* Backed out week-old attempt at enabling quadword memory access on
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
CommitLineData
18c64df6
AC
1/* MIPS Simulator definition.
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5This file is part of GDB, the GNU debugger.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License along
18with this program; if not, write to the Free Software Foundation, Inc.,
1959 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#ifndef SIM_MAIN_H
22#define SIM_MAIN_H
23
24/* This simulator doesn't cache the Current Instruction Address */
7ce8b917
AC
25/* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26/* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
18c64df6
AC
27
28#define SIM_HAVE_BIENDIAN
18c64df6
AC
29
30
31/* hobble some common features for moment */
18c64df6 32#define WITH_WATCHPOINTS 1
63be8feb 33#define WITH_MODULO_MEMORY 1
18c64df6
AC
34
35#include "sim-basics.h"
36
dad6f1f3 37typedef address_word sim_cia;
18c64df6 38
63be8feb
AC
39#if (WITH_IGEN)
40/* Get the number of instructions. FIXME: must be a more elegant way
41 of doing this. */
42#include "itable.h"
43#define MAX_INSNS (nr_itable_entries)
44#define INSN_NAME(i) itable[(i)].name
45#endif
46
18c64df6
AC
47#include "sim-base.h"
48
49
50/* Depreciated macros and types for manipulating 64bit values. Use
51 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
52
53typedef signed64 word64;
54typedef unsigned64 uword64;
55
56#define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
57#define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
58#define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
59#define SET64HI(t) (((uword64)(t))<<32)
60#define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
61#define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
62
63/* Sign-extend the given value (e) as a value (b) bits long. We cannot
64 assume the HI32bits of the operand are zero, so we must perform a
65 mask to ensure we can use the simple subtraction to sign-extend. */
66#define SIGNEXTEND(e,b) \
fb5a2a3e 67 ((unsigned_word) \
18c64df6
AC
68 (((e) & ((uword64) 1 << ((b) - 1))) \
69 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
fb5a2a3e 70 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
18c64df6
AC
71
72/* Check if a value will fit within a halfword: */
73#define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
74
18c64df6 75
ea985d24 76
0c2c5f61
AC
77/* Floating-point operations: */
78
2d44e12a
AC
79#include "sim-fpu.h"
80
0c2c5f61
AC
81/* FPU registers must be one of the following types. All other values
82 are reserved (and undefined). */
83typedef enum {
84 fmt_single = 0,
85 fmt_double = 1,
86 fmt_word = 4,
87 fmt_long = 5,
88 /* The following are well outside the normal acceptable format
89 range, and are used in the register status vector. */
90 fmt_unknown = 0x10000000,
91 fmt_uninterpreted = 0x20000000,
a09a30d2
AC
92 fmt_uninterpreted_32 = 0x40000000,
93 fmt_uninterpreted_64 = 0x80000000,
0c2c5f61
AC
94} FP_formats;
95
01737f42
AC
96unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats));
97#define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT))
0c2c5f61 98
01737f42
AC
99void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
100#define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE))
0c2c5f61
AC
101
102int NaN PARAMS ((unsigned64 op, FP_formats fmt));
103int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
104int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
105int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
106unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
107unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
108unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
109unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
110unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
111unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
112unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
113unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
a48e8c8d
AC
114unsigned64 Max PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
115unsigned64 Min PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
01737f42
AC
116unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
117#define Convert(rm,op,from,to) \
118convert (SD, CPU, cia, rm, op, from, to)
0c2c5f61 119
ea985d24
AC
120/* Macro to update FPSR condition-code field. This is complicated by
121 the fact that there is a hole in the index range of the bits within
122 the FCSR register. Also, the number of bits visible depends on the
123 MIPS ISA version being supported. */
124
125#define SETFCC(cc,v) {\
126 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
127 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
128}
ca6f76d1 129#define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0)
ea985d24
AC
130
131/* This should be the COC1 value at the start of the preceding
132 instruction: */
133#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
134
135#if 1
a48e8c8d 136#define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
ea985d24
AC
137#else
138/* They depend on the CPU being simulated */
139#define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
140#endif
141
142/* Standard FCRS bits: */
143#define IR (0) /* Inexact Result */
144#define UF (1) /* UnderFlow */
145#define OF (2) /* OverFlow */
146#define DZ (3) /* Division by Zero */
147#define IO (4) /* Invalid Operation */
148#define UO (5) /* Unimplemented Operation */
149
150/* Get masks for individual flags: */
151#if 1 /* SAFE version */
152#define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
153#define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
154#define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
155#else
156#define FP_FLAGS(b) (1 << ((b) + 2))
157#define FP_ENABLE(b) (1 << ((b) + 7))
158#define FP_CAUSE(b) (1 << ((b) + 12))
159#endif
160
161#define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
162
163#define FP_MASK_RM (0x3)
164#define FP_SH_RM (0)
165#define FP_RM_NEAREST (0) /* Round to nearest (Round) */
166#define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
167#define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
168#define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
169#define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
170
171
172
173/* Integer ALU operations: */
174
175#include "sim-alu.h"
176
177#define ALU32_END(ANS) \
178 if (ALU32_HAD_OVERFLOW) \
179 SignalExceptionIntegerOverflow (); \
92ad193b 180 (ANS) = ALU32_OVERFLOW_RESULT
ea985d24
AC
181
182
183#define ALU64_END(ANS) \
184 if (ALU64_HAD_OVERFLOW) \
185 SignalExceptionIntegerOverflow (); \
92ad193b 186 (ANS) = ALU64_OVERFLOW_RESULT;
ea985d24 187
a48e8c8d 188
ea985d24
AC
189/* start-sanitize-r5900 */
190
f89c0689
AC
191/* Figure 10-5 FPU Control/Status Register.
192 Note: some of these bits are different to what is found in a
193 standard MIPS manual. */
194enum {
195 R5900_FCSR_C = BIT (23), /* OK */
196 R5900_FCSR_I = BIT (17),
197 R5900_FCSR_D = BIT (16),
198 R5900_FCSR_O = BIT (15),
199 R5900_FCSR_U = BIT (14),
200 R5900_FCSR_CAUSE = MASK (16,14),
201 R5900_FCSR_SI = BIT (6),
202 R5900_FCSR_SD = BIT (5),
203 R5900_FCSR_SO = BIT (4),
204 R5900_FCSR_SU = BIT (3),
205};
206
a48e8c8d
AC
207typedef struct _sim_r5900_cpu {
208
209 /* The R5900 has 32 x 128bit general purpose registers.
210 Fortunatly, the high 64 bits are only touched by multimedia (MMI)
211 instructions. The normal mips instructions just use the lower 64
212 bits. To avoid changing the older parts of the simulator to
213 handle this weirdness, the high 64 bits of each register are kept
214 in a separate array (registers1). The high 64 bits of any
215 register are by convention refered by adding a '1' to the end of
216 the normal register's name. So LO still refers to the low 64
217 bits of the LO register, LO1 refers to the high 64 bits of that
218 same register. */
219 signed_word gpr1[32];
220#define GPR1 ((CPU)->r5900.gpr1)
221 signed_word lo1;
222 signed_word hi1;
223#define LO1 ((CPU)->r5900.lo1)
224#define HI1 ((CPU)->r5900.hi1)
225
226 /* The R5900 defines a shift amount register, that controls the
227 amount of certain shift instructions */
228 unsigned_word sa; /* the shift amount register */
229#define REGISTER_SA (124) /* GET RID IF THIS! */
230#define SA ((CPU)->r5900.sa)
231
232 /* The R5900, in addition to the (almost) standard floating point
233 registers, defines a 32 bit accumulator. This is used in
234 multiply/accumulate style instructions */
235 fp_word acc; /* floating-point accumulator */
236#define ACC ((CPU)->r5900.acc)
237
238 /* See comments below about needing to count cycles between updating
239 and setting HI/LO registers */
240 int hi1access;
241 int lo1access;
242#define HI1ACCESS ((CPU)->r5900.hi1access)
243#define LO1ACCESS ((CPU)->r5900.lo1access)
244#if 0
245#define CHECKHILO(s) {\
246 if ((HIACCESS != 0) || (LOACCESS != 0) || (HI1ACCESS != 0) || (LO1ACCESS != 0))\
247 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
248}
249#endif
250
251} sim_r5900_cpu;
252
ea985d24
AC
253#define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
254#define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
255#define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
256#define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
257
258#define BYTES_IN_MIPS_REGS (sizeof(signed_word))
259#define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
260#define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
261#define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
262
263/* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
264 T - type of the sub part
265 TC - # of T's in the mips part of the "register"
266 I - index (from 0) of desired sub part
267 A - low part of "register"
268 A1 - high part of register
269*/
270#define SUB_REG_FETCH(T,TC,A,A1,I) \
271(*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
272 + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
273 ? ((TC) - 1 - (I) % (TC)) \
274 : ((I) % (TC)) \
275 ) \
276 ) \
277 )
278
279/*
280GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
281 where <type> has two letters:
282 1 is S=signed or U=unsigned
283 2 is B=byte H=halfword W=word D=doubleword
284*/
285
286#define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
287#define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
288#define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
289#define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
290
291#define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
292#define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
293#define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
294#define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
295
a48e8c8d
AC
296#define GPR_SB(R,I) SUB_REG_SB(&GPR[R], &GPR1[R], I)
297#define GPR_SH(R,I) SUB_REG_SH(&GPR[R], &GPR1[R], I)
298#define GPR_SW(R,I) SUB_REG_SW(&GPR[R], &GPR1[R], I)
299#define GPR_SD(R,I) SUB_REG_SD(&GPR[R], &GPR1[R], I)
ea985d24 300
a48e8c8d
AC
301#define GPR_UB(R,I) SUB_REG_UB(&GPR[R], &GPR1[R], I)
302#define GPR_UH(R,I) SUB_REG_UH(&GPR[R], &GPR1[R], I)
303#define GPR_UW(R,I) SUB_REG_UW(&GPR[R], &GPR1[R], I)
304#define GPR_UD(R,I) SUB_REG_UD(&GPR[R], &GPR1[R], I)
ea985d24
AC
305
306
307#define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
308#define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
309#define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
310#define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
311
312#define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
313#define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
314#define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
315#define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
316
317#define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
318#define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
319#define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
320#define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
321
322#define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
323#define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
324#define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
325#define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
326
327
328
329#define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
330#define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
331#define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
332#define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
333
334#define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
335#define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
336#define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
337#define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
338
339#define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
340#define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
341#define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
342#define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
343
344#define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
345#define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
346#define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
347#define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
348
349/* end-sanitize-r5900 */
350
0c2c5f61
AC
351
352
2acd126a
AC
353/* The following is probably not used for MIPS IV onwards: */
354/* Slots for delayed register updates. For the moment we just have a
355 fixed number of slots (rather than a more generic, dynamic
356 system). This keeps the simulator fast. However, we only allow
357 for the register update to be delayed for a single instruction
358 cycle. */
359#define PSLOTS (8) /* Maximum number of instruction cycles */
360
361typedef struct _pending_write_queue {
362 int in;
363 int out;
364 int total;
365 int slot_delay[PSLOTS];
366 int slot_size[PSLOTS];
367 int slot_bit[PSLOTS];
368 void *slot_dest[PSLOTS];
369 unsigned64 slot_value[PSLOTS];
370} pending_write_queue;
371
372#ifndef PENDING_TRACE
373#define PENDING_TRACE 0
374#endif
375#define PENDING_IN ((CPU)->pending.in)
376#define PENDING_OUT ((CPU)->pending.out)
377#define PENDING_TOTAL ((CPU)->pending.total)
378#define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
379#define PENDING_SLOT_BIT ((CPU)->pending.slot_size)
380#define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
381#define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
382#define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
383
384/* Invalidate the pending write queue, all pending writes are
385 discarded. */
386
387#define PENDING_INVALIDATE() \
388memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
389
390/* Schedule a write to DEST for N cycles time. For 64 bit
391 destinations, schedule two writes. For floating point registers,
392 the caller should schedule a write to both the dest register and
393 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
394 is updated. */
395
396#define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
397 do { \
398 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
399 sim_engine_abort (SD, CPU, cia, \
400 "PENDING_SCHED - buffer overflow\n"); \
401 if (PENDING_TRACE) \
402 sim_io_printf (SD, "PENDING_SCHED - dest 0x%lx, val 0x%lx, pending_in %d, pending_out %d, pending_total %d\n", (unsigned long) (DEST), (unsigned long) (VAL), PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
403 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
404 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
405 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
406 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
407 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
408 } while (0)
409
410#define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
411#define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
412
413#define PENDING_TICK() pending_tick (SD, CPU, cia)
414
415#define PENDING_FLUSH() abort () /* think about this one */
416#define PENDING_FP() abort () /* think about this one */
417
418/* For backward compatibility */
419#define PENDING_FILL(R,VAL) \
420{ \
421 if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \
422 PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 2, -1); \
423 else \
424 PENDING_SCHED(GPR[(R)], VAL, 2, -1); \
425}
426
427
0c2c5f61 428
18c64df6 429struct _sim_cpu {
0c2c5f61
AC
430
431
432 /* The following are internal simulator state variables: */
9ec6741b
AC
433#define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
434#define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
0c2c5f61 435 address_word dspc; /* delay-slot PC */
01737f42 436#define DSPC ((CPU)->dspc)
0c2c5f61 437
dad6f1f3
AC
438 /* Issue a delay slot instruction immediatly by re-calling
439 idecode_issue */
440#define DELAY_SLOT(TARGET) \
441 do { \
442 address_word target = (TARGET); \
443 instruction_word delay_insn; \
01737f42 444 sim_events_slip (SD, 1); \
a48e8c8d 445 CIA = CIA + 4; /* NOTE not mips16 */ \
dad6f1f3 446 STATE |= simDELAYSLOT; \
a48e8c8d 447 delay_insn = IMEM32 (CIA); /* NOTE not mips16 */ \
01737f42 448 idecode_issue (CPU_, delay_insn, (CIA)); \
7ce8b917
AC
449 STATE &= ~simDELAYSLOT; \
450 NIA = target; \
dad6f1f3
AC
451 } while (0)
452#define NULLIFY_NEXT_INSTRUCTION() \
453 do { \
01737f42
AC
454 sim_events_slip (SD, 1); \
455 dotrace (SD, CPU, tracefh, 2, NIA, 4, "load instruction"); \
7ce8b917 456 NIA = CIA + 8; \
dad6f1f3 457 } while (0)
ea985d24
AC
458
459
0c2c5f61
AC
460
461 /* State of the simulator */
462 unsigned int state;
463 unsigned int dsstate;
01737f42
AC
464#define STATE ((CPU)->state)
465#define DSSTATE ((CPU)->dsstate)
0c2c5f61 466
ea985d24
AC
467/* Flags in the "state" variable: */
468#define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
469#define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
470#define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
ea985d24
AC
471#define simPCOC0 (1 << 17) /* COC[1] from current */
472#define simPCOC1 (1 << 18) /* COC[1] from previous */
473#define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
474#define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
475#define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
476#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
477
a09a30d2
AC
478#define ENGINE_ISSUE_PREFIX_HOOK() \
479 { \
2acd126a
AC
480 /* Perform any pending writes */ \
481 PENDING_TICK(); \
a09a30d2
AC
482 /* Set previous flag, depending on current: */ \
483 if (STATE & simPCOC0) \
484 STATE |= simPCOC1; \
485 else \
486 STATE &= ~simPCOC1; \
487 /* and update the current value: */ \
488 if (GETFCC(0)) \
489 STATE |= simPCOC0; \
490 else \
491 STATE &= ~simPCOC0; \
492 }
ea985d24 493
0c2c5f61
AC
494
495/* This is nasty, since we have to rely on matching the register
496 numbers used by GDB. Unfortunately, depending on the MIPS target
497 GDB uses different register numbers. We cannot just include the
498 relevant "gdb/tm.h" link, since GDB may not be configured before
499 the sim world, and also the GDB header file requires too much other
500 state. */
501
502#ifndef TM_MIPS_H
503#define LAST_EMBED_REGNUM (89)
504#define NUM_REGS (LAST_EMBED_REGNUM + 1)
505/* start-sanitize-r5900 */
506#undef NUM_REGS
507#define NUM_REGS (128)
508/* end-sanitize-r5900 */
509#endif
510
a48e8c8d
AC
511/* start-sanitize-sky */
512#ifdef TARGET_SKY
513#ifndef TM_TXVU_H
514
515/* Number of machine registers */
2151467d
RU
516#define NUM_VU_REGS 153
517#define NUM_VU_INTEGER_REGS 16
a48e8c8d 518
64ed8b6a
AC
519#define NUM_VIF_REGS 25
520
2151467d
RU
521#define FIRST_VEC_REG 25
522#define NUM_R5900_REGS 128
a48e8c8d
AC
523
524#undef NUM_REGS
64ed8b6a 525#define NUM_REGS (NUM_R5900_REGS + 2*(NUM_VU_REGS) + 2*(NUM_VIF_REGS))
a48e8c8d
AC
526#endif /* no tm-txvu.h */
527#endif
528/* end-sanitize-sky */
529
0c2c5f61
AC
530/* To keep this default simulator simple, and fast, we use a direct
531 vector of registers. The internal simulator engine then uses
532 manifests to access the correct slot. */
533
fb5a2a3e 534 unsigned_word registers[LAST_EMBED_REGNUM + 1];
0c2c5f61 535 int register_widths[NUM_REGS];
01737f42 536#define REGISTERS ((CPU)->registers)
0c2c5f61
AC
537
538#define GPR (&REGISTERS[0])
2d44e12a 539#define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
a48e8c8d
AC
540
541 /* While space is allocated for the floating point registers in the
542 main registers array, they are stored separatly. This is because
543 their size may not necessarily match the size of either the
544 general-purpose or system specific registers */
2acd126a 545#define NR_FGR (32)
0c2c5f61 546#define FGRIDX (38)
a48e8c8d
AC
547 fp_word fgr[NR_FGR];
548#define FGR ((CPU)->fgr)
549
0c2c5f61
AC
550#define LO (REGISTERS[33])
551#define HI (REGISTERS[34])
9ec6741b
AC
552#define PCIDX 37
553#define PC (REGISTERS[PCIDX])
0c2c5f61
AC
554#define CAUSE (REGISTERS[36])
555#define SRIDX (32)
556#define SR (REGISTERS[SRIDX]) /* CPU status register */
557#define FCR0IDX (71)
558#define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
559#define FCR31IDX (70)
560#define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
561#define FCSR (FCR31)
562#define Debug (REGISTERS[86])
563#define DEPC (REGISTERS[87])
564#define EPC (REGISTERS[88])
565#define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
566
a09a30d2 567 unsigned_word c0_config_reg;
01737f42 568#define C0_CONFIG ((CPU)->c0_config_reg)
a09a30d2 569
0c2c5f61
AC
570/* The following are pseudonyms for standard registers */
571#define ZERO (REGISTERS[0])
572#define V0 (REGISTERS[2])
573#define A0 (REGISTERS[4])
574#define A1 (REGISTERS[5])
575#define A2 (REGISTERS[6])
576#define A3 (REGISTERS[7])
577#define SP (REGISTERS[29])
578#define RA (REGISTERS[31])
579
580 /* Keep the current format state for each register: */
581 FP_formats fpr_state[32];
01737f42 582#define FPR_STATE ((CPU)->fpr_state)
0c2c5f61 583
2acd126a 584 pending_write_queue pending;
0c2c5f61
AC
585
586 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
587 read-write instructions. It is set when a linked load occurs. It
588 is tested and cleared by the conditional store. It is cleared
589 (during other CPU operations) when a store to the location would
590 no longer be atomic. In particular, it is cleared by exception
591 return instructions. */
592 int llbit;
01737f42 593#define LLBIT ((CPU)->llbit)
0c2c5f61
AC
594
595
596/* The HIACCESS and LOACCESS counts are used to ensure that
597 corruptions caused by using the HI or LO register to close to a
598 following operation are spotted. */
599
600 int hiaccess;
601 int loaccess;
01737f42
AC
602#define HIACCESS ((CPU)->hiaccess)
603#define LOACCESS ((CPU)->loaccess)
a48e8c8d 604
0e701ac3 605#if 0
0c2c5f61
AC
606 unsigned_word HLPC;
607 /* If either of the preceding two instructions have accessed the HI
608 or LO registers, then the values they see should be
609 undefined. However, to keep the simulator world simple, we just
610 let them use the value read and raise a warning to notify the
611 user: */
612#define CHECKHILO(s) {\
613 if ((HIACCESS != 0) || (LOACCESS != 0)) \
614 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
615}
0c2c5f61
AC
616#endif
617
a48e8c8d
AC
618#if !defined CHECKHILO
619 /* The 4300 and a few other processors have interlocks on hi/lo
620 register reads, and hence do not have this problem. To avoid
621 spurious warnings, we just disable this always. */
622#define CHECKHILO(s)
623#endif
0c2c5f61
AC
624
625 /* start-sanitize-r5900 */
a48e8c8d 626 sim_r5900_cpu r5900;
0c2c5f61
AC
627
628 /* end-sanitize-r5900 */
01b9cd49
AC
629 /* start-sanitize-vr5400 */
630
2d44e12a
AC
631 /* The MDMX ISA has a very very large accumulator */
632 unsigned8 acc[3 * 8];
01b9cd49 633 /* end-sanitize-vr5400 */
0c2c5f61 634
18c64df6
AC
635 sim_cpu_base base;
636};
637
638
639/* MIPS specific simulator watch config */
640
641void watch_options_install PARAMS ((SIM_DESC sd));
642
643struct swatch {
644 sim_event *pc;
645 sim_event *clock;
646 sim_event *cycles;
647};
648
649
650/* FIXME: At present much of the simulator is still static */
651struct sim_state {
652
653 struct swatch watch;
654
01737f42 655 sim_cpu cpu[MAX_NR_PROCESSORS];
18c64df6
AC
656#if (WITH_SMP)
657#define STATE_CPU(sd,n) (&(sd)->cpu[n])
658#else
659#define STATE_CPU(sd,n) (&(sd)->cpu[0])
660#endif
661
662 sim_state_base base;
663};
664
665
ea985d24
AC
666
667/* Status information: */
668
669/* TODO : these should be the bitmasks for these bits within the
670 status register. At the moment the following are VR4300
671 bit-positions: */
672#define status_KSU_mask (0x3) /* mask for KSU bits */
673#define status_KSU_shift (3) /* shift for field */
674#define ksu_kernel (0x0)
675#define ksu_supervisor (0x1)
676#define ksu_user (0x2)
677#define ksu_unknown (0x3)
678
679#define status_IE (1 << 0) /* Interrupt enable */
680#define status_EXL (1 << 1) /* Exception level */
681#define status_RE (1 << 25) /* Reverse Endian in user mode */
682#define status_FR (1 << 26) /* enables MIPS III additional FP registers */
683#define status_SR (1 << 20) /* soft reset or NMI */
684#define status_BEV (1 << 22) /* Location of general exception vectors */
685#define status_TS (1 << 21) /* TLB shutdown has occurred */
686#define status_ERL (1 << 2) /* Error level */
687#define status_RP (1 << 27) /* Reduced Power mode */
15232df4
FCE
688/* begin-sanitize-r5900 */
689#define status_CU0 (1 << 28) /* COP0 usable */
690#define status_CU1 (1 << 29) /* COP1 usable */
691#define status_CU2 (1 << 30) /* COP2 usable */
692/* begin-sanitize-r5900 */
ea985d24
AC
693
694#define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
695
696/* NOTE: We keep the following status flags as bit values (1 for true,
697 0 for false). This allows them to be used in binary boolean
698 operations without worrying about what exactly the non-zero true
699 value is. */
700
701/* UserMode */
702#define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
703
704/* BigEndianMem */
705/* Hardware configuration. Affects endianness of LoadMemory and
706 StoreMemory and the endianness of Kernel and Supervisor mode
707 execution. The value is 0 for little-endian; 1 for big-endian. */
708#define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
709/*(state & simBE) ? 1 : 0)*/
710
ea985d24
AC
711/* ReverseEndian */
712/* This mode is selected if in User mode with the RE bit being set in
713 SR (Status Register). It reverses the endianness of load and store
714 instructions. */
715#define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
716
717/* BigEndianCPU */
718/* The endianness for load and store instructions (0=little;1=big). In
719 User mode this endianness may be switched by setting the state_RE
720 bit in the SR register. Thus, BigEndianCPU may be computed as
721 (BigEndianMem EOR ReverseEndian). */
722#define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
723
724
725
18c64df6
AC
726/* Exceptions: */
727
728/* NOTE: These numbers depend on the processor architecture being
729 simulated: */
730#define Interrupt (0)
731#define TLBModification (1)
732#define TLBLoad (2)
733#define TLBStore (3)
734#define AddressLoad (4)
735#define AddressStore (5)
736#define InstructionFetch (6)
737#define DataReference (7)
738#define SystemCall (8)
739#define BreakPoint (9)
740#define ReservedInstruction (10)
741#define CoProcessorUnusable (11)
742#define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
743#define Trap (13)
744#define FPE (15)
745#define DebugBreakPoint (16)
746#define Watch (23)
747
748/* The following exception code is actually private to the simulator
749 world. It is *NOT* a processor feature, and is used to signal
750 run-time errors in the simulator. */
751#define SimulatorFault (0xFFFFFFFF)
752
01737f42
AC
753void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
754#define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
755#define SignalExceptionInterrupt() signal_exception (SD, CPU, NULL_CIA, Interrupt)
756#define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
757#define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
758#define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
759#define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
760#define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
761#define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
762#define SignalExceptionCoProcessorUnusable() signal_exception (SD, CPU, cia, CoProcessorUnusable)
18c64df6
AC
763
764
18c64df6
AC
765/* Co-processor accesses */
766
01737f42
AC
767void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
768void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
769unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
770uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
18c64df6 771
01737f42
AC
772#define COP_LW(coproc_num,coproc_reg,memword) \
773cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
774#define COP_LD(coproc_num,coproc_reg,memword) \
775cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
776#define COP_SW(coproc_num,coproc_reg) \
777cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
778#define COP_SD(coproc_num,coproc_reg) \
779cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
6ed00b06
FCE
780
781/* start-sanitize-sky */
ebcfd86a
FCE
782#ifdef TARGET_SKY
783void cop_lq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia,
784 int coproc_num, int coproc_reg, unsigned128 memword));
785unsigned128 cop_sq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia,
786 int coproc_num, int coproc_reg));
6ed00b06
FCE
787#define COP_LQ(coproc_num,coproc_reg,memword) \
788cop_lq (SD, CPU, cia, coproc_num, coproc_reg, memword)
15232df4
FCE
789#define COP_SQ(coproc_num,coproc_reg) \
790cop_sq (SD, CPU, cia, coproc_num, coproc_reg)
ebcfd86a 791#endif /* TARGET_SKY */
6ed00b06 792/* end-sanitize-sky */
18c64df6 793
01737f42
AC
794void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
795#define DecodeCoproc(instruction) \
796decode_coproc (SD, CPU, cia, (instruction))
ea985d24 797
18c64df6
AC
798
799
800/* Memory accesses */
801
ea985d24
AC
802/* The following are generic to all versions of the MIPS architecture
803 to date: */
804
805/* Memory Access Types (for CCA): */
806#define Uncached (0)
807#define CachedNoncoherent (1)
808#define CachedCoherent (2)
809#define Cached (3)
810
811#define isINSTRUCTION (1 == 0) /* FALSE */
812#define isDATA (1 == 1) /* TRUE */
813#define isLOAD (1 == 0) /* FALSE */
814#define isSTORE (1 == 1) /* TRUE */
815#define isREAL (1 == 0) /* FALSE */
816#define isRAW (1 == 1) /* TRUE */
525d929e 817/* The parameter HOST (isTARGET / isHOST) is ignored */
ea985d24 818#define isTARGET (1 == 0) /* FALSE */
525d929e 819/* #define isHOST (1 == 1) TRUE */
ea985d24
AC
820
821/* The "AccessLength" specifications for Loads and Stores. NOTE: This
822 is the number of bytes minus 1. */
823#define AccessLength_BYTE (0)
824#define AccessLength_HALFWORD (1)
825#define AccessLength_TRIPLEBYTE (2)
826#define AccessLength_WORD (3)
827#define AccessLength_QUINTIBYTE (4)
828#define AccessLength_SEXTIBYTE (5)
829#define AccessLength_SEPTIBYTE (6)
830#define AccessLength_DOUBLEWORD (7)
831#define AccessLength_QUADWORD (15)
832
69d5a566
AC
833#if (WITH_IGEN)
834#define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
835 ? AccessLength_DOUBLEWORD /*7*/ \
836 : AccessLength_WORD /*3*/)
837#define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
838#endif
839
2ebb2a68 840
64ed8b6a 841INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
18c64df6 842#define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
01737f42 843address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
18c64df6 844
64ed8b6a 845INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
18c64df6 846#define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
01737f42 847load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
18c64df6 848
64ed8b6a 849INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
18c64df6 850#define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
01737f42 851store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
18c64df6 852
64ed8b6a 853INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
01737f42
AC
854#define CacheOp(op,pAddr,vAddr,instruction) \
855cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
18c64df6 856
64ed8b6a 857INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
01737f42
AC
858#define SyncOperation(stype) \
859sync_operation (SD, CPU, cia, (stype))
ea985d24 860
64ed8b6a 861INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
01737f42
AC
862#define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
863prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
ea985d24 864
64ed8b6a 865INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
a48e8c8d
AC
866#define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
867unsigned16 ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
868#define IMEM16(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
869#define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
ea985d24 870
01737f42 871void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
030843d7 872FILE *tracefh;
ea985d24 873
64ed8b6a
AC
874INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
875
876char* pr_addr PARAMS ((SIM_ADDR addr));
877char* pr_uword64 PARAMS ((uword64 addr));
878
879
880#if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
881#include "sim-main.c"
882#endif
2acd126a 883
18c64df6 884#endif
This page took 0.080426 seconds and 4 git commands to generate.