[ALSA] Use dma_alloc_coherent() hack on i386 only
[deliverable/linux.git] / sound / core / memalloc.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3 * Takashi Iwai <tiwai@suse.de>
4 *
5 * Generic memory allocators
6 *
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24#include <linux/config.h>
25#include <linux/module.h>
26#include <linux/proc_fs.h>
27#include <linux/init.h>
28#include <linux/pci.h>
29#include <linux/slab.h>
30#include <linux/mm.h>
b6a96915 31#include <asm/uaccess.h>
1da177e4
LT
32#include <linux/dma-mapping.h>
33#include <linux/moduleparam.h>
1a60d4c5 34#include <linux/mutex.h>
1da177e4
LT
35#include <sound/memalloc.h>
36#ifdef CONFIG_SBUS
37#include <asm/sbus.h>
38#endif
39
40
41MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@suse.cz>");
42MODULE_DESCRIPTION("Memory allocator for ALSA system.");
43MODULE_LICENSE("GPL");
44
45
1da177e4
LT
46/*
47 */
48
49void *snd_malloc_sgbuf_pages(struct device *device,
50 size_t size, struct snd_dma_buffer *dmab,
51 size_t *res_size);
52int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
53
54/*
55 */
56
1a60d4c5 57static DEFINE_MUTEX(list_mutex);
1da177e4
LT
58static LIST_HEAD(mem_list_head);
59
60/* buffer preservation list */
61struct snd_mem_list {
62 struct snd_dma_buffer buffer;
63 unsigned int id;
64 struct list_head list;
65};
66
67/* id for pre-allocated buffers */
68#define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
69
70#ifdef CONFIG_SND_DEBUG
71#define __ASTRING__(x) #x
72#define snd_assert(expr, args...) do {\
73 if (!(expr)) {\
74 printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
75 args;\
76 }\
77} while (0)
78#else
79#define snd_assert(expr, args...) /**/
80#endif
81
82/*
83 * Hacks
84 */
85
ea50888d 86#if defined(__i386__)
1da177e4
LT
87/*
88 * A hack to allocate large buffers via dma_alloc_coherent()
89 *
90 * since dma_alloc_coherent always tries GFP_DMA when the requested
91 * pci memory region is below 32bit, it happens quite often that even
92 * 2 order of pages cannot be allocated.
93 *
94 * so in the following, we allocate at first without dma_mask, so that
95 * allocation will be done without GFP_DMA. if the area doesn't match
96 * with the requested region, then realloate with the original dma_mask
97 * again.
98 *
99 * Really, we want to move this type of thing into dma_alloc_coherent()
100 * so dma_mask doesn't have to be messed with.
101 */
102
103static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
5a0f217d 104 dma_addr_t *dma_handle,
dd0fc66f 105 gfp_t flags)
1da177e4
LT
106{
107 void *ret;
108 u64 dma_mask, coherent_dma_mask;
109
110 if (dev == NULL || !dev->dma_mask)
111 return dma_alloc_coherent(dev, size, dma_handle, flags);
112 dma_mask = *dev->dma_mask;
113 coherent_dma_mask = dev->coherent_dma_mask;
114 *dev->dma_mask = 0xffffffff; /* do without masking */
115 dev->coherent_dma_mask = 0xffffffff; /* do without masking */
116 ret = dma_alloc_coherent(dev, size, dma_handle, flags);
117 *dev->dma_mask = dma_mask; /* restore */
118 dev->coherent_dma_mask = coherent_dma_mask; /* restore */
119 if (ret) {
120 /* obtained address is out of range? */
121 if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
122 /* reallocate with the proper mask */
123 dma_free_coherent(dev, size, ret, *dma_handle);
124 ret = dma_alloc_coherent(dev, size, dma_handle, flags);
125 }
126 } else {
127 /* wish to success now with the proper mask... */
128 if (dma_mask != 0xffffffffUL) {
129 /* allocation with GFP_ATOMIC to avoid the long stall */
130 flags &= ~GFP_KERNEL;
131 flags |= GFP_ATOMIC;
132 ret = dma_alloc_coherent(dev, size, dma_handle, flags);
133 }
134 }
135 return ret;
136}
137
138/* redefine dma_alloc_coherent for some architectures */
139#undef dma_alloc_coherent
140#define dma_alloc_coherent snd_dma_hack_alloc_coherent
141
142#endif /* arch */
143
144#if ! defined(__arm__)
145#define NEED_RESERVE_PAGES
146#endif
147
148/*
149 *
150 * Generic memory allocators
151 *
152 */
153
154static long snd_allocated_pages; /* holding the number of allocated pages */
155
156static inline void inc_snd_pages(int order)
157{
158 snd_allocated_pages += 1 << order;
159}
160
161static inline void dec_snd_pages(int order)
162{
163 snd_allocated_pages -= 1 << order;
164}
165
166static void mark_pages(struct page *page, int order)
167{
168 struct page *last_page = page + (1 << order);
169 while (page < last_page)
170 SetPageReserved(page++);
171}
172
173static void unmark_pages(struct page *page, int order)
174{
175 struct page *last_page = page + (1 << order);
176 while (page < last_page)
177 ClearPageReserved(page++);
178}
179
180/**
181 * snd_malloc_pages - allocate pages with the given size
182 * @size: the size to allocate in bytes
183 * @gfp_flags: the allocation conditions, GFP_XXX
184 *
185 * Allocates the physically contiguous pages with the given size.
186 *
187 * Returns the pointer of the buffer, or NULL if no enoguh memory.
188 */
1ef64e67 189void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
1da177e4
LT
190{
191 int pg;
192 void *res;
193
194 snd_assert(size > 0, return NULL);
195 snd_assert(gfp_flags != 0, return NULL);
f3d48f03 196 gfp_flags |= __GFP_COMP; /* compound page lets parts be mapped */
1da177e4
LT
197 pg = get_order(size);
198 if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL) {
199 mark_pages(virt_to_page(res), pg);
200 inc_snd_pages(pg);
201 }
202 return res;
203}
204
205/**
206 * snd_free_pages - release the pages
207 * @ptr: the buffer pointer to release
208 * @size: the allocated buffer size
209 *
210 * Releases the buffer allocated via snd_malloc_pages().
211 */
212void snd_free_pages(void *ptr, size_t size)
213{
214 int pg;
215
216 if (ptr == NULL)
217 return;
218 pg = get_order(size);
219 dec_snd_pages(pg);
220 unmark_pages(virt_to_page(ptr), pg);
221 free_pages((unsigned long) ptr, pg);
222}
223
224/*
225 *
226 * Bus-specific memory allocators
227 *
228 */
229
230/* allocate the coherent DMA pages */
231static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
232{
233 int pg;
234 void *res;
1ef64e67 235 gfp_t gfp_flags;
1da177e4
LT
236
237 snd_assert(size > 0, return NULL);
238 snd_assert(dma != NULL, return NULL);
239 pg = get_order(size);
240 gfp_flags = GFP_KERNEL
f3d48f03 241 | __GFP_COMP /* compound page lets parts be mapped */
1da177e4
LT
242 | __GFP_NORETRY /* don't trigger OOM-killer */
243 | __GFP_NOWARN; /* no stack trace print - this call is non-critical */
244 res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
245 if (res != NULL) {
246#ifdef NEED_RESERVE_PAGES
247 mark_pages(virt_to_page(res), pg); /* should be dma_to_page() */
248#endif
249 inc_snd_pages(pg);
250 }
251
252 return res;
253}
254
255/* free the coherent DMA pages */
256static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
257 dma_addr_t dma)
258{
259 int pg;
260
261 if (ptr == NULL)
262 return;
263 pg = get_order(size);
264 dec_snd_pages(pg);
265#ifdef NEED_RESERVE_PAGES
266 unmark_pages(virt_to_page(ptr), pg); /* should be dma_to_page() */
267#endif
268 dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
269}
270
271#ifdef CONFIG_SBUS
272
273static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
274 dma_addr_t *dma_addr)
275{
276 struct sbus_dev *sdev = (struct sbus_dev *)dev;
277 int pg;
278 void *res;
279
280 snd_assert(size > 0, return NULL);
281 snd_assert(dma_addr != NULL, return NULL);
282 pg = get_order(size);
283 res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
284 if (res != NULL)
285 inc_snd_pages(pg);
286 return res;
287}
288
289static void snd_free_sbus_pages(struct device *dev, size_t size,
290 void *ptr, dma_addr_t dma_addr)
291{
292 struct sbus_dev *sdev = (struct sbus_dev *)dev;
293 int pg;
294
295 if (ptr == NULL)
296 return;
297 pg = get_order(size);
298 dec_snd_pages(pg);
299 sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
300}
301
302#endif /* CONFIG_SBUS */
303
304/*
305 *
306 * ALSA generic memory management
307 *
308 */
309
310
311/**
312 * snd_dma_alloc_pages - allocate the buffer area according to the given type
313 * @type: the DMA buffer type
314 * @device: the device pointer
315 * @size: the buffer size to allocate
316 * @dmab: buffer allocation record to store the allocated data
317 *
318 * Calls the memory-allocator function for the corresponding
319 * buffer type.
320 *
321 * Returns zero if the buffer with the given size is allocated successfuly,
322 * other a negative value at error.
323 */
324int snd_dma_alloc_pages(int type, struct device *device, size_t size,
325 struct snd_dma_buffer *dmab)
326{
327 snd_assert(size > 0, return -ENXIO);
328 snd_assert(dmab != NULL, return -ENXIO);
329
330 dmab->dev.type = type;
331 dmab->dev.dev = device;
332 dmab->bytes = 0;
333 switch (type) {
334 case SNDRV_DMA_TYPE_CONTINUOUS:
335 dmab->area = snd_malloc_pages(size, (unsigned long)device);
336 dmab->addr = 0;
337 break;
338#ifdef CONFIG_SBUS
339 case SNDRV_DMA_TYPE_SBUS:
340 dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr);
341 break;
342#endif
343 case SNDRV_DMA_TYPE_DEV:
344 dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
345 break;
346 case SNDRV_DMA_TYPE_DEV_SG:
347 snd_malloc_sgbuf_pages(device, size, dmab, NULL);
348 break;
349 default:
350 printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
351 dmab->area = NULL;
352 dmab->addr = 0;
353 return -ENXIO;
354 }
355 if (! dmab->area)
356 return -ENOMEM;
357 dmab->bytes = size;
358 return 0;
359}
360
361/**
362 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
363 * @type: the DMA buffer type
364 * @device: the device pointer
365 * @size: the buffer size to allocate
366 * @dmab: buffer allocation record to store the allocated data
367 *
368 * Calls the memory-allocator function for the corresponding
369 * buffer type. When no space is left, this function reduces the size and
370 * tries to allocate again. The size actually allocated is stored in
371 * res_size argument.
372 *
373 * Returns zero if the buffer with the given size is allocated successfuly,
374 * other a negative value at error.
375 */
376int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
377 struct snd_dma_buffer *dmab)
378{
379 int err;
380
381 snd_assert(size > 0, return -ENXIO);
382 snd_assert(dmab != NULL, return -ENXIO);
383
384 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
385 if (err != -ENOMEM)
386 return err;
387 size >>= 1;
388 if (size <= PAGE_SIZE)
389 return -ENOMEM;
390 }
391 if (! dmab->area)
392 return -ENOMEM;
393 return 0;
394}
395
396
397/**
398 * snd_dma_free_pages - release the allocated buffer
399 * @dmab: the buffer allocation record to release
400 *
401 * Releases the allocated buffer via snd_dma_alloc_pages().
402 */
403void snd_dma_free_pages(struct snd_dma_buffer *dmab)
404{
405 switch (dmab->dev.type) {
406 case SNDRV_DMA_TYPE_CONTINUOUS:
407 snd_free_pages(dmab->area, dmab->bytes);
408 break;
409#ifdef CONFIG_SBUS
410 case SNDRV_DMA_TYPE_SBUS:
411 snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
412 break;
413#endif
414 case SNDRV_DMA_TYPE_DEV:
415 snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
416 break;
417 case SNDRV_DMA_TYPE_DEV_SG:
418 snd_free_sgbuf_pages(dmab);
419 break;
420 default:
421 printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
422 }
423}
424
425
426/**
427 * snd_dma_get_reserved - get the reserved buffer for the given device
428 * @dmab: the buffer allocation record to store
429 * @id: the buffer id
430 *
431 * Looks for the reserved-buffer list and re-uses if the same buffer
432 * is found in the list. When the buffer is found, it's removed from the free list.
433 *
434 * Returns the size of buffer if the buffer is found, or zero if not found.
435 */
436size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
437{
438 struct list_head *p;
439 struct snd_mem_list *mem;
440
441 snd_assert(dmab, return 0);
442
1a60d4c5 443 mutex_lock(&list_mutex);
1da177e4
LT
444 list_for_each(p, &mem_list_head) {
445 mem = list_entry(p, struct snd_mem_list, list);
446 if (mem->id == id &&
b6a96915
TI
447 (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
448 ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
449 struct device *dev = dmab->dev.dev;
1da177e4
LT
450 list_del(p);
451 *dmab = mem->buffer;
b6a96915
TI
452 if (dmab->dev.dev == NULL)
453 dmab->dev.dev = dev;
1da177e4 454 kfree(mem);
1a60d4c5 455 mutex_unlock(&list_mutex);
1da177e4
LT
456 return dmab->bytes;
457 }
458 }
1a60d4c5 459 mutex_unlock(&list_mutex);
1da177e4
LT
460 return 0;
461}
462
463/**
464 * snd_dma_reserve_buf - reserve the buffer
465 * @dmab: the buffer to reserve
466 * @id: the buffer id
467 *
468 * Reserves the given buffer as a reserved buffer.
469 *
470 * Returns zero if successful, or a negative code at error.
471 */
472int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
473{
474 struct snd_mem_list *mem;
475
476 snd_assert(dmab, return -EINVAL);
477 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
478 if (! mem)
479 return -ENOMEM;
1a60d4c5 480 mutex_lock(&list_mutex);
1da177e4
LT
481 mem->buffer = *dmab;
482 mem->id = id;
483 list_add_tail(&mem->list, &mem_list_head);
1a60d4c5 484 mutex_unlock(&list_mutex);
1da177e4
LT
485 return 0;
486}
487
488/*
489 * purge all reserved buffers
490 */
491static void free_all_reserved_pages(void)
492{
493 struct list_head *p;
494 struct snd_mem_list *mem;
495
1a60d4c5 496 mutex_lock(&list_mutex);
1da177e4
LT
497 while (! list_empty(&mem_list_head)) {
498 p = mem_list_head.next;
499 mem = list_entry(p, struct snd_mem_list, list);
500 list_del(p);
501 snd_dma_free_pages(&mem->buffer);
502 kfree(mem);
503 }
1a60d4c5 504 mutex_unlock(&list_mutex);
1da177e4
LT
505}
506
507
1da177e4
LT
508#ifdef CONFIG_PROC_FS
509/*
510 * proc file interface
511 */
b6a96915 512#define SND_MEM_PROC_FILE "driver/snd-page-alloc"
a53fc188 513static struct proc_dir_entry *snd_mem_proc;
b6a96915 514
1da177e4
LT
515static int snd_mem_proc_read(char *page, char **start, off_t off,
516 int count, int *eof, void *data)
517{
518 int len = 0;
519 long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
520 struct list_head *p;
521 struct snd_mem_list *mem;
522 int devno;
523 static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" };
524
1a60d4c5 525 mutex_lock(&list_mutex);
1da177e4
LT
526 len += snprintf(page + len, count - len,
527 "pages : %li bytes (%li pages per %likB)\n",
528 pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
529 devno = 0;
530 list_for_each(p, &mem_list_head) {
531 mem = list_entry(p, struct snd_mem_list, list);
532 devno++;
533 len += snprintf(page + len, count - len,
534 "buffer %d : ID %08x : type %s\n",
535 devno, mem->id, types[mem->buffer.dev.type]);
536 len += snprintf(page + len, count - len,
537 " addr = 0x%lx, size = %d bytes\n",
538 (unsigned long)mem->buffer.addr, (int)mem->buffer.bytes);
539 }
1a60d4c5 540 mutex_unlock(&list_mutex);
1da177e4
LT
541 return len;
542}
b6a96915
TI
543
544/* FIXME: for pci only - other bus? */
545#ifdef CONFIG_PCI
546#define gettoken(bufp) strsep(bufp, " \t\n")
547
548static int snd_mem_proc_write(struct file *file, const char __user *buffer,
549 unsigned long count, void *data)
550{
551 char buf[128];
552 char *token, *p;
553
554 if (count > ARRAY_SIZE(buf) - 1)
555 count = ARRAY_SIZE(buf) - 1;
556 if (copy_from_user(buf, buffer, count))
557 return -EFAULT;
558 buf[ARRAY_SIZE(buf) - 1] = '\0';
559
560 p = buf;
561 token = gettoken(&p);
562 if (! token || *token == '#')
563 return (int)count;
564 if (strcmp(token, "add") == 0) {
565 char *endp;
566 int vendor, device, size, buffers;
567 long mask;
568 int i, alloced;
569 struct pci_dev *pci;
570
571 if ((token = gettoken(&p)) == NULL ||
572 (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
573 (token = gettoken(&p)) == NULL ||
574 (device = simple_strtol(token, NULL, 0)) <= 0 ||
575 (token = gettoken(&p)) == NULL ||
576 (mask = simple_strtol(token, NULL, 0)) < 0 ||
577 (token = gettoken(&p)) == NULL ||
578 (size = memparse(token, &endp)) < 64*1024 ||
579 size > 16*1024*1024 /* too big */ ||
580 (token = gettoken(&p)) == NULL ||
581 (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
582 buffers > 4) {
583 printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
584 return (int)count;
585 }
586 vendor &= 0xffff;
587 device &= 0xffff;
588
589 alloced = 0;
590 pci = NULL;
0dd119f7 591 while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
b6a96915
TI
592 if (mask > 0 && mask < 0xffffffff) {
593 if (pci_set_dma_mask(pci, mask) < 0 ||
594 pci_set_consistent_dma_mask(pci, mask) < 0) {
595 printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
596 return (int)count;
597 }
598 }
599 for (i = 0; i < buffers; i++) {
600 struct snd_dma_buffer dmab;
601 memset(&dmab, 0, sizeof(dmab));
602 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
603 size, &dmab) < 0) {
604 printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
0dd119f7 605 pci_dev_put(pci);
b6a96915
TI
606 return (int)count;
607 }
608 snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
609 }
610 alloced++;
611 }
612 if (! alloced) {
613 for (i = 0; i < buffers; i++) {
614 struct snd_dma_buffer dmab;
615 memset(&dmab, 0, sizeof(dmab));
616 /* FIXME: We can allocate only in ZONE_DMA
617 * without a device pointer!
618 */
619 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
620 size, &dmab) < 0) {
621 printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
622 break;
623 }
624 snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
625 }
626 }
627 } else if (strcmp(token, "erase") == 0)
628 /* FIXME: need for releasing each buffer chunk? */
629 free_all_reserved_pages();
630 else
631 printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
632 return (int)count;
633}
634#endif /* CONFIG_PCI */
1da177e4
LT
635#endif /* CONFIG_PROC_FS */
636
637/*
638 * module entry
639 */
640
641static int __init snd_mem_init(void)
642{
643#ifdef CONFIG_PROC_FS
b6a96915
TI
644 snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL);
645 if (snd_mem_proc) {
646 snd_mem_proc->read_proc = snd_mem_proc_read;
647#ifdef CONFIG_PCI
648 snd_mem_proc->write_proc = snd_mem_proc_write;
649#endif
650 }
1da177e4 651#endif
1da177e4
LT
652 return 0;
653}
654
655static void __exit snd_mem_exit(void)
656{
e0be4d32 657 remove_proc_entry(SND_MEM_PROC_FILE, NULL);
1da177e4
LT
658 free_all_reserved_pages();
659 if (snd_allocated_pages > 0)
660 printk(KERN_ERR "snd-malloc: Memory leak? pages not freed = %li\n", snd_allocated_pages);
661}
662
663
664module_init(snd_mem_init)
665module_exit(snd_mem_exit)
666
667
668/*
669 * exports
670 */
671EXPORT_SYMBOL(snd_dma_alloc_pages);
672EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
673EXPORT_SYMBOL(snd_dma_free_pages);
674
675EXPORT_SYMBOL(snd_dma_get_reserved_buf);
676EXPORT_SYMBOL(snd_dma_reserve_buf);
677
678EXPORT_SYMBOL(snd_malloc_pages);
679EXPORT_SYMBOL(snd_free_pages);
This page took 0.138661 seconds and 5 git commands to generate.