Merge branches 'acpica-fixes', 'acpi-video' and 'acpi-processor'
[deliverable/linux.git] / sound / soc / fsl / fsl_dma.c
CommitLineData
17467f23
TT
1/*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
f0fba2ad
LG
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
17467f23
TT
11 *
12 * This driver implements ASoC support for the Elo DMA controller, which is
13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14 * the PCM driver is what handles the DMA buffer.
15 */
16
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/interrupt.h>
22#include <linux/delay.h>
5a0e3ad6 23#include <linux/gfp.h>
5af50730
RH
24#include <linux/of_address.h>
25#include <linux/of_irq.h>
f0fba2ad
LG
26#include <linux/of_platform.h>
27#include <linux/list.h>
38fec727 28#include <linux/slab.h>
17467f23 29
17467f23
TT
30#include <sound/core.h>
31#include <sound/pcm.h>
32#include <sound/pcm_params.h>
33#include <sound/soc.h>
34
35#include <asm/io.h>
36
37#include "fsl_dma.h"
f0fba2ad 38#include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
17467f23
TT
39
40/*
41 * The formats that the DMA controller supports, which is anything
42 * that is 8, 16, or 32 bits.
43 */
44#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
45 SNDRV_PCM_FMTBIT_U8 | \
46 SNDRV_PCM_FMTBIT_S16_LE | \
47 SNDRV_PCM_FMTBIT_S16_BE | \
48 SNDRV_PCM_FMTBIT_U16_LE | \
49 SNDRV_PCM_FMTBIT_U16_BE | \
50 SNDRV_PCM_FMTBIT_S24_LE | \
51 SNDRV_PCM_FMTBIT_S24_BE | \
52 SNDRV_PCM_FMTBIT_U24_LE | \
53 SNDRV_PCM_FMTBIT_U24_BE | \
54 SNDRV_PCM_FMTBIT_S32_LE | \
55 SNDRV_PCM_FMTBIT_S32_BE | \
56 SNDRV_PCM_FMTBIT_U32_LE | \
57 SNDRV_PCM_FMTBIT_U32_BE)
f0fba2ad 58struct dma_object {
f0fba2ad 59 struct snd_soc_platform_driver dai;
17467f23
TT
60 dma_addr_t ssi_stx_phys;
61 dma_addr_t ssi_srx_phys;
8e9d8690 62 unsigned int ssi_fifo_depth;
f0fba2ad
LG
63 struct ccsr_dma_channel __iomem *channel;
64 unsigned int irq;
65 bool assigned;
66 char path[1];
67};
17467f23
TT
68
69/*
70 * The number of DMA links to use. Two is the bare minimum, but if you
71 * have really small links you might need more.
72 */
73#define NUM_DMA_LINKS 2
74
75/** fsl_dma_private: p-substream DMA data
76 *
77 * Each substream has a 1-to-1 association with a DMA channel.
78 *
79 * The link[] array is first because it needs to be aligned on a 32-byte
80 * boundary, so putting it first will ensure alignment without padding the
81 * structure.
82 *
83 * @link[]: array of link descriptors
17467f23
TT
84 * @dma_channel: pointer to the DMA channel's registers
85 * @irq: IRQ for this DMA channel
86 * @substream: pointer to the substream object, needed by the ISR
87 * @ssi_sxx_phys: bus address of the STX or SRX register to use
88 * @ld_buf_phys: physical address of the LD buffer
89 * @current_link: index into link[] of the link currently being processed
90 * @dma_buf_phys: physical address of the DMA buffer
91 * @dma_buf_next: physical address of the next period to process
92 * @dma_buf_end: physical address of the byte after the end of the DMA
93 * @buffer period_size: the size of a single period
94 * @num_periods: the number of periods in the DMA buffer
95 */
96struct fsl_dma_private {
97 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
17467f23
TT
98 struct ccsr_dma_channel __iomem *dma_channel;
99 unsigned int irq;
100 struct snd_pcm_substream *substream;
101 dma_addr_t ssi_sxx_phys;
8e9d8690 102 unsigned int ssi_fifo_depth;
17467f23
TT
103 dma_addr_t ld_buf_phys;
104 unsigned int current_link;
105 dma_addr_t dma_buf_phys;
106 dma_addr_t dma_buf_next;
107 dma_addr_t dma_buf_end;
108 size_t period_size;
109 unsigned int num_periods;
110};
111
112/**
113 * fsl_dma_hardare: define characteristics of the PCM hardware.
114 *
115 * The PCM hardware is the Freescale DMA controller. This structure defines
116 * the capabilities of that hardware.
117 *
118 * Since the sampling rate and data format are not controlled by the DMA
119 * controller, we specify no limits for those values. The only exception is
120 * period_bytes_min, which is set to a reasonably low value to prevent the
121 * DMA controller from generating too many interrupts per second.
122 *
123 * Since each link descriptor has a 32-bit byte count field, we set
124 * period_bytes_max to the largest 32-bit number. We also have no maximum
125 * number of periods.
be41e941
TT
126 *
127 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
128 * limitation in the SSI driver requires the sample rates for playback and
129 * capture to be the same.
17467f23
TT
130 */
131static const struct snd_pcm_hardware fsl_dma_hardware = {
132
4052ce4c
TT
133 .info = SNDRV_PCM_INFO_INTERLEAVED |
134 SNDRV_PCM_INFO_MMAP |
be41e941 135 SNDRV_PCM_INFO_MMAP_VALID |
3a638ff2
TT
136 SNDRV_PCM_INFO_JOINT_DUPLEX |
137 SNDRV_PCM_INFO_PAUSE,
17467f23 138 .formats = FSLDMA_PCM_FORMATS,
17467f23
TT
139 .period_bytes_min = 512, /* A reasonable limit */
140 .period_bytes_max = (u32) -1,
141 .periods_min = NUM_DMA_LINKS,
142 .periods_max = (unsigned int) -1,
143 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
144};
145
146/**
147 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
148 *
149 * This function should be called by the ISR whenever the DMA controller
150 * halts data transfer.
151 */
152static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
153{
1fb8510c 154 snd_pcm_stop_xrun(substream);
17467f23
TT
155}
156
157/**
158 * fsl_dma_update_pointers - update LD pointers to point to the next period
159 *
160 * As each period is completed, this function changes the the link
161 * descriptor pointers for that period to point to the next period.
162 */
163static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
164{
165 struct fsl_dma_link_descriptor *link =
166 &dma_private->link[dma_private->current_link];
167
1a3c5a49
TT
168 /* Update our link descriptors to point to the next period. On a 36-bit
169 * system, we also need to update the ESAD bits. We also set (keep) the
170 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
171 */
172 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
173 link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
174#ifdef CONFIG_PHYS_64BIT
175 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
176 upper_32_bits(dma_private->dma_buf_next));
177#endif
178 } else {
179 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
180#ifdef CONFIG_PHYS_64BIT
181 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
182 upper_32_bits(dma_private->dma_buf_next));
183#endif
184 }
17467f23
TT
185
186 /* Update our variables for next time */
187 dma_private->dma_buf_next += dma_private->period_size;
188
189 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
190 dma_private->dma_buf_next = dma_private->dma_buf_phys;
191
192 if (++dma_private->current_link >= NUM_DMA_LINKS)
193 dma_private->current_link = 0;
194}
195
196/**
197 * fsl_dma_isr: interrupt handler for the DMA controller
198 *
199 * @irq: IRQ of the DMA channel
200 * @dev_id: pointer to the dma_private structure for this DMA channel
201 */
202static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
203{
204 struct fsl_dma_private *dma_private = dev_id;
f0fba2ad
LG
205 struct snd_pcm_substream *substream = dma_private->substream;
206 struct snd_soc_pcm_runtime *rtd = substream->private_data;
207 struct device *dev = rtd->platform->dev;
17467f23
TT
208 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
209 irqreturn_t ret = IRQ_NONE;
210 u32 sr, sr2 = 0;
211
212 /* We got an interrupt, so read the status register to see what we
213 were interrupted for.
214 */
215 sr = in_be32(&dma_channel->sr);
216
217 if (sr & CCSR_DMA_SR_TE) {
f0fba2ad
LG
218 dev_err(dev, "dma transmit error\n");
219 fsl_dma_abort_stream(substream);
17467f23
TT
220 sr2 |= CCSR_DMA_SR_TE;
221 ret = IRQ_HANDLED;
222 }
223
224 if (sr & CCSR_DMA_SR_CH)
225 ret = IRQ_HANDLED;
226
227 if (sr & CCSR_DMA_SR_PE) {
f0fba2ad
LG
228 dev_err(dev, "dma programming error\n");
229 fsl_dma_abort_stream(substream);
17467f23
TT
230 sr2 |= CCSR_DMA_SR_PE;
231 ret = IRQ_HANDLED;
232 }
233
234 if (sr & CCSR_DMA_SR_EOLNI) {
235 sr2 |= CCSR_DMA_SR_EOLNI;
236 ret = IRQ_HANDLED;
237 }
238
239 if (sr & CCSR_DMA_SR_CB)
240 ret = IRQ_HANDLED;
241
242 if (sr & CCSR_DMA_SR_EOSI) {
17467f23
TT
243 /* Tell ALSA we completed a period. */
244 snd_pcm_period_elapsed(substream);
245
246 /*
247 * Update our link descriptors to point to the next period. We
248 * only need to do this if the number of periods is not equal to
249 * the number of links.
250 */
251 if (dma_private->num_periods != NUM_DMA_LINKS)
252 fsl_dma_update_pointers(dma_private);
253
254 sr2 |= CCSR_DMA_SR_EOSI;
255 ret = IRQ_HANDLED;
256 }
257
258 if (sr & CCSR_DMA_SR_EOLSI) {
259 sr2 |= CCSR_DMA_SR_EOLSI;
260 ret = IRQ_HANDLED;
261 }
262
263 /* Clear the bits that we set */
264 if (sr2)
265 out_be32(&dma_channel->sr, sr2);
266
267 return ret;
268}
269
270/**
271 * fsl_dma_new: initialize this PCM driver.
272 *
273 * This function is called when the codec driver calls snd_soc_new_pcms(),
87506549 274 * once for each .dai_link in the machine driver's snd_soc_card
17467f23 275 * structure.
1a3c5a49
TT
276 *
277 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
278 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
279 * is specified. Therefore, any DMA buffers we allocate will always be in low
280 * memory, but we support for 36-bit physical addresses anyway.
281 *
282 * Regardless of where the memory is actually allocated, since the device can
283 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
17467f23 284 */
552d1ef6 285static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
17467f23 286{
552d1ef6 287 struct snd_card *card = rtd->card->snd_card;
552d1ef6 288 struct snd_pcm *pcm = rtd->pcm;
17467f23
TT
289 int ret;
290
c9bd5e69
RK
291 ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
292 if (ret)
293 return ret;
17467f23 294
c04019d4
TT
295 /* Some codecs have separate DAIs for playback and capture, so we
296 * should allocate a DMA buffer only for the streams that are valid.
297 */
298
6296914c 299 if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
c04019d4
TT
300 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
301 fsl_dma_hardware.buffer_bytes_max,
6296914c 302 &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
c04019d4
TT
303 if (ret) {
304 dev_err(card->dev, "can't alloc playback dma buffer\n");
305 return ret;
306 }
17467f23
TT
307 }
308
6296914c 309 if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
c04019d4
TT
310 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
311 fsl_dma_hardware.buffer_bytes_max,
6296914c 312 &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
c04019d4 313 if (ret) {
c04019d4 314 dev_err(card->dev, "can't alloc capture dma buffer\n");
6296914c 315 snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
c04019d4
TT
316 return ret;
317 }
17467f23
TT
318 }
319
320 return 0;
321}
322
323/**
324 * fsl_dma_open: open a new substream.
325 *
326 * Each substream has its own DMA buffer.
bf9c8c9d
TT
327 *
328 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
329 * descriptors that ping-pong from one period to the next. For example, if
330 * there are six periods and two link descriptors, this is how they look
331 * before playback starts:
332 *
333 * The last link descriptor
334 * ____________ points back to the first
335 * | |
336 * V |
337 * ___ ___ |
338 * | |->| |->|
339 * |___| |___|
340 * | |
341 * | |
342 * V V
343 * _________________________________________
344 * | | | | | | | The DMA buffer is
345 * | | | | | | | divided into 6 parts
346 * |______|______|______|______|______|______|
347 *
348 * and here's how they look after the first period is finished playing:
349 *
350 * ____________
351 * | |
352 * V |
353 * ___ ___ |
354 * | |->| |->|
355 * |___| |___|
356 * | |
357 * |______________
358 * | |
359 * V V
360 * _________________________________________
361 * | | | | | | |
362 * | | | | | | |
363 * |______|______|______|______|______|______|
364 *
365 * The first link descriptor now points to the third period. The DMA
366 * controller is currently playing the second period. When it finishes, it
367 * will jump back to the first descriptor and play the third period.
368 *
369 * There are four reasons we do this:
370 *
371 * 1. The only way to get the DMA controller to automatically restart the
372 * transfer when it gets to the end of the buffer is to use chaining
373 * mode. Basic direct mode doesn't offer that feature.
374 * 2. We need to receive an interrupt at the end of every period. The DMA
375 * controller can generate an interrupt at the end of every link transfer
376 * (aka segment). Making each period into a DMA segment will give us the
377 * interrupts we need.
378 * 3. By creating only two link descriptors, regardless of the number of
379 * periods, we do not need to reallocate the link descriptors if the
380 * number of periods changes.
381 * 4. All of the audio data is still stored in a single, contiguous DMA
382 * buffer, which is what ALSA expects. We're just dividing it into
383 * contiguous parts, and creating a link descriptor for each one.
17467f23
TT
384 */
385static int fsl_dma_open(struct snd_pcm_substream *substream)
386{
387 struct snd_pcm_runtime *runtime = substream->runtime;
f0fba2ad
LG
388 struct snd_soc_pcm_runtime *rtd = substream->private_data;
389 struct device *dev = rtd->platform->dev;
390 struct dma_object *dma =
391 container_of(rtd->platform->driver, struct dma_object, dai);
17467f23 392 struct fsl_dma_private *dma_private;
bf9c8c9d 393 struct ccsr_dma_channel __iomem *dma_channel;
17467f23 394 dma_addr_t ld_buf_phys;
bf9c8c9d
TT
395 u64 temp_link; /* Pointer to next link descriptor */
396 u32 mr;
17467f23
TT
397 unsigned int channel;
398 int ret = 0;
bf9c8c9d 399 unsigned int i;
17467f23
TT
400
401 /*
402 * Reject any DMA buffer whose size is not a multiple of the period
403 * size. We need to make sure that the DMA buffer can be evenly divided
404 * into periods.
405 */
406 ret = snd_pcm_hw_constraint_integer(runtime,
407 SNDRV_PCM_HW_PARAM_PERIODS);
408 if (ret < 0) {
f0fba2ad 409 dev_err(dev, "invalid buffer size\n");
17467f23
TT
410 return ret;
411 }
412
413 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
414
f0fba2ad
LG
415 if (dma->assigned) {
416 dev_err(dev, "dma channel already assigned\n");
17467f23
TT
417 return -EBUSY;
418 }
419
f0fba2ad
LG
420 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
421 &ld_buf_phys, GFP_KERNEL);
17467f23 422 if (!dma_private) {
f0fba2ad 423 dev_err(dev, "can't allocate dma private data\n");
17467f23
TT
424 return -ENOMEM;
425 }
426 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
f0fba2ad 427 dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
17467f23 428 else
f0fba2ad 429 dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
17467f23 430
8e9d8690 431 dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
f0fba2ad
LG
432 dma_private->dma_channel = dma->channel;
433 dma_private->irq = dma->irq;
17467f23
TT
434 dma_private->substream = substream;
435 dma_private->ld_buf_phys = ld_buf_phys;
436 dma_private->dma_buf_phys = substream->dma_buffer.addr;
437
0cd114ff
TT
438 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
439 dma_private);
17467f23 440 if (ret) {
f0fba2ad 441 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
17467f23 442 dma_private->irq, ret);
f0fba2ad 443 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
17467f23
TT
444 dma_private, dma_private->ld_buf_phys);
445 return ret;
446 }
447
d0657fe8 448 dma->assigned = true;
17467f23
TT
449
450 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
451 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
452 runtime->private_data = dma_private;
453
bf9c8c9d
TT
454 /* Program the fixed DMA controller parameters */
455
456 dma_channel = dma_private->dma_channel;
457
458 temp_link = dma_private->ld_buf_phys +
459 sizeof(struct fsl_dma_link_descriptor);
460
461 for (i = 0; i < NUM_DMA_LINKS; i++) {
85ef2375 462 dma_private->link[i].next = cpu_to_be64(temp_link);
bf9c8c9d
TT
463
464 temp_link += sizeof(struct fsl_dma_link_descriptor);
465 }
466 /* The last link descriptor points to the first */
467 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
468
469 /* Tell the DMA controller where the first link descriptor is */
470 out_be32(&dma_channel->clndar,
471 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
472 out_be32(&dma_channel->eclndar,
473 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
474
475 /* The manual says the BCR must be clear before enabling EMP */
476 out_be32(&dma_channel->bcr, 0);
477
478 /*
479 * Program the mode register for interrupts, external master control,
480 * and source/destination hold. Also clear the Channel Abort bit.
481 */
482 mr = in_be32(&dma_channel->mr) &
483 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
484
485 /*
486 * We want External Master Start and External Master Pause enabled,
487 * because the SSI is controlling the DMA controller. We want the DMA
488 * controller to be set up in advance, and then we signal only the SSI
489 * to start transferring.
490 *
491 * We want End-Of-Segment Interrupts enabled, because this will generate
492 * an interrupt at the end of each segment (each link descriptor
493 * represents one segment). Each DMA segment is the same thing as an
494 * ALSA period, so this is how we get an interrupt at the end of every
495 * period.
496 *
497 * We want Error Interrupt enabled, so that we can get an error if
498 * the DMA controller is mis-programmed somehow.
499 */
500 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
501 CCSR_DMA_MR_EMS_EN;
502
503 /* For playback, we want the destination address to be held. For
504 capture, set the source address to be held. */
505 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
506 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
507
508 out_be32(&dma_channel->mr, mr);
509
17467f23
TT
510 return 0;
511}
512
513/**
bf9c8c9d 514 * fsl_dma_hw_params: continue initializing the DMA links
17467f23 515 *
bf9c8c9d
TT
516 * This function obtains hardware parameters about the opened stream and
517 * programs the DMA controller accordingly.
17467f23 518 *
85ef2375
TT
519 * One drawback of big-endian is that when copying integers of different
520 * sizes to a fixed-sized register, the address to which the integer must be
521 * copied is dependent on the size of the integer.
17467f23
TT
522 *
523 * For example, if P is the address of a 32-bit register, and X is a 32-bit
524 * integer, then X should be copied to address P. However, if X is a 16-bit
525 * integer, then it should be copied to P+2. If X is an 8-bit register,
526 * then it should be copied to P+3.
527 *
528 * So for playback of 8-bit samples, the DMA controller must transfer single
529 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
530 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
531 *
532 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
533 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
534 * and 8 bytes at a time). So we do not support packed 24-bit samples.
535 * 24-bit data must be padded to 32 bits.
536 */
85ef2375
TT
537static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
538 struct snd_pcm_hw_params *hw_params)
17467f23
TT
539{
540 struct snd_pcm_runtime *runtime = substream->runtime;
541 struct fsl_dma_private *dma_private = runtime->private_data;
f0fba2ad
LG
542 struct snd_soc_pcm_runtime *rtd = substream->private_data;
543 struct device *dev = rtd->platform->dev;
85ef2375
TT
544
545 /* Number of bits per sample */
8e9d8690 546 unsigned int sample_bits =
85ef2375
TT
547 snd_pcm_format_physical_width(params_format(hw_params));
548
549 /* Number of bytes per frame */
8e9d8690 550 unsigned int sample_bytes = sample_bits / 8;
85ef2375
TT
551
552 /* Bus address of SSI STX register */
553 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
554
555 /* Size of the DMA buffer, in bytes */
556 size_t buffer_size = params_buffer_bytes(hw_params);
557
558 /* Number of bytes per period */
559 size_t period_size = params_period_bytes(hw_params);
560
561 /* Pointer to next period */
562 dma_addr_t temp_addr = substream->dma_buffer.addr;
563
564 /* Pointer to DMA controller */
17467f23 565 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
85ef2375
TT
566
567 u32 mr; /* DMA Mode Register */
568
17467f23 569 unsigned int i;
17467f23 570
85ef2375
TT
571 /* Initialize our DMA tracking variables */
572 dma_private->period_size = period_size;
573 dma_private->num_periods = params_periods(hw_params);
574 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
575 dma_private->dma_buf_next = dma_private->dma_buf_phys +
576 (NUM_DMA_LINKS * period_size);
577
578 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
579 /* This happens if the number of periods == NUM_DMA_LINKS */
580 dma_private->dma_buf_next = dma_private->dma_buf_phys;
17467f23
TT
581
582 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
583 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
584
85ef2375
TT
585 /* Due to a quirk of the SSI's STX register, the target address
586 * for the DMA operations depends on the sample size. So we calculate
587 * that offset here. While we're at it, also tell the DMA controller
588 * how much data to transfer per sample.
589 */
8e9d8690 590 switch (sample_bits) {
17467f23
TT
591 case 8:
592 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
593 ssi_sxx_phys += 3;
594 break;
595 case 16:
596 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
597 ssi_sxx_phys += 2;
598 break;
599 case 32:
600 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
601 break;
602 default:
85ef2375 603 /* We should never get here */
8e9d8690 604 dev_err(dev, "unsupported sample size %u\n", sample_bits);
17467f23
TT
605 return -EINVAL;
606 }
607
17467f23 608 /*
8e9d8690
TT
609 * BWC determines how many bytes are sent/received before the DMA
610 * controller checks the SSI to see if it needs to stop. BWC should
611 * always be a multiple of the frame size, so that we always transmit
612 * whole frames. Each frame occupies two slots in the FIFO. The
613 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
614 * (MR[BWC] can only represent even powers of two).
615 *
616 * To simplify the process, we set BWC to the largest value that is
617 * less than or equal to the FIFO watermark. For playback, this ensures
618 * that we transfer the maximum amount without overrunning the FIFO.
619 * For capture, this ensures that we transfer the maximum amount without
620 * underrunning the FIFO.
621 *
622 * f = SSI FIFO depth
623 * w = SSI watermark value (which equals f - 2)
624 * b = DMA bandwidth count (in bytes)
625 * s = sample size (in bytes, which equals frame_size * 2)
626 *
627 * For playback, we never transmit more than the transmit FIFO
628 * watermark, otherwise we might write more data than the FIFO can hold.
629 * The watermark is equal to the FIFO depth minus two.
630 *
631 * For capture, two equations must hold:
632 * w > f - (b / s)
633 * w >= b / s
634 *
635 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
636 * b = s * w, which is equal to
637 * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
17467f23 638 */
8e9d8690 639 mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
17467f23
TT
640
641 out_be32(&dma_channel->mr, mr);
642
17467f23
TT
643 for (i = 0; i < NUM_DMA_LINKS; i++) {
644 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
645
85ef2375
TT
646 link->count = cpu_to_be32(period_size);
647
1a3c5a49 648 /* The snoop bit tells the DMA controller whether it should tell
85ef2375
TT
649 * the ECM to snoop during a read or write to an address. For
650 * audio, we use DMA to transfer data between memory and an I/O
651 * device (the SSI's STX0 or SRX0 register). Snooping is only
652 * needed if there is a cache, so we need to snoop memory
653 * addresses only. For playback, that means we snoop the source
654 * but not the destination. For capture, we snoop the
655 * destination but not the source.
656 *
657 * Note that failing to snoop properly is unlikely to cause
658 * cache incoherency if the period size is larger than the
659 * size of L1 cache. This is because filling in one period will
660 * flush out the data for the previous period. So if you
661 * increased period_bytes_min to a large enough size, you might
662 * get more performance by not snooping, and you'll still be
1a3c5a49 663 * okay. You'll need to update fsl_dma_update_pointers() also.
85ef2375
TT
664 */
665 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
666 link->source_addr = cpu_to_be32(temp_addr);
1a3c5a49
TT
667 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
668 upper_32_bits(temp_addr));
85ef2375 669
17467f23 670 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
1a3c5a49
TT
671 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
672 upper_32_bits(ssi_sxx_phys));
85ef2375 673 } else {
17467f23 674 link->source_addr = cpu_to_be32(ssi_sxx_phys);
1a3c5a49
TT
675 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
676 upper_32_bits(ssi_sxx_phys));
85ef2375
TT
677
678 link->dest_addr = cpu_to_be32(temp_addr);
1a3c5a49
TT
679 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
680 upper_32_bits(temp_addr));
85ef2375
TT
681 }
682
683 temp_addr += period_size;
17467f23
TT
684 }
685
686 return 0;
687}
688
689/**
690 * fsl_dma_pointer: determine the current position of the DMA transfer
691 *
692 * This function is called by ALSA when ALSA wants to know where in the
693 * stream buffer the hardware currently is.
694 *
695 * For playback, the SAR register contains the physical address of the most
696 * recent DMA transfer. For capture, the value is in the DAR register.
697 *
698 * The base address of the buffer is stored in the source_addr field of the
699 * first link descriptor.
700 */
701static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
702{
703 struct snd_pcm_runtime *runtime = substream->runtime;
704 struct fsl_dma_private *dma_private = runtime->private_data;
f0fba2ad
LG
705 struct snd_soc_pcm_runtime *rtd = substream->private_data;
706 struct device *dev = rtd->platform->dev;
17467f23
TT
707 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
708 dma_addr_t position;
709 snd_pcm_uframes_t frames;
710
1a3c5a49
TT
711 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
712 * only have 32-bit DMA addresses. This function is typically called
713 * in interrupt context, so we need to optimize it.
714 */
715 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
17467f23 716 position = in_be32(&dma_channel->sar);
1a3c5a49
TT
717#ifdef CONFIG_PHYS_64BIT
718 position |= (u64)(in_be32(&dma_channel->satr) &
719 CCSR_DMA_ATR_ESAD_MASK) << 32;
720#endif
721 } else {
17467f23 722 position = in_be32(&dma_channel->dar);
1a3c5a49
TT
723#ifdef CONFIG_PHYS_64BIT
724 position |= (u64)(in_be32(&dma_channel->datr) &
725 CCSR_DMA_ATR_ESAD_MASK) << 32;
726#endif
727 }
17467f23 728
a4d11fe5
TT
729 /*
730 * When capture is started, the SSI immediately starts to fill its FIFO.
731 * This means that the DMA controller is not started until the FIFO is
732 * full. However, ALSA calls this function before that happens, when
733 * MR.DAR is still zero. In this case, just return zero to indicate
734 * that nothing has been received yet.
735 */
736 if (!position)
737 return 0;
738
739 if ((position < dma_private->dma_buf_phys) ||
740 (position > dma_private->dma_buf_end)) {
f0fba2ad 741 dev_err(dev, "dma pointer is out of range, halting stream\n");
a4d11fe5
TT
742 return SNDRV_PCM_POS_XRUN;
743 }
744
17467f23
TT
745 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
746
747 /*
748 * If the current address is just past the end of the buffer, wrap it
749 * around.
750 */
751 if (frames == runtime->buffer_size)
752 frames = 0;
753
754 return frames;
755}
756
757/**
758 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
759 *
760 * Release the resources allocated in fsl_dma_hw_params() and de-program the
761 * registers.
762 *
763 * This function can be called multiple times.
764 */
765static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
766{
767 struct snd_pcm_runtime *runtime = substream->runtime;
768 struct fsl_dma_private *dma_private = runtime->private_data;
769
770 if (dma_private) {
771 struct ccsr_dma_channel __iomem *dma_channel;
772
773 dma_channel = dma_private->dma_channel;
774
775 /* Stop the DMA */
776 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
777 out_be32(&dma_channel->mr, 0);
778
779 /* Reset all the other registers */
780 out_be32(&dma_channel->sr, -1);
781 out_be32(&dma_channel->clndar, 0);
782 out_be32(&dma_channel->eclndar, 0);
783 out_be32(&dma_channel->satr, 0);
784 out_be32(&dma_channel->sar, 0);
785 out_be32(&dma_channel->datr, 0);
786 out_be32(&dma_channel->dar, 0);
787 out_be32(&dma_channel->bcr, 0);
788 out_be32(&dma_channel->nlndar, 0);
789 out_be32(&dma_channel->enlndar, 0);
790 }
791
792 return 0;
793}
794
795/**
796 * fsl_dma_close: close the stream.
797 */
798static int fsl_dma_close(struct snd_pcm_substream *substream)
799{
800 struct snd_pcm_runtime *runtime = substream->runtime;
801 struct fsl_dma_private *dma_private = runtime->private_data;
f0fba2ad
LG
802 struct snd_soc_pcm_runtime *rtd = substream->private_data;
803 struct device *dev = rtd->platform->dev;
804 struct dma_object *dma =
805 container_of(rtd->platform->driver, struct dma_object, dai);
17467f23
TT
806
807 if (dma_private) {
808 if (dma_private->irq)
809 free_irq(dma_private->irq, dma_private);
810
17467f23 811 /* Deallocate the fsl_dma_private structure */
f0fba2ad
LG
812 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
813 dma_private, dma_private->ld_buf_phys);
17467f23
TT
814 substream->runtime->private_data = NULL;
815 }
816
d0657fe8 817 dma->assigned = false;
17467f23
TT
818
819 return 0;
820}
821
822/*
823 * Remove this PCM driver.
824 */
825static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
826{
827 struct snd_pcm_substream *substream;
828 unsigned int i;
829
830 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
831 substream = pcm->streams[i].substream;
832 if (substream) {
833 snd_dma_free_pages(&substream->dma_buffer);
834 substream->dma_buffer.area = NULL;
835 substream->dma_buffer.addr = 0;
836 }
837 }
838}
839
f0fba2ad 840/**
05004cb4 841 * find_ssi_node -- returns the SSI node that points to its DMA channel node
f0fba2ad
LG
842 *
843 * Although this DMA driver attempts to operate independently of the other
844 * devices, it still needs to determine some information about the SSI device
845 * that it's working with. Unfortunately, the device tree does not contain
846 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
847 * other way. So we need to scan the device tree for SSI nodes until we find
848 * the one that points to the given DMA channel node. It's ugly, but at least
849 * it's contained in this one function.
850 */
851static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
852{
853 struct device_node *ssi_np, *np;
854
855 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
856 /* Check each DMA phandle to see if it points to us. We
857 * assume that device_node pointers are a valid comparison.
858 */
859 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
81a081ff 860 of_node_put(np);
f0fba2ad
LG
861 if (np == dma_channel_np)
862 return ssi_np;
863
864 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
81a081ff 865 of_node_put(np);
f0fba2ad
LG
866 if (np == dma_channel_np)
867 return ssi_np;
868 }
869
870 return NULL;
871}
872
17467f23
TT
873static struct snd_pcm_ops fsl_dma_ops = {
874 .open = fsl_dma_open,
875 .close = fsl_dma_close,
876 .ioctl = snd_pcm_lib_ioctl,
877 .hw_params = fsl_dma_hw_params,
878 .hw_free = fsl_dma_hw_free,
17467f23
TT
879 .pointer = fsl_dma_pointer,
880};
881
a0a3d518 882static int fsl_soc_dma_probe(struct platform_device *pdev)
f0fba2ad
LG
883 {
884 struct dma_object *dma;
38fec727 885 struct device_node *np = pdev->dev.of_node;
f0fba2ad
LG
886 struct device_node *ssi_np;
887 struct resource res;
8e9d8690 888 const uint32_t *iprop;
f0fba2ad 889 int ret;
17467f23 890
f0fba2ad
LG
891 /* Find the SSI node that points to us. */
892 ssi_np = find_ssi_node(np);
893 if (!ssi_np) {
38fec727 894 dev_err(&pdev->dev, "cannot find parent SSI node\n");
f0fba2ad
LG
895 return -ENODEV;
896 }
897
898 ret = of_address_to_resource(ssi_np, 0, &res);
f0fba2ad 899 if (ret) {
38fec727 900 dev_err(&pdev->dev, "could not determine resources for %s\n",
8e9d8690
TT
901 ssi_np->full_name);
902 of_node_put(ssi_np);
f0fba2ad
LG
903 return ret;
904 }
905
906 dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
907 if (!dma) {
38fec727 908 dev_err(&pdev->dev, "could not allocate dma object\n");
8e9d8690 909 of_node_put(ssi_np);
f0fba2ad
LG
910 return -ENOMEM;
911 }
912
913 strcpy(dma->path, np->full_name);
914 dma->dai.ops = &fsl_dma_ops;
915 dma->dai.pcm_new = fsl_dma_new;
916 dma->dai.pcm_free = fsl_dma_free_dma_buffers;
917
918 /* Store the SSI-specific information that we need */
3d5f615f
GR
919 dma->ssi_stx_phys = res.start + CCSR_SSI_STX0;
920 dma->ssi_srx_phys = res.start + CCSR_SSI_SRX0;
f0fba2ad 921
8e9d8690
TT
922 iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
923 if (iprop)
147dfe90 924 dma->ssi_fifo_depth = be32_to_cpup(iprop);
8e9d8690
TT
925 else
926 /* Older 8610 DTs didn't have the fifo-depth property */
927 dma->ssi_fifo_depth = 8;
928
929 of_node_put(ssi_np);
930
38fec727 931 ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
f0fba2ad 932 if (ret) {
38fec727 933 dev_err(&pdev->dev, "could not register platform\n");
f0fba2ad
LG
934 kfree(dma);
935 return ret;
936 }
937
938 dma->channel = of_iomap(np, 0);
939 dma->irq = irq_of_parse_and_map(np, 0);
87a0632b 940
38fec727 941 dev_set_drvdata(&pdev->dev, dma);
f0fba2ad
LG
942
943 return 0;
944}
945
a0a3d518 946static int fsl_soc_dma_remove(struct platform_device *pdev)
17467f23 947{
38fec727 948 struct dma_object *dma = dev_get_drvdata(&pdev->dev);
17467f23 949
38fec727 950 snd_soc_unregister_platform(&pdev->dev);
87a0632b
TT
951 iounmap(dma->channel);
952 irq_dispose_mapping(dma->irq);
953 kfree(dma);
17467f23 954
f0fba2ad 955 return 0;
17467f23 956}
17467f23 957
f0fba2ad
LG
958static const struct of_device_id fsl_soc_dma_ids[] = {
959 { .compatible = "fsl,ssi-dma-channel", },
960 {}
961};
962MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
963
f07eb223 964static struct platform_driver fsl_soc_dma_driver = {
f0fba2ad
LG
965 .driver = {
966 .name = "fsl-pcm-audio",
f0fba2ad
LG
967 .of_match_table = fsl_soc_dma_ids,
968 },
969 .probe = fsl_soc_dma_probe,
a0a3d518 970 .remove = fsl_soc_dma_remove,
f0fba2ad
LG
971};
972
ba0a7e02 973module_platform_driver(fsl_soc_dma_driver);
958e792c 974
17467f23 975MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
f0fba2ad
LG
976MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
977MODULE_LICENSE("GPL v2");
This page took 0.415838 seconds and 5 git commands to generate.