Merge branch 'for-2.6.29' into for-2.6.30
[deliverable/linux.git] / sound / soc / fsl / fsl_dma.c
CommitLineData
17467f23
TT
1/*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
7 * under the terms of the GNU General Public License version 2. This
8 * program is licensed "as is" without any warranty of any kind, whether
9 * express or implied.
10 *
11 * This driver implements ASoC support for the Elo DMA controller, which is
12 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13 * the PCM driver is what handles the DMA buffer.
14 */
15
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/platform_device.h>
19#include <linux/dma-mapping.h>
20#include <linux/interrupt.h>
21#include <linux/delay.h>
22
17467f23
TT
23#include <sound/core.h>
24#include <sound/pcm.h>
25#include <sound/pcm_params.h>
26#include <sound/soc.h>
27
28#include <asm/io.h>
29
30#include "fsl_dma.h"
31
32/*
33 * The formats that the DMA controller supports, which is anything
34 * that is 8, 16, or 32 bits.
35 */
36#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
37 SNDRV_PCM_FMTBIT_U8 | \
38 SNDRV_PCM_FMTBIT_S16_LE | \
39 SNDRV_PCM_FMTBIT_S16_BE | \
40 SNDRV_PCM_FMTBIT_U16_LE | \
41 SNDRV_PCM_FMTBIT_U16_BE | \
42 SNDRV_PCM_FMTBIT_S24_LE | \
43 SNDRV_PCM_FMTBIT_S24_BE | \
44 SNDRV_PCM_FMTBIT_U24_LE | \
45 SNDRV_PCM_FMTBIT_U24_BE | \
46 SNDRV_PCM_FMTBIT_S32_LE | \
47 SNDRV_PCM_FMTBIT_S32_BE | \
48 SNDRV_PCM_FMTBIT_U32_LE | \
49 SNDRV_PCM_FMTBIT_U32_BE)
50
51#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
52 SNDRV_PCM_RATE_CONTINUOUS)
53
54/* DMA global data. This structure is used by fsl_dma_open() to determine
55 * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
56 * not allow the machine driver to provide this information to the PCM
57 * driver in advance, and there's no way to differentiate between the two
58 * DMA controllers. So for now, this driver only supports one SSI device
59 * using two DMA channels. We cannot support multiple DMA devices.
60 *
61 * ssi_stx_phys: bus address of SSI STX register
62 * ssi_srx_phys: bus address of SSI SRX register
63 * dma_channel: pointer to the DMA channel's registers
64 * irq: IRQ for this DMA channel
65 * assigned: set to 1 if that DMA channel is assigned to a substream
66 */
67static struct {
68 dma_addr_t ssi_stx_phys;
69 dma_addr_t ssi_srx_phys;
70 struct ccsr_dma_channel __iomem *dma_channel[2];
71 unsigned int irq[2];
72 unsigned int assigned[2];
73} dma_global_data;
74
75/*
76 * The number of DMA links to use. Two is the bare minimum, but if you
77 * have really small links you might need more.
78 */
79#define NUM_DMA_LINKS 2
80
81/** fsl_dma_private: p-substream DMA data
82 *
83 * Each substream has a 1-to-1 association with a DMA channel.
84 *
85 * The link[] array is first because it needs to be aligned on a 32-byte
86 * boundary, so putting it first will ensure alignment without padding the
87 * structure.
88 *
89 * @link[]: array of link descriptors
90 * @controller_id: which DMA controller (0, 1, ...)
91 * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
92 * @dma_channel: pointer to the DMA channel's registers
93 * @irq: IRQ for this DMA channel
94 * @substream: pointer to the substream object, needed by the ISR
95 * @ssi_sxx_phys: bus address of the STX or SRX register to use
96 * @ld_buf_phys: physical address of the LD buffer
97 * @current_link: index into link[] of the link currently being processed
98 * @dma_buf_phys: physical address of the DMA buffer
99 * @dma_buf_next: physical address of the next period to process
100 * @dma_buf_end: physical address of the byte after the end of the DMA
101 * @buffer period_size: the size of a single period
102 * @num_periods: the number of periods in the DMA buffer
103 */
104struct fsl_dma_private {
105 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
106 unsigned int controller_id;
107 unsigned int channel_id;
108 struct ccsr_dma_channel __iomem *dma_channel;
109 unsigned int irq;
110 struct snd_pcm_substream *substream;
111 dma_addr_t ssi_sxx_phys;
112 dma_addr_t ld_buf_phys;
113 unsigned int current_link;
114 dma_addr_t dma_buf_phys;
115 dma_addr_t dma_buf_next;
116 dma_addr_t dma_buf_end;
117 size_t period_size;
118 unsigned int num_periods;
119};
120
121/**
122 * fsl_dma_hardare: define characteristics of the PCM hardware.
123 *
124 * The PCM hardware is the Freescale DMA controller. This structure defines
125 * the capabilities of that hardware.
126 *
127 * Since the sampling rate and data format are not controlled by the DMA
128 * controller, we specify no limits for those values. The only exception is
129 * period_bytes_min, which is set to a reasonably low value to prevent the
130 * DMA controller from generating too many interrupts per second.
131 *
132 * Since each link descriptor has a 32-bit byte count field, we set
133 * period_bytes_max to the largest 32-bit number. We also have no maximum
134 * number of periods.
be41e941
TT
135 *
136 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
137 * limitation in the SSI driver requires the sample rates for playback and
138 * capture to be the same.
17467f23
TT
139 */
140static const struct snd_pcm_hardware fsl_dma_hardware = {
141
4052ce4c
TT
142 .info = SNDRV_PCM_INFO_INTERLEAVED |
143 SNDRV_PCM_INFO_MMAP |
be41e941
TT
144 SNDRV_PCM_INFO_MMAP_VALID |
145 SNDRV_PCM_INFO_JOINT_DUPLEX,
17467f23
TT
146 .formats = FSLDMA_PCM_FORMATS,
147 .rates = FSLDMA_PCM_RATES,
148 .rate_min = 5512,
149 .rate_max = 192000,
150 .period_bytes_min = 512, /* A reasonable limit */
151 .period_bytes_max = (u32) -1,
152 .periods_min = NUM_DMA_LINKS,
153 .periods_max = (unsigned int) -1,
154 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
155};
156
157/**
158 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
159 *
160 * This function should be called by the ISR whenever the DMA controller
161 * halts data transfer.
162 */
163static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
164{
165 unsigned long flags;
166
167 snd_pcm_stream_lock_irqsave(substream, flags);
168
169 if (snd_pcm_running(substream))
170 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
171
172 snd_pcm_stream_unlock_irqrestore(substream, flags);
173}
174
175/**
176 * fsl_dma_update_pointers - update LD pointers to point to the next period
177 *
178 * As each period is completed, this function changes the the link
179 * descriptor pointers for that period to point to the next period.
180 */
181static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
182{
183 struct fsl_dma_link_descriptor *link =
184 &dma_private->link[dma_private->current_link];
185
186 /* Update our link descriptors to point to the next period */
187 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
188 link->source_addr =
189 cpu_to_be32(dma_private->dma_buf_next);
190 else
191 link->dest_addr =
192 cpu_to_be32(dma_private->dma_buf_next);
193
194 /* Update our variables for next time */
195 dma_private->dma_buf_next += dma_private->period_size;
196
197 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
198 dma_private->dma_buf_next = dma_private->dma_buf_phys;
199
200 if (++dma_private->current_link >= NUM_DMA_LINKS)
201 dma_private->current_link = 0;
202}
203
204/**
205 * fsl_dma_isr: interrupt handler for the DMA controller
206 *
207 * @irq: IRQ of the DMA channel
208 * @dev_id: pointer to the dma_private structure for this DMA channel
209 */
210static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
211{
212 struct fsl_dma_private *dma_private = dev_id;
213 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
214 irqreturn_t ret = IRQ_NONE;
215 u32 sr, sr2 = 0;
216
217 /* We got an interrupt, so read the status register to see what we
218 were interrupted for.
219 */
220 sr = in_be32(&dma_channel->sr);
221
222 if (sr & CCSR_DMA_SR_TE) {
223 dev_err(dma_private->substream->pcm->card->dev,
224 "DMA transmit error (controller=%u channel=%u irq=%u\n",
225 dma_private->controller_id,
226 dma_private->channel_id, irq);
227 fsl_dma_abort_stream(dma_private->substream);
228 sr2 |= CCSR_DMA_SR_TE;
229 ret = IRQ_HANDLED;
230 }
231
232 if (sr & CCSR_DMA_SR_CH)
233 ret = IRQ_HANDLED;
234
235 if (sr & CCSR_DMA_SR_PE) {
236 dev_err(dma_private->substream->pcm->card->dev,
237 "DMA%u programming error (channel=%u irq=%u)\n",
238 dma_private->controller_id,
239 dma_private->channel_id, irq);
240 fsl_dma_abort_stream(dma_private->substream);
241 sr2 |= CCSR_DMA_SR_PE;
242 ret = IRQ_HANDLED;
243 }
244
245 if (sr & CCSR_DMA_SR_EOLNI) {
246 sr2 |= CCSR_DMA_SR_EOLNI;
247 ret = IRQ_HANDLED;
248 }
249
250 if (sr & CCSR_DMA_SR_CB)
251 ret = IRQ_HANDLED;
252
253 if (sr & CCSR_DMA_SR_EOSI) {
254 struct snd_pcm_substream *substream = dma_private->substream;
255
256 /* Tell ALSA we completed a period. */
257 snd_pcm_period_elapsed(substream);
258
259 /*
260 * Update our link descriptors to point to the next period. We
261 * only need to do this if the number of periods is not equal to
262 * the number of links.
263 */
264 if (dma_private->num_periods != NUM_DMA_LINKS)
265 fsl_dma_update_pointers(dma_private);
266
267 sr2 |= CCSR_DMA_SR_EOSI;
268 ret = IRQ_HANDLED;
269 }
270
271 if (sr & CCSR_DMA_SR_EOLSI) {
272 sr2 |= CCSR_DMA_SR_EOLSI;
273 ret = IRQ_HANDLED;
274 }
275
276 /* Clear the bits that we set */
277 if (sr2)
278 out_be32(&dma_channel->sr, sr2);
279
280 return ret;
281}
282
283/**
284 * fsl_dma_new: initialize this PCM driver.
285 *
286 * This function is called when the codec driver calls snd_soc_new_pcms(),
87506549 287 * once for each .dai_link in the machine driver's snd_soc_card
17467f23
TT
288 * structure.
289 */
8cf7b2b3 290static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
17467f23
TT
291 struct snd_pcm *pcm)
292{
293 static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
294 int ret;
295
296 if (!card->dev->dma_mask)
297 card->dev->dma_mask = &fsl_dma_dmamask;
298
299 if (!card->dev->coherent_dma_mask)
300 card->dev->coherent_dma_mask = fsl_dma_dmamask;
301
302 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
303 fsl_dma_hardware.buffer_bytes_max,
304 &pcm->streams[0].substream->dma_buffer);
305 if (ret) {
306 dev_err(card->dev,
307 "Can't allocate playback DMA buffer (size=%u)\n",
308 fsl_dma_hardware.buffer_bytes_max);
309 return -ENOMEM;
310 }
311
312 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
313 fsl_dma_hardware.buffer_bytes_max,
314 &pcm->streams[1].substream->dma_buffer);
315 if (ret) {
316 snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
317 dev_err(card->dev,
318 "Can't allocate capture DMA buffer (size=%u)\n",
319 fsl_dma_hardware.buffer_bytes_max);
320 return -ENOMEM;
321 }
322
323 return 0;
324}
325
326/**
327 * fsl_dma_open: open a new substream.
328 *
329 * Each substream has its own DMA buffer.
bf9c8c9d
TT
330 *
331 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
332 * descriptors that ping-pong from one period to the next. For example, if
333 * there are six periods and two link descriptors, this is how they look
334 * before playback starts:
335 *
336 * The last link descriptor
337 * ____________ points back to the first
338 * | |
339 * V |
340 * ___ ___ |
341 * | |->| |->|
342 * |___| |___|
343 * | |
344 * | |
345 * V V
346 * _________________________________________
347 * | | | | | | | The DMA buffer is
348 * | | | | | | | divided into 6 parts
349 * |______|______|______|______|______|______|
350 *
351 * and here's how they look after the first period is finished playing:
352 *
353 * ____________
354 * | |
355 * V |
356 * ___ ___ |
357 * | |->| |->|
358 * |___| |___|
359 * | |
360 * |______________
361 * | |
362 * V V
363 * _________________________________________
364 * | | | | | | |
365 * | | | | | | |
366 * |______|______|______|______|______|______|
367 *
368 * The first link descriptor now points to the third period. The DMA
369 * controller is currently playing the second period. When it finishes, it
370 * will jump back to the first descriptor and play the third period.
371 *
372 * There are four reasons we do this:
373 *
374 * 1. The only way to get the DMA controller to automatically restart the
375 * transfer when it gets to the end of the buffer is to use chaining
376 * mode. Basic direct mode doesn't offer that feature.
377 * 2. We need to receive an interrupt at the end of every period. The DMA
378 * controller can generate an interrupt at the end of every link transfer
379 * (aka segment). Making each period into a DMA segment will give us the
380 * interrupts we need.
381 * 3. By creating only two link descriptors, regardless of the number of
382 * periods, we do not need to reallocate the link descriptors if the
383 * number of periods changes.
384 * 4. All of the audio data is still stored in a single, contiguous DMA
385 * buffer, which is what ALSA expects. We're just dividing it into
386 * contiguous parts, and creating a link descriptor for each one.
17467f23
TT
387 */
388static int fsl_dma_open(struct snd_pcm_substream *substream)
389{
390 struct snd_pcm_runtime *runtime = substream->runtime;
391 struct fsl_dma_private *dma_private;
bf9c8c9d 392 struct ccsr_dma_channel __iomem *dma_channel;
17467f23 393 dma_addr_t ld_buf_phys;
bf9c8c9d
TT
394 u64 temp_link; /* Pointer to next link descriptor */
395 u32 mr;
17467f23
TT
396 unsigned int channel;
397 int ret = 0;
bf9c8c9d 398 unsigned int i;
17467f23
TT
399
400 /*
401 * Reject any DMA buffer whose size is not a multiple of the period
402 * size. We need to make sure that the DMA buffer can be evenly divided
403 * into periods.
404 */
405 ret = snd_pcm_hw_constraint_integer(runtime,
406 SNDRV_PCM_HW_PARAM_PERIODS);
407 if (ret < 0) {
408 dev_err(substream->pcm->card->dev, "invalid buffer size\n");
409 return ret;
410 }
411
412 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
413
414 if (dma_global_data.assigned[channel]) {
415 dev_err(substream->pcm->card->dev,
416 "DMA channel already assigned\n");
417 return -EBUSY;
418 }
419
420 dma_private = dma_alloc_coherent(substream->pcm->dev,
421 sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
422 if (!dma_private) {
423 dev_err(substream->pcm->card->dev,
424 "can't allocate DMA private data\n");
425 return -ENOMEM;
426 }
427 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
428 dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
429 else
430 dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
431
432 dma_private->dma_channel = dma_global_data.dma_channel[channel];
433 dma_private->irq = dma_global_data.irq[channel];
434 dma_private->substream = substream;
435 dma_private->ld_buf_phys = ld_buf_phys;
436 dma_private->dma_buf_phys = substream->dma_buffer.addr;
437
438 /* We only support one DMA controller for now */
439 dma_private->controller_id = 0;
440 dma_private->channel_id = channel;
441
442 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
443 if (ret) {
444 dev_err(substream->pcm->card->dev,
445 "can't register ISR for IRQ %u (ret=%i)\n",
446 dma_private->irq, ret);
447 dma_free_coherent(substream->pcm->dev,
448 sizeof(struct fsl_dma_private),
449 dma_private, dma_private->ld_buf_phys);
450 return ret;
451 }
452
453 dma_global_data.assigned[channel] = 1;
454
455 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
456 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
457 runtime->private_data = dma_private;
458
bf9c8c9d
TT
459 /* Program the fixed DMA controller parameters */
460
461 dma_channel = dma_private->dma_channel;
462
463 temp_link = dma_private->ld_buf_phys +
464 sizeof(struct fsl_dma_link_descriptor);
465
466 for (i = 0; i < NUM_DMA_LINKS; i++) {
85ef2375 467 dma_private->link[i].next = cpu_to_be64(temp_link);
bf9c8c9d
TT
468
469 temp_link += sizeof(struct fsl_dma_link_descriptor);
470 }
471 /* The last link descriptor points to the first */
472 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
473
474 /* Tell the DMA controller where the first link descriptor is */
475 out_be32(&dma_channel->clndar,
476 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
477 out_be32(&dma_channel->eclndar,
478 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
479
480 /* The manual says the BCR must be clear before enabling EMP */
481 out_be32(&dma_channel->bcr, 0);
482
483 /*
484 * Program the mode register for interrupts, external master control,
485 * and source/destination hold. Also clear the Channel Abort bit.
486 */
487 mr = in_be32(&dma_channel->mr) &
488 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
489
490 /*
491 * We want External Master Start and External Master Pause enabled,
492 * because the SSI is controlling the DMA controller. We want the DMA
493 * controller to be set up in advance, and then we signal only the SSI
494 * to start transferring.
495 *
496 * We want End-Of-Segment Interrupts enabled, because this will generate
497 * an interrupt at the end of each segment (each link descriptor
498 * represents one segment). Each DMA segment is the same thing as an
499 * ALSA period, so this is how we get an interrupt at the end of every
500 * period.
501 *
502 * We want Error Interrupt enabled, so that we can get an error if
503 * the DMA controller is mis-programmed somehow.
504 */
505 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
506 CCSR_DMA_MR_EMS_EN;
507
508 /* For playback, we want the destination address to be held. For
509 capture, set the source address to be held. */
510 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
511 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
512
513 out_be32(&dma_channel->mr, mr);
514
17467f23
TT
515 return 0;
516}
517
518/**
bf9c8c9d 519 * fsl_dma_hw_params: continue initializing the DMA links
17467f23 520 *
bf9c8c9d
TT
521 * This function obtains hardware parameters about the opened stream and
522 * programs the DMA controller accordingly.
17467f23 523 *
85ef2375
TT
524 * One drawback of big-endian is that when copying integers of different
525 * sizes to a fixed-sized register, the address to which the integer must be
526 * copied is dependent on the size of the integer.
17467f23
TT
527 *
528 * For example, if P is the address of a 32-bit register, and X is a 32-bit
529 * integer, then X should be copied to address P. However, if X is a 16-bit
530 * integer, then it should be copied to P+2. If X is an 8-bit register,
531 * then it should be copied to P+3.
532 *
533 * So for playback of 8-bit samples, the DMA controller must transfer single
534 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
535 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
536 *
537 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
538 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
539 * and 8 bytes at a time). So we do not support packed 24-bit samples.
540 * 24-bit data must be padded to 32 bits.
541 */
85ef2375
TT
542static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
543 struct snd_pcm_hw_params *hw_params)
17467f23
TT
544{
545 struct snd_pcm_runtime *runtime = substream->runtime;
546 struct fsl_dma_private *dma_private = runtime->private_data;
85ef2375
TT
547
548 /* Number of bits per sample */
549 unsigned int sample_size =
550 snd_pcm_format_physical_width(params_format(hw_params));
551
552 /* Number of bytes per frame */
553 unsigned int frame_size = 2 * (sample_size / 8);
554
555 /* Bus address of SSI STX register */
556 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
557
558 /* Size of the DMA buffer, in bytes */
559 size_t buffer_size = params_buffer_bytes(hw_params);
560
561 /* Number of bytes per period */
562 size_t period_size = params_period_bytes(hw_params);
563
564 /* Pointer to next period */
565 dma_addr_t temp_addr = substream->dma_buffer.addr;
566
567 /* Pointer to DMA controller */
17467f23 568 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
85ef2375
TT
569
570 u32 mr; /* DMA Mode Register */
571
17467f23 572 unsigned int i;
17467f23 573
85ef2375
TT
574 /* Initialize our DMA tracking variables */
575 dma_private->period_size = period_size;
576 dma_private->num_periods = params_periods(hw_params);
577 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
578 dma_private->dma_buf_next = dma_private->dma_buf_phys +
579 (NUM_DMA_LINKS * period_size);
580
581 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
582 /* This happens if the number of periods == NUM_DMA_LINKS */
583 dma_private->dma_buf_next = dma_private->dma_buf_phys;
17467f23
TT
584
585 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
586 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
587
85ef2375
TT
588 /* Due to a quirk of the SSI's STX register, the target address
589 * for the DMA operations depends on the sample size. So we calculate
590 * that offset here. While we're at it, also tell the DMA controller
591 * how much data to transfer per sample.
592 */
593 switch (sample_size) {
17467f23
TT
594 case 8:
595 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
596 ssi_sxx_phys += 3;
597 break;
598 case 16:
599 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
600 ssi_sxx_phys += 2;
601 break;
602 case 32:
603 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
604 break;
605 default:
85ef2375 606 /* We should never get here */
17467f23 607 dev_err(substream->pcm->card->dev,
85ef2375 608 "unsupported sample size %u\n", sample_size);
17467f23
TT
609 return -EINVAL;
610 }
611
17467f23
TT
612 /*
613 * BWC should always be a multiple of the frame size. BWC determines
614 * how many bytes are sent/received before the DMA controller checks the
615 * SSI to see if it needs to stop. For playback, the transmit FIFO can
616 * hold three frames, so we want to send two frames at a time. For
617 * capture, the receive FIFO is triggered when it contains one frame, so
618 * we want to receive one frame at a time.
619 */
17467f23
TT
620 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
621 mr |= CCSR_DMA_MR_BWC(2 * frame_size);
622 else
623 mr |= CCSR_DMA_MR_BWC(frame_size);
624
625 out_be32(&dma_channel->mr, mr);
626
17467f23
TT
627 for (i = 0; i < NUM_DMA_LINKS; i++) {
628 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
629
85ef2375
TT
630 link->count = cpu_to_be32(period_size);
631
632 /* Even though the DMA controller supports 36-bit addressing,
633 * for simplicity we allow only 32-bit addresses for the audio
634 * buffer itself. This was enforced in fsl_dma_new() with the
635 * DMA mask.
636 *
637 * The snoop bit tells the DMA controller whether it should tell
638 * the ECM to snoop during a read or write to an address. For
639 * audio, we use DMA to transfer data between memory and an I/O
640 * device (the SSI's STX0 or SRX0 register). Snooping is only
641 * needed if there is a cache, so we need to snoop memory
642 * addresses only. For playback, that means we snoop the source
643 * but not the destination. For capture, we snoop the
644 * destination but not the source.
645 *
646 * Note that failing to snoop properly is unlikely to cause
647 * cache incoherency if the period size is larger than the
648 * size of L1 cache. This is because filling in one period will
649 * flush out the data for the previous period. So if you
650 * increased period_bytes_min to a large enough size, you might
651 * get more performance by not snooping, and you'll still be
652 * okay.
653 */
654 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
655 link->source_addr = cpu_to_be32(temp_addr);
656 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
657
17467f23 658 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
85ef2375
TT
659 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
660 } else {
17467f23 661 link->source_addr = cpu_to_be32(ssi_sxx_phys);
85ef2375
TT
662 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
663
664 link->dest_addr = cpu_to_be32(temp_addr);
665 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
666 }
667
668 temp_addr += period_size;
17467f23
TT
669 }
670
671 return 0;
672}
673
674/**
675 * fsl_dma_pointer: determine the current position of the DMA transfer
676 *
677 * This function is called by ALSA when ALSA wants to know where in the
678 * stream buffer the hardware currently is.
679 *
680 * For playback, the SAR register contains the physical address of the most
681 * recent DMA transfer. For capture, the value is in the DAR register.
682 *
683 * The base address of the buffer is stored in the source_addr field of the
684 * first link descriptor.
685 */
686static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
687{
688 struct snd_pcm_runtime *runtime = substream->runtime;
689 struct fsl_dma_private *dma_private = runtime->private_data;
690 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
691 dma_addr_t position;
692 snd_pcm_uframes_t frames;
693
694 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
695 position = in_be32(&dma_channel->sar);
696 else
697 position = in_be32(&dma_channel->dar);
698
699 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
700
701 /*
702 * If the current address is just past the end of the buffer, wrap it
703 * around.
704 */
705 if (frames == runtime->buffer_size)
706 frames = 0;
707
708 return frames;
709}
710
711/**
712 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
713 *
714 * Release the resources allocated in fsl_dma_hw_params() and de-program the
715 * registers.
716 *
717 * This function can be called multiple times.
718 */
719static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
720{
721 struct snd_pcm_runtime *runtime = substream->runtime;
722 struct fsl_dma_private *dma_private = runtime->private_data;
723
724 if (dma_private) {
725 struct ccsr_dma_channel __iomem *dma_channel;
726
727 dma_channel = dma_private->dma_channel;
728
729 /* Stop the DMA */
730 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
731 out_be32(&dma_channel->mr, 0);
732
733 /* Reset all the other registers */
734 out_be32(&dma_channel->sr, -1);
735 out_be32(&dma_channel->clndar, 0);
736 out_be32(&dma_channel->eclndar, 0);
737 out_be32(&dma_channel->satr, 0);
738 out_be32(&dma_channel->sar, 0);
739 out_be32(&dma_channel->datr, 0);
740 out_be32(&dma_channel->dar, 0);
741 out_be32(&dma_channel->bcr, 0);
742 out_be32(&dma_channel->nlndar, 0);
743 out_be32(&dma_channel->enlndar, 0);
744 }
745
746 return 0;
747}
748
749/**
750 * fsl_dma_close: close the stream.
751 */
752static int fsl_dma_close(struct snd_pcm_substream *substream)
753{
754 struct snd_pcm_runtime *runtime = substream->runtime;
755 struct fsl_dma_private *dma_private = runtime->private_data;
756 int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
757
758 if (dma_private) {
759 if (dma_private->irq)
760 free_irq(dma_private->irq, dma_private);
761
762 if (dma_private->ld_buf_phys) {
763 dma_unmap_single(substream->pcm->dev,
764 dma_private->ld_buf_phys,
765 sizeof(dma_private->link), DMA_TO_DEVICE);
766 }
767
768 /* Deallocate the fsl_dma_private structure */
769 dma_free_coherent(substream->pcm->dev,
770 sizeof(struct fsl_dma_private),
771 dma_private, dma_private->ld_buf_phys);
772 substream->runtime->private_data = NULL;
773 }
774
775 dma_global_data.assigned[dir] = 0;
776
777 return 0;
778}
779
780/*
781 * Remove this PCM driver.
782 */
783static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
784{
785 struct snd_pcm_substream *substream;
786 unsigned int i;
787
788 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
789 substream = pcm->streams[i].substream;
790 if (substream) {
791 snd_dma_free_pages(&substream->dma_buffer);
792 substream->dma_buffer.area = NULL;
793 substream->dma_buffer.addr = 0;
794 }
795 }
796}
797
798static struct snd_pcm_ops fsl_dma_ops = {
799 .open = fsl_dma_open,
800 .close = fsl_dma_close,
801 .ioctl = snd_pcm_lib_ioctl,
802 .hw_params = fsl_dma_hw_params,
803 .hw_free = fsl_dma_hw_free,
17467f23
TT
804 .pointer = fsl_dma_pointer,
805};
806
807struct snd_soc_platform fsl_soc_platform = {
808 .name = "fsl-dma",
809 .pcm_ops = &fsl_dma_ops,
810 .pcm_new = fsl_dma_new,
811 .pcm_free = fsl_dma_free_dma_buffers,
812};
813EXPORT_SYMBOL_GPL(fsl_soc_platform);
814
815/**
816 * fsl_dma_configure: store the DMA parameters from the fabric driver.
817 *
818 * This function is called by the ASoC fabric driver to give us the DMA and
819 * SSI channel information.
820 *
821 * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
822 * data when a substream is created, so for now we need to store this data
823 * into a global variable. This means that we can only support one DMA
824 * controller, and hence only one SSI.
825 */
826int fsl_dma_configure(struct fsl_dma_info *dma_info)
827{
828 static int initialized;
829
830 /* We only support one DMA controller for now */
831 if (initialized)
832 return 0;
833
834 dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
835 dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
836 dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
837 dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
838 dma_global_data.irq[0] = dma_info->dma_irq[0];
839 dma_global_data.irq[1] = dma_info->dma_irq[1];
840 dma_global_data.assigned[0] = 0;
841 dma_global_data.assigned[1] = 0;
842
843 initialized = 1;
844 return 1;
845}
846EXPORT_SYMBOL_GPL(fsl_dma_configure);
847
c9b3a40f 848static int __init fsl_soc_platform_init(void)
958e792c
MB
849{
850 return snd_soc_register_platform(&fsl_soc_platform);
851}
852module_init(fsl_soc_platform_init);
853
854static void __exit fsl_soc_platform_exit(void)
855{
856 snd_soc_unregister_platform(&fsl_soc_platform);
857}
858module_exit(fsl_soc_platform_exit);
859
17467f23
TT
860MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
861MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
862MODULE_LICENSE("GPL");
This page took 0.141696 seconds and 5 git commands to generate.