 sim_fpu wop2;
2541 sim_fpu ans;
2542 unsigned64 res;
2543 sim_fpu_64to (&wop1, op1);
2544 sim_fpu_64to (&wop2, op2);
2545 sim_fpu_mul (&ans, &wop1, &wop2);
2546 sim_fpu_to64 (&res, &ans);
2547 result = res;
2548 break;
2549 }
2550 default:
2551 fprintf (stderr, "Bad switch\n");
2552 abort ();
2553 }
2554
2555#ifdef DEBUG
2556 printf("DBG: Multiply: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2557#endif /* DEBUG */
2558
2559 return(result);
2560}
2561
2562uword64
2563Divide(op1,op2,fmt)
2564 uword64 op1;
2565 uword64 op2;
2566 FP_formats fmt;
2567{
2568 uword64 result = 0;
2569
2570#ifdef DEBUG
2571 printf("DBG: Divide: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2572#endif /* DEBUG */
2573
2574 /* The registers must specify FPRs valid for operands of type
2575 "fmt". If they are not valid, the result is undefined. */
2576
2577 /* The format type should already have been checked: */
2578 switch (fmt) {
2579 case fmt_single:
2580 {
2581 sim_fpu wop1;
2582 sim_fpu wop2;
2583 sim_fpu ans;
2584 unsigned32 res;
2585 sim_fpu_32to (&wop1, op1);
2586 sim_fpu_32to (&wop2, op2);
2587 sim_fpu_div (&ans, &wop1, &wop2);
2588 sim_fpu_to32 (&res, &ans);
2589 result = res;
2590 break;
2591 }
2592 case fmt_double:
2593 {
2594 sim_fpu wop1;
2595 sim_fpu wop2;
2596 sim_fpu ans;
2597 unsigned64 res;
2598 sim_fpu_64to (&wop1, op1);
2599 sim_fpu_64to (&wop2, op2);
2600 sim_fpu_div (&ans, &wop1, &wop2);
2601 sim_fpu_to64 (&res, &ans);
2602 result = res;
2603 break;
2604 }
2605 default:
2606 fprintf (stderr, "Bad switch\n");
2607 abort ();
2608 }
2609
2610#ifdef DEBUG
2611 printf("DBG: Divide: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2612#endif /* DEBUG */
2613
2614 return(result);
2615}
2616
2617uword64 UNUSED
2618Recip(op,fmt)
2619 uword64 op;
2620 FP_formats fmt;
2621{
2622 uword64 result = 0;
2623
2624#ifdef DEBUG
2625 printf("DBG: Recip: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
2626#endif /* DEBUG */
2627
2628 /* The registers must specify FPRs valid for operands of type
2629 "fmt". If they are not valid, the result is undefined. */
2630
2631 /* The format type should already have been checked: */
2632 switch (fmt) {
2633 case fmt_single:
2634 {
2635 sim_fpu wop;
2636 sim_fpu ans;
2637 unsigned32 res;
2638 sim_fpu_32to (&wop, op);
2639 sim_fpu_inv (&ans, &wop);
2640 sim_fpu_to32 (&res, &ans);
2641 result = res;
2642 break;
2643 }
2644 case fmt_double:
2645 {
2646 sim_fpu wop;
2647 sim_fpu ans;
2648 unsigned64 res;
2649 sim_fpu_64to (&wop, op);
2650 sim_fpu_inv (&ans, &wop);
2651 sim_fpu_to64 (&res, &ans);
2652 result = res;
2653 break;
2654 }
2655 default:
2656 fprintf (stderr, "Bad switch\n");
2657 abort ();
2658 }
2659
2660#ifdef DEBUG
2661 printf("DBG: Recip: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2662#endif /* DEBUG */
2663
2664 return(result);
2665}
2666
2667uword64
2668SquareRoot(op,fmt)
2669 uword64 op;
2670 FP_formats fmt;
2671{
2672 uword64 result = 0;
2673
2674#ifdef DEBUG
2675 printf("DBG: SquareRoot: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
2676#endif /* DEBUG */
2677
2678 /* The registers must specify FPRs valid for operands of type
2679 "fmt". If they are not valid, the result is undefined. */
2680
2681 /* The format type should already have been checked: */
2682 switch (fmt) {
2683 case fmt_single:
2684 {
2685 sim_fpu wop;
2686 sim_fpu ans;
2687 unsigned32 res;
2688 sim_fpu_32to (&wop, op);
2689 sim_fpu_sqrt (&ans, &wop);
2690 sim_fpu_to32 (&res, &ans);
2691 result = res;
2692 break;
2693 }
2694 case fmt_double:
2695 {
2696 sim_fpu wop;
2697 sim_fpu ans;
2698 unsigned64 res;
2699 sim_fpu_64to (&wop, op);
2700 sim_fpu_sqrt (&ans, &wop);
2701 sim_fpu_to64 (&res, &ans);
2702 result = res;
2703 break;
2704 }
2705 default:
2706 fprintf (stderr, "Bad switch\n");
2707 abort ();
2708 }
2709
2710#ifdef DEBUG
2711 printf("DBG: SquareRoot: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2712#endif /* DEBUG */
2713
2714 return(result);
2715}
2716
2717#if 0
2718uword64
2719Max (uword64 op1,
2720 uword64 op2,
2721 FP_formats fmt)
2722{
2723 int cmp;
2724 unsigned64 result;
2725
2726#ifdef DEBUG
2727 printf("DBG: Max: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2728#endif /* DEBUG */
2729
2730 /* The registers must specify FPRs valid for operands of type
2731 "fmt". If they are not valid, the result is undefined. */
2732
2733 /* The format type should already have been checked: */
2734 switch (fmt)
2735 {
2736 case fmt_single:
2737 {
2738 sim_fpu wop1;
2739 sim_fpu wop2;
2740 sim_fpu_32to (&wop1, op1);
2741 sim_fpu_32to (&wop2, op2);
2742 cmp = sim_fpu_cmp (&wop1, &wop2);
2743 break;
2744 }
2745 case fmt_double:
2746 {
2747 sim_fpu wop1;
2748 sim_fpu wop2;
2749 sim_fpu_64to (&wop1, op1);
2750 sim_fpu_64to (&wop2, op2);
2751 cmp = sim_fpu_cmp (&wop1, &wop2);
2752 break;
2753 }
2754 default:
2755 fprintf (stderr, "Bad switch\n");
2756 abort ();
2757 }
2758
2759 switch (cmp)
2760 {
2761 case SIM_FPU_IS_SNAN:
2762 case SIM_FPU_IS_QNAN:
2763 result = op1;
2764 case SIM_FPU_IS_NINF:
2765 case SIM_FPU_IS_NNUMBER:
2766 case SIM_FPU_IS_NDENORM:
2767 case SIM_FPU_IS_NZERO:
2768 result = op2; /* op1 - op2 < 0 */
2769 case SIM_FPU_IS_PINF:
2770 case SIM_FPU_IS_PNUMBER:
2771 case SIM_FPU_IS_PDENORM:
2772 case SIM_FPU_IS_PZERO:
2773 result = op1; /* op1 - op2 > 0 */
2774 default:
2775 fprintf (stderr, "Bad switch\n");
2776 abort ();
2777 }
2778
2779#ifdef DEBUG
2780 printf("DBG: Max: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2781#endif /* DEBUG */
2782
2783 return(result);
2784}
2785#endif
2786
2787#if 0
2788uword64
2789Min (uword64 op1,
2790 uword64 op2,
2791 FP_formats fmt)
2792{
2793 int cmp;
2794 unsigned64 result;
2795
2796#ifdef DEBUG
2797 printf("DBG: Min: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2798#endif /* DEBUG */
2799
2800 /* The registers must specify FPRs valid for operands of type
2801 "fmt". If they are not valid, the result is undefined. */
2802
2803 /* The format type should already have been checked: */
2804 switch (fmt)
2805 {
2806 case fmt_single:
2807 {
2808 sim_fpu wop1;
2809 sim_fpu wop2;
2810 sim_fpu_32to (&wop1, op1);
2811 sim_fpu_32to (&wop2, op2);
2812 cmp = sim_fpu_cmp (&wop1, &wop2);
2813 break;
2814 }
2815 case fmt_double:
2816 {
2817 sim_fpu wop1;
2818 sim_fpu wop2;
2819 sim_fpu_64to (&wop1, op1);
2820 sim_fpu_64to (&wop2, op2);
2821 cmp = sim_fpu_cmp (&wop1, &wop2);
2822 break;
2823 }
2824 default:
2825 fprintf (stderr, "Bad switch\n");
2826 abort ();
2827 }
2828
2829 switch (cmp)
2830 {
2831 case SIM_FPU_IS_SNAN:
2832 case SIM_FPU_IS_QNAN:
2833 result = op1;
2834 case SIM_FPU_IS_NINF:
2835 case SIM_FPU_IS_NNUMBER:
2836 case SIM_FPU_IS_NDENORM:
2837 case SIM_FPU_IS_NZERO:
2838 result = op1; /* op1 - op2 < 0 */
2839 case SIM_FPU_IS_PINF:
2840 case SIM_FPU_IS_PNUMBER:
2841 case SIM_FPU_IS_PDENORM:
2842 case SIM_FPU_IS_PZERO:
2843 result = op2; /* op1 - op2 > 0 */
2844 default:
2845 fprintf (stderr, "Bad switch\n");
2846 abort ();
2847 }
2848
2849#ifdef DEBUG
2850 printf("DBG: Min: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2851#endif /* DEBUG */
2852
2853 return(result);
2854}
2855#endif
2856
2857uword64
2858convert (SIM_DESC sd,
2859 sim_cpu *cpu,
2860 address_word cia,
2861 int rm,
2862 uword64 op,
2863 FP_formats from,
2864 FP_formats to)
2865{
2866 sim_fpu wop;
2867 sim_fpu_round round;
2868 unsigned32 result32;
2869 unsigned64 result64;
2870
2871#ifdef DEBUG
2872#if 0 /* FIXME: doesn't compile */
2873 printf("DBG: Convert: mode %s : op 0x%s : from %s : to %s : (PC = 0x%s)\n",RMMODE(rm),pr_addr(op),DOFMT(from),DOFMT(to),pr_addr(IPC));
2874#endif
2875#endif /* DEBUG */
2876
2877 switch (rm)
2878 {
2879 case FP_RM_NEAREST:
2880 /* Round result to nearest representable value. When two
2881 representable values are equally near, round to the value
2882 that has a least significant bit of zero (i.e. is even). */
2883 round = sim_fpu_round_near;
2884 break;
2885 case FP_RM_TOZERO:
2886 /* Round result to the value closest to, and not greater in
2887 magnitude than, the result. */
2888 round = sim_fpu_round_zero;
2889 break;
2890 case FP_RM_TOPINF:
2891 /* Round result to the value closest to, and not less than,
2892 the result. */
2893 round = sim_fpu_round_up;
2894 break;
2895
2896 case FP_RM_TOMINF:
2897 /* Round result to the value closest to, and not greater than,
2898 the result. */
2899 round = sim_fpu_round_down;
2900 break;
2901 default:
2902 round = 0;
2903 fprintf (stderr, "Bad switch\n");
2904 abort ();
2905 }
2906
2907 /* Convert the input to sim_fpu internal format */
2908 switch (from)
2909 {
2910 case fmt_double:
2911 sim_fpu_64to (&wop, op);
2912 break;
2913 case fmt_single:
2914 sim_fpu_32to (&wop, op);
2915 break;
2916 case fmt_word:
2917 sim_fpu_i32to (&wop, op, round);
2918 break;
2919 case fmt_long:
2920 sim_fpu_i64to (&wop, op, round);
2921 break;
2922 default:
2923 fprintf (stderr, "Bad switch\n");
2924 abort ();
2925 }
2926
2927 /* Convert sim_fpu format into the output */
2928 /* The value WOP is converted to the destination format, rounding
2929 using mode RM. When the destination is a fixed-point format, then
2930 a source value of Infinity, NaN or one which would round to an
2931 integer outside the fixed point range then an IEEE Invalid
2932 Operation condition is raised. */
2933 switch (to)
2934 {
2935 case fmt_single:
2936 sim_fpu_round_32 (&wop, round, 0);
2937 sim_fpu_to32 (&result32, &wop);
2938 result64 = result32;
2939 break;
2940 case fmt_double:
2941 sim_fpu_round_64 (&wop, round, 0);
2942 sim_fpu_to64 (&result64, &wop);
2943 break;
2944 case fmt_word:
2945 sim_fpu_to32i (&result32, &wop, round);
2946 result64 = result32;
2947 break;
2948 case fmt_long:
2949 sim_fpu_to64i (&result64, &wop, round);
2950 break;
2951 default:
2952 result64 = 0;
2953 fprintf (stderr, "Bad switch\n");
2954 abort ();
2955 }
2956
2957#ifdef DEBUG
2958 printf("DBG: Convert: returning 0x%s (to format = %s)\n",pr_addr(result64),DOFMT(to));
2959#endif /* DEBUG */
2960
2961 return(result64);
2962}
2963
2964
2965/*-- co-processor support routines ------------------------------------------*/
2966
2967static int UNUSED
2968CoProcPresent(unsigned int coproc_number)
2969{
2970 /* Return TRUE if simulator provides a model for the given co-processor number */
2971 return(0);
2972}
2973
2974void
2975cop_lw (SIM_DESC sd,
2976 sim_cpu *cpu,
2977 address_word cia,
2978 int coproc_num,
2979 int coproc_reg,
2980 unsigned int memword)
2981{
2982 switch (coproc_num)
2983 {
2984 case 1:
2985 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
2986 {
2987#ifdef DEBUG
2988 printf("DBG: COP_LW: memword = 0x%08X (uword64)memword = 0x%s\n",memword,pr_addr(memword));
2989#endif
2990 StoreFPR(coproc_reg,fmt_word,(uword64)memword);
2991 FPR_STATE[coproc_reg] = fmt_uninterpreted;
2992 break;
2993 }
2994
2995 default:
2996#if 0 /* this should be controlled by a configuration option */
2997 sim_io_printf(sd,"COP_LW(%d,%d,0x%08X) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,memword,pr_addr(cia));
2998#endif
2999 break;
3000 }
3001
3002 return;
3003}
3004
3005void
3006cop_ld (SIM_DESC sd,
3007 sim_cpu *cpu,
3008 address_word cia,
3009 int coproc_num,
3010 int coproc_reg,
3011 uword64 memword)
3012{
3013
3014#ifdef DEBUG
3015 printf("DBG: COP_LD: coproc_num = %d, coproc_reg = %d, value = 0x%s : PC = 0x%s\n", coproc_num, coproc_reg, pr_uword64(memword), pr_addr(cia) );
3016#endif
3017
3018 switch (coproc_num) {
3019 case 1:
3020 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
3021 {
3022 StoreFPR(coproc_reg,fmt_uninterpreted,memword);
3023 break;
3024 }
3025
3026 default:
3027#if 0 /* this message should be controlled by a configuration option */
3028 sim_io_printf(sd,"COP_LD(%d,%d,0x%s) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(memword),pr_addr(cia));
3029#endif
3030 break;
3031 }
3032
3033 return;
3034}
3035
3036
3037
3038
3039unsigned int
3040cop_sw (SIM_DESC sd,
3041 sim_cpu *cpu,
3042 address_word cia,
3043 int coproc_num,
3044 int coproc_reg)
3045{
3046 unsigned int value = 0;
3047
3048 switch (coproc_num)
3049 {
3050 case 1:
3051 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
3052 {
3053 FP_formats hold;
3054 hold = FPR_STATE[coproc_reg];
3055 FPR_STATE[coproc_reg] = fmt_word;
3056 value = (unsigned int)ValueFPR(coproc_reg,fmt_uninterpreted);
3057 FPR_STATE[coproc_reg] = hold;
3058 break;
3059 }
3060
3061 default:
3062#if 0 /* should be controlled by configuration option */
3063 sim_io_printf(sd,"COP_SW(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
3064#endif
3065 break;
3066 }
3067
3068 return(value);
3069}
3070
3071uword64
3072cop_sd (SIM_DESC sd,
3073 sim_cpu *cpu,
3074 address_word cia,
3075 int coproc_num,
3076 int coproc_reg)
3077{
3078 uword64 value = 0;
3079 switch (coproc_num)
3080 {
3081 case 1:
3082 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
3083 {
3084 value = ValueFPR(coproc_reg,fmt_uninterpreted);
3085 break;
3086 }
3087
3088 default:
3089#if 0 /* should be controlled by configuration option */
3090 sim_io_printf(sd,"COP_SD(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
3091#endif
3092 break;
3093 }
3094
3095 return(value);
3096}
3097
3098
3099
3100
3101void
3102decode_coproc (SIM_DESC sd,
3103 sim_cpu *cpu,
3104 address_word cia,
3105 unsigned int instruction)
3106{
3107 int coprocnum = ((instruction >> 26) & 3);
3108
3109 switch (coprocnum)
3110 {
3111 case 0: /* standard CPU control and cache registers */
3112 {
3113 int code = ((instruction >> 21) & 0x1F);
3114 int rt = ((instruction >> 16) & 0x1F);
3115 int rd = ((instruction >> 11) & 0x1F);
3116 int tail = instruction & 0x3ff;
3117 /* R4000 Users Manual (second edition) lists the following CP0
3118 instructions:
3119 CODE><-RT><RD-><--TAIL--->
3120 DMFC0 Doubleword Move From CP0 (VR4100 = 01000000001tttttddddd00000000000)
3121 DMTC0 Doubleword Move To CP0 (VR4100 = 01000000101tttttddddd00000000000)
3122 MFC0 word Move From CP0 (VR4100 = 01000000000tttttddddd00000000000)
3123 MTC0 word Move To CP0 (VR4100 = 01000000100tttttddddd00000000000)
3124 TLBR Read Indexed TLB Entry (VR4100 = 01000010000000000000000000000001)
3125 TLBWI Write Indexed TLB Entry (VR4100 = 01000010000000000000000000000010)
3126 TLBWR Write Random TLB Entry (VR4100 = 01000010000000000000000000000110)
3127 TLBP Probe TLB for Matching Entry (VR4100 = 01000010000000000000000000001000)
3128 CACHE Cache operation (VR4100 = 101111bbbbbpppppiiiiiiiiiiiiiiii)
3129 ERET Exception return (VR4100 = 01000010000000000000000000011000)
3130 */
4ce44c66
JM
3131 if (((code == 0x00) || (code == 0x04) /* MFC0 / MTC0 */
3132 || (code == 0x01) || (code == 0x05)) /* DMFC0 / DMTC0 */
3133 && tail == 0)
c906108c 3134 {
4ce44c66
JM
3135 /* Clear double/single coprocessor move bit. */
3136 code &= ~1;
3137
3138 /* M[TF]C0 (32 bits) | DM[TF]C0 (64 bits) */
c906108c
SS
3139
3140 switch (rd) /* NOTEs: Standard CP0 registers */
3141 {
3142 /* 0 = Index R4000 VR4100 VR4300 */
3143 /* 1 = Random R4000 VR4100 VR4300 */
3144 /* 2 = EntryLo0 R4000 VR4100 VR4300 */
3145 /* 3 = EntryLo1 R4000 VR4100 VR4300 */
3146 /* 4 = Context R4000 VR4100 VR4300 */
3147 /* 5 = PageMask R4000 VR4100 VR4300 */
3148 /* 6 = Wired R4000 VR4100 VR4300 */
3149 /* 8 = BadVAddr R4000 VR4100 VR4300 */
3150 /* 9 = Count R4000 VR4100 VR4300 */
3151 /* 10 = EntryHi R4000 VR4100 VR4300 */
3152 /* 11 = Compare R4000 VR4100 VR4300 */
3153 /* 12 = SR R4000 VR4100 VR4300 */
3154#ifdef SUBTARGET_R3900
3155 case 3:
3156 /* 3 = Config R3900 */
3157 case 7:
3158 /* 7 = Cache R3900 */
3159 case 15:
3160 /* 15 = PRID R3900 */
3161
3162 /* ignore */
3163 break;
3164
3165 case 8:
3166 /* 8 = BadVAddr R4000 VR4100 VR4300 */
3167 if (code == 0x00)
3168 GPR[rt] = COP0_BADVADDR;
3169 else
3170 COP0_BADVADDR = GPR[rt];
3171 break;
3172
3173#endif /* SUBTARGET_R3900 */
3174 case 12:
3175 if (code == 0x00)
3176 GPR[rt] = SR;
3177 else
3178 SR = GPR[rt];
3179 break;
3180 /* 13 = Cause R4000 VR4100 VR4300 */
3181 case 13:
3182 if (code == 0x00)
3183 GPR[rt] = CAUSE;
3184 else
3185 CAUSE = GPR[rt];
3186 break;
3187 /* 14 = EPC R4000 VR4100 VR4300 */
3188 case 14:
3189 if (code == 0x00)
3190 GPR[rt] = (signed_word) (signed_address) EPC;
3191 else
3192 EPC = GPR[rt];
3193 break;
3194 /* 15 = PRId R4000 VR4100 VR4300 */
3195#ifdef SUBTARGET_R3900
3196 /* 16 = Debug */
3197 case 16:
3198 if (code == 0x00)
3199 GPR[rt] = Debug;
3200 else
3201 Debug = GPR[rt];
3202 break;
3203#else
3204 /* 16 = Config R4000 VR4100 VR4300 */
3205 case 16:
3206 if (code == 0x00)
3207 GPR[rt] = C0_CONFIG;
3208 else
3209 C0_CONFIG = GPR[rt];
3210 break;
3211#endif
3212#ifdef SUBTARGET_R3900
3213 /* 17 = Debug */
3214 case 17:
3215 if (code == 0x00)
3216 GPR[rt] = DEPC;
3217 else
3218 DEPC = GPR[rt];
3219 break;
3220#else
3221 /* 17 = LLAddr R4000 VR4100 VR4300 */
3222#endif
3223 /* 18 = WatchLo R4000 VR4100 VR4300 */
3224 /* 19 = WatchHi R4000 VR4100 VR4300 */
3225 /* 20 = XContext R4000 VR4100 VR4300 */
3226 /* 26 = PErr or ECC R4000 VR4100 VR4300 */
3227 /* 27 = CacheErr R4000 VR4100 */
3228 /* 28 = TagLo R4000 VR4100 VR4300 */
3229 /* 29 = TagHi R4000 VR4100 VR4300 */
3230 /* 30 = ErrorEPC R4000 VR4100 VR4300 */
a3027dd7
FCE
3231 if (STATE_VERBOSE_P(SD))
3232 sim_io_eprintf (SD,
3233 "Warning: PC 0x%s:interp.c decode_coproc DEADC0DE\n",
3234 (unsigned)cia);
c906108c
SS
3235 GPR[rt] = 0xDEADC0DE; /* CPR[0,rd] */
3236 /* CPR[0,rd] = GPR[rt]; */
3237 default:
3238 if (code == 0x00)
3239 GPR[rt] = (signed_word) (signed32) COP0_GPR[rd];
3240 else
3241 COP0_GPR[rd] = GPR[rt];
3242#if 0
3243 if (code == 0x00)
3244 sim_io_printf(sd,"Warning: MFC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia);
3245 else
3246 sim_io_printf(sd,"Warning: MTC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia);
3247#endif
3248 }
3249 }
3250 else if (code == 0x10 && (tail & 0x3f) == 0x18)
3251 {
3252 /* ERET */
3253 if (SR & status_ERL)
3254 {
3255 /* Oops, not yet available */
3256 sim_io_printf(sd,"Warning: ERET when SR[ERL] set not handled yet");
3257 PC = EPC;
3258 SR &= ~status_ERL;
3259 }
3260 else
3261 {
3262 PC = EPC;
3263 SR &= ~status_EXL;
3264 }
3265 }
3266 else if (code == 0x10 && (tail & 0x3f) == 0x10)
3267 {
3268 /* RFE */
3269#ifdef SUBTARGET_R3900
3270 /* TX39: Copy IEp/KUp -> IEc/KUc, and IEo/KUo -> IEp/KUp */
3271
3272 /* shift IE/KU history bits right */
3273 SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 5, 2), 3, 0);
3274
3275 /* TODO: CACHE register */
3276#endif /* SUBTARGET_R3900 */
3277 }
3278 else if (code == 0x10 && (tail & 0x3f) == 0x1F)
3279 {
3280 /* DERET */
3281 Debug &= ~Debug_DM;
3282 DELAYSLOT();
3283 DSPC = DEPC;
3284 }
3285 else
3286 sim_io_eprintf(sd,"Unrecognised COP0 instruction 0x%08X at PC = 0x%s : No handler present\n",instruction,pr_addr(cia));
3287 /* TODO: When executing an ERET or RFE instruction we should
3288 clear LLBIT, to ensure that any out-standing atomic
3289 read/modify/write sequence fails. */
3290 }
3291 break;
3292
3293 case 2: /* co-processor 2 */
3294 {
3295 int handle = 0;
3296
3297
3298 if(! handle)
3299 {
3300 sim_io_eprintf(sd, "COP2 instruction 0x%08X at PC = 0x%s : No handler present\n",
3301 instruction,pr_addr(cia));
3302 }
3303 }
3304 break;
3305
3306 case 1: /* should not occur (FPU co-processor) */
3307 case 3: /* should not occur (FPU co-processor) */
3308 SignalException(ReservedInstruction,instruction);
3309 break;
3310 }
3311
3312 return;
3313}
3314
3315
3316/* This code copied from gdb's utils.c. Would like to share this code,
3317 but don't know of a common place where both could get to it. */
3318
3319/* Temporary storage using circular buffer */
3320#define NUMCELLS 16
3321#define CELLSIZE 32
3322static char*
3323get_cell (void)
3324{
3325 static char buf[NUMCELLS][CELLSIZE];
3326 static int cell=0;
3327 if (++cell>=NUMCELLS) cell=0;
3328 return buf[cell];
3329}
3330
3331/* Print routines to handle variable size regs, etc */
3332
3333/* Eliminate warning from compiler on 32-bit systems */
3334static int thirty_two = 32;
3335
3336char*
3337pr_addr(addr)
3338 SIM_ADDR addr;
3339{
3340 char *paddr_str=get_cell();
3341 switch (sizeof(addr))
3342 {
3343 case 8:
3344 sprintf(paddr_str,"%08lx%08lx",
3345 (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
3346 break;
3347 case 4:
3348 sprintf(paddr_str,"%08lx",(unsigned long)addr);
3349 break;
3350 case 2:
3351 sprintf(paddr_str,"%04x",(unsigned short)(addr&0xffff));
3352 break;
3353 default:
3354 sprintf(paddr_str,"%x",addr);
3355 }
3356 return paddr_str;
3357}
3358
3359char*
3360pr_uword64(addr)
3361 uword64 addr;
3362{
3363 char *paddr_str=get_cell();
3364 sprintf(paddr_str,"%08lx%08lx",
3365 (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
3366 return paddr_str;
3367}
3368
3369
3370void
3371mips_core_signal (SIM_DESC sd,
3372 sim_cpu *cpu,
3373 sim_cia cia,
3374 unsigned map,
3375 int nr_bytes,
3376 address_word addr,
3377 transfer_type transfer,
3378 sim_core_signals sig)
3379{
3380 const char *copy = (transfer == read_transfer ? "read" : "write");
3381 address_word ip = CIA_ADDR (cia);
3382
3383 switch (sig)
3384 {
3385 case sim_core_unmapped_signal:
3386 sim_io_eprintf (sd, "mips-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
3387 nr_bytes, copy,
3388 (unsigned long) addr, (unsigned long) ip);
3389 COP0_BADVADDR = addr;
3390 SignalExceptionDataReference();
3391 break;
3392
3393 case sim_core_unaligned_signal:
3394 sim_io_eprintf (sd, "mips-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
3395 nr_bytes, copy,
3396 (unsigned long) addr, (unsigned long) ip);
3397 COP0_BADVADDR = addr;
3398 if(transfer == read_transfer)
3399 SignalExceptionAddressLoad();
3400 else
3401 SignalExceptionAddressStore();
3402 break;
3403
3404 default:
3405 sim_engine_abort (sd, cpu, cia,
3406 "mips_core_signal - internal error - bad switch");
3407 }
3408}
3409
3410
3411void
3412mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
3413{
3414 ASSERT(cpu != NULL);
3415
3416 if(cpu->exc_suspended > 0)
3417 sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", cpu->exc_suspended);
3418
3419 PC = cia;
3420 memcpy(cpu->exc_trigger_registers, cpu->registers, sizeof(cpu->exc_trigger_registers));
3421 cpu->exc_suspended = 0;
3422}
3423
3424void
3425mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
3426{
3427 ASSERT(cpu != NULL);
3428
3429 if(cpu->exc_suspended > 0)
3430 sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n",
3431 cpu->exc_suspended, exception);
3432
3433 memcpy(cpu->exc_suspend_registers, cpu->registers, sizeof(cpu->exc_suspend_registers));
3434 memcpy(cpu->registers, cpu->exc_trigger_registers, sizeof(cpu->registers));
3435 cpu->exc_suspended = exception;
3436}
3437
3438void
3439mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
3440{
3441 ASSERT(cpu != NULL);
3442
3443 if(exception == 0 && cpu->exc_suspended > 0)
3444 {
3445 /* warn not for breakpoints */
3446 if(cpu->exc_suspended != sim_signal_to_host(sd, SIM_SIGTRAP))
3447 sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
3448 cpu->exc_suspended);
3449 }
3450 else if(exception != 0 && cpu->exc_suspended > 0)
3451 {
3452 if(exception != cpu->exc_suspended)
3453 sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
3454 cpu->exc_suspended, exception);
3455
3456 memcpy(cpu->registers, cpu->exc_suspend_registers, sizeof(cpu->registers));
3457 }
3458 else if(exception != 0 && cpu->exc_suspended == 0)
3459 {
3460 sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception);
3461 }
3462 cpu->exc_suspended = 0;
3463}
3464
3465
3466/*---------------------------------------------------------------------------*/
3467/*> EOF interp.c <*/
This page took 0.174338 seconds and 4 git commands to generate.