Delete -l and -n options, didn't do anything.
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
CommitLineData
18c64df6
AC
1/* MIPS Simulator definition.
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5This file is part of GDB, the GNU debugger.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License along
18with this program; if not, write to the Free Software Foundation, Inc.,
1959 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#ifndef SIM_MAIN_H
22#define SIM_MAIN_H
23
24/* This simulator doesn't cache the Current Instruction Address */
25#define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA)
26#define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA)
27
28#define SIM_HAVE_BIENDIAN
29#define SIM_HAVE_FLATMEM
30
31
32/* hobble some common features for moment */
18c64df6
AC
33#define WITH_WATCHPOINTS 1
34
35#include "sim-basics.h"
36
dad6f1f3 37typedef address_word sim_cia;
18c64df6
AC
38
39#include "sim-base.h"
40
41
42/* Depreciated macros and types for manipulating 64bit values. Use
43 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
44
45typedef signed64 word64;
46typedef unsigned64 uword64;
47
48#define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
49#define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
50#define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
51#define SET64HI(t) (((uword64)(t))<<32)
52#define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
53#define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
54
55/* Sign-extend the given value (e) as a value (b) bits long. We cannot
56 assume the HI32bits of the operand are zero, so we must perform a
57 mask to ensure we can use the simple subtraction to sign-extend. */
58#define SIGNEXTEND(e,b) \
fb5a2a3e 59 ((unsigned_word) \
18c64df6
AC
60 (((e) & ((uword64) 1 << ((b) - 1))) \
61 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
fb5a2a3e 62 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
18c64df6
AC
63
64/* Check if a value will fit within a halfword: */
65#define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
66
67/* windows always looses */
68#include <signal.h>
69#ifndef SIGBUS
70#define SIGBUS SIGSEGV
71#endif
72#ifdef _WIN32
73#define SIGTRAP 5
74#define SIGQUIT 3
75#endif
76
77
ea985d24 78
0c2c5f61
AC
79/* Floating-point operations: */
80
81/* FPU registers must be one of the following types. All other values
82 are reserved (and undefined). */
83typedef enum {
84 fmt_single = 0,
85 fmt_double = 1,
86 fmt_word = 4,
87 fmt_long = 5,
88 /* The following are well outside the normal acceptable format
89 range, and are used in the register status vector. */
90 fmt_unknown = 0x10000000,
91 fmt_uninterpreted = 0x20000000,
92} FP_formats;
93
94unsigned64 value_fpr PARAMS ((SIM_DESC sd, int fpr, FP_formats));
95#define ValueFPR(FPR,FMT) value_fpr (sd, (FPR), (FMT))
96
97void store_fpr PARAMS ((SIM_DESC sd, int fpr, FP_formats fmt, unsigned64 value));
98#define StoreFPR(FPR,FMT,VALUE) store_fpr (sd, (FPR), (FMT), (VALUE))
99
100int NaN PARAMS ((unsigned64 op, FP_formats fmt));
101int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
102int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
103int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
104unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
105unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
106unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
107unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
108unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
109unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
110unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
111unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
112unsigned64 convert PARAMS ((SIM_DESC sd, int rm, unsigned64 op, FP_formats from, FP_formats to));
113#define Convert(rm,op,from,to) convert(sd,rm,op,from,to)
114
ea985d24
AC
115/* Macro to update FPSR condition-code field. This is complicated by
116 the fact that there is a hole in the index range of the bits within
117 the FCSR register. Also, the number of bits visible depends on the
118 MIPS ISA version being supported. */
119
120#define SETFCC(cc,v) {\
121 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
122 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
123}
124#define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)
125
126/* This should be the COC1 value at the start of the preceding
127 instruction: */
128#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
129
130#if 1
131#define SizeFGR() (WITH_TARGET_WORD_BITSIZE)
132#else
133/* They depend on the CPU being simulated */
134#define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
135#endif
136
137/* Standard FCRS bits: */
138#define IR (0) /* Inexact Result */
139#define UF (1) /* UnderFlow */
140#define OF (2) /* OverFlow */
141#define DZ (3) /* Division by Zero */
142#define IO (4) /* Invalid Operation */
143#define UO (5) /* Unimplemented Operation */
144
145/* Get masks for individual flags: */
146#if 1 /* SAFE version */
147#define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
148#define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
149#define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
150#else
151#define FP_FLAGS(b) (1 << ((b) + 2))
152#define FP_ENABLE(b) (1 << ((b) + 7))
153#define FP_CAUSE(b) (1 << ((b) + 12))
154#endif
155
156#define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
157
158#define FP_MASK_RM (0x3)
159#define FP_SH_RM (0)
160#define FP_RM_NEAREST (0) /* Round to nearest (Round) */
161#define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
162#define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
163#define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
164#define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
165
166
167
168/* Integer ALU operations: */
169
170#include "sim-alu.h"
171
172#define ALU32_END(ANS) \
173 if (ALU32_HAD_OVERFLOW) \
174 SignalExceptionIntegerOverflow (); \
92ad193b 175 (ANS) = ALU32_OVERFLOW_RESULT
ea985d24
AC
176
177
178#define ALU64_END(ANS) \
179 if (ALU64_HAD_OVERFLOW) \
180 SignalExceptionIntegerOverflow (); \
92ad193b 181 (ANS) = ALU64_OVERFLOW_RESULT;
ea985d24
AC
182
183/* start-sanitize-r5900 */
184
185#define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
186#define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
187#define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
188#define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
189
190#define BYTES_IN_MIPS_REGS (sizeof(signed_word))
191#define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
192#define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
193#define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
194
195/* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
196 T - type of the sub part
197 TC - # of T's in the mips part of the "register"
198 I - index (from 0) of desired sub part
199 A - low part of "register"
200 A1 - high part of register
201*/
202#define SUB_REG_FETCH(T,TC,A,A1,I) \
203(*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
204 + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
205 ? ((TC) - 1 - (I) % (TC)) \
206 : ((I) % (TC)) \
207 ) \
208 ) \
209 )
210
211/*
212GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
213 where <type> has two letters:
214 1 is S=signed or U=unsigned
215 2 is B=byte H=halfword W=word D=doubleword
216*/
217
218#define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
219#define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
220#define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
221#define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
222
223#define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
224#define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
225#define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
226#define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
227
228#define GPR_SB(R,I) SUB_REG_SB(&REGISTERS[R], &REGISTERS1[R], I)
229#define GPR_SH(R,I) SUB_REG_SH(&REGISTERS[R], &REGISTERS1[R], I)
230#define GPR_SW(R,I) SUB_REG_SW(&REGISTERS[R], &REGISTERS1[R], I)
231#define GPR_SD(R,I) SUB_REG_SD(&REGISTERS[R], &REGISTERS1[R], I)
232
233#define GPR_UB(R,I) SUB_REG_UB(&REGISTERS[R], &REGISTERS1[R], I)
234#define GPR_UH(R,I) SUB_REG_UH(&REGISTERS[R], &REGISTERS1[R], I)
235#define GPR_UW(R,I) SUB_REG_UW(&REGISTERS[R], &REGISTERS1[R], I)
236#define GPR_UD(R,I) SUB_REG_UD(&REGISTERS[R], &REGISTERS1[R], I)
237
238
239#define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
240#define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
241#define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
242#define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
243
244#define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
245#define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
246#define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
247#define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
248
249#define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
250#define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
251#define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
252#define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
253
254#define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
255#define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
256#define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
257#define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
258
259
260
261#define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
262#define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
263#define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
264#define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
265
266#define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
267#define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
268#define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
269#define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
270
271#define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
272#define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
273#define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
274#define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
275
276#define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
277#define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
278#define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
279#define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
280
281/* end-sanitize-r5900 */
282
0c2c5f61
AC
283
284
285
18c64df6 286struct _sim_cpu {
0c2c5f61
AC
287
288
289 /* The following are internal simulator state variables: */
ea985d24 290 sim_cia cia;
dad6f1f3 291#define CPU_CIA(CPU) (PC)
0c2c5f61
AC
292 address_word ipc; /* internal Instruction PC */
293 address_word dspc; /* delay-slot PC */
294#define IPC ((STATE_CPU (sd,0))->ipc)
295#define DSPC ((STATE_CPU (sd,0))->dspc)
296
dad6f1f3
AC
297 /* Issue a delay slot instruction immediatly by re-calling
298 idecode_issue */
299#define DELAY_SLOT(TARGET) \
300 do { \
301 address_word target = (TARGET); \
302 instruction_word delay_insn; \
303 sim_events_slip (sd, 1); \
304 PC = CIA + 4; \
305 STATE |= simDELAYSLOT; \
306 delay_insn = IMEM (PC); \
307 idecode_issue (sd, delay_insn, (PC)); \
308 STATE &= !simDELAYSLOT; \
309 PC = target; \
310 } while (0)
311#define NULLIFY_NEXT_INSTRUCTION() \
312 do { \
313 sim_events_slip (sd, 1); \
314 NIA = CIA + 4; \
315 } while (0)
ea985d24
AC
316
317
0c2c5f61
AC
318
319 /* State of the simulator */
320 unsigned int state;
321 unsigned int dsstate;
322#define STATE ((STATE_CPU (sd,0))->state)
323#define DSSTATE ((STATE_CPU (sd,0))->dsstate)
324
ea985d24
AC
325/* Flags in the "state" variable: */
326#define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
327#define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
328#define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
ea985d24
AC
329#define simPCOC0 (1 << 17) /* COC[1] from current */
330#define simPCOC1 (1 << 18) /* COC[1] from previous */
331#define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
332#define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
333#define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
334#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
335
336
337
0c2c5f61
AC
338
339/* This is nasty, since we have to rely on matching the register
340 numbers used by GDB. Unfortunately, depending on the MIPS target
341 GDB uses different register numbers. We cannot just include the
342 relevant "gdb/tm.h" link, since GDB may not be configured before
343 the sim world, and also the GDB header file requires too much other
344 state. */
345
346#ifndef TM_MIPS_H
347#define LAST_EMBED_REGNUM (89)
348#define NUM_REGS (LAST_EMBED_REGNUM + 1)
349/* start-sanitize-r5900 */
350#undef NUM_REGS
351#define NUM_REGS (128)
352/* end-sanitize-r5900 */
353#endif
354
355/* To keep this default simulator simple, and fast, we use a direct
356 vector of registers. The internal simulator engine then uses
357 manifests to access the correct slot. */
358
fb5a2a3e 359 unsigned_word registers[LAST_EMBED_REGNUM + 1];
0c2c5f61
AC
360 int register_widths[NUM_REGS];
361#define REGISTERS ((STATE_CPU (sd,0))->registers)
362
363#define GPR (&REGISTERS[0])
364#define FGRIDX (38)
365#define FGR (&REGISTERS[FGRIDX])
366#define LO (REGISTERS[33])
367#define HI (REGISTERS[34])
368#define PC (REGISTERS[37])
369#define CAUSE (REGISTERS[36])
370#define SRIDX (32)
371#define SR (REGISTERS[SRIDX]) /* CPU status register */
372#define FCR0IDX (71)
373#define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
374#define FCR31IDX (70)
375#define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
376#define FCSR (FCR31)
377#define Debug (REGISTERS[86])
378#define DEPC (REGISTERS[87])
379#define EPC (REGISTERS[88])
380#define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
381
382/* The following are pseudonyms for standard registers */
383#define ZERO (REGISTERS[0])
384#define V0 (REGISTERS[2])
385#define A0 (REGISTERS[4])
386#define A1 (REGISTERS[5])
387#define A2 (REGISTERS[6])
388#define A3 (REGISTERS[7])
389#define SP (REGISTERS[29])
390#define RA (REGISTERS[31])
391
392 /* Keep the current format state for each register: */
393 FP_formats fpr_state[32];
394#define FPR_STATE ((STATE_CPU (sd, 0))->fpr_state)
395
396
397 /* Slots for delayed register updates. For the moment we just have a
398 fixed number of slots (rather than a more generic, dynamic
399 system). This keeps the simulator fast. However, we only allow
400 for the register update to be delayed for a single instruction
401 cycle. */
402#define PSLOTS (5) /* Maximum number of instruction cycles */
403 int pending_in;
404 int pending_out;
405 int pending_total;
406 int pending_slot_count[PSLOTS];
407 int pending_slot_reg[PSLOTS];
408 unsigned_word pending_slot_value[PSLOTS];
409#define PENDING_IN ((STATE_CPU (sd, 0))->pending_in)
410#define PENDING_OUT ((STATE_CPU (sd, 0))->pending_out)
411#define PENDING_TOTAL ((STATE_CPU (sd, 0))->pending_total)
412#define PENDING_SLOT_COUNT ((STATE_CPU (sd, 0))->pending_slot_count)
413#define PENDING_SLOT_REG ((STATE_CPU (sd, 0))->pending_slot_reg)
414#define PENDING_SLOT_VALUE ((STATE_CPU (sd, 0))->pending_slot_value)
415
ea985d24
AC
416 /* The following are not used for MIPS IV onwards: */
417#define PENDING_FILL(r,v) {\
418/* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL); */\
419 if (PENDING_SLOT_REG[PENDING_IN] != (LAST_EMBED_REGNUM + 1))\
420 sim_io_eprintf(sd,"Attempt to over-write pending value\n");\
421 PENDING_SLOT_COUNT[PENDING_IN] = 2;\
422 PENDING_SLOT_REG[PENDING_IN] = (r);\
423 PENDING_SLOT_VALUE[PENDING_IN] = (uword64)(v);\
424/*printf("DBG: FILL reg %d value = 0x%s\n",(r),pr_addr(v));*/\
425 PENDING_TOTAL++;\
426 PENDING_IN++;\
427 if (PENDING_IN == PSLOTS)\
428 PENDING_IN = 0;\
429/*printf("DBG: FILL AFTER pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL);*/\
430 }
431
0c2c5f61
AC
432
433 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
434 read-write instructions. It is set when a linked load occurs. It
435 is tested and cleared by the conditional store. It is cleared
436 (during other CPU operations) when a store to the location would
437 no longer be atomic. In particular, it is cleared by exception
438 return instructions. */
439 int llbit;
440#define LLBIT ((STATE_CPU (sd, 0))->llbit)
441
442
443/* The HIACCESS and LOACCESS counts are used to ensure that
444 corruptions caused by using the HI or LO register to close to a
445 following operation are spotted. */
446
447 int hiaccess;
448 int loaccess;
449#define HIACCESS ((STATE_CPU (sd, 0))->hiaccess)
450#define LOACCESS ((STATE_CPU (sd, 0))->loaccess)
451 /* start-sanitize-r5900 */
452 int hi1access;
453 int lo1access;
454#define HI1ACCESS ((STATE_CPU (sd, 0))->hi1access)
455#define LO1ACCESS ((STATE_CPU (sd, 0))->lo1access)
456 /* end-sanitize-r5900 */
457#if 1
458 /* The 4300 and a few other processors have interlocks on hi/lo
459 register reads, and hence do not have this problem. To avoid
460 spurious warnings, we just disable this always. */
461#define CHECKHILO(s)
462#else
463 unsigned_word HLPC;
464 /* If either of the preceding two instructions have accessed the HI
465 or LO registers, then the values they see should be
466 undefined. However, to keep the simulator world simple, we just
467 let them use the value read and raise a warning to notify the
468 user: */
469#define CHECKHILO(s) {\
470 if ((HIACCESS != 0) || (LOACCESS != 0)) \
471 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
472}
0425cfb3 473 /* start-sanitize-r5900 */
0c2c5f61
AC
474#undef CHECKHILO
475#define CHECKHILO(s) {\
476 if ((HIACCESS != 0) || (LOACCESS != 0) || (HI1ACCESS != 0) || (LO1ACCESS != 0))\
477 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
478}
479 /* end-sanitize-r5900 */
480#endif
481
482
483 /* start-sanitize-r5900 */
484 /* The R5900 has 128 bit registers, but the hi 64 bits are only
485 touched by multimedia (MMI) instructions. The normal mips
486 instructions just use the lower 64 bits. To avoid changing the
487 older parts of the simulator to handle this weirdness, the high
488 64 bits of each register are kept in a separate array
489 (registers1). The high 64 bits of any register are by convention
490 refered by adding a '1' to the end of the normal register's name.
491 So LO still refers to the low 64 bits of the LO register, LO1
492 refers to the high 64 bits of that same register. */
493
494 signed_word registers1[LAST_EMBED_REGNUM + 1];
495#define REGISTERS1 ((STATE_CPU (sd, 0))->registers1)
496#define GPR1 (&REGISTERS1[0])
497#define LO1 (REGISTERS1[32])
498#define HI1 (REGISTERS1[33])
499#define REGISTER_SA (124)
500
501 unsigned_word sa; /* the shift amount register */
502#define SA ((STATE_CPU (sd, 0))->sa)
503
504 /* end-sanitize-r5900 */
01b9cd49
AC
505 /* start-sanitize-vr5400 */
506
507 /* end-sanitize-vr5400 */
0c2c5f61
AC
508
509
510
18c64df6
AC
511 sim_cpu_base base;
512};
513
514
515/* MIPS specific simulator watch config */
516
517void watch_options_install PARAMS ((SIM_DESC sd));
518
519struct swatch {
520 sim_event *pc;
521 sim_event *clock;
522 sim_event *cycles;
523};
524
525
526/* FIXME: At present much of the simulator is still static */
527struct sim_state {
528
529 struct swatch watch;
530
531 sim_cpu cpu[1];
532#if (WITH_SMP)
533#define STATE_CPU(sd,n) (&(sd)->cpu[n])
534#else
535#define STATE_CPU(sd,n) (&(sd)->cpu[0])
536#endif
537
538 sim_state_base base;
539};
540
541
ea985d24
AC
542
543/* Status information: */
544
545/* TODO : these should be the bitmasks for these bits within the
546 status register. At the moment the following are VR4300
547 bit-positions: */
548#define status_KSU_mask (0x3) /* mask for KSU bits */
549#define status_KSU_shift (3) /* shift for field */
550#define ksu_kernel (0x0)
551#define ksu_supervisor (0x1)
552#define ksu_user (0x2)
553#define ksu_unknown (0x3)
554
555#define status_IE (1 << 0) /* Interrupt enable */
556#define status_EXL (1 << 1) /* Exception level */
557#define status_RE (1 << 25) /* Reverse Endian in user mode */
558#define status_FR (1 << 26) /* enables MIPS III additional FP registers */
559#define status_SR (1 << 20) /* soft reset or NMI */
560#define status_BEV (1 << 22) /* Location of general exception vectors */
561#define status_TS (1 << 21) /* TLB shutdown has occurred */
562#define status_ERL (1 << 2) /* Error level */
563#define status_RP (1 << 27) /* Reduced Power mode */
564
565#define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
566
567/* NOTE: We keep the following status flags as bit values (1 for true,
568 0 for false). This allows them to be used in binary boolean
569 operations without worrying about what exactly the non-zero true
570 value is. */
571
572/* UserMode */
573#define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
574
575/* BigEndianMem */
576/* Hardware configuration. Affects endianness of LoadMemory and
577 StoreMemory and the endianness of Kernel and Supervisor mode
578 execution. The value is 0 for little-endian; 1 for big-endian. */
579#define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
580/*(state & simBE) ? 1 : 0)*/
581
582/* ByteSwapMem */
583/* This is true if the host and target have different endianness. */
584#define ByteSwapMem (CURRENT_TARGET_BYTE_ORDER != CURRENT_HOST_BYTE_ORDER)
585
586/* ReverseEndian */
587/* This mode is selected if in User mode with the RE bit being set in
588 SR (Status Register). It reverses the endianness of load and store
589 instructions. */
590#define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
591
592/* BigEndianCPU */
593/* The endianness for load and store instructions (0=little;1=big). In
594 User mode this endianness may be switched by setting the state_RE
595 bit in the SR register. Thus, BigEndianCPU may be computed as
596 (BigEndianMem EOR ReverseEndian). */
597#define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
598
599
600
18c64df6
AC
601/* Exceptions: */
602
603/* NOTE: These numbers depend on the processor architecture being
604 simulated: */
605#define Interrupt (0)
606#define TLBModification (1)
607#define TLBLoad (2)
608#define TLBStore (3)
609#define AddressLoad (4)
610#define AddressStore (5)
611#define InstructionFetch (6)
612#define DataReference (7)
613#define SystemCall (8)
614#define BreakPoint (9)
615#define ReservedInstruction (10)
616#define CoProcessorUnusable (11)
617#define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
618#define Trap (13)
619#define FPE (15)
620#define DebugBreakPoint (16)
621#define Watch (23)
622
623/* The following exception code is actually private to the simulator
624 world. It is *NOT* a processor feature, and is used to signal
625 run-time errors in the simulator. */
626#define SimulatorFault (0xFFFFFFFF)
627
628void signal_exception (SIM_DESC sd, int exception, ...);
629#define SignalException(exc,instruction) signal_exception (sd, (exc), (instruction))
630#define SignalExceptionInterrupt() signal_exception (sd, Interrupt)
631#define SignalExceptionInstructionFetch() signal_exception (sd, InstructionFetch)
632#define SignalExceptionAddressStore() signal_exception (sd, AddressStore)
633#define SignalExceptionAddressLoad() signal_exception (sd, AddressLoad)
634#define SignalExceptionSimulatorFault(buf) signal_exception (sd, SimulatorFault, buf)
635#define SignalExceptionFPE() signal_exception (sd, FPE)
636#define SignalExceptionIntegerOverflow() signal_exception (sd, IntegerOverflow)
637#define SignalExceptionCoProcessorUnusable() signal_exception (sd, CoProcessorUnusable)
638
639
18c64df6
AC
640/* Co-processor accesses */
641
642void cop_lw PARAMS ((SIM_DESC sd, int coproc_num, int coproc_reg, unsigned int memword));
643void cop_ld PARAMS ((SIM_DESC sd, int coproc_num, int coproc_reg, uword64 memword));
644unsigned int cop_sw PARAMS ((SIM_DESC sd, int coproc_num, int coproc_reg));
645uword64 cop_sd PARAMS ((SIM_DESC sd, int coproc_num, int coproc_reg));
646
647#define COP_LW(coproc_num,coproc_reg,memword) cop_lw(sd,coproc_num,coproc_reg,memword)
648#define COP_LD(coproc_num,coproc_reg,memword) cop_ld(sd,coproc_num,coproc_reg,memword)
649#define COP_SW(coproc_num,coproc_reg) cop_sw(sd,coproc_num,coproc_reg)
650#define COP_SD(coproc_num,coproc_reg) cop_sd(sd,coproc_num,coproc_reg)
651
ea985d24
AC
652void decode_coproc PARAMS ((SIM_DESC sd,unsigned int instruction));
653#define DecodeCoproc(instruction) decode_coproc(sd, (instruction))
654
18c64df6
AC
655
656
657/* Memory accesses */
658
ea985d24
AC
659/* The following are generic to all versions of the MIPS architecture
660 to date: */
661
662/* Memory Access Types (for CCA): */
663#define Uncached (0)
664#define CachedNoncoherent (1)
665#define CachedCoherent (2)
666#define Cached (3)
667
668#define isINSTRUCTION (1 == 0) /* FALSE */
669#define isDATA (1 == 1) /* TRUE */
670#define isLOAD (1 == 0) /* FALSE */
671#define isSTORE (1 == 1) /* TRUE */
672#define isREAL (1 == 0) /* FALSE */
673#define isRAW (1 == 1) /* TRUE */
525d929e 674/* The parameter HOST (isTARGET / isHOST) is ignored */
ea985d24 675#define isTARGET (1 == 0) /* FALSE */
525d929e 676/* #define isHOST (1 == 1) TRUE */
ea985d24
AC
677
678/* The "AccessLength" specifications for Loads and Stores. NOTE: This
679 is the number of bytes minus 1. */
680#define AccessLength_BYTE (0)
681#define AccessLength_HALFWORD (1)
682#define AccessLength_TRIPLEBYTE (2)
683#define AccessLength_WORD (3)
684#define AccessLength_QUINTIBYTE (4)
685#define AccessLength_SEXTIBYTE (5)
686#define AccessLength_SEPTIBYTE (6)
687#define AccessLength_DOUBLEWORD (7)
688#define AccessLength_QUADWORD (15)
689
525d929e 690int address_translation PARAMS ((SIM_DESC sd, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
18c64df6 691#define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
525d929e 692address_translation(sd, vAddr,IorD,LorS,pAddr,CCA,raw)
18c64df6 693
dad6f1f3 694void load_memory PARAMS ((SIM_DESC sd, uword64* memvalp, uword64* memval1p, int CCA, int AccessLength, address_word pAddr, address_word vAddr, int IorD, int raw));
18c64df6
AC
695#define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
696load_memory(sd,memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw)
697
dad6f1f3 698void store_memory PARAMS ((SIM_DESC sd, int CCA, int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr, int raw));
18c64df6
AC
699#define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
700store_memory(sd,CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw)
701
dad6f1f3 702void cache_op PARAMS ((SIM_DESC sd, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
18c64df6
AC
703#define CacheOp(op,pAddr,vAddr,instruction) cache_op(sd,op,pAddr,vAddr,instruction)
704
ea985d24
AC
705void sync_operation PARAMS ((SIM_DESC sd, int stype));
706#define SyncOperation(stype) sync_operation (sd, (stype))
707
dad6f1f3 708void prefetch PARAMS ((SIM_DESC sd, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
ea985d24
AC
709#define Prefetch(CCA,pAddr,vAddr,DATA,hint) prefetch(sd,CCA,pAddr,vAddr,DATA,hint)
710
dad6f1f3
AC
711unsigned32 ifetch32 PARAMS ((SIM_DESC sd, address_word cia));
712#define IMEM(CIA) ifetch32 (SD, (CIA))
ea985d24
AC
713
714
18c64df6 715#endif
This page took 0.055726 seconds and 4 git commands to generate.