[ALSA] soc - Include register in DAPM debug output
[deliverable/linux.git] / sound / pci / rme9652 / hdspm.c
CommitLineData
ef5fa1a4 1/*
763f356c
TI
2 * ALSA driver for RME Hammerfall DSP MADI audio interface(s)
3 *
4 * Copyright (c) 2003 Winfried Ritsch (IEM)
5 * code based on hdsp.c Paul Davis
6 * Marcus Andersson
7 * Thomas Charbonnel
3cee5a60
RB
8 * Modified 2006-06-01 for AES32 support by Remy Bruno
9 * <remy.bruno@trinnov.com>
763f356c
TI
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 *
25 */
763f356c
TI
26#include <linux/init.h>
27#include <linux/delay.h>
28#include <linux/interrupt.h>
29#include <linux/moduleparam.h>
30#include <linux/slab.h>
31#include <linux/pci.h>
32#include <asm/io.h>
33
34#include <sound/core.h>
35#include <sound/control.h>
36#include <sound/pcm.h>
37#include <sound/info.h>
38#include <sound/asoundef.h>
39#include <sound/rawmidi.h>
40#include <sound/hwdep.h>
41#include <sound/initval.h>
42
43#include <sound/hdspm.h>
44
45static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
46static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
47static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
48
49/* Disable precise pointer at start */
50static int precise_ptr[SNDRV_CARDS];
51
52/* Send all playback to line outs */
53static int line_outs_monitor[SNDRV_CARDS];
54
55/* Enable Analog Outs on Channel 63/64 by default */
56static int enable_monitor[SNDRV_CARDS];
57
58module_param_array(index, int, NULL, 0444);
59MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
60
61module_param_array(id, charp, NULL, 0444);
62MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
63
64module_param_array(enable, bool, NULL, 0444);
65MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
66
67module_param_array(precise_ptr, bool, NULL, 0444);
e8da2fbc 68MODULE_PARM_DESC(precise_ptr, "Enable or disable precise pointer.");
763f356c
TI
69
70module_param_array(line_outs_monitor, bool, NULL, 0444);
71MODULE_PARM_DESC(line_outs_monitor,
72 "Send playback streams to analog outs by default.");
73
74module_param_array(enable_monitor, bool, NULL, 0444);
75MODULE_PARM_DESC(enable_monitor,
76 "Enable Analog Out on Channel 63/64 by default.");
77
78MODULE_AUTHOR
ef5fa1a4
TI
79 ("Winfried Ritsch <ritsch_AT_iem.at>, "
80 "Paul Davis <paul@linuxaudiosystems.com>, "
3cee5a60
RB
81 "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
82 "Remy Bruno <remy.bruno@trinnov.com>");
763f356c
TI
83MODULE_DESCRIPTION("RME HDSPM");
84MODULE_LICENSE("GPL");
85MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
86
87/* --- Write registers. ---
88 These are defined as byte-offsets from the iobase value. */
89
90#define HDSPM_controlRegister 64
91#define HDSPM_interruptConfirmation 96
92#define HDSPM_control2Reg 256 /* not in specs ???????? */
ffb2c3c0 93#define HDSPM_freqReg 256 /* for AES32 */
763f356c
TI
94#define HDSPM_midiDataOut0 352 /* just believe in old code */
95#define HDSPM_midiDataOut1 356
ffb2c3c0 96#define HDSPM_eeprom_wr 384 /* for AES32 */
763f356c
TI
97
98/* DMA enable for 64 channels, only Bit 0 is relevant */
99#define HDSPM_outputEnableBase 512 /* 512-767 input DMA */
100#define HDSPM_inputEnableBase 768 /* 768-1023 output DMA */
101
102/* 16 page addresses for each of the 64 channels DMA buffer in and out
103 (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
104#define HDSPM_pageAddressBufferOut 8192
105#define HDSPM_pageAddressBufferIn (HDSPM_pageAddressBufferOut+64*16*4)
106
107#define HDSPM_MADI_mixerBase 32768 /* 32768-65535 for 2x64x64 Fader */
108
109#define HDSPM_MATRIX_MIXER_SIZE 8192 /* = 2*64*64 * 4 Byte => 32kB */
110
111/* --- Read registers. ---
112 These are defined as byte-offsets from the iobase value */
113#define HDSPM_statusRegister 0
3cee5a60
RB
114/*#define HDSPM_statusRegister2 96 */
115/* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
116 * offset 192, for AES32 *and* MADI
117 * => need to check that offset 192 is working on MADI */
118#define HDSPM_statusRegister2 192
119#define HDSPM_timecodeRegister 128
763f356c
TI
120
121#define HDSPM_midiDataIn0 360
122#define HDSPM_midiDataIn1 364
123
124/* status is data bytes in MIDI-FIFO (0-128) */
125#define HDSPM_midiStatusOut0 384
126#define HDSPM_midiStatusOut1 388
127#define HDSPM_midiStatusIn0 392
128#define HDSPM_midiStatusIn1 396
129
130
131/* the meters are regular i/o-mapped registers, but offset
132 considerably from the rest. the peak registers are reset
133 when read; the least-significant 4 bits are full-scale counters;
134 the actual peak value is in the most-significant 24 bits.
135*/
136#define HDSPM_MADI_peakrmsbase 4096 /* 4096-8191 2x64x32Bit Meters */
137
138/* --- Control Register bits --------- */
139#define HDSPM_Start (1<<0) /* start engine */
140
141#define HDSPM_Latency0 (1<<1) /* buffer size = 2^n */
142#define HDSPM_Latency1 (1<<2) /* where n is defined */
143#define HDSPM_Latency2 (1<<3) /* by Latency{2,1,0} */
144
145#define HDSPM_ClockModeMaster (1<<4) /* 1=Master, 0=Slave/Autosync */
146
147#define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
148
149#define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
150#define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */
151#define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */
3cee5a60 152#define HDSPM_QuadSpeed (1<<31) /* quad speed bit */
763f356c 153
3cee5a60 154#define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
763f356c 155#define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1,
3cee5a60
RB
156 56channelMODE=0 */ /* MADI ONLY*/
157#define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */
763f356c
TI
158
159#define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode,
3cee5a60
RB
160 0=off, 1=on */ /* MADI ONLY */
161#define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
763f356c 162
ef5fa1a4
TI
163#define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
164 * -- MADI ONLY
165 */
763f356c
TI
166#define HDSPM_InputSelect1 (1<<15) /* should be 0 */
167
168#define HDSPM_SyncRef0 (1<<16) /* 0=WOrd, 1=MADI */
3cee5a60
RB
169#define HDSPM_SyncRef1 (1<<17) /* for AES32: SyncRefN codes the AES # */
170#define HDSPM_SyncRef2 (1<<13)
171#define HDSPM_SyncRef3 (1<<25)
763f356c 172
3cee5a60 173#define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */
763f356c
TI
174#define HDSPM_clr_tms (1<<19) /* clear track marker, do not use
175 AES additional bits in
176 lower 5 Audiodatabits ??? */
3cee5a60
RB
177#define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */
178#define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
763f356c
TI
179
180#define HDSPM_Midi0InterruptEnable (1<<22)
181#define HDSPM_Midi1InterruptEnable (1<<23)
182
183#define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
184
3cee5a60
RB
185#define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
186#define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
187#define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */
188
189#define HDSPM_wclk_sel (1<<30)
763f356c
TI
190
191/* --- bit helper defines */
192#define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
ef5fa1a4
TI
193#define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|\
194 HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
763f356c
TI
195#define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1)
196#define HDSPM_InputOptical 0
197#define HDSPM_InputCoaxial (HDSPM_InputSelect0)
ef5fa1a4
TI
198#define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|\
199 HDSPM_SyncRef2|HDSPM_SyncRef3)
763f356c
TI
200#define HDSPM_SyncRef_Word 0
201#define HDSPM_SyncRef_MADI (HDSPM_SyncRef0)
202
203#define HDSPM_SYNC_FROM_WORD 0 /* Preferred sync reference */
204#define HDSPM_SYNC_FROM_MADI 1 /* choices - used by "pref_sync_ref" */
205
206#define HDSPM_Frequency32KHz HDSPM_Frequency0
207#define HDSPM_Frequency44_1KHz HDSPM_Frequency1
208#define HDSPM_Frequency48KHz (HDSPM_Frequency1|HDSPM_Frequency0)
209#define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0)
210#define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
ef5fa1a4
TI
211#define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
212 HDSPM_Frequency0)
3cee5a60
RB
213#define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0)
214#define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1)
ef5fa1a4
TI
215#define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|\
216 HDSPM_Frequency0)
763f356c
TI
217
218/* --- for internal discrimination */
219#define HDSPM_CLOCK_SOURCE_AUTOSYNC 0 /* Sample Clock Sources */
220#define HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ 1
221#define HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ 2
222#define HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ 3
223#define HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ 4
224#define HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ 5
225#define HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ 6
226#define HDSPM_CLOCK_SOURCE_INTERNAL_128KHZ 7
227#define HDSPM_CLOCK_SOURCE_INTERNAL_176_4KHZ 8
228#define HDSPM_CLOCK_SOURCE_INTERNAL_192KHZ 9
229
230/* Synccheck Status */
231#define HDSPM_SYNC_CHECK_NO_LOCK 0
232#define HDSPM_SYNC_CHECK_LOCK 1
233#define HDSPM_SYNC_CHECK_SYNC 2
234
235/* AutoSync References - used by "autosync_ref" control switch */
236#define HDSPM_AUTOSYNC_FROM_WORD 0
237#define HDSPM_AUTOSYNC_FROM_MADI 1
238#define HDSPM_AUTOSYNC_FROM_NONE 2
239
240/* Possible sources of MADI input */
241#define HDSPM_OPTICAL 0 /* optical */
242#define HDSPM_COAXIAL 1 /* BNC */
243
244#define hdspm_encode_latency(x) (((x)<<1) & HDSPM_LatencyMask)
245#define hdspm_decode_latency(x) (((x) & HDSPM_LatencyMask)>>1)
246
247#define hdspm_encode_in(x) (((x)&0x3)<<14)
248#define hdspm_decode_in(x) (((x)>>14)&0x3)
249
250/* --- control2 register bits --- */
251#define HDSPM_TMS (1<<0)
252#define HDSPM_TCK (1<<1)
253#define HDSPM_TDI (1<<2)
254#define HDSPM_JTAG (1<<3)
255#define HDSPM_PWDN (1<<4)
256#define HDSPM_PROGRAM (1<<5)
257#define HDSPM_CONFIG_MODE_0 (1<<6)
258#define HDSPM_CONFIG_MODE_1 (1<<7)
259/*#define HDSPM_VERSION_BIT (1<<8) not defined any more*/
260#define HDSPM_BIGENDIAN_MODE (1<<9)
261#define HDSPM_RD_MULTIPLE (1<<10)
262
3cee5a60 263/* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
ef5fa1a4
TI
264 that do not conflict with specific bits for AES32 seem to be valid also
265 for the AES32
266 */
763f356c 267#define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */
ef5fa1a4
TI
268#define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn MODE=0 */
269#define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1
270 * (like inp0)
271 */
763f356c
TI
272#define HDSPM_madiLock (1<<3) /* MADI Locked =1, no=0 */
273
274#define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
275 /* since 64byte accurate last 6 bits
276 are not used */
277
278#define HDSPM_madiSync (1<<18) /* MADI is in sync */
279#define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
280
281#define HDSPM_madiFreq0 (1<<22) /* system freq 0=error */
282#define HDSPM_madiFreq1 (1<<23) /* 1=32, 2=44.1 3=48 */
283#define HDSPM_madiFreq2 (1<<24) /* 4=64, 5=88.2 6=96 */
284#define HDSPM_madiFreq3 (1<<25) /* 7=128, 8=176.4 9=192 */
285
ef5fa1a4
TI
286#define HDSPM_BufferID (1<<26) /* (Double)Buffer ID toggles with
287 * Interrupt
288 */
763f356c
TI
289#define HDSPM_midi0IRQPending (1<<30) /* MIDI IRQ is pending */
290#define HDSPM_midi1IRQPending (1<<31) /* and aktiv */
291
292/* --- status bit helpers */
ef5fa1a4
TI
293#define HDSPM_madiFreqMask (HDSPM_madiFreq0|HDSPM_madiFreq1|\
294 HDSPM_madiFreq2|HDSPM_madiFreq3)
763f356c
TI
295#define HDSPM_madiFreq32 (HDSPM_madiFreq0)
296#define HDSPM_madiFreq44_1 (HDSPM_madiFreq1)
297#define HDSPM_madiFreq48 (HDSPM_madiFreq0|HDSPM_madiFreq1)
298#define HDSPM_madiFreq64 (HDSPM_madiFreq2)
299#define HDSPM_madiFreq88_2 (HDSPM_madiFreq0|HDSPM_madiFreq2)
300#define HDSPM_madiFreq96 (HDSPM_madiFreq1|HDSPM_madiFreq2)
301#define HDSPM_madiFreq128 (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
302#define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
303#define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0)
304
3cee5a60 305/* Status2 Register bits */ /* MADI ONLY */
763f356c
TI
306
307#define HDSPM_version0 (1<<0) /* not realy defined but I guess */
308#define HDSPM_version1 (1<<1) /* in former cards it was ??? */
309#define HDSPM_version2 (1<<2)
310
311#define HDSPM_wcLock (1<<3) /* Wordclock is detected and locked */
312#define HDSPM_wcSync (1<<4) /* Wordclock is in sync with systemclock */
313
314#define HDSPM_wc_freq0 (1<<5) /* input freq detected via autosync */
315#define HDSPM_wc_freq1 (1<<6) /* 001=32, 010==44.1, 011=48, */
316#define HDSPM_wc_freq2 (1<<7) /* 100=64, 101=88.2, 110=96, */
317/* missing Bit for 111=128, 1000=176.4, 1001=192 */
318
319#define HDSPM_SelSyncRef0 (1<<8) /* Sync Source in slave mode */
320#define HDSPM_SelSyncRef1 (1<<9) /* 000=word, 001=MADI, */
321#define HDSPM_SelSyncRef2 (1<<10) /* 111=no valid signal */
322
323#define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
324
325#define HDSPM_wcFreqMask (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
326#define HDSPM_wcFreq32 (HDSPM_wc_freq0)
327#define HDSPM_wcFreq44_1 (HDSPM_wc_freq1)
328#define HDSPM_wcFreq48 (HDSPM_wc_freq0|HDSPM_wc_freq1)
329#define HDSPM_wcFreq64 (HDSPM_wc_freq2)
330#define HDSPM_wcFreq88_2 (HDSPM_wc_freq0|HDSPM_wc_freq2)
331#define HDSPM_wcFreq96 (HDSPM_wc_freq1|HDSPM_wc_freq2)
332
333
ef5fa1a4
TI
334#define HDSPM_SelSyncRefMask (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
335 HDSPM_SelSyncRef2)
763f356c
TI
336#define HDSPM_SelSyncRef_WORD 0
337#define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0)
ef5fa1a4
TI
338#define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
339 HDSPM_SelSyncRef2)
763f356c 340
3cee5a60
RB
341/*
342 For AES32, bits for status, status2 and timecode are different
343*/
344/* status */
345#define HDSPM_AES32_wcLock 0x0200000
346#define HDSPM_AES32_wcFreq_bit 22
347/* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
348 HDSPM_bit2freq */
349#define HDSPM_AES32_syncref_bit 16
350/* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
351
352#define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
353#define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
354#define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
355#define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
356#define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
357#define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
358#define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
359#define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
360#define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
6534599d 361#define HDSPM_AES32_AUTOSYNC_FROM_NONE 9
3cee5a60
RB
362
363/* status2 */
364/* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
365#define HDSPM_LockAES 0x80
366#define HDSPM_LockAES1 0x80
367#define HDSPM_LockAES2 0x40
368#define HDSPM_LockAES3 0x20
369#define HDSPM_LockAES4 0x10
370#define HDSPM_LockAES5 0x8
371#define HDSPM_LockAES6 0x4
372#define HDSPM_LockAES7 0x2
373#define HDSPM_LockAES8 0x1
374/*
375 Timecode
376 After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
377 AES i+1
378 bits 3210
379 0001 32kHz
380 0010 44.1kHz
381 0011 48kHz
382 0100 64kHz
383 0101 88.2kHz
384 0110 96kHz
385 0111 128kHz
386 1000 176.4kHz
387 1001 192kHz
388 NB: Timecode register doesn't seem to work on AES32 card revision 230
389*/
390
763f356c
TI
391/* Mixer Values */
392#define UNITY_GAIN 32768 /* = 65536/2 */
393#define MINUS_INFINITY_GAIN 0
394
763f356c
TI
395/* Number of channels for different Speed Modes */
396#define MADI_SS_CHANNELS 64
397#define MADI_DS_CHANNELS 32
398#define MADI_QS_CHANNELS 16
399
400/* the size of a substream (1 mono data stream) */
401#define HDSPM_CHANNEL_BUFFER_SAMPLES (16*1024)
402#define HDSPM_CHANNEL_BUFFER_BYTES (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
403
404/* the size of the area we need to allocate for DMA transfers. the
405 size is the same regardless of the number of channels, and
406 also the latency to use.
407 for one direction !!!
408*/
ffb2c3c0 409#define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
763f356c
TI
410#define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
411
3cee5a60
RB
412/* revisions >= 230 indicate AES32 card */
413#define HDSPM_AESREVISION 230
414
6534599d
RB
415/* speed factor modes */
416#define HDSPM_SPEED_SINGLE 0
417#define HDSPM_SPEED_DOUBLE 1
418#define HDSPM_SPEED_QUAD 2
419/* names for speed modes */
420static char *hdspm_speed_names[] = { "single", "double", "quad" };
421
98274f07
TI
422struct hdspm_midi {
423 struct hdspm *hdspm;
763f356c 424 int id;
98274f07
TI
425 struct snd_rawmidi *rmidi;
426 struct snd_rawmidi_substream *input;
427 struct snd_rawmidi_substream *output;
763f356c
TI
428 char istimer; /* timer in use */
429 struct timer_list timer;
430 spinlock_t lock;
431 int pending;
432};
433
98274f07 434struct hdspm {
763f356c 435 spinlock_t lock;
ef5fa1a4
TI
436 /* only one playback and/or capture stream */
437 struct snd_pcm_substream *capture_substream;
438 struct snd_pcm_substream *playback_substream;
763f356c
TI
439
440 char *card_name; /* for procinfo */
3cee5a60
RB
441 unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
442
443 unsigned char is_aes32; /* indicates if card is AES32 */
763f356c
TI
444
445 int precise_ptr; /* use precise pointers, to be tested */
446 int monitor_outs; /* set up monitoring outs init flag */
447
448 u32 control_register; /* cached value */
449 u32 control2_register; /* cached value */
450
98274f07 451 struct hdspm_midi midi[2];
763f356c
TI
452 struct tasklet_struct midi_tasklet;
453
454 size_t period_bytes;
455 unsigned char ss_channels; /* channels of card in single speed */
456 unsigned char ds_channels; /* Double Speed */
457 unsigned char qs_channels; /* Quad Speed */
458
459 unsigned char *playback_buffer; /* suitably aligned address */
460 unsigned char *capture_buffer; /* suitably aligned address */
461
462 pid_t capture_pid; /* process id which uses capture */
463 pid_t playback_pid; /* process id which uses capture */
464 int running; /* running status */
465
466 int last_external_sample_rate; /* samplerate mystic ... */
467 int last_internal_sample_rate;
468 int system_sample_rate;
469
470 char *channel_map; /* channel map for DS and Quadspeed */
471
472 int dev; /* Hardware vars... */
473 int irq;
474 unsigned long port;
475 void __iomem *iobase;
476
477 int irq_count; /* for debug */
478
98274f07
TI
479 struct snd_card *card; /* one card */
480 struct snd_pcm *pcm; /* has one pcm */
481 struct snd_hwdep *hwdep; /* and a hwdep for additional ioctl */
763f356c
TI
482 struct pci_dev *pci; /* and an pci info */
483
484 /* Mixer vars */
ef5fa1a4
TI
485 /* fast alsa mixer */
486 struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
487 /* but input to much, so not used */
488 struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
489 /* full mixer accessable over mixer ioctl or hwdep-device */
490 struct hdspm_mixer *mixer;
763f356c
TI
491
492};
493
494/* These tables map the ALSA channels 1..N to the channels that we
495 need to use in order to find the relevant channel buffer. RME
496 refer to this kind of mapping as between "the ADAT channel and
497 the DMA channel." We index it using the logical audio channel,
498 and the value is the DMA channel (i.e. channel buffer number)
499 where the data for that channel can be read/written from/to.
500*/
501
502static char channel_map_madi_ss[HDSPM_MAX_CHANNELS] = {
503 0, 1, 2, 3, 4, 5, 6, 7,
504 8, 9, 10, 11, 12, 13, 14, 15,
505 16, 17, 18, 19, 20, 21, 22, 23,
506 24, 25, 26, 27, 28, 29, 30, 31,
507 32, 33, 34, 35, 36, 37, 38, 39,
508 40, 41, 42, 43, 44, 45, 46, 47,
509 48, 49, 50, 51, 52, 53, 54, 55,
510 56, 57, 58, 59, 60, 61, 62, 63
511};
512
763f356c 513
396c9b92 514static struct pci_device_id snd_hdspm_ids[] __devinitdata = {
763f356c
TI
515 {
516 .vendor = PCI_VENDOR_ID_XILINX,
517 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
518 .subvendor = PCI_ANY_ID,
519 .subdevice = PCI_ANY_ID,
520 .class = 0,
521 .class_mask = 0,
522 .driver_data = 0},
523 {0,}
524};
525
526MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
527
528/* prototypes */
98274f07
TI
529static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
530 struct hdspm * hdspm);
531static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
532 struct hdspm * hdspm);
533
534static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm);
535static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm);
536static int hdspm_autosync_ref(struct hdspm * hdspm);
537static int snd_hdspm_set_defaults(struct hdspm * hdspm);
538static void hdspm_set_sgbuf(struct hdspm * hdspm, struct snd_sg_buf *sgbuf,
763f356c
TI
539 unsigned int reg, int channels);
540
3cee5a60
RB
541static inline int HDSPM_bit2freq(int n)
542{
543 static int bit2freq_tab[] = { 0, 32000, 44100, 48000, 64000, 88200,
544 96000, 128000, 176400, 192000 };
545 if (n < 1 || n > 9)
546 return 0;
547 return bit2freq_tab[n];
548}
549
763f356c
TI
550/* Write/read to/from HDSPM with Adresses in Bytes
551 not words but only 32Bit writes are allowed */
552
98274f07 553static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
763f356c
TI
554 unsigned int val)
555{
556 writel(val, hdspm->iobase + reg);
557}
558
98274f07 559static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
763f356c
TI
560{
561 return readl(hdspm->iobase + reg);
562}
563
564/* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
565 mixer is write only on hardware so we have to cache him for read
566 each fader is a u32, but uses only the first 16 bit */
567
98274f07 568static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
763f356c
TI
569 unsigned int in)
570{
5bab2482 571 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
763f356c
TI
572 return 0;
573
574 return hdspm->mixer->ch[chan].in[in];
575}
576
98274f07 577static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
763f356c
TI
578 unsigned int pb)
579{
5bab2482 580 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
763f356c
TI
581 return 0;
582 return hdspm->mixer->ch[chan].pb[pb];
583}
584
98274f07 585static inline int hdspm_write_in_gain(struct hdspm * hdspm, unsigned int chan,
763f356c
TI
586 unsigned int in, unsigned short data)
587{
588 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
589 return -1;
590
591 hdspm_write(hdspm,
592 HDSPM_MADI_mixerBase +
593 ((in + 128 * chan) * sizeof(u32)),
594 (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
595 return 0;
596}
597
98274f07 598static inline int hdspm_write_pb_gain(struct hdspm * hdspm, unsigned int chan,
763f356c
TI
599 unsigned int pb, unsigned short data)
600{
601 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
602 return -1;
603
604 hdspm_write(hdspm,
605 HDSPM_MADI_mixerBase +
606 ((64 + pb + 128 * chan) * sizeof(u32)),
607 (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
608 return 0;
609}
610
611
612/* enable DMA for specific channels, now available for DSP-MADI */
98274f07 613static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
763f356c
TI
614{
615 hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
616}
617
98274f07 618static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
763f356c
TI
619{
620 hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
621}
622
623/* check if same process is writing and reading */
98274f07 624static inline int snd_hdspm_use_is_exclusive(struct hdspm * hdspm)
763f356c
TI
625{
626 unsigned long flags;
627 int ret = 1;
628
629 spin_lock_irqsave(&hdspm->lock, flags);
630 if ((hdspm->playback_pid != hdspm->capture_pid) &&
631 (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
632 ret = 0;
633 }
634 spin_unlock_irqrestore(&hdspm->lock, flags);
635 return ret;
636}
637
638/* check for external sample rate */
98274f07 639static inline int hdspm_external_sample_rate(struct hdspm * hdspm)
763f356c 640{
3cee5a60
RB
641 if (hdspm->is_aes32) {
642 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
643 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
ef5fa1a4
TI
644 unsigned int timecode =
645 hdspm_read(hdspm, HDSPM_timecodeRegister);
3cee5a60
RB
646
647 int syncref = hdspm_autosync_ref(hdspm);
648
649 if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD &&
650 status & HDSPM_AES32_wcLock)
ef5fa1a4
TI
651 return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit)
652 & 0xF);
3cee5a60
RB
653 if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 &&
654 syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 &&
655 status2 & (HDSPM_LockAES >>
656 (syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)))
657 return HDSPM_bit2freq((timecode >>
658 (4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF);
659 return 0;
660 } else {
661 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
662 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
663 unsigned int rate_bits;
664 int rate = 0;
763f356c 665
3cee5a60
RB
666 /* if wordclock has synced freq and wordclock is valid */
667 if ((status2 & HDSPM_wcLock) != 0 &&
668 (status & HDSPM_SelSyncRef0) == 0) {
763f356c 669
3cee5a60 670 rate_bits = status2 & HDSPM_wcFreqMask;
763f356c 671
3cee5a60
RB
672 switch (rate_bits) {
673 case HDSPM_wcFreq32:
674 rate = 32000;
675 break;
676 case HDSPM_wcFreq44_1:
677 rate = 44100;
678 break;
679 case HDSPM_wcFreq48:
680 rate = 48000;
681 break;
682 case HDSPM_wcFreq64:
683 rate = 64000;
684 break;
685 case HDSPM_wcFreq88_2:
686 rate = 88200;
687 break;
688 case HDSPM_wcFreq96:
689 rate = 96000;
690 break;
691 /* Quadspeed Bit missing ???? */
692 default:
693 rate = 0;
694 break;
695 }
763f356c 696 }
763f356c 697
ef5fa1a4
TI
698 /* if rate detected and Syncref is Word than have it,
699 * word has priority to MADI
700 */
3cee5a60
RB
701 if (rate != 0 &&
702 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
703 return rate;
763f356c 704
3cee5a60
RB
705 /* maby a madi input (which is taken if sel sync is madi) */
706 if (status & HDSPM_madiLock) {
707 rate_bits = status & HDSPM_madiFreqMask;
763f356c 708
3cee5a60
RB
709 switch (rate_bits) {
710 case HDSPM_madiFreq32:
711 rate = 32000;
712 break;
713 case HDSPM_madiFreq44_1:
714 rate = 44100;
715 break;
716 case HDSPM_madiFreq48:
717 rate = 48000;
718 break;
719 case HDSPM_madiFreq64:
720 rate = 64000;
721 break;
722 case HDSPM_madiFreq88_2:
723 rate = 88200;
724 break;
725 case HDSPM_madiFreq96:
726 rate = 96000;
727 break;
728 case HDSPM_madiFreq128:
729 rate = 128000;
730 break;
731 case HDSPM_madiFreq176_4:
732 rate = 176400;
733 break;
734 case HDSPM_madiFreq192:
735 rate = 192000;
736 break;
737 default:
738 rate = 0;
739 break;
740 }
763f356c 741 }
3cee5a60 742 return rate;
763f356c 743 }
763f356c
TI
744}
745
746/* Latency function */
98274f07 747static inline void hdspm_compute_period_size(struct hdspm * hdspm)
763f356c
TI
748{
749 hdspm->period_bytes =
750 1 << ((hdspm_decode_latency(hdspm->control_register) + 8));
751}
752
98274f07 753static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm * hdspm)
763f356c
TI
754{
755 int position;
756
757 position = hdspm_read(hdspm, HDSPM_statusRegister);
758
ef5fa1a4
TI
759 if (!hdspm->precise_ptr)
760 return (position & HDSPM_BufferID) ?
761 (hdspm->period_bytes / 4) : 0;
763f356c 762
ef5fa1a4
TI
763 /* hwpointer comes in bytes and is 64Bytes accurate (by docu since
764 PCI Burst)
763f356c
TI
765 i have experimented that it is at most 64 Byte to much for playing
766 so substraction of 64 byte should be ok for ALSA, but use it only
767 for application where you know what you do since if you come to
768 near with record pointer it can be a disaster */
769
770 position &= HDSPM_BufferPositionMask;
771 position = ((position - 64) % (2 * hdspm->period_bytes)) / 4;
772
773 return position;
774}
775
776
98274f07 777static inline void hdspm_start_audio(struct hdspm * s)
763f356c
TI
778{
779 s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
780 hdspm_write(s, HDSPM_controlRegister, s->control_register);
781}
782
98274f07 783static inline void hdspm_stop_audio(struct hdspm * s)
763f356c
TI
784{
785 s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
786 hdspm_write(s, HDSPM_controlRegister, s->control_register);
787}
788
789/* should I silence all or only opened ones ? doit all for first even is 4MB*/
98274f07 790static inline void hdspm_silence_playback(struct hdspm * hdspm)
763f356c
TI
791{
792 int i;
793 int n = hdspm->period_bytes;
794 void *buf = hdspm->playback_buffer;
795
3cee5a60
RB
796 if (buf == NULL)
797 return;
763f356c
TI
798
799 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
800 memset(buf, 0, n);
801 buf += HDSPM_CHANNEL_BUFFER_BYTES;
802 }
803}
804
98274f07 805static int hdspm_set_interrupt_interval(struct hdspm * s, unsigned int frames)
763f356c
TI
806{
807 int n;
808
809 spin_lock_irq(&s->lock);
810
811 frames >>= 7;
812 n = 0;
813 while (frames) {
814 n++;
815 frames >>= 1;
816 }
817 s->control_register &= ~HDSPM_LatencyMask;
818 s->control_register |= hdspm_encode_latency(n);
819
820 hdspm_write(s, HDSPM_controlRegister, s->control_register);
821
822 hdspm_compute_period_size(s);
823
824 spin_unlock_irq(&s->lock);
825
826 return 0;
827}
828
ffb2c3c0
RB
829static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
830{
831 u64 n;
832 u32 r;
833
834 if (rate >= 112000)
835 rate /= 4;
836 else if (rate >= 56000)
837 rate /= 2;
838
839 /* RME says n = 104857600000000, but in the windows MADI driver, I see:
6534599d 840// return 104857600000000 / rate; // 100 MHz
ffb2c3c0
RB
841 return 110100480000000 / rate; // 105 MHz
842 */
ef5fa1a4 843 /* n = 104857600000000ULL; */ /* = 2^20 * 10^8 */
ffb2c3c0
RB
844 n = 110100480000000ULL; /* Value checked for AES32 and MADI */
845 div64_32(&n, rate, &r);
846 /* n should be less than 2^32 for being written to FREQ register */
847 snd_assert((n >> 32) == 0);
848 hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
849}
763f356c
TI
850
851/* dummy set rate lets see what happens */
98274f07 852static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
763f356c 853{
763f356c
TI
854 int current_rate;
855 int rate_bits;
856 int not_set = 0;
6534599d 857 int current_speed, target_speed;
763f356c
TI
858
859 /* ASSUMPTION: hdspm->lock is either set, or there is no need for
860 it (e.g. during module initialization).
861 */
862
863 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
864
865 /* SLAVE --- */
866 if (called_internally) {
867
868 /* request from ctl or card initialization
869 just make a warning an remember setting
870 for future master mode switching */
871
ef5fa1a4
TI
872 snd_printk(KERN_WARNING "HDSPM: "
873 "Warning: device is not running "
874 "as a clock master.\n");
763f356c
TI
875 not_set = 1;
876 } else {
877
878 /* hw_param request while in AutoSync mode */
879 int external_freq =
880 hdspm_external_sample_rate(hdspm);
881
ef5fa1a4
TI
882 if (hdspm_autosync_ref(hdspm) ==
883 HDSPM_AUTOSYNC_FROM_NONE) {
763f356c 884
ef5fa1a4
TI
885 snd_printk(KERN_WARNING "HDSPM: "
886 "Detected no Externel Sync \n");
763f356c
TI
887 not_set = 1;
888
889 } else if (rate != external_freq) {
890
ef5fa1a4
TI
891 snd_printk(KERN_WARNING "HDSPM: "
892 "Warning: No AutoSync source for "
893 "requested rate\n");
763f356c
TI
894 not_set = 1;
895 }
896 }
897 }
898
899 current_rate = hdspm->system_sample_rate;
900
901 /* Changing between Singe, Double and Quad speed is not
902 allowed if any substreams are open. This is because such a change
903 causes a shift in the location of the DMA buffers and a reduction
904 in the number of available buffers.
905
906 Note that a similar but essentially insoluble problem exists for
907 externally-driven rate changes. All we can do is to flag rate
908 changes in the read/write routines.
909 */
910
6534599d
RB
911 if (current_rate <= 48000)
912 current_speed = HDSPM_SPEED_SINGLE;
913 else if (current_rate <= 96000)
914 current_speed = HDSPM_SPEED_DOUBLE;
915 else
916 current_speed = HDSPM_SPEED_QUAD;
917
918 if (rate <= 48000)
919 target_speed = HDSPM_SPEED_SINGLE;
920 else if (rate <= 96000)
921 target_speed = HDSPM_SPEED_DOUBLE;
922 else
923 target_speed = HDSPM_SPEED_QUAD;
3cee5a60 924
763f356c
TI
925 switch (rate) {
926 case 32000:
763f356c
TI
927 rate_bits = HDSPM_Frequency32KHz;
928 break;
929 case 44100:
763f356c
TI
930 rate_bits = HDSPM_Frequency44_1KHz;
931 break;
932 case 48000:
763f356c
TI
933 rate_bits = HDSPM_Frequency48KHz;
934 break;
935 case 64000:
763f356c
TI
936 rate_bits = HDSPM_Frequency64KHz;
937 break;
938 case 88200:
763f356c
TI
939 rate_bits = HDSPM_Frequency88_2KHz;
940 break;
941 case 96000:
763f356c
TI
942 rate_bits = HDSPM_Frequency96KHz;
943 break;
3cee5a60 944 case 128000:
3cee5a60
RB
945 rate_bits = HDSPM_Frequency128KHz;
946 break;
947 case 176400:
3cee5a60
RB
948 rate_bits = HDSPM_Frequency176_4KHz;
949 break;
950 case 192000:
3cee5a60
RB
951 rate_bits = HDSPM_Frequency192KHz;
952 break;
763f356c
TI
953 default:
954 return -EINVAL;
955 }
956
6534599d 957 if (current_speed != target_speed
763f356c
TI
958 && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
959 snd_printk
ef5fa1a4 960 (KERN_ERR "HDSPM: "
6534599d 961 "cannot change from %s speed to %s speed mode "
ef5fa1a4 962 "(capture PID = %d, playback PID = %d)\n",
6534599d
RB
963 hdspm_speed_names[current_speed],
964 hdspm_speed_names[target_speed],
763f356c
TI
965 hdspm->capture_pid, hdspm->playback_pid);
966 return -EBUSY;
967 }
968
969 hdspm->control_register &= ~HDSPM_FrequencyMask;
970 hdspm->control_register |= rate_bits;
971 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
972
ffb2c3c0
RB
973 /* For AES32, need to set DDS value in FREQ register
974 For MADI, also apparently */
975 hdspm_set_dds_value(hdspm, rate);
976
977 if (hdspm->is_aes32 && rate != current_rate)
978 hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
979
980 /* For AES32 and for MADI (at least rev 204), channel_map needs to
981 * always be channel_map_madi_ss, whatever the sample rate */
982 hdspm->channel_map = channel_map_madi_ss;
763f356c
TI
983
984 hdspm->system_sample_rate = rate;
985
986 if (not_set != 0)
987 return -1;
988
989 return 0;
990}
991
992/* mainly for init to 0 on load */
98274f07 993static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
763f356c
TI
994{
995 int i, j;
ef5fa1a4
TI
996 unsigned int gain;
997
998 if (sgain > UNITY_GAIN)
999 gain = UNITY_GAIN;
1000 else if (sgain < 0)
1001 gain = 0;
1002 else
1003 gain = sgain;
763f356c
TI
1004
1005 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1006 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1007 hdspm_write_in_gain(hdspm, i, j, gain);
1008 hdspm_write_pb_gain(hdspm, i, j, gain);
1009 }
1010}
1011
1012/*----------------------------------------------------------------------------
1013 MIDI
1014 ----------------------------------------------------------------------------*/
1015
ef5fa1a4
TI
1016static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1017 int id)
763f356c
TI
1018{
1019 /* the hardware already does the relevant bit-mask with 0xff */
1020 if (id)
1021 return hdspm_read(hdspm, HDSPM_midiDataIn1);
1022 else
1023 return hdspm_read(hdspm, HDSPM_midiDataIn0);
1024}
1025
ef5fa1a4
TI
1026static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1027 int val)
763f356c
TI
1028{
1029 /* the hardware already does the relevant bit-mask with 0xff */
1030 if (id)
0b76b51e 1031 hdspm_write(hdspm, HDSPM_midiDataOut1, val);
763f356c 1032 else
0b76b51e 1033 hdspm_write(hdspm, HDSPM_midiDataOut0, val);
763f356c
TI
1034}
1035
98274f07 1036static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
763f356c
TI
1037{
1038 if (id)
1039 return (hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xff);
1040 else
1041 return (hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xff);
1042}
1043
98274f07 1044static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
763f356c
TI
1045{
1046 int fifo_bytes_used;
1047
1048 if (id)
ef5fa1a4 1049 fifo_bytes_used = hdspm_read(hdspm, HDSPM_midiStatusOut1);
763f356c 1050 else
ef5fa1a4
TI
1051 fifo_bytes_used = hdspm_read(hdspm, HDSPM_midiStatusOut0);
1052 fifo_bytes_used &= 0xff;
763f356c
TI
1053
1054 if (fifo_bytes_used < 128)
1055 return 128 - fifo_bytes_used;
1056 else
1057 return 0;
1058}
1059
98274f07 1060static inline void snd_hdspm_flush_midi_input (struct hdspm *hdspm, int id)
763f356c
TI
1061{
1062 while (snd_hdspm_midi_input_available (hdspm, id))
1063 snd_hdspm_midi_read_byte (hdspm, id);
1064}
1065
98274f07 1066static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
763f356c
TI
1067{
1068 unsigned long flags;
1069 int n_pending;
1070 int to_write;
1071 int i;
1072 unsigned char buf[128];
1073
1074 /* Output is not interrupt driven */
1075
1076 spin_lock_irqsave (&hmidi->lock, flags);
ef5fa1a4
TI
1077 if (hmidi->output &&
1078 !snd_rawmidi_transmit_empty (hmidi->output)) {
1079 n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1080 hmidi->id);
1081 if (n_pending > 0) {
1082 if (n_pending > (int)sizeof (buf))
1083 n_pending = sizeof (buf);
1084
1085 to_write = snd_rawmidi_transmit (hmidi->output, buf,
1086 n_pending);
1087 if (to_write > 0) {
1088 for (i = 0; i < to_write; ++i)
1089 snd_hdspm_midi_write_byte (hmidi->hdspm,
1090 hmidi->id,
1091 buf[i]);
763f356c
TI
1092 }
1093 }
1094 }
1095 spin_unlock_irqrestore (&hmidi->lock, flags);
1096 return 0;
1097}
1098
98274f07 1099static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
763f356c 1100{
ef5fa1a4
TI
1101 unsigned char buf[128]; /* this buffer is designed to match the MIDI
1102 * input FIFO size
1103 */
763f356c
TI
1104 unsigned long flags;
1105 int n_pending;
1106 int i;
1107
1108 spin_lock_irqsave (&hmidi->lock, flags);
ef5fa1a4
TI
1109 n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1110 if (n_pending > 0) {
763f356c 1111 if (hmidi->input) {
ef5fa1a4 1112 if (n_pending > (int)sizeof (buf))
763f356c 1113 n_pending = sizeof (buf);
ef5fa1a4
TI
1114 for (i = 0; i < n_pending; ++i)
1115 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1116 hmidi->id);
1117 if (n_pending)
1118 snd_rawmidi_receive (hmidi->input, buf,
1119 n_pending);
763f356c
TI
1120 } else {
1121 /* flush the MIDI input FIFO */
ef5fa1a4
TI
1122 while (n_pending--)
1123 snd_hdspm_midi_read_byte (hmidi->hdspm,
1124 hmidi->id);
763f356c
TI
1125 }
1126 }
1127 hmidi->pending = 0;
ef5fa1a4 1128 if (hmidi->id)
763f356c 1129 hmidi->hdspm->control_register |= HDSPM_Midi1InterruptEnable;
ef5fa1a4 1130 else
763f356c 1131 hmidi->hdspm->control_register |= HDSPM_Midi0InterruptEnable;
ef5fa1a4
TI
1132 hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1133 hmidi->hdspm->control_register);
763f356c
TI
1134 spin_unlock_irqrestore (&hmidi->lock, flags);
1135 return snd_hdspm_midi_output_write (hmidi);
1136}
1137
ef5fa1a4
TI
1138static void
1139snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
763f356c 1140{
98274f07
TI
1141 struct hdspm *hdspm;
1142 struct hdspm_midi *hmidi;
763f356c
TI
1143 unsigned long flags;
1144 u32 ie;
1145
ef5fa1a4 1146 hmidi = substream->rmidi->private_data;
763f356c 1147 hdspm = hmidi->hdspm;
ef5fa1a4
TI
1148 ie = hmidi->id ?
1149 HDSPM_Midi1InterruptEnable : HDSPM_Midi0InterruptEnable;
763f356c
TI
1150 spin_lock_irqsave (&hdspm->lock, flags);
1151 if (up) {
1152 if (!(hdspm->control_register & ie)) {
1153 snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1154 hdspm->control_register |= ie;
1155 }
1156 } else {
1157 hdspm->control_register &= ~ie;
1158 }
1159
1160 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1161 spin_unlock_irqrestore (&hdspm->lock, flags);
1162}
1163
1164static void snd_hdspm_midi_output_timer(unsigned long data)
1165{
98274f07 1166 struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
763f356c
TI
1167 unsigned long flags;
1168
1169 snd_hdspm_midi_output_write(hmidi);
1170 spin_lock_irqsave (&hmidi->lock, flags);
1171
1172 /* this does not bump hmidi->istimer, because the
1173 kernel automatically removed the timer when it
1174 expired, and we are now adding it back, thus
1175 leaving istimer wherever it was set before.
1176 */
1177
1178 if (hmidi->istimer) {
1179 hmidi->timer.expires = 1 + jiffies;
1180 add_timer(&hmidi->timer);
1181 }
1182
1183 spin_unlock_irqrestore (&hmidi->lock, flags);
1184}
1185
ef5fa1a4
TI
1186static void
1187snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
763f356c 1188{
98274f07 1189 struct hdspm_midi *hmidi;
763f356c
TI
1190 unsigned long flags;
1191
ef5fa1a4 1192 hmidi = substream->rmidi->private_data;
763f356c
TI
1193 spin_lock_irqsave (&hmidi->lock, flags);
1194 if (up) {
1195 if (!hmidi->istimer) {
1196 init_timer(&hmidi->timer);
1197 hmidi->timer.function = snd_hdspm_midi_output_timer;
1198 hmidi->timer.data = (unsigned long) hmidi;
1199 hmidi->timer.expires = 1 + jiffies;
1200 add_timer(&hmidi->timer);
1201 hmidi->istimer++;
1202 }
1203 } else {
ef5fa1a4 1204 if (hmidi->istimer && --hmidi->istimer <= 0)
763f356c 1205 del_timer (&hmidi->timer);
763f356c
TI
1206 }
1207 spin_unlock_irqrestore (&hmidi->lock, flags);
1208 if (up)
1209 snd_hdspm_midi_output_write(hmidi);
1210}
1211
98274f07 1212static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
763f356c 1213{
98274f07 1214 struct hdspm_midi *hmidi;
763f356c 1215
ef5fa1a4 1216 hmidi = substream->rmidi->private_data;
763f356c
TI
1217 spin_lock_irq (&hmidi->lock);
1218 snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
1219 hmidi->input = substream;
1220 spin_unlock_irq (&hmidi->lock);
1221
1222 return 0;
1223}
1224
98274f07 1225static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
763f356c 1226{
98274f07 1227 struct hdspm_midi *hmidi;
763f356c 1228
ef5fa1a4 1229 hmidi = substream->rmidi->private_data;
763f356c
TI
1230 spin_lock_irq (&hmidi->lock);
1231 hmidi->output = substream;
1232 spin_unlock_irq (&hmidi->lock);
1233
1234 return 0;
1235}
1236
98274f07 1237static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
763f356c 1238{
98274f07 1239 struct hdspm_midi *hmidi;
763f356c
TI
1240
1241 snd_hdspm_midi_input_trigger (substream, 0);
1242
ef5fa1a4 1243 hmidi = substream->rmidi->private_data;
763f356c
TI
1244 spin_lock_irq (&hmidi->lock);
1245 hmidi->input = NULL;
1246 spin_unlock_irq (&hmidi->lock);
1247
1248 return 0;
1249}
1250
98274f07 1251static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
763f356c 1252{
98274f07 1253 struct hdspm_midi *hmidi;
763f356c
TI
1254
1255 snd_hdspm_midi_output_trigger (substream, 0);
1256
ef5fa1a4 1257 hmidi = substream->rmidi->private_data;
763f356c
TI
1258 spin_lock_irq (&hmidi->lock);
1259 hmidi->output = NULL;
1260 spin_unlock_irq (&hmidi->lock);
1261
1262 return 0;
1263}
1264
98274f07 1265static struct snd_rawmidi_ops snd_hdspm_midi_output =
763f356c
TI
1266{
1267 .open = snd_hdspm_midi_output_open,
1268 .close = snd_hdspm_midi_output_close,
1269 .trigger = snd_hdspm_midi_output_trigger,
1270};
1271
98274f07 1272static struct snd_rawmidi_ops snd_hdspm_midi_input =
763f356c
TI
1273{
1274 .open = snd_hdspm_midi_input_open,
1275 .close = snd_hdspm_midi_input_close,
1276 .trigger = snd_hdspm_midi_input_trigger,
1277};
1278
ef5fa1a4
TI
1279static int __devinit snd_hdspm_create_midi (struct snd_card *card,
1280 struct hdspm *hdspm, int id)
763f356c
TI
1281{
1282 int err;
1283 char buf[32];
1284
1285 hdspm->midi[id].id = id;
763f356c 1286 hdspm->midi[id].hdspm = hdspm;
763f356c
TI
1287 spin_lock_init (&hdspm->midi[id].lock);
1288
1289 sprintf (buf, "%s MIDI %d", card->shortname, id+1);
ef5fa1a4
TI
1290 err = snd_rawmidi_new (card, buf, id, 1, 1, &hdspm->midi[id].rmidi);
1291 if (err < 0)
763f356c
TI
1292 return err;
1293
1294 sprintf (hdspm->midi[id].rmidi->name, "%s MIDI %d", card->id, id+1);
1295 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1296
ef5fa1a4
TI
1297 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
1298 &snd_hdspm_midi_output);
1299 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
1300 &snd_hdspm_midi_input);
763f356c
TI
1301
1302 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
1303 SNDRV_RAWMIDI_INFO_INPUT |
1304 SNDRV_RAWMIDI_INFO_DUPLEX;
1305
1306 return 0;
1307}
1308
1309
1310static void hdspm_midi_tasklet(unsigned long arg)
1311{
98274f07 1312 struct hdspm *hdspm = (struct hdspm *)arg;
763f356c
TI
1313
1314 if (hdspm->midi[0].pending)
1315 snd_hdspm_midi_input_read (&hdspm->midi[0]);
1316 if (hdspm->midi[1].pending)
1317 snd_hdspm_midi_input_read (&hdspm->midi[1]);
1318}
1319
1320
1321/*-----------------------------------------------------------------------------
1322 Status Interface
1323 ----------------------------------------------------------------------------*/
1324
1325/* get the system sample rate which is set */
1326
1327#define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
67ed4161 1328{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
1329 .name = xname, \
1330 .index = xindex, \
1331 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
1332 .info = snd_hdspm_info_system_sample_rate, \
1333 .get = snd_hdspm_get_system_sample_rate \
1334}
1335
98274f07
TI
1336static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
1337 struct snd_ctl_elem_info *uinfo)
763f356c
TI
1338{
1339 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1340 uinfo->count = 1;
1341 return 0;
1342}
1343
98274f07
TI
1344static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
1345 struct snd_ctl_elem_value *
763f356c
TI
1346 ucontrol)
1347{
98274f07 1348 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
1349
1350 ucontrol->value.enumerated.item[0] = hdspm->system_sample_rate;
1351 return 0;
1352}
1353
1354#define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
67ed4161 1355{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
1356 .name = xname, \
1357 .index = xindex, \
1358 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
1359 .info = snd_hdspm_info_autosync_sample_rate, \
1360 .get = snd_hdspm_get_autosync_sample_rate \
1361}
1362
98274f07
TI
1363static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
1364 struct snd_ctl_elem_info *uinfo)
763f356c
TI
1365{
1366 static char *texts[] = { "32000", "44100", "48000",
1367 "64000", "88200", "96000",
1368 "128000", "176400", "192000",
1369 "None"
1370 };
1371 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1372 uinfo->count = 1;
1373 uinfo->value.enumerated.items = 10;
1374 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
1375 uinfo->value.enumerated.item =
1376 uinfo->value.enumerated.items - 1;
1377 strcpy(uinfo->value.enumerated.name,
1378 texts[uinfo->value.enumerated.item]);
1379 return 0;
1380}
1381
98274f07
TI
1382static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
1383 struct snd_ctl_elem_value *
763f356c
TI
1384 ucontrol)
1385{
98274f07 1386 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
1387
1388 switch (hdspm_external_sample_rate(hdspm)) {
1389 case 32000:
1390 ucontrol->value.enumerated.item[0] = 0;
1391 break;
1392 case 44100:
1393 ucontrol->value.enumerated.item[0] = 1;
1394 break;
1395 case 48000:
1396 ucontrol->value.enumerated.item[0] = 2;
1397 break;
1398 case 64000:
1399 ucontrol->value.enumerated.item[0] = 3;
1400 break;
1401 case 88200:
1402 ucontrol->value.enumerated.item[0] = 4;
1403 break;
1404 case 96000:
1405 ucontrol->value.enumerated.item[0] = 5;
1406 break;
1407 case 128000:
1408 ucontrol->value.enumerated.item[0] = 6;
1409 break;
1410 case 176400:
1411 ucontrol->value.enumerated.item[0] = 7;
1412 break;
1413 case 192000:
1414 ucontrol->value.enumerated.item[0] = 8;
1415 break;
1416
1417 default:
1418 ucontrol->value.enumerated.item[0] = 9;
1419 }
1420 return 0;
1421}
1422
1423#define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
67ed4161 1424{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
1425 .name = xname, \
1426 .index = xindex, \
1427 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
1428 .info = snd_hdspm_info_system_clock_mode, \
1429 .get = snd_hdspm_get_system_clock_mode, \
1430}
1431
1432
1433
98274f07 1434static int hdspm_system_clock_mode(struct hdspm * hdspm)
763f356c
TI
1435{
1436 /* Always reflect the hardware info, rme is never wrong !!!! */
1437
1438 if (hdspm->control_register & HDSPM_ClockModeMaster)
1439 return 0;
1440 return 1;
1441}
1442
98274f07
TI
1443static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
1444 struct snd_ctl_elem_info *uinfo)
763f356c
TI
1445{
1446 static char *texts[] = { "Master", "Slave" };
1447
1448 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1449 uinfo->count = 1;
1450 uinfo->value.enumerated.items = 2;
1451 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
1452 uinfo->value.enumerated.item =
1453 uinfo->value.enumerated.items - 1;
1454 strcpy(uinfo->value.enumerated.name,
1455 texts[uinfo->value.enumerated.item]);
1456 return 0;
1457}
1458
98274f07
TI
1459static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
1460 struct snd_ctl_elem_value *ucontrol)
763f356c 1461{
98274f07 1462 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
1463
1464 ucontrol->value.enumerated.item[0] =
1465 hdspm_system_clock_mode(hdspm);
1466 return 0;
1467}
1468
1469#define HDSPM_CLOCK_SOURCE(xname, xindex) \
67ed4161 1470{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
1471 .name = xname, \
1472 .index = xindex, \
1473 .info = snd_hdspm_info_clock_source, \
1474 .get = snd_hdspm_get_clock_source, \
1475 .put = snd_hdspm_put_clock_source \
1476}
1477
98274f07 1478static int hdspm_clock_source(struct hdspm * hdspm)
763f356c
TI
1479{
1480 if (hdspm->control_register & HDSPM_ClockModeMaster) {
1481 switch (hdspm->system_sample_rate) {
1482 case 32000:
1483 return 1;
1484 case 44100:
1485 return 2;
1486 case 48000:
1487 return 3;
1488 case 64000:
1489 return 4;
1490 case 88200:
1491 return 5;
1492 case 96000:
1493 return 6;
1494 case 128000:
1495 return 7;
1496 case 176400:
1497 return 8;
1498 case 192000:
1499 return 9;
1500 default:
1501 return 3;
1502 }
1503 } else {
1504 return 0;
1505 }
1506}
1507
98274f07 1508static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
763f356c
TI
1509{
1510 int rate;
1511 switch (mode) {
1512
1513 case HDSPM_CLOCK_SOURCE_AUTOSYNC:
1514 if (hdspm_external_sample_rate(hdspm) != 0) {
1515 hdspm->control_register &= ~HDSPM_ClockModeMaster;
1516 hdspm_write(hdspm, HDSPM_controlRegister,
1517 hdspm->control_register);
1518 return 0;
1519 }
1520 return -1;
1521 case HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ:
1522 rate = 32000;
1523 break;
1524 case HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ:
1525 rate = 44100;
1526 break;
1527 case HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ:
1528 rate = 48000;
1529 break;
1530 case HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ:
1531 rate = 64000;
1532 break;
1533 case HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ:
1534 rate = 88200;
1535 break;
1536 case HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ:
1537 rate = 96000;
1538 break;
1539 case HDSPM_CLOCK_SOURCE_INTERNAL_128KHZ:
1540 rate = 128000;
1541 break;
1542 case HDSPM_CLOCK_SOURCE_INTERNAL_176_4KHZ:
1543 rate = 176400;
1544 break;
1545 case HDSPM_CLOCK_SOURCE_INTERNAL_192KHZ:
1546 rate = 192000;
1547 break;
1548
1549 default:
1550 rate = 44100;
1551 }
1552 hdspm->control_register |= HDSPM_ClockModeMaster;
1553 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1554 hdspm_set_rate(hdspm, rate, 1);
1555 return 0;
1556}
1557
98274f07
TI
1558static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
1559 struct snd_ctl_elem_info *uinfo)
763f356c
TI
1560{
1561 static char *texts[] = { "AutoSync",
1562 "Internal 32.0 kHz", "Internal 44.1 kHz",
1563 "Internal 48.0 kHz",
1564 "Internal 64.0 kHz", "Internal 88.2 kHz",
1565 "Internal 96.0 kHz",
1566 "Internal 128.0 kHz", "Internal 176.4 kHz",
1567 "Internal 192.0 kHz"
1568 };
1569
1570 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1571 uinfo->count = 1;
1572 uinfo->value.enumerated.items = 10;
1573
1574 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
1575 uinfo->value.enumerated.item =
1576 uinfo->value.enumerated.items - 1;
1577
1578 strcpy(uinfo->value.enumerated.name,
1579 texts[uinfo->value.enumerated.item]);
1580
1581 return 0;
1582}
1583
98274f07
TI
1584static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
1585 struct snd_ctl_elem_value *ucontrol)
763f356c 1586{
98274f07 1587 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
1588
1589 ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
1590 return 0;
1591}
1592
98274f07
TI
1593static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
1594 struct snd_ctl_elem_value *ucontrol)
763f356c 1595{
98274f07 1596 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
1597 int change;
1598 int val;
1599
1600 if (!snd_hdspm_use_is_exclusive(hdspm))
1601 return -EBUSY;
1602 val = ucontrol->value.enumerated.item[0];
1603 if (val < 0)
1604 val = 0;
6534599d
RB
1605 if (val > 9)
1606 val = 9;
763f356c
TI
1607 spin_lock_irq(&hdspm->lock);
1608 if (val != hdspm_clock_source(hdspm))
1609 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
1610 else
1611 change = 0;
1612 spin_unlock_irq(&hdspm->lock);
1613 return change;
1614}
1615
1616#define HDSPM_PREF_SYNC_REF(xname, xindex) \
67ed4161 1617{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
1618 .name = xname, \
1619 .index = xindex, \
1620 .info = snd_hdspm_info_pref_sync_ref, \
1621 .get = snd_hdspm_get_pref_sync_ref, \
1622 .put = snd_hdspm_put_pref_sync_ref \
1623}
1624
98274f07 1625static int hdspm_pref_sync_ref(struct hdspm * hdspm)
763f356c
TI
1626{
1627 /* Notice that this looks at the requested sync source,
1628 not the one actually in use.
1629 */
3cee5a60
RB
1630 if (hdspm->is_aes32) {
1631 switch (hdspm->control_register & HDSPM_SyncRefMask) {
1632 /* number gives AES index, except for 0 which
1633 corresponds to WordClock */
1634 case 0: return 0;
1635 case HDSPM_SyncRef0: return 1;
1636 case HDSPM_SyncRef1: return 2;
1637 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3;
1638 case HDSPM_SyncRef2: return 4;
1639 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5;
1640 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6;
1641 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0: return 7;
1642 case HDSPM_SyncRef3: return 8;
1643 }
1644 } else {
1645 switch (hdspm->control_register & HDSPM_SyncRefMask) {
1646 case HDSPM_SyncRef_Word:
1647 return HDSPM_SYNC_FROM_WORD;
1648 case HDSPM_SyncRef_MADI:
1649 return HDSPM_SYNC_FROM_MADI;
1650 }
763f356c
TI
1651 }
1652
1653 return HDSPM_SYNC_FROM_WORD;
1654}
1655
98274f07 1656static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
763f356c
TI
1657{
1658 hdspm->control_register &= ~HDSPM_SyncRefMask;
1659
3cee5a60
RB
1660 if (hdspm->is_aes32) {
1661 switch (pref) {
1662 case 0:
1663 hdspm->control_register |= 0;
1664 break;
1665 case 1:
1666 hdspm->control_register |= HDSPM_SyncRef0;
1667 break;
1668 case 2:
1669 hdspm->control_register |= HDSPM_SyncRef1;
1670 break;
1671 case 3:
1672 hdspm->control_register |= HDSPM_SyncRef1+HDSPM_SyncRef0;
1673 break;
1674 case 4:
1675 hdspm->control_register |= HDSPM_SyncRef2;
1676 break;
1677 case 5:
1678 hdspm->control_register |= HDSPM_SyncRef2+HDSPM_SyncRef0;
1679 break;
1680 case 6:
1681 hdspm->control_register |= HDSPM_SyncRef2+HDSPM_SyncRef1;
1682 break;
1683 case 7:
ef5fa1a4
TI
1684 hdspm->control_register |=
1685 HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
3cee5a60
RB
1686 break;
1687 case 8:
1688 hdspm->control_register |= HDSPM_SyncRef3;
1689 break;
1690 default:
1691 return -1;
1692 }
1693 } else {
1694 switch (pref) {
1695 case HDSPM_SYNC_FROM_MADI:
1696 hdspm->control_register |= HDSPM_SyncRef_MADI;
1697 break;
1698 case HDSPM_SYNC_FROM_WORD:
1699 hdspm->control_register |= HDSPM_SyncRef_Word;
1700 break;
1701 default:
1702 return -1;
1703 }
763f356c
TI
1704 }
1705 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1706 return 0;
1707}
1708
98274f07
TI
1709static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
1710 struct snd_ctl_elem_info *uinfo)
763f356c 1711{
3cee5a60 1712 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 1713
3cee5a60
RB
1714 if (hdspm->is_aes32) {
1715 static char *texts[] = { "Word", "AES1", "AES2", "AES3",
1716 "AES4", "AES5", "AES6", "AES7", "AES8" };
763f356c 1717
3cee5a60
RB
1718 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1719 uinfo->count = 1;
763f356c 1720
3cee5a60
RB
1721 uinfo->value.enumerated.items = 9;
1722
ef5fa1a4
TI
1723 if (uinfo->value.enumerated.item >=
1724 uinfo->value.enumerated.items)
3cee5a60
RB
1725 uinfo->value.enumerated.item =
1726 uinfo->value.enumerated.items - 1;
1727 strcpy(uinfo->value.enumerated.name,
1728 texts[uinfo->value.enumerated.item]);
1729 } else {
1730 static char *texts[] = { "Word", "MADI" };
1731
1732 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1733 uinfo->count = 1;
1734
1735 uinfo->value.enumerated.items = 2;
1736
ef5fa1a4
TI
1737 if (uinfo->value.enumerated.item >=
1738 uinfo->value.enumerated.items)
3cee5a60
RB
1739 uinfo->value.enumerated.item =
1740 uinfo->value.enumerated.items - 1;
1741 strcpy(uinfo->value.enumerated.name,
1742 texts[uinfo->value.enumerated.item]);
1743 }
763f356c
TI
1744 return 0;
1745}
1746
98274f07
TI
1747static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
1748 struct snd_ctl_elem_value *ucontrol)
763f356c 1749{
98274f07 1750 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
1751
1752 ucontrol->value.enumerated.item[0] = hdspm_pref_sync_ref(hdspm);
1753 return 0;
1754}
1755
98274f07
TI
1756static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
1757 struct snd_ctl_elem_value *ucontrol)
763f356c 1758{
98274f07 1759 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
1760 int change, max;
1761 unsigned int val;
1762
3cee5a60 1763 max = hdspm->is_aes32 ? 9 : 2;
763f356c
TI
1764
1765 if (!snd_hdspm_use_is_exclusive(hdspm))
1766 return -EBUSY;
1767
1768 val = ucontrol->value.enumerated.item[0] % max;
1769
1770 spin_lock_irq(&hdspm->lock);
1771 change = (int) val != hdspm_pref_sync_ref(hdspm);
1772 hdspm_set_pref_sync_ref(hdspm, val);
1773 spin_unlock_irq(&hdspm->lock);
1774 return change;
1775}
1776
1777#define HDSPM_AUTOSYNC_REF(xname, xindex) \
67ed4161 1778{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
1779 .name = xname, \
1780 .index = xindex, \
1781 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
1782 .info = snd_hdspm_info_autosync_ref, \
1783 .get = snd_hdspm_get_autosync_ref, \
1784}
1785
98274f07 1786static int hdspm_autosync_ref(struct hdspm * hdspm)
763f356c 1787{
3cee5a60
RB
1788 if (hdspm->is_aes32) {
1789 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
ef5fa1a4
TI
1790 unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) &
1791 0xF;
3cee5a60
RB
1792 if (syncref == 0)
1793 return HDSPM_AES32_AUTOSYNC_FROM_WORD;
1794 if (syncref <= 8)
1795 return syncref;
1796 return HDSPM_AES32_AUTOSYNC_FROM_NONE;
1797 } else {
1798 /* This looks at the autosync selected sync reference */
1799 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1800
1801 switch (status2 & HDSPM_SelSyncRefMask) {
1802 case HDSPM_SelSyncRef_WORD:
1803 return HDSPM_AUTOSYNC_FROM_WORD;
1804 case HDSPM_SelSyncRef_MADI:
1805 return HDSPM_AUTOSYNC_FROM_MADI;
1806 case HDSPM_SelSyncRef_NVALID:
1807 return HDSPM_AUTOSYNC_FROM_NONE;
1808 default:
1809 return 0;
1810 }
763f356c 1811
763f356c
TI
1812 return 0;
1813 }
763f356c
TI
1814}
1815
98274f07
TI
1816static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
1817 struct snd_ctl_elem_info *uinfo)
763f356c 1818{
3cee5a60 1819 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 1820
3cee5a60
RB
1821 if (hdspm->is_aes32) {
1822 static char *texts[] = { "WordClock", "AES1", "AES2", "AES3",
1823 "AES4", "AES5", "AES6", "AES7", "AES8", "None"};
1824
1825 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1826 uinfo->count = 1;
1827 uinfo->value.enumerated.items = 10;
ef5fa1a4
TI
1828 if (uinfo->value.enumerated.item >=
1829 uinfo->value.enumerated.items)
3cee5a60
RB
1830 uinfo->value.enumerated.item =
1831 uinfo->value.enumerated.items - 1;
1832 strcpy(uinfo->value.enumerated.name,
1833 texts[uinfo->value.enumerated.item]);
ef5fa1a4 1834 } else {
3cee5a60
RB
1835 static char *texts[] = { "WordClock", "MADI", "None" };
1836
1837 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1838 uinfo->count = 1;
1839 uinfo->value.enumerated.items = 3;
ef5fa1a4
TI
1840 if (uinfo->value.enumerated.item >=
1841 uinfo->value.enumerated.items)
3cee5a60
RB
1842 uinfo->value.enumerated.item =
1843 uinfo->value.enumerated.items - 1;
1844 strcpy(uinfo->value.enumerated.name,
1845 texts[uinfo->value.enumerated.item]);
1846 }
763f356c
TI
1847 return 0;
1848}
1849
98274f07
TI
1850static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
1851 struct snd_ctl_elem_value *ucontrol)
763f356c 1852{
98274f07 1853 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 1854
6534599d 1855 ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
763f356c
TI
1856 return 0;
1857}
1858
1859#define HDSPM_LINE_OUT(xname, xindex) \
67ed4161 1860{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
1861 .name = xname, \
1862 .index = xindex, \
1863 .info = snd_hdspm_info_line_out, \
1864 .get = snd_hdspm_get_line_out, \
1865 .put = snd_hdspm_put_line_out \
1866}
1867
98274f07 1868static int hdspm_line_out(struct hdspm * hdspm)
763f356c
TI
1869{
1870 return (hdspm->control_register & HDSPM_LineOut) ? 1 : 0;
1871}
1872
1873
98274f07 1874static int hdspm_set_line_output(struct hdspm * hdspm, int out)
763f356c
TI
1875{
1876 if (out)
1877 hdspm->control_register |= HDSPM_LineOut;
1878 else
1879 hdspm->control_register &= ~HDSPM_LineOut;
1880 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1881
1882 return 0;
1883}
1884
a5ce8890 1885#define snd_hdspm_info_line_out snd_ctl_boolean_mono_info
763f356c 1886
98274f07
TI
1887static int snd_hdspm_get_line_out(struct snd_kcontrol *kcontrol,
1888 struct snd_ctl_elem_value *ucontrol)
763f356c 1889{
98274f07 1890 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
1891
1892 spin_lock_irq(&hdspm->lock);
1893 ucontrol->value.integer.value[0] = hdspm_line_out(hdspm);
1894 spin_unlock_irq(&hdspm->lock);
1895 return 0;
1896}
1897
98274f07
TI
1898static int snd_hdspm_put_line_out(struct snd_kcontrol *kcontrol,
1899 struct snd_ctl_elem_value *ucontrol)
763f356c 1900{
98274f07 1901 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
1902 int change;
1903 unsigned int val;
1904
1905 if (!snd_hdspm_use_is_exclusive(hdspm))
1906 return -EBUSY;
1907 val = ucontrol->value.integer.value[0] & 1;
1908 spin_lock_irq(&hdspm->lock);
1909 change = (int) val != hdspm_line_out(hdspm);
1910 hdspm_set_line_output(hdspm, val);
1911 spin_unlock_irq(&hdspm->lock);
1912 return change;
1913}
1914
1915#define HDSPM_TX_64(xname, xindex) \
67ed4161 1916{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
1917 .name = xname, \
1918 .index = xindex, \
1919 .info = snd_hdspm_info_tx_64, \
1920 .get = snd_hdspm_get_tx_64, \
1921 .put = snd_hdspm_put_tx_64 \
1922}
1923
98274f07 1924static int hdspm_tx_64(struct hdspm * hdspm)
763f356c
TI
1925{
1926 return (hdspm->control_register & HDSPM_TX_64ch) ? 1 : 0;
1927}
1928
98274f07 1929static int hdspm_set_tx_64(struct hdspm * hdspm, int out)
763f356c
TI
1930{
1931 if (out)
1932 hdspm->control_register |= HDSPM_TX_64ch;
1933 else
1934 hdspm->control_register &= ~HDSPM_TX_64ch;
1935 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1936
1937 return 0;
1938}
1939
a5ce8890 1940#define snd_hdspm_info_tx_64 snd_ctl_boolean_mono_info
763f356c 1941
98274f07
TI
1942static int snd_hdspm_get_tx_64(struct snd_kcontrol *kcontrol,
1943 struct snd_ctl_elem_value *ucontrol)
763f356c 1944{
98274f07 1945 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
1946
1947 spin_lock_irq(&hdspm->lock);
1948 ucontrol->value.integer.value[0] = hdspm_tx_64(hdspm);
1949 spin_unlock_irq(&hdspm->lock);
1950 return 0;
1951}
1952
98274f07
TI
1953static int snd_hdspm_put_tx_64(struct snd_kcontrol *kcontrol,
1954 struct snd_ctl_elem_value *ucontrol)
763f356c 1955{
98274f07 1956 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
1957 int change;
1958 unsigned int val;
1959
1960 if (!snd_hdspm_use_is_exclusive(hdspm))
1961 return -EBUSY;
1962 val = ucontrol->value.integer.value[0] & 1;
1963 spin_lock_irq(&hdspm->lock);
1964 change = (int) val != hdspm_tx_64(hdspm);
1965 hdspm_set_tx_64(hdspm, val);
1966 spin_unlock_irq(&hdspm->lock);
1967 return change;
1968}
1969
1970#define HDSPM_C_TMS(xname, xindex) \
67ed4161 1971{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
1972 .name = xname, \
1973 .index = xindex, \
1974 .info = snd_hdspm_info_c_tms, \
1975 .get = snd_hdspm_get_c_tms, \
1976 .put = snd_hdspm_put_c_tms \
1977}
1978
98274f07 1979static int hdspm_c_tms(struct hdspm * hdspm)
763f356c
TI
1980{
1981 return (hdspm->control_register & HDSPM_clr_tms) ? 1 : 0;
1982}
1983
98274f07 1984static int hdspm_set_c_tms(struct hdspm * hdspm, int out)
763f356c
TI
1985{
1986 if (out)
1987 hdspm->control_register |= HDSPM_clr_tms;
1988 else
1989 hdspm->control_register &= ~HDSPM_clr_tms;
1990 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1991
1992 return 0;
1993}
1994
a5ce8890 1995#define snd_hdspm_info_c_tms snd_ctl_boolean_mono_info
763f356c 1996
98274f07
TI
1997static int snd_hdspm_get_c_tms(struct snd_kcontrol *kcontrol,
1998 struct snd_ctl_elem_value *ucontrol)
763f356c 1999{
98274f07 2000 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2001
2002 spin_lock_irq(&hdspm->lock);
2003 ucontrol->value.integer.value[0] = hdspm_c_tms(hdspm);
2004 spin_unlock_irq(&hdspm->lock);
2005 return 0;
2006}
2007
98274f07
TI
2008static int snd_hdspm_put_c_tms(struct snd_kcontrol *kcontrol,
2009 struct snd_ctl_elem_value *ucontrol)
763f356c 2010{
98274f07 2011 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2012 int change;
2013 unsigned int val;
2014
2015 if (!snd_hdspm_use_is_exclusive(hdspm))
2016 return -EBUSY;
2017 val = ucontrol->value.integer.value[0] & 1;
2018 spin_lock_irq(&hdspm->lock);
2019 change = (int) val != hdspm_c_tms(hdspm);
2020 hdspm_set_c_tms(hdspm, val);
2021 spin_unlock_irq(&hdspm->lock);
2022 return change;
2023}
2024
2025#define HDSPM_SAFE_MODE(xname, xindex) \
67ed4161 2026{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2027 .name = xname, \
2028 .index = xindex, \
2029 .info = snd_hdspm_info_safe_mode, \
2030 .get = snd_hdspm_get_safe_mode, \
2031 .put = snd_hdspm_put_safe_mode \
2032}
2033
3cee5a60
RB
2034static int hdspm_safe_mode(struct hdspm * hdspm)
2035{
2036 return (hdspm->control_register & HDSPM_AutoInp) ? 1 : 0;
2037}
2038
2039static int hdspm_set_safe_mode(struct hdspm * hdspm, int out)
2040{
2041 if (out)
2042 hdspm->control_register |= HDSPM_AutoInp;
2043 else
2044 hdspm->control_register &= ~HDSPM_AutoInp;
2045 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2046
2047 return 0;
2048}
2049
a5ce8890 2050#define snd_hdspm_info_safe_mode snd_ctl_boolean_mono_info
3cee5a60
RB
2051
2052static int snd_hdspm_get_safe_mode(struct snd_kcontrol *kcontrol,
2053 struct snd_ctl_elem_value *ucontrol)
2054{
2055 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2056
2057 spin_lock_irq(&hdspm->lock);
2058 ucontrol->value.integer.value[0] = hdspm_safe_mode(hdspm);
2059 spin_unlock_irq(&hdspm->lock);
2060 return 0;
2061}
2062
2063static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol,
2064 struct snd_ctl_elem_value *ucontrol)
2065{
2066 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2067 int change;
2068 unsigned int val;
2069
2070 if (!snd_hdspm_use_is_exclusive(hdspm))
2071 return -EBUSY;
2072 val = ucontrol->value.integer.value[0] & 1;
2073 spin_lock_irq(&hdspm->lock);
2074 change = (int) val != hdspm_safe_mode(hdspm);
2075 hdspm_set_safe_mode(hdspm, val);
2076 spin_unlock_irq(&hdspm->lock);
2077 return change;
2078}
2079
2080#define HDSPM_EMPHASIS(xname, xindex) \
2081{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2082 .name = xname, \
2083 .index = xindex, \
2084 .info = snd_hdspm_info_emphasis, \
2085 .get = snd_hdspm_get_emphasis, \
2086 .put = snd_hdspm_put_emphasis \
2087}
2088
2089static int hdspm_emphasis(struct hdspm * hdspm)
2090{
2091 return (hdspm->control_register & HDSPM_Emphasis) ? 1 : 0;
2092}
2093
2094static int hdspm_set_emphasis(struct hdspm * hdspm, int emp)
2095{
2096 if (emp)
2097 hdspm->control_register |= HDSPM_Emphasis;
2098 else
2099 hdspm->control_register &= ~HDSPM_Emphasis;
2100 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2101
2102 return 0;
2103}
2104
a5ce8890 2105#define snd_hdspm_info_emphasis snd_ctl_boolean_mono_info
3cee5a60
RB
2106
2107static int snd_hdspm_get_emphasis(struct snd_kcontrol *kcontrol,
2108 struct snd_ctl_elem_value *ucontrol)
2109{
2110 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2111
2112 spin_lock_irq(&hdspm->lock);
2113 ucontrol->value.enumerated.item[0] = hdspm_emphasis(hdspm);
2114 spin_unlock_irq(&hdspm->lock);
2115 return 0;
2116}
2117
2118static int snd_hdspm_put_emphasis(struct snd_kcontrol *kcontrol,
2119 struct snd_ctl_elem_value *ucontrol)
2120{
2121 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2122 int change;
2123 unsigned int val;
2124
2125 if (!snd_hdspm_use_is_exclusive(hdspm))
2126 return -EBUSY;
2127 val = ucontrol->value.integer.value[0] & 1;
2128 spin_lock_irq(&hdspm->lock);
2129 change = (int) val != hdspm_emphasis(hdspm);
2130 hdspm_set_emphasis(hdspm, val);
2131 spin_unlock_irq(&hdspm->lock);
2132 return change;
2133}
2134
2135#define HDSPM_DOLBY(xname, xindex) \
2136{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2137 .name = xname, \
2138 .index = xindex, \
2139 .info = snd_hdspm_info_dolby, \
2140 .get = snd_hdspm_get_dolby, \
2141 .put = snd_hdspm_put_dolby \
2142}
2143
2144static int hdspm_dolby(struct hdspm * hdspm)
2145{
2146 return (hdspm->control_register & HDSPM_Dolby) ? 1 : 0;
2147}
2148
2149static int hdspm_set_dolby(struct hdspm * hdspm, int dol)
2150{
2151 if (dol)
2152 hdspm->control_register |= HDSPM_Dolby;
2153 else
2154 hdspm->control_register &= ~HDSPM_Dolby;
2155 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2156
2157 return 0;
2158}
2159
a5ce8890 2160#define snd_hdspm_info_dolby snd_ctl_boolean_mono_info
3cee5a60
RB
2161
2162static int snd_hdspm_get_dolby(struct snd_kcontrol *kcontrol,
2163 struct snd_ctl_elem_value *ucontrol)
2164{
2165 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2166
2167 spin_lock_irq(&hdspm->lock);
2168 ucontrol->value.enumerated.item[0] = hdspm_dolby(hdspm);
2169 spin_unlock_irq(&hdspm->lock);
2170 return 0;
2171}
2172
2173static int snd_hdspm_put_dolby(struct snd_kcontrol *kcontrol,
2174 struct snd_ctl_elem_value *ucontrol)
2175{
2176 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2177 int change;
2178 unsigned int val;
2179
2180 if (!snd_hdspm_use_is_exclusive(hdspm))
2181 return -EBUSY;
2182 val = ucontrol->value.integer.value[0] & 1;
2183 spin_lock_irq(&hdspm->lock);
2184 change = (int) val != hdspm_dolby(hdspm);
2185 hdspm_set_dolby(hdspm, val);
2186 spin_unlock_irq(&hdspm->lock);
2187 return change;
2188}
2189
2190#define HDSPM_PROFESSIONAL(xname, xindex) \
2191{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2192 .name = xname, \
2193 .index = xindex, \
2194 .info = snd_hdspm_info_professional, \
2195 .get = snd_hdspm_get_professional, \
2196 .put = snd_hdspm_put_professional \
2197}
2198
2199static int hdspm_professional(struct hdspm * hdspm)
2200{
2201 return (hdspm->control_register & HDSPM_Professional) ? 1 : 0;
2202}
2203
2204static int hdspm_set_professional(struct hdspm * hdspm, int dol)
2205{
2206 if (dol)
2207 hdspm->control_register |= HDSPM_Professional;
2208 else
2209 hdspm->control_register &= ~HDSPM_Professional;
2210 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2211
2212 return 0;
2213}
2214
a5ce8890 2215#define snd_hdspm_info_professional snd_ctl_boolean_mono_info
3cee5a60
RB
2216
2217static int snd_hdspm_get_professional(struct snd_kcontrol *kcontrol,
2218 struct snd_ctl_elem_value *ucontrol)
2219{
2220 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2221
2222 spin_lock_irq(&hdspm->lock);
2223 ucontrol->value.enumerated.item[0] = hdspm_professional(hdspm);
2224 spin_unlock_irq(&hdspm->lock);
2225 return 0;
2226}
2227
2228static int snd_hdspm_put_professional(struct snd_kcontrol *kcontrol,
2229 struct snd_ctl_elem_value *ucontrol)
2230{
2231 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2232 int change;
2233 unsigned int val;
2234
2235 if (!snd_hdspm_use_is_exclusive(hdspm))
2236 return -EBUSY;
2237 val = ucontrol->value.integer.value[0] & 1;
2238 spin_lock_irq(&hdspm->lock);
2239 change = (int) val != hdspm_professional(hdspm);
2240 hdspm_set_professional(hdspm, val);
2241 spin_unlock_irq(&hdspm->lock);
2242 return change;
2243}
2244
2245#define HDSPM_INPUT_SELECT(xname, xindex) \
2246{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2247 .name = xname, \
2248 .index = xindex, \
2249 .info = snd_hdspm_info_input_select, \
2250 .get = snd_hdspm_get_input_select, \
2251 .put = snd_hdspm_put_input_select \
2252}
2253
2254static int hdspm_input_select(struct hdspm * hdspm)
2255{
2256 return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
2257}
2258
2259static int hdspm_set_input_select(struct hdspm * hdspm, int out)
2260{
2261 if (out)
2262 hdspm->control_register |= HDSPM_InputSelect0;
2263 else
2264 hdspm->control_register &= ~HDSPM_InputSelect0;
2265 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2266
2267 return 0;
2268}
2269
2270static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
2271 struct snd_ctl_elem_info *uinfo)
2272{
2273 static char *texts[] = { "optical", "coaxial" };
2274
2275 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2276 uinfo->count = 1;
2277 uinfo->value.enumerated.items = 2;
2278
2279 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2280 uinfo->value.enumerated.item =
2281 uinfo->value.enumerated.items - 1;
2282 strcpy(uinfo->value.enumerated.name,
2283 texts[uinfo->value.enumerated.item]);
2284
2285 return 0;
2286}
2287
2288static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
2289 struct snd_ctl_elem_value *ucontrol)
2290{
2291 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2292
2293 spin_lock_irq(&hdspm->lock);
2294 ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
2295 spin_unlock_irq(&hdspm->lock);
2296 return 0;
2297}
2298
2299static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
2300 struct snd_ctl_elem_value *ucontrol)
2301{
2302 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2303 int change;
2304 unsigned int val;
2305
2306 if (!snd_hdspm_use_is_exclusive(hdspm))
2307 return -EBUSY;
2308 val = ucontrol->value.integer.value[0] & 1;
2309 spin_lock_irq(&hdspm->lock);
2310 change = (int) val != hdspm_input_select(hdspm);
2311 hdspm_set_input_select(hdspm, val);
2312 spin_unlock_irq(&hdspm->lock);
2313 return change;
2314}
2315
2316#define HDSPM_DS_WIRE(xname, xindex) \
2317{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2318 .name = xname, \
2319 .index = xindex, \
2320 .info = snd_hdspm_info_ds_wire, \
2321 .get = snd_hdspm_get_ds_wire, \
2322 .put = snd_hdspm_put_ds_wire \
2323}
2324
2325static int hdspm_ds_wire(struct hdspm * hdspm)
763f356c 2326{
3cee5a60 2327 return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
763f356c
TI
2328}
2329
3cee5a60 2330static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
763f356c 2331{
3cee5a60
RB
2332 if (ds)
2333 hdspm->control_register |= HDSPM_DS_DoubleWire;
763f356c 2334 else
3cee5a60 2335 hdspm->control_register &= ~HDSPM_DS_DoubleWire;
763f356c
TI
2336 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2337
2338 return 0;
2339}
2340
3cee5a60
RB
2341static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
2342 struct snd_ctl_elem_info *uinfo)
763f356c 2343{
3cee5a60
RB
2344 static char *texts[] = { "Single", "Double" };
2345
2346 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
763f356c 2347 uinfo->count = 1;
3cee5a60
RB
2348 uinfo->value.enumerated.items = 2;
2349
2350 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2351 uinfo->value.enumerated.item =
2352 uinfo->value.enumerated.items - 1;
2353 strcpy(uinfo->value.enumerated.name,
2354 texts[uinfo->value.enumerated.item]);
2355
763f356c
TI
2356 return 0;
2357}
2358
3cee5a60
RB
2359static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
2360 struct snd_ctl_elem_value *ucontrol)
763f356c 2361{
98274f07 2362 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2363
2364 spin_lock_irq(&hdspm->lock);
3cee5a60 2365 ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
763f356c
TI
2366 spin_unlock_irq(&hdspm->lock);
2367 return 0;
2368}
2369
3cee5a60
RB
2370static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
2371 struct snd_ctl_elem_value *ucontrol)
763f356c 2372{
98274f07 2373 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2374 int change;
2375 unsigned int val;
2376
2377 if (!snd_hdspm_use_is_exclusive(hdspm))
2378 return -EBUSY;
2379 val = ucontrol->value.integer.value[0] & 1;
2380 spin_lock_irq(&hdspm->lock);
3cee5a60
RB
2381 change = (int) val != hdspm_ds_wire(hdspm);
2382 hdspm_set_ds_wire(hdspm, val);
763f356c
TI
2383 spin_unlock_irq(&hdspm->lock);
2384 return change;
2385}
2386
3cee5a60 2387#define HDSPM_QS_WIRE(xname, xindex) \
67ed4161 2388{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2389 .name = xname, \
2390 .index = xindex, \
3cee5a60
RB
2391 .info = snd_hdspm_info_qs_wire, \
2392 .get = snd_hdspm_get_qs_wire, \
2393 .put = snd_hdspm_put_qs_wire \
763f356c
TI
2394}
2395
3cee5a60 2396static int hdspm_qs_wire(struct hdspm * hdspm)
763f356c 2397{
3cee5a60
RB
2398 if (hdspm->control_register & HDSPM_QS_DoubleWire)
2399 return 1;
2400 if (hdspm->control_register & HDSPM_QS_QuadWire)
2401 return 2;
2402 return 0;
763f356c
TI
2403}
2404
3cee5a60 2405static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
763f356c 2406{
3cee5a60
RB
2407 hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
2408 switch (mode) {
2409 case 0:
2410 break;
2411 case 1:
2412 hdspm->control_register |= HDSPM_QS_DoubleWire;
2413 break;
2414 case 2:
2415 hdspm->control_register |= HDSPM_QS_QuadWire;
2416 break;
2417 }
763f356c
TI
2418 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2419
2420 return 0;
2421}
2422
3cee5a60 2423static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
98274f07 2424 struct snd_ctl_elem_info *uinfo)
763f356c 2425{
3cee5a60 2426 static char *texts[] = { "Single", "Double", "Quad" };
763f356c
TI
2427
2428 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2429 uinfo->count = 1;
3cee5a60 2430 uinfo->value.enumerated.items = 3;
763f356c
TI
2431
2432 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2433 uinfo->value.enumerated.item =
2434 uinfo->value.enumerated.items - 1;
2435 strcpy(uinfo->value.enumerated.name,
2436 texts[uinfo->value.enumerated.item]);
2437
2438 return 0;
2439}
2440
3cee5a60 2441static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
98274f07 2442 struct snd_ctl_elem_value *ucontrol)
763f356c 2443{
98274f07 2444 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2445
2446 spin_lock_irq(&hdspm->lock);
3cee5a60 2447 ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
763f356c
TI
2448 spin_unlock_irq(&hdspm->lock);
2449 return 0;
2450}
2451
3cee5a60 2452static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
98274f07 2453 struct snd_ctl_elem_value *ucontrol)
763f356c 2454{
98274f07 2455 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2456 int change;
3cee5a60 2457 int val;
763f356c
TI
2458
2459 if (!snd_hdspm_use_is_exclusive(hdspm))
2460 return -EBUSY;
3cee5a60
RB
2461 val = ucontrol->value.integer.value[0];
2462 if (val < 0)
2463 val = 0;
2464 if (val > 2)
2465 val = 2;
763f356c 2466 spin_lock_irq(&hdspm->lock);
ef5fa1a4 2467 change = val != hdspm_qs_wire(hdspm);
3cee5a60 2468 hdspm_set_qs_wire(hdspm, val);
763f356c
TI
2469 spin_unlock_irq(&hdspm->lock);
2470 return change;
2471}
2472
2473/* Simple Mixer
2474 deprecated since to much faders ???
2475 MIXER interface says output (source, destination, value)
2476 where source > MAX_channels are playback channels
2477 on MADICARD
2478 - playback mixer matrix: [channelout+64] [output] [value]
2479 - input(thru) mixer matrix: [channelin] [output] [value]
2480 (better do 2 kontrols for seperation ?)
2481*/
2482
2483#define HDSPM_MIXER(xname, xindex) \
2484{ .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
2485 .name = xname, \
2486 .index = xindex, \
67ed4161 2487 .device = 0, \
763f356c
TI
2488 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
2489 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2490 .info = snd_hdspm_info_mixer, \
2491 .get = snd_hdspm_get_mixer, \
2492 .put = snd_hdspm_put_mixer \
2493}
2494
98274f07
TI
2495static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
2496 struct snd_ctl_elem_info *uinfo)
763f356c
TI
2497{
2498 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2499 uinfo->count = 3;
2500 uinfo->value.integer.min = 0;
2501 uinfo->value.integer.max = 65535;
2502 uinfo->value.integer.step = 1;
2503 return 0;
2504}
2505
98274f07
TI
2506static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
2507 struct snd_ctl_elem_value *ucontrol)
763f356c 2508{
98274f07 2509 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2510 int source;
2511 int destination;
2512
2513 source = ucontrol->value.integer.value[0];
2514 if (source < 0)
2515 source = 0;
2516 else if (source >= 2 * HDSPM_MAX_CHANNELS)
2517 source = 2 * HDSPM_MAX_CHANNELS - 1;
2518
2519 destination = ucontrol->value.integer.value[1];
2520 if (destination < 0)
2521 destination = 0;
2522 else if (destination >= HDSPM_MAX_CHANNELS)
2523 destination = HDSPM_MAX_CHANNELS - 1;
2524
2525 spin_lock_irq(&hdspm->lock);
2526 if (source >= HDSPM_MAX_CHANNELS)
2527 ucontrol->value.integer.value[2] =
2528 hdspm_read_pb_gain(hdspm, destination,
2529 source - HDSPM_MAX_CHANNELS);
2530 else
2531 ucontrol->value.integer.value[2] =
2532 hdspm_read_in_gain(hdspm, destination, source);
2533
2534 spin_unlock_irq(&hdspm->lock);
2535
2536 return 0;
2537}
2538
98274f07
TI
2539static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
2540 struct snd_ctl_elem_value *ucontrol)
763f356c 2541{
98274f07 2542 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2543 int change;
2544 int source;
2545 int destination;
2546 int gain;
2547
2548 if (!snd_hdspm_use_is_exclusive(hdspm))
2549 return -EBUSY;
2550
2551 source = ucontrol->value.integer.value[0];
2552 destination = ucontrol->value.integer.value[1];
2553
2554 if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
2555 return -1;
2556 if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
2557 return -1;
2558
2559 gain = ucontrol->value.integer.value[2];
2560
2561 spin_lock_irq(&hdspm->lock);
2562
2563 if (source >= HDSPM_MAX_CHANNELS)
2564 change = gain != hdspm_read_pb_gain(hdspm, destination,
2565 source -
2566 HDSPM_MAX_CHANNELS);
2567 else
ef5fa1a4
TI
2568 change = gain != hdspm_read_in_gain(hdspm, destination,
2569 source);
763f356c
TI
2570
2571 if (change) {
2572 if (source >= HDSPM_MAX_CHANNELS)
2573 hdspm_write_pb_gain(hdspm, destination,
2574 source - HDSPM_MAX_CHANNELS,
2575 gain);
2576 else
2577 hdspm_write_in_gain(hdspm, destination, source,
2578 gain);
2579 }
2580 spin_unlock_irq(&hdspm->lock);
2581
2582 return change;
2583}
2584
2585/* The simple mixer control(s) provide gain control for the
2586 basic 1:1 mappings of playback streams to output
2587 streams.
2588*/
2589
2590#define HDSPM_PLAYBACK_MIXER \
2591{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2592 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
2593 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2594 .info = snd_hdspm_info_playback_mixer, \
2595 .get = snd_hdspm_get_playback_mixer, \
2596 .put = snd_hdspm_put_playback_mixer \
2597}
2598
98274f07
TI
2599static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
2600 struct snd_ctl_elem_info *uinfo)
763f356c
TI
2601{
2602 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2603 uinfo->count = 1;
2604 uinfo->value.integer.min = 0;
2605 uinfo->value.integer.max = 65536;
2606 uinfo->value.integer.step = 1;
2607 return 0;
2608}
2609
98274f07
TI
2610static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
2611 struct snd_ctl_elem_value *ucontrol)
763f356c 2612{
98274f07 2613 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2614 int channel;
2615 int mapped_channel;
2616
2617 channel = ucontrol->id.index - 1;
2618
2619 snd_assert(channel >= 0
2620 || channel < HDSPM_MAX_CHANNELS, return -EINVAL);
2621
ef5fa1a4
TI
2622 mapped_channel = hdspm->channel_map[channel];
2623 if (mapped_channel < 0)
763f356c
TI
2624 return -EINVAL;
2625
2626 spin_lock_irq(&hdspm->lock);
2627 ucontrol->value.integer.value[0] =
2628 hdspm_read_pb_gain(hdspm, mapped_channel, mapped_channel);
2629 spin_unlock_irq(&hdspm->lock);
2630
ef5fa1a4
TI
2631 /*
2632 snd_printdd("get pb mixer index %d, channel %d, mapped_channel %d, "
2633 "value %d\n",
2634 ucontrol->id.index, channel, mapped_channel,
2635 ucontrol->value.integer.value[0]);
2636 */
763f356c
TI
2637 return 0;
2638}
2639
98274f07
TI
2640static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
2641 struct snd_ctl_elem_value *ucontrol)
763f356c 2642{
98274f07 2643 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2644 int change;
2645 int channel;
2646 int mapped_channel;
2647 int gain;
2648
2649 if (!snd_hdspm_use_is_exclusive(hdspm))
2650 return -EBUSY;
2651
2652 channel = ucontrol->id.index - 1;
2653
2654 snd_assert(channel >= 0
2655 || channel < HDSPM_MAX_CHANNELS, return -EINVAL);
2656
ef5fa1a4
TI
2657 mapped_channel = hdspm->channel_map[channel];
2658 if (mapped_channel < 0)
763f356c
TI
2659 return -EINVAL;
2660
2661 gain = ucontrol->value.integer.value[0];
2662
2663 spin_lock_irq(&hdspm->lock);
2664 change =
2665 gain != hdspm_read_pb_gain(hdspm, mapped_channel,
2666 mapped_channel);
2667 if (change)
2668 hdspm_write_pb_gain(hdspm, mapped_channel, mapped_channel,
2669 gain);
2670 spin_unlock_irq(&hdspm->lock);
2671 return change;
2672}
2673
2674#define HDSPM_WC_SYNC_CHECK(xname, xindex) \
67ed4161 2675{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2676 .name = xname, \
2677 .index = xindex, \
2678 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2679 .info = snd_hdspm_info_sync_check, \
2680 .get = snd_hdspm_get_wc_sync_check \
2681}
2682
98274f07
TI
2683static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
2684 struct snd_ctl_elem_info *uinfo)
763f356c
TI
2685{
2686 static char *texts[] = { "No Lock", "Lock", "Sync" };
2687 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2688 uinfo->count = 1;
2689 uinfo->value.enumerated.items = 3;
2690 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2691 uinfo->value.enumerated.item =
2692 uinfo->value.enumerated.items - 1;
2693 strcpy(uinfo->value.enumerated.name,
2694 texts[uinfo->value.enumerated.item]);
2695 return 0;
2696}
2697
98274f07 2698static int hdspm_wc_sync_check(struct hdspm * hdspm)
763f356c 2699{
3cee5a60
RB
2700 if (hdspm->is_aes32) {
2701 int status = hdspm_read(hdspm, HDSPM_statusRegister);
2702 if (status & HDSPM_AES32_wcLock) {
2703 /* I don't know how to differenciate sync from lock.
2704 Doing as if sync for now */
763f356c 2705 return 2;
3cee5a60
RB
2706 }
2707 return 0;
2708 } else {
2709 int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2710 if (status2 & HDSPM_wcLock) {
2711 if (status2 & HDSPM_wcSync)
2712 return 2;
2713 else
2714 return 1;
2715 }
2716 return 0;
763f356c 2717 }
763f356c
TI
2718}
2719
98274f07
TI
2720static int snd_hdspm_get_wc_sync_check(struct snd_kcontrol *kcontrol,
2721 struct snd_ctl_elem_value *ucontrol)
763f356c 2722{
98274f07 2723 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2724
2725 ucontrol->value.enumerated.item[0] = hdspm_wc_sync_check(hdspm);
2726 return 0;
2727}
2728
2729
2730#define HDSPM_MADI_SYNC_CHECK(xname, xindex) \
67ed4161 2731{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2732 .name = xname, \
2733 .index = xindex, \
2734 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2735 .info = snd_hdspm_info_sync_check, \
2736 .get = snd_hdspm_get_madisync_sync_check \
2737}
2738
98274f07 2739static int hdspm_madisync_sync_check(struct hdspm * hdspm)
763f356c
TI
2740{
2741 int status = hdspm_read(hdspm, HDSPM_statusRegister);
2742 if (status & HDSPM_madiLock) {
2743 if (status & HDSPM_madiSync)
2744 return 2;
2745 else
2746 return 1;
2747 }
2748 return 0;
2749}
2750
98274f07
TI
2751static int snd_hdspm_get_madisync_sync_check(struct snd_kcontrol *kcontrol,
2752 struct snd_ctl_elem_value *
763f356c
TI
2753 ucontrol)
2754{
98274f07 2755 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2756
2757 ucontrol->value.enumerated.item[0] =
2758 hdspm_madisync_sync_check(hdspm);
2759 return 0;
2760}
2761
2762
3cee5a60
RB
2763#define HDSPM_AES_SYNC_CHECK(xname, xindex) \
2764{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2765 .name = xname, \
2766 .index = xindex, \
2767 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2768 .info = snd_hdspm_info_sync_check, \
2769 .get = snd_hdspm_get_aes_sync_check \
2770}
2771
2772static int hdspm_aes_sync_check(struct hdspm * hdspm, int idx)
2773{
2774 int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2775 if (status2 & (HDSPM_LockAES >> idx)) {
2776 /* I don't know how to differenciate sync from lock.
2777 Doing as if sync for now */
2778 return 2;
2779 }
2780 return 0;
2781}
2782
2783static int snd_hdspm_get_aes_sync_check(struct snd_kcontrol *kcontrol,
2784 struct snd_ctl_elem_value *ucontrol)
2785{
2786 int offset;
2787 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2788
2789 offset = ucontrol->id.index - 1;
2790 if (offset < 0 || offset >= 8)
2791 return -EINVAL;
2792
2793 ucontrol->value.enumerated.item[0] =
2794 hdspm_aes_sync_check(hdspm, offset);
2795 return 0;
2796}
763f356c
TI
2797
2798
3cee5a60 2799static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
763f356c
TI
2800
2801 HDSPM_MIXER("Mixer", 0),
2802/* 'Sample Clock Source' complies with the alsa control naming scheme */
2803 HDSPM_CLOCK_SOURCE("Sample Clock Source", 0),
2804
2805 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
2806 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
2807 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
2808 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
2809/* 'External Rate' complies with the alsa control naming scheme */
2810 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
2811 HDSPM_WC_SYNC_CHECK("Word Clock Lock Status", 0),
2812 HDSPM_MADI_SYNC_CHECK("MADI Sync Lock Status", 0),
2813 HDSPM_LINE_OUT("Line Out", 0),
2814 HDSPM_TX_64("TX 64 channels mode", 0),
2815 HDSPM_C_TMS("Clear Track Marker", 0),
2816 HDSPM_SAFE_MODE("Safe Mode", 0),
2817 HDSPM_INPUT_SELECT("Input Select", 0),
2818};
2819
3cee5a60
RB
2820static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
2821
2822 HDSPM_MIXER("Mixer", 0),
2823/* 'Sample Clock Source' complies with the alsa control naming scheme */
2824 HDSPM_CLOCK_SOURCE("Sample Clock Source", 0),
2825
2826 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
2827 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
2828 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
2829 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
2830/* 'External Rate' complies with the alsa control naming scheme */
2831 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
2832 HDSPM_WC_SYNC_CHECK("Word Clock Lock Status", 0),
2833/* HDSPM_AES_SYNC_CHECK("AES Lock Status", 0),*/ /* created in snd_hdspm_create_controls() */
2834 HDSPM_LINE_OUT("Line Out", 0),
2835 HDSPM_EMPHASIS("Emphasis", 0),
2836 HDSPM_DOLBY("Non Audio", 0),
2837 HDSPM_PROFESSIONAL("Professional", 0),
2838 HDSPM_C_TMS("Clear Track Marker", 0),
2839 HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
2840 HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
2841};
2842
98274f07 2843static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
763f356c
TI
2844
2845
98274f07 2846static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
763f356c
TI
2847{
2848 int i;
2849
2850 for (i = hdspm->ds_channels; i < hdspm->ss_channels; ++i) {
2851 if (hdspm->system_sample_rate > 48000) {
2852 hdspm->playback_mixer_ctls[i]->vd[0].access =
2853 SNDRV_CTL_ELEM_ACCESS_INACTIVE |
2854 SNDRV_CTL_ELEM_ACCESS_READ |
2855 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
2856 } else {
2857 hdspm->playback_mixer_ctls[i]->vd[0].access =
2858 SNDRV_CTL_ELEM_ACCESS_READWRITE |
2859 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
2860 }
2861 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
2862 SNDRV_CTL_EVENT_MASK_INFO,
2863 &hdspm->playback_mixer_ctls[i]->id);
2864 }
2865
2866 return 0;
2867}
2868
2869
98274f07 2870static int snd_hdspm_create_controls(struct snd_card *card, struct hdspm * hdspm)
763f356c
TI
2871{
2872 unsigned int idx, limit;
2873 int err;
98274f07 2874 struct snd_kcontrol *kctl;
763f356c
TI
2875
2876 /* add control list first */
3cee5a60
RB
2877 if (hdspm->is_aes32) {
2878 struct snd_kcontrol_new aes_sync_ctl =
2879 HDSPM_AES_SYNC_CHECK("AES Lock Status", 0);
2880
2881 for (idx = 0; idx < ARRAY_SIZE(snd_hdspm_controls_aes32);
2882 idx++) {
2883 err = snd_ctl_add(card,
2884 snd_ctl_new1(&snd_hdspm_controls_aes32[idx],
2885 hdspm));
2886 if (err < 0)
2887 return err;
2888 }
2889 for (idx = 1; idx <= 8; idx++) {
2890 aes_sync_ctl.index = idx;
2891 err = snd_ctl_add(card,
2892 snd_ctl_new1(&aes_sync_ctl, hdspm));
2893 if (err < 0)
2894 return err;
2895 }
2896 } else {
2897 for (idx = 0; idx < ARRAY_SIZE(snd_hdspm_controls_madi);
2898 idx++) {
2899 err = snd_ctl_add(card,
2900 snd_ctl_new1(&snd_hdspm_controls_madi[idx],
2901 hdspm));
2902 if (err < 0)
2903 return err;
763f356c
TI
2904 }
2905 }
2906
2907 /* Channel playback mixer as default control
ef5fa1a4
TI
2908 Note: the whole matrix would be 128*HDSPM_MIXER_CHANNELS Faders,
2909 thats too * big for any alsamixer they are accesible via special
2910 IOCTL on hwdep and the mixer 2dimensional mixer control
2911 */
763f356c
TI
2912
2913 snd_hdspm_playback_mixer.name = "Chn";
2914 limit = HDSPM_MAX_CHANNELS;
2915
ef5fa1a4
TI
2916 /* The index values are one greater than the channel ID so that
2917 * alsamixer will display them correctly. We want to use the index
2918 * for fast lookup of the relevant channel, but if we use it at all,
2919 * most ALSA software does the wrong thing with it ...
763f356c
TI
2920 */
2921
2922 for (idx = 0; idx < limit; ++idx) {
2923 snd_hdspm_playback_mixer.index = idx + 1;
ef5fa1a4
TI
2924 kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
2925 err = snd_ctl_add(card, kctl);
2926 if (err < 0)
763f356c 2927 return err;
763f356c
TI
2928 hdspm->playback_mixer_ctls[idx] = kctl;
2929 }
2930
2931 return 0;
2932}
2933
2934/*------------------------------------------------------------
2935 /proc interface
2936 ------------------------------------------------------------*/
2937
2938static void
3cee5a60
RB
2939snd_hdspm_proc_read_madi(struct snd_info_entry * entry,
2940 struct snd_info_buffer *buffer)
763f356c 2941{
ef5fa1a4 2942 struct hdspm *hdspm = entry->private_data;
763f356c
TI
2943 unsigned int status;
2944 unsigned int status2;
2945 char *pref_sync_ref;
2946 char *autosync_ref;
2947 char *system_clock_mode;
2948 char *clock_source;
2949 char *insel;
2950 char *syncref;
2951 int x, x2;
2952
2953 status = hdspm_read(hdspm, HDSPM_statusRegister);
2954 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2955
2956 snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
2957 hdspm->card_name, hdspm->card->number + 1,
2958 hdspm->firmware_rev,
2959 (status2 & HDSPM_version0) |
2960 (status2 & HDSPM_version1) | (status2 &
2961 HDSPM_version2));
2962
2963 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
2964 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
2965
2966 snd_iprintf(buffer, "--- System ---\n");
2967
2968 snd_iprintf(buffer,
2969 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
2970 status & HDSPM_audioIRQPending,
2971 (status & HDSPM_midi0IRQPending) ? 1 : 0,
2972 (status & HDSPM_midi1IRQPending) ? 1 : 0,
2973 hdspm->irq_count);
2974 snd_iprintf(buffer,
ef5fa1a4
TI
2975 "HW pointer: id = %d, rawptr = %d (%d->%d) "
2976 "estimated= %ld (bytes)\n",
763f356c
TI
2977 ((status & HDSPM_BufferID) ? 1 : 0),
2978 (status & HDSPM_BufferPositionMask),
ef5fa1a4
TI
2979 (status & HDSPM_BufferPositionMask) %
2980 (2 * (int)hdspm->period_bytes),
2981 ((status & HDSPM_BufferPositionMask) - 64) %
2982 (2 * (int)hdspm->period_bytes),
763f356c
TI
2983 (long) hdspm_hw_pointer(hdspm) * 4);
2984
2985 snd_iprintf(buffer,
2986 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
2987 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
2988 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
2989 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
2990 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
2991 snd_iprintf(buffer,
ef5fa1a4
TI
2992 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
2993 "status2=0x%x\n",
763f356c
TI
2994 hdspm->control_register, hdspm->control2_register,
2995 status, status2);
2996
2997 snd_iprintf(buffer, "--- Settings ---\n");
2998
ef5fa1a4
TI
2999 x = 1 << (6 + hdspm_decode_latency(hdspm->control_register &
3000 HDSPM_LatencyMask));
763f356c
TI
3001
3002 snd_iprintf(buffer,
3003 "Size (Latency): %d samples (2 periods of %lu bytes)\n",
3004 x, (unsigned long) hdspm->period_bytes);
3005
3006 snd_iprintf(buffer, "Line out: %s, Precise Pointer: %s\n",
ef5fa1a4 3007 (hdspm->control_register & HDSPM_LineOut) ? "on " : "off",
763f356c
TI
3008 (hdspm->precise_ptr) ? "on" : "off");
3009
3010 switch (hdspm->control_register & HDSPM_InputMask) {
3011 case HDSPM_InputOptical:
3012 insel = "Optical";
3013 break;
3014 case HDSPM_InputCoaxial:
3015 insel = "Coaxial";
3016 break;
3017 default:
3018 insel = "Unkown";
3019 }
3020
3021 switch (hdspm->control_register & HDSPM_SyncRefMask) {
3022 case HDSPM_SyncRef_Word:
3023 syncref = "WordClock";
3024 break;
3025 case HDSPM_SyncRef_MADI:
3026 syncref = "MADI";
3027 break;
3028 default:
3029 syncref = "Unkown";
3030 }
3031 snd_iprintf(buffer, "Inputsel = %s, SyncRef = %s\n", insel,
3032 syncref);
3033
3034 snd_iprintf(buffer,
ef5fa1a4
TI
3035 "ClearTrackMarker = %s, Transmit in %s Channel Mode, "
3036 "Auto Input %s\n",
763f356c
TI
3037 (hdspm->
3038 control_register & HDSPM_clr_tms) ? "on" : "off",
3039 (hdspm->
3040 control_register & HDSPM_TX_64ch) ? "64" : "56",
3041 (hdspm->
3042 control_register & HDSPM_AutoInp) ? "on" : "off");
3043
3044 switch (hdspm_clock_source(hdspm)) {
3045 case HDSPM_CLOCK_SOURCE_AUTOSYNC:
3046 clock_source = "AutoSync";
3047 break;
3048 case HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ:
3049 clock_source = "Internal 32 kHz";
3050 break;
3051 case HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ:
3052 clock_source = "Internal 44.1 kHz";
3053 break;
3054 case HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ:
3055 clock_source = "Internal 48 kHz";
3056 break;
3057 case HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ:
3058 clock_source = "Internal 64 kHz";
3059 break;
3060 case HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ:
3061 clock_source = "Internal 88.2 kHz";
3062 break;
3063 case HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ:
3064 clock_source = "Internal 96 kHz";
3065 break;
3066 default:
3067 clock_source = "Error";
3068 }
3069 snd_iprintf(buffer, "Sample Clock Source: %s\n", clock_source);
3cee5a60 3070 if (!(hdspm->control_register & HDSPM_ClockModeMaster))
763f356c 3071 system_clock_mode = "Slave";
3cee5a60 3072 else
763f356c 3073 system_clock_mode = "Master";
763f356c
TI
3074 snd_iprintf(buffer, "System Clock Mode: %s\n", system_clock_mode);
3075
3076 switch (hdspm_pref_sync_ref(hdspm)) {
3077 case HDSPM_SYNC_FROM_WORD:
3078 pref_sync_ref = "Word Clock";
3079 break;
3080 case HDSPM_SYNC_FROM_MADI:
3081 pref_sync_ref = "MADI Sync";
3082 break;
3083 default:
3084 pref_sync_ref = "XXXX Clock";
3085 break;
3086 }
3087 snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
3088 pref_sync_ref);
3089
3090 snd_iprintf(buffer, "System Clock Frequency: %d\n",
3091 hdspm->system_sample_rate);
3092
3093
3094 snd_iprintf(buffer, "--- Status:\n");
3095
3096 x = status & HDSPM_madiSync;
3097 x2 = status2 & HDSPM_wcSync;
3098
3099 snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
3100 (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
3101 "NoLock",
3102 (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
3103 "NoLock");
3104
3105 switch (hdspm_autosync_ref(hdspm)) {
3106 case HDSPM_AUTOSYNC_FROM_WORD:
3107 autosync_ref = "Word Clock";
3108 break;
3109 case HDSPM_AUTOSYNC_FROM_MADI:
3110 autosync_ref = "MADI Sync";
3111 break;
3112 case HDSPM_AUTOSYNC_FROM_NONE:
3113 autosync_ref = "Input not valid";
3114 break;
3115 default:
3116 autosync_ref = "---";
3117 break;
3118 }
3119 snd_iprintf(buffer,
3120 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
3121 autosync_ref, hdspm_external_sample_rate(hdspm),
3122 (status & HDSPM_madiFreqMask) >> 22,
3123 (status2 & HDSPM_wcFreqMask) >> 5);
3124
3125 snd_iprintf(buffer, "Input: %s, Mode=%s\n",
3126 (status & HDSPM_AB_int) ? "Coax" : "Optical",
3127 (status & HDSPM_RX_64ch) ? "64 channels" :
3128 "56 channels");
3129
3130 snd_iprintf(buffer, "\n");
3131}
3132
3cee5a60
RB
3133static void
3134snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
3135 struct snd_info_buffer *buffer)
3136{
ef5fa1a4 3137 struct hdspm *hdspm = entry->private_data;
3cee5a60
RB
3138 unsigned int status;
3139 unsigned int status2;
3140 unsigned int timecode;
3141 int pref_syncref;
3142 char *autosync_ref;
3143 char *system_clock_mode;
3144 char *clock_source;
3145 int x;
3146
3147 status = hdspm_read(hdspm, HDSPM_statusRegister);
3148 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3149 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
3150
3151 snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
3152 hdspm->card_name, hdspm->card->number + 1,
3153 hdspm->firmware_rev);
3154
3155 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
3156 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
3157
3158 snd_iprintf(buffer, "--- System ---\n");
3159
3160 snd_iprintf(buffer,
3161 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
3162 status & HDSPM_audioIRQPending,
3163 (status & HDSPM_midi0IRQPending) ? 1 : 0,
3164 (status & HDSPM_midi1IRQPending) ? 1 : 0,
3165 hdspm->irq_count);
3166 snd_iprintf(buffer,
ef5fa1a4
TI
3167 "HW pointer: id = %d, rawptr = %d (%d->%d) "
3168 "estimated= %ld (bytes)\n",
3cee5a60
RB
3169 ((status & HDSPM_BufferID) ? 1 : 0),
3170 (status & HDSPM_BufferPositionMask),
ef5fa1a4
TI
3171 (status & HDSPM_BufferPositionMask) %
3172 (2 * (int)hdspm->period_bytes),
3173 ((status & HDSPM_BufferPositionMask) - 64) %
3174 (2 * (int)hdspm->period_bytes),
3cee5a60
RB
3175 (long) hdspm_hw_pointer(hdspm) * 4);
3176
3177 snd_iprintf(buffer,
3178 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
3179 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
3180 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
3181 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
3182 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
3183 snd_iprintf(buffer,
ef5fa1a4
TI
3184 "Register: ctrl1=0x%x, status1=0x%x, status2=0x%x, "
3185 "timecode=0x%x\n",
ffb2c3c0 3186 hdspm->control_register,
3cee5a60
RB
3187 status, status2, timecode);
3188
3189 snd_iprintf(buffer, "--- Settings ---\n");
3190
ef5fa1a4
TI
3191 x = 1 << (6 + hdspm_decode_latency(hdspm->control_register &
3192 HDSPM_LatencyMask));
3cee5a60
RB
3193
3194 snd_iprintf(buffer,
3195 "Size (Latency): %d samples (2 periods of %lu bytes)\n",
3196 x, (unsigned long) hdspm->period_bytes);
3197
3198 snd_iprintf(buffer, "Line out: %s, Precise Pointer: %s\n",
3199 (hdspm->
3200 control_register & HDSPM_LineOut) ? "on " : "off",
3201 (hdspm->precise_ptr) ? "on" : "off");
3202
3203 snd_iprintf(buffer,
3204 "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
3205 (hdspm->
3206 control_register & HDSPM_clr_tms) ? "on" : "off",
3207 (hdspm->
3208 control_register & HDSPM_Emphasis) ? "on" : "off",
3209 (hdspm->
3210 control_register & HDSPM_Dolby) ? "on" : "off");
3211
3212 switch (hdspm_clock_source(hdspm)) {
3213 case HDSPM_CLOCK_SOURCE_AUTOSYNC:
3214 clock_source = "AutoSync";
3215 break;
3216 case HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ:
3217 clock_source = "Internal 32 kHz";
3218 break;
3219 case HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ:
3220 clock_source = "Internal 44.1 kHz";
3221 break;
3222 case HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ:
3223 clock_source = "Internal 48 kHz";
3224 break;
3225 case HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ:
3226 clock_source = "Internal 64 kHz";
3227 break;
3228 case HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ:
3229 clock_source = "Internal 88.2 kHz";
3230 break;
3231 case HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ:
3232 clock_source = "Internal 96 kHz";
3233 break;
3234 case HDSPM_CLOCK_SOURCE_INTERNAL_128KHZ:
3235 clock_source = "Internal 128 kHz";
3236 break;
3237 case HDSPM_CLOCK_SOURCE_INTERNAL_176_4KHZ:
3238 clock_source = "Internal 176.4 kHz";
3239 break;
3240 case HDSPM_CLOCK_SOURCE_INTERNAL_192KHZ:
3241 clock_source = "Internal 192 kHz";
3242 break;
3243 default:
3244 clock_source = "Error";
3245 }
3246 snd_iprintf(buffer, "Sample Clock Source: %s\n", clock_source);
3247 if (!(hdspm->control_register & HDSPM_ClockModeMaster))
3248 system_clock_mode = "Slave";
3249 else
3250 system_clock_mode = "Master";
3251 snd_iprintf(buffer, "System Clock Mode: %s\n", system_clock_mode);
3252
3253 pref_syncref = hdspm_pref_sync_ref(hdspm);
3254 if (pref_syncref == 0)
3255 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
3256 else
3257 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
3258 pref_syncref);
3259
3260 snd_iprintf(buffer, "System Clock Frequency: %d\n",
3261 hdspm->system_sample_rate);
3262
3263 snd_iprintf(buffer, "Double speed: %s\n",
3264 hdspm->control_register & HDSPM_DS_DoubleWire?
3265 "Double wire" : "Single wire");
3266 snd_iprintf(buffer, "Quad speed: %s\n",
3267 hdspm->control_register & HDSPM_QS_DoubleWire?
3268 "Double wire" :
3269 hdspm->control_register & HDSPM_QS_QuadWire?
3270 "Quad wire" : "Single wire");
3271
3272 snd_iprintf(buffer, "--- Status:\n");
3273
3274 snd_iprintf(buffer, "Word: %s Frequency: %d\n",
ef5fa1a4
TI
3275 (status & HDSPM_AES32_wcLock)? "Sync " : "No Lock",
3276 HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
3cee5a60
RB
3277
3278 for (x = 0; x < 8; x++) {
3279 snd_iprintf(buffer, "AES%d: %s Frequency: %d\n",
ef5fa1a4
TI
3280 x+1,
3281 (status2 & (HDSPM_LockAES >> x)) ?
3282 "Sync ": "No Lock",
3283 HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
3cee5a60
RB
3284 }
3285
3286 switch (hdspm_autosync_ref(hdspm)) {
3287 case HDSPM_AES32_AUTOSYNC_FROM_NONE: autosync_ref="None"; break;
3288 case HDSPM_AES32_AUTOSYNC_FROM_WORD: autosync_ref="Word Clock"; break;
3289 case HDSPM_AES32_AUTOSYNC_FROM_AES1: autosync_ref="AES1"; break;
3290 case HDSPM_AES32_AUTOSYNC_FROM_AES2: autosync_ref="AES2"; break;
3291 case HDSPM_AES32_AUTOSYNC_FROM_AES3: autosync_ref="AES3"; break;
3292 case HDSPM_AES32_AUTOSYNC_FROM_AES4: autosync_ref="AES4"; break;
3293 case HDSPM_AES32_AUTOSYNC_FROM_AES5: autosync_ref="AES5"; break;
3294 case HDSPM_AES32_AUTOSYNC_FROM_AES6: autosync_ref="AES6"; break;
3295 case HDSPM_AES32_AUTOSYNC_FROM_AES7: autosync_ref="AES7"; break;
3296 case HDSPM_AES32_AUTOSYNC_FROM_AES8: autosync_ref="AES8"; break;
3297 default: autosync_ref = "---"; break;
3298 }
3299 snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
3300
3301 snd_iprintf(buffer, "\n");
3302}
3303
3304#ifdef CONFIG_SND_DEBUG
3305static void
3306snd_hdspm_proc_read_debug(struct snd_info_entry * entry,
3307 struct snd_info_buffer *buffer)
3308{
ef5fa1a4 3309 struct hdspm *hdspm = entry->private_data;
3cee5a60
RB
3310
3311 int j,i;
3312
ef5fa1a4 3313 for (i = 0; i < 256 /* 1024*64 */; i += j) {
3cee5a60
RB
3314 snd_iprintf(buffer, "0x%08X: ", i);
3315 for (j = 0; j < 16; j += 4)
3316 snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
3317 snd_iprintf(buffer, "\n");
3318 }
3319}
3320#endif
3321
3322
3323
98274f07 3324static void __devinit snd_hdspm_proc_init(struct hdspm * hdspm)
763f356c 3325{
98274f07 3326 struct snd_info_entry *entry;
763f356c
TI
3327
3328 if (!snd_card_proc_new(hdspm->card, "hdspm", &entry))
bf850204 3329 snd_info_set_text_ops(entry, hdspm,
3cee5a60
RB
3330 hdspm->is_aes32 ?
3331 snd_hdspm_proc_read_aes32 :
3332 snd_hdspm_proc_read_madi);
3333#ifdef CONFIG_SND_DEBUG
3334 /* debug file to read all hdspm registers */
3335 if (!snd_card_proc_new(hdspm->card, "debug", &entry))
3336 snd_info_set_text_ops(entry, hdspm,
3337 snd_hdspm_proc_read_debug);
3338#endif
763f356c
TI
3339}
3340
3341/*------------------------------------------------------------
3342 hdspm intitialize
3343 ------------------------------------------------------------*/
3344
98274f07 3345static int snd_hdspm_set_defaults(struct hdspm * hdspm)
763f356c
TI
3346{
3347 unsigned int i;
3348
3349 /* ASSUMPTION: hdspm->lock is either held, or there is no need to
561de31a 3350 hold it (e.g. during module initialization).
763f356c
TI
3351 */
3352
3353 /* set defaults: */
3354
3cee5a60 3355 if (hdspm->is_aes32)
ef5fa1a4
TI
3356 hdspm->control_register =
3357 HDSPM_ClockModeMaster | /* Master Cloack Mode on */
3358 hdspm_encode_latency(7) | /* latency maximum =
3359 * 8192 samples
3360 */
3cee5a60
RB
3361 HDSPM_SyncRef0 | /* AES1 is syncclock */
3362 HDSPM_LineOut | /* Analog output in */
3363 HDSPM_Professional; /* Professional mode */
3364 else
ef5fa1a4
TI
3365 hdspm->control_register =
3366 HDSPM_ClockModeMaster | /* Master Cloack Mode on */
3367 hdspm_encode_latency(7) | /* latency maximum =
3368 * 8192 samples
3369 */
3cee5a60
RB
3370 HDSPM_InputCoaxial | /* Input Coax not Optical */
3371 HDSPM_SyncRef_MADI | /* Madi is syncclock */
3372 HDSPM_LineOut | /* Analog output in */
3373 HDSPM_TX_64ch | /* transmit in 64ch mode */
3374 HDSPM_AutoInp; /* AutoInput chossing (takeover) */
763f356c
TI
3375
3376 /* ! HDSPM_Frequency0|HDSPM_Frequency1 = 44.1khz */
3377 /* ! HDSPM_DoubleSpeed HDSPM_QuadSpeed = normal speed */
3378 /* ! HDSPM_clr_tms = do not clear bits in track marks */
3379
3380 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3381
ffb2c3c0
RB
3382 if (!hdspm->is_aes32) {
3383 /* No control2 register for AES32 */
763f356c 3384#ifdef SNDRV_BIG_ENDIAN
ffb2c3c0 3385 hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
763f356c 3386#else
ffb2c3c0 3387 hdspm->control2_register = 0;
763f356c
TI
3388#endif
3389
ffb2c3c0
RB
3390 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
3391 }
763f356c
TI
3392 hdspm_compute_period_size(hdspm);
3393
3394 /* silence everything */
3395
3396 all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
3397
3398 if (line_outs_monitor[hdspm->dev]) {
3399
ef5fa1a4
TI
3400 snd_printk(KERN_INFO "HDSPM: "
3401 "sending all playback streams to line outs.\n");
763f356c
TI
3402
3403 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++) {
3404 if (hdspm_write_pb_gain(hdspm, i, i, UNITY_GAIN))
3405 return -EIO;
3406 }
3407 }
3408
3409 /* set a default rate so that the channel map is set up. */
3410 hdspm->channel_map = channel_map_madi_ss;
3411 hdspm_set_rate(hdspm, 44100, 1);
3412
3413 return 0;
3414}
3415
3416
3417/*------------------------------------------------------------
561de31a 3418 interrupt
763f356c
TI
3419 ------------------------------------------------------------*/
3420
7d12e780 3421static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
763f356c 3422{
98274f07 3423 struct hdspm *hdspm = (struct hdspm *) dev_id;
763f356c
TI
3424 unsigned int status;
3425 int audio;
3426 int midi0;
3427 int midi1;
3428 unsigned int midi0status;
3429 unsigned int midi1status;
3430 int schedule = 0;
3431
3432 status = hdspm_read(hdspm, HDSPM_statusRegister);
3433
3434 audio = status & HDSPM_audioIRQPending;
3435 midi0 = status & HDSPM_midi0IRQPending;
3436 midi1 = status & HDSPM_midi1IRQPending;
3437
3438 if (!audio && !midi0 && !midi1)
3439 return IRQ_NONE;
3440
3441 hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
3442 hdspm->irq_count++;
3443
3444 midi0status = hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xff;
3445 midi1status = hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xff;
3446
3447 if (audio) {
3448
3449 if (hdspm->capture_substream)
ef5fa1a4 3450 snd_pcm_period_elapsed(hdspm->capture_substream);
763f356c
TI
3451
3452 if (hdspm->playback_substream)
ef5fa1a4 3453 snd_pcm_period_elapsed(hdspm->playback_substream);
763f356c
TI
3454 }
3455
3456 if (midi0 && midi0status) {
ef5fa1a4
TI
3457 /* we disable interrupts for this input until processing
3458 * is done
3459 */
763f356c
TI
3460 hdspm->control_register &= ~HDSPM_Midi0InterruptEnable;
3461 hdspm_write(hdspm, HDSPM_controlRegister,
3462 hdspm->control_register);
3463 hdspm->midi[0].pending = 1;
3464 schedule = 1;
3465 }
3466 if (midi1 && midi1status) {
ef5fa1a4
TI
3467 /* we disable interrupts for this input until processing
3468 * is done
3469 */
763f356c
TI
3470 hdspm->control_register &= ~HDSPM_Midi1InterruptEnable;
3471 hdspm_write(hdspm, HDSPM_controlRegister,
3472 hdspm->control_register);
3473 hdspm->midi[1].pending = 1;
3474 schedule = 1;
3475 }
3476 if (schedule)
3477 tasklet_hi_schedule(&hdspm->midi_tasklet);
3478 return IRQ_HANDLED;
3479}
3480
3481/*------------------------------------------------------------
3482 pcm interface
3483 ------------------------------------------------------------*/
3484
3485
98274f07 3486static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream *
763f356c
TI
3487 substream)
3488{
98274f07 3489 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
3490 return hdspm_hw_pointer(hdspm);
3491}
3492
98274f07 3493static char *hdspm_channel_buffer_location(struct hdspm * hdspm,
763f356c
TI
3494 int stream, int channel)
3495{
3496 int mapped_channel;
3497
3498 snd_assert(channel >= 0
3499 || channel < HDSPM_MAX_CHANNELS, return NULL);
3500
ef5fa1a4
TI
3501 mapped_channel = hdspm->channel_map[channel];
3502 if (mapped_channel < 0)
763f356c
TI
3503 return NULL;
3504
ef5fa1a4 3505 if (stream == SNDRV_PCM_STREAM_CAPTURE)
763f356c
TI
3506 return hdspm->capture_buffer +
3507 mapped_channel * HDSPM_CHANNEL_BUFFER_BYTES;
ef5fa1a4 3508 else
763f356c
TI
3509 return hdspm->playback_buffer +
3510 mapped_channel * HDSPM_CHANNEL_BUFFER_BYTES;
763f356c
TI
3511}
3512
3513
3514/* dont know why need it ??? */
98274f07 3515static int snd_hdspm_playback_copy(struct snd_pcm_substream *substream,
763f356c
TI
3516 int channel, snd_pcm_uframes_t pos,
3517 void __user *src, snd_pcm_uframes_t count)
3518{
98274f07 3519 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
3520 char *channel_buf;
3521
3522 snd_assert(pos + count <= HDSPM_CHANNEL_BUFFER_BYTES / 4,
3523 return -EINVAL);
3524
ef5fa1a4
TI
3525 channel_buf =
3526 hdspm_channel_buffer_location(hdspm, substream->pstr->stream,
3527 channel);
763f356c
TI
3528
3529 snd_assert(channel_buf != NULL, return -EIO);
3530
3531 return copy_from_user(channel_buf + pos * 4, src, count * 4);
3532}
3533
98274f07 3534static int snd_hdspm_capture_copy(struct snd_pcm_substream *substream,
763f356c
TI
3535 int channel, snd_pcm_uframes_t pos,
3536 void __user *dst, snd_pcm_uframes_t count)
3537{
98274f07 3538 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
3539 char *channel_buf;
3540
3541 snd_assert(pos + count <= HDSPM_CHANNEL_BUFFER_BYTES / 4,
3542 return -EINVAL);
3543
ef5fa1a4
TI
3544 channel_buf =
3545 hdspm_channel_buffer_location(hdspm, substream->pstr->stream,
3546 channel);
763f356c
TI
3547 snd_assert(channel_buf != NULL, return -EIO);
3548 return copy_to_user(dst, channel_buf + pos * 4, count * 4);
3549}
3550
98274f07 3551static int snd_hdspm_hw_silence(struct snd_pcm_substream *substream,
763f356c
TI
3552 int channel, snd_pcm_uframes_t pos,
3553 snd_pcm_uframes_t count)
3554{
98274f07 3555 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
3556 char *channel_buf;
3557
3558 channel_buf =
ef5fa1a4
TI
3559 hdspm_channel_buffer_location(hdspm, substream->pstr->stream,
3560 channel);
763f356c
TI
3561 snd_assert(channel_buf != NULL, return -EIO);
3562 memset(channel_buf + pos * 4, 0, count * 4);
3563 return 0;
3564}
3565
98274f07 3566static int snd_hdspm_reset(struct snd_pcm_substream *substream)
763f356c 3567{
98274f07
TI
3568 struct snd_pcm_runtime *runtime = substream->runtime;
3569 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3570 struct snd_pcm_substream *other;
763f356c
TI
3571
3572 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
3573 other = hdspm->capture_substream;
3574 else
3575 other = hdspm->playback_substream;
3576
3577 if (hdspm->running)
3578 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
3579 else
3580 runtime->status->hw_ptr = 0;
3581 if (other) {
98274f07
TI
3582 struct snd_pcm_substream *s;
3583 struct snd_pcm_runtime *oruntime = other->runtime;
ef991b95 3584 snd_pcm_group_for_each_entry(s, substream) {
763f356c
TI
3585 if (s == other) {
3586 oruntime->status->hw_ptr =
3587 runtime->status->hw_ptr;
3588 break;
3589 }
3590 }
3591 }
3592 return 0;
3593}
3594
98274f07
TI
3595static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
3596 struct snd_pcm_hw_params *params)
763f356c 3597{
98274f07 3598 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
3599 int err;
3600 int i;
3601 pid_t this_pid;
3602 pid_t other_pid;
3603 struct snd_sg_buf *sgbuf;
3604
3605
3606 spin_lock_irq(&hdspm->lock);
3607
3608 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
3609 this_pid = hdspm->playback_pid;
3610 other_pid = hdspm->capture_pid;
3611 } else {
3612 this_pid = hdspm->capture_pid;
3613 other_pid = hdspm->playback_pid;
3614 }
3615
ef5fa1a4 3616 if (other_pid > 0 && this_pid != other_pid) {
763f356c
TI
3617
3618 /* The other stream is open, and not by the same
3619 task as this one. Make sure that the parameters
3620 that matter are the same.
3621 */
3622
3623 if (params_rate(params) != hdspm->system_sample_rate) {
3624 spin_unlock_irq(&hdspm->lock);
3625 _snd_pcm_hw_param_setempty(params,
3626 SNDRV_PCM_HW_PARAM_RATE);
3627 return -EBUSY;
3628 }
3629
3630 if (params_period_size(params) != hdspm->period_bytes / 4) {
3631 spin_unlock_irq(&hdspm->lock);
3632 _snd_pcm_hw_param_setempty(params,
ef5fa1a4 3633 SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
763f356c
TI
3634 return -EBUSY;
3635 }
3636
3637 }
3638 /* We're fine. */
3639 spin_unlock_irq(&hdspm->lock);
3640
3641 /* how to make sure that the rate matches an externally-set one ? */
3642
3643 spin_lock_irq(&hdspm->lock);
ef5fa1a4
TI
3644 err = hdspm_set_rate(hdspm, params_rate(params), 0);
3645 if (err < 0) {
763f356c
TI
3646 spin_unlock_irq(&hdspm->lock);
3647 _snd_pcm_hw_param_setempty(params,
3648 SNDRV_PCM_HW_PARAM_RATE);
3649 return err;
3650 }
3651 spin_unlock_irq(&hdspm->lock);
3652
ef5fa1a4
TI
3653 err = hdspm_set_interrupt_interval(hdspm,
3654 params_period_size(params));
3655 if (err < 0) {
763f356c
TI
3656 _snd_pcm_hw_param_setempty(params,
3657 SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
3658 return err;
3659 }
3660
ef5fa1a4
TI
3661 /* Memory allocation, takashi's method, dont know if we should
3662 * spinlock
3663 */
763f356c 3664 /* malloc all buffer even if not enabled to get sure */
ffb2c3c0
RB
3665 /* Update for MADI rev 204: we need to allocate for all channels,
3666 * otherwise it doesn't work at 96kHz */
763f356c 3667 err =
ffb2c3c0 3668 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
763f356c
TI
3669 if (err < 0)
3670 return err;
3671
3672 sgbuf = snd_pcm_substream_sgbuf(substream);
3673
3674 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
3675
3676 hdspm_set_sgbuf(hdspm, sgbuf, HDSPM_pageAddressBufferOut,
3677 params_channels(params));
3678
3679 for (i = 0; i < params_channels(params); ++i)
3680 snd_hdspm_enable_out(hdspm, i, 1);
3681
3682 hdspm->playback_buffer =
3683 (unsigned char *) substream->runtime->dma_area;
54bf5dd9 3684 snd_printdd("Allocated sample buffer for playback at %p\n",
3cee5a60 3685 hdspm->playback_buffer);
763f356c
TI
3686 } else {
3687 hdspm_set_sgbuf(hdspm, sgbuf, HDSPM_pageAddressBufferIn,
3688 params_channels(params));
3689
3690 for (i = 0; i < params_channels(params); ++i)
3691 snd_hdspm_enable_in(hdspm, i, 1);
3692
3693 hdspm->capture_buffer =
3694 (unsigned char *) substream->runtime->dma_area;
54bf5dd9 3695 snd_printdd("Allocated sample buffer for capture at %p\n",
3cee5a60 3696 hdspm->capture_buffer);
763f356c 3697 }
3cee5a60
RB
3698 /*
3699 snd_printdd("Allocated sample buffer for %s at 0x%08X\n",
3700 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
3701 "playback" : "capture",
3702 snd_pcm_sgbuf_get_addr(sgbuf, 0));
3703 */
ffb2c3c0
RB
3704 /*
3705 snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n",
3706 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
3707 "playback" : "capture",
3708 params_rate(params), params_channels(params),
3709 params_buffer_size(params));
3710 */
763f356c
TI
3711 return 0;
3712}
3713
98274f07 3714static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
763f356c
TI
3715{
3716 int i;
98274f07 3717 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
3718
3719 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
3720
3721 /* params_channels(params) should be enough,
3722 but to get sure in case of error */
3723 for (i = 0; i < HDSPM_MAX_CHANNELS; ++i)
3724 snd_hdspm_enable_out(hdspm, i, 0);
3725
3726 hdspm->playback_buffer = NULL;
3727 } else {
3728 for (i = 0; i < HDSPM_MAX_CHANNELS; ++i)
3729 snd_hdspm_enable_in(hdspm, i, 0);
3730
3731 hdspm->capture_buffer = NULL;
3732
3733 }
3734
3735 snd_pcm_lib_free_pages(substream);
3736
3737 return 0;
3738}
3739
98274f07
TI
3740static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
3741 struct snd_pcm_channel_info * info)
763f356c 3742{
98274f07 3743 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
3744 int mapped_channel;
3745
3746 snd_assert(info->channel < HDSPM_MAX_CHANNELS, return -EINVAL);
3747
ef5fa1a4
TI
3748 mapped_channel = hdspm->channel_map[info->channel];
3749 if (mapped_channel < 0)
763f356c
TI
3750 return -EINVAL;
3751
3752 info->offset = mapped_channel * HDSPM_CHANNEL_BUFFER_BYTES;
3753 info->first = 0;
3754 info->step = 32;
3755 return 0;
3756}
3757
98274f07 3758static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
763f356c
TI
3759 unsigned int cmd, void *arg)
3760{
3761 switch (cmd) {
3762 case SNDRV_PCM_IOCTL1_RESET:
ef5fa1a4 3763 return snd_hdspm_reset(substream);
763f356c
TI
3764
3765 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
ef5fa1a4
TI
3766 {
3767 struct snd_pcm_channel_info *info = arg;
3768 return snd_hdspm_channel_info(substream, info);
3769 }
763f356c
TI
3770 default:
3771 break;
3772 }
3773
3774 return snd_pcm_lib_ioctl(substream, cmd, arg);
3775}
3776
98274f07 3777static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
763f356c 3778{
98274f07
TI
3779 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3780 struct snd_pcm_substream *other;
763f356c
TI
3781 int running;
3782
3783 spin_lock(&hdspm->lock);
3784 running = hdspm->running;
3785 switch (cmd) {
3786 case SNDRV_PCM_TRIGGER_START:
3787 running |= 1 << substream->stream;
3788 break;
3789 case SNDRV_PCM_TRIGGER_STOP:
3790 running &= ~(1 << substream->stream);
3791 break;
3792 default:
3793 snd_BUG();
3794 spin_unlock(&hdspm->lock);
3795 return -EINVAL;
3796 }
3797 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
3798 other = hdspm->capture_substream;
3799 else
3800 other = hdspm->playback_substream;
3801
3802 if (other) {
98274f07 3803 struct snd_pcm_substream *s;
ef991b95 3804 snd_pcm_group_for_each_entry(s, substream) {
763f356c
TI
3805 if (s == other) {
3806 snd_pcm_trigger_done(s, substream);
3807 if (cmd == SNDRV_PCM_TRIGGER_START)
3808 running |= 1 << s->stream;
3809 else
3810 running &= ~(1 << s->stream);
3811 goto _ok;
3812 }
3813 }
3814 if (cmd == SNDRV_PCM_TRIGGER_START) {
3815 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
3816 && substream->stream ==
3817 SNDRV_PCM_STREAM_CAPTURE)
3818 hdspm_silence_playback(hdspm);
3819 } else {
3820 if (running &&
3821 substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
3822 hdspm_silence_playback(hdspm);
3823 }
3824 } else {
3825 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
3826 hdspm_silence_playback(hdspm);
3827 }
3828 _ok:
3829 snd_pcm_trigger_done(substream, substream);
3830 if (!hdspm->running && running)
3831 hdspm_start_audio(hdspm);
3832 else if (hdspm->running && !running)
3833 hdspm_stop_audio(hdspm);
3834 hdspm->running = running;
3835 spin_unlock(&hdspm->lock);
3836
3837 return 0;
3838}
3839
98274f07 3840static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
763f356c
TI
3841{
3842 return 0;
3843}
3844
3845static unsigned int period_sizes[] =
3846 { 64, 128, 256, 512, 1024, 2048, 4096, 8192 };
3847
98274f07 3848static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
763f356c
TI
3849 .info = (SNDRV_PCM_INFO_MMAP |
3850 SNDRV_PCM_INFO_MMAP_VALID |
3851 SNDRV_PCM_INFO_NONINTERLEAVED |
3852 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
3853 .formats = SNDRV_PCM_FMTBIT_S32_LE,
3854 .rates = (SNDRV_PCM_RATE_32000 |
3855 SNDRV_PCM_RATE_44100 |
3856 SNDRV_PCM_RATE_48000 |
3857 SNDRV_PCM_RATE_64000 |
3cee5a60
RB
3858 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
3859 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
763f356c 3860 .rate_min = 32000,
3cee5a60 3861 .rate_max = 192000,
763f356c
TI
3862 .channels_min = 1,
3863 .channels_max = HDSPM_MAX_CHANNELS,
3864 .buffer_bytes_max =
3865 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
3866 .period_bytes_min = (64 * 4),
3867 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
3868 .periods_min = 2,
3869 .periods_max = 2,
3870 .fifo_size = 0
3871};
3872
98274f07 3873static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
763f356c
TI
3874 .info = (SNDRV_PCM_INFO_MMAP |
3875 SNDRV_PCM_INFO_MMAP_VALID |
3876 SNDRV_PCM_INFO_NONINTERLEAVED |
3877 SNDRV_PCM_INFO_SYNC_START),
3878 .formats = SNDRV_PCM_FMTBIT_S32_LE,
3879 .rates = (SNDRV_PCM_RATE_32000 |
3880 SNDRV_PCM_RATE_44100 |
3881 SNDRV_PCM_RATE_48000 |
3882 SNDRV_PCM_RATE_64000 |
3cee5a60
RB
3883 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
3884 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
763f356c 3885 .rate_min = 32000,
3cee5a60 3886 .rate_max = 192000,
763f356c
TI
3887 .channels_min = 1,
3888 .channels_max = HDSPM_MAX_CHANNELS,
3889 .buffer_bytes_max =
3890 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
3891 .period_bytes_min = (64 * 4),
3892 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
3893 .periods_min = 2,
3894 .periods_max = 2,
3895 .fifo_size = 0
3896};
3897
98274f07 3898static struct snd_pcm_hw_constraint_list hw_constraints_period_sizes = {
763f356c
TI
3899 .count = ARRAY_SIZE(period_sizes),
3900 .list = period_sizes,
3901 .mask = 0
3902};
3903
3904
98274f07
TI
3905static int snd_hdspm_hw_rule_channels_rate(struct snd_pcm_hw_params *params,
3906 struct snd_pcm_hw_rule * rule)
763f356c 3907{
98274f07
TI
3908 struct hdspm *hdspm = rule->private;
3909 struct snd_interval *c =
763f356c 3910 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
98274f07 3911 struct snd_interval *r =
763f356c
TI
3912 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
3913
ffb2c3c0 3914 if (r->min > 48000 && r->max <= 96000) {
98274f07 3915 struct snd_interval t = {
ffb2c3c0 3916 .min = hdspm->ds_channels,
763f356c
TI
3917 .max = hdspm->ds_channels,
3918 .integer = 1,
3919 };
3920 return snd_interval_refine(c, &t);
3921 } else if (r->max < 64000) {
98274f07 3922 struct snd_interval t = {
ffb2c3c0 3923 .min = hdspm->ss_channels,
763f356c
TI
3924 .max = hdspm->ss_channels,
3925 .integer = 1,
3926 };
3927 return snd_interval_refine(c, &t);
3928 }
3929 return 0;
3930}
3931
98274f07
TI
3932static int snd_hdspm_hw_rule_rate_channels(struct snd_pcm_hw_params *params,
3933 struct snd_pcm_hw_rule * rule)
763f356c 3934{
98274f07
TI
3935 struct hdspm *hdspm = rule->private;
3936 struct snd_interval *c =
763f356c 3937 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
98274f07 3938 struct snd_interval *r =
763f356c
TI
3939 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
3940
ffb2c3c0 3941 if (c->min >= hdspm->ss_channels) {
98274f07 3942 struct snd_interval t = {
763f356c
TI
3943 .min = 32000,
3944 .max = 48000,
3945 .integer = 1,
3946 };
3947 return snd_interval_refine(r, &t);
ffb2c3c0 3948 } else if (c->max <= hdspm->ds_channels) {
98274f07 3949 struct snd_interval t = {
763f356c
TI
3950 .min = 64000,
3951 .max = 96000,
3952 .integer = 1,
3953 };
3954
3955 return snd_interval_refine(r, &t);
3956 }
3957 return 0;
3958}
3959
ffb2c3c0
RB
3960static int snd_hdspm_hw_rule_channels(struct snd_pcm_hw_params *params,
3961 struct snd_pcm_hw_rule *rule)
3962{
3963 unsigned int list[3];
3964 struct hdspm *hdspm = rule->private;
3965 struct snd_interval *c = hw_param_interval(params,
3966 SNDRV_PCM_HW_PARAM_CHANNELS);
3967 if (hdspm->is_aes32) {
3968 list[0] = hdspm->qs_channels;
3969 list[1] = hdspm->ds_channels;
3970 list[2] = hdspm->ss_channels;
3971 return snd_interval_list(c, 3, list, 0);
3972 } else {
3973 list[0] = hdspm->ds_channels;
3974 list[1] = hdspm->ss_channels;
3975 return snd_interval_list(c, 2, list, 0);
3976 }
3977}
3978
3979
ef5fa1a4
TI
3980static unsigned int hdspm_aes32_sample_rates[] = {
3981 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
3982};
ffb2c3c0 3983
ef5fa1a4
TI
3984static struct snd_pcm_hw_constraint_list
3985hdspm_hw_constraints_aes32_sample_rates = {
ffb2c3c0
RB
3986 .count = ARRAY_SIZE(hdspm_aes32_sample_rates),
3987 .list = hdspm_aes32_sample_rates,
3988 .mask = 0
3989};
3990
98274f07 3991static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
763f356c 3992{
98274f07
TI
3993 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3994 struct snd_pcm_runtime *runtime = substream->runtime;
763f356c 3995
763f356c
TI
3996 spin_lock_irq(&hdspm->lock);
3997
3998 snd_pcm_set_sync(substream);
3999
4000 runtime->hw = snd_hdspm_playback_subinfo;
4001
4002 if (hdspm->capture_substream == NULL)
4003 hdspm_stop_audio(hdspm);
4004
4005 hdspm->playback_pid = current->pid;
4006 hdspm->playback_substream = substream;
4007
4008 spin_unlock_irq(&hdspm->lock);
4009
4010 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
4011
4012 snd_pcm_hw_constraint_list(runtime, 0,
4013 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
4014 &hw_constraints_period_sizes);
4015
ffb2c3c0
RB
4016 if (hdspm->is_aes32) {
4017 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
4018 &hdspm_hw_constraints_aes32_sample_rates);
4019 } else {
4020 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
4021 snd_hdspm_hw_rule_channels, hdspm,
4022 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
4023 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
4024 snd_hdspm_hw_rule_channels_rate, hdspm,
4025 SNDRV_PCM_HW_PARAM_RATE, -1);
4026
4027 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
4028 snd_hdspm_hw_rule_rate_channels, hdspm,
4029 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
4030 }
763f356c
TI
4031 return 0;
4032}
4033
98274f07 4034static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
763f356c 4035{
98274f07 4036 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
4037
4038 spin_lock_irq(&hdspm->lock);
4039
4040 hdspm->playback_pid = -1;
4041 hdspm->playback_substream = NULL;
4042
4043 spin_unlock_irq(&hdspm->lock);
4044
4045 return 0;
4046}
4047
4048
98274f07 4049static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
763f356c 4050{
98274f07
TI
4051 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
4052 struct snd_pcm_runtime *runtime = substream->runtime;
763f356c
TI
4053
4054 spin_lock_irq(&hdspm->lock);
4055 snd_pcm_set_sync(substream);
4056 runtime->hw = snd_hdspm_capture_subinfo;
4057
4058 if (hdspm->playback_substream == NULL)
4059 hdspm_stop_audio(hdspm);
4060
4061 hdspm->capture_pid = current->pid;
4062 hdspm->capture_substream = substream;
4063
4064 spin_unlock_irq(&hdspm->lock);
4065
4066 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
4067 snd_pcm_hw_constraint_list(runtime, 0,
4068 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
4069 &hw_constraints_period_sizes);
ffb2c3c0
RB
4070 if (hdspm->is_aes32) {
4071 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
4072 &hdspm_hw_constraints_aes32_sample_rates);
4073 } else {
4074 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
4075 snd_hdspm_hw_rule_channels, hdspm,
4076 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
4077 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
4078 snd_hdspm_hw_rule_channels_rate, hdspm,
4079 SNDRV_PCM_HW_PARAM_RATE, -1);
4080
4081 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
4082 snd_hdspm_hw_rule_rate_channels, hdspm,
4083 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
4084 }
763f356c
TI
4085 return 0;
4086}
4087
98274f07 4088static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
763f356c 4089{
98274f07 4090 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
4091
4092 spin_lock_irq(&hdspm->lock);
4093
4094 hdspm->capture_pid = -1;
4095 hdspm->capture_substream = NULL;
4096
4097 spin_unlock_irq(&hdspm->lock);
4098 return 0;
4099}
4100
98274f07 4101static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep * hw, struct file *file)
763f356c
TI
4102{
4103 /* we have nothing to initialize but the call is required */
4104 return 0;
4105}
4106
4107
98274f07 4108static int snd_hdspm_hwdep_ioctl(struct snd_hwdep * hw, struct file *file,
763f356c
TI
4109 unsigned int cmd, unsigned long arg)
4110{
ef5fa1a4 4111 struct hdspm *hdspm = hw->private_data;
98274f07
TI
4112 struct hdspm_mixer_ioctl mixer;
4113 struct hdspm_config_info info;
4114 struct hdspm_version hdspm_version;
4115 struct hdspm_peak_rms_ioctl rms;
763f356c
TI
4116
4117 switch (cmd) {
4118
763f356c
TI
4119 case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
4120 if (copy_from_user(&rms, (void __user *)arg, sizeof(rms)))
4121 return -EFAULT;
ef5fa1a4
TI
4122 /* maybe there is a chance to memorymap in future
4123 * so dont touch just copy
4124 */
763f356c
TI
4125 if(copy_to_user_fromio((void __user *)rms.peak,
4126 hdspm->iobase+HDSPM_MADI_peakrmsbase,
98274f07 4127 sizeof(struct hdspm_peak_rms)) != 0 )
763f356c
TI
4128 return -EFAULT;
4129
4130 break;
4131
4132
4133 case SNDRV_HDSPM_IOCTL_GET_CONFIG_INFO:
4134
4135 spin_lock_irq(&hdspm->lock);
ef5fa1a4
TI
4136 info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
4137 info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
763f356c
TI
4138
4139 info.system_sample_rate = hdspm->system_sample_rate;
4140 info.autosync_sample_rate =
4141 hdspm_external_sample_rate(hdspm);
ef5fa1a4
TI
4142 info.system_clock_mode = hdspm_system_clock_mode(hdspm);
4143 info.clock_source = hdspm_clock_source(hdspm);
4144 info.autosync_ref = hdspm_autosync_ref(hdspm);
4145 info.line_out = hdspm_line_out(hdspm);
763f356c
TI
4146 info.passthru = 0;
4147 spin_unlock_irq(&hdspm->lock);
4148 if (copy_to_user((void __user *) arg, &info, sizeof(info)))
4149 return -EFAULT;
4150 break;
4151
4152 case SNDRV_HDSPM_IOCTL_GET_VERSION:
4153 hdspm_version.firmware_rev = hdspm->firmware_rev;
4154 if (copy_to_user((void __user *) arg, &hdspm_version,
4155 sizeof(hdspm_version)))
4156 return -EFAULT;
4157 break;
4158
4159 case SNDRV_HDSPM_IOCTL_GET_MIXER:
4160 if (copy_from_user(&mixer, (void __user *)arg, sizeof(mixer)))
4161 return -EFAULT;
ef5fa1a4
TI
4162 if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
4163 sizeof(struct hdspm_mixer)))
763f356c
TI
4164 return -EFAULT;
4165 break;
4166
4167 default:
4168 return -EINVAL;
4169 }
4170 return 0;
4171}
4172
98274f07 4173static struct snd_pcm_ops snd_hdspm_playback_ops = {
763f356c
TI
4174 .open = snd_hdspm_playback_open,
4175 .close = snd_hdspm_playback_release,
4176 .ioctl = snd_hdspm_ioctl,
4177 .hw_params = snd_hdspm_hw_params,
4178 .hw_free = snd_hdspm_hw_free,
4179 .prepare = snd_hdspm_prepare,
4180 .trigger = snd_hdspm_trigger,
4181 .pointer = snd_hdspm_hw_pointer,
4182 .copy = snd_hdspm_playback_copy,
4183 .silence = snd_hdspm_hw_silence,
4184 .page = snd_pcm_sgbuf_ops_page,
4185};
4186
98274f07 4187static struct snd_pcm_ops snd_hdspm_capture_ops = {
763f356c
TI
4188 .open = snd_hdspm_capture_open,
4189 .close = snd_hdspm_capture_release,
4190 .ioctl = snd_hdspm_ioctl,
4191 .hw_params = snd_hdspm_hw_params,
4192 .hw_free = snd_hdspm_hw_free,
4193 .prepare = snd_hdspm_prepare,
4194 .trigger = snd_hdspm_trigger,
4195 .pointer = snd_hdspm_hw_pointer,
4196 .copy = snd_hdspm_capture_copy,
4197 .page = snd_pcm_sgbuf_ops_page,
4198};
4199
98274f07
TI
4200static int __devinit snd_hdspm_create_hwdep(struct snd_card *card,
4201 struct hdspm * hdspm)
763f356c 4202{
98274f07 4203 struct snd_hwdep *hw;
763f356c
TI
4204 int err;
4205
ef5fa1a4
TI
4206 err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
4207 if (err < 0)
763f356c
TI
4208 return err;
4209
4210 hdspm->hwdep = hw;
4211 hw->private_data = hdspm;
4212 strcpy(hw->name, "HDSPM hwdep interface");
4213
4214 hw->ops.open = snd_hdspm_hwdep_dummy_op;
4215 hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
4216 hw->ops.release = snd_hdspm_hwdep_dummy_op;
4217
4218 return 0;
4219}
4220
4221
4222/*------------------------------------------------------------
4223 memory interface
4224 ------------------------------------------------------------*/
98274f07 4225static int __devinit snd_hdspm_preallocate_memory(struct hdspm * hdspm)
763f356c
TI
4226{
4227 int err;
98274f07 4228 struct snd_pcm *pcm;
763f356c
TI
4229 size_t wanted;
4230
4231 pcm = hdspm->pcm;
4232
3cee5a60 4233 wanted = HDSPM_DMA_AREA_BYTES;
763f356c 4234
ef5fa1a4 4235 err =
763f356c
TI
4236 snd_pcm_lib_preallocate_pages_for_all(pcm,
4237 SNDRV_DMA_TYPE_DEV_SG,
4238 snd_dma_pci_data(hdspm->pci),
4239 wanted,
ef5fa1a4
TI
4240 wanted);
4241 if (err < 0) {
e2eba3e7 4242 snd_printdd("Could not preallocate %zd Bytes\n", wanted);
763f356c
TI
4243
4244 return err;
4245 } else
e2eba3e7 4246 snd_printdd(" Preallocated %zd Bytes\n", wanted);
763f356c
TI
4247
4248 return 0;
4249}
4250
98274f07 4251static void hdspm_set_sgbuf(struct hdspm * hdspm, struct snd_sg_buf *sgbuf,
763f356c
TI
4252 unsigned int reg, int channels)
4253{
4254 int i;
4255 for (i = 0; i < (channels * 16); i++)
4256 hdspm_write(hdspm, reg + 4 * i,
ef5fa1a4 4257 snd_pcm_sgbuf_get_addr(sgbuf, (size_t) 4096 * i));
763f356c
TI
4258}
4259
4260/* ------------- ALSA Devices ---------------------------- */
98274f07
TI
4261static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
4262 struct hdspm * hdspm)
763f356c 4263{
98274f07 4264 struct snd_pcm *pcm;
763f356c
TI
4265 int err;
4266
ef5fa1a4
TI
4267 err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
4268 if (err < 0)
763f356c
TI
4269 return err;
4270
4271 hdspm->pcm = pcm;
4272 pcm->private_data = hdspm;
4273 strcpy(pcm->name, hdspm->card_name);
4274
4275 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
4276 &snd_hdspm_playback_ops);
4277 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
4278 &snd_hdspm_capture_ops);
4279
4280 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
4281
ef5fa1a4
TI
4282 err = snd_hdspm_preallocate_memory(hdspm);
4283 if (err < 0)
763f356c
TI
4284 return err;
4285
4286 return 0;
4287}
4288
98274f07 4289static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
763f356c
TI
4290{
4291 snd_hdspm_flush_midi_input(hdspm, 0);
4292 snd_hdspm_flush_midi_input(hdspm, 1);
4293}
4294
98274f07
TI
4295static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
4296 struct hdspm * hdspm)
763f356c
TI
4297{
4298 int err;
4299
4300 snd_printdd("Create card...\n");
ef5fa1a4
TI
4301 err = snd_hdspm_create_pcm(card, hdspm);
4302 if (err < 0)
763f356c
TI
4303 return err;
4304
ef5fa1a4
TI
4305 err = snd_hdspm_create_midi(card, hdspm, 0);
4306 if (err < 0)
763f356c
TI
4307 return err;
4308
ef5fa1a4
TI
4309 err = snd_hdspm_create_midi(card, hdspm, 1);
4310 if (err < 0)
763f356c
TI
4311 return err;
4312
ef5fa1a4
TI
4313 err = snd_hdspm_create_controls(card, hdspm);
4314 if (err < 0)
763f356c
TI
4315 return err;
4316
ef5fa1a4
TI
4317 err = snd_hdspm_create_hwdep(card, hdspm);
4318 if (err < 0)
763f356c
TI
4319 return err;
4320
4321 snd_printdd("proc init...\n");
4322 snd_hdspm_proc_init(hdspm);
4323
4324 hdspm->system_sample_rate = -1;
4325 hdspm->last_external_sample_rate = -1;
4326 hdspm->last_internal_sample_rate = -1;
4327 hdspm->playback_pid = -1;
4328 hdspm->capture_pid = -1;
4329 hdspm->capture_substream = NULL;
4330 hdspm->playback_substream = NULL;
4331
4332 snd_printdd("Set defaults...\n");
ef5fa1a4
TI
4333 err = snd_hdspm_set_defaults(hdspm);
4334 if (err < 0)
763f356c
TI
4335 return err;
4336
4337 snd_printdd("Update mixer controls...\n");
4338 hdspm_update_simple_mixer_controls(hdspm);
4339
4340 snd_printdd("Initializeing complete ???\n");
4341
ef5fa1a4
TI
4342 err = snd_card_register(card);
4343 if (err < 0) {
763f356c
TI
4344 snd_printk(KERN_ERR "HDSPM: error registering card\n");
4345 return err;
4346 }
4347
4348 snd_printdd("... yes now\n");
4349
4350 return 0;
4351}
4352
ef5fa1a4
TI
4353static int __devinit snd_hdspm_create(struct snd_card *card,
4354 struct hdspm *hdspm,
763f356c
TI
4355 int precise_ptr, int enable_monitor)
4356{
4357 struct pci_dev *pci = hdspm->pci;
4358 int err;
763f356c
TI
4359 unsigned long io_extent;
4360
4361 hdspm->irq = -1;
ef5fa1a4 4362
763f356c
TI
4363 spin_lock_init(&hdspm->midi[0].lock);
4364 spin_lock_init(&hdspm->midi[1].lock);
763f356c
TI
4365
4366 hdspm->card = card;
4367
4368 spin_lock_init(&hdspm->lock);
4369
4370 tasklet_init(&hdspm->midi_tasklet,
4371 hdspm_midi_tasklet, (unsigned long) hdspm);
4372
4373 pci_read_config_word(hdspm->pci,
4374 PCI_CLASS_REVISION, &hdspm->firmware_rev);
4375
3cee5a60
RB
4376 hdspm->is_aes32 = (hdspm->firmware_rev >= HDSPM_AESREVISION);
4377
763f356c 4378 strcpy(card->mixername, "Xilinx FPGA");
3cee5a60
RB
4379 if (hdspm->is_aes32) {
4380 strcpy(card->driver, "HDSPAES32");
4381 hdspm->card_name = "RME HDSPM AES32";
4382 } else {
4383 strcpy(card->driver, "HDSPM");
4384 hdspm->card_name = "RME HDSPM MADI";
4385 }
763f356c 4386
ef5fa1a4
TI
4387 err = pci_enable_device(pci);
4388 if (err < 0)
763f356c
TI
4389 return err;
4390
4391 pci_set_master(hdspm->pci);
4392
ef5fa1a4
TI
4393 err = pci_request_regions(pci, "hdspm");
4394 if (err < 0)
763f356c
TI
4395 return err;
4396
4397 hdspm->port = pci_resource_start(pci, 0);
4398 io_extent = pci_resource_len(pci, 0);
4399
4400 snd_printdd("grabbed memory region 0x%lx-0x%lx\n",
4401 hdspm->port, hdspm->port + io_extent - 1);
4402
4403
ef5fa1a4
TI
4404 hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
4405 if (!hdspm->iobase) {
4406 snd_printk(KERN_ERR "HDSPM: "
4407 "unable to remap region 0x%lx-0x%lx\n",
763f356c
TI
4408 hdspm->port, hdspm->port + io_extent - 1);
4409 return -EBUSY;
4410 }
4411 snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n",
4412 (unsigned long)hdspm->iobase, hdspm->port,
4413 hdspm->port + io_extent - 1);
4414
4415 if (request_irq(pci->irq, snd_hdspm_interrupt,
437a5a46 4416 IRQF_SHARED, "hdspm", hdspm)) {
763f356c
TI
4417 snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq);
4418 return -EBUSY;
4419 }
4420
4421 snd_printdd("use IRQ %d\n", pci->irq);
4422
4423 hdspm->irq = pci->irq;
4424 hdspm->precise_ptr = precise_ptr;
4425
4426 hdspm->monitor_outs = enable_monitor;
4427
e2eba3e7 4428 snd_printdd("kmalloc Mixer memory of %zd Bytes\n",
98274f07 4429 sizeof(struct hdspm_mixer));
ef5fa1a4
TI
4430 hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
4431 if (!hdspm->mixer) {
4432 snd_printk(KERN_ERR "HDSPM: "
4433 "unable to kmalloc Mixer memory of %d Bytes\n",
98274f07 4434 (int)sizeof(struct hdspm_mixer));
763f356c
TI
4435 return err;
4436 }
4437
4438 hdspm->ss_channels = MADI_SS_CHANNELS;
4439 hdspm->ds_channels = MADI_DS_CHANNELS;
4440 hdspm->qs_channels = MADI_QS_CHANNELS;
4441
4442 snd_printdd("create alsa devices.\n");
ef5fa1a4
TI
4443 err = snd_hdspm_create_alsa_devices(card, hdspm);
4444 if (err < 0)
763f356c
TI
4445 return err;
4446
4447 snd_hdspm_initialize_midi_flush(hdspm);
4448
4449 return 0;
4450}
4451
98274f07 4452static int snd_hdspm_free(struct hdspm * hdspm)
763f356c
TI
4453{
4454
4455 if (hdspm->port) {
4456
4457 /* stop th audio, and cancel all interrupts */
4458 hdspm->control_register &=
ef5fa1a4
TI
4459 ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
4460 HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable);
763f356c
TI
4461 hdspm_write(hdspm, HDSPM_controlRegister,
4462 hdspm->control_register);
4463 }
4464
4465 if (hdspm->irq >= 0)
4466 free_irq(hdspm->irq, (void *) hdspm);
4467
fc58422a 4468 kfree(hdspm->mixer);
763f356c
TI
4469
4470 if (hdspm->iobase)
4471 iounmap(hdspm->iobase);
4472
763f356c
TI
4473 if (hdspm->port)
4474 pci_release_regions(hdspm->pci);
4475
4476 pci_disable_device(hdspm->pci);
4477 return 0;
4478}
4479
98274f07 4480static void snd_hdspm_card_free(struct snd_card *card)
763f356c 4481{
ef5fa1a4 4482 struct hdspm *hdspm = card->private_data;
763f356c
TI
4483
4484 if (hdspm)
4485 snd_hdspm_free(hdspm);
4486}
4487
4488static int __devinit snd_hdspm_probe(struct pci_dev *pci,
4489 const struct pci_device_id *pci_id)
4490{
4491 static int dev;
98274f07
TI
4492 struct hdspm *hdspm;
4493 struct snd_card *card;
763f356c
TI
4494 int err;
4495
4496 if (dev >= SNDRV_CARDS)
4497 return -ENODEV;
4498 if (!enable[dev]) {
4499 dev++;
4500 return -ENOENT;
4501 }
4502
ef5fa1a4
TI
4503 card = snd_card_new(index[dev], id[dev],
4504 THIS_MODULE, sizeof(struct hdspm));
4505 if (!card)
763f356c
TI
4506 return -ENOMEM;
4507
ef5fa1a4 4508 hdspm = card->private_data;
763f356c
TI
4509 card->private_free = snd_hdspm_card_free;
4510 hdspm->dev = dev;
4511 hdspm->pci = pci;
4512
c187c041
TI
4513 snd_card_set_dev(card, &pci->dev);
4514
ef5fa1a4
TI
4515 err = snd_hdspm_create(card, hdspm, precise_ptr[dev],
4516 enable_monitor[dev]);
4517 if (err < 0) {
763f356c
TI
4518 snd_card_free(card);
4519 return err;
4520 }
4521
4522 strcpy(card->shortname, "HDSPM MADI");
4523 sprintf(card->longname, "%s at 0x%lx, irq %d", hdspm->card_name,
4524 hdspm->port, hdspm->irq);
4525
ef5fa1a4
TI
4526 err = snd_card_register(card);
4527 if (err < 0) {
763f356c
TI
4528 snd_card_free(card);
4529 return err;
4530 }
4531
4532 pci_set_drvdata(pci, card);
4533
4534 dev++;
4535 return 0;
4536}
4537
4538static void __devexit snd_hdspm_remove(struct pci_dev *pci)
4539{
4540 snd_card_free(pci_get_drvdata(pci));
4541 pci_set_drvdata(pci, NULL);
4542}
4543
4544static struct pci_driver driver = {
4545 .name = "RME Hammerfall DSP MADI",
4546 .id_table = snd_hdspm_ids,
4547 .probe = snd_hdspm_probe,
4548 .remove = __devexit_p(snd_hdspm_remove),
4549};
4550
4551
4552static int __init alsa_card_hdspm_init(void)
4553{
4554 return pci_register_driver(&driver);
4555}
4556
4557static void __exit alsa_card_hdspm_exit(void)
4558{
4559 pci_unregister_driver(&driver);
4560}
4561
4562module_init(alsa_card_hdspm_init)
4563module_exit(alsa_card_hdspm_exit)
This page took 0.522304 seconds and 5 git commands to generate.