ALSA: hda/realtek - Apply the coef-setup only to ALC269VB
[deliverable/linux.git] / sound / pci / rme9652 / hdspm.c
CommitLineData
ef5fa1a4 1/*
763f356c
TI
2 * ALSA driver for RME Hammerfall DSP MADI audio interface(s)
3 *
4 * Copyright (c) 2003 Winfried Ritsch (IEM)
5 * code based on hdsp.c Paul Davis
6 * Marcus Andersson
7 * Thomas Charbonnel
3cee5a60
RB
8 * Modified 2006-06-01 for AES32 support by Remy Bruno
9 * <remy.bruno@trinnov.com>
763f356c 10 *
0dca1793
AK
11 * Modified 2009-04-13 for proper metering by Florian Faber
12 * <faber@faberman.de>
13 *
14 * Modified 2009-04-14 for native float support by Florian Faber
15 * <faber@faberman.de>
16 *
17 * Modified 2009-04-26 fixed bug in rms metering by Florian Faber
18 * <faber@faberman.de>
19 *
20 * Modified 2009-04-30 added hw serial number support by Florian Faber
21 *
22 * Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
23 *
24 * Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
25 *
763f356c
TI
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 *
40 */
763f356c
TI
41#include <linux/init.h>
42#include <linux/delay.h>
43#include <linux/interrupt.h>
65a77217 44#include <linux/module.h>
763f356c
TI
45#include <linux/slab.h>
46#include <linux/pci.h>
3f7440a6 47#include <linux/math64.h>
763f356c
TI
48#include <asm/io.h>
49
50#include <sound/core.h>
51#include <sound/control.h>
52#include <sound/pcm.h>
0dca1793 53#include <sound/pcm_params.h>
763f356c
TI
54#include <sound/info.h>
55#include <sound/asoundef.h>
56#include <sound/rawmidi.h>
57#include <sound/hwdep.h>
58#include <sound/initval.h>
59
60#include <sound/hdspm.h>
61
62static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
63static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
a67ff6a5 64static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
763f356c 65
763f356c
TI
66module_param_array(index, int, NULL, 0444);
67MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
68
69module_param_array(id, charp, NULL, 0444);
70MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
71
72module_param_array(enable, bool, NULL, 0444);
73MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
74
763f356c
TI
75
76MODULE_AUTHOR
0dca1793
AK
77(
78 "Winfried Ritsch <ritsch_AT_iem.at>, "
79 "Paul Davis <paul@linuxaudiosystems.com>, "
80 "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
81 "Remy Bruno <remy.bruno@trinnov.com>, "
82 "Florian Faber <faberman@linuxproaudio.org>, "
83 "Adrian Knoth <adi@drcomp.erfurt.thur.de>"
84);
763f356c
TI
85MODULE_DESCRIPTION("RME HDSPM");
86MODULE_LICENSE("GPL");
87MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
88
0dca1793 89/* --- Write registers. ---
763f356c
TI
90 These are defined as byte-offsets from the iobase value. */
91
0dca1793
AK
92#define HDSPM_WR_SETTINGS 0
93#define HDSPM_outputBufferAddress 32
94#define HDSPM_inputBufferAddress 36
763f356c
TI
95#define HDSPM_controlRegister 64
96#define HDSPM_interruptConfirmation 96
97#define HDSPM_control2Reg 256 /* not in specs ???????? */
ffb2c3c0 98#define HDSPM_freqReg 256 /* for AES32 */
0dca1793
AK
99#define HDSPM_midiDataOut0 352 /* just believe in old code */
100#define HDSPM_midiDataOut1 356
ffb2c3c0 101#define HDSPM_eeprom_wr 384 /* for AES32 */
763f356c
TI
102
103/* DMA enable for 64 channels, only Bit 0 is relevant */
0dca1793 104#define HDSPM_outputEnableBase 512 /* 512-767 input DMA */
763f356c
TI
105#define HDSPM_inputEnableBase 768 /* 768-1023 output DMA */
106
0dca1793 107/* 16 page addresses for each of the 64 channels DMA buffer in and out
763f356c
TI
108 (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
109#define HDSPM_pageAddressBufferOut 8192
110#define HDSPM_pageAddressBufferIn (HDSPM_pageAddressBufferOut+64*16*4)
111
112#define HDSPM_MADI_mixerBase 32768 /* 32768-65535 for 2x64x64 Fader */
113
114#define HDSPM_MATRIX_MIXER_SIZE 8192 /* = 2*64*64 * 4 Byte => 32kB */
115
116/* --- Read registers. ---
117 These are defined as byte-offsets from the iobase value */
118#define HDSPM_statusRegister 0
3cee5a60
RB
119/*#define HDSPM_statusRegister2 96 */
120/* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
121 * offset 192, for AES32 *and* MADI
122 * => need to check that offset 192 is working on MADI */
123#define HDSPM_statusRegister2 192
124#define HDSPM_timecodeRegister 128
763f356c 125
0dca1793
AK
126/* AIO, RayDAT */
127#define HDSPM_RD_STATUS_0 0
128#define HDSPM_RD_STATUS_1 64
129#define HDSPM_RD_STATUS_2 128
130#define HDSPM_RD_STATUS_3 192
131
132#define HDSPM_RD_TCO 256
133#define HDSPM_RD_PLL_FREQ 512
134#define HDSPM_WR_TCO 128
135
136#define HDSPM_TCO1_TCO_lock 0x00000001
137#define HDSPM_TCO1_WCK_Input_Range_LSB 0x00000002
138#define HDSPM_TCO1_WCK_Input_Range_MSB 0x00000004
139#define HDSPM_TCO1_LTC_Input_valid 0x00000008
140#define HDSPM_TCO1_WCK_Input_valid 0x00000010
141#define HDSPM_TCO1_Video_Input_Format_NTSC 0x00000020
142#define HDSPM_TCO1_Video_Input_Format_PAL 0x00000040
143
144#define HDSPM_TCO1_set_TC 0x00000100
145#define HDSPM_TCO1_set_drop_frame_flag 0x00000200
146#define HDSPM_TCO1_LTC_Format_LSB 0x00000400
147#define HDSPM_TCO1_LTC_Format_MSB 0x00000800
148
149#define HDSPM_TCO2_TC_run 0x00010000
150#define HDSPM_TCO2_WCK_IO_ratio_LSB 0x00020000
151#define HDSPM_TCO2_WCK_IO_ratio_MSB 0x00040000
152#define HDSPM_TCO2_set_num_drop_frames_LSB 0x00080000
153#define HDSPM_TCO2_set_num_drop_frames_MSB 0x00100000
154#define HDSPM_TCO2_set_jam_sync 0x00200000
155#define HDSPM_TCO2_set_flywheel 0x00400000
156
157#define HDSPM_TCO2_set_01_4 0x01000000
158#define HDSPM_TCO2_set_pull_down 0x02000000
159#define HDSPM_TCO2_set_pull_up 0x04000000
160#define HDSPM_TCO2_set_freq 0x08000000
161#define HDSPM_TCO2_set_term_75R 0x10000000
162#define HDSPM_TCO2_set_input_LSB 0x20000000
163#define HDSPM_TCO2_set_input_MSB 0x40000000
164#define HDSPM_TCO2_set_freq_from_app 0x80000000
165
166
167#define HDSPM_midiDataOut0 352
168#define HDSPM_midiDataOut1 356
169#define HDSPM_midiDataOut2 368
170
763f356c
TI
171#define HDSPM_midiDataIn0 360
172#define HDSPM_midiDataIn1 364
0dca1793
AK
173#define HDSPM_midiDataIn2 372
174#define HDSPM_midiDataIn3 376
763f356c
TI
175
176/* status is data bytes in MIDI-FIFO (0-128) */
0dca1793
AK
177#define HDSPM_midiStatusOut0 384
178#define HDSPM_midiStatusOut1 388
179#define HDSPM_midiStatusOut2 400
180
181#define HDSPM_midiStatusIn0 392
182#define HDSPM_midiStatusIn1 396
183#define HDSPM_midiStatusIn2 404
184#define HDSPM_midiStatusIn3 408
763f356c
TI
185
186
187/* the meters are regular i/o-mapped registers, but offset
188 considerably from the rest. the peak registers are reset
0dca1793 189 when read; the least-significant 4 bits are full-scale counters;
763f356c
TI
190 the actual peak value is in the most-significant 24 bits.
191*/
0dca1793
AK
192
193#define HDSPM_MADI_INPUT_PEAK 4096
194#define HDSPM_MADI_PLAYBACK_PEAK 4352
195#define HDSPM_MADI_OUTPUT_PEAK 4608
196
197#define HDSPM_MADI_INPUT_RMS_L 6144
198#define HDSPM_MADI_PLAYBACK_RMS_L 6400
199#define HDSPM_MADI_OUTPUT_RMS_L 6656
200
201#define HDSPM_MADI_INPUT_RMS_H 7168
202#define HDSPM_MADI_PLAYBACK_RMS_H 7424
203#define HDSPM_MADI_OUTPUT_RMS_H 7680
763f356c
TI
204
205/* --- Control Register bits --------- */
206#define HDSPM_Start (1<<0) /* start engine */
207
208#define HDSPM_Latency0 (1<<1) /* buffer size = 2^n */
209#define HDSPM_Latency1 (1<<2) /* where n is defined */
210#define HDSPM_Latency2 (1<<3) /* by Latency{2,1,0} */
211
0dca1793
AK
212#define HDSPM_ClockModeMaster (1<<4) /* 1=Master, 0=Autosync */
213#define HDSPM_c0Master 0x1 /* Master clock bit in settings
214 register [RayDAT, AIO] */
763f356c
TI
215
216#define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
217
218#define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
219#define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */
220#define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */
3cee5a60 221#define HDSPM_QuadSpeed (1<<31) /* quad speed bit */
763f356c 222
3cee5a60 223#define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
763f356c 224#define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1,
3cee5a60
RB
225 56channelMODE=0 */ /* MADI ONLY*/
226#define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */
763f356c 227
0dca1793 228#define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode,
3cee5a60
RB
229 0=off, 1=on */ /* MADI ONLY */
230#define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
763f356c 231
ef5fa1a4
TI
232#define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
233 * -- MADI ONLY
234 */
763f356c
TI
235#define HDSPM_InputSelect1 (1<<15) /* should be 0 */
236
3cee5a60
RB
237#define HDSPM_SyncRef2 (1<<13)
238#define HDSPM_SyncRef3 (1<<25)
763f356c 239
3cee5a60 240#define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */
0dca1793 241#define HDSPM_clr_tms (1<<19) /* clear track marker, do not use
763f356c
TI
242 AES additional bits in
243 lower 5 Audiodatabits ??? */
3cee5a60
RB
244#define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */
245#define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
763f356c 246
0dca1793
AK
247#define HDSPM_Midi0InterruptEnable 0x0400000
248#define HDSPM_Midi1InterruptEnable 0x0800000
249#define HDSPM_Midi2InterruptEnable 0x0200000
250#define HDSPM_Midi3InterruptEnable 0x4000000
763f356c
TI
251
252#define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
0dca1793 253#define HDSPe_FLOAT_FORMAT 0x2000000
763f356c 254
3cee5a60
RB
255#define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
256#define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
257#define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */
258
259#define HDSPM_wclk_sel (1<<30)
763f356c
TI
260
261/* --- bit helper defines */
262#define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
ef5fa1a4
TI
263#define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|\
264 HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
763f356c
TI
265#define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1)
266#define HDSPM_InputOptical 0
267#define HDSPM_InputCoaxial (HDSPM_InputSelect0)
ef5fa1a4
TI
268#define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|\
269 HDSPM_SyncRef2|HDSPM_SyncRef3)
763f356c 270
0dca1793
AK
271#define HDSPM_c0_SyncRef0 0x2
272#define HDSPM_c0_SyncRef1 0x4
273#define HDSPM_c0_SyncRef2 0x8
274#define HDSPM_c0_SyncRef3 0x10
275#define HDSPM_c0_SyncRefMask (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
276 HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
277
278#define HDSPM_SYNC_FROM_WORD 0 /* Preferred sync reference */
279#define HDSPM_SYNC_FROM_MADI 1 /* choices - used by "pref_sync_ref" */
280#define HDSPM_SYNC_FROM_TCO 2
281#define HDSPM_SYNC_FROM_SYNC_IN 3
763f356c
TI
282
283#define HDSPM_Frequency32KHz HDSPM_Frequency0
284#define HDSPM_Frequency44_1KHz HDSPM_Frequency1
285#define HDSPM_Frequency48KHz (HDSPM_Frequency1|HDSPM_Frequency0)
286#define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0)
287#define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
ef5fa1a4
TI
288#define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
289 HDSPM_Frequency0)
3cee5a60
RB
290#define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0)
291#define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1)
ef5fa1a4
TI
292#define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|\
293 HDSPM_Frequency0)
763f356c 294
763f356c
TI
295
296/* Synccheck Status */
297#define HDSPM_SYNC_CHECK_NO_LOCK 0
298#define HDSPM_SYNC_CHECK_LOCK 1
299#define HDSPM_SYNC_CHECK_SYNC 2
300
301/* AutoSync References - used by "autosync_ref" control switch */
302#define HDSPM_AUTOSYNC_FROM_WORD 0
303#define HDSPM_AUTOSYNC_FROM_MADI 1
0dca1793
AK
304#define HDSPM_AUTOSYNC_FROM_TCO 2
305#define HDSPM_AUTOSYNC_FROM_SYNC_IN 3
306#define HDSPM_AUTOSYNC_FROM_NONE 4
763f356c
TI
307
308/* Possible sources of MADI input */
309#define HDSPM_OPTICAL 0 /* optical */
310#define HDSPM_COAXIAL 1 /* BNC */
311
312#define hdspm_encode_latency(x) (((x)<<1) & HDSPM_LatencyMask)
0dca1793 313#define hdspm_decode_latency(x) ((((x) & HDSPM_LatencyMask)>>1))
763f356c
TI
314
315#define hdspm_encode_in(x) (((x)&0x3)<<14)
316#define hdspm_decode_in(x) (((x)>>14)&0x3)
317
318/* --- control2 register bits --- */
319#define HDSPM_TMS (1<<0)
320#define HDSPM_TCK (1<<1)
321#define HDSPM_TDI (1<<2)
322#define HDSPM_JTAG (1<<3)
323#define HDSPM_PWDN (1<<4)
324#define HDSPM_PROGRAM (1<<5)
325#define HDSPM_CONFIG_MODE_0 (1<<6)
326#define HDSPM_CONFIG_MODE_1 (1<<7)
327/*#define HDSPM_VERSION_BIT (1<<8) not defined any more*/
328#define HDSPM_BIGENDIAN_MODE (1<<9)
329#define HDSPM_RD_MULTIPLE (1<<10)
330
3cee5a60 331/* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
ef5fa1a4
TI
332 that do not conflict with specific bits for AES32 seem to be valid also
333 for the AES32
334 */
763f356c 335#define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */
ef5fa1a4
TI
336#define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn MODE=0 */
337#define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1
338 * (like inp0)
339 */
0dca1793 340
763f356c 341#define HDSPM_madiLock (1<<3) /* MADI Locked =1, no=0 */
0dca1793
AK
342#define HDSPM_madiSync (1<<18) /* MADI is in sync */
343
344#define HDSPM_tcoLock 0x00000020 /* Optional TCO locked status FOR HDSPe MADI! */
345#define HDSPM_tcoSync 0x10000000 /* Optional TCO sync status */
346
347#define HDSPM_syncInLock 0x00010000 /* Sync In lock status FOR HDSPe MADI! */
348#define HDSPM_syncInSync 0x00020000 /* Sync In sync status FOR HDSPe MADI! */
763f356c
TI
349
350#define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
0dca1793
AK
351 /* since 64byte accurate, last 6 bits are not used */
352
353
763f356c 354
763f356c
TI
355#define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
356
357#define HDSPM_madiFreq0 (1<<22) /* system freq 0=error */
358#define HDSPM_madiFreq1 (1<<23) /* 1=32, 2=44.1 3=48 */
359#define HDSPM_madiFreq2 (1<<24) /* 4=64, 5=88.2 6=96 */
360#define HDSPM_madiFreq3 (1<<25) /* 7=128, 8=176.4 9=192 */
361
ef5fa1a4
TI
362#define HDSPM_BufferID (1<<26) /* (Double)Buffer ID toggles with
363 * Interrupt
364 */
0dca1793
AK
365#define HDSPM_tco_detect 0x08000000
366#define HDSPM_tco_lock 0x20000000
367
368#define HDSPM_s2_tco_detect 0x00000040
369#define HDSPM_s2_AEBO_D 0x00000080
370#define HDSPM_s2_AEBI_D 0x00000100
371
372
373#define HDSPM_midi0IRQPending 0x40000000
374#define HDSPM_midi1IRQPending 0x80000000
375#define HDSPM_midi2IRQPending 0x20000000
376#define HDSPM_midi2IRQPendingAES 0x00000020
377#define HDSPM_midi3IRQPending 0x00200000
763f356c
TI
378
379/* --- status bit helpers */
ef5fa1a4
TI
380#define HDSPM_madiFreqMask (HDSPM_madiFreq0|HDSPM_madiFreq1|\
381 HDSPM_madiFreq2|HDSPM_madiFreq3)
763f356c
TI
382#define HDSPM_madiFreq32 (HDSPM_madiFreq0)
383#define HDSPM_madiFreq44_1 (HDSPM_madiFreq1)
384#define HDSPM_madiFreq48 (HDSPM_madiFreq0|HDSPM_madiFreq1)
385#define HDSPM_madiFreq64 (HDSPM_madiFreq2)
386#define HDSPM_madiFreq88_2 (HDSPM_madiFreq0|HDSPM_madiFreq2)
387#define HDSPM_madiFreq96 (HDSPM_madiFreq1|HDSPM_madiFreq2)
388#define HDSPM_madiFreq128 (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
389#define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
390#define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0)
391
3cee5a60 392/* Status2 Register bits */ /* MADI ONLY */
763f356c 393
25985edc 394#define HDSPM_version0 (1<<0) /* not really defined but I guess */
763f356c
TI
395#define HDSPM_version1 (1<<1) /* in former cards it was ??? */
396#define HDSPM_version2 (1<<2)
397
398#define HDSPM_wcLock (1<<3) /* Wordclock is detected and locked */
399#define HDSPM_wcSync (1<<4) /* Wordclock is in sync with systemclock */
400
401#define HDSPM_wc_freq0 (1<<5) /* input freq detected via autosync */
402#define HDSPM_wc_freq1 (1<<6) /* 001=32, 010==44.1, 011=48, */
403#define HDSPM_wc_freq2 (1<<7) /* 100=64, 101=88.2, 110=96, */
404/* missing Bit for 111=128, 1000=176.4, 1001=192 */
405
0dca1793
AK
406#define HDSPM_SyncRef0 0x10000 /* Sync Reference */
407#define HDSPM_SyncRef1 0x20000
408
409#define HDSPM_SelSyncRef0 (1<<8) /* AutoSync Source */
763f356c
TI
410#define HDSPM_SelSyncRef1 (1<<9) /* 000=word, 001=MADI, */
411#define HDSPM_SelSyncRef2 (1<<10) /* 111=no valid signal */
412
413#define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
414
415#define HDSPM_wcFreqMask (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
416#define HDSPM_wcFreq32 (HDSPM_wc_freq0)
417#define HDSPM_wcFreq44_1 (HDSPM_wc_freq1)
418#define HDSPM_wcFreq48 (HDSPM_wc_freq0|HDSPM_wc_freq1)
419#define HDSPM_wcFreq64 (HDSPM_wc_freq2)
420#define HDSPM_wcFreq88_2 (HDSPM_wc_freq0|HDSPM_wc_freq2)
421#define HDSPM_wcFreq96 (HDSPM_wc_freq1|HDSPM_wc_freq2)
422
0dca1793
AK
423#define HDSPM_status1_F_0 0x0400000
424#define HDSPM_status1_F_1 0x0800000
425#define HDSPM_status1_F_2 0x1000000
426#define HDSPM_status1_F_3 0x2000000
427#define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
428
763f356c 429
ef5fa1a4
TI
430#define HDSPM_SelSyncRefMask (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
431 HDSPM_SelSyncRef2)
763f356c
TI
432#define HDSPM_SelSyncRef_WORD 0
433#define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0)
0dca1793
AK
434#define HDSPM_SelSyncRef_TCO (HDSPM_SelSyncRef1)
435#define HDSPM_SelSyncRef_SyncIn (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
ef5fa1a4
TI
436#define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
437 HDSPM_SelSyncRef2)
763f356c 438
3cee5a60
RB
439/*
440 For AES32, bits for status, status2 and timecode are different
441*/
442/* status */
443#define HDSPM_AES32_wcLock 0x0200000
444#define HDSPM_AES32_wcFreq_bit 22
0dca1793 445/* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
3cee5a60
RB
446 HDSPM_bit2freq */
447#define HDSPM_AES32_syncref_bit 16
448/* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
449
450#define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
451#define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
452#define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
453#define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
454#define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
455#define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
456#define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
457#define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
458#define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
6534599d 459#define HDSPM_AES32_AUTOSYNC_FROM_NONE 9
3cee5a60
RB
460
461/* status2 */
462/* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
463#define HDSPM_LockAES 0x80
464#define HDSPM_LockAES1 0x80
465#define HDSPM_LockAES2 0x40
466#define HDSPM_LockAES3 0x20
467#define HDSPM_LockAES4 0x10
468#define HDSPM_LockAES5 0x8
469#define HDSPM_LockAES6 0x4
470#define HDSPM_LockAES7 0x2
471#define HDSPM_LockAES8 0x1
472/*
473 Timecode
474 After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
475 AES i+1
476 bits 3210
477 0001 32kHz
478 0010 44.1kHz
479 0011 48kHz
480 0100 64kHz
481 0101 88.2kHz
482 0110 96kHz
483 0111 128kHz
484 1000 176.4kHz
485 1001 192kHz
486 NB: Timecode register doesn't seem to work on AES32 card revision 230
487*/
488
763f356c
TI
489/* Mixer Values */
490#define UNITY_GAIN 32768 /* = 65536/2 */
491#define MINUS_INFINITY_GAIN 0
492
763f356c
TI
493/* Number of channels for different Speed Modes */
494#define MADI_SS_CHANNELS 64
495#define MADI_DS_CHANNELS 32
496#define MADI_QS_CHANNELS 16
497
0dca1793
AK
498#define RAYDAT_SS_CHANNELS 36
499#define RAYDAT_DS_CHANNELS 20
500#define RAYDAT_QS_CHANNELS 12
501
502#define AIO_IN_SS_CHANNELS 14
503#define AIO_IN_DS_CHANNELS 10
504#define AIO_IN_QS_CHANNELS 8
505#define AIO_OUT_SS_CHANNELS 16
506#define AIO_OUT_DS_CHANNELS 12
507#define AIO_OUT_QS_CHANNELS 10
508
d2d10a21
AK
509#define AES32_CHANNELS 16
510
763f356c
TI
511/* the size of a substream (1 mono data stream) */
512#define HDSPM_CHANNEL_BUFFER_SAMPLES (16*1024)
513#define HDSPM_CHANNEL_BUFFER_BYTES (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
514
515/* the size of the area we need to allocate for DMA transfers. the
516 size is the same regardless of the number of channels, and
0dca1793 517 also the latency to use.
763f356c
TI
518 for one direction !!!
519*/
ffb2c3c0 520#define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
763f356c
TI
521#define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
522
0dca1793
AK
523#define HDSPM_RAYDAT_REV 211
524#define HDSPM_AIO_REV 212
525#define HDSPM_MADIFACE_REV 213
3cee5a60 526
6534599d
RB
527/* speed factor modes */
528#define HDSPM_SPEED_SINGLE 0
529#define HDSPM_SPEED_DOUBLE 1
530#define HDSPM_SPEED_QUAD 2
0dca1793 531
6534599d
RB
532/* names for speed modes */
533static char *hdspm_speed_names[] = { "single", "double", "quad" };
534
0dca1793
AK
535static char *texts_autosync_aes_tco[] = { "Word Clock",
536 "AES1", "AES2", "AES3", "AES4",
537 "AES5", "AES6", "AES7", "AES8",
538 "TCO" };
539static char *texts_autosync_aes[] = { "Word Clock",
540 "AES1", "AES2", "AES3", "AES4",
541 "AES5", "AES6", "AES7", "AES8" };
542static char *texts_autosync_madi_tco[] = { "Word Clock",
543 "MADI", "TCO", "Sync In" };
544static char *texts_autosync_madi[] = { "Word Clock",
545 "MADI", "Sync In" };
546
547static char *texts_autosync_raydat_tco[] = {
548 "Word Clock",
549 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
550 "AES", "SPDIF", "TCO", "Sync In"
551};
552static char *texts_autosync_raydat[] = {
553 "Word Clock",
554 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
555 "AES", "SPDIF", "Sync In"
556};
557static char *texts_autosync_aio_tco[] = {
558 "Word Clock",
559 "ADAT", "AES", "SPDIF", "TCO", "Sync In"
560};
561static char *texts_autosync_aio[] = { "Word Clock",
562 "ADAT", "AES", "SPDIF", "Sync In" };
563
564static char *texts_freq[] = {
565 "No Lock",
566 "32 kHz",
567 "44.1 kHz",
568 "48 kHz",
569 "64 kHz",
570 "88.2 kHz",
571 "96 kHz",
572 "128 kHz",
573 "176.4 kHz",
574 "192 kHz"
575};
576
0dca1793
AK
577static char *texts_ports_madi[] = {
578 "MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
579 "MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
580 "MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
581 "MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
582 "MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
583 "MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
584 "MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
585 "MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
586 "MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
587 "MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
588 "MADI.61", "MADI.62", "MADI.63", "MADI.64",
589};
590
591
592static char *texts_ports_raydat_ss[] = {
593 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
594 "ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
595 "ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
596 "ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
597 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
598 "ADAT4.7", "ADAT4.8",
599 "AES.L", "AES.R",
600 "SPDIF.L", "SPDIF.R"
601};
602
603static char *texts_ports_raydat_ds[] = {
604 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
605 "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
606 "ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
607 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
608 "AES.L", "AES.R",
609 "SPDIF.L", "SPDIF.R"
610};
611
612static char *texts_ports_raydat_qs[] = {
613 "ADAT1.1", "ADAT1.2",
614 "ADAT2.1", "ADAT2.2",
615 "ADAT3.1", "ADAT3.2",
616 "ADAT4.1", "ADAT4.2",
617 "AES.L", "AES.R",
618 "SPDIF.L", "SPDIF.R"
619};
620
621
622static char *texts_ports_aio_in_ss[] = {
623 "Analogue.L", "Analogue.R",
624 "AES.L", "AES.R",
625 "SPDIF.L", "SPDIF.R",
626 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
627 "ADAT.7", "ADAT.8"
628};
629
630static char *texts_ports_aio_out_ss[] = {
631 "Analogue.L", "Analogue.R",
632 "AES.L", "AES.R",
633 "SPDIF.L", "SPDIF.R",
634 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
635 "ADAT.7", "ADAT.8",
636 "Phone.L", "Phone.R"
637};
638
639static char *texts_ports_aio_in_ds[] = {
640 "Analogue.L", "Analogue.R",
641 "AES.L", "AES.R",
642 "SPDIF.L", "SPDIF.R",
643 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
644};
645
646static char *texts_ports_aio_out_ds[] = {
647 "Analogue.L", "Analogue.R",
648 "AES.L", "AES.R",
649 "SPDIF.L", "SPDIF.R",
650 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
651 "Phone.L", "Phone.R"
652};
653
654static char *texts_ports_aio_in_qs[] = {
655 "Analogue.L", "Analogue.R",
656 "AES.L", "AES.R",
657 "SPDIF.L", "SPDIF.R",
658 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
659};
660
661static char *texts_ports_aio_out_qs[] = {
662 "Analogue.L", "Analogue.R",
663 "AES.L", "AES.R",
664 "SPDIF.L", "SPDIF.R",
665 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
666 "Phone.L", "Phone.R"
667};
668
432d2500
AK
669static char *texts_ports_aes32[] = {
670 "AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
671 "AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
672 "AES.15", "AES.16"
673};
674
55a57606
AK
675/* These tables map the ALSA channels 1..N to the channels that we
676 need to use in order to find the relevant channel buffer. RME
677 refers to this kind of mapping as between "the ADAT channel and
678 the DMA channel." We index it using the logical audio channel,
679 and the value is the DMA channel (i.e. channel buffer number)
680 where the data for that channel can be read/written from/to.
681*/
682
683static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
684 0, 1, 2, 3, 4, 5, 6, 7,
685 8, 9, 10, 11, 12, 13, 14, 15,
686 16, 17, 18, 19, 20, 21, 22, 23,
687 24, 25, 26, 27, 28, 29, 30, 31,
688 32, 33, 34, 35, 36, 37, 38, 39,
689 40, 41, 42, 43, 44, 45, 46, 47,
690 48, 49, 50, 51, 52, 53, 54, 55,
691 56, 57, 58, 59, 60, 61, 62, 63
692};
693
55a57606
AK
694static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
695 4, 5, 6, 7, 8, 9, 10, 11, /* ADAT 1 */
696 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT 2 */
697 20, 21, 22, 23, 24, 25, 26, 27, /* ADAT 3 */
698 28, 29, 30, 31, 32, 33, 34, 35, /* ADAT 4 */
699 0, 1, /* AES */
700 2, 3, /* SPDIF */
701 -1, -1, -1, -1,
702 -1, -1, -1, -1, -1, -1, -1, -1,
703 -1, -1, -1, -1, -1, -1, -1, -1,
704 -1, -1, -1, -1, -1, -1, -1, -1,
705};
706
707static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
708 4, 5, 6, 7, /* ADAT 1 */
709 8, 9, 10, 11, /* ADAT 2 */
710 12, 13, 14, 15, /* ADAT 3 */
711 16, 17, 18, 19, /* ADAT 4 */
712 0, 1, /* AES */
713 2, 3, /* SPDIF */
714 -1, -1, -1, -1,
715 -1, -1, -1, -1, -1, -1, -1, -1,
716 -1, -1, -1, -1, -1, -1, -1, -1,
717 -1, -1, -1, -1, -1, -1, -1, -1,
718 -1, -1, -1, -1, -1, -1, -1, -1,
719 -1, -1, -1, -1, -1, -1, -1, -1,
720};
721
722static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
723 4, 5, /* ADAT 1 */
724 6, 7, /* ADAT 2 */
725 8, 9, /* ADAT 3 */
726 10, 11, /* ADAT 4 */
727 0, 1, /* AES */
728 2, 3, /* SPDIF */
729 -1, -1, -1, -1,
730 -1, -1, -1, -1, -1, -1, -1, -1,
731 -1, -1, -1, -1, -1, -1, -1, -1,
732 -1, -1, -1, -1, -1, -1, -1, -1,
733 -1, -1, -1, -1, -1, -1, -1, -1,
734 -1, -1, -1, -1, -1, -1, -1, -1,
735 -1, -1, -1, -1, -1, -1, -1, -1,
736};
737
738static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
739 0, 1, /* line in */
740 8, 9, /* aes in, */
741 10, 11, /* spdif in */
742 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT in */
743 -1, -1,
744 -1, -1, -1, -1, -1, -1, -1, -1,
745 -1, -1, -1, -1, -1, -1, -1, -1,
746 -1, -1, -1, -1, -1, -1, -1, -1,
747 -1, -1, -1, -1, -1, -1, -1, -1,
748 -1, -1, -1, -1, -1, -1, -1, -1,
749 -1, -1, -1, -1, -1, -1, -1, -1,
750};
751
752static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
753 0, 1, /* line out */
754 8, 9, /* aes out */
755 10, 11, /* spdif out */
756 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT out */
757 6, 7, /* phone out */
758 -1, -1, -1, -1, -1, -1, -1, -1,
759 -1, -1, -1, -1, -1, -1, -1, -1,
760 -1, -1, -1, -1, -1, -1, -1, -1,
761 -1, -1, -1, -1, -1, -1, -1, -1,
762 -1, -1, -1, -1, -1, -1, -1, -1,
763 -1, -1, -1, -1, -1, -1, -1, -1,
764};
765
766static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
767 0, 1, /* line in */
768 8, 9, /* aes in */
769 10, 11, /* spdif in */
770 12, 14, 16, 18, /* adat in */
771 -1, -1, -1, -1, -1, -1,
772 -1, -1, -1, -1, -1, -1, -1, -1,
773 -1, -1, -1, -1, -1, -1, -1, -1,
774 -1, -1, -1, -1, -1, -1, -1, -1,
775 -1, -1, -1, -1, -1, -1, -1, -1,
776 -1, -1, -1, -1, -1, -1, -1, -1,
777 -1, -1, -1, -1, -1, -1, -1, -1
778};
779
780static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
781 0, 1, /* line out */
782 8, 9, /* aes out */
783 10, 11, /* spdif out */
784 12, 14, 16, 18, /* adat out */
785 6, 7, /* phone out */
786 -1, -1, -1, -1,
787 -1, -1, -1, -1, -1, -1, -1, -1,
788 -1, -1, -1, -1, -1, -1, -1, -1,
789 -1, -1, -1, -1, -1, -1, -1, -1,
790 -1, -1, -1, -1, -1, -1, -1, -1,
791 -1, -1, -1, -1, -1, -1, -1, -1,
792 -1, -1, -1, -1, -1, -1, -1, -1
793};
794
795static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
796 0, 1, /* line in */
797 8, 9, /* aes in */
798 10, 11, /* spdif in */
799 12, 16, /* adat in */
800 -1, -1, -1, -1, -1, -1, -1, -1,
801 -1, -1, -1, -1, -1, -1, -1, -1,
802 -1, -1, -1, -1, -1, -1, -1, -1,
803 -1, -1, -1, -1, -1, -1, -1, -1,
804 -1, -1, -1, -1, -1, -1, -1, -1,
805 -1, -1, -1, -1, -1, -1, -1, -1,
806 -1, -1, -1, -1, -1, -1, -1, -1
807};
808
809static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
810 0, 1, /* line out */
811 8, 9, /* aes out */
812 10, 11, /* spdif out */
813 12, 16, /* adat out */
814 6, 7, /* phone out */
815 -1, -1, -1, -1, -1, -1,
816 -1, -1, -1, -1, -1, -1, -1, -1,
817 -1, -1, -1, -1, -1, -1, -1, -1,
818 -1, -1, -1, -1, -1, -1, -1, -1,
819 -1, -1, -1, -1, -1, -1, -1, -1,
820 -1, -1, -1, -1, -1, -1, -1, -1,
821 -1, -1, -1, -1, -1, -1, -1, -1
822};
823
432d2500
AK
824static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
825 0, 1, 2, 3, 4, 5, 6, 7,
826 8, 9, 10, 11, 12, 13, 14, 15,
827 -1, -1, -1, -1, -1, -1, -1, -1,
828 -1, -1, -1, -1, -1, -1, -1, -1,
829 -1, -1, -1, -1, -1, -1, -1, -1,
830 -1, -1, -1, -1, -1, -1, -1, -1,
831 -1, -1, -1, -1, -1, -1, -1, -1,
832 -1, -1, -1, -1, -1, -1, -1, -1
833};
834
98274f07
TI
835struct hdspm_midi {
836 struct hdspm *hdspm;
763f356c 837 int id;
98274f07
TI
838 struct snd_rawmidi *rmidi;
839 struct snd_rawmidi_substream *input;
840 struct snd_rawmidi_substream *output;
763f356c
TI
841 char istimer; /* timer in use */
842 struct timer_list timer;
843 spinlock_t lock;
844 int pending;
0dca1793
AK
845 int dataIn;
846 int statusIn;
847 int dataOut;
848 int statusOut;
849 int ie;
850 int irq;
851};
852
853struct hdspm_tco {
854 int input;
855 int framerate;
856 int wordclock;
857 int samplerate;
858 int pull;
859 int term; /* 0 = off, 1 = on */
763f356c
TI
860};
861
98274f07 862struct hdspm {
763f356c 863 spinlock_t lock;
ef5fa1a4
TI
864 /* only one playback and/or capture stream */
865 struct snd_pcm_substream *capture_substream;
866 struct snd_pcm_substream *playback_substream;
763f356c
TI
867
868 char *card_name; /* for procinfo */
3cee5a60
RB
869 unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
870
0dca1793 871 uint8_t io_type;
763f356c 872
763f356c
TI
873 int monitor_outs; /* set up monitoring outs init flag */
874
875 u32 control_register; /* cached value */
876 u32 control2_register; /* cached value */
0dca1793 877 u32 settings_register;
763f356c 878
0dca1793 879 struct hdspm_midi midi[4];
763f356c
TI
880 struct tasklet_struct midi_tasklet;
881
882 size_t period_bytes;
0dca1793
AK
883 unsigned char ss_in_channels;
884 unsigned char ds_in_channels;
885 unsigned char qs_in_channels;
886 unsigned char ss_out_channels;
887 unsigned char ds_out_channels;
888 unsigned char qs_out_channels;
889
890 unsigned char max_channels_in;
891 unsigned char max_channels_out;
892
286bed0f
TI
893 signed char *channel_map_in;
894 signed char *channel_map_out;
0dca1793 895
286bed0f
TI
896 signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
897 signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
0dca1793
AK
898
899 char **port_names_in;
900 char **port_names_out;
901
902 char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
903 char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;
763f356c
TI
904
905 unsigned char *playback_buffer; /* suitably aligned address */
906 unsigned char *capture_buffer; /* suitably aligned address */
907
908 pid_t capture_pid; /* process id which uses capture */
909 pid_t playback_pid; /* process id which uses capture */
910 int running; /* running status */
911
912 int last_external_sample_rate; /* samplerate mystic ... */
913 int last_internal_sample_rate;
914 int system_sample_rate;
915
763f356c
TI
916 int dev; /* Hardware vars... */
917 int irq;
918 unsigned long port;
919 void __iomem *iobase;
920
921 int irq_count; /* for debug */
0dca1793 922 int midiPorts;
763f356c 923
98274f07
TI
924 struct snd_card *card; /* one card */
925 struct snd_pcm *pcm; /* has one pcm */
926 struct snd_hwdep *hwdep; /* and a hwdep for additional ioctl */
763f356c
TI
927 struct pci_dev *pci; /* and an pci info */
928
929 /* Mixer vars */
ef5fa1a4
TI
930 /* fast alsa mixer */
931 struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
932 /* but input to much, so not used */
933 struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
25985edc 934 /* full mixer accessible over mixer ioctl or hwdep-device */
ef5fa1a4 935 struct hdspm_mixer *mixer;
763f356c 936
0dca1793 937 struct hdspm_tco *tco; /* NULL if no TCO detected */
763f356c 938
0dca1793
AK
939 char **texts_autosync;
940 int texts_autosync_items;
763f356c 941
0dca1793 942 cycles_t last_interrupt;
730a5865 943
7d53a631
AK
944 unsigned int serial;
945
730a5865 946 struct hdspm_peak_rms peak_rms;
763f356c
TI
947};
948
763f356c 949
cebe41d4 950static DEFINE_PCI_DEVICE_TABLE(snd_hdspm_ids) = {
763f356c
TI
951 {
952 .vendor = PCI_VENDOR_ID_XILINX,
953 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
954 .subvendor = PCI_ANY_ID,
955 .subdevice = PCI_ANY_ID,
956 .class = 0,
957 .class_mask = 0,
958 .driver_data = 0},
959 {0,}
960};
961
962MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
963
964/* prototypes */
98274f07
TI
965static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
966 struct hdspm * hdspm);
967static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
968 struct hdspm * hdspm);
969
0dca1793
AK
970static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
971static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
972static int hdspm_autosync_ref(struct hdspm *hdspm);
973static int snd_hdspm_set_defaults(struct hdspm *hdspm);
974static void hdspm_set_sgbuf(struct hdspm *hdspm,
77a23f26 975 struct snd_pcm_substream *substream,
763f356c
TI
976 unsigned int reg, int channels);
977
3cee5a60
RB
978static inline int HDSPM_bit2freq(int n)
979{
62cef821
DV
980 static const int bit2freq_tab[] = {
981 0, 32000, 44100, 48000, 64000, 88200,
3cee5a60
RB
982 96000, 128000, 176400, 192000 };
983 if (n < 1 || n > 9)
984 return 0;
985 return bit2freq_tab[n];
986}
987
0dca1793 988/* Write/read to/from HDSPM with Adresses in Bytes
763f356c
TI
989 not words but only 32Bit writes are allowed */
990
98274f07 991static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
763f356c
TI
992 unsigned int val)
993{
994 writel(val, hdspm->iobase + reg);
995}
996
98274f07 997static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
763f356c
TI
998{
999 return readl(hdspm->iobase + reg);
1000}
1001
0dca1793
AK
1002/* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1003 mixer is write only on hardware so we have to cache him for read
763f356c
TI
1004 each fader is a u32, but uses only the first 16 bit */
1005
98274f07 1006static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
763f356c
TI
1007 unsigned int in)
1008{
5bab2482 1009 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
763f356c
TI
1010 return 0;
1011
1012 return hdspm->mixer->ch[chan].in[in];
1013}
1014
98274f07 1015static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
763f356c
TI
1016 unsigned int pb)
1017{
5bab2482 1018 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
763f356c
TI
1019 return 0;
1020 return hdspm->mixer->ch[chan].pb[pb];
1021}
1022
62cef821 1023static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
763f356c
TI
1024 unsigned int in, unsigned short data)
1025{
1026 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1027 return -1;
1028
1029 hdspm_write(hdspm,
1030 HDSPM_MADI_mixerBase +
1031 ((in + 128 * chan) * sizeof(u32)),
1032 (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1033 return 0;
1034}
1035
62cef821 1036static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
763f356c
TI
1037 unsigned int pb, unsigned short data)
1038{
1039 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1040 return -1;
1041
1042 hdspm_write(hdspm,
1043 HDSPM_MADI_mixerBase +
1044 ((64 + pb + 128 * chan) * sizeof(u32)),
1045 (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1046 return 0;
1047}
1048
1049
1050/* enable DMA for specific channels, now available for DSP-MADI */
98274f07 1051static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
763f356c
TI
1052{
1053 hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1054}
1055
98274f07 1056static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
763f356c
TI
1057{
1058 hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1059}
1060
1061/* check if same process is writing and reading */
62cef821 1062static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
763f356c
TI
1063{
1064 unsigned long flags;
1065 int ret = 1;
1066
1067 spin_lock_irqsave(&hdspm->lock, flags);
1068 if ((hdspm->playback_pid != hdspm->capture_pid) &&
1069 (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1070 ret = 0;
1071 }
1072 spin_unlock_irqrestore(&hdspm->lock, flags);
1073 return ret;
1074}
1075
1076/* check for external sample rate */
62cef821 1077static int hdspm_external_sample_rate(struct hdspm *hdspm)
763f356c 1078{
0dca1793
AK
1079 unsigned int status, status2, timecode;
1080 int syncref, rate = 0, rate_bits;
3cee5a60 1081
0dca1793
AK
1082 switch (hdspm->io_type) {
1083 case AES32:
1084 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1085 status = hdspm_read(hdspm, HDSPM_statusRegister);
7c4a95b5 1086 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
0dca1793
AK
1087
1088 syncref = hdspm_autosync_ref(hdspm);
3cee5a60
RB
1089
1090 if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD &&
1091 status & HDSPM_AES32_wcLock)
0dca1793
AK
1092 return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF);
1093
3cee5a60 1094 if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 &&
0dca1793
AK
1095 syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 &&
1096 status2 & (HDSPM_LockAES >>
1097 (syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)))
1098 return HDSPM_bit2freq((timecode >> (4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF);
3cee5a60 1099 return 0;
0dca1793
AK
1100 break;
1101
1102 case MADIface:
1103 status = hdspm_read(hdspm, HDSPM_statusRegister);
1104
1105 if (!(status & HDSPM_madiLock)) {
1106 rate = 0; /* no lock */
1107 } else {
1108 switch (status & (HDSPM_status1_freqMask)) {
1109 case HDSPM_status1_F_0*1:
1110 rate = 32000; break;
1111 case HDSPM_status1_F_0*2:
1112 rate = 44100; break;
1113 case HDSPM_status1_F_0*3:
1114 rate = 48000; break;
1115 case HDSPM_status1_F_0*4:
1116 rate = 64000; break;
1117 case HDSPM_status1_F_0*5:
1118 rate = 88200; break;
1119 case HDSPM_status1_F_0*6:
1120 rate = 96000; break;
1121 case HDSPM_status1_F_0*7:
1122 rate = 128000; break;
1123 case HDSPM_status1_F_0*8:
1124 rate = 176400; break;
1125 case HDSPM_status1_F_0*9:
1126 rate = 192000; break;
1127 default:
1128 rate = 0; break;
1129 }
1130 }
1131
1132 break;
1133
1134 case MADI:
1135 case AIO:
1136 case RayDAT:
1137 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1138 status = hdspm_read(hdspm, HDSPM_statusRegister);
1139 rate = 0;
763f356c 1140
3cee5a60
RB
1141 /* if wordclock has synced freq and wordclock is valid */
1142 if ((status2 & HDSPM_wcLock) != 0 &&
fedf1535 1143 (status2 & HDSPM_SelSyncRef0) == 0) {
763f356c 1144
3cee5a60 1145 rate_bits = status2 & HDSPM_wcFreqMask;
763f356c 1146
0dca1793 1147
3cee5a60
RB
1148 switch (rate_bits) {
1149 case HDSPM_wcFreq32:
1150 rate = 32000;
1151 break;
1152 case HDSPM_wcFreq44_1:
1153 rate = 44100;
1154 break;
1155 case HDSPM_wcFreq48:
1156 rate = 48000;
1157 break;
1158 case HDSPM_wcFreq64:
1159 rate = 64000;
1160 break;
1161 case HDSPM_wcFreq88_2:
1162 rate = 88200;
1163 break;
1164 case HDSPM_wcFreq96:
1165 rate = 96000;
1166 break;
3cee5a60
RB
1167 default:
1168 rate = 0;
1169 break;
1170 }
763f356c 1171 }
763f356c 1172
ef5fa1a4
TI
1173 /* if rate detected and Syncref is Word than have it,
1174 * word has priority to MADI
1175 */
3cee5a60 1176 if (rate != 0 &&
0dca1793 1177 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
3cee5a60 1178 return rate;
763f356c 1179
0dca1793 1180 /* maybe a madi input (which is taken if sel sync is madi) */
3cee5a60
RB
1181 if (status & HDSPM_madiLock) {
1182 rate_bits = status & HDSPM_madiFreqMask;
763f356c 1183
3cee5a60
RB
1184 switch (rate_bits) {
1185 case HDSPM_madiFreq32:
1186 rate = 32000;
1187 break;
1188 case HDSPM_madiFreq44_1:
1189 rate = 44100;
1190 break;
1191 case HDSPM_madiFreq48:
1192 rate = 48000;
1193 break;
1194 case HDSPM_madiFreq64:
1195 rate = 64000;
1196 break;
1197 case HDSPM_madiFreq88_2:
1198 rate = 88200;
1199 break;
1200 case HDSPM_madiFreq96:
1201 rate = 96000;
1202 break;
1203 case HDSPM_madiFreq128:
1204 rate = 128000;
1205 break;
1206 case HDSPM_madiFreq176_4:
1207 rate = 176400;
1208 break;
1209 case HDSPM_madiFreq192:
1210 rate = 192000;
1211 break;
1212 default:
1213 rate = 0;
1214 break;
1215 }
d12c51d8
AK
1216
1217 /* QS and DS rates normally can not be detected
1218 * automatically by the card. Only exception is MADI
1219 * in 96k frame mode.
1220 *
1221 * So if we read SS values (32 .. 48k), check for
1222 * user-provided DS/QS bits in the control register
1223 * and multiply the base frequency accordingly.
1224 */
1225 if (rate <= 48000) {
1226 if (hdspm->control_register & HDSPM_QuadSpeed)
1227 rate *= 4;
1228 else if (hdspm->control_register &
1229 HDSPM_DoubleSpeed)
1230 rate *= 2;
1231 }
763f356c 1232 }
0dca1793 1233 break;
763f356c 1234 }
0dca1793
AK
1235
1236 return rate;
763f356c
TI
1237}
1238
7cb155ff
AK
1239/* return latency in samples per period */
1240static int hdspm_get_latency(struct hdspm *hdspm)
1241{
1242 int n;
1243
1244 n = hdspm_decode_latency(hdspm->control_register);
1245
1246 /* Special case for new RME cards with 32 samples period size.
1247 * The three latency bits in the control register
1248 * (HDSP_LatencyMask) encode latency values of 64 samples as
1249 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7
1250 * denotes 8192 samples, but on new cards like RayDAT or AIO,
1251 * it corresponds to 32 samples.
1252 */
1253 if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type))
1254 n = -1;
1255
1256 return 1 << (n + 6);
1257}
1258
763f356c 1259/* Latency function */
0dca1793 1260static inline void hdspm_compute_period_size(struct hdspm *hdspm)
763f356c 1261{
7cb155ff 1262 hdspm->period_bytes = 4 * hdspm_get_latency(hdspm);
763f356c
TI
1263}
1264
0dca1793
AK
1265
1266static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
763f356c
TI
1267{
1268 int position;
1269
1270 position = hdspm_read(hdspm, HDSPM_statusRegister);
483cee77
AK
1271
1272 switch (hdspm->io_type) {
1273 case RayDAT:
1274 case AIO:
1275 position &= HDSPM_BufferPositionMask;
1276 position /= 4; /* Bytes per sample */
1277 break;
1278 default:
1279 position = (position & HDSPM_BufferID) ?
1280 (hdspm->period_bytes / 4) : 0;
1281 }
763f356c
TI
1282
1283 return position;
1284}
1285
1286
98274f07 1287static inline void hdspm_start_audio(struct hdspm * s)
763f356c
TI
1288{
1289 s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1290 hdspm_write(s, HDSPM_controlRegister, s->control_register);
1291}
1292
98274f07 1293static inline void hdspm_stop_audio(struct hdspm * s)
763f356c
TI
1294{
1295 s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1296 hdspm_write(s, HDSPM_controlRegister, s->control_register);
1297}
1298
1299/* should I silence all or only opened ones ? doit all for first even is 4MB*/
62cef821 1300static void hdspm_silence_playback(struct hdspm *hdspm)
763f356c
TI
1301{
1302 int i;
1303 int n = hdspm->period_bytes;
1304 void *buf = hdspm->playback_buffer;
1305
3cee5a60
RB
1306 if (buf == NULL)
1307 return;
763f356c
TI
1308
1309 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1310 memset(buf, 0, n);
1311 buf += HDSPM_CHANNEL_BUFFER_BYTES;
1312 }
1313}
1314
0dca1793 1315static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
763f356c
TI
1316{
1317 int n;
1318
1319 spin_lock_irq(&s->lock);
1320
2e610270
AK
1321 if (32 == frames) {
1322 /* Special case for new RME cards like RayDAT/AIO which
1323 * support period sizes of 32 samples. Since latency is
1324 * encoded in the three bits of HDSP_LatencyMask, we can only
1325 * have values from 0 .. 7. While 0 still means 64 samples and
1326 * 6 represents 4096 samples on all cards, 7 represents 8192
1327 * on older cards and 32 samples on new cards.
1328 *
1329 * In other words, period size in samples is calculated by
1330 * 2^(n+6) with n ranging from 0 .. 7.
1331 */
1332 n = 7;
1333 } else {
1334 frames >>= 7;
1335 n = 0;
1336 while (frames) {
1337 n++;
1338 frames >>= 1;
1339 }
763f356c 1340 }
2e610270 1341
763f356c
TI
1342 s->control_register &= ~HDSPM_LatencyMask;
1343 s->control_register |= hdspm_encode_latency(n);
1344
1345 hdspm_write(s, HDSPM_controlRegister, s->control_register);
1346
1347 hdspm_compute_period_size(s);
1348
1349 spin_unlock_irq(&s->lock);
1350
1351 return 0;
1352}
1353
0dca1793
AK
1354static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1355{
1356 u64 freq_const;
1357
1358 if (period == 0)
1359 return 0;
1360
1361 switch (hdspm->io_type) {
1362 case MADI:
1363 case AES32:
1364 freq_const = 110069313433624ULL;
1365 break;
1366 case RayDAT:
1367 case AIO:
1368 freq_const = 104857600000000ULL;
1369 break;
1370 case MADIface:
1371 freq_const = 131072000000000ULL;
3d56c8e6
TI
1372 break;
1373 default:
1374 snd_BUG();
1375 return 0;
0dca1793
AK
1376 }
1377
1378 return div_u64(freq_const, period);
1379}
1380
1381
ffb2c3c0
RB
1382static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1383{
1384 u64 n;
0dca1793 1385
ffb2c3c0
RB
1386 if (rate >= 112000)
1387 rate /= 4;
1388 else if (rate >= 56000)
1389 rate /= 2;
1390
0dca1793
AK
1391 switch (hdspm->io_type) {
1392 case MADIface:
3d56c8e6
TI
1393 n = 131072000000000ULL; /* 125 MHz */
1394 break;
0dca1793
AK
1395 case MADI:
1396 case AES32:
3d56c8e6
TI
1397 n = 110069313433624ULL; /* 105 MHz */
1398 break;
0dca1793
AK
1399 case RayDAT:
1400 case AIO:
3d56c8e6
TI
1401 n = 104857600000000ULL; /* 100 MHz */
1402 break;
1403 default:
1404 snd_BUG();
1405 return;
0dca1793
AK
1406 }
1407
3f7440a6 1408 n = div_u64(n, rate);
ffb2c3c0 1409 /* n should be less than 2^32 for being written to FREQ register */
da3cec35 1410 snd_BUG_ON(n >> 32);
ffb2c3c0
RB
1411 hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1412}
763f356c
TI
1413
1414/* dummy set rate lets see what happens */
98274f07 1415static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
763f356c 1416{
763f356c
TI
1417 int current_rate;
1418 int rate_bits;
1419 int not_set = 0;
6534599d 1420 int current_speed, target_speed;
763f356c
TI
1421
1422 /* ASSUMPTION: hdspm->lock is either set, or there is no need for
1423 it (e.g. during module initialization).
1424 */
1425
1426 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1427
0dca1793 1428 /* SLAVE --- */
763f356c
TI
1429 if (called_internally) {
1430
0dca1793
AK
1431 /* request from ctl or card initialization
1432 just make a warning an remember setting
1433 for future master mode switching */
1434
ef5fa1a4
TI
1435 snd_printk(KERN_WARNING "HDSPM: "
1436 "Warning: device is not running "
1437 "as a clock master.\n");
763f356c
TI
1438 not_set = 1;
1439 } else {
1440
1441 /* hw_param request while in AutoSync mode */
1442 int external_freq =
1443 hdspm_external_sample_rate(hdspm);
1444
ef5fa1a4
TI
1445 if (hdspm_autosync_ref(hdspm) ==
1446 HDSPM_AUTOSYNC_FROM_NONE) {
763f356c 1447
ef5fa1a4
TI
1448 snd_printk(KERN_WARNING "HDSPM: "
1449 "Detected no Externel Sync \n");
763f356c
TI
1450 not_set = 1;
1451
1452 } else if (rate != external_freq) {
1453
ef5fa1a4
TI
1454 snd_printk(KERN_WARNING "HDSPM: "
1455 "Warning: No AutoSync source for "
1456 "requested rate\n");
763f356c
TI
1457 not_set = 1;
1458 }
1459 }
1460 }
1461
1462 current_rate = hdspm->system_sample_rate;
1463
1464 /* Changing between Singe, Double and Quad speed is not
1465 allowed if any substreams are open. This is because such a change
1466 causes a shift in the location of the DMA buffers and a reduction
1467 in the number of available buffers.
1468
1469 Note that a similar but essentially insoluble problem exists for
1470 externally-driven rate changes. All we can do is to flag rate
0dca1793 1471 changes in the read/write routines.
763f356c
TI
1472 */
1473
6534599d
RB
1474 if (current_rate <= 48000)
1475 current_speed = HDSPM_SPEED_SINGLE;
1476 else if (current_rate <= 96000)
1477 current_speed = HDSPM_SPEED_DOUBLE;
1478 else
1479 current_speed = HDSPM_SPEED_QUAD;
1480
1481 if (rate <= 48000)
1482 target_speed = HDSPM_SPEED_SINGLE;
1483 else if (rate <= 96000)
1484 target_speed = HDSPM_SPEED_DOUBLE;
1485 else
1486 target_speed = HDSPM_SPEED_QUAD;
3cee5a60 1487
763f356c
TI
1488 switch (rate) {
1489 case 32000:
763f356c
TI
1490 rate_bits = HDSPM_Frequency32KHz;
1491 break;
1492 case 44100:
763f356c
TI
1493 rate_bits = HDSPM_Frequency44_1KHz;
1494 break;
1495 case 48000:
763f356c
TI
1496 rate_bits = HDSPM_Frequency48KHz;
1497 break;
1498 case 64000:
763f356c
TI
1499 rate_bits = HDSPM_Frequency64KHz;
1500 break;
1501 case 88200:
763f356c
TI
1502 rate_bits = HDSPM_Frequency88_2KHz;
1503 break;
1504 case 96000:
763f356c
TI
1505 rate_bits = HDSPM_Frequency96KHz;
1506 break;
3cee5a60 1507 case 128000:
3cee5a60
RB
1508 rate_bits = HDSPM_Frequency128KHz;
1509 break;
1510 case 176400:
3cee5a60
RB
1511 rate_bits = HDSPM_Frequency176_4KHz;
1512 break;
1513 case 192000:
3cee5a60
RB
1514 rate_bits = HDSPM_Frequency192KHz;
1515 break;
763f356c
TI
1516 default:
1517 return -EINVAL;
1518 }
1519
6534599d 1520 if (current_speed != target_speed
763f356c
TI
1521 && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1522 snd_printk
ef5fa1a4 1523 (KERN_ERR "HDSPM: "
6534599d 1524 "cannot change from %s speed to %s speed mode "
ef5fa1a4 1525 "(capture PID = %d, playback PID = %d)\n",
6534599d
RB
1526 hdspm_speed_names[current_speed],
1527 hdspm_speed_names[target_speed],
763f356c
TI
1528 hdspm->capture_pid, hdspm->playback_pid);
1529 return -EBUSY;
1530 }
1531
1532 hdspm->control_register &= ~HDSPM_FrequencyMask;
1533 hdspm->control_register |= rate_bits;
1534 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1535
ffb2c3c0
RB
1536 /* For AES32, need to set DDS value in FREQ register
1537 For MADI, also apparently */
1538 hdspm_set_dds_value(hdspm, rate);
0dca1793
AK
1539
1540 if (AES32 == hdspm->io_type && rate != current_rate)
ffb2c3c0 1541 hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
763f356c
TI
1542
1543 hdspm->system_sample_rate = rate;
1544
0dca1793
AK
1545 if (rate <= 48000) {
1546 hdspm->channel_map_in = hdspm->channel_map_in_ss;
1547 hdspm->channel_map_out = hdspm->channel_map_out_ss;
1548 hdspm->max_channels_in = hdspm->ss_in_channels;
1549 hdspm->max_channels_out = hdspm->ss_out_channels;
1550 hdspm->port_names_in = hdspm->port_names_in_ss;
1551 hdspm->port_names_out = hdspm->port_names_out_ss;
1552 } else if (rate <= 96000) {
1553 hdspm->channel_map_in = hdspm->channel_map_in_ds;
1554 hdspm->channel_map_out = hdspm->channel_map_out_ds;
1555 hdspm->max_channels_in = hdspm->ds_in_channels;
1556 hdspm->max_channels_out = hdspm->ds_out_channels;
1557 hdspm->port_names_in = hdspm->port_names_in_ds;
1558 hdspm->port_names_out = hdspm->port_names_out_ds;
1559 } else {
1560 hdspm->channel_map_in = hdspm->channel_map_in_qs;
1561 hdspm->channel_map_out = hdspm->channel_map_out_qs;
1562 hdspm->max_channels_in = hdspm->qs_in_channels;
1563 hdspm->max_channels_out = hdspm->qs_out_channels;
1564 hdspm->port_names_in = hdspm->port_names_in_qs;
1565 hdspm->port_names_out = hdspm->port_names_out_qs;
1566 }
1567
763f356c
TI
1568 if (not_set != 0)
1569 return -1;
1570
1571 return 0;
1572}
1573
1574/* mainly for init to 0 on load */
98274f07 1575static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
763f356c
TI
1576{
1577 int i, j;
ef5fa1a4
TI
1578 unsigned int gain;
1579
1580 if (sgain > UNITY_GAIN)
1581 gain = UNITY_GAIN;
1582 else if (sgain < 0)
1583 gain = 0;
1584 else
1585 gain = sgain;
763f356c
TI
1586
1587 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1588 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1589 hdspm_write_in_gain(hdspm, i, j, gain);
1590 hdspm_write_pb_gain(hdspm, i, j, gain);
1591 }
1592}
1593
1594/*----------------------------------------------------------------------------
1595 MIDI
1596 ----------------------------------------------------------------------------*/
1597
ef5fa1a4
TI
1598static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1599 int id)
763f356c
TI
1600{
1601 /* the hardware already does the relevant bit-mask with 0xff */
0dca1793 1602 return hdspm_read(hdspm, hdspm->midi[id].dataIn);
763f356c
TI
1603}
1604
ef5fa1a4
TI
1605static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1606 int val)
763f356c
TI
1607{
1608 /* the hardware already does the relevant bit-mask with 0xff */
0dca1793 1609 return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
763f356c
TI
1610}
1611
98274f07 1612static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
763f356c 1613{
0dca1793 1614 return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
763f356c
TI
1615}
1616
98274f07 1617static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
763f356c
TI
1618{
1619 int fifo_bytes_used;
1620
0dca1793 1621 fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
763f356c
TI
1622
1623 if (fifo_bytes_used < 128)
1624 return 128 - fifo_bytes_used;
1625 else
1626 return 0;
1627}
1628
62cef821 1629static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
763f356c
TI
1630{
1631 while (snd_hdspm_midi_input_available (hdspm, id))
1632 snd_hdspm_midi_read_byte (hdspm, id);
1633}
1634
98274f07 1635static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
763f356c
TI
1636{
1637 unsigned long flags;
1638 int n_pending;
1639 int to_write;
1640 int i;
1641 unsigned char buf[128];
1642
1643 /* Output is not interrupt driven */
0dca1793 1644
763f356c 1645 spin_lock_irqsave (&hmidi->lock, flags);
ef5fa1a4
TI
1646 if (hmidi->output &&
1647 !snd_rawmidi_transmit_empty (hmidi->output)) {
1648 n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1649 hmidi->id);
1650 if (n_pending > 0) {
1651 if (n_pending > (int)sizeof (buf))
1652 n_pending = sizeof (buf);
0dca1793 1653
ef5fa1a4
TI
1654 to_write = snd_rawmidi_transmit (hmidi->output, buf,
1655 n_pending);
1656 if (to_write > 0) {
0dca1793 1657 for (i = 0; i < to_write; ++i)
ef5fa1a4
TI
1658 snd_hdspm_midi_write_byte (hmidi->hdspm,
1659 hmidi->id,
1660 buf[i]);
763f356c
TI
1661 }
1662 }
1663 }
1664 spin_unlock_irqrestore (&hmidi->lock, flags);
1665 return 0;
1666}
1667
98274f07 1668static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
763f356c 1669{
ef5fa1a4
TI
1670 unsigned char buf[128]; /* this buffer is designed to match the MIDI
1671 * input FIFO size
1672 */
763f356c
TI
1673 unsigned long flags;
1674 int n_pending;
1675 int i;
1676
1677 spin_lock_irqsave (&hmidi->lock, flags);
ef5fa1a4
TI
1678 n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1679 if (n_pending > 0) {
763f356c 1680 if (hmidi->input) {
ef5fa1a4 1681 if (n_pending > (int)sizeof (buf))
763f356c 1682 n_pending = sizeof (buf);
ef5fa1a4
TI
1683 for (i = 0; i < n_pending; ++i)
1684 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1685 hmidi->id);
1686 if (n_pending)
1687 snd_rawmidi_receive (hmidi->input, buf,
1688 n_pending);
763f356c
TI
1689 } else {
1690 /* flush the MIDI input FIFO */
ef5fa1a4
TI
1691 while (n_pending--)
1692 snd_hdspm_midi_read_byte (hmidi->hdspm,
1693 hmidi->id);
763f356c
TI
1694 }
1695 }
1696 hmidi->pending = 0;
c0da0014 1697 spin_unlock_irqrestore(&hmidi->lock, flags);
0dca1793 1698
c0da0014 1699 spin_lock_irqsave(&hmidi->hdspm->lock, flags);
0dca1793 1700 hmidi->hdspm->control_register |= hmidi->ie;
ef5fa1a4
TI
1701 hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1702 hmidi->hdspm->control_register);
c0da0014 1703 spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
0dca1793 1704
763f356c
TI
1705 return snd_hdspm_midi_output_write (hmidi);
1706}
1707
ef5fa1a4
TI
1708static void
1709snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
763f356c 1710{
98274f07
TI
1711 struct hdspm *hdspm;
1712 struct hdspm_midi *hmidi;
763f356c 1713 unsigned long flags;
763f356c 1714
ef5fa1a4 1715 hmidi = substream->rmidi->private_data;
763f356c 1716 hdspm = hmidi->hdspm;
0dca1793 1717
763f356c
TI
1718 spin_lock_irqsave (&hdspm->lock, flags);
1719 if (up) {
0dca1793 1720 if (!(hdspm->control_register & hmidi->ie)) {
763f356c 1721 snd_hdspm_flush_midi_input (hdspm, hmidi->id);
0dca1793 1722 hdspm->control_register |= hmidi->ie;
763f356c
TI
1723 }
1724 } else {
0dca1793 1725 hdspm->control_register &= ~hmidi->ie;
763f356c
TI
1726 }
1727
1728 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1729 spin_unlock_irqrestore (&hdspm->lock, flags);
1730}
1731
1732static void snd_hdspm_midi_output_timer(unsigned long data)
1733{
98274f07 1734 struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
763f356c 1735 unsigned long flags;
0dca1793 1736
763f356c
TI
1737 snd_hdspm_midi_output_write(hmidi);
1738 spin_lock_irqsave (&hmidi->lock, flags);
1739
1740 /* this does not bump hmidi->istimer, because the
1741 kernel automatically removed the timer when it
1742 expired, and we are now adding it back, thus
0dca1793 1743 leaving istimer wherever it was set before.
763f356c
TI
1744 */
1745
1746 if (hmidi->istimer) {
1747 hmidi->timer.expires = 1 + jiffies;
1748 add_timer(&hmidi->timer);
1749 }
1750
1751 spin_unlock_irqrestore (&hmidi->lock, flags);
1752}
1753
ef5fa1a4
TI
1754static void
1755snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
763f356c 1756{
98274f07 1757 struct hdspm_midi *hmidi;
763f356c
TI
1758 unsigned long flags;
1759
ef5fa1a4 1760 hmidi = substream->rmidi->private_data;
763f356c
TI
1761 spin_lock_irqsave (&hmidi->lock, flags);
1762 if (up) {
1763 if (!hmidi->istimer) {
1764 init_timer(&hmidi->timer);
1765 hmidi->timer.function = snd_hdspm_midi_output_timer;
1766 hmidi->timer.data = (unsigned long) hmidi;
1767 hmidi->timer.expires = 1 + jiffies;
1768 add_timer(&hmidi->timer);
1769 hmidi->istimer++;
1770 }
1771 } else {
ef5fa1a4 1772 if (hmidi->istimer && --hmidi->istimer <= 0)
763f356c 1773 del_timer (&hmidi->timer);
763f356c
TI
1774 }
1775 spin_unlock_irqrestore (&hmidi->lock, flags);
1776 if (up)
1777 snd_hdspm_midi_output_write(hmidi);
1778}
1779
98274f07 1780static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
763f356c 1781{
98274f07 1782 struct hdspm_midi *hmidi;
763f356c 1783
ef5fa1a4 1784 hmidi = substream->rmidi->private_data;
763f356c
TI
1785 spin_lock_irq (&hmidi->lock);
1786 snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
1787 hmidi->input = substream;
1788 spin_unlock_irq (&hmidi->lock);
1789
1790 return 0;
1791}
1792
98274f07 1793static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
763f356c 1794{
98274f07 1795 struct hdspm_midi *hmidi;
763f356c 1796
ef5fa1a4 1797 hmidi = substream->rmidi->private_data;
763f356c
TI
1798 spin_lock_irq (&hmidi->lock);
1799 hmidi->output = substream;
1800 spin_unlock_irq (&hmidi->lock);
1801
1802 return 0;
1803}
1804
98274f07 1805static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
763f356c 1806{
98274f07 1807 struct hdspm_midi *hmidi;
763f356c
TI
1808
1809 snd_hdspm_midi_input_trigger (substream, 0);
1810
ef5fa1a4 1811 hmidi = substream->rmidi->private_data;
763f356c
TI
1812 spin_lock_irq (&hmidi->lock);
1813 hmidi->input = NULL;
1814 spin_unlock_irq (&hmidi->lock);
1815
1816 return 0;
1817}
1818
98274f07 1819static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
763f356c 1820{
98274f07 1821 struct hdspm_midi *hmidi;
763f356c
TI
1822
1823 snd_hdspm_midi_output_trigger (substream, 0);
1824
ef5fa1a4 1825 hmidi = substream->rmidi->private_data;
763f356c
TI
1826 spin_lock_irq (&hmidi->lock);
1827 hmidi->output = NULL;
1828 spin_unlock_irq (&hmidi->lock);
1829
1830 return 0;
1831}
1832
98274f07 1833static struct snd_rawmidi_ops snd_hdspm_midi_output =
763f356c
TI
1834{
1835 .open = snd_hdspm_midi_output_open,
1836 .close = snd_hdspm_midi_output_close,
1837 .trigger = snd_hdspm_midi_output_trigger,
1838};
1839
98274f07 1840static struct snd_rawmidi_ops snd_hdspm_midi_input =
763f356c
TI
1841{
1842 .open = snd_hdspm_midi_input_open,
1843 .close = snd_hdspm_midi_input_close,
1844 .trigger = snd_hdspm_midi_input_trigger,
1845};
1846
ef5fa1a4
TI
1847static int __devinit snd_hdspm_create_midi (struct snd_card *card,
1848 struct hdspm *hdspm, int id)
763f356c
TI
1849{
1850 int err;
1851 char buf[32];
1852
1853 hdspm->midi[id].id = id;
763f356c 1854 hdspm->midi[id].hdspm = hdspm;
763f356c
TI
1855 spin_lock_init (&hdspm->midi[id].lock);
1856
0dca1793
AK
1857 if (0 == id) {
1858 if (MADIface == hdspm->io_type) {
1859 /* MIDI-over-MADI on HDSPe MADIface */
1860 hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
1861 hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
1862 hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
1863 hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
1864 hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
1865 hdspm->midi[0].irq = HDSPM_midi2IRQPending;
1866 } else {
1867 hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
1868 hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
1869 hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
1870 hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
1871 hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
1872 hdspm->midi[0].irq = HDSPM_midi0IRQPending;
1873 }
1874 } else if (1 == id) {
1875 hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
1876 hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
1877 hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
1878 hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
1879 hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
1880 hdspm->midi[1].irq = HDSPM_midi1IRQPending;
1881 } else if ((2 == id) && (MADI == hdspm->io_type)) {
1882 /* MIDI-over-MADI on HDSPe MADI */
1883 hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1884 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1885 hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
1886 hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
1887 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1888 hdspm->midi[2].irq = HDSPM_midi2IRQPending;
1889 } else if (2 == id) {
1890 /* TCO MTC, read only */
1891 hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1892 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1893 hdspm->midi[2].dataOut = -1;
1894 hdspm->midi[2].statusOut = -1;
1895 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1896 hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
1897 } else if (3 == id) {
1898 /* TCO MTC on HDSPe MADI */
1899 hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
1900 hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
1901 hdspm->midi[3].dataOut = -1;
1902 hdspm->midi[3].statusOut = -1;
1903 hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
1904 hdspm->midi[3].irq = HDSPM_midi3IRQPending;
1905 }
1906
1907 if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
1908 (MADIface == hdspm->io_type)))) {
1909 if ((id == 0) && (MADIface == hdspm->io_type)) {
1910 sprintf(buf, "%s MIDIoverMADI", card->shortname);
1911 } else if ((id == 2) && (MADI == hdspm->io_type)) {
1912 sprintf(buf, "%s MIDIoverMADI", card->shortname);
1913 } else {
1914 sprintf(buf, "%s MIDI %d", card->shortname, id+1);
1915 }
1916 err = snd_rawmidi_new(card, buf, id, 1, 1,
1917 &hdspm->midi[id].rmidi);
1918 if (err < 0)
1919 return err;
763f356c 1920
0dca1793
AK
1921 sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d",
1922 card->id, id+1);
1923 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1924
1925 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1926 SNDRV_RAWMIDI_STREAM_OUTPUT,
1927 &snd_hdspm_midi_output);
1928 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1929 SNDRV_RAWMIDI_STREAM_INPUT,
1930 &snd_hdspm_midi_input);
1931
1932 hdspm->midi[id].rmidi->info_flags |=
1933 SNDRV_RAWMIDI_INFO_OUTPUT |
1934 SNDRV_RAWMIDI_INFO_INPUT |
1935 SNDRV_RAWMIDI_INFO_DUPLEX;
1936 } else {
1937 /* TCO MTC, read only */
1938 sprintf(buf, "%s MTC %d", card->shortname, id+1);
1939 err = snd_rawmidi_new(card, buf, id, 1, 1,
1940 &hdspm->midi[id].rmidi);
1941 if (err < 0)
1942 return err;
1943
1944 sprintf(hdspm->midi[id].rmidi->name,
1945 "%s MTC %d", card->id, id+1);
1946 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
763f356c 1947
0dca1793
AK
1948 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1949 SNDRV_RAWMIDI_STREAM_INPUT,
1950 &snd_hdspm_midi_input);
763f356c 1951
0dca1793
AK
1952 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
1953 }
763f356c
TI
1954
1955 return 0;
1956}
1957
1958
1959static void hdspm_midi_tasklet(unsigned long arg)
1960{
98274f07 1961 struct hdspm *hdspm = (struct hdspm *)arg;
0dca1793
AK
1962 int i = 0;
1963
1964 while (i < hdspm->midiPorts) {
1965 if (hdspm->midi[i].pending)
1966 snd_hdspm_midi_input_read(&hdspm->midi[i]);
1967
1968 i++;
1969 }
1970}
763f356c
TI
1971
1972
1973/*-----------------------------------------------------------------------------
1974 Status Interface
1975 ----------------------------------------------------------------------------*/
1976
1977/* get the system sample rate which is set */
1978
0dca1793
AK
1979
1980/**
1981 * Calculate the real sample rate from the
1982 * current DDS value.
1983 **/
1984static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
1985{
1986 unsigned int period, rate;
1987
1988 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
1989 rate = hdspm_calc_dds_value(hdspm, period);
1990
1991 return rate;
1992}
1993
1994
763f356c 1995#define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
67ed4161 1996{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
1997 .name = xname, \
1998 .index = xindex, \
1999 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
2000 .info = snd_hdspm_info_system_sample_rate, \
2001 .get = snd_hdspm_get_system_sample_rate \
2002}
2003
98274f07
TI
2004static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
2005 struct snd_ctl_elem_info *uinfo)
763f356c
TI
2006{
2007 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2008 uinfo->count = 1;
0dca1793
AK
2009 uinfo->value.integer.min = 27000;
2010 uinfo->value.integer.max = 207000;
2011 uinfo->value.integer.step = 1;
763f356c
TI
2012 return 0;
2013}
2014
0dca1793 2015
98274f07
TI
2016static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
2017 struct snd_ctl_elem_value *
763f356c
TI
2018 ucontrol)
2019{
98274f07 2020 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2021
0dca1793
AK
2022 ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
2023 return 0;
2024}
2025
2026
2027/**
2028 * Returns the WordClock sample rate class for the given card.
2029 **/
2030static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
2031{
2032 int status;
2033
2034 switch (hdspm->io_type) {
2035 case RayDAT:
2036 case AIO:
2037 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2038 return (status >> 16) & 0xF;
2039 break;
2040 default:
2041 break;
2042 }
2043
2044
2045 return 0;
2046}
2047
2048
2049/**
2050 * Returns the TCO sample rate class for the given card.
2051 **/
2052static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
2053{
2054 int status;
2055
2056 if (hdspm->tco) {
2057 switch (hdspm->io_type) {
2058 case RayDAT:
2059 case AIO:
2060 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2061 return (status >> 20) & 0xF;
2062 break;
2063 default:
2064 break;
2065 }
2066 }
2067
2068 return 0;
2069}
2070
2071
2072/**
2073 * Returns the SYNC_IN sample rate class for the given card.
2074 **/
2075static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2076{
2077 int status;
2078
2079 if (hdspm->tco) {
2080 switch (hdspm->io_type) {
2081 case RayDAT:
2082 case AIO:
2083 status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2084 return (status >> 12) & 0xF;
2085 break;
2086 default:
2087 break;
2088 }
2089 }
2090
763f356c
TI
2091 return 0;
2092}
2093
0dca1793
AK
2094
2095/**
2096 * Returns the sample rate class for input source <idx> for
2097 * 'new style' cards like the AIO and RayDAT.
2098 **/
2099static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2100{
2101 int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2102
2103 return (status >> (idx*4)) & 0xF;
2104}
2105
2106
2107
763f356c 2108#define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
0dca1793
AK
2109{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2110 .name = xname, \
2111 .private_value = xindex, \
2112 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
2113 .info = snd_hdspm_info_autosync_sample_rate, \
2114 .get = snd_hdspm_get_autosync_sample_rate \
763f356c
TI
2115}
2116
0dca1793 2117
98274f07
TI
2118static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2119 struct snd_ctl_elem_info *uinfo)
763f356c 2120{
763f356c
TI
2121 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2122 uinfo->count = 1;
2123 uinfo->value.enumerated.items = 10;
0dca1793 2124
763f356c 2125 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
0dca1793 2126 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
763f356c 2127 strcpy(uinfo->value.enumerated.name,
0dca1793 2128 texts_freq[uinfo->value.enumerated.item]);
763f356c
TI
2129 return 0;
2130}
2131
0dca1793 2132
98274f07
TI
2133static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2134 struct snd_ctl_elem_value *
763f356c
TI
2135 ucontrol)
2136{
98274f07 2137 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2138
0dca1793
AK
2139 switch (hdspm->io_type) {
2140 case RayDAT:
2141 switch (kcontrol->private_value) {
2142 case 0:
2143 ucontrol->value.enumerated.item[0] =
2144 hdspm_get_wc_sample_rate(hdspm);
2145 break;
2146 case 7:
2147 ucontrol->value.enumerated.item[0] =
2148 hdspm_get_tco_sample_rate(hdspm);
2149 break;
2150 case 8:
2151 ucontrol->value.enumerated.item[0] =
2152 hdspm_get_sync_in_sample_rate(hdspm);
2153 break;
2154 default:
2155 ucontrol->value.enumerated.item[0] =
2156 hdspm_get_s1_sample_rate(hdspm,
2157 kcontrol->private_value-1);
2158 }
763f356c 2159
0dca1793
AK
2160 case AIO:
2161 switch (kcontrol->private_value) {
2162 case 0: /* WC */
2163 ucontrol->value.enumerated.item[0] =
2164 hdspm_get_wc_sample_rate(hdspm);
2165 break;
2166 case 4: /* TCO */
2167 ucontrol->value.enumerated.item[0] =
2168 hdspm_get_tco_sample_rate(hdspm);
2169 break;
2170 case 5: /* SYNC_IN */
2171 ucontrol->value.enumerated.item[0] =
2172 hdspm_get_sync_in_sample_rate(hdspm);
2173 break;
2174 default:
2175 ucontrol->value.enumerated.item[0] =
2176 hdspm_get_s1_sample_rate(hdspm,
2177 ucontrol->id.index-1);
2178 }
7c4a95b5
AK
2179
2180 case AES32:
2181
2182 switch (kcontrol->private_value) {
2183 case 0: /* WC */
2184 ucontrol->value.enumerated.item[0] =
2185 hdspm_get_wc_sample_rate(hdspm);
2186 break;
2187 case 9: /* TCO */
2188 ucontrol->value.enumerated.item[0] =
2189 hdspm_get_tco_sample_rate(hdspm);
2190 break;
2191 case 10: /* SYNC_IN */
2192 ucontrol->value.enumerated.item[0] =
2193 hdspm_get_sync_in_sample_rate(hdspm);
2194 break;
2195 default: /* AES1 to AES8 */
2196 ucontrol->value.enumerated.item[0] =
2197 hdspm_get_s1_sample_rate(hdspm,
2198 kcontrol->private_value-1);
2199 break;
2200
2201 }
763f356c 2202 default:
0dca1793 2203 break;
763f356c 2204 }
763f356c 2205
0dca1793 2206 return 0;
763f356c
TI
2207}
2208
2209
0dca1793
AK
2210#define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2211{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2212 .name = xname, \
2213 .index = xindex, \
2214 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2215 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2216 .info = snd_hdspm_info_system_clock_mode, \
2217 .get = snd_hdspm_get_system_clock_mode, \
2218 .put = snd_hdspm_put_system_clock_mode, \
2219}
2220
2221
2222/**
2223 * Returns the system clock mode for the given card.
2224 * @returns 0 - master, 1 - slave
2225 **/
2226static int hdspm_system_clock_mode(struct hdspm *hdspm)
2227{
2228 switch (hdspm->io_type) {
2229 case AIO:
2230 case RayDAT:
2231 if (hdspm->settings_register & HDSPM_c0Master)
2232 return 0;
2233 break;
763f356c 2234
0dca1793
AK
2235 default:
2236 if (hdspm->control_register & HDSPM_ClockModeMaster)
2237 return 0;
2238 }
763f356c 2239
763f356c
TI
2240 return 1;
2241}
2242
0dca1793
AK
2243
2244/**
2245 * Sets the system clock mode.
2246 * @param mode 0 - master, 1 - slave
2247 **/
2248static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2249{
2250 switch (hdspm->io_type) {
2251 case AIO:
2252 case RayDAT:
2253 if (0 == mode)
2254 hdspm->settings_register |= HDSPM_c0Master;
2255 else
2256 hdspm->settings_register &= ~HDSPM_c0Master;
2257
2258 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2259 break;
2260
2261 default:
2262 if (0 == mode)
2263 hdspm->control_register |= HDSPM_ClockModeMaster;
2264 else
2265 hdspm->control_register &= ~HDSPM_ClockModeMaster;
2266
2267 hdspm_write(hdspm, HDSPM_controlRegister,
2268 hdspm->control_register);
2269 }
2270}
2271
2272
2273static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
98274f07 2274 struct snd_ctl_elem_info *uinfo)
763f356c 2275{
0dca1793 2276 static char *texts[] = { "Master", "AutoSync" };
763f356c
TI
2277
2278 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2279 uinfo->count = 1;
2280 uinfo->value.enumerated.items = 2;
2281 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2282 uinfo->value.enumerated.item =
2283 uinfo->value.enumerated.items - 1;
2284 strcpy(uinfo->value.enumerated.name,
2285 texts[uinfo->value.enumerated.item]);
2286 return 0;
2287}
2288
98274f07
TI
2289static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2290 struct snd_ctl_elem_value *ucontrol)
763f356c 2291{
98274f07 2292 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2293
0dca1793 2294 ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
763f356c
TI
2295 return 0;
2296}
2297
0dca1793
AK
2298static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2299 struct snd_ctl_elem_value *ucontrol)
2300{
2301 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2302 int val;
2303
2304 if (!snd_hdspm_use_is_exclusive(hdspm))
2305 return -EBUSY;
2306
2307 val = ucontrol->value.enumerated.item[0];
2308 if (val < 0)
2309 val = 0;
2310 else if (val > 1)
2311 val = 1;
2312
2313 hdspm_set_system_clock_mode(hdspm, val);
2314
2315 return 0;
2316}
2317
2318
2319#define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2320{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2321 .name = xname, \
2322 .index = xindex, \
2323 .info = snd_hdspm_info_clock_source, \
2324 .get = snd_hdspm_get_clock_source, \
2325 .put = snd_hdspm_put_clock_source \
763f356c
TI
2326}
2327
0dca1793 2328
98274f07 2329static int hdspm_clock_source(struct hdspm * hdspm)
763f356c 2330{
0dca1793
AK
2331 switch (hdspm->system_sample_rate) {
2332 case 32000: return 0;
2333 case 44100: return 1;
2334 case 48000: return 2;
2335 case 64000: return 3;
2336 case 88200: return 4;
2337 case 96000: return 5;
2338 case 128000: return 6;
2339 case 176400: return 7;
2340 case 192000: return 8;
763f356c 2341 }
0dca1793
AK
2342
2343 return -1;
763f356c
TI
2344}
2345
98274f07 2346static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
763f356c
TI
2347{
2348 int rate;
2349 switch (mode) {
0dca1793
AK
2350 case 0:
2351 rate = 32000; break;
2352 case 1:
2353 rate = 44100; break;
2354 case 2:
2355 rate = 48000; break;
2356 case 3:
2357 rate = 64000; break;
2358 case 4:
2359 rate = 88200; break;
2360 case 5:
2361 rate = 96000; break;
2362 case 6:
2363 rate = 128000; break;
2364 case 7:
2365 rate = 176400; break;
2366 case 8:
2367 rate = 192000; break;
763f356c 2368 default:
0dca1793 2369 rate = 48000;
763f356c 2370 }
763f356c
TI
2371 hdspm_set_rate(hdspm, rate, 1);
2372 return 0;
2373}
2374
98274f07
TI
2375static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2376 struct snd_ctl_elem_info *uinfo)
763f356c 2377{
763f356c
TI
2378 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2379 uinfo->count = 1;
0dca1793 2380 uinfo->value.enumerated.items = 9;
763f356c
TI
2381
2382 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2383 uinfo->value.enumerated.item =
2384 uinfo->value.enumerated.items - 1;
2385
2386 strcpy(uinfo->value.enumerated.name,
0dca1793 2387 texts_freq[uinfo->value.enumerated.item+1]);
763f356c
TI
2388
2389 return 0;
2390}
2391
98274f07
TI
2392static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2393 struct snd_ctl_elem_value *ucontrol)
763f356c 2394{
98274f07 2395 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2396
2397 ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2398 return 0;
2399}
2400
98274f07
TI
2401static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2402 struct snd_ctl_elem_value *ucontrol)
763f356c 2403{
98274f07 2404 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2405 int change;
2406 int val;
2407
2408 if (!snd_hdspm_use_is_exclusive(hdspm))
2409 return -EBUSY;
2410 val = ucontrol->value.enumerated.item[0];
2411 if (val < 0)
2412 val = 0;
6534599d
RB
2413 if (val > 9)
2414 val = 9;
763f356c
TI
2415 spin_lock_irq(&hdspm->lock);
2416 if (val != hdspm_clock_source(hdspm))
2417 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2418 else
2419 change = 0;
2420 spin_unlock_irq(&hdspm->lock);
2421 return change;
2422}
2423
763f356c 2424
0dca1793
AK
2425#define HDSPM_PREF_SYNC_REF(xname, xindex) \
2426{.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2427 .name = xname, \
2428 .index = xindex, \
2429 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2430 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2431 .info = snd_hdspm_info_pref_sync_ref, \
2432 .get = snd_hdspm_get_pref_sync_ref, \
2433 .put = snd_hdspm_put_pref_sync_ref \
2434}
2435
2436
2437/**
2438 * Returns the current preferred sync reference setting.
2439 * The semantics of the return value are depending on the
2440 * card, please see the comments for clarification.
2441 **/
98274f07 2442static int hdspm_pref_sync_ref(struct hdspm * hdspm)
763f356c 2443{
0dca1793
AK
2444 switch (hdspm->io_type) {
2445 case AES32:
3cee5a60 2446 switch (hdspm->control_register & HDSPM_SyncRefMask) {
0dca1793
AK
2447 case 0: return 0; /* WC */
2448 case HDSPM_SyncRef0: return 1; /* AES 1 */
2449 case HDSPM_SyncRef1: return 2; /* AES 2 */
2450 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2451 case HDSPM_SyncRef2: return 4; /* AES 4 */
2452 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2453 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2454 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2455 return 7; /* AES 7 */
2456 case HDSPM_SyncRef3: return 8; /* AES 8 */
2457 case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
3cee5a60 2458 }
0dca1793
AK
2459 break;
2460
2461 case MADI:
2462 case MADIface:
2463 if (hdspm->tco) {
2464 switch (hdspm->control_register & HDSPM_SyncRefMask) {
2465 case 0: return 0; /* WC */
2466 case HDSPM_SyncRef0: return 1; /* MADI */
2467 case HDSPM_SyncRef1: return 2; /* TCO */
2468 case HDSPM_SyncRef1+HDSPM_SyncRef0:
2469 return 3; /* SYNC_IN */
2470 }
2471 } else {
2472 switch (hdspm->control_register & HDSPM_SyncRefMask) {
2473 case 0: return 0; /* WC */
2474 case HDSPM_SyncRef0: return 1; /* MADI */
2475 case HDSPM_SyncRef1+HDSPM_SyncRef0:
2476 return 2; /* SYNC_IN */
2477 }
2478 }
2479 break;
2480
2481 case RayDAT:
2482 if (hdspm->tco) {
2483 switch ((hdspm->settings_register &
2484 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2485 case 0: return 0; /* WC */
2486 case 3: return 1; /* ADAT 1 */
2487 case 4: return 2; /* ADAT 2 */
2488 case 5: return 3; /* ADAT 3 */
2489 case 6: return 4; /* ADAT 4 */
2490 case 1: return 5; /* AES */
2491 case 2: return 6; /* SPDIF */
2492 case 9: return 7; /* TCO */
2493 case 10: return 8; /* SYNC_IN */
2494 }
2495 } else {
2496 switch ((hdspm->settings_register &
2497 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2498 case 0: return 0; /* WC */
2499 case 3: return 1; /* ADAT 1 */
2500 case 4: return 2; /* ADAT 2 */
2501 case 5: return 3; /* ADAT 3 */
2502 case 6: return 4; /* ADAT 4 */
2503 case 1: return 5; /* AES */
2504 case 2: return 6; /* SPDIF */
2505 case 10: return 7; /* SYNC_IN */
2506 }
3cee5a60 2507 }
0dca1793
AK
2508
2509 break;
2510
2511 case AIO:
2512 if (hdspm->tco) {
2513 switch ((hdspm->settings_register &
2514 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2515 case 0: return 0; /* WC */
2516 case 3: return 1; /* ADAT */
2517 case 1: return 2; /* AES */
2518 case 2: return 3; /* SPDIF */
2519 case 9: return 4; /* TCO */
2520 case 10: return 5; /* SYNC_IN */
2521 }
2522 } else {
2523 switch ((hdspm->settings_register &
2524 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2525 case 0: return 0; /* WC */
2526 case 3: return 1; /* ADAT */
2527 case 1: return 2; /* AES */
2528 case 2: return 3; /* SPDIF */
2529 case 10: return 4; /* SYNC_IN */
2530 }
2531 }
2532
2533 break;
763f356c
TI
2534 }
2535
0dca1793 2536 return -1;
763f356c
TI
2537}
2538
0dca1793
AK
2539
2540/**
2541 * Set the preferred sync reference to <pref>. The semantics
2542 * of <pref> are depending on the card type, see the comments
2543 * for clarification.
2544 **/
98274f07 2545static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
763f356c 2546{
0dca1793 2547 int p = 0;
763f356c 2548
0dca1793
AK
2549 switch (hdspm->io_type) {
2550 case AES32:
2551 hdspm->control_register &= ~HDSPM_SyncRefMask;
3cee5a60 2552 switch (pref) {
0dca1793
AK
2553 case 0: /* WC */
2554 break;
2555 case 1: /* AES 1 */
2556 hdspm->control_register |= HDSPM_SyncRef0;
2557 break;
2558 case 2: /* AES 2 */
2559 hdspm->control_register |= HDSPM_SyncRef1;
2560 break;
2561 case 3: /* AES 3 */
2562 hdspm->control_register |=
2563 HDSPM_SyncRef1+HDSPM_SyncRef0;
2564 break;
2565 case 4: /* AES 4 */
2566 hdspm->control_register |= HDSPM_SyncRef2;
2567 break;
2568 case 5: /* AES 5 */
2569 hdspm->control_register |=
2570 HDSPM_SyncRef2+HDSPM_SyncRef0;
2571 break;
2572 case 6: /* AES 6 */
2573 hdspm->control_register |=
2574 HDSPM_SyncRef2+HDSPM_SyncRef1;
2575 break;
2576 case 7: /* AES 7 */
2577 hdspm->control_register |=
2578 HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
3cee5a60 2579 break;
0dca1793
AK
2580 case 8: /* AES 8 */
2581 hdspm->control_register |= HDSPM_SyncRef3;
2582 break;
2583 case 9: /* TCO */
2584 hdspm->control_register |=
2585 HDSPM_SyncRef3+HDSPM_SyncRef0;
3cee5a60
RB
2586 break;
2587 default:
2588 return -1;
2589 }
0dca1793
AK
2590
2591 break;
2592
2593 case MADI:
2594 case MADIface:
2595 hdspm->control_register &= ~HDSPM_SyncRefMask;
2596 if (hdspm->tco) {
2597 switch (pref) {
2598 case 0: /* WC */
2599 break;
2600 case 1: /* MADI */
2601 hdspm->control_register |= HDSPM_SyncRef0;
2602 break;
2603 case 2: /* TCO */
2604 hdspm->control_register |= HDSPM_SyncRef1;
2605 break;
2606 case 3: /* SYNC_IN */
2607 hdspm->control_register |=
2608 HDSPM_SyncRef0+HDSPM_SyncRef1;
2609 break;
2610 default:
2611 return -1;
2612 }
2613 } else {
2614 switch (pref) {
2615 case 0: /* WC */
2616 break;
2617 case 1: /* MADI */
2618 hdspm->control_register |= HDSPM_SyncRef0;
2619 break;
2620 case 2: /* SYNC_IN */
2621 hdspm->control_register |=
2622 HDSPM_SyncRef0+HDSPM_SyncRef1;
2623 break;
2624 default:
2625 return -1;
2626 }
2627 }
2628
2629 break;
2630
2631 case RayDAT:
2632 if (hdspm->tco) {
2633 switch (pref) {
2634 case 0: p = 0; break; /* WC */
2635 case 1: p = 3; break; /* ADAT 1 */
2636 case 2: p = 4; break; /* ADAT 2 */
2637 case 3: p = 5; break; /* ADAT 3 */
2638 case 4: p = 6; break; /* ADAT 4 */
2639 case 5: p = 1; break; /* AES */
2640 case 6: p = 2; break; /* SPDIF */
2641 case 7: p = 9; break; /* TCO */
2642 case 8: p = 10; break; /* SYNC_IN */
2643 default: return -1;
2644 }
2645 } else {
2646 switch (pref) {
2647 case 0: p = 0; break; /* WC */
2648 case 1: p = 3; break; /* ADAT 1 */
2649 case 2: p = 4; break; /* ADAT 2 */
2650 case 3: p = 5; break; /* ADAT 3 */
2651 case 4: p = 6; break; /* ADAT 4 */
2652 case 5: p = 1; break; /* AES */
2653 case 6: p = 2; break; /* SPDIF */
2654 case 7: p = 10; break; /* SYNC_IN */
2655 default: return -1;
2656 }
2657 }
2658 break;
2659
2660 case AIO:
2661 if (hdspm->tco) {
2662 switch (pref) {
2663 case 0: p = 0; break; /* WC */
2664 case 1: p = 3; break; /* ADAT */
2665 case 2: p = 1; break; /* AES */
2666 case 3: p = 2; break; /* SPDIF */
2667 case 4: p = 9; break; /* TCO */
2668 case 5: p = 10; break; /* SYNC_IN */
2669 default: return -1;
2670 }
2671 } else {
2672 switch (pref) {
2673 case 0: p = 0; break; /* WC */
2674 case 1: p = 3; break; /* ADAT */
2675 case 2: p = 1; break; /* AES */
2676 case 3: p = 2; break; /* SPDIF */
2677 case 4: p = 10; break; /* SYNC_IN */
2678 default: return -1;
2679 }
2680 }
2681 break;
763f356c 2682 }
0dca1793
AK
2683
2684 switch (hdspm->io_type) {
2685 case RayDAT:
2686 case AIO:
2687 hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2688 hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2689 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2690 break;
2691
2692 case MADI:
2693 case MADIface:
2694 case AES32:
2695 hdspm_write(hdspm, HDSPM_controlRegister,
2696 hdspm->control_register);
2697 }
2698
763f356c
TI
2699 return 0;
2700}
2701
0dca1793 2702
98274f07
TI
2703static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2704 struct snd_ctl_elem_info *uinfo)
763f356c 2705{
3cee5a60 2706 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2707
0dca1793
AK
2708 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2709 uinfo->count = 1;
2710 uinfo->value.enumerated.items = hdspm->texts_autosync_items;
3cee5a60 2711
0dca1793
AK
2712 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2713 uinfo->value.enumerated.item =
2714 uinfo->value.enumerated.items - 1;
3cee5a60 2715
0dca1793
AK
2716 strcpy(uinfo->value.enumerated.name,
2717 hdspm->texts_autosync[uinfo->value.enumerated.item]);
3cee5a60 2718
763f356c
TI
2719 return 0;
2720}
2721
98274f07
TI
2722static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2723 struct snd_ctl_elem_value *ucontrol)
763f356c 2724{
98274f07 2725 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
0dca1793 2726 int psf = hdspm_pref_sync_ref(hdspm);
763f356c 2727
0dca1793
AK
2728 if (psf >= 0) {
2729 ucontrol->value.enumerated.item[0] = psf;
2730 return 0;
2731 }
2732
2733 return -1;
763f356c
TI
2734}
2735
98274f07
TI
2736static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
2737 struct snd_ctl_elem_value *ucontrol)
763f356c 2738{
98274f07 2739 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
0dca1793 2740 int val, change = 0;
763f356c
TI
2741
2742 if (!snd_hdspm_use_is_exclusive(hdspm))
2743 return -EBUSY;
2744
0dca1793
AK
2745 val = ucontrol->value.enumerated.item[0];
2746
2747 if (val < 0)
2748 val = 0;
2749 else if (val >= hdspm->texts_autosync_items)
2750 val = hdspm->texts_autosync_items-1;
763f356c
TI
2751
2752 spin_lock_irq(&hdspm->lock);
0dca1793
AK
2753 if (val != hdspm_pref_sync_ref(hdspm))
2754 change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
2755
763f356c
TI
2756 spin_unlock_irq(&hdspm->lock);
2757 return change;
2758}
2759
0dca1793 2760
763f356c 2761#define HDSPM_AUTOSYNC_REF(xname, xindex) \
67ed4161 2762{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2763 .name = xname, \
2764 .index = xindex, \
2765 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
2766 .info = snd_hdspm_info_autosync_ref, \
2767 .get = snd_hdspm_get_autosync_ref, \
2768}
2769
0dca1793 2770static int hdspm_autosync_ref(struct hdspm *hdspm)
763f356c 2771{
0dca1793 2772 if (AES32 == hdspm->io_type) {
3cee5a60 2773 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
0dca1793
AK
2774 unsigned int syncref =
2775 (status >> HDSPM_AES32_syncref_bit) & 0xF;
3cee5a60
RB
2776 if (syncref == 0)
2777 return HDSPM_AES32_AUTOSYNC_FROM_WORD;
2778 if (syncref <= 8)
2779 return syncref;
2780 return HDSPM_AES32_AUTOSYNC_FROM_NONE;
0dca1793 2781 } else if (MADI == hdspm->io_type) {
3cee5a60
RB
2782 /* This looks at the autosync selected sync reference */
2783 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2784
2785 switch (status2 & HDSPM_SelSyncRefMask) {
2786 case HDSPM_SelSyncRef_WORD:
2787 return HDSPM_AUTOSYNC_FROM_WORD;
2788 case HDSPM_SelSyncRef_MADI:
2789 return HDSPM_AUTOSYNC_FROM_MADI;
0dca1793
AK
2790 case HDSPM_SelSyncRef_TCO:
2791 return HDSPM_AUTOSYNC_FROM_TCO;
2792 case HDSPM_SelSyncRef_SyncIn:
2793 return HDSPM_AUTOSYNC_FROM_SYNC_IN;
3cee5a60
RB
2794 case HDSPM_SelSyncRef_NVALID:
2795 return HDSPM_AUTOSYNC_FROM_NONE;
2796 default:
2797 return 0;
2798 }
763f356c 2799
763f356c 2800 }
0dca1793 2801 return 0;
763f356c
TI
2802}
2803
0dca1793 2804
98274f07
TI
2805static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
2806 struct snd_ctl_elem_info *uinfo)
763f356c 2807{
3cee5a60 2808 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2809
0dca1793 2810 if (AES32 == hdspm->io_type) {
3cee5a60
RB
2811 static char *texts[] = { "WordClock", "AES1", "AES2", "AES3",
2812 "AES4", "AES5", "AES6", "AES7", "AES8", "None"};
2813
2814 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2815 uinfo->count = 1;
2816 uinfo->value.enumerated.items = 10;
ef5fa1a4
TI
2817 if (uinfo->value.enumerated.item >=
2818 uinfo->value.enumerated.items)
3cee5a60
RB
2819 uinfo->value.enumerated.item =
2820 uinfo->value.enumerated.items - 1;
2821 strcpy(uinfo->value.enumerated.name,
2822 texts[uinfo->value.enumerated.item]);
0dca1793
AK
2823 } else if (MADI == hdspm->io_type) {
2824 static char *texts[] = {"Word Clock", "MADI", "TCO",
2825 "Sync In", "None" };
3cee5a60
RB
2826
2827 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2828 uinfo->count = 1;
0dca1793 2829 uinfo->value.enumerated.items = 5;
ef5fa1a4 2830 if (uinfo->value.enumerated.item >=
0dca1793 2831 uinfo->value.enumerated.items)
3cee5a60
RB
2832 uinfo->value.enumerated.item =
2833 uinfo->value.enumerated.items - 1;
2834 strcpy(uinfo->value.enumerated.name,
2835 texts[uinfo->value.enumerated.item]);
2836 }
763f356c
TI
2837 return 0;
2838}
2839
98274f07
TI
2840static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
2841 struct snd_ctl_elem_value *ucontrol)
763f356c 2842{
98274f07 2843 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2844
6534599d 2845 ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
763f356c
TI
2846 return 0;
2847}
2848
0dca1793 2849
763f356c 2850#define HDSPM_LINE_OUT(xname, xindex) \
67ed4161 2851{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2852 .name = xname, \
2853 .index = xindex, \
2854 .info = snd_hdspm_info_line_out, \
2855 .get = snd_hdspm_get_line_out, \
2856 .put = snd_hdspm_put_line_out \
2857}
2858
98274f07 2859static int hdspm_line_out(struct hdspm * hdspm)
763f356c
TI
2860{
2861 return (hdspm->control_register & HDSPM_LineOut) ? 1 : 0;
2862}
2863
2864
98274f07 2865static int hdspm_set_line_output(struct hdspm * hdspm, int out)
763f356c
TI
2866{
2867 if (out)
2868 hdspm->control_register |= HDSPM_LineOut;
2869 else
2870 hdspm->control_register &= ~HDSPM_LineOut;
2871 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2872
2873 return 0;
2874}
2875
a5ce8890 2876#define snd_hdspm_info_line_out snd_ctl_boolean_mono_info
763f356c 2877
98274f07
TI
2878static int snd_hdspm_get_line_out(struct snd_kcontrol *kcontrol,
2879 struct snd_ctl_elem_value *ucontrol)
763f356c 2880{
98274f07 2881 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2882
2883 spin_lock_irq(&hdspm->lock);
2884 ucontrol->value.integer.value[0] = hdspm_line_out(hdspm);
2885 spin_unlock_irq(&hdspm->lock);
2886 return 0;
2887}
2888
98274f07
TI
2889static int snd_hdspm_put_line_out(struct snd_kcontrol *kcontrol,
2890 struct snd_ctl_elem_value *ucontrol)
763f356c 2891{
98274f07 2892 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2893 int change;
2894 unsigned int val;
2895
2896 if (!snd_hdspm_use_is_exclusive(hdspm))
2897 return -EBUSY;
2898 val = ucontrol->value.integer.value[0] & 1;
2899 spin_lock_irq(&hdspm->lock);
2900 change = (int) val != hdspm_line_out(hdspm);
2901 hdspm_set_line_output(hdspm, val);
2902 spin_unlock_irq(&hdspm->lock);
2903 return change;
2904}
2905
0dca1793 2906
763f356c 2907#define HDSPM_TX_64(xname, xindex) \
67ed4161 2908{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2909 .name = xname, \
2910 .index = xindex, \
2911 .info = snd_hdspm_info_tx_64, \
2912 .get = snd_hdspm_get_tx_64, \
2913 .put = snd_hdspm_put_tx_64 \
2914}
2915
98274f07 2916static int hdspm_tx_64(struct hdspm * hdspm)
763f356c
TI
2917{
2918 return (hdspm->control_register & HDSPM_TX_64ch) ? 1 : 0;
2919}
2920
98274f07 2921static int hdspm_set_tx_64(struct hdspm * hdspm, int out)
763f356c
TI
2922{
2923 if (out)
2924 hdspm->control_register |= HDSPM_TX_64ch;
2925 else
2926 hdspm->control_register &= ~HDSPM_TX_64ch;
2927 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2928
2929 return 0;
2930}
2931
a5ce8890 2932#define snd_hdspm_info_tx_64 snd_ctl_boolean_mono_info
763f356c 2933
98274f07
TI
2934static int snd_hdspm_get_tx_64(struct snd_kcontrol *kcontrol,
2935 struct snd_ctl_elem_value *ucontrol)
763f356c 2936{
98274f07 2937 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2938
2939 spin_lock_irq(&hdspm->lock);
2940 ucontrol->value.integer.value[0] = hdspm_tx_64(hdspm);
2941 spin_unlock_irq(&hdspm->lock);
2942 return 0;
2943}
2944
98274f07
TI
2945static int snd_hdspm_put_tx_64(struct snd_kcontrol *kcontrol,
2946 struct snd_ctl_elem_value *ucontrol)
763f356c 2947{
98274f07 2948 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2949 int change;
2950 unsigned int val;
2951
2952 if (!snd_hdspm_use_is_exclusive(hdspm))
2953 return -EBUSY;
2954 val = ucontrol->value.integer.value[0] & 1;
2955 spin_lock_irq(&hdspm->lock);
2956 change = (int) val != hdspm_tx_64(hdspm);
2957 hdspm_set_tx_64(hdspm, val);
2958 spin_unlock_irq(&hdspm->lock);
2959 return change;
2960}
2961
0dca1793 2962
763f356c 2963#define HDSPM_C_TMS(xname, xindex) \
67ed4161 2964{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2965 .name = xname, \
2966 .index = xindex, \
2967 .info = snd_hdspm_info_c_tms, \
2968 .get = snd_hdspm_get_c_tms, \
2969 .put = snd_hdspm_put_c_tms \
2970}
2971
98274f07 2972static int hdspm_c_tms(struct hdspm * hdspm)
763f356c
TI
2973{
2974 return (hdspm->control_register & HDSPM_clr_tms) ? 1 : 0;
2975}
2976
98274f07 2977static int hdspm_set_c_tms(struct hdspm * hdspm, int out)
763f356c
TI
2978{
2979 if (out)
2980 hdspm->control_register |= HDSPM_clr_tms;
2981 else
2982 hdspm->control_register &= ~HDSPM_clr_tms;
2983 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2984
2985 return 0;
2986}
2987
a5ce8890 2988#define snd_hdspm_info_c_tms snd_ctl_boolean_mono_info
763f356c 2989
98274f07
TI
2990static int snd_hdspm_get_c_tms(struct snd_kcontrol *kcontrol,
2991 struct snd_ctl_elem_value *ucontrol)
763f356c 2992{
98274f07 2993 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2994
2995 spin_lock_irq(&hdspm->lock);
2996 ucontrol->value.integer.value[0] = hdspm_c_tms(hdspm);
2997 spin_unlock_irq(&hdspm->lock);
2998 return 0;
2999}
3000
98274f07
TI
3001static int snd_hdspm_put_c_tms(struct snd_kcontrol *kcontrol,
3002 struct snd_ctl_elem_value *ucontrol)
763f356c 3003{
98274f07 3004 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3005 int change;
3006 unsigned int val;
3007
3008 if (!snd_hdspm_use_is_exclusive(hdspm))
3009 return -EBUSY;
3010 val = ucontrol->value.integer.value[0] & 1;
3011 spin_lock_irq(&hdspm->lock);
3012 change = (int) val != hdspm_c_tms(hdspm);
3013 hdspm_set_c_tms(hdspm, val);
3014 spin_unlock_irq(&hdspm->lock);
3015 return change;
3016}
3017
0dca1793 3018
763f356c 3019#define HDSPM_SAFE_MODE(xname, xindex) \
67ed4161 3020{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
3021 .name = xname, \
3022 .index = xindex, \
3023 .info = snd_hdspm_info_safe_mode, \
3024 .get = snd_hdspm_get_safe_mode, \
3025 .put = snd_hdspm_put_safe_mode \
3026}
3027
3cee5a60
RB
3028static int hdspm_safe_mode(struct hdspm * hdspm)
3029{
3030 return (hdspm->control_register & HDSPM_AutoInp) ? 1 : 0;
3031}
3032
3033static int hdspm_set_safe_mode(struct hdspm * hdspm, int out)
3034{
3035 if (out)
3036 hdspm->control_register |= HDSPM_AutoInp;
3037 else
3038 hdspm->control_register &= ~HDSPM_AutoInp;
3039 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3040
3041 return 0;
3042}
3043
a5ce8890 3044#define snd_hdspm_info_safe_mode snd_ctl_boolean_mono_info
3cee5a60
RB
3045
3046static int snd_hdspm_get_safe_mode(struct snd_kcontrol *kcontrol,
3047 struct snd_ctl_elem_value *ucontrol)
3048{
3049 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3050
3051 spin_lock_irq(&hdspm->lock);
3052 ucontrol->value.integer.value[0] = hdspm_safe_mode(hdspm);
3053 spin_unlock_irq(&hdspm->lock);
3054 return 0;
3055}
3056
3057static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol,
3058 struct snd_ctl_elem_value *ucontrol)
3059{
3060 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3061 int change;
3062 unsigned int val;
3063
3064 if (!snd_hdspm_use_is_exclusive(hdspm))
3065 return -EBUSY;
3066 val = ucontrol->value.integer.value[0] & 1;
3067 spin_lock_irq(&hdspm->lock);
3068 change = (int) val != hdspm_safe_mode(hdspm);
3069 hdspm_set_safe_mode(hdspm, val);
3070 spin_unlock_irq(&hdspm->lock);
3071 return change;
3072}
3073
0dca1793 3074
3cee5a60
RB
3075#define HDSPM_EMPHASIS(xname, xindex) \
3076{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3077 .name = xname, \
3078 .index = xindex, \
3079 .info = snd_hdspm_info_emphasis, \
3080 .get = snd_hdspm_get_emphasis, \
3081 .put = snd_hdspm_put_emphasis \
3082}
3083
3084static int hdspm_emphasis(struct hdspm * hdspm)
3085{
3086 return (hdspm->control_register & HDSPM_Emphasis) ? 1 : 0;
3087}
3088
3089static int hdspm_set_emphasis(struct hdspm * hdspm, int emp)
3090{
3091 if (emp)
3092 hdspm->control_register |= HDSPM_Emphasis;
3093 else
3094 hdspm->control_register &= ~HDSPM_Emphasis;
3095 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3096
3097 return 0;
3098}
3099
a5ce8890 3100#define snd_hdspm_info_emphasis snd_ctl_boolean_mono_info
3cee5a60
RB
3101
3102static int snd_hdspm_get_emphasis(struct snd_kcontrol *kcontrol,
3103 struct snd_ctl_elem_value *ucontrol)
3104{
3105 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3106
3107 spin_lock_irq(&hdspm->lock);
3108 ucontrol->value.enumerated.item[0] = hdspm_emphasis(hdspm);
3109 spin_unlock_irq(&hdspm->lock);
3110 return 0;
3111}
3112
3113static int snd_hdspm_put_emphasis(struct snd_kcontrol *kcontrol,
3114 struct snd_ctl_elem_value *ucontrol)
3115{
3116 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3117 int change;
3118 unsigned int val;
3119
3120 if (!snd_hdspm_use_is_exclusive(hdspm))
3121 return -EBUSY;
3122 val = ucontrol->value.integer.value[0] & 1;
3123 spin_lock_irq(&hdspm->lock);
3124 change = (int) val != hdspm_emphasis(hdspm);
3125 hdspm_set_emphasis(hdspm, val);
3126 spin_unlock_irq(&hdspm->lock);
3127 return change;
3128}
3129
0dca1793 3130
3cee5a60
RB
3131#define HDSPM_DOLBY(xname, xindex) \
3132{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3133 .name = xname, \
3134 .index = xindex, \
3135 .info = snd_hdspm_info_dolby, \
3136 .get = snd_hdspm_get_dolby, \
3137 .put = snd_hdspm_put_dolby \
3138}
3139
3140static int hdspm_dolby(struct hdspm * hdspm)
3141{
3142 return (hdspm->control_register & HDSPM_Dolby) ? 1 : 0;
3143}
3144
3145static int hdspm_set_dolby(struct hdspm * hdspm, int dol)
3146{
3147 if (dol)
3148 hdspm->control_register |= HDSPM_Dolby;
3149 else
3150 hdspm->control_register &= ~HDSPM_Dolby;
3151 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3152
3153 return 0;
3154}
3155
a5ce8890 3156#define snd_hdspm_info_dolby snd_ctl_boolean_mono_info
3cee5a60
RB
3157
3158static int snd_hdspm_get_dolby(struct snd_kcontrol *kcontrol,
3159 struct snd_ctl_elem_value *ucontrol)
3160{
3161 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3162
3163 spin_lock_irq(&hdspm->lock);
3164 ucontrol->value.enumerated.item[0] = hdspm_dolby(hdspm);
3165 spin_unlock_irq(&hdspm->lock);
3166 return 0;
3167}
3168
3169static int snd_hdspm_put_dolby(struct snd_kcontrol *kcontrol,
3170 struct snd_ctl_elem_value *ucontrol)
3171{
3172 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3173 int change;
3174 unsigned int val;
3175
3176 if (!snd_hdspm_use_is_exclusive(hdspm))
3177 return -EBUSY;
3178 val = ucontrol->value.integer.value[0] & 1;
3179 spin_lock_irq(&hdspm->lock);
3180 change = (int) val != hdspm_dolby(hdspm);
3181 hdspm_set_dolby(hdspm, val);
3182 spin_unlock_irq(&hdspm->lock);
3183 return change;
3184}
3185
0dca1793 3186
3cee5a60
RB
3187#define HDSPM_PROFESSIONAL(xname, xindex) \
3188{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3189 .name = xname, \
3190 .index = xindex, \
3191 .info = snd_hdspm_info_professional, \
3192 .get = snd_hdspm_get_professional, \
3193 .put = snd_hdspm_put_professional \
3194}
3195
3196static int hdspm_professional(struct hdspm * hdspm)
3197{
3198 return (hdspm->control_register & HDSPM_Professional) ? 1 : 0;
3199}
3200
3201static int hdspm_set_professional(struct hdspm * hdspm, int dol)
3202{
3203 if (dol)
3204 hdspm->control_register |= HDSPM_Professional;
3205 else
3206 hdspm->control_register &= ~HDSPM_Professional;
3207 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3208
3209 return 0;
3210}
3211
a5ce8890 3212#define snd_hdspm_info_professional snd_ctl_boolean_mono_info
3cee5a60
RB
3213
3214static int snd_hdspm_get_professional(struct snd_kcontrol *kcontrol,
3215 struct snd_ctl_elem_value *ucontrol)
3216{
3217 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3218
3219 spin_lock_irq(&hdspm->lock);
3220 ucontrol->value.enumerated.item[0] = hdspm_professional(hdspm);
3221 spin_unlock_irq(&hdspm->lock);
3222 return 0;
3223}
3224
3225static int snd_hdspm_put_professional(struct snd_kcontrol *kcontrol,
3226 struct snd_ctl_elem_value *ucontrol)
3227{
3228 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3229 int change;
3230 unsigned int val;
3231
3232 if (!snd_hdspm_use_is_exclusive(hdspm))
3233 return -EBUSY;
3234 val = ucontrol->value.integer.value[0] & 1;
3235 spin_lock_irq(&hdspm->lock);
3236 change = (int) val != hdspm_professional(hdspm);
3237 hdspm_set_professional(hdspm, val);
3238 spin_unlock_irq(&hdspm->lock);
3239 return change;
3240}
3241
3242#define HDSPM_INPUT_SELECT(xname, xindex) \
3243{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3244 .name = xname, \
3245 .index = xindex, \
3246 .info = snd_hdspm_info_input_select, \
3247 .get = snd_hdspm_get_input_select, \
3248 .put = snd_hdspm_put_input_select \
3249}
3250
3251static int hdspm_input_select(struct hdspm * hdspm)
3252{
3253 return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3254}
3255
3256static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3257{
3258 if (out)
3259 hdspm->control_register |= HDSPM_InputSelect0;
3260 else
3261 hdspm->control_register &= ~HDSPM_InputSelect0;
3262 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3263
3264 return 0;
3265}
3266
3267static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3268 struct snd_ctl_elem_info *uinfo)
3269{
3270 static char *texts[] = { "optical", "coaxial" };
3271
3272 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3273 uinfo->count = 1;
3274 uinfo->value.enumerated.items = 2;
3275
3276 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3277 uinfo->value.enumerated.item =
3278 uinfo->value.enumerated.items - 1;
3279 strcpy(uinfo->value.enumerated.name,
3280 texts[uinfo->value.enumerated.item]);
3281
3282 return 0;
3283}
3284
3285static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3286 struct snd_ctl_elem_value *ucontrol)
3287{
3288 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3289
3290 spin_lock_irq(&hdspm->lock);
3291 ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3292 spin_unlock_irq(&hdspm->lock);
3293 return 0;
3294}
3295
3296static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3297 struct snd_ctl_elem_value *ucontrol)
3298{
3299 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3300 int change;
3301 unsigned int val;
3302
3303 if (!snd_hdspm_use_is_exclusive(hdspm))
3304 return -EBUSY;
3305 val = ucontrol->value.integer.value[0] & 1;
3306 spin_lock_irq(&hdspm->lock);
3307 change = (int) val != hdspm_input_select(hdspm);
3308 hdspm_set_input_select(hdspm, val);
3309 spin_unlock_irq(&hdspm->lock);
3310 return change;
3311}
3312
0dca1793 3313
3cee5a60
RB
3314#define HDSPM_DS_WIRE(xname, xindex) \
3315{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3316 .name = xname, \
3317 .index = xindex, \
3318 .info = snd_hdspm_info_ds_wire, \
3319 .get = snd_hdspm_get_ds_wire, \
3320 .put = snd_hdspm_put_ds_wire \
3321}
3322
3323static int hdspm_ds_wire(struct hdspm * hdspm)
763f356c 3324{
3cee5a60 3325 return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
763f356c
TI
3326}
3327
3cee5a60 3328static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
763f356c 3329{
3cee5a60
RB
3330 if (ds)
3331 hdspm->control_register |= HDSPM_DS_DoubleWire;
763f356c 3332 else
3cee5a60 3333 hdspm->control_register &= ~HDSPM_DS_DoubleWire;
763f356c
TI
3334 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3335
3336 return 0;
3337}
3338
3cee5a60
RB
3339static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3340 struct snd_ctl_elem_info *uinfo)
763f356c 3341{
3cee5a60
RB
3342 static char *texts[] = { "Single", "Double" };
3343
3344 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
763f356c 3345 uinfo->count = 1;
3cee5a60
RB
3346 uinfo->value.enumerated.items = 2;
3347
3348 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3349 uinfo->value.enumerated.item =
3350 uinfo->value.enumerated.items - 1;
3351 strcpy(uinfo->value.enumerated.name,
3352 texts[uinfo->value.enumerated.item]);
3353
763f356c
TI
3354 return 0;
3355}
3356
3cee5a60
RB
3357static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3358 struct snd_ctl_elem_value *ucontrol)
763f356c 3359{
98274f07 3360 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3361
3362 spin_lock_irq(&hdspm->lock);
3cee5a60 3363 ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
763f356c
TI
3364 spin_unlock_irq(&hdspm->lock);
3365 return 0;
3366}
3367
3cee5a60
RB
3368static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3369 struct snd_ctl_elem_value *ucontrol)
763f356c 3370{
98274f07 3371 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3372 int change;
3373 unsigned int val;
3374
3375 if (!snd_hdspm_use_is_exclusive(hdspm))
3376 return -EBUSY;
3377 val = ucontrol->value.integer.value[0] & 1;
3378 spin_lock_irq(&hdspm->lock);
3cee5a60
RB
3379 change = (int) val != hdspm_ds_wire(hdspm);
3380 hdspm_set_ds_wire(hdspm, val);
763f356c
TI
3381 spin_unlock_irq(&hdspm->lock);
3382 return change;
3383}
3384
0dca1793 3385
3cee5a60 3386#define HDSPM_QS_WIRE(xname, xindex) \
67ed4161 3387{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
3388 .name = xname, \
3389 .index = xindex, \
3cee5a60
RB
3390 .info = snd_hdspm_info_qs_wire, \
3391 .get = snd_hdspm_get_qs_wire, \
3392 .put = snd_hdspm_put_qs_wire \
763f356c
TI
3393}
3394
3cee5a60 3395static int hdspm_qs_wire(struct hdspm * hdspm)
763f356c 3396{
3cee5a60
RB
3397 if (hdspm->control_register & HDSPM_QS_DoubleWire)
3398 return 1;
3399 if (hdspm->control_register & HDSPM_QS_QuadWire)
3400 return 2;
3401 return 0;
763f356c
TI
3402}
3403
3cee5a60 3404static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
763f356c 3405{
3cee5a60
RB
3406 hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3407 switch (mode) {
3408 case 0:
3409 break;
3410 case 1:
3411 hdspm->control_register |= HDSPM_QS_DoubleWire;
3412 break;
3413 case 2:
3414 hdspm->control_register |= HDSPM_QS_QuadWire;
3415 break;
3416 }
763f356c
TI
3417 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3418
3419 return 0;
3420}
3421
3cee5a60 3422static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
98274f07 3423 struct snd_ctl_elem_info *uinfo)
763f356c 3424{
3cee5a60 3425 static char *texts[] = { "Single", "Double", "Quad" };
763f356c
TI
3426
3427 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3428 uinfo->count = 1;
3cee5a60 3429 uinfo->value.enumerated.items = 3;
763f356c
TI
3430
3431 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3432 uinfo->value.enumerated.item =
3433 uinfo->value.enumerated.items - 1;
3434 strcpy(uinfo->value.enumerated.name,
3435 texts[uinfo->value.enumerated.item]);
3436
3437 return 0;
3438}
3439
3cee5a60 3440static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
98274f07 3441 struct snd_ctl_elem_value *ucontrol)
763f356c 3442{
98274f07 3443 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3444
3445 spin_lock_irq(&hdspm->lock);
3cee5a60 3446 ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
763f356c
TI
3447 spin_unlock_irq(&hdspm->lock);
3448 return 0;
3449}
3450
3cee5a60 3451static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
98274f07 3452 struct snd_ctl_elem_value *ucontrol)
763f356c 3453{
98274f07 3454 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 3455 int change;
3cee5a60 3456 int val;
763f356c
TI
3457
3458 if (!snd_hdspm_use_is_exclusive(hdspm))
3459 return -EBUSY;
3cee5a60
RB
3460 val = ucontrol->value.integer.value[0];
3461 if (val < 0)
3462 val = 0;
3463 if (val > 2)
3464 val = 2;
763f356c 3465 spin_lock_irq(&hdspm->lock);
ef5fa1a4 3466 change = val != hdspm_qs_wire(hdspm);
3cee5a60 3467 hdspm_set_qs_wire(hdspm, val);
763f356c
TI
3468 spin_unlock_irq(&hdspm->lock);
3469 return change;
3470}
3471
700d1ef3
AK
3472#define HDSPM_MADI_SPEEDMODE(xname, xindex) \
3473{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3474 .name = xname, \
3475 .index = xindex, \
3476 .info = snd_hdspm_info_madi_speedmode, \
3477 .get = snd_hdspm_get_madi_speedmode, \
3478 .put = snd_hdspm_put_madi_speedmode \
3479}
3480
3481static int hdspm_madi_speedmode(struct hdspm *hdspm)
3482{
3483 if (hdspm->control_register & HDSPM_QuadSpeed)
3484 return 2;
3485 if (hdspm->control_register & HDSPM_DoubleSpeed)
3486 return 1;
3487 return 0;
3488}
3489
3490static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode)
3491{
3492 hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed);
3493 switch (mode) {
3494 case 0:
3495 break;
3496 case 1:
3497 hdspm->control_register |= HDSPM_DoubleSpeed;
3498 break;
3499 case 2:
3500 hdspm->control_register |= HDSPM_QuadSpeed;
3501 break;
3502 }
3503 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3504
3505 return 0;
3506}
3507
3508static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol,
3509 struct snd_ctl_elem_info *uinfo)
3510{
3511 static char *texts[] = { "Single", "Double", "Quad" };
3512
3513 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3514 uinfo->count = 1;
3515 uinfo->value.enumerated.items = 3;
3516
3517 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3518 uinfo->value.enumerated.item =
3519 uinfo->value.enumerated.items - 1;
3520 strcpy(uinfo->value.enumerated.name,
3521 texts[uinfo->value.enumerated.item]);
3522
3523 return 0;
3524}
3525
3526static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol,
3527 struct snd_ctl_elem_value *ucontrol)
3528{
3529 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3530
3531 spin_lock_irq(&hdspm->lock);
3532 ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm);
3533 spin_unlock_irq(&hdspm->lock);
3534 return 0;
3535}
3536
3537static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol,
3538 struct snd_ctl_elem_value *ucontrol)
3539{
3540 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3541 int change;
3542 int val;
3543
3544 if (!snd_hdspm_use_is_exclusive(hdspm))
3545 return -EBUSY;
3546 val = ucontrol->value.integer.value[0];
3547 if (val < 0)
3548 val = 0;
3549 if (val > 2)
3550 val = 2;
3551 spin_lock_irq(&hdspm->lock);
3552 change = val != hdspm_madi_speedmode(hdspm);
3553 hdspm_set_madi_speedmode(hdspm, val);
3554 spin_unlock_irq(&hdspm->lock);
3555 return change;
3556}
763f356c
TI
3557
3558#define HDSPM_MIXER(xname, xindex) \
3559{ .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3560 .name = xname, \
3561 .index = xindex, \
67ed4161 3562 .device = 0, \
763f356c
TI
3563 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3564 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3565 .info = snd_hdspm_info_mixer, \
3566 .get = snd_hdspm_get_mixer, \
3567 .put = snd_hdspm_put_mixer \
3568}
3569
98274f07
TI
3570static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3571 struct snd_ctl_elem_info *uinfo)
763f356c
TI
3572{
3573 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3574 uinfo->count = 3;
3575 uinfo->value.integer.min = 0;
3576 uinfo->value.integer.max = 65535;
3577 uinfo->value.integer.step = 1;
3578 return 0;
3579}
3580
98274f07
TI
3581static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3582 struct snd_ctl_elem_value *ucontrol)
763f356c 3583{
98274f07 3584 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3585 int source;
3586 int destination;
3587
3588 source = ucontrol->value.integer.value[0];
3589 if (source < 0)
3590 source = 0;
3591 else if (source >= 2 * HDSPM_MAX_CHANNELS)
3592 source = 2 * HDSPM_MAX_CHANNELS - 1;
3593
3594 destination = ucontrol->value.integer.value[1];
3595 if (destination < 0)
3596 destination = 0;
3597 else if (destination >= HDSPM_MAX_CHANNELS)
3598 destination = HDSPM_MAX_CHANNELS - 1;
3599
3600 spin_lock_irq(&hdspm->lock);
3601 if (source >= HDSPM_MAX_CHANNELS)
3602 ucontrol->value.integer.value[2] =
3603 hdspm_read_pb_gain(hdspm, destination,
3604 source - HDSPM_MAX_CHANNELS);
3605 else
3606 ucontrol->value.integer.value[2] =
3607 hdspm_read_in_gain(hdspm, destination, source);
3608
3609 spin_unlock_irq(&hdspm->lock);
3610
3611 return 0;
3612}
3613
98274f07
TI
3614static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3615 struct snd_ctl_elem_value *ucontrol)
763f356c 3616{
98274f07 3617 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3618 int change;
3619 int source;
3620 int destination;
3621 int gain;
3622
3623 if (!snd_hdspm_use_is_exclusive(hdspm))
3624 return -EBUSY;
3625
3626 source = ucontrol->value.integer.value[0];
3627 destination = ucontrol->value.integer.value[1];
3628
3629 if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3630 return -1;
3631 if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3632 return -1;
3633
3634 gain = ucontrol->value.integer.value[2];
3635
3636 spin_lock_irq(&hdspm->lock);
3637
3638 if (source >= HDSPM_MAX_CHANNELS)
3639 change = gain != hdspm_read_pb_gain(hdspm, destination,
3640 source -
3641 HDSPM_MAX_CHANNELS);
3642 else
ef5fa1a4
TI
3643 change = gain != hdspm_read_in_gain(hdspm, destination,
3644 source);
763f356c
TI
3645
3646 if (change) {
3647 if (source >= HDSPM_MAX_CHANNELS)
3648 hdspm_write_pb_gain(hdspm, destination,
3649 source - HDSPM_MAX_CHANNELS,
3650 gain);
3651 else
3652 hdspm_write_in_gain(hdspm, destination, source,
3653 gain);
3654 }
3655 spin_unlock_irq(&hdspm->lock);
3656
3657 return change;
3658}
3659
3660/* The simple mixer control(s) provide gain control for the
3661 basic 1:1 mappings of playback streams to output
0dca1793 3662 streams.
763f356c
TI
3663*/
3664
3665#define HDSPM_PLAYBACK_MIXER \
3666{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3667 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3668 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3669 .info = snd_hdspm_info_playback_mixer, \
3670 .get = snd_hdspm_get_playback_mixer, \
3671 .put = snd_hdspm_put_playback_mixer \
3672}
3673
98274f07
TI
3674static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3675 struct snd_ctl_elem_info *uinfo)
763f356c
TI
3676{
3677 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3678 uinfo->count = 1;
3679 uinfo->value.integer.min = 0;
0dca1793 3680 uinfo->value.integer.max = 64;
763f356c
TI
3681 uinfo->value.integer.step = 1;
3682 return 0;
3683}
3684
98274f07
TI
3685static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3686 struct snd_ctl_elem_value *ucontrol)
763f356c 3687{
98274f07 3688 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 3689 int channel;
763f356c
TI
3690
3691 channel = ucontrol->id.index - 1;
3692
da3cec35
TI
3693 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3694 return -EINVAL;
763f356c 3695
763f356c
TI
3696 spin_lock_irq(&hdspm->lock);
3697 ucontrol->value.integer.value[0] =
0dca1793 3698 (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
763f356c
TI
3699 spin_unlock_irq(&hdspm->lock);
3700
763f356c
TI
3701 return 0;
3702}
3703
98274f07
TI
3704static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3705 struct snd_ctl_elem_value *ucontrol)
763f356c 3706{
98274f07 3707 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3708 int change;
3709 int channel;
763f356c
TI
3710 int gain;
3711
3712 if (!snd_hdspm_use_is_exclusive(hdspm))
3713 return -EBUSY;
3714
3715 channel = ucontrol->id.index - 1;
3716
da3cec35
TI
3717 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3718 return -EINVAL;
763f356c 3719
0dca1793 3720 gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
763f356c
TI
3721
3722 spin_lock_irq(&hdspm->lock);
3723 change =
0dca1793
AK
3724 gain != hdspm_read_pb_gain(hdspm, channel,
3725 channel);
763f356c 3726 if (change)
0dca1793 3727 hdspm_write_pb_gain(hdspm, channel, channel,
763f356c
TI
3728 gain);
3729 spin_unlock_irq(&hdspm->lock);
3730 return change;
3731}
3732
0dca1793
AK
3733#define HDSPM_SYNC_CHECK(xname, xindex) \
3734{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3735 .name = xname, \
3736 .private_value = xindex, \
3737 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3738 .info = snd_hdspm_info_sync_check, \
3739 .get = snd_hdspm_get_sync_check \
763f356c
TI
3740}
3741
0dca1793 3742
98274f07
TI
3743static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3744 struct snd_ctl_elem_info *uinfo)
763f356c 3745{
0dca1793 3746 static char *texts[] = { "No Lock", "Lock", "Sync", "N/A" };
763f356c
TI
3747 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3748 uinfo->count = 1;
0dca1793 3749 uinfo->value.enumerated.items = 4;
763f356c
TI
3750 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3751 uinfo->value.enumerated.item =
0dca1793 3752 uinfo->value.enumerated.items - 1;
763f356c 3753 strcpy(uinfo->value.enumerated.name,
0dca1793 3754 texts[uinfo->value.enumerated.item]);
763f356c
TI
3755 return 0;
3756}
3757
0dca1793 3758static int hdspm_wc_sync_check(struct hdspm *hdspm)
763f356c 3759{
0dca1793
AK
3760 int status, status2;
3761
3762 switch (hdspm->io_type) {
3763 case AES32:
3764 status = hdspm_read(hdspm, HDSPM_statusRegister);
3765 if (status & HDSPM_wcSync)
763f356c 3766 return 2;
0dca1793
AK
3767 else if (status & HDSPM_wcLock)
3768 return 1;
3cee5a60 3769 return 0;
0dca1793
AK
3770 break;
3771
3772 case MADI:
3773 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3cee5a60
RB
3774 if (status2 & HDSPM_wcLock) {
3775 if (status2 & HDSPM_wcSync)
3776 return 2;
3777 else
3778 return 1;
3779 }
3780 return 0;
0dca1793 3781 break;
763f356c 3782
0dca1793
AK
3783 case RayDAT:
3784 case AIO:
3785 status = hdspm_read(hdspm, HDSPM_statusRegister);
763f356c 3786
0dca1793
AK
3787 if (status & 0x2000000)
3788 return 2;
3789 else if (status & 0x1000000)
3790 return 1;
3791 return 0;
763f356c 3792
0dca1793 3793 break;
763f356c 3794
0dca1793
AK
3795 case MADIface:
3796 break;
3797 }
3798
3799
3800 return 3;
763f356c
TI
3801}
3802
0dca1793
AK
3803
3804static int hdspm_madi_sync_check(struct hdspm *hdspm)
763f356c
TI
3805{
3806 int status = hdspm_read(hdspm, HDSPM_statusRegister);
3807 if (status & HDSPM_madiLock) {
3808 if (status & HDSPM_madiSync)
3809 return 2;
3810 else
3811 return 1;
3812 }
3813 return 0;
3814}
3815
763f356c 3816
0dca1793
AK
3817static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3818{
3819 int status, lock, sync;
763f356c 3820
0dca1793 3821 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
763f356c 3822
0dca1793
AK
3823 lock = (status & (0x1<<idx)) ? 1 : 0;
3824 sync = (status & (0x100<<idx)) ? 1 : 0;
3cee5a60 3825
0dca1793 3826 if (lock && sync)
3cee5a60 3827 return 2;
0dca1793
AK
3828 else if (lock)
3829 return 1;
3cee5a60
RB
3830 return 0;
3831}
3832
0dca1793
AK
3833
3834static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3835{
3836 int status, lock = 0, sync = 0;
3837
3838 switch (hdspm->io_type) {
3839 case RayDAT:
3840 case AIO:
3841 status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3842 lock = (status & 0x400) ? 1 : 0;
3843 sync = (status & 0x800) ? 1 : 0;
3844 break;
3845
3846 case MADI:
3847 case AES32:
3848 status = hdspm_read(hdspm, HDSPM_statusRegister2);
a7edbd5b
AK
3849 lock = (status & HDSPM_syncInLock) ? 1 : 0;
3850 sync = (status & HDSPM_syncInSync) ? 1 : 0;
0dca1793
AK
3851 break;
3852
3853 case MADIface:
3854 break;
3855 }
3856
3857 if (lock && sync)
3858 return 2;
3859 else if (lock)
3860 return 1;
3861
3862 return 0;
3863}
3864
3865static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3866{
3867 int status2, lock, sync;
3868 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3869
3870 lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3871 sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3872
3873 if (sync)
3874 return 2;
3875 else if (lock)
3876 return 1;
3877 return 0;
3878}
3879
3880
3881static int hdspm_tco_sync_check(struct hdspm *hdspm)
3882{
3883 int status;
3884
3885 if (hdspm->tco) {
3886 switch (hdspm->io_type) {
3887 case MADI:
3888 case AES32:
3889 status = hdspm_read(hdspm, HDSPM_statusRegister);
3890 if (status & HDSPM_tcoLock) {
3891 if (status & HDSPM_tcoSync)
3892 return 2;
3893 else
3894 return 1;
3895 }
3896 return 0;
3897
3898 break;
3899
3900 case RayDAT:
3901 case AIO:
3902 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3903
3904 if (status & 0x8000000)
3905 return 2; /* Sync */
3906 if (status & 0x4000000)
3907 return 1; /* Lock */
3908 return 0; /* No signal */
3909 break;
3910
3911 default:
3912 break;
3913 }
3914 }
3915
3916 return 3; /* N/A */
3917}
3918
3919
3920static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
3921 struct snd_ctl_elem_value *ucontrol)
3922{
3923 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3924 int val = -1;
3925
3926 switch (hdspm->io_type) {
3927 case RayDAT:
3928 switch (kcontrol->private_value) {
3929 case 0: /* WC */
3930 val = hdspm_wc_sync_check(hdspm); break;
3931 case 7: /* TCO */
3932 val = hdspm_tco_sync_check(hdspm); break;
3933 case 8: /* SYNC IN */
3934 val = hdspm_sync_in_sync_check(hdspm); break;
3935 default:
3936 val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
3937 }
3938
3939 case AIO:
3940 switch (kcontrol->private_value) {
3941 case 0: /* WC */
3942 val = hdspm_wc_sync_check(hdspm); break;
3943 case 4: /* TCO */
3944 val = hdspm_tco_sync_check(hdspm); break;
3945 case 5: /* SYNC IN */
3946 val = hdspm_sync_in_sync_check(hdspm); break;
3947 default:
3948 val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
3949 }
3950
3951 case MADI:
3952 switch (kcontrol->private_value) {
3953 case 0: /* WC */
3954 val = hdspm_wc_sync_check(hdspm); break;
3955 case 1: /* MADI */
3956 val = hdspm_madi_sync_check(hdspm); break;
3957 case 2: /* TCO */
3958 val = hdspm_tco_sync_check(hdspm); break;
3959 case 3: /* SYNC_IN */
3960 val = hdspm_sync_in_sync_check(hdspm); break;
3961 }
3962
3963 case MADIface:
3964 val = hdspm_madi_sync_check(hdspm); /* MADI */
3965 break;
3966
3967 case AES32:
3968 switch (kcontrol->private_value) {
3969 case 0: /* WC */
3970 val = hdspm_wc_sync_check(hdspm); break;
3971 case 9: /* TCO */
3972 val = hdspm_tco_sync_check(hdspm); break;
3973 case 10 /* SYNC IN */:
3974 val = hdspm_sync_in_sync_check(hdspm); break;
7c4a95b5 3975 default: /* AES1 to AES8 */
0dca1793 3976 val = hdspm_aes_sync_check(hdspm,
7c4a95b5 3977 kcontrol->private_value-1);
0dca1793
AK
3978 }
3979
3980 }
3981
3982 if (-1 == val)
3983 val = 3;
3984
3985 ucontrol->value.enumerated.item[0] = val;
3986 return 0;
3987}
3988
3989
3990
3991/**
3992 * TCO controls
3993 **/
3994static void hdspm_tco_write(struct hdspm *hdspm)
3995{
3996 unsigned int tc[4] = { 0, 0, 0, 0};
3997
3998 switch (hdspm->tco->input) {
3999 case 0:
4000 tc[2] |= HDSPM_TCO2_set_input_MSB;
4001 break;
4002 case 1:
4003 tc[2] |= HDSPM_TCO2_set_input_LSB;
4004 break;
4005 default:
4006 break;
4007 }
4008
4009 switch (hdspm->tco->framerate) {
4010 case 1:
4011 tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
4012 break;
4013 case 2:
4014 tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
4015 break;
4016 case 3:
4017 tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
4018 HDSPM_TCO1_set_drop_frame_flag;
4019 break;
4020 case 4:
4021 tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4022 HDSPM_TCO1_LTC_Format_MSB;
4023 break;
4024 case 5:
4025 tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4026 HDSPM_TCO1_LTC_Format_MSB +
4027 HDSPM_TCO1_set_drop_frame_flag;
4028 break;
4029 default:
4030 break;
4031 }
4032
4033 switch (hdspm->tco->wordclock) {
4034 case 1:
4035 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
4036 break;
4037 case 2:
4038 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
4039 break;
4040 default:
4041 break;
4042 }
4043
4044 switch (hdspm->tco->samplerate) {
4045 case 1:
4046 tc[2] |= HDSPM_TCO2_set_freq;
4047 break;
4048 case 2:
4049 tc[2] |= HDSPM_TCO2_set_freq_from_app;
4050 break;
4051 default:
4052 break;
4053 }
4054
4055 switch (hdspm->tco->pull) {
4056 case 1:
4057 tc[2] |= HDSPM_TCO2_set_pull_up;
4058 break;
4059 case 2:
4060 tc[2] |= HDSPM_TCO2_set_pull_down;
4061 break;
4062 case 3:
4063 tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
4064 break;
4065 case 4:
4066 tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
4067 break;
4068 default:
4069 break;
4070 }
4071
4072 if (1 == hdspm->tco->term) {
4073 tc[2] |= HDSPM_TCO2_set_term_75R;
4074 }
4075
4076 hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
4077 hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
4078 hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
4079 hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
4080}
4081
4082
4083#define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
4084{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4085 .name = xname, \
4086 .index = xindex, \
4087 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4088 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4089 .info = snd_hdspm_info_tco_sample_rate, \
4090 .get = snd_hdspm_get_tco_sample_rate, \
4091 .put = snd_hdspm_put_tco_sample_rate \
4092}
4093
4094static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
4095 struct snd_ctl_elem_info *uinfo)
4096{
4097 static char *texts[] = { "44.1 kHz", "48 kHz" };
4098 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4099 uinfo->count = 1;
4100 uinfo->value.enumerated.items = 2;
4101
4102 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4103 uinfo->value.enumerated.item =
4104 uinfo->value.enumerated.items - 1;
4105
4106 strcpy(uinfo->value.enumerated.name,
4107 texts[uinfo->value.enumerated.item]);
4108
4109 return 0;
4110}
4111
4112static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
4113 struct snd_ctl_elem_value *ucontrol)
4114{
4115 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4116
4117 ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
4118
4119 return 0;
4120}
4121
4122static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
4123 struct snd_ctl_elem_value *ucontrol)
4124{
4125 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4126
4127 if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
4128 hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
4129
4130 hdspm_tco_write(hdspm);
4131
4132 return 1;
4133 }
4134
4135 return 0;
4136}
4137
4138
4139#define HDSPM_TCO_PULL(xname, xindex) \
4140{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4141 .name = xname, \
4142 .index = xindex, \
4143 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4144 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4145 .info = snd_hdspm_info_tco_pull, \
4146 .get = snd_hdspm_get_tco_pull, \
4147 .put = snd_hdspm_put_tco_pull \
4148}
4149
4150static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
4151 struct snd_ctl_elem_info *uinfo)
4152{
4153 static char *texts[] = { "0", "+ 0.1 %", "- 0.1 %", "+ 4 %", "- 4 %" };
4154 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4155 uinfo->count = 1;
4156 uinfo->value.enumerated.items = 5;
4157
4158 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4159 uinfo->value.enumerated.item =
4160 uinfo->value.enumerated.items - 1;
4161
4162 strcpy(uinfo->value.enumerated.name,
4163 texts[uinfo->value.enumerated.item]);
4164
4165 return 0;
4166}
4167
4168static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
4169 struct snd_ctl_elem_value *ucontrol)
4170{
4171 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4172
4173 ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
4174
4175 return 0;
4176}
4177
4178static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
4179 struct snd_ctl_elem_value *ucontrol)
4180{
4181 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4182
4183 if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
4184 hdspm->tco->pull = ucontrol->value.enumerated.item[0];
4185
4186 hdspm_tco_write(hdspm);
4187
4188 return 1;
4189 }
4190
4191 return 0;
4192}
4193
4194#define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
4195{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4196 .name = xname, \
4197 .index = xindex, \
4198 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4199 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4200 .info = snd_hdspm_info_tco_wck_conversion, \
4201 .get = snd_hdspm_get_tco_wck_conversion, \
4202 .put = snd_hdspm_put_tco_wck_conversion \
4203}
4204
4205static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4206 struct snd_ctl_elem_info *uinfo)
4207{
4208 static char *texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
4209 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4210 uinfo->count = 1;
4211 uinfo->value.enumerated.items = 3;
4212
4213 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4214 uinfo->value.enumerated.item =
4215 uinfo->value.enumerated.items - 1;
4216
4217 strcpy(uinfo->value.enumerated.name,
4218 texts[uinfo->value.enumerated.item]);
4219
4220 return 0;
4221}
4222
4223static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4224 struct snd_ctl_elem_value *ucontrol)
4225{
4226 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4227
4228 ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
4229
4230 return 0;
4231}
4232
4233static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4234 struct snd_ctl_elem_value *ucontrol)
4235{
4236 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4237
4238 if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
4239 hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
4240
4241 hdspm_tco_write(hdspm);
4242
4243 return 1;
4244 }
4245
4246 return 0;
4247}
4248
4249
4250#define HDSPM_TCO_FRAME_RATE(xname, xindex) \
4251{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4252 .name = xname, \
4253 .index = xindex, \
4254 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4255 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4256 .info = snd_hdspm_info_tco_frame_rate, \
4257 .get = snd_hdspm_get_tco_frame_rate, \
4258 .put = snd_hdspm_put_tco_frame_rate \
4259}
4260
4261static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
4262 struct snd_ctl_elem_info *uinfo)
4263{
4264 static char *texts[] = { "24 fps", "25 fps", "29.97fps",
4265 "29.97 dfps", "30 fps", "30 dfps" };
4266 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4267 uinfo->count = 1;
4268 uinfo->value.enumerated.items = 6;
4269
4270 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4271 uinfo->value.enumerated.item =
4272 uinfo->value.enumerated.items - 1;
4273
4274 strcpy(uinfo->value.enumerated.name,
4275 texts[uinfo->value.enumerated.item]);
4276
4277 return 0;
4278}
4279
4280static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
3cee5a60
RB
4281 struct snd_ctl_elem_value *ucontrol)
4282{
3cee5a60
RB
4283 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4284
0dca1793 4285 ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
3cee5a60 4286
3cee5a60
RB
4287 return 0;
4288}
763f356c 4289
0dca1793
AK
4290static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
4291 struct snd_ctl_elem_value *ucontrol)
4292{
4293 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 4294
0dca1793
AK
4295 if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
4296 hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
763f356c 4297
0dca1793
AK
4298 hdspm_tco_write(hdspm);
4299
4300 return 1;
4301 }
4302
4303 return 0;
4304}
763f356c 4305
0dca1793
AK
4306
4307#define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
4308{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4309 .name = xname, \
4310 .index = xindex, \
4311 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4312 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4313 .info = snd_hdspm_info_tco_sync_source, \
4314 .get = snd_hdspm_get_tco_sync_source, \
4315 .put = snd_hdspm_put_tco_sync_source \
4316}
4317
4318static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
4319 struct snd_ctl_elem_info *uinfo)
4320{
4321 static char *texts[] = { "LTC", "Video", "WCK" };
4322 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4323 uinfo->count = 1;
4324 uinfo->value.enumerated.items = 3;
4325
4326 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4327 uinfo->value.enumerated.item =
4328 uinfo->value.enumerated.items - 1;
4329
4330 strcpy(uinfo->value.enumerated.name,
4331 texts[uinfo->value.enumerated.item]);
4332
4333 return 0;
4334}
4335
4336static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4337 struct snd_ctl_elem_value *ucontrol)
4338{
4339 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4340
4341 ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4342
4343 return 0;
4344}
4345
4346static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4347 struct snd_ctl_elem_value *ucontrol)
4348{
4349 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4350
4351 if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4352 hdspm->tco->input = ucontrol->value.enumerated.item[0];
4353
4354 hdspm_tco_write(hdspm);
4355
4356 return 1;
4357 }
4358
4359 return 0;
4360}
4361
4362
4363#define HDSPM_TCO_WORD_TERM(xname, xindex) \
4364{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4365 .name = xname, \
4366 .index = xindex, \
4367 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4368 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4369 .info = snd_hdspm_info_tco_word_term, \
4370 .get = snd_hdspm_get_tco_word_term, \
4371 .put = snd_hdspm_put_tco_word_term \
4372}
4373
4374static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4375 struct snd_ctl_elem_info *uinfo)
4376{
4377 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4378 uinfo->count = 1;
4379 uinfo->value.integer.min = 0;
4380 uinfo->value.integer.max = 1;
4381
4382 return 0;
4383}
4384
4385
4386static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4387 struct snd_ctl_elem_value *ucontrol)
4388{
4389 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4390
4391 ucontrol->value.enumerated.item[0] = hdspm->tco->term;
4392
4393 return 0;
4394}
4395
4396
4397static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4398 struct snd_ctl_elem_value *ucontrol)
4399{
4400 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4401
4402 if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) {
4403 hdspm->tco->term = ucontrol->value.enumerated.item[0];
4404
4405 hdspm_tco_write(hdspm);
4406
4407 return 1;
4408 }
4409
4410 return 0;
4411}
4412
4413
4414
4415
4416static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4417 HDSPM_MIXER("Mixer", 0),
4418 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
763f356c
TI
4419 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4420 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4421 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4422 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
0dca1793
AK
4423 HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4424 HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4425 HDSPM_SYNC_CHECK("TCO SyncCHeck", 2),
4426 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
763f356c
TI
4427 HDSPM_LINE_OUT("Line Out", 0),
4428 HDSPM_TX_64("TX 64 channels mode", 0),
4429 HDSPM_C_TMS("Clear Track Marker", 0),
4430 HDSPM_SAFE_MODE("Safe Mode", 0),
700d1ef3
AK
4431 HDSPM_INPUT_SELECT("Input Select", 0),
4432 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
0dca1793
AK
4433};
4434
4435
4436static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4437 HDSPM_MIXER("Mixer", 0),
4438 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4439 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4440 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4441 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4442 HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4443 HDSPM_TX_64("TX 64 channels mode", 0),
4444 HDSPM_C_TMS("Clear Track Marker", 0),
700d1ef3
AK
4445 HDSPM_SAFE_MODE("Safe Mode", 0),
4446 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
763f356c
TI
4447};
4448
0dca1793
AK
4449static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4450 HDSPM_MIXER("Mixer", 0),
4451 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4452 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4453 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4454 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4455 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4456 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4457 HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4458 HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4459 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4460 HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4461 HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4462 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4463 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4464 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4465 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4466 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4467 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4468 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5)
4469
4470 /*
4471 HDSPM_INPUT_SELECT("Input Select", 0),
4472 HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4473 HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4474 HDSPM_SPDIF_IN("SPDIF In", 0);
4475 HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4476 HDSPM_INPUT_LEVEL("Input Level", 0);
4477 HDSPM_OUTPUT_LEVEL("Output Level", 0);
4478 HDSPM_PHONES("Phones", 0);
4479 */
4480};
3cee5a60 4481
0dca1793
AK
4482static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4483 HDSPM_MIXER("Mixer", 0),
4484 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4485 HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4486 HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4487 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4488 HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4489 HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4490 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4491 HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4492 HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4493 HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4494 HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4495 HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4496 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4497 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4498 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4499 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4500 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4501 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4502 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4503 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4504 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4505 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8)
4506};
4507
4508static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
3cee5a60 4509 HDSPM_MIXER("Mixer", 0),
0dca1793 4510 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
3cee5a60
RB
4511 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4512 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4513 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4514 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
3cee5a60 4515 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
0dca1793
AK
4516 HDSPM_SYNC_CHECK("WC Sync Check", 0),
4517 HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4518 HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4519 HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4520 HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4521 HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4522 HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4523 HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4524 HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4525 HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4526 HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4527 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4528 HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4529 HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4530 HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4531 HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4532 HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4533 HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4534 HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4535 HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4536 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4537 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
3cee5a60
RB
4538 HDSPM_LINE_OUT("Line Out", 0),
4539 HDSPM_EMPHASIS("Emphasis", 0),
4540 HDSPM_DOLBY("Non Audio", 0),
4541 HDSPM_PROFESSIONAL("Professional", 0),
4542 HDSPM_C_TMS("Clear Track Marker", 0),
4543 HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4544 HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4545};
4546
0dca1793
AK
4547
4548
4549/* Control elements for the optional TCO module */
4550static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4551 HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4552 HDSPM_TCO_PULL("TCO Pull", 0),
4553 HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4554 HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4555 HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4556 HDSPM_TCO_WORD_TERM("TCO Word Term", 0)
4557};
4558
4559
98274f07 4560static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
763f356c
TI
4561
4562
98274f07 4563static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
763f356c
TI
4564{
4565 int i;
4566
0dca1793 4567 for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
763f356c
TI
4568 if (hdspm->system_sample_rate > 48000) {
4569 hdspm->playback_mixer_ctls[i]->vd[0].access =
0dca1793
AK
4570 SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4571 SNDRV_CTL_ELEM_ACCESS_READ |
4572 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
763f356c
TI
4573 } else {
4574 hdspm->playback_mixer_ctls[i]->vd[0].access =
0dca1793
AK
4575 SNDRV_CTL_ELEM_ACCESS_READWRITE |
4576 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
763f356c
TI
4577 }
4578 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
0dca1793
AK
4579 SNDRV_CTL_EVENT_MASK_INFO,
4580 &hdspm->playback_mixer_ctls[i]->id);
763f356c
TI
4581 }
4582
4583 return 0;
4584}
4585
4586
0dca1793
AK
4587static int snd_hdspm_create_controls(struct snd_card *card,
4588 struct hdspm *hdspm)
763f356c
TI
4589{
4590 unsigned int idx, limit;
4591 int err;
98274f07 4592 struct snd_kcontrol *kctl;
0dca1793 4593 struct snd_kcontrol_new *list = NULL;
763f356c 4594
0dca1793
AK
4595 switch (hdspm->io_type) {
4596 case MADI:
4597 list = snd_hdspm_controls_madi;
4598 limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4599 break;
4600 case MADIface:
4601 list = snd_hdspm_controls_madiface;
4602 limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4603 break;
4604 case AIO:
4605 list = snd_hdspm_controls_aio;
4606 limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4607 break;
4608 case RayDAT:
4609 list = snd_hdspm_controls_raydat;
4610 limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4611 break;
4612 case AES32:
4613 list = snd_hdspm_controls_aes32;
4614 limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4615 break;
4616 }
3cee5a60 4617
0dca1793
AK
4618 if (NULL != list) {
4619 for (idx = 0; idx < limit; idx++) {
3cee5a60 4620 err = snd_ctl_add(card,
0dca1793 4621 snd_ctl_new1(&list[idx], hdspm));
3cee5a60
RB
4622 if (err < 0)
4623 return err;
763f356c
TI
4624 }
4625 }
4626
763f356c 4627
0dca1793 4628 /* create simple 1:1 playback mixer controls */
763f356c 4629 snd_hdspm_playback_mixer.name = "Chn";
0dca1793
AK
4630 if (hdspm->system_sample_rate >= 128000) {
4631 limit = hdspm->qs_out_channels;
4632 } else if (hdspm->system_sample_rate >= 64000) {
4633 limit = hdspm->ds_out_channels;
4634 } else {
4635 limit = hdspm->ss_out_channels;
4636 }
763f356c
TI
4637 for (idx = 0; idx < limit; ++idx) {
4638 snd_hdspm_playback_mixer.index = idx + 1;
ef5fa1a4
TI
4639 kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4640 err = snd_ctl_add(card, kctl);
4641 if (err < 0)
763f356c 4642 return err;
763f356c
TI
4643 hdspm->playback_mixer_ctls[idx] = kctl;
4644 }
4645
0dca1793
AK
4646
4647 if (hdspm->tco) {
4648 /* add tco control elements */
4649 list = snd_hdspm_controls_tco;
4650 limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4651 for (idx = 0; idx < limit; idx++) {
4652 err = snd_ctl_add(card,
4653 snd_ctl_new1(&list[idx], hdspm));
4654 if (err < 0)
4655 return err;
4656 }
4657 }
4658
763f356c
TI
4659 return 0;
4660}
4661
4662/*------------------------------------------------------------
0dca1793 4663 /proc interface
763f356c
TI
4664 ------------------------------------------------------------*/
4665
4666static void
3cee5a60
RB
4667snd_hdspm_proc_read_madi(struct snd_info_entry * entry,
4668 struct snd_info_buffer *buffer)
763f356c 4669{
ef5fa1a4 4670 struct hdspm *hdspm = entry->private_data;
0dca1793
AK
4671 unsigned int status, status2, control, freq;
4672
763f356c
TI
4673 char *pref_sync_ref;
4674 char *autosync_ref;
4675 char *system_clock_mode;
763f356c 4676 char *insel;
763f356c
TI
4677 int x, x2;
4678
0dca1793
AK
4679 /* TCO stuff */
4680 int a, ltc, frames, seconds, minutes, hours;
4681 unsigned int period;
4682 u64 freq_const = 0;
4683 u32 rate;
4684
763f356c
TI
4685 status = hdspm_read(hdspm, HDSPM_statusRegister);
4686 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
0dca1793
AK
4687 control = hdspm->control_register;
4688 freq = hdspm_read(hdspm, HDSPM_timecodeRegister);
763f356c
TI
4689
4690 snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
0dca1793
AK
4691 hdspm->card_name, hdspm->card->number + 1,
4692 hdspm->firmware_rev,
4693 (status2 & HDSPM_version0) |
4694 (status2 & HDSPM_version1) | (status2 &
4695 HDSPM_version2));
4696
4697 snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4698 (hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
7d53a631 4699 hdspm->serial);
763f356c
TI
4700
4701 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
0dca1793 4702 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
763f356c
TI
4703
4704 snd_iprintf(buffer, "--- System ---\n");
4705
4706 snd_iprintf(buffer,
0dca1793
AK
4707 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4708 status & HDSPM_audioIRQPending,
4709 (status & HDSPM_midi0IRQPending) ? 1 : 0,
4710 (status & HDSPM_midi1IRQPending) ? 1 : 0,
4711 hdspm->irq_count);
763f356c 4712 snd_iprintf(buffer,
0dca1793
AK
4713 "HW pointer: id = %d, rawptr = %d (%d->%d) "
4714 "estimated= %ld (bytes)\n",
4715 ((status & HDSPM_BufferID) ? 1 : 0),
4716 (status & HDSPM_BufferPositionMask),
4717 (status & HDSPM_BufferPositionMask) %
4718 (2 * (int)hdspm->period_bytes),
4719 ((status & HDSPM_BufferPositionMask) - 64) %
4720 (2 * (int)hdspm->period_bytes),
4721 (long) hdspm_hw_pointer(hdspm) * 4);
763f356c
TI
4722
4723 snd_iprintf(buffer,
0dca1793
AK
4724 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4725 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4726 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4727 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4728 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
763f356c 4729 snd_iprintf(buffer,
0dca1793
AK
4730 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4731 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4732 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4733 snd_iprintf(buffer,
4734 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4735 "status2=0x%x\n",
4736 hdspm->control_register, hdspm->control2_register,
4737 status, status2);
4738 if (status & HDSPM_tco_detect) {
4739 snd_iprintf(buffer, "TCO module detected.\n");
4740 a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4741 if (a & HDSPM_TCO1_LTC_Input_valid) {
4742 snd_iprintf(buffer, " LTC valid, ");
4743 switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4744 HDSPM_TCO1_LTC_Format_MSB)) {
4745 case 0:
4746 snd_iprintf(buffer, "24 fps, ");
4747 break;
4748 case HDSPM_TCO1_LTC_Format_LSB:
4749 snd_iprintf(buffer, "25 fps, ");
4750 break;
4751 case HDSPM_TCO1_LTC_Format_MSB:
4752 snd_iprintf(buffer, "29.97 fps, ");
4753 break;
4754 default:
4755 snd_iprintf(buffer, "30 fps, ");
4756 break;
4757 }
4758 if (a & HDSPM_TCO1_set_drop_frame_flag) {
4759 snd_iprintf(buffer, "drop frame\n");
4760 } else {
4761 snd_iprintf(buffer, "full frame\n");
4762 }
4763 } else {
4764 snd_iprintf(buffer, " no LTC\n");
4765 }
4766 if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4767 snd_iprintf(buffer, " Video: NTSC\n");
4768 } else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4769 snd_iprintf(buffer, " Video: PAL\n");
4770 } else {
4771 snd_iprintf(buffer, " No video\n");
4772 }
4773 if (a & HDSPM_TCO1_TCO_lock) {
4774 snd_iprintf(buffer, " Sync: lock\n");
4775 } else {
4776 snd_iprintf(buffer, " Sync: no lock\n");
4777 }
4778
4779 switch (hdspm->io_type) {
4780 case MADI:
4781 case AES32:
4782 freq_const = 110069313433624ULL;
4783 break;
4784 case RayDAT:
4785 case AIO:
4786 freq_const = 104857600000000ULL;
4787 break;
4788 case MADIface:
4789 break; /* no TCO possible */
4790 }
4791
4792 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4793 snd_iprintf(buffer, " period: %u\n", period);
4794
4795
4796 /* rate = freq_const/period; */
4797 rate = div_u64(freq_const, period);
4798
4799 if (control & HDSPM_QuadSpeed) {
4800 rate *= 4;
4801 } else if (control & HDSPM_DoubleSpeed) {
4802 rate *= 2;
4803 }
4804
4805 snd_iprintf(buffer, " Frequency: %u Hz\n",
4806 (unsigned int) rate);
4807
4808 ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4809 frames = ltc & 0xF;
4810 ltc >>= 4;
4811 frames += (ltc & 0x3) * 10;
4812 ltc >>= 4;
4813 seconds = ltc & 0xF;
4814 ltc >>= 4;
4815 seconds += (ltc & 0x7) * 10;
4816 ltc >>= 4;
4817 minutes = ltc & 0xF;
4818 ltc >>= 4;
4819 minutes += (ltc & 0x7) * 10;
4820 ltc >>= 4;
4821 hours = ltc & 0xF;
4822 ltc >>= 4;
4823 hours += (ltc & 0x3) * 10;
4824 snd_iprintf(buffer,
4825 " LTC In: %02d:%02d:%02d:%02d\n",
4826 hours, minutes, seconds, frames);
4827
4828 } else {
4829 snd_iprintf(buffer, "No TCO module detected.\n");
4830 }
763f356c
TI
4831
4832 snd_iprintf(buffer, "--- Settings ---\n");
4833
7cb155ff 4834 x = hdspm_get_latency(hdspm);
763f356c
TI
4835
4836 snd_iprintf(buffer,
0dca1793
AK
4837 "Size (Latency): %d samples (2 periods of %lu bytes)\n",
4838 x, (unsigned long) hdspm->period_bytes);
763f356c 4839
0dca1793
AK
4840 snd_iprintf(buffer, "Line out: %s\n",
4841 (hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
763f356c
TI
4842
4843 switch (hdspm->control_register & HDSPM_InputMask) {
4844 case HDSPM_InputOptical:
4845 insel = "Optical";
4846 break;
4847 case HDSPM_InputCoaxial:
4848 insel = "Coaxial";
4849 break;
4850 default:
0dca1793 4851 insel = "Unkown";
763f356c 4852 }
763f356c
TI
4853
4854 snd_iprintf(buffer,
0dca1793
AK
4855 "ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4856 "Auto Input %s\n",
4857 (hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4858 (hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4859 (hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4860
763f356c 4861
3cee5a60 4862 if (!(hdspm->control_register & HDSPM_ClockModeMaster))
0dca1793 4863 system_clock_mode = "AutoSync";
3cee5a60 4864 else
763f356c 4865 system_clock_mode = "Master";
0dca1793 4866 snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
763f356c
TI
4867
4868 switch (hdspm_pref_sync_ref(hdspm)) {
4869 case HDSPM_SYNC_FROM_WORD:
4870 pref_sync_ref = "Word Clock";
4871 break;
4872 case HDSPM_SYNC_FROM_MADI:
4873 pref_sync_ref = "MADI Sync";
4874 break;
0dca1793
AK
4875 case HDSPM_SYNC_FROM_TCO:
4876 pref_sync_ref = "TCO";
4877 break;
4878 case HDSPM_SYNC_FROM_SYNC_IN:
4879 pref_sync_ref = "Sync In";
4880 break;
763f356c
TI
4881 default:
4882 pref_sync_ref = "XXXX Clock";
4883 break;
4884 }
4885 snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
0dca1793 4886 pref_sync_ref);
763f356c
TI
4887
4888 snd_iprintf(buffer, "System Clock Frequency: %d\n",
0dca1793 4889 hdspm->system_sample_rate);
763f356c
TI
4890
4891
4892 snd_iprintf(buffer, "--- Status:\n");
4893
4894 x = status & HDSPM_madiSync;
4895 x2 = status2 & HDSPM_wcSync;
4896
4897 snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
0dca1793
AK
4898 (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
4899 "NoLock",
4900 (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
4901 "NoLock");
763f356c
TI
4902
4903 switch (hdspm_autosync_ref(hdspm)) {
0dca1793
AK
4904 case HDSPM_AUTOSYNC_FROM_SYNC_IN:
4905 autosync_ref = "Sync In";
4906 break;
4907 case HDSPM_AUTOSYNC_FROM_TCO:
4908 autosync_ref = "TCO";
4909 break;
763f356c
TI
4910 case HDSPM_AUTOSYNC_FROM_WORD:
4911 autosync_ref = "Word Clock";
4912 break;
4913 case HDSPM_AUTOSYNC_FROM_MADI:
4914 autosync_ref = "MADI Sync";
4915 break;
4916 case HDSPM_AUTOSYNC_FROM_NONE:
4917 autosync_ref = "Input not valid";
4918 break;
4919 default:
4920 autosync_ref = "---";
4921 break;
4922 }
4923 snd_iprintf(buffer,
0dca1793
AK
4924 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
4925 autosync_ref, hdspm_external_sample_rate(hdspm),
4926 (status & HDSPM_madiFreqMask) >> 22,
4927 (status2 & HDSPM_wcFreqMask) >> 5);
763f356c
TI
4928
4929 snd_iprintf(buffer, "Input: %s, Mode=%s\n",
0dca1793
AK
4930 (status & HDSPM_AB_int) ? "Coax" : "Optical",
4931 (status & HDSPM_RX_64ch) ? "64 channels" :
4932 "56 channels");
763f356c
TI
4933
4934 snd_iprintf(buffer, "\n");
4935}
4936
3cee5a60
RB
4937static void
4938snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
4939 struct snd_info_buffer *buffer)
4940{
ef5fa1a4 4941 struct hdspm *hdspm = entry->private_data;
3cee5a60
RB
4942 unsigned int status;
4943 unsigned int status2;
4944 unsigned int timecode;
4945 int pref_syncref;
4946 char *autosync_ref;
3cee5a60
RB
4947 int x;
4948
4949 status = hdspm_read(hdspm, HDSPM_statusRegister);
4950 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4951 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
4952
4953 snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
4954 hdspm->card_name, hdspm->card->number + 1,
4955 hdspm->firmware_rev);
4956
4957 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4958 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4959
4960 snd_iprintf(buffer, "--- System ---\n");
4961
4962 snd_iprintf(buffer,
4963 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4964 status & HDSPM_audioIRQPending,
4965 (status & HDSPM_midi0IRQPending) ? 1 : 0,
4966 (status & HDSPM_midi1IRQPending) ? 1 : 0,
4967 hdspm->irq_count);
4968 snd_iprintf(buffer,
ef5fa1a4
TI
4969 "HW pointer: id = %d, rawptr = %d (%d->%d) "
4970 "estimated= %ld (bytes)\n",
3cee5a60
RB
4971 ((status & HDSPM_BufferID) ? 1 : 0),
4972 (status & HDSPM_BufferPositionMask),
ef5fa1a4
TI
4973 (status & HDSPM_BufferPositionMask) %
4974 (2 * (int)hdspm->period_bytes),
4975 ((status & HDSPM_BufferPositionMask) - 64) %
4976 (2 * (int)hdspm->period_bytes),
3cee5a60
RB
4977 (long) hdspm_hw_pointer(hdspm) * 4);
4978
4979 snd_iprintf(buffer,
4980 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4981 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4982 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4983 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4984 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4985 snd_iprintf(buffer,
0dca1793
AK
4986 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4987 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4988 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4989 snd_iprintf(buffer,
4990 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4991 "status2=0x%x\n",
4992 hdspm->control_register, hdspm->control2_register,
4993 status, status2);
3cee5a60
RB
4994
4995 snd_iprintf(buffer, "--- Settings ---\n");
4996
7cb155ff 4997 x = hdspm_get_latency(hdspm);
3cee5a60
RB
4998
4999 snd_iprintf(buffer,
5000 "Size (Latency): %d samples (2 periods of %lu bytes)\n",
5001 x, (unsigned long) hdspm->period_bytes);
5002
0dca1793 5003 snd_iprintf(buffer, "Line out: %s\n",
3cee5a60 5004 (hdspm->
0dca1793 5005 control_register & HDSPM_LineOut) ? "on " : "off");
3cee5a60
RB
5006
5007 snd_iprintf(buffer,
5008 "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
5009 (hdspm->
5010 control_register & HDSPM_clr_tms) ? "on" : "off",
5011 (hdspm->
5012 control_register & HDSPM_Emphasis) ? "on" : "off",
5013 (hdspm->
5014 control_register & HDSPM_Dolby) ? "on" : "off");
5015
3cee5a60
RB
5016
5017 pref_syncref = hdspm_pref_sync_ref(hdspm);
5018 if (pref_syncref == 0)
5019 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
5020 else
5021 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
5022 pref_syncref);
5023
5024 snd_iprintf(buffer, "System Clock Frequency: %d\n",
5025 hdspm->system_sample_rate);
5026
5027 snd_iprintf(buffer, "Double speed: %s\n",
5028 hdspm->control_register & HDSPM_DS_DoubleWire?
5029 "Double wire" : "Single wire");
5030 snd_iprintf(buffer, "Quad speed: %s\n",
5031 hdspm->control_register & HDSPM_QS_DoubleWire?
5032 "Double wire" :
5033 hdspm->control_register & HDSPM_QS_QuadWire?
5034 "Quad wire" : "Single wire");
5035
5036 snd_iprintf(buffer, "--- Status:\n");
5037
5038 snd_iprintf(buffer, "Word: %s Frequency: %d\n",
0dca1793 5039 (status & HDSPM_AES32_wcLock) ? "Sync " : "No Lock",
ef5fa1a4 5040 HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
3cee5a60
RB
5041
5042 for (x = 0; x < 8; x++) {
5043 snd_iprintf(buffer, "AES%d: %s Frequency: %d\n",
ef5fa1a4
TI
5044 x+1,
5045 (status2 & (HDSPM_LockAES >> x)) ?
0dca1793 5046 "Sync " : "No Lock",
ef5fa1a4 5047 HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
3cee5a60
RB
5048 }
5049
5050 switch (hdspm_autosync_ref(hdspm)) {
0dca1793
AK
5051 case HDSPM_AES32_AUTOSYNC_FROM_NONE:
5052 autosync_ref = "None"; break;
5053 case HDSPM_AES32_AUTOSYNC_FROM_WORD:
5054 autosync_ref = "Word Clock"; break;
5055 case HDSPM_AES32_AUTOSYNC_FROM_AES1:
5056 autosync_ref = "AES1"; break;
5057 case HDSPM_AES32_AUTOSYNC_FROM_AES2:
5058 autosync_ref = "AES2"; break;
5059 case HDSPM_AES32_AUTOSYNC_FROM_AES3:
5060 autosync_ref = "AES3"; break;
5061 case HDSPM_AES32_AUTOSYNC_FROM_AES4:
5062 autosync_ref = "AES4"; break;
5063 case HDSPM_AES32_AUTOSYNC_FROM_AES5:
5064 autosync_ref = "AES5"; break;
5065 case HDSPM_AES32_AUTOSYNC_FROM_AES6:
5066 autosync_ref = "AES6"; break;
5067 case HDSPM_AES32_AUTOSYNC_FROM_AES7:
5068 autosync_ref = "AES7"; break;
5069 case HDSPM_AES32_AUTOSYNC_FROM_AES8:
5070 autosync_ref = "AES8"; break;
5071 default:
5072 autosync_ref = "---"; break;
3cee5a60
RB
5073 }
5074 snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
5075
5076 snd_iprintf(buffer, "\n");
5077}
5078
0dca1793
AK
5079static void
5080snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
5081 struct snd_info_buffer *buffer)
5082{
5083 struct hdspm *hdspm = entry->private_data;
5084 unsigned int status1, status2, status3, control, i;
5085 unsigned int lock, sync;
5086
5087 status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
5088 status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
5089 status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
5090
5091 control = hdspm->control_register;
5092
5093 snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
5094 snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
5095 snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
5096
5097
5098 snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
5099
5100 snd_iprintf(buffer, "Clock mode : %s\n",
5101 (hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
5102 snd_iprintf(buffer, "System frequency: %d Hz\n",
5103 hdspm_get_system_sample_rate(hdspm));
5104
5105 snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
5106
5107 lock = 0x1;
5108 sync = 0x100;
5109
5110 for (i = 0; i < 8; i++) {
5111 snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
5112 i,
5113 (status1 & lock) ? 1 : 0,
5114 (status1 & sync) ? 1 : 0,
5115 texts_freq[(status2 >> (i * 4)) & 0xF]);
5116
5117 lock = lock<<1;
5118 sync = sync<<1;
5119 }
5120
5121 snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
5122 (status1 & 0x1000000) ? 1 : 0,
5123 (status1 & 0x2000000) ? 1 : 0,
5124 texts_freq[(status1 >> 16) & 0xF]);
5125
5126 snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
5127 (status1 & 0x4000000) ? 1 : 0,
5128 (status1 & 0x8000000) ? 1 : 0,
5129 texts_freq[(status1 >> 20) & 0xF]);
5130
5131 snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
5132 (status3 & 0x400) ? 1 : 0,
5133 (status3 & 0x800) ? 1 : 0,
5134 texts_freq[(status2 >> 12) & 0xF]);
5135
5136}
5137
3cee5a60
RB
5138#ifdef CONFIG_SND_DEBUG
5139static void
0dca1793 5140snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
3cee5a60
RB
5141 struct snd_info_buffer *buffer)
5142{
ef5fa1a4 5143 struct hdspm *hdspm = entry->private_data;
3cee5a60
RB
5144
5145 int j,i;
5146
ef5fa1a4 5147 for (i = 0; i < 256 /* 1024*64 */; i += j) {
3cee5a60
RB
5148 snd_iprintf(buffer, "0x%08X: ", i);
5149 for (j = 0; j < 16; j += 4)
5150 snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
5151 snd_iprintf(buffer, "\n");
5152 }
5153}
5154#endif
5155
5156
0dca1793
AK
5157static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
5158 struct snd_info_buffer *buffer)
5159{
5160 struct hdspm *hdspm = entry->private_data;
5161 int i;
5162
5163 snd_iprintf(buffer, "# generated by hdspm\n");
5164
5165 for (i = 0; i < hdspm->max_channels_in; i++) {
5166 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
5167 }
5168}
5169
5170static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
5171 struct snd_info_buffer *buffer)
5172{
5173 struct hdspm *hdspm = entry->private_data;
5174 int i;
5175
5176 snd_iprintf(buffer, "# generated by hdspm\n");
5177
5178 for (i = 0; i < hdspm->max_channels_out; i++) {
5179 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
5180 }
5181}
5182
3cee5a60 5183
0dca1793 5184static void __devinit snd_hdspm_proc_init(struct hdspm *hdspm)
763f356c 5185{
98274f07 5186 struct snd_info_entry *entry;
763f356c 5187
0dca1793
AK
5188 if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
5189 switch (hdspm->io_type) {
5190 case AES32:
5191 snd_info_set_text_ops(entry, hdspm,
5192 snd_hdspm_proc_read_aes32);
5193 break;
5194 case MADI:
5195 snd_info_set_text_ops(entry, hdspm,
5196 snd_hdspm_proc_read_madi);
5197 break;
5198 case MADIface:
5199 /* snd_info_set_text_ops(entry, hdspm,
5200 snd_hdspm_proc_read_madiface); */
5201 break;
5202 case RayDAT:
5203 snd_info_set_text_ops(entry, hdspm,
5204 snd_hdspm_proc_read_raydat);
5205 break;
5206 case AIO:
5207 break;
5208 }
5209 }
5210
5211 if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
5212 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
5213 }
5214
5215 if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
5216 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
5217 }
5218
3cee5a60
RB
5219#ifdef CONFIG_SND_DEBUG
5220 /* debug file to read all hdspm registers */
5221 if (!snd_card_proc_new(hdspm->card, "debug", &entry))
5222 snd_info_set_text_ops(entry, hdspm,
5223 snd_hdspm_proc_read_debug);
5224#endif
763f356c
TI
5225}
5226
5227/*------------------------------------------------------------
0dca1793 5228 hdspm intitialize
763f356c
TI
5229 ------------------------------------------------------------*/
5230
98274f07 5231static int snd_hdspm_set_defaults(struct hdspm * hdspm)
763f356c 5232{
763f356c 5233 /* ASSUMPTION: hdspm->lock is either held, or there is no need to
561de31a 5234 hold it (e.g. during module initialization).
0dca1793 5235 */
763f356c
TI
5236
5237 /* set defaults: */
5238
0dca1793
AK
5239 hdspm->settings_register = 0;
5240
5241 switch (hdspm->io_type) {
5242 case MADI:
5243 case MADIface:
5244 hdspm->control_register =
5245 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5246 break;
5247
5248 case RayDAT:
5249 case AIO:
5250 hdspm->settings_register = 0x1 + 0x1000;
5251 /* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
5252 * line_out */
5253 hdspm->control_register =
5254 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5255 break;
5256
5257 case AES32:
ef5fa1a4
TI
5258 hdspm->control_register =
5259 HDSPM_ClockModeMaster | /* Master Cloack Mode on */
0dca1793 5260 hdspm_encode_latency(7) | /* latency max=8192samples */
3cee5a60
RB
5261 HDSPM_SyncRef0 | /* AES1 is syncclock */
5262 HDSPM_LineOut | /* Analog output in */
5263 HDSPM_Professional; /* Professional mode */
0dca1793
AK
5264 break;
5265 }
763f356c
TI
5266
5267 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5268
0dca1793 5269 if (AES32 == hdspm->io_type) {
ffb2c3c0 5270 /* No control2 register for AES32 */
763f356c 5271#ifdef SNDRV_BIG_ENDIAN
ffb2c3c0 5272 hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
763f356c 5273#else
ffb2c3c0 5274 hdspm->control2_register = 0;
763f356c
TI
5275#endif
5276
ffb2c3c0
RB
5277 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
5278 }
763f356c
TI
5279 hdspm_compute_period_size(hdspm);
5280
5281 /* silence everything */
5282
5283 all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
5284
0dca1793
AK
5285 if (hdspm->io_type == AIO || hdspm->io_type == RayDAT) {
5286 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
763f356c
TI
5287 }
5288
5289 /* set a default rate so that the channel map is set up. */
0dca1793 5290 hdspm_set_rate(hdspm, 48000, 1);
763f356c
TI
5291
5292 return 0;
5293}
5294
5295
5296/*------------------------------------------------------------
0dca1793 5297 interrupt
763f356c
TI
5298 ------------------------------------------------------------*/
5299
7d12e780 5300static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
763f356c 5301{
98274f07 5302 struct hdspm *hdspm = (struct hdspm *) dev_id;
763f356c 5303 unsigned int status;
0dca1793
AK
5304 int i, audio, midi, schedule = 0;
5305 /* cycles_t now; */
763f356c
TI
5306
5307 status = hdspm_read(hdspm, HDSPM_statusRegister);
5308
5309 audio = status & HDSPM_audioIRQPending;
0dca1793
AK
5310 midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
5311 HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
5312
5313 /* now = get_cycles(); */
5314 /**
5315 * LAT_2..LAT_0 period counter (win) counter (mac)
5316 * 6 4096 ~256053425 ~514672358
5317 * 5 2048 ~128024983 ~257373821
5318 * 4 1024 ~64023706 ~128718089
5319 * 3 512 ~32005945 ~64385999
5320 * 2 256 ~16003039 ~32260176
5321 * 1 128 ~7998738 ~16194507
5322 * 0 64 ~3998231 ~8191558
5323 **/
5324 /*
5325 snd_printk(KERN_INFO "snd_hdspm_interrupt %llu @ %llx\n",
5326 now-hdspm->last_interrupt, status & 0xFFC0);
5327 hdspm->last_interrupt = now;
5328 */
763f356c 5329
0dca1793 5330 if (!audio && !midi)
763f356c
TI
5331 return IRQ_NONE;
5332
5333 hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5334 hdspm->irq_count++;
5335
763f356c
TI
5336
5337 if (audio) {
763f356c 5338 if (hdspm->capture_substream)
ef5fa1a4 5339 snd_pcm_period_elapsed(hdspm->capture_substream);
763f356c
TI
5340
5341 if (hdspm->playback_substream)
ef5fa1a4 5342 snd_pcm_period_elapsed(hdspm->playback_substream);
763f356c
TI
5343 }
5344
0dca1793
AK
5345 if (midi) {
5346 i = 0;
5347 while (i < hdspm->midiPorts) {
5348 if ((hdspm_read(hdspm,
5349 hdspm->midi[i].statusIn) & 0xff) &&
5350 (status & hdspm->midi[i].irq)) {
5351 /* we disable interrupts for this input until
5352 * processing is done
5353 */
5354 hdspm->control_register &= ~hdspm->midi[i].ie;
5355 hdspm_write(hdspm, HDSPM_controlRegister,
5356 hdspm->control_register);
5357 hdspm->midi[i].pending = 1;
5358 schedule = 1;
5359 }
5360
5361 i++;
5362 }
5363
5364 if (schedule)
5365 tasklet_hi_schedule(&hdspm->midi_tasklet);
763f356c 5366 }
0dca1793 5367
763f356c
TI
5368 return IRQ_HANDLED;
5369}
5370
5371/*------------------------------------------------------------
0dca1793 5372 pcm interface
763f356c
TI
5373 ------------------------------------------------------------*/
5374
5375
0dca1793
AK
5376static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5377 *substream)
763f356c 5378{
98274f07 5379 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
5380 return hdspm_hw_pointer(hdspm);
5381}
5382
763f356c 5383
98274f07 5384static int snd_hdspm_reset(struct snd_pcm_substream *substream)
763f356c 5385{
98274f07
TI
5386 struct snd_pcm_runtime *runtime = substream->runtime;
5387 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5388 struct snd_pcm_substream *other;
763f356c
TI
5389
5390 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5391 other = hdspm->capture_substream;
5392 else
5393 other = hdspm->playback_substream;
5394
5395 if (hdspm->running)
5396 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5397 else
5398 runtime->status->hw_ptr = 0;
5399 if (other) {
98274f07
TI
5400 struct snd_pcm_substream *s;
5401 struct snd_pcm_runtime *oruntime = other->runtime;
ef991b95 5402 snd_pcm_group_for_each_entry(s, substream) {
763f356c
TI
5403 if (s == other) {
5404 oruntime->status->hw_ptr =
0dca1793 5405 runtime->status->hw_ptr;
763f356c
TI
5406 break;
5407 }
5408 }
5409 }
5410 return 0;
5411}
5412
98274f07
TI
5413static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5414 struct snd_pcm_hw_params *params)
763f356c 5415{
98274f07 5416 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
5417 int err;
5418 int i;
5419 pid_t this_pid;
5420 pid_t other_pid;
763f356c
TI
5421
5422 spin_lock_irq(&hdspm->lock);
5423
5424 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5425 this_pid = hdspm->playback_pid;
5426 other_pid = hdspm->capture_pid;
5427 } else {
5428 this_pid = hdspm->capture_pid;
5429 other_pid = hdspm->playback_pid;
5430 }
5431
ef5fa1a4 5432 if (other_pid > 0 && this_pid != other_pid) {
763f356c
TI
5433
5434 /* The other stream is open, and not by the same
5435 task as this one. Make sure that the parameters
5436 that matter are the same.
0dca1793 5437 */
763f356c
TI
5438
5439 if (params_rate(params) != hdspm->system_sample_rate) {
5440 spin_unlock_irq(&hdspm->lock);
5441 _snd_pcm_hw_param_setempty(params,
0dca1793 5442 SNDRV_PCM_HW_PARAM_RATE);
763f356c
TI
5443 return -EBUSY;
5444 }
5445
5446 if (params_period_size(params) != hdspm->period_bytes / 4) {
5447 spin_unlock_irq(&hdspm->lock);
5448 _snd_pcm_hw_param_setempty(params,
0dca1793 5449 SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
763f356c
TI
5450 return -EBUSY;
5451 }
5452
5453 }
5454 /* We're fine. */
5455 spin_unlock_irq(&hdspm->lock);
5456
5457 /* how to make sure that the rate matches an externally-set one ? */
5458
5459 spin_lock_irq(&hdspm->lock);
ef5fa1a4
TI
5460 err = hdspm_set_rate(hdspm, params_rate(params), 0);
5461 if (err < 0) {
0dca1793 5462 snd_printk(KERN_INFO "err on hdspm_set_rate: %d\n", err);
763f356c
TI
5463 spin_unlock_irq(&hdspm->lock);
5464 _snd_pcm_hw_param_setempty(params,
0dca1793 5465 SNDRV_PCM_HW_PARAM_RATE);
763f356c
TI
5466 return err;
5467 }
5468 spin_unlock_irq(&hdspm->lock);
5469
ef5fa1a4 5470 err = hdspm_set_interrupt_interval(hdspm,
0dca1793 5471 params_period_size(params));
ef5fa1a4 5472 if (err < 0) {
0dca1793 5473 snd_printk(KERN_INFO "err on hdspm_set_interrupt_interval: %d\n", err);
763f356c 5474 _snd_pcm_hw_param_setempty(params,
0dca1793 5475 SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
763f356c
TI
5476 return err;
5477 }
5478
ef5fa1a4
TI
5479 /* Memory allocation, takashi's method, dont know if we should
5480 * spinlock
5481 */
763f356c 5482 /* malloc all buffer even if not enabled to get sure */
ffb2c3c0
RB
5483 /* Update for MADI rev 204: we need to allocate for all channels,
5484 * otherwise it doesn't work at 96kHz */
0dca1793 5485
763f356c 5486 err =
0dca1793
AK
5487 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5488 if (err < 0) {
5489 snd_printk(KERN_INFO "err on snd_pcm_lib_malloc_pages: %d\n", err);
763f356c 5490 return err;
0dca1793 5491 }
763f356c 5492
763f356c
TI
5493 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5494
77a23f26 5495 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
763f356c
TI
5496 params_channels(params));
5497
5498 for (i = 0; i < params_channels(params); ++i)
5499 snd_hdspm_enable_out(hdspm, i, 1);
5500
5501 hdspm->playback_buffer =
0dca1793 5502 (unsigned char *) substream->runtime->dma_area;
54bf5dd9 5503 snd_printdd("Allocated sample buffer for playback at %p\n",
3cee5a60 5504 hdspm->playback_buffer);
763f356c 5505 } else {
77a23f26 5506 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
763f356c
TI
5507 params_channels(params));
5508
5509 for (i = 0; i < params_channels(params); ++i)
5510 snd_hdspm_enable_in(hdspm, i, 1);
5511
5512 hdspm->capture_buffer =
0dca1793 5513 (unsigned char *) substream->runtime->dma_area;
54bf5dd9 5514 snd_printdd("Allocated sample buffer for capture at %p\n",
3cee5a60 5515 hdspm->capture_buffer);
763f356c 5516 }
0dca1793 5517
3cee5a60
RB
5518 /*
5519 snd_printdd("Allocated sample buffer for %s at 0x%08X\n",
5520 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5521 "playback" : "capture",
77a23f26 5522 snd_pcm_sgbuf_get_addr(substream, 0));
0dca1793 5523 */
ffb2c3c0 5524 /*
0dca1793
AK
5525 snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5526 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5527 "playback" : "capture",
5528 params_rate(params), params_channels(params),
5529 params_buffer_size(params));
5530 */
5531
5532
5533 /* Switch to native float format if requested */
5534 if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5535 if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5536 snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE float format.\n");
5537
5538 hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5539 } else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5540 if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5541 snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE integer format.\n");
5542
5543 hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5544 }
5545 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5546
763f356c
TI
5547 return 0;
5548}
5549
98274f07 5550static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
763f356c
TI
5551{
5552 int i;
98274f07 5553 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
5554
5555 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5556
0dca1793 5557 /* params_channels(params) should be enough,
763f356c 5558 but to get sure in case of error */
0dca1793 5559 for (i = 0; i < hdspm->max_channels_out; ++i)
763f356c
TI
5560 snd_hdspm_enable_out(hdspm, i, 0);
5561
5562 hdspm->playback_buffer = NULL;
5563 } else {
0dca1793 5564 for (i = 0; i < hdspm->max_channels_in; ++i)
763f356c
TI
5565 snd_hdspm_enable_in(hdspm, i, 0);
5566
5567 hdspm->capture_buffer = NULL;
5568
5569 }
5570
5571 snd_pcm_lib_free_pages(substream);
5572
5573 return 0;
5574}
5575
0dca1793 5576
98274f07 5577static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
0dca1793 5578 struct snd_pcm_channel_info *info)
763f356c 5579{
98274f07 5580 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c 5581
0dca1793
AK
5582 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5583 if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) {
5584 snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel out of range (%d)\n", info->channel);
5585 return -EINVAL;
5586 }
763f356c 5587
0dca1793
AK
5588 if (hdspm->channel_map_out[info->channel] < 0) {
5589 snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel %d mapped out\n", info->channel);
5590 return -EINVAL;
5591 }
5592
5593 info->offset = hdspm->channel_map_out[info->channel] *
5594 HDSPM_CHANNEL_BUFFER_BYTES;
5595 } else {
5596 if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) {
5597 snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel out of range (%d)\n", info->channel);
5598 return -EINVAL;
5599 }
5600
5601 if (hdspm->channel_map_in[info->channel] < 0) {
5602 snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel %d mapped out\n", info->channel);
5603 return -EINVAL;
5604 }
5605
5606 info->offset = hdspm->channel_map_in[info->channel] *
5607 HDSPM_CHANNEL_BUFFER_BYTES;
5608 }
763f356c 5609
763f356c
TI
5610 info->first = 0;
5611 info->step = 32;
5612 return 0;
5613}
5614
0dca1793 5615
98274f07 5616static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
0dca1793 5617 unsigned int cmd, void *arg)
763f356c
TI
5618{
5619 switch (cmd) {
5620 case SNDRV_PCM_IOCTL1_RESET:
ef5fa1a4 5621 return snd_hdspm_reset(substream);
763f356c
TI
5622
5623 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
0dca1793
AK
5624 {
5625 struct snd_pcm_channel_info *info = arg;
5626 return snd_hdspm_channel_info(substream, info);
5627 }
763f356c
TI
5628 default:
5629 break;
5630 }
5631
5632 return snd_pcm_lib_ioctl(substream, cmd, arg);
5633}
5634
98274f07 5635static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
763f356c 5636{
98274f07
TI
5637 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5638 struct snd_pcm_substream *other;
763f356c
TI
5639 int running;
5640
5641 spin_lock(&hdspm->lock);
5642 running = hdspm->running;
5643 switch (cmd) {
5644 case SNDRV_PCM_TRIGGER_START:
5645 running |= 1 << substream->stream;
5646 break;
5647 case SNDRV_PCM_TRIGGER_STOP:
5648 running &= ~(1 << substream->stream);
5649 break;
5650 default:
5651 snd_BUG();
5652 spin_unlock(&hdspm->lock);
5653 return -EINVAL;
5654 }
5655 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5656 other = hdspm->capture_substream;
5657 else
5658 other = hdspm->playback_substream;
5659
5660 if (other) {
98274f07 5661 struct snd_pcm_substream *s;
ef991b95 5662 snd_pcm_group_for_each_entry(s, substream) {
763f356c
TI
5663 if (s == other) {
5664 snd_pcm_trigger_done(s, substream);
5665 if (cmd == SNDRV_PCM_TRIGGER_START)
5666 running |= 1 << s->stream;
5667 else
5668 running &= ~(1 << s->stream);
5669 goto _ok;
5670 }
5671 }
5672 if (cmd == SNDRV_PCM_TRIGGER_START) {
5673 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
0dca1793
AK
5674 && substream->stream ==
5675 SNDRV_PCM_STREAM_CAPTURE)
763f356c
TI
5676 hdspm_silence_playback(hdspm);
5677 } else {
5678 if (running &&
0dca1793 5679 substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
763f356c
TI
5680 hdspm_silence_playback(hdspm);
5681 }
5682 } else {
5683 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5684 hdspm_silence_playback(hdspm);
5685 }
0dca1793 5686_ok:
763f356c
TI
5687 snd_pcm_trigger_done(substream, substream);
5688 if (!hdspm->running && running)
5689 hdspm_start_audio(hdspm);
5690 else if (hdspm->running && !running)
5691 hdspm_stop_audio(hdspm);
5692 hdspm->running = running;
5693 spin_unlock(&hdspm->lock);
5694
5695 return 0;
5696}
5697
98274f07 5698static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
763f356c
TI
5699{
5700 return 0;
5701}
5702
98274f07 5703static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
763f356c
TI
5704 .info = (SNDRV_PCM_INFO_MMAP |
5705 SNDRV_PCM_INFO_MMAP_VALID |
5706 SNDRV_PCM_INFO_NONINTERLEAVED |
5707 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5708 .formats = SNDRV_PCM_FMTBIT_S32_LE,
5709 .rates = (SNDRV_PCM_RATE_32000 |
5710 SNDRV_PCM_RATE_44100 |
5711 SNDRV_PCM_RATE_48000 |
5712 SNDRV_PCM_RATE_64000 |
3cee5a60
RB
5713 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5714 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
763f356c 5715 .rate_min = 32000,
3cee5a60 5716 .rate_max = 192000,
763f356c
TI
5717 .channels_min = 1,
5718 .channels_max = HDSPM_MAX_CHANNELS,
5719 .buffer_bytes_max =
5720 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
1b6fa108 5721 .period_bytes_min = (32 * 4),
52e6fb48 5722 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
763f356c 5723 .periods_min = 2,
0dca1793 5724 .periods_max = 512,
763f356c
TI
5725 .fifo_size = 0
5726};
5727
98274f07 5728static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
763f356c
TI
5729 .info = (SNDRV_PCM_INFO_MMAP |
5730 SNDRV_PCM_INFO_MMAP_VALID |
5731 SNDRV_PCM_INFO_NONINTERLEAVED |
5732 SNDRV_PCM_INFO_SYNC_START),
5733 .formats = SNDRV_PCM_FMTBIT_S32_LE,
5734 .rates = (SNDRV_PCM_RATE_32000 |
5735 SNDRV_PCM_RATE_44100 |
5736 SNDRV_PCM_RATE_48000 |
5737 SNDRV_PCM_RATE_64000 |
3cee5a60
RB
5738 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5739 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
763f356c 5740 .rate_min = 32000,
3cee5a60 5741 .rate_max = 192000,
763f356c
TI
5742 .channels_min = 1,
5743 .channels_max = HDSPM_MAX_CHANNELS,
5744 .buffer_bytes_max =
5745 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
1b6fa108 5746 .period_bytes_min = (32 * 4),
52e6fb48 5747 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
763f356c 5748 .periods_min = 2,
0dca1793 5749 .periods_max = 512,
763f356c
TI
5750 .fifo_size = 0
5751};
5752
0dca1793
AK
5753static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5754 struct snd_pcm_hw_rule *rule)
5755{
5756 struct hdspm *hdspm = rule->private;
5757 struct snd_interval *c =
5758 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5759 struct snd_interval *r =
5760 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5761
5762 if (r->min > 96000 && r->max <= 192000) {
5763 struct snd_interval t = {
5764 .min = hdspm->qs_in_channels,
5765 .max = hdspm->qs_in_channels,
5766 .integer = 1,
5767 };
5768 return snd_interval_refine(c, &t);
5769 } else if (r->min > 48000 && r->max <= 96000) {
5770 struct snd_interval t = {
5771 .min = hdspm->ds_in_channels,
5772 .max = hdspm->ds_in_channels,
5773 .integer = 1,
5774 };
5775 return snd_interval_refine(c, &t);
5776 } else if (r->max < 64000) {
5777 struct snd_interval t = {
5778 .min = hdspm->ss_in_channels,
5779 .max = hdspm->ss_in_channels,
5780 .integer = 1,
5781 };
5782 return snd_interval_refine(c, &t);
5783 }
5784
5785 return 0;
5786}
763f356c 5787
0dca1793 5788static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
98274f07 5789 struct snd_pcm_hw_rule * rule)
763f356c 5790{
98274f07
TI
5791 struct hdspm *hdspm = rule->private;
5792 struct snd_interval *c =
763f356c 5793 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
98274f07 5794 struct snd_interval *r =
763f356c
TI
5795 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5796
0dca1793
AK
5797 if (r->min > 96000 && r->max <= 192000) {
5798 struct snd_interval t = {
5799 .min = hdspm->qs_out_channels,
5800 .max = hdspm->qs_out_channels,
5801 .integer = 1,
5802 };
5803 return snd_interval_refine(c, &t);
5804 } else if (r->min > 48000 && r->max <= 96000) {
98274f07 5805 struct snd_interval t = {
0dca1793
AK
5806 .min = hdspm->ds_out_channels,
5807 .max = hdspm->ds_out_channels,
763f356c
TI
5808 .integer = 1,
5809 };
5810 return snd_interval_refine(c, &t);
5811 } else if (r->max < 64000) {
98274f07 5812 struct snd_interval t = {
0dca1793
AK
5813 .min = hdspm->ss_out_channels,
5814 .max = hdspm->ss_out_channels,
763f356c
TI
5815 .integer = 1,
5816 };
5817 return snd_interval_refine(c, &t);
0dca1793 5818 } else {
763f356c
TI
5819 }
5820 return 0;
5821}
5822
0dca1793 5823static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
98274f07 5824 struct snd_pcm_hw_rule * rule)
763f356c 5825{
98274f07
TI
5826 struct hdspm *hdspm = rule->private;
5827 struct snd_interval *c =
763f356c 5828 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
98274f07 5829 struct snd_interval *r =
763f356c
TI
5830 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5831
0dca1793 5832 if (c->min >= hdspm->ss_in_channels) {
98274f07 5833 struct snd_interval t = {
763f356c
TI
5834 .min = 32000,
5835 .max = 48000,
5836 .integer = 1,
5837 };
5838 return snd_interval_refine(r, &t);
0dca1793
AK
5839 } else if (c->max <= hdspm->qs_in_channels) {
5840 struct snd_interval t = {
5841 .min = 128000,
5842 .max = 192000,
5843 .integer = 1,
5844 };
5845 return snd_interval_refine(r, &t);
5846 } else if (c->max <= hdspm->ds_in_channels) {
98274f07 5847 struct snd_interval t = {
763f356c
TI
5848 .min = 64000,
5849 .max = 96000,
5850 .integer = 1,
5851 };
0dca1793
AK
5852 return snd_interval_refine(r, &t);
5853 }
5854
5855 return 0;
5856}
5857static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
5858 struct snd_pcm_hw_rule *rule)
5859{
5860 struct hdspm *hdspm = rule->private;
5861 struct snd_interval *c =
5862 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5863 struct snd_interval *r =
5864 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
763f356c 5865
0dca1793
AK
5866 if (c->min >= hdspm->ss_out_channels) {
5867 struct snd_interval t = {
5868 .min = 32000,
5869 .max = 48000,
5870 .integer = 1,
5871 };
5872 return snd_interval_refine(r, &t);
5873 } else if (c->max <= hdspm->qs_out_channels) {
5874 struct snd_interval t = {
5875 .min = 128000,
5876 .max = 192000,
5877 .integer = 1,
5878 };
5879 return snd_interval_refine(r, &t);
5880 } else if (c->max <= hdspm->ds_out_channels) {
5881 struct snd_interval t = {
5882 .min = 64000,
5883 .max = 96000,
5884 .integer = 1,
5885 };
763f356c
TI
5886 return snd_interval_refine(r, &t);
5887 }
0dca1793 5888
763f356c
TI
5889 return 0;
5890}
5891
0dca1793 5892static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
ffb2c3c0
RB
5893 struct snd_pcm_hw_rule *rule)
5894{
5895 unsigned int list[3];
5896 struct hdspm *hdspm = rule->private;
5897 struct snd_interval *c = hw_param_interval(params,
5898 SNDRV_PCM_HW_PARAM_CHANNELS);
0dca1793
AK
5899
5900 list[0] = hdspm->qs_in_channels;
5901 list[1] = hdspm->ds_in_channels;
5902 list[2] = hdspm->ss_in_channels;
5903 return snd_interval_list(c, 3, list, 0);
5904}
5905
5906static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
5907 struct snd_pcm_hw_rule *rule)
5908{
5909 unsigned int list[3];
5910 struct hdspm *hdspm = rule->private;
5911 struct snd_interval *c = hw_param_interval(params,
5912 SNDRV_PCM_HW_PARAM_CHANNELS);
5913
5914 list[0] = hdspm->qs_out_channels;
5915 list[1] = hdspm->ds_out_channels;
5916 list[2] = hdspm->ss_out_channels;
5917 return snd_interval_list(c, 3, list, 0);
ffb2c3c0
RB
5918}
5919
5920
ef5fa1a4
TI
5921static unsigned int hdspm_aes32_sample_rates[] = {
5922 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
5923};
ffb2c3c0 5924
ef5fa1a4
TI
5925static struct snd_pcm_hw_constraint_list
5926hdspm_hw_constraints_aes32_sample_rates = {
ffb2c3c0
RB
5927 .count = ARRAY_SIZE(hdspm_aes32_sample_rates),
5928 .list = hdspm_aes32_sample_rates,
5929 .mask = 0
5930};
5931
98274f07 5932static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
763f356c 5933{
98274f07
TI
5934 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5935 struct snd_pcm_runtime *runtime = substream->runtime;
763f356c 5936
763f356c
TI
5937 spin_lock_irq(&hdspm->lock);
5938
5939 snd_pcm_set_sync(substream);
5940
0dca1793 5941
763f356c
TI
5942 runtime->hw = snd_hdspm_playback_subinfo;
5943
5944 if (hdspm->capture_substream == NULL)
5945 hdspm_stop_audio(hdspm);
5946
5947 hdspm->playback_pid = current->pid;
5948 hdspm->playback_substream = substream;
5949
5950 spin_unlock_irq(&hdspm->lock);
5951
5952 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
d877681d 5953 snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
763f356c 5954
0dca1793
AK
5955 switch (hdspm->io_type) {
5956 case AIO:
5957 case RayDAT:
d877681d
TI
5958 snd_pcm_hw_constraint_minmax(runtime,
5959 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5960 32, 4096);
5961 /* RayDAT & AIO have a fixed buffer of 16384 samples per channel */
5962 snd_pcm_hw_constraint_minmax(runtime,
5963 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
5964 16384, 16384);
0dca1793
AK
5965 break;
5966
5967 default:
d877681d
TI
5968 snd_pcm_hw_constraint_minmax(runtime,
5969 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5970 64, 8192);
5971 break;
0dca1793 5972 }
763f356c 5973
0dca1793 5974 if (AES32 == hdspm->io_type) {
3fa9e3d2 5975 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
ffb2c3c0
RB
5976 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5977 &hdspm_hw_constraints_aes32_sample_rates);
5978 } else {
ffb2c3c0 5979 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
0dca1793
AK
5980 snd_hdspm_hw_rule_rate_out_channels, hdspm,
5981 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
ffb2c3c0 5982 }
88fabbfc
AK
5983
5984 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5985 snd_hdspm_hw_rule_out_channels, hdspm,
5986 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5987
5988 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5989 snd_hdspm_hw_rule_out_channels_rate, hdspm,
5990 SNDRV_PCM_HW_PARAM_RATE, -1);
5991
763f356c
TI
5992 return 0;
5993}
5994
98274f07 5995static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
763f356c 5996{
98274f07 5997 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
5998
5999 spin_lock_irq(&hdspm->lock);
6000
6001 hdspm->playback_pid = -1;
6002 hdspm->playback_substream = NULL;
6003
6004 spin_unlock_irq(&hdspm->lock);
6005
6006 return 0;
6007}
6008
6009
98274f07 6010static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
763f356c 6011{
98274f07
TI
6012 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6013 struct snd_pcm_runtime *runtime = substream->runtime;
763f356c
TI
6014
6015 spin_lock_irq(&hdspm->lock);
6016 snd_pcm_set_sync(substream);
6017 runtime->hw = snd_hdspm_capture_subinfo;
6018
6019 if (hdspm->playback_substream == NULL)
6020 hdspm_stop_audio(hdspm);
6021
6022 hdspm->capture_pid = current->pid;
6023 hdspm->capture_substream = substream;
6024
6025 spin_unlock_irq(&hdspm->lock);
6026
6027 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
d877681d
TI
6028 snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
6029
0dca1793
AK
6030 switch (hdspm->io_type) {
6031 case AIO:
6032 case RayDAT:
d877681d
TI
6033 snd_pcm_hw_constraint_minmax(runtime,
6034 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6035 32, 4096);
6036 snd_pcm_hw_constraint_minmax(runtime,
6037 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
6038 16384, 16384);
6039 break;
0dca1793
AK
6040
6041 default:
d877681d
TI
6042 snd_pcm_hw_constraint_minmax(runtime,
6043 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6044 64, 8192);
6045 break;
0dca1793
AK
6046 }
6047
6048 if (AES32 == hdspm->io_type) {
3fa9e3d2 6049 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
ffb2c3c0
RB
6050 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6051 &hdspm_hw_constraints_aes32_sample_rates);
6052 } else {
ffb2c3c0 6053 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
88fabbfc
AK
6054 snd_hdspm_hw_rule_rate_in_channels, hdspm,
6055 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
ffb2c3c0 6056 }
88fabbfc
AK
6057
6058 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6059 snd_hdspm_hw_rule_in_channels, hdspm,
6060 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6061
6062 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6063 snd_hdspm_hw_rule_in_channels_rate, hdspm,
6064 SNDRV_PCM_HW_PARAM_RATE, -1);
6065
763f356c
TI
6066 return 0;
6067}
6068
98274f07 6069static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
763f356c 6070{
98274f07 6071 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
6072
6073 spin_lock_irq(&hdspm->lock);
6074
6075 hdspm->capture_pid = -1;
6076 hdspm->capture_substream = NULL;
6077
6078 spin_unlock_irq(&hdspm->lock);
6079 return 0;
6080}
6081
0dca1793
AK
6082static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
6083{
6084 /* we have nothing to initialize but the call is required */
6085 return 0;
6086}
6087
6088static inline int copy_u32_le(void __user *dest, void __iomem *src)
6089{
6090 u32 val = readl(src);
6091 return copy_to_user(dest, &val, 4);
6092}
6093
6094static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
2ca595ab 6095 unsigned int cmd, unsigned long arg)
763f356c 6096{
0dca1793 6097 void __user *argp = (void __user *)arg;
ef5fa1a4 6098 struct hdspm *hdspm = hw->private_data;
98274f07 6099 struct hdspm_mixer_ioctl mixer;
0dca1793
AK
6100 struct hdspm_config info;
6101 struct hdspm_status status;
98274f07 6102 struct hdspm_version hdspm_version;
730a5865 6103 struct hdspm_peak_rms *levels;
0dca1793
AK
6104 struct hdspm_ltc ltc;
6105 unsigned int statusregister;
6106 long unsigned int s;
6107 int i = 0;
763f356c
TI
6108
6109 switch (cmd) {
6110
763f356c 6111 case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
730a5865 6112 levels = &hdspm->peak_rms;
0dca1793 6113 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
730a5865 6114 levels->input_peaks[i] =
0dca1793
AK
6115 readl(hdspm->iobase +
6116 HDSPM_MADI_INPUT_PEAK + i*4);
730a5865 6117 levels->playback_peaks[i] =
0dca1793
AK
6118 readl(hdspm->iobase +
6119 HDSPM_MADI_PLAYBACK_PEAK + i*4);
730a5865 6120 levels->output_peaks[i] =
0dca1793
AK
6121 readl(hdspm->iobase +
6122 HDSPM_MADI_OUTPUT_PEAK + i*4);
6123
730a5865 6124 levels->input_rms[i] =
0dca1793
AK
6125 ((uint64_t) readl(hdspm->iobase +
6126 HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
6127 (uint64_t) readl(hdspm->iobase +
6128 HDSPM_MADI_INPUT_RMS_L + i*4);
730a5865 6129 levels->playback_rms[i] =
0dca1793
AK
6130 ((uint64_t)readl(hdspm->iobase +
6131 HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
6132 (uint64_t)readl(hdspm->iobase +
6133 HDSPM_MADI_PLAYBACK_RMS_L + i*4);
730a5865 6134 levels->output_rms[i] =
0dca1793
AK
6135 ((uint64_t)readl(hdspm->iobase +
6136 HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
6137 (uint64_t)readl(hdspm->iobase +
6138 HDSPM_MADI_OUTPUT_RMS_L + i*4);
6139 }
6140
6141 if (hdspm->system_sample_rate > 96000) {
730a5865 6142 levels->speed = qs;
0dca1793 6143 } else if (hdspm->system_sample_rate > 48000) {
730a5865 6144 levels->speed = ds;
0dca1793 6145 } else {
730a5865 6146 levels->speed = ss;
0dca1793 6147 }
730a5865 6148 levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
0dca1793 6149
730a5865 6150 s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms));
0dca1793
AK
6151 if (0 != s) {
6152 /* snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu
6153 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
6154 */
763f356c 6155 return -EFAULT;
0dca1793
AK
6156 }
6157 break;
6158
6159 case SNDRV_HDSPM_IOCTL_GET_LTC:
6160 ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
6161 i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
6162 if (i & HDSPM_TCO1_LTC_Input_valid) {
6163 switch (i & (HDSPM_TCO1_LTC_Format_LSB |
6164 HDSPM_TCO1_LTC_Format_MSB)) {
6165 case 0:
6166 ltc.format = fps_24;
6167 break;
6168 case HDSPM_TCO1_LTC_Format_LSB:
6169 ltc.format = fps_25;
6170 break;
6171 case HDSPM_TCO1_LTC_Format_MSB:
6172 ltc.format = fps_2997;
6173 break;
6174 default:
6175 ltc.format = 30;
6176 break;
6177 }
6178 if (i & HDSPM_TCO1_set_drop_frame_flag) {
6179 ltc.frame = drop_frame;
6180 } else {
6181 ltc.frame = full_frame;
6182 }
6183 } else {
6184 ltc.format = format_invalid;
6185 ltc.frame = frame_invalid;
6186 }
6187 if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
6188 ltc.input_format = ntsc;
6189 } else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
6190 ltc.input_format = pal;
6191 } else {
6192 ltc.input_format = no_video;
6193 }
6194
6195 s = copy_to_user(argp, &ltc, sizeof(struct hdspm_ltc));
6196 if (0 != s) {
6197 /*
6198 snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
763f356c 6199 return -EFAULT;
0dca1793 6200 }
763f356c
TI
6201
6202 break;
763f356c 6203
0dca1793 6204 case SNDRV_HDSPM_IOCTL_GET_CONFIG:
763f356c 6205
4ab69a2b 6206 memset(&info, 0, sizeof(info));
763f356c 6207 spin_lock_irq(&hdspm->lock);
ef5fa1a4
TI
6208 info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
6209 info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
763f356c
TI
6210
6211 info.system_sample_rate = hdspm->system_sample_rate;
6212 info.autosync_sample_rate =
0dca1793 6213 hdspm_external_sample_rate(hdspm);
ef5fa1a4
TI
6214 info.system_clock_mode = hdspm_system_clock_mode(hdspm);
6215 info.clock_source = hdspm_clock_source(hdspm);
6216 info.autosync_ref = hdspm_autosync_ref(hdspm);
6217 info.line_out = hdspm_line_out(hdspm);
763f356c
TI
6218 info.passthru = 0;
6219 spin_unlock_irq(&hdspm->lock);
2ca595ab 6220 if (copy_to_user(argp, &info, sizeof(info)))
763f356c
TI
6221 return -EFAULT;
6222 break;
6223
0dca1793 6224 case SNDRV_HDSPM_IOCTL_GET_STATUS:
643d6bbb
DC
6225 memset(&status, 0, sizeof(status));
6226
0dca1793
AK
6227 status.card_type = hdspm->io_type;
6228
6229 status.autosync_source = hdspm_autosync_ref(hdspm);
6230
6231 status.card_clock = 110069313433624ULL;
6232 status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
6233
6234 switch (hdspm->io_type) {
6235 case MADI:
6236 case MADIface:
6237 status.card_specific.madi.sync_wc =
6238 hdspm_wc_sync_check(hdspm);
6239 status.card_specific.madi.sync_madi =
6240 hdspm_madi_sync_check(hdspm);
6241 status.card_specific.madi.sync_tco =
6242 hdspm_tco_sync_check(hdspm);
6243 status.card_specific.madi.sync_in =
6244 hdspm_sync_in_sync_check(hdspm);
6245
6246 statusregister =
6247 hdspm_read(hdspm, HDSPM_statusRegister);
6248 status.card_specific.madi.madi_input =
6249 (statusregister & HDSPM_AB_int) ? 1 : 0;
6250 status.card_specific.madi.channel_format =
9e6ff520 6251 (statusregister & HDSPM_RX_64ch) ? 1 : 0;
0dca1793
AK
6252 /* TODO: Mac driver sets it when f_s>48kHz */
6253 status.card_specific.madi.frame_format = 0;
6254
6255 default:
6256 break;
6257 }
6258
2ca595ab 6259 if (copy_to_user(argp, &status, sizeof(status)))
0dca1793
AK
6260 return -EFAULT;
6261
6262
6263 break;
6264
763f356c 6265 case SNDRV_HDSPM_IOCTL_GET_VERSION:
643d6bbb
DC
6266 memset(&hdspm_version, 0, sizeof(hdspm_version));
6267
0dca1793
AK
6268 hdspm_version.card_type = hdspm->io_type;
6269 strncpy(hdspm_version.cardname, hdspm->card_name,
6270 sizeof(hdspm_version.cardname));
7d53a631 6271 hdspm_version.serial = hdspm->serial;
763f356c 6272 hdspm_version.firmware_rev = hdspm->firmware_rev;
0dca1793
AK
6273 hdspm_version.addons = 0;
6274 if (hdspm->tco)
6275 hdspm_version.addons |= HDSPM_ADDON_TCO;
6276
2ca595ab 6277 if (copy_to_user(argp, &hdspm_version,
0dca1793 6278 sizeof(hdspm_version)))
763f356c
TI
6279 return -EFAULT;
6280 break;
6281
6282 case SNDRV_HDSPM_IOCTL_GET_MIXER:
2ca595ab 6283 if (copy_from_user(&mixer, argp, sizeof(mixer)))
763f356c 6284 return -EFAULT;
ef5fa1a4 6285 if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
0dca1793 6286 sizeof(struct hdspm_mixer)))
763f356c
TI
6287 return -EFAULT;
6288 break;
6289
6290 default:
6291 return -EINVAL;
6292 }
6293 return 0;
6294}
6295
98274f07 6296static struct snd_pcm_ops snd_hdspm_playback_ops = {
763f356c
TI
6297 .open = snd_hdspm_playback_open,
6298 .close = snd_hdspm_playback_release,
6299 .ioctl = snd_hdspm_ioctl,
6300 .hw_params = snd_hdspm_hw_params,
6301 .hw_free = snd_hdspm_hw_free,
6302 .prepare = snd_hdspm_prepare,
6303 .trigger = snd_hdspm_trigger,
6304 .pointer = snd_hdspm_hw_pointer,
763f356c
TI
6305 .page = snd_pcm_sgbuf_ops_page,
6306};
6307
98274f07 6308static struct snd_pcm_ops snd_hdspm_capture_ops = {
763f356c
TI
6309 .open = snd_hdspm_capture_open,
6310 .close = snd_hdspm_capture_release,
6311 .ioctl = snd_hdspm_ioctl,
6312 .hw_params = snd_hdspm_hw_params,
6313 .hw_free = snd_hdspm_hw_free,
6314 .prepare = snd_hdspm_prepare,
6315 .trigger = snd_hdspm_trigger,
6316 .pointer = snd_hdspm_hw_pointer,
763f356c
TI
6317 .page = snd_pcm_sgbuf_ops_page,
6318};
6319
98274f07
TI
6320static int __devinit snd_hdspm_create_hwdep(struct snd_card *card,
6321 struct hdspm * hdspm)
763f356c 6322{
98274f07 6323 struct snd_hwdep *hw;
763f356c
TI
6324 int err;
6325
ef5fa1a4
TI
6326 err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
6327 if (err < 0)
763f356c
TI
6328 return err;
6329
6330 hdspm->hwdep = hw;
6331 hw->private_data = hdspm;
6332 strcpy(hw->name, "HDSPM hwdep interface");
6333
0dca1793 6334 hw->ops.open = snd_hdspm_hwdep_dummy_op;
763f356c 6335 hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
0dca1793 6336 hw->ops.release = snd_hdspm_hwdep_dummy_op;
763f356c
TI
6337
6338 return 0;
6339}
6340
6341
6342/*------------------------------------------------------------
0dca1793 6343 memory interface
763f356c 6344 ------------------------------------------------------------*/
0dca1793 6345static int __devinit snd_hdspm_preallocate_memory(struct hdspm *hdspm)
763f356c
TI
6346{
6347 int err;
98274f07 6348 struct snd_pcm *pcm;
763f356c
TI
6349 size_t wanted;
6350
6351 pcm = hdspm->pcm;
6352
3cee5a60 6353 wanted = HDSPM_DMA_AREA_BYTES;
763f356c 6354
ef5fa1a4 6355 err =
763f356c 6356 snd_pcm_lib_preallocate_pages_for_all(pcm,
0dca1793 6357 SNDRV_DMA_TYPE_DEV_SG,
763f356c
TI
6358 snd_dma_pci_data(hdspm->pci),
6359 wanted,
ef5fa1a4
TI
6360 wanted);
6361 if (err < 0) {
e2eba3e7 6362 snd_printdd("Could not preallocate %zd Bytes\n", wanted);
763f356c
TI
6363
6364 return err;
6365 } else
e2eba3e7 6366 snd_printdd(" Preallocated %zd Bytes\n", wanted);
763f356c
TI
6367
6368 return 0;
6369}
6370
0dca1793
AK
6371
6372static void hdspm_set_sgbuf(struct hdspm *hdspm,
77a23f26 6373 struct snd_pcm_substream *substream,
763f356c
TI
6374 unsigned int reg, int channels)
6375{
6376 int i;
0dca1793
AK
6377
6378 /* continuous memory segment */
763f356c
TI
6379 for (i = 0; i < (channels * 16); i++)
6380 hdspm_write(hdspm, reg + 4 * i,
0dca1793 6381 snd_pcm_sgbuf_get_addr(substream, 4096 * i));
763f356c
TI
6382}
6383
0dca1793 6384
763f356c 6385/* ------------- ALSA Devices ---------------------------- */
98274f07 6386static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
0dca1793 6387 struct hdspm *hdspm)
763f356c 6388{
98274f07 6389 struct snd_pcm *pcm;
763f356c
TI
6390 int err;
6391
ef5fa1a4
TI
6392 err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6393 if (err < 0)
763f356c
TI
6394 return err;
6395
6396 hdspm->pcm = pcm;
6397 pcm->private_data = hdspm;
6398 strcpy(pcm->name, hdspm->card_name);
6399
6400 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6401 &snd_hdspm_playback_ops);
6402 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6403 &snd_hdspm_capture_ops);
6404
6405 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6406
ef5fa1a4
TI
6407 err = snd_hdspm_preallocate_memory(hdspm);
6408 if (err < 0)
763f356c
TI
6409 return err;
6410
6411 return 0;
6412}
6413
98274f07 6414static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
763f356c 6415{
7c7102b7
AK
6416 int i;
6417
6418 for (i = 0; i < hdspm->midiPorts; i++)
6419 snd_hdspm_flush_midi_input(hdspm, i);
763f356c
TI
6420}
6421
98274f07
TI
6422static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
6423 struct hdspm * hdspm)
763f356c 6424{
0dca1793 6425 int err, i;
763f356c
TI
6426
6427 snd_printdd("Create card...\n");
ef5fa1a4
TI
6428 err = snd_hdspm_create_pcm(card, hdspm);
6429 if (err < 0)
763f356c
TI
6430 return err;
6431
0dca1793
AK
6432 i = 0;
6433 while (i < hdspm->midiPorts) {
6434 err = snd_hdspm_create_midi(card, hdspm, i);
6435 if (err < 0) {
6436 return err;
6437 }
6438 i++;
6439 }
763f356c 6440
ef5fa1a4
TI
6441 err = snd_hdspm_create_controls(card, hdspm);
6442 if (err < 0)
763f356c
TI
6443 return err;
6444
ef5fa1a4
TI
6445 err = snd_hdspm_create_hwdep(card, hdspm);
6446 if (err < 0)
763f356c
TI
6447 return err;
6448
6449 snd_printdd("proc init...\n");
6450 snd_hdspm_proc_init(hdspm);
6451
6452 hdspm->system_sample_rate = -1;
6453 hdspm->last_external_sample_rate = -1;
6454 hdspm->last_internal_sample_rate = -1;
6455 hdspm->playback_pid = -1;
6456 hdspm->capture_pid = -1;
6457 hdspm->capture_substream = NULL;
6458 hdspm->playback_substream = NULL;
6459
6460 snd_printdd("Set defaults...\n");
ef5fa1a4
TI
6461 err = snd_hdspm_set_defaults(hdspm);
6462 if (err < 0)
763f356c
TI
6463 return err;
6464
6465 snd_printdd("Update mixer controls...\n");
6466 hdspm_update_simple_mixer_controls(hdspm);
6467
6468 snd_printdd("Initializeing complete ???\n");
6469
ef5fa1a4
TI
6470 err = snd_card_register(card);
6471 if (err < 0) {
763f356c
TI
6472 snd_printk(KERN_ERR "HDSPM: error registering card\n");
6473 return err;
6474 }
6475
6476 snd_printdd("... yes now\n");
6477
6478 return 0;
6479}
6480
ef5fa1a4 6481static int __devinit snd_hdspm_create(struct snd_card *card,
0dca1793
AK
6482 struct hdspm *hdspm) {
6483
763f356c
TI
6484 struct pci_dev *pci = hdspm->pci;
6485 int err;
763f356c
TI
6486 unsigned long io_extent;
6487
6488 hdspm->irq = -1;
763f356c
TI
6489 hdspm->card = card;
6490
6491 spin_lock_init(&hdspm->lock);
6492
763f356c 6493 pci_read_config_word(hdspm->pci,
0dca1793 6494 PCI_CLASS_REVISION, &hdspm->firmware_rev);
3cee5a60 6495
763f356c 6496 strcpy(card->mixername, "Xilinx FPGA");
0dca1793
AK
6497 strcpy(card->driver, "HDSPM");
6498
6499 switch (hdspm->firmware_rev) {
0dca1793
AK
6500 case HDSPM_RAYDAT_REV:
6501 hdspm->io_type = RayDAT;
6502 hdspm->card_name = "RME RayDAT";
6503 hdspm->midiPorts = 2;
6504 break;
6505 case HDSPM_AIO_REV:
6506 hdspm->io_type = AIO;
6507 hdspm->card_name = "RME AIO";
6508 hdspm->midiPorts = 1;
6509 break;
6510 case HDSPM_MADIFACE_REV:
6511 hdspm->io_type = MADIface;
6512 hdspm->card_name = "RME MADIface";
6513 hdspm->midiPorts = 1;
6514 break;
5027f347 6515 default:
c09403dc
AK
6516 if ((hdspm->firmware_rev == 0xf0) ||
6517 ((hdspm->firmware_rev >= 0xe6) &&
6518 (hdspm->firmware_rev <= 0xea))) {
6519 hdspm->io_type = AES32;
6520 hdspm->card_name = "RME AES32";
6521 hdspm->midiPorts = 2;
05c7cc9c 6522 } else if ((hdspm->firmware_rev == 0xd2) ||
c09403dc
AK
6523 ((hdspm->firmware_rev >= 0xc8) &&
6524 (hdspm->firmware_rev <= 0xcf))) {
6525 hdspm->io_type = MADI;
6526 hdspm->card_name = "RME MADI";
6527 hdspm->midiPorts = 3;
6528 } else {
6529 snd_printk(KERN_ERR
6530 "HDSPM: unknown firmware revision %x\n",
5027f347 6531 hdspm->firmware_rev);
c09403dc
AK
6532 return -ENODEV;
6533 }
3cee5a60 6534 }
763f356c 6535
ef5fa1a4
TI
6536 err = pci_enable_device(pci);
6537 if (err < 0)
763f356c
TI
6538 return err;
6539
6540 pci_set_master(hdspm->pci);
6541
ef5fa1a4
TI
6542 err = pci_request_regions(pci, "hdspm");
6543 if (err < 0)
763f356c
TI
6544 return err;
6545
6546 hdspm->port = pci_resource_start(pci, 0);
6547 io_extent = pci_resource_len(pci, 0);
6548
6549 snd_printdd("grabbed memory region 0x%lx-0x%lx\n",
0dca1793 6550 hdspm->port, hdspm->port + io_extent - 1);
763f356c 6551
ef5fa1a4
TI
6552 hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
6553 if (!hdspm->iobase) {
6554 snd_printk(KERN_ERR "HDSPM: "
0dca1793
AK
6555 "unable to remap region 0x%lx-0x%lx\n",
6556 hdspm->port, hdspm->port + io_extent - 1);
763f356c
TI
6557 return -EBUSY;
6558 }
6559 snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n",
0dca1793
AK
6560 (unsigned long)hdspm->iobase, hdspm->port,
6561 hdspm->port + io_extent - 1);
763f356c
TI
6562
6563 if (request_irq(pci->irq, snd_hdspm_interrupt,
934c2b6d 6564 IRQF_SHARED, KBUILD_MODNAME, hdspm)) {
763f356c
TI
6565 snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq);
6566 return -EBUSY;
6567 }
6568
6569 snd_printdd("use IRQ %d\n", pci->irq);
6570
6571 hdspm->irq = pci->irq;
763f356c 6572
e2eba3e7 6573 snd_printdd("kmalloc Mixer memory of %zd Bytes\n",
0dca1793 6574 sizeof(struct hdspm_mixer));
ef5fa1a4
TI
6575 hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
6576 if (!hdspm->mixer) {
6577 snd_printk(KERN_ERR "HDSPM: "
0dca1793
AK
6578 "unable to kmalloc Mixer memory of %d Bytes\n",
6579 (int)sizeof(struct hdspm_mixer));
763f356c
TI
6580 return err;
6581 }
6582
0dca1793
AK
6583 hdspm->port_names_in = NULL;
6584 hdspm->port_names_out = NULL;
6585
6586 switch (hdspm->io_type) {
6587 case AES32:
d2d10a21
AK
6588 hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6589 hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6590 hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
432d2500
AK
6591
6592 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6593 channel_map_aes32;
6594 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6595 channel_map_aes32;
6596 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6597 channel_map_aes32;
6598 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6599 texts_ports_aes32;
6600 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6601 texts_ports_aes32;
6602 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6603 texts_ports_aes32;
6604
d2d10a21
AK
6605 hdspm->max_channels_out = hdspm->max_channels_in =
6606 AES32_CHANNELS;
432d2500
AK
6607 hdspm->port_names_in = hdspm->port_names_out =
6608 texts_ports_aes32;
6609 hdspm->channel_map_in = hdspm->channel_map_out =
6610 channel_map_aes32;
6611
0dca1793
AK
6612 break;
6613
6614 case MADI:
6615 case MADIface:
6616 hdspm->ss_in_channels = hdspm->ss_out_channels =
6617 MADI_SS_CHANNELS;
6618 hdspm->ds_in_channels = hdspm->ds_out_channels =
6619 MADI_DS_CHANNELS;
6620 hdspm->qs_in_channels = hdspm->qs_out_channels =
6621 MADI_QS_CHANNELS;
6622
6623 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6624 channel_map_unity_ss;
01e96078 6625 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
0dca1793 6626 channel_map_unity_ss;
01e96078 6627 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
0dca1793
AK
6628 channel_map_unity_ss;
6629
6630 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6631 texts_ports_madi;
6632 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6633 texts_ports_madi;
6634 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6635 texts_ports_madi;
6636 break;
6637
6638 case AIO:
6639 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6640 snd_printk(KERN_INFO "HDSPM: AEB input board found, but not supported\n");
6641 }
6642
6643 hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6644 hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6645 hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6646 hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6647 hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6648 hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6649
6650 hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6651 hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6652 hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6653
6654 hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6655 hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6656 hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6657
6658 hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6659 hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6660 hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6661 hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6662 hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6663 hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6664
6665 break;
6666
6667 case RayDAT:
6668 hdspm->ss_in_channels = hdspm->ss_out_channels =
6669 RAYDAT_SS_CHANNELS;
6670 hdspm->ds_in_channels = hdspm->ds_out_channels =
6671 RAYDAT_DS_CHANNELS;
6672 hdspm->qs_in_channels = hdspm->qs_out_channels =
6673 RAYDAT_QS_CHANNELS;
6674
6675 hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6676 hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6677
6678 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6679 channel_map_raydat_ss;
6680 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6681 channel_map_raydat_ds;
6682 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6683 channel_map_raydat_qs;
6684 hdspm->channel_map_in = hdspm->channel_map_out =
6685 channel_map_raydat_ss;
6686
6687 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6688 texts_ports_raydat_ss;
6689 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6690 texts_ports_raydat_ds;
6691 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6692 texts_ports_raydat_qs;
6693
6694
6695 break;
6696
6697 }
6698
6699 /* TCO detection */
6700 switch (hdspm->io_type) {
6701 case AIO:
6702 case RayDAT:
6703 if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6704 HDSPM_s2_tco_detect) {
6705 hdspm->midiPorts++;
6706 hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6707 GFP_KERNEL);
6708 if (NULL != hdspm->tco) {
6709 hdspm_tco_write(hdspm);
6710 }
6711 snd_printk(KERN_INFO "HDSPM: AIO/RayDAT TCO module found\n");
6712 } else {
6713 hdspm->tco = NULL;
6714 }
6715 break;
6716
6717 case MADI:
6718 if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6719 hdspm->midiPorts++;
6720 hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6721 GFP_KERNEL);
6722 if (NULL != hdspm->tco) {
6723 hdspm_tco_write(hdspm);
6724 }
6725 snd_printk(KERN_INFO "HDSPM: MADI TCO module found\n");
6726 } else {
6727 hdspm->tco = NULL;
6728 }
6729 break;
6730
6731 default:
6732 hdspm->tco = NULL;
6733 }
6734
6735 /* texts */
6736 switch (hdspm->io_type) {
6737 case AES32:
6738 if (hdspm->tco) {
6739 hdspm->texts_autosync = texts_autosync_aes_tco;
6740 hdspm->texts_autosync_items = 10;
6741 } else {
6742 hdspm->texts_autosync = texts_autosync_aes;
6743 hdspm->texts_autosync_items = 9;
6744 }
6745 break;
6746
6747 case MADI:
6748 if (hdspm->tco) {
6749 hdspm->texts_autosync = texts_autosync_madi_tco;
6750 hdspm->texts_autosync_items = 4;
6751 } else {
6752 hdspm->texts_autosync = texts_autosync_madi;
6753 hdspm->texts_autosync_items = 3;
6754 }
6755 break;
6756
6757 case MADIface:
6758
6759 break;
6760
6761 case RayDAT:
6762 if (hdspm->tco) {
6763 hdspm->texts_autosync = texts_autosync_raydat_tco;
6764 hdspm->texts_autosync_items = 9;
6765 } else {
6766 hdspm->texts_autosync = texts_autosync_raydat;
6767 hdspm->texts_autosync_items = 8;
6768 }
6769 break;
6770
6771 case AIO:
6772 if (hdspm->tco) {
6773 hdspm->texts_autosync = texts_autosync_aio_tco;
6774 hdspm->texts_autosync_items = 6;
6775 } else {
6776 hdspm->texts_autosync = texts_autosync_aio;
6777 hdspm->texts_autosync_items = 5;
6778 }
6779 break;
6780
6781 }
6782
6783 tasklet_init(&hdspm->midi_tasklet,
6784 hdspm_midi_tasklet, (unsigned long) hdspm);
763f356c 6785
f7de8ba3
AK
6786
6787 if (hdspm->io_type != MADIface) {
6788 hdspm->serial = (hdspm_read(hdspm,
6789 HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
6790 /* id contains either a user-provided value or the default
6791 * NULL. If it's the default, we're safe to
6792 * fill card->id with the serial number.
6793 *
6794 * If the serial number is 0xFFFFFF, then we're dealing with
6795 * an old PCI revision that comes without a sane number. In
6796 * this case, we don't set card->id to avoid collisions
6797 * when running with multiple cards.
6798 */
6799 if (NULL == id[hdspm->dev] && hdspm->serial != 0xFFFFFF) {
6800 sprintf(card->id, "HDSPMx%06x", hdspm->serial);
6801 snd_card_set_id(card, card->id);
6802 }
6803 }
6804
763f356c 6805 snd_printdd("create alsa devices.\n");
ef5fa1a4
TI
6806 err = snd_hdspm_create_alsa_devices(card, hdspm);
6807 if (err < 0)
763f356c
TI
6808 return err;
6809
6810 snd_hdspm_initialize_midi_flush(hdspm);
6811
6812 return 0;
6813}
6814
0dca1793 6815
98274f07 6816static int snd_hdspm_free(struct hdspm * hdspm)
763f356c
TI
6817{
6818
6819 if (hdspm->port) {
6820
6821 /* stop th audio, and cancel all interrupts */
6822 hdspm->control_register &=
ef5fa1a4 6823 ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
0dca1793
AK
6824 HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6825 HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
763f356c
TI
6826 hdspm_write(hdspm, HDSPM_controlRegister,
6827 hdspm->control_register);
6828 }
6829
6830 if (hdspm->irq >= 0)
6831 free_irq(hdspm->irq, (void *) hdspm);
6832
fc58422a 6833 kfree(hdspm->mixer);
763f356c
TI
6834
6835 if (hdspm->iobase)
6836 iounmap(hdspm->iobase);
6837
763f356c
TI
6838 if (hdspm->port)
6839 pci_release_regions(hdspm->pci);
6840
6841 pci_disable_device(hdspm->pci);
6842 return 0;
6843}
6844
0dca1793 6845
98274f07 6846static void snd_hdspm_card_free(struct snd_card *card)
763f356c 6847{
ef5fa1a4 6848 struct hdspm *hdspm = card->private_data;
763f356c
TI
6849
6850 if (hdspm)
6851 snd_hdspm_free(hdspm);
6852}
6853
0dca1793 6854
763f356c
TI
6855static int __devinit snd_hdspm_probe(struct pci_dev *pci,
6856 const struct pci_device_id *pci_id)
6857{
6858 static int dev;
98274f07
TI
6859 struct hdspm *hdspm;
6860 struct snd_card *card;
763f356c
TI
6861 int err;
6862
6863 if (dev >= SNDRV_CARDS)
6864 return -ENODEV;
6865 if (!enable[dev]) {
6866 dev++;
6867 return -ENOENT;
6868 }
6869
e58de7ba 6870 err = snd_card_create(index[dev], id[dev],
0dca1793 6871 THIS_MODULE, sizeof(struct hdspm), &card);
e58de7ba
TI
6872 if (err < 0)
6873 return err;
763f356c 6874
ef5fa1a4 6875 hdspm = card->private_data;
763f356c
TI
6876 card->private_free = snd_hdspm_card_free;
6877 hdspm->dev = dev;
6878 hdspm->pci = pci;
6879
c187c041
TI
6880 snd_card_set_dev(card, &pci->dev);
6881
0dca1793 6882 err = snd_hdspm_create(card, hdspm);
ef5fa1a4 6883 if (err < 0) {
763f356c
TI
6884 snd_card_free(card);
6885 return err;
6886 }
6887
0dca1793
AK
6888 if (hdspm->io_type != MADIface) {
6889 sprintf(card->shortname, "%s_%x",
6890 hdspm->card_name,
7d53a631 6891 hdspm->serial);
0dca1793
AK
6892 sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d",
6893 hdspm->card_name,
7d53a631 6894 hdspm->serial,
0dca1793
AK
6895 hdspm->port, hdspm->irq);
6896 } else {
6897 sprintf(card->shortname, "%s", hdspm->card_name);
6898 sprintf(card->longname, "%s at 0x%lx, irq %d",
6899 hdspm->card_name, hdspm->port, hdspm->irq);
6900 }
763f356c 6901
ef5fa1a4
TI
6902 err = snd_card_register(card);
6903 if (err < 0) {
763f356c
TI
6904 snd_card_free(card);
6905 return err;
6906 }
6907
6908 pci_set_drvdata(pci, card);
6909
6910 dev++;
6911 return 0;
6912}
6913
6914static void __devexit snd_hdspm_remove(struct pci_dev *pci)
6915{
6916 snd_card_free(pci_get_drvdata(pci));
6917 pci_set_drvdata(pci, NULL);
6918}
6919
6920static struct pci_driver driver = {
3733e424 6921 .name = KBUILD_MODNAME,
763f356c
TI
6922 .id_table = snd_hdspm_ids,
6923 .probe = snd_hdspm_probe,
6924 .remove = __devexit_p(snd_hdspm_remove),
6925};
6926
6927
6928static int __init alsa_card_hdspm_init(void)
6929{
6930 return pci_register_driver(&driver);
6931}
6932
6933static void __exit alsa_card_hdspm_exit(void)
6934{
6935 pci_unregister_driver(&driver);
6936}
6937
6938module_init(alsa_card_hdspm_init)
6939module_exit(alsa_card_hdspm_exit)
This page took 1.045868 seconds and 5 git commands to generate.