drivers: clean-up prom.h implicit includes
[deliverable/linux.git] / sound / soc / fsl / fsl_dma.c
CommitLineData
17467f23
TT
1/*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
f0fba2ad
LG
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
17467f23
TT
11 *
12 * This driver implements ASoC support for the Elo DMA controller, which is
13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14 * the PCM driver is what handles the DMA buffer.
15 */
16
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/interrupt.h>
22#include <linux/delay.h>
5a0e3ad6 23#include <linux/gfp.h>
5af50730
RH
24#include <linux/of_address.h>
25#include <linux/of_irq.h>
f0fba2ad
LG
26#include <linux/of_platform.h>
27#include <linux/list.h>
38fec727 28#include <linux/slab.h>
17467f23 29
17467f23
TT
30#include <sound/core.h>
31#include <sound/pcm.h>
32#include <sound/pcm_params.h>
33#include <sound/soc.h>
34
35#include <asm/io.h>
36
37#include "fsl_dma.h"
f0fba2ad 38#include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
17467f23
TT
39
40/*
41 * The formats that the DMA controller supports, which is anything
42 * that is 8, 16, or 32 bits.
43 */
44#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
45 SNDRV_PCM_FMTBIT_U8 | \
46 SNDRV_PCM_FMTBIT_S16_LE | \
47 SNDRV_PCM_FMTBIT_S16_BE | \
48 SNDRV_PCM_FMTBIT_U16_LE | \
49 SNDRV_PCM_FMTBIT_U16_BE | \
50 SNDRV_PCM_FMTBIT_S24_LE | \
51 SNDRV_PCM_FMTBIT_S24_BE | \
52 SNDRV_PCM_FMTBIT_U24_LE | \
53 SNDRV_PCM_FMTBIT_U24_BE | \
54 SNDRV_PCM_FMTBIT_S32_LE | \
55 SNDRV_PCM_FMTBIT_S32_BE | \
56 SNDRV_PCM_FMTBIT_U32_LE | \
57 SNDRV_PCM_FMTBIT_U32_BE)
58
59#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
60 SNDRV_PCM_RATE_CONTINUOUS)
61
f0fba2ad 62struct dma_object {
f0fba2ad 63 struct snd_soc_platform_driver dai;
17467f23
TT
64 dma_addr_t ssi_stx_phys;
65 dma_addr_t ssi_srx_phys;
8e9d8690 66 unsigned int ssi_fifo_depth;
f0fba2ad
LG
67 struct ccsr_dma_channel __iomem *channel;
68 unsigned int irq;
69 bool assigned;
70 char path[1];
71};
17467f23
TT
72
73/*
74 * The number of DMA links to use. Two is the bare minimum, but if you
75 * have really small links you might need more.
76 */
77#define NUM_DMA_LINKS 2
78
79/** fsl_dma_private: p-substream DMA data
80 *
81 * Each substream has a 1-to-1 association with a DMA channel.
82 *
83 * The link[] array is first because it needs to be aligned on a 32-byte
84 * boundary, so putting it first will ensure alignment without padding the
85 * structure.
86 *
87 * @link[]: array of link descriptors
17467f23
TT
88 * @dma_channel: pointer to the DMA channel's registers
89 * @irq: IRQ for this DMA channel
90 * @substream: pointer to the substream object, needed by the ISR
91 * @ssi_sxx_phys: bus address of the STX or SRX register to use
92 * @ld_buf_phys: physical address of the LD buffer
93 * @current_link: index into link[] of the link currently being processed
94 * @dma_buf_phys: physical address of the DMA buffer
95 * @dma_buf_next: physical address of the next period to process
96 * @dma_buf_end: physical address of the byte after the end of the DMA
97 * @buffer period_size: the size of a single period
98 * @num_periods: the number of periods in the DMA buffer
99 */
100struct fsl_dma_private {
101 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
17467f23
TT
102 struct ccsr_dma_channel __iomem *dma_channel;
103 unsigned int irq;
104 struct snd_pcm_substream *substream;
105 dma_addr_t ssi_sxx_phys;
8e9d8690 106 unsigned int ssi_fifo_depth;
17467f23
TT
107 dma_addr_t ld_buf_phys;
108 unsigned int current_link;
109 dma_addr_t dma_buf_phys;
110 dma_addr_t dma_buf_next;
111 dma_addr_t dma_buf_end;
112 size_t period_size;
113 unsigned int num_periods;
114};
115
116/**
117 * fsl_dma_hardare: define characteristics of the PCM hardware.
118 *
119 * The PCM hardware is the Freescale DMA controller. This structure defines
120 * the capabilities of that hardware.
121 *
122 * Since the sampling rate and data format are not controlled by the DMA
123 * controller, we specify no limits for those values. The only exception is
124 * period_bytes_min, which is set to a reasonably low value to prevent the
125 * DMA controller from generating too many interrupts per second.
126 *
127 * Since each link descriptor has a 32-bit byte count field, we set
128 * period_bytes_max to the largest 32-bit number. We also have no maximum
129 * number of periods.
be41e941
TT
130 *
131 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
132 * limitation in the SSI driver requires the sample rates for playback and
133 * capture to be the same.
17467f23
TT
134 */
135static const struct snd_pcm_hardware fsl_dma_hardware = {
136
4052ce4c
TT
137 .info = SNDRV_PCM_INFO_INTERLEAVED |
138 SNDRV_PCM_INFO_MMAP |
be41e941 139 SNDRV_PCM_INFO_MMAP_VALID |
3a638ff2
TT
140 SNDRV_PCM_INFO_JOINT_DUPLEX |
141 SNDRV_PCM_INFO_PAUSE,
17467f23
TT
142 .formats = FSLDMA_PCM_FORMATS,
143 .rates = FSLDMA_PCM_RATES,
144 .rate_min = 5512,
145 .rate_max = 192000,
146 .period_bytes_min = 512, /* A reasonable limit */
147 .period_bytes_max = (u32) -1,
148 .periods_min = NUM_DMA_LINKS,
149 .periods_max = (unsigned int) -1,
150 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
151};
152
153/**
154 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
155 *
156 * This function should be called by the ISR whenever the DMA controller
157 * halts data transfer.
158 */
159static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
160{
161 unsigned long flags;
162
163 snd_pcm_stream_lock_irqsave(substream, flags);
164
165 if (snd_pcm_running(substream))
166 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
167
168 snd_pcm_stream_unlock_irqrestore(substream, flags);
169}
170
171/**
172 * fsl_dma_update_pointers - update LD pointers to point to the next period
173 *
174 * As each period is completed, this function changes the the link
175 * descriptor pointers for that period to point to the next period.
176 */
177static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
178{
179 struct fsl_dma_link_descriptor *link =
180 &dma_private->link[dma_private->current_link];
181
1a3c5a49
TT
182 /* Update our link descriptors to point to the next period. On a 36-bit
183 * system, we also need to update the ESAD bits. We also set (keep) the
184 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
185 */
186 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
187 link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
188#ifdef CONFIG_PHYS_64BIT
189 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
190 upper_32_bits(dma_private->dma_buf_next));
191#endif
192 } else {
193 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
194#ifdef CONFIG_PHYS_64BIT
195 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
196 upper_32_bits(dma_private->dma_buf_next));
197#endif
198 }
17467f23
TT
199
200 /* Update our variables for next time */
201 dma_private->dma_buf_next += dma_private->period_size;
202
203 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
204 dma_private->dma_buf_next = dma_private->dma_buf_phys;
205
206 if (++dma_private->current_link >= NUM_DMA_LINKS)
207 dma_private->current_link = 0;
208}
209
210/**
211 * fsl_dma_isr: interrupt handler for the DMA controller
212 *
213 * @irq: IRQ of the DMA channel
214 * @dev_id: pointer to the dma_private structure for this DMA channel
215 */
216static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
217{
218 struct fsl_dma_private *dma_private = dev_id;
f0fba2ad
LG
219 struct snd_pcm_substream *substream = dma_private->substream;
220 struct snd_soc_pcm_runtime *rtd = substream->private_data;
221 struct device *dev = rtd->platform->dev;
17467f23
TT
222 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
223 irqreturn_t ret = IRQ_NONE;
224 u32 sr, sr2 = 0;
225
226 /* We got an interrupt, so read the status register to see what we
227 were interrupted for.
228 */
229 sr = in_be32(&dma_channel->sr);
230
231 if (sr & CCSR_DMA_SR_TE) {
f0fba2ad
LG
232 dev_err(dev, "dma transmit error\n");
233 fsl_dma_abort_stream(substream);
17467f23
TT
234 sr2 |= CCSR_DMA_SR_TE;
235 ret = IRQ_HANDLED;
236 }
237
238 if (sr & CCSR_DMA_SR_CH)
239 ret = IRQ_HANDLED;
240
241 if (sr & CCSR_DMA_SR_PE) {
f0fba2ad
LG
242 dev_err(dev, "dma programming error\n");
243 fsl_dma_abort_stream(substream);
17467f23
TT
244 sr2 |= CCSR_DMA_SR_PE;
245 ret = IRQ_HANDLED;
246 }
247
248 if (sr & CCSR_DMA_SR_EOLNI) {
249 sr2 |= CCSR_DMA_SR_EOLNI;
250 ret = IRQ_HANDLED;
251 }
252
253 if (sr & CCSR_DMA_SR_CB)
254 ret = IRQ_HANDLED;
255
256 if (sr & CCSR_DMA_SR_EOSI) {
17467f23
TT
257 /* Tell ALSA we completed a period. */
258 snd_pcm_period_elapsed(substream);
259
260 /*
261 * Update our link descriptors to point to the next period. We
262 * only need to do this if the number of periods is not equal to
263 * the number of links.
264 */
265 if (dma_private->num_periods != NUM_DMA_LINKS)
266 fsl_dma_update_pointers(dma_private);
267
268 sr2 |= CCSR_DMA_SR_EOSI;
269 ret = IRQ_HANDLED;
270 }
271
272 if (sr & CCSR_DMA_SR_EOLSI) {
273 sr2 |= CCSR_DMA_SR_EOLSI;
274 ret = IRQ_HANDLED;
275 }
276
277 /* Clear the bits that we set */
278 if (sr2)
279 out_be32(&dma_channel->sr, sr2);
280
281 return ret;
282}
283
284/**
285 * fsl_dma_new: initialize this PCM driver.
286 *
287 * This function is called when the codec driver calls snd_soc_new_pcms(),
87506549 288 * once for each .dai_link in the machine driver's snd_soc_card
17467f23 289 * structure.
1a3c5a49
TT
290 *
291 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
292 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
293 * is specified. Therefore, any DMA buffers we allocate will always be in low
294 * memory, but we support for 36-bit physical addresses anyway.
295 *
296 * Regardless of where the memory is actually allocated, since the device can
297 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
17467f23 298 */
552d1ef6 299static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
17467f23 300{
552d1ef6 301 struct snd_card *card = rtd->card->snd_card;
552d1ef6 302 struct snd_pcm *pcm = rtd->pcm;
1a3c5a49 303 static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
17467f23
TT
304 int ret;
305
306 if (!card->dev->dma_mask)
307 card->dev->dma_mask = &fsl_dma_dmamask;
308
309 if (!card->dev->coherent_dma_mask)
310 card->dev->coherent_dma_mask = fsl_dma_dmamask;
311
c04019d4
TT
312 /* Some codecs have separate DAIs for playback and capture, so we
313 * should allocate a DMA buffer only for the streams that are valid.
314 */
315
6296914c 316 if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
c04019d4
TT
317 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
318 fsl_dma_hardware.buffer_bytes_max,
6296914c 319 &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
c04019d4
TT
320 if (ret) {
321 dev_err(card->dev, "can't alloc playback dma buffer\n");
322 return ret;
323 }
17467f23
TT
324 }
325
6296914c 326 if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
c04019d4
TT
327 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
328 fsl_dma_hardware.buffer_bytes_max,
6296914c 329 &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
c04019d4 330 if (ret) {
c04019d4 331 dev_err(card->dev, "can't alloc capture dma buffer\n");
6296914c 332 snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
c04019d4
TT
333 return ret;
334 }
17467f23
TT
335 }
336
337 return 0;
338}
339
340/**
341 * fsl_dma_open: open a new substream.
342 *
343 * Each substream has its own DMA buffer.
bf9c8c9d
TT
344 *
345 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
346 * descriptors that ping-pong from one period to the next. For example, if
347 * there are six periods and two link descriptors, this is how they look
348 * before playback starts:
349 *
350 * The last link descriptor
351 * ____________ points back to the first
352 * | |
353 * V |
354 * ___ ___ |
355 * | |->| |->|
356 * |___| |___|
357 * | |
358 * | |
359 * V V
360 * _________________________________________
361 * | | | | | | | The DMA buffer is
362 * | | | | | | | divided into 6 parts
363 * |______|______|______|______|______|______|
364 *
365 * and here's how they look after the first period is finished playing:
366 *
367 * ____________
368 * | |
369 * V |
370 * ___ ___ |
371 * | |->| |->|
372 * |___| |___|
373 * | |
374 * |______________
375 * | |
376 * V V
377 * _________________________________________
378 * | | | | | | |
379 * | | | | | | |
380 * |______|______|______|______|______|______|
381 *
382 * The first link descriptor now points to the third period. The DMA
383 * controller is currently playing the second period. When it finishes, it
384 * will jump back to the first descriptor and play the third period.
385 *
386 * There are four reasons we do this:
387 *
388 * 1. The only way to get the DMA controller to automatically restart the
389 * transfer when it gets to the end of the buffer is to use chaining
390 * mode. Basic direct mode doesn't offer that feature.
391 * 2. We need to receive an interrupt at the end of every period. The DMA
392 * controller can generate an interrupt at the end of every link transfer
393 * (aka segment). Making each period into a DMA segment will give us the
394 * interrupts we need.
395 * 3. By creating only two link descriptors, regardless of the number of
396 * periods, we do not need to reallocate the link descriptors if the
397 * number of periods changes.
398 * 4. All of the audio data is still stored in a single, contiguous DMA
399 * buffer, which is what ALSA expects. We're just dividing it into
400 * contiguous parts, and creating a link descriptor for each one.
17467f23
TT
401 */
402static int fsl_dma_open(struct snd_pcm_substream *substream)
403{
404 struct snd_pcm_runtime *runtime = substream->runtime;
f0fba2ad
LG
405 struct snd_soc_pcm_runtime *rtd = substream->private_data;
406 struct device *dev = rtd->platform->dev;
407 struct dma_object *dma =
408 container_of(rtd->platform->driver, struct dma_object, dai);
17467f23 409 struct fsl_dma_private *dma_private;
bf9c8c9d 410 struct ccsr_dma_channel __iomem *dma_channel;
17467f23 411 dma_addr_t ld_buf_phys;
bf9c8c9d
TT
412 u64 temp_link; /* Pointer to next link descriptor */
413 u32 mr;
17467f23
TT
414 unsigned int channel;
415 int ret = 0;
bf9c8c9d 416 unsigned int i;
17467f23
TT
417
418 /*
419 * Reject any DMA buffer whose size is not a multiple of the period
420 * size. We need to make sure that the DMA buffer can be evenly divided
421 * into periods.
422 */
423 ret = snd_pcm_hw_constraint_integer(runtime,
424 SNDRV_PCM_HW_PARAM_PERIODS);
425 if (ret < 0) {
f0fba2ad 426 dev_err(dev, "invalid buffer size\n");
17467f23
TT
427 return ret;
428 }
429
430 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
431
f0fba2ad
LG
432 if (dma->assigned) {
433 dev_err(dev, "dma channel already assigned\n");
17467f23
TT
434 return -EBUSY;
435 }
436
f0fba2ad
LG
437 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
438 &ld_buf_phys, GFP_KERNEL);
17467f23 439 if (!dma_private) {
f0fba2ad 440 dev_err(dev, "can't allocate dma private data\n");
17467f23
TT
441 return -ENOMEM;
442 }
443 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
f0fba2ad 444 dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
17467f23 445 else
f0fba2ad 446 dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
17467f23 447
8e9d8690 448 dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
f0fba2ad
LG
449 dma_private->dma_channel = dma->channel;
450 dma_private->irq = dma->irq;
17467f23
TT
451 dma_private->substream = substream;
452 dma_private->ld_buf_phys = ld_buf_phys;
453 dma_private->dma_buf_phys = substream->dma_buffer.addr;
454
0cd114ff
TT
455 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
456 dma_private);
17467f23 457 if (ret) {
f0fba2ad 458 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
17467f23 459 dma_private->irq, ret);
f0fba2ad 460 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
17467f23
TT
461 dma_private, dma_private->ld_buf_phys);
462 return ret;
463 }
464
f0fba2ad 465 dma->assigned = 1;
17467f23
TT
466
467 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
468 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
469 runtime->private_data = dma_private;
470
bf9c8c9d
TT
471 /* Program the fixed DMA controller parameters */
472
473 dma_channel = dma_private->dma_channel;
474
475 temp_link = dma_private->ld_buf_phys +
476 sizeof(struct fsl_dma_link_descriptor);
477
478 for (i = 0; i < NUM_DMA_LINKS; i++) {
85ef2375 479 dma_private->link[i].next = cpu_to_be64(temp_link);
bf9c8c9d
TT
480
481 temp_link += sizeof(struct fsl_dma_link_descriptor);
482 }
483 /* The last link descriptor points to the first */
484 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
485
486 /* Tell the DMA controller where the first link descriptor is */
487 out_be32(&dma_channel->clndar,
488 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
489 out_be32(&dma_channel->eclndar,
490 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
491
492 /* The manual says the BCR must be clear before enabling EMP */
493 out_be32(&dma_channel->bcr, 0);
494
495 /*
496 * Program the mode register for interrupts, external master control,
497 * and source/destination hold. Also clear the Channel Abort bit.
498 */
499 mr = in_be32(&dma_channel->mr) &
500 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
501
502 /*
503 * We want External Master Start and External Master Pause enabled,
504 * because the SSI is controlling the DMA controller. We want the DMA
505 * controller to be set up in advance, and then we signal only the SSI
506 * to start transferring.
507 *
508 * We want End-Of-Segment Interrupts enabled, because this will generate
509 * an interrupt at the end of each segment (each link descriptor
510 * represents one segment). Each DMA segment is the same thing as an
511 * ALSA period, so this is how we get an interrupt at the end of every
512 * period.
513 *
514 * We want Error Interrupt enabled, so that we can get an error if
515 * the DMA controller is mis-programmed somehow.
516 */
517 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
518 CCSR_DMA_MR_EMS_EN;
519
520 /* For playback, we want the destination address to be held. For
521 capture, set the source address to be held. */
522 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
523 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
524
525 out_be32(&dma_channel->mr, mr);
526
17467f23
TT
527 return 0;
528}
529
530/**
bf9c8c9d 531 * fsl_dma_hw_params: continue initializing the DMA links
17467f23 532 *
bf9c8c9d
TT
533 * This function obtains hardware parameters about the opened stream and
534 * programs the DMA controller accordingly.
17467f23 535 *
85ef2375
TT
536 * One drawback of big-endian is that when copying integers of different
537 * sizes to a fixed-sized register, the address to which the integer must be
538 * copied is dependent on the size of the integer.
17467f23
TT
539 *
540 * For example, if P is the address of a 32-bit register, and X is a 32-bit
541 * integer, then X should be copied to address P. However, if X is a 16-bit
542 * integer, then it should be copied to P+2. If X is an 8-bit register,
543 * then it should be copied to P+3.
544 *
545 * So for playback of 8-bit samples, the DMA controller must transfer single
546 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
547 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
548 *
549 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
550 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
551 * and 8 bytes at a time). So we do not support packed 24-bit samples.
552 * 24-bit data must be padded to 32 bits.
553 */
85ef2375
TT
554static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
555 struct snd_pcm_hw_params *hw_params)
17467f23
TT
556{
557 struct snd_pcm_runtime *runtime = substream->runtime;
558 struct fsl_dma_private *dma_private = runtime->private_data;
f0fba2ad
LG
559 struct snd_soc_pcm_runtime *rtd = substream->private_data;
560 struct device *dev = rtd->platform->dev;
85ef2375
TT
561
562 /* Number of bits per sample */
8e9d8690 563 unsigned int sample_bits =
85ef2375
TT
564 snd_pcm_format_physical_width(params_format(hw_params));
565
566 /* Number of bytes per frame */
8e9d8690 567 unsigned int sample_bytes = sample_bits / 8;
85ef2375
TT
568
569 /* Bus address of SSI STX register */
570 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
571
572 /* Size of the DMA buffer, in bytes */
573 size_t buffer_size = params_buffer_bytes(hw_params);
574
575 /* Number of bytes per period */
576 size_t period_size = params_period_bytes(hw_params);
577
578 /* Pointer to next period */
579 dma_addr_t temp_addr = substream->dma_buffer.addr;
580
581 /* Pointer to DMA controller */
17467f23 582 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
85ef2375
TT
583
584 u32 mr; /* DMA Mode Register */
585
17467f23 586 unsigned int i;
17467f23 587
85ef2375
TT
588 /* Initialize our DMA tracking variables */
589 dma_private->period_size = period_size;
590 dma_private->num_periods = params_periods(hw_params);
591 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
592 dma_private->dma_buf_next = dma_private->dma_buf_phys +
593 (NUM_DMA_LINKS * period_size);
594
595 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
596 /* This happens if the number of periods == NUM_DMA_LINKS */
597 dma_private->dma_buf_next = dma_private->dma_buf_phys;
17467f23
TT
598
599 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
600 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
601
85ef2375
TT
602 /* Due to a quirk of the SSI's STX register, the target address
603 * for the DMA operations depends on the sample size. So we calculate
604 * that offset here. While we're at it, also tell the DMA controller
605 * how much data to transfer per sample.
606 */
8e9d8690 607 switch (sample_bits) {
17467f23
TT
608 case 8:
609 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
610 ssi_sxx_phys += 3;
611 break;
612 case 16:
613 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
614 ssi_sxx_phys += 2;
615 break;
616 case 32:
617 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
618 break;
619 default:
85ef2375 620 /* We should never get here */
8e9d8690 621 dev_err(dev, "unsupported sample size %u\n", sample_bits);
17467f23
TT
622 return -EINVAL;
623 }
624
17467f23 625 /*
8e9d8690
TT
626 * BWC determines how many bytes are sent/received before the DMA
627 * controller checks the SSI to see if it needs to stop. BWC should
628 * always be a multiple of the frame size, so that we always transmit
629 * whole frames. Each frame occupies two slots in the FIFO. The
630 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
631 * (MR[BWC] can only represent even powers of two).
632 *
633 * To simplify the process, we set BWC to the largest value that is
634 * less than or equal to the FIFO watermark. For playback, this ensures
635 * that we transfer the maximum amount without overrunning the FIFO.
636 * For capture, this ensures that we transfer the maximum amount without
637 * underrunning the FIFO.
638 *
639 * f = SSI FIFO depth
640 * w = SSI watermark value (which equals f - 2)
641 * b = DMA bandwidth count (in bytes)
642 * s = sample size (in bytes, which equals frame_size * 2)
643 *
644 * For playback, we never transmit more than the transmit FIFO
645 * watermark, otherwise we might write more data than the FIFO can hold.
646 * The watermark is equal to the FIFO depth minus two.
647 *
648 * For capture, two equations must hold:
649 * w > f - (b / s)
650 * w >= b / s
651 *
652 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
653 * b = s * w, which is equal to
654 * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
17467f23 655 */
8e9d8690 656 mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
17467f23
TT
657
658 out_be32(&dma_channel->mr, mr);
659
17467f23
TT
660 for (i = 0; i < NUM_DMA_LINKS; i++) {
661 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
662
85ef2375
TT
663 link->count = cpu_to_be32(period_size);
664
1a3c5a49 665 /* The snoop bit tells the DMA controller whether it should tell
85ef2375
TT
666 * the ECM to snoop during a read or write to an address. For
667 * audio, we use DMA to transfer data between memory and an I/O
668 * device (the SSI's STX0 or SRX0 register). Snooping is only
669 * needed if there is a cache, so we need to snoop memory
670 * addresses only. For playback, that means we snoop the source
671 * but not the destination. For capture, we snoop the
672 * destination but not the source.
673 *
674 * Note that failing to snoop properly is unlikely to cause
675 * cache incoherency if the period size is larger than the
676 * size of L1 cache. This is because filling in one period will
677 * flush out the data for the previous period. So if you
678 * increased period_bytes_min to a large enough size, you might
679 * get more performance by not snooping, and you'll still be
1a3c5a49 680 * okay. You'll need to update fsl_dma_update_pointers() also.
85ef2375
TT
681 */
682 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
683 link->source_addr = cpu_to_be32(temp_addr);
1a3c5a49
TT
684 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
685 upper_32_bits(temp_addr));
85ef2375 686
17467f23 687 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
1a3c5a49
TT
688 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
689 upper_32_bits(ssi_sxx_phys));
85ef2375 690 } else {
17467f23 691 link->source_addr = cpu_to_be32(ssi_sxx_phys);
1a3c5a49
TT
692 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
693 upper_32_bits(ssi_sxx_phys));
85ef2375
TT
694
695 link->dest_addr = cpu_to_be32(temp_addr);
1a3c5a49
TT
696 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
697 upper_32_bits(temp_addr));
85ef2375
TT
698 }
699
700 temp_addr += period_size;
17467f23
TT
701 }
702
703 return 0;
704}
705
706/**
707 * fsl_dma_pointer: determine the current position of the DMA transfer
708 *
709 * This function is called by ALSA when ALSA wants to know where in the
710 * stream buffer the hardware currently is.
711 *
712 * For playback, the SAR register contains the physical address of the most
713 * recent DMA transfer. For capture, the value is in the DAR register.
714 *
715 * The base address of the buffer is stored in the source_addr field of the
716 * first link descriptor.
717 */
718static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
719{
720 struct snd_pcm_runtime *runtime = substream->runtime;
721 struct fsl_dma_private *dma_private = runtime->private_data;
f0fba2ad
LG
722 struct snd_soc_pcm_runtime *rtd = substream->private_data;
723 struct device *dev = rtd->platform->dev;
17467f23
TT
724 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
725 dma_addr_t position;
726 snd_pcm_uframes_t frames;
727
1a3c5a49
TT
728 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
729 * only have 32-bit DMA addresses. This function is typically called
730 * in interrupt context, so we need to optimize it.
731 */
732 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
17467f23 733 position = in_be32(&dma_channel->sar);
1a3c5a49
TT
734#ifdef CONFIG_PHYS_64BIT
735 position |= (u64)(in_be32(&dma_channel->satr) &
736 CCSR_DMA_ATR_ESAD_MASK) << 32;
737#endif
738 } else {
17467f23 739 position = in_be32(&dma_channel->dar);
1a3c5a49
TT
740#ifdef CONFIG_PHYS_64BIT
741 position |= (u64)(in_be32(&dma_channel->datr) &
742 CCSR_DMA_ATR_ESAD_MASK) << 32;
743#endif
744 }
17467f23 745
a4d11fe5
TT
746 /*
747 * When capture is started, the SSI immediately starts to fill its FIFO.
748 * This means that the DMA controller is not started until the FIFO is
749 * full. However, ALSA calls this function before that happens, when
750 * MR.DAR is still zero. In this case, just return zero to indicate
751 * that nothing has been received yet.
752 */
753 if (!position)
754 return 0;
755
756 if ((position < dma_private->dma_buf_phys) ||
757 (position > dma_private->dma_buf_end)) {
f0fba2ad 758 dev_err(dev, "dma pointer is out of range, halting stream\n");
a4d11fe5
TT
759 return SNDRV_PCM_POS_XRUN;
760 }
761
17467f23
TT
762 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
763
764 /*
765 * If the current address is just past the end of the buffer, wrap it
766 * around.
767 */
768 if (frames == runtime->buffer_size)
769 frames = 0;
770
771 return frames;
772}
773
774/**
775 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
776 *
777 * Release the resources allocated in fsl_dma_hw_params() and de-program the
778 * registers.
779 *
780 * This function can be called multiple times.
781 */
782static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
783{
784 struct snd_pcm_runtime *runtime = substream->runtime;
785 struct fsl_dma_private *dma_private = runtime->private_data;
786
787 if (dma_private) {
788 struct ccsr_dma_channel __iomem *dma_channel;
789
790 dma_channel = dma_private->dma_channel;
791
792 /* Stop the DMA */
793 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
794 out_be32(&dma_channel->mr, 0);
795
796 /* Reset all the other registers */
797 out_be32(&dma_channel->sr, -1);
798 out_be32(&dma_channel->clndar, 0);
799 out_be32(&dma_channel->eclndar, 0);
800 out_be32(&dma_channel->satr, 0);
801 out_be32(&dma_channel->sar, 0);
802 out_be32(&dma_channel->datr, 0);
803 out_be32(&dma_channel->dar, 0);
804 out_be32(&dma_channel->bcr, 0);
805 out_be32(&dma_channel->nlndar, 0);
806 out_be32(&dma_channel->enlndar, 0);
807 }
808
809 return 0;
810}
811
812/**
813 * fsl_dma_close: close the stream.
814 */
815static int fsl_dma_close(struct snd_pcm_substream *substream)
816{
817 struct snd_pcm_runtime *runtime = substream->runtime;
818 struct fsl_dma_private *dma_private = runtime->private_data;
f0fba2ad
LG
819 struct snd_soc_pcm_runtime *rtd = substream->private_data;
820 struct device *dev = rtd->platform->dev;
821 struct dma_object *dma =
822 container_of(rtd->platform->driver, struct dma_object, dai);
17467f23
TT
823
824 if (dma_private) {
825 if (dma_private->irq)
826 free_irq(dma_private->irq, dma_private);
827
17467f23 828 /* Deallocate the fsl_dma_private structure */
f0fba2ad
LG
829 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
830 dma_private, dma_private->ld_buf_phys);
17467f23
TT
831 substream->runtime->private_data = NULL;
832 }
833
f0fba2ad 834 dma->assigned = 0;
17467f23
TT
835
836 return 0;
837}
838
839/*
840 * Remove this PCM driver.
841 */
842static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
843{
844 struct snd_pcm_substream *substream;
845 unsigned int i;
846
847 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
848 substream = pcm->streams[i].substream;
849 if (substream) {
850 snd_dma_free_pages(&substream->dma_buffer);
851 substream->dma_buffer.area = NULL;
852 substream->dma_buffer.addr = 0;
853 }
854 }
855}
856
f0fba2ad
LG
857/**
858 * find_ssi_node -- returns the SSI node that points to his DMA channel node
859 *
860 * Although this DMA driver attempts to operate independently of the other
861 * devices, it still needs to determine some information about the SSI device
862 * that it's working with. Unfortunately, the device tree does not contain
863 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
864 * other way. So we need to scan the device tree for SSI nodes until we find
865 * the one that points to the given DMA channel node. It's ugly, but at least
866 * it's contained in this one function.
867 */
868static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
869{
870 struct device_node *ssi_np, *np;
871
872 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
873 /* Check each DMA phandle to see if it points to us. We
874 * assume that device_node pointers are a valid comparison.
875 */
876 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
81a081ff 877 of_node_put(np);
f0fba2ad
LG
878 if (np == dma_channel_np)
879 return ssi_np;
880
881 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
81a081ff 882 of_node_put(np);
f0fba2ad
LG
883 if (np == dma_channel_np)
884 return ssi_np;
885 }
886
887 return NULL;
888}
889
17467f23
TT
890static struct snd_pcm_ops fsl_dma_ops = {
891 .open = fsl_dma_open,
892 .close = fsl_dma_close,
893 .ioctl = snd_pcm_lib_ioctl,
894 .hw_params = fsl_dma_hw_params,
895 .hw_free = fsl_dma_hw_free,
17467f23
TT
896 .pointer = fsl_dma_pointer,
897};
898
a0a3d518 899static int fsl_soc_dma_probe(struct platform_device *pdev)
f0fba2ad
LG
900 {
901 struct dma_object *dma;
38fec727 902 struct device_node *np = pdev->dev.of_node;
f0fba2ad
LG
903 struct device_node *ssi_np;
904 struct resource res;
8e9d8690 905 const uint32_t *iprop;
f0fba2ad 906 int ret;
17467f23 907
f0fba2ad
LG
908 /* Find the SSI node that points to us. */
909 ssi_np = find_ssi_node(np);
910 if (!ssi_np) {
38fec727 911 dev_err(&pdev->dev, "cannot find parent SSI node\n");
f0fba2ad
LG
912 return -ENODEV;
913 }
914
915 ret = of_address_to_resource(ssi_np, 0, &res);
f0fba2ad 916 if (ret) {
38fec727 917 dev_err(&pdev->dev, "could not determine resources for %s\n",
8e9d8690
TT
918 ssi_np->full_name);
919 of_node_put(ssi_np);
f0fba2ad
LG
920 return ret;
921 }
922
923 dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
924 if (!dma) {
38fec727 925 dev_err(&pdev->dev, "could not allocate dma object\n");
8e9d8690 926 of_node_put(ssi_np);
f0fba2ad
LG
927 return -ENOMEM;
928 }
929
930 strcpy(dma->path, np->full_name);
931 dma->dai.ops = &fsl_dma_ops;
932 dma->dai.pcm_new = fsl_dma_new;
933 dma->dai.pcm_free = fsl_dma_free_dma_buffers;
934
935 /* Store the SSI-specific information that we need */
936 dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
937 dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
938
8e9d8690
TT
939 iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
940 if (iprop)
147dfe90 941 dma->ssi_fifo_depth = be32_to_cpup(iprop);
8e9d8690
TT
942 else
943 /* Older 8610 DTs didn't have the fifo-depth property */
944 dma->ssi_fifo_depth = 8;
945
946 of_node_put(ssi_np);
947
38fec727 948 ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
f0fba2ad 949 if (ret) {
38fec727 950 dev_err(&pdev->dev, "could not register platform\n");
f0fba2ad
LG
951 kfree(dma);
952 return ret;
953 }
954
955 dma->channel = of_iomap(np, 0);
956 dma->irq = irq_of_parse_and_map(np, 0);
87a0632b 957
38fec727 958 dev_set_drvdata(&pdev->dev, dma);
f0fba2ad
LG
959
960 return 0;
961}
962
a0a3d518 963static int fsl_soc_dma_remove(struct platform_device *pdev)
17467f23 964{
38fec727 965 struct dma_object *dma = dev_get_drvdata(&pdev->dev);
17467f23 966
38fec727 967 snd_soc_unregister_platform(&pdev->dev);
87a0632b
TT
968 iounmap(dma->channel);
969 irq_dispose_mapping(dma->irq);
970 kfree(dma);
17467f23 971
f0fba2ad 972 return 0;
17467f23 973}
17467f23 974
f0fba2ad
LG
975static const struct of_device_id fsl_soc_dma_ids[] = {
976 { .compatible = "fsl,ssi-dma-channel", },
977 {}
978};
979MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
980
f07eb223 981static struct platform_driver fsl_soc_dma_driver = {
f0fba2ad
LG
982 .driver = {
983 .name = "fsl-pcm-audio",
984 .owner = THIS_MODULE,
985 .of_match_table = fsl_soc_dma_ids,
986 },
987 .probe = fsl_soc_dma_probe,
a0a3d518 988 .remove = fsl_soc_dma_remove,
f0fba2ad
LG
989};
990
ba0a7e02 991module_platform_driver(fsl_soc_dma_driver);
958e792c 992
17467f23 993MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
f0fba2ad
LG
994MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
995MODULE_LICENSE("GPL v2");
This page took 0.515564 seconds and 5 git commands to generate.