asoc/multi-component: fsl: add support for 36-bit physical addresses
[deliverable/linux.git] / sound / soc / fsl / fsl_ssi.c
CommitLineData
17467f23
TT
1/*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
f0fba2ad
LG
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
17467f23
TT
11 */
12
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/interrupt.h>
16#include <linux/device.h>
17#include <linux/delay.h>
5a0e3ad6 18#include <linux/slab.h>
f0fba2ad 19#include <linux/of_platform.h>
17467f23 20
17467f23
TT
21#include <sound/core.h>
22#include <sound/pcm.h>
23#include <sound/pcm_params.h>
24#include <sound/initval.h>
25#include <sound/soc.h>
26
17467f23
TT
27#include "fsl_ssi.h"
28
29/**
30 * FSLSSI_I2S_RATES: sample rates supported by the I2S
31 *
32 * This driver currently only supports the SSI running in I2S slave mode,
33 * which means the codec determines the sample rate. Therefore, we tell
34 * ALSA that we support all rates and let the codec driver decide what rates
35 * are really supported.
36 */
37#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
38 SNDRV_PCM_RATE_CONTINUOUS)
39
40/**
41 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
42 *
43 * This driver currently only supports the SSI running in I2S slave mode.
44 *
45 * The SSI has a limitation in that the samples must be in the same byte
46 * order as the host CPU. This is because when multiple bytes are written
47 * to the STX register, the bytes and bits must be written in the same
48 * order. The STX is a shift register, so all the bits need to be aligned
49 * (bit-endianness must match byte-endianness). Processors typically write
50 * the bits within a byte in the same order that the bytes of a word are
51 * written in. So if the host CPU is big-endian, then only big-endian
52 * samples will be written to STX properly.
53 */
54#ifdef __BIG_ENDIAN
55#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
56 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
57 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
58#else
59#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
60 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
61 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
62#endif
63
d5a908b2
TT
64/* SIER bitflag of interrupts to enable */
65#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
66 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
67 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
68 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
69 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
70
17467f23
TT
71/**
72 * fsl_ssi_private: per-SSI private data
73 *
17467f23
TT
74 * @ssi: pointer to the SSI's registers
75 * @ssi_phys: physical address of the SSI registers
76 * @irq: IRQ of this SSI
be41e941
TT
77 * @first_stream: pointer to the stream that was opened first
78 * @second_stream: pointer to second stream
17467f23
TT
79 * @playback: the number of playback streams opened
80 * @capture: the number of capture streams opened
a454dad1 81 * @asynchronous: 0=synchronous mode, 1=asynchronous mode
17467f23
TT
82 * @cpu_dai: the CPU DAI for this device
83 * @dev_attr: the sysfs device attribute structure
84 * @stats: SSI statistics
f0fba2ad 85 * @name: name for this device
17467f23
TT
86 */
87struct fsl_ssi_private {
17467f23
TT
88 struct ccsr_ssi __iomem *ssi;
89 dma_addr_t ssi_phys;
90 unsigned int irq;
be41e941
TT
91 struct snd_pcm_substream *first_stream;
92 struct snd_pcm_substream *second_stream;
17467f23
TT
93 unsigned int playback;
94 unsigned int capture;
a454dad1 95 int asynchronous;
f0fba2ad 96 struct snd_soc_dai_driver cpu_dai_drv;
17467f23 97 struct device_attribute dev_attr;
f0fba2ad 98 struct platform_device *pdev;
17467f23
TT
99
100 struct {
101 unsigned int rfrc;
102 unsigned int tfrc;
103 unsigned int cmdau;
104 unsigned int cmddu;
105 unsigned int rxt;
106 unsigned int rdr1;
107 unsigned int rdr0;
108 unsigned int tde1;
109 unsigned int tde0;
110 unsigned int roe1;
111 unsigned int roe0;
112 unsigned int tue1;
113 unsigned int tue0;
114 unsigned int tfs;
115 unsigned int rfs;
116 unsigned int tls;
117 unsigned int rls;
118 unsigned int rff1;
119 unsigned int rff0;
120 unsigned int tfe1;
121 unsigned int tfe0;
122 } stats;
f0fba2ad
LG
123
124 char name[1];
17467f23
TT
125};
126
127/**
128 * fsl_ssi_isr: SSI interrupt handler
129 *
130 * Although it's possible to use the interrupt handler to send and receive
131 * data to/from the SSI, we use the DMA instead. Programming is more
132 * complicated, but the performance is much better.
133 *
134 * This interrupt handler is used only to gather statistics.
135 *
136 * @irq: IRQ of the SSI device
137 * @dev_id: pointer to the ssi_private structure for this SSI device
138 */
139static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
140{
141 struct fsl_ssi_private *ssi_private = dev_id;
142 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
143 irqreturn_t ret = IRQ_NONE;
144 __be32 sisr;
145 __be32 sisr2 = 0;
146
147 /* We got an interrupt, so read the status register to see what we
148 were interrupted for. We mask it with the Interrupt Enable register
149 so that we only check for events that we're interested in.
150 */
d5a908b2 151 sisr = in_be32(&ssi->sisr) & SIER_FLAGS;
17467f23
TT
152
153 if (sisr & CCSR_SSI_SISR_RFRC) {
154 ssi_private->stats.rfrc++;
155 sisr2 |= CCSR_SSI_SISR_RFRC;
156 ret = IRQ_HANDLED;
157 }
158
159 if (sisr & CCSR_SSI_SISR_TFRC) {
160 ssi_private->stats.tfrc++;
161 sisr2 |= CCSR_SSI_SISR_TFRC;
162 ret = IRQ_HANDLED;
163 }
164
165 if (sisr & CCSR_SSI_SISR_CMDAU) {
166 ssi_private->stats.cmdau++;
167 ret = IRQ_HANDLED;
168 }
169
170 if (sisr & CCSR_SSI_SISR_CMDDU) {
171 ssi_private->stats.cmddu++;
172 ret = IRQ_HANDLED;
173 }
174
175 if (sisr & CCSR_SSI_SISR_RXT) {
176 ssi_private->stats.rxt++;
177 ret = IRQ_HANDLED;
178 }
179
180 if (sisr & CCSR_SSI_SISR_RDR1) {
181 ssi_private->stats.rdr1++;
182 ret = IRQ_HANDLED;
183 }
184
185 if (sisr & CCSR_SSI_SISR_RDR0) {
186 ssi_private->stats.rdr0++;
187 ret = IRQ_HANDLED;
188 }
189
190 if (sisr & CCSR_SSI_SISR_TDE1) {
191 ssi_private->stats.tde1++;
192 ret = IRQ_HANDLED;
193 }
194
195 if (sisr & CCSR_SSI_SISR_TDE0) {
196 ssi_private->stats.tde0++;
197 ret = IRQ_HANDLED;
198 }
199
200 if (sisr & CCSR_SSI_SISR_ROE1) {
201 ssi_private->stats.roe1++;
202 sisr2 |= CCSR_SSI_SISR_ROE1;
203 ret = IRQ_HANDLED;
204 }
205
206 if (sisr & CCSR_SSI_SISR_ROE0) {
207 ssi_private->stats.roe0++;
208 sisr2 |= CCSR_SSI_SISR_ROE0;
209 ret = IRQ_HANDLED;
210 }
211
212 if (sisr & CCSR_SSI_SISR_TUE1) {
213 ssi_private->stats.tue1++;
214 sisr2 |= CCSR_SSI_SISR_TUE1;
215 ret = IRQ_HANDLED;
216 }
217
218 if (sisr & CCSR_SSI_SISR_TUE0) {
219 ssi_private->stats.tue0++;
220 sisr2 |= CCSR_SSI_SISR_TUE0;
221 ret = IRQ_HANDLED;
222 }
223
224 if (sisr & CCSR_SSI_SISR_TFS) {
225 ssi_private->stats.tfs++;
226 ret = IRQ_HANDLED;
227 }
228
229 if (sisr & CCSR_SSI_SISR_RFS) {
230 ssi_private->stats.rfs++;
231 ret = IRQ_HANDLED;
232 }
233
234 if (sisr & CCSR_SSI_SISR_TLS) {
235 ssi_private->stats.tls++;
236 ret = IRQ_HANDLED;
237 }
238
239 if (sisr & CCSR_SSI_SISR_RLS) {
240 ssi_private->stats.rls++;
241 ret = IRQ_HANDLED;
242 }
243
244 if (sisr & CCSR_SSI_SISR_RFF1) {
245 ssi_private->stats.rff1++;
246 ret = IRQ_HANDLED;
247 }
248
249 if (sisr & CCSR_SSI_SISR_RFF0) {
250 ssi_private->stats.rff0++;
251 ret = IRQ_HANDLED;
252 }
253
254 if (sisr & CCSR_SSI_SISR_TFE1) {
255 ssi_private->stats.tfe1++;
256 ret = IRQ_HANDLED;
257 }
258
259 if (sisr & CCSR_SSI_SISR_TFE0) {
260 ssi_private->stats.tfe0++;
261 ret = IRQ_HANDLED;
262 }
263
264 /* Clear the bits that we set */
265 if (sisr2)
266 out_be32(&ssi->sisr, sisr2);
267
268 return ret;
269}
270
271/**
272 * fsl_ssi_startup: create a new substream
273 *
274 * This is the first function called when a stream is opened.
275 *
276 * If this is the first stream open, then grab the IRQ and program most of
277 * the SSI registers.
278 */
dee89c4d
MB
279static int fsl_ssi_startup(struct snd_pcm_substream *substream,
280 struct snd_soc_dai *dai)
17467f23
TT
281{
282 struct snd_soc_pcm_runtime *rtd = substream->private_data;
f0fba2ad 283 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
17467f23
TT
284
285 /*
286 * If this is the first stream opened, then request the IRQ
287 * and initialize the SSI registers.
288 */
289 if (!ssi_private->playback && !ssi_private->capture) {
290 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
291 int ret;
292
f0fba2ad 293 /* The 'name' should not have any slashes in it. */
17467f23
TT
294 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
295 ssi_private->name, ssi_private);
296 if (ret < 0) {
297 dev_err(substream->pcm->card->dev,
298 "could not claim irq %u\n", ssi_private->irq);
299 return ret;
300 }
301
302 /*
303 * Section 16.5 of the MPC8610 reference manual says that the
304 * SSI needs to be disabled before updating the registers we set
305 * here.
306 */
307 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
308
309 /*
310 * Program the SSI into I2S Slave Non-Network Synchronous mode.
311 * Also enable the transmit and receive FIFO.
312 *
313 * FIXME: Little-endian samples require a different shift dir
314 */
a454dad1
TT
315 clrsetbits_be32(&ssi->scr,
316 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
317 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
318 | (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));
17467f23
TT
319
320 out_be32(&ssi->stcr,
321 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
322 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
323 CCSR_SSI_STCR_TSCKP);
324
325 out_be32(&ssi->srcr,
326 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
327 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
328 CCSR_SSI_SRCR_RSCKP);
329
330 /*
331 * The DC and PM bits are only used if the SSI is the clock
332 * master.
333 */
334
335 /* 4. Enable the interrupts and DMA requests */
d5a908b2 336 out_be32(&ssi->sier, SIER_FLAGS);
17467f23
TT
337
338 /*
339 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
340 * don't use FIFO 1. Since the SSI only supports stereo, the
341 * watermark should never be an odd number.
342 */
343 out_be32(&ssi->sfcsr,
344 CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));
345
346 /*
347 * We keep the SSI disabled because if we enable it, then the
348 * DMA controller will start. It's not supposed to start until
349 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
350 * DMA controller will transfer one "BWC" of data (i.e. the
351 * amount of data that the MR.BWC bits are set to). The reason
352 * this is bad is because at this point, the PCM driver has not
353 * finished initializing the DMA controller.
354 */
355 }
356
be41e941
TT
357 if (!ssi_private->first_stream)
358 ssi_private->first_stream = substream;
359 else {
360 /* This is the second stream open, so we need to impose sample
361 * rate and maybe sample size constraints. Note that this can
362 * cause a race condition if the second stream is opened before
363 * the first stream is fully initialized.
364 *
365 * We provide some protection by checking to make sure the first
366 * stream is initialized, but it's not perfect. ALSA sometimes
367 * re-initializes the driver with a different sample rate or
368 * size. If the second stream is opened before the first stream
369 * has received its final parameters, then the second stream may
370 * be constrained to the wrong sample rate or size.
371 *
372 * FIXME: This code does not handle opening and closing streams
373 * repeatedly. If you open two streams and then close the first
374 * one, you may not be able to open another stream until you
375 * close the second one as well.
376 */
377 struct snd_pcm_runtime *first_runtime =
378 ssi_private->first_stream->runtime;
379
08d15f03 380 if (!first_runtime->sample_bits) {
be41e941 381 dev_err(substream->pcm->card->dev,
08d15f03 382 "set sample size in %s stream first\n",
be41e941
TT
383 substream->stream == SNDRV_PCM_STREAM_PLAYBACK
384 ? "capture" : "playback");
385 return -EAGAIN;
386 }
387
a454dad1
TT
388 /* If we're in synchronous mode, then we need to constrain
389 * the sample size as well. We don't support independent sample
390 * rates in asynchronous mode.
391 */
392 if (!ssi_private->asynchronous)
393 snd_pcm_hw_constraint_minmax(substream->runtime,
394 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
395 first_runtime->sample_bits,
396 first_runtime->sample_bits);
be41e941
TT
397
398 ssi_private->second_stream = substream;
399 }
400
17467f23
TT
401 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
402 ssi_private->playback++;
403
404 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
405 ssi_private->capture++;
406
407 return 0;
408}
409
410/**
85ef2375 411 * fsl_ssi_hw_params - program the sample size
17467f23
TT
412 *
413 * Most of the SSI registers have been programmed in the startup function,
414 * but the word length must be programmed here. Unfortunately, programming
415 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
416 * cause a problem with supporting simultaneous playback and capture. If
417 * the SSI is already playing a stream, then that stream may be temporarily
418 * stopped when you start capture.
419 *
420 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
421 * clock master.
422 */
85ef2375
TT
423static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
424 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
17467f23 425{
f0fba2ad 426 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
17467f23 427
be41e941 428 if (substream == ssi_private->first_stream) {
85ef2375
TT
429 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
430 unsigned int sample_size =
431 snd_pcm_format_width(params_format(hw_params));
a454dad1 432 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
17467f23 433
be41e941 434 /* The SSI should always be disabled at this points (SSIEN=0) */
17467f23 435
be41e941 436 /* In synchronous mode, the SSI uses STCCR for capture */
a454dad1
TT
437 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
438 !ssi_private->asynchronous)
439 clrsetbits_be32(&ssi->stccr,
440 CCSR_SSI_SxCCR_WL_MASK, wl);
441 else
442 clrsetbits_be32(&ssi->srccr,
443 CCSR_SSI_SxCCR_WL_MASK, wl);
be41e941 444 }
17467f23
TT
445
446 return 0;
447}
448
449/**
450 * fsl_ssi_trigger: start and stop the DMA transfer.
451 *
452 * This function is called by ALSA to start, stop, pause, and resume the DMA
453 * transfer of data.
454 *
455 * The DMA channel is in external master start and pause mode, which
456 * means the SSI completely controls the flow of data.
457 */
dee89c4d
MB
458static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
459 struct snd_soc_dai *dai)
17467f23
TT
460{
461 struct snd_soc_pcm_runtime *rtd = substream->private_data;
f0fba2ad 462 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
17467f23
TT
463 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
464
465 switch (cmd) {
466 case SNDRV_PCM_TRIGGER_START:
3a638ff2 467 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
17467f23 468 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
a4d11fe5 469 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
be41e941
TT
470 setbits32(&ssi->scr,
471 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
a4d11fe5 472 else
be41e941
TT
473 setbits32(&ssi->scr,
474 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
17467f23
TT
475 break;
476
477 case SNDRV_PCM_TRIGGER_STOP:
17467f23
TT
478 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
479 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
480 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
481 else
482 clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
483 break;
484
485 default:
486 return -EINVAL;
487 }
488
489 return 0;
490}
491
492/**
493 * fsl_ssi_shutdown: shutdown the SSI
494 *
495 * Shutdown the SSI if there are no other substreams open.
496 */
dee89c4d
MB
497static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
498 struct snd_soc_dai *dai)
17467f23
TT
499{
500 struct snd_soc_pcm_runtime *rtd = substream->private_data;
f0fba2ad 501 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
17467f23
TT
502
503 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
504 ssi_private->playback--;
505
506 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
507 ssi_private->capture--;
508
be41e941
TT
509 if (ssi_private->first_stream == substream)
510 ssi_private->first_stream = ssi_private->second_stream;
511
512 ssi_private->second_stream = NULL;
513
17467f23
TT
514 /*
515 * If this is the last active substream, disable the SSI and release
516 * the IRQ.
517 */
518 if (!ssi_private->playback && !ssi_private->capture) {
519 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
520
521 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
522
523 free_irq(ssi_private->irq, ssi_private);
524 }
525}
526
6335d055
EM
527static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
528 .startup = fsl_ssi_startup,
529 .hw_params = fsl_ssi_hw_params,
530 .shutdown = fsl_ssi_shutdown,
531 .trigger = fsl_ssi_trigger,
6335d055
EM
532};
533
f0fba2ad
LG
534/* Template for the CPU dai driver structure */
535static struct snd_soc_dai_driver fsl_ssi_dai_template = {
17467f23
TT
536 .playback = {
537 /* The SSI does not support monaural audio. */
538 .channels_min = 2,
539 .channels_max = 2,
540 .rates = FSLSSI_I2S_RATES,
541 .formats = FSLSSI_I2S_FORMATS,
542 },
543 .capture = {
544 .channels_min = 2,
545 .channels_max = 2,
546 .rates = FSLSSI_I2S_RATES,
547 .formats = FSLSSI_I2S_FORMATS,
548 },
6335d055 549 .ops = &fsl_ssi_dai_ops,
17467f23
TT
550};
551
d5a908b2
TT
552/* Show the statistics of a flag only if its interrupt is enabled. The
553 * compiler will optimze this code to a no-op if the interrupt is not
554 * enabled.
555 */
556#define SIER_SHOW(flag, name) \
557 do { \
558 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
559 length += sprintf(buf + length, #name "=%u\n", \
560 ssi_private->stats.name); \
561 } while (0)
562
563
17467f23
TT
564/**
565 * fsl_sysfs_ssi_show: display SSI statistics
566 *
d5a908b2
TT
567 * Display the statistics for the current SSI device. To avoid confusion,
568 * we only show those counts that are enabled.
17467f23
TT
569 */
570static ssize_t fsl_sysfs_ssi_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
572{
573 struct fsl_ssi_private *ssi_private =
d5a908b2
TT
574 container_of(attr, struct fsl_ssi_private, dev_attr);
575 ssize_t length = 0;
576
577 SIER_SHOW(RFRC_EN, rfrc);
578 SIER_SHOW(TFRC_EN, tfrc);
579 SIER_SHOW(CMDAU_EN, cmdau);
580 SIER_SHOW(CMDDU_EN, cmddu);
581 SIER_SHOW(RXT_EN, rxt);
582 SIER_SHOW(RDR1_EN, rdr1);
583 SIER_SHOW(RDR0_EN, rdr0);
584 SIER_SHOW(TDE1_EN, tde1);
585 SIER_SHOW(TDE0_EN, tde0);
586 SIER_SHOW(ROE1_EN, roe1);
587 SIER_SHOW(ROE0_EN, roe0);
588 SIER_SHOW(TUE1_EN, tue1);
589 SIER_SHOW(TUE0_EN, tue0);
590 SIER_SHOW(TFS_EN, tfs);
591 SIER_SHOW(RFS_EN, rfs);
592 SIER_SHOW(TLS_EN, tls);
593 SIER_SHOW(RLS_EN, rls);
594 SIER_SHOW(RFF1_EN, rff1);
595 SIER_SHOW(RFF0_EN, rff0);
596 SIER_SHOW(TFE1_EN, tfe1);
597 SIER_SHOW(TFE0_EN, tfe0);
17467f23
TT
598
599 return length;
600}
601
602/**
f0fba2ad 603 * Make every character in a string lower-case
17467f23 604 */
f0fba2ad
LG
605static void make_lowercase(char *s)
606{
607 char *p = s;
608 char c;
609
610 while ((c = *p)) {
611 if ((c >= 'A') && (c <= 'Z'))
612 *p = c + ('a' - 'A');
613 p++;
614 }
615}
616
617static int __devinit fsl_ssi_probe(struct of_device *of_dev,
618 const struct of_device_id *match)
17467f23 619{
17467f23
TT
620 struct fsl_ssi_private *ssi_private;
621 int ret = 0;
622 struct device_attribute *dev_attr;
f0fba2ad
LG
623 struct device_node *np = of_dev->dev.of_node;
624 const char *p, *sprop;
625 struct resource res;
626 char name[64];
17467f23 627
f0fba2ad
LG
628 /* We are only interested in SSIs with a codec phandle in them, so let's
629 * make sure this SSI has one.
630 */
631 if (!of_get_property(np, "codec-handle", NULL))
632 return -ENODEV;
633
634 /* We only support the SSI in "I2S Slave" mode */
635 sprop = of_get_property(np, "fsl,mode", NULL);
636 if (!sprop || strcmp(sprop, "i2s-slave")) {
637 dev_notice(&of_dev->dev, "mode %s is unsupported\n", sprop);
638 return -ENODEV;
639 }
640
641 /* The DAI name is the last part of the full name of the node. */
642 p = strrchr(np->full_name, '/') + 1;
643 ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
644 GFP_KERNEL);
17467f23 645 if (!ssi_private) {
f0fba2ad
LG
646 dev_err(&of_dev->dev, "could not allocate DAI object\n");
647 return -ENOMEM;
17467f23 648 }
17467f23 649
f0fba2ad 650 strcpy(ssi_private->name, p);
17467f23 651
f0fba2ad
LG
652 /* Initialize this copy of the CPU DAI driver structure */
653 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
654 sizeof(fsl_ssi_dai_template));
655 ssi_private->cpu_dai_drv.name = ssi_private->name;
656
657 /* Get the addresses and IRQ */
658 ret = of_address_to_resource(np, 0, &res);
659 if (ret) {
660 dev_err(&of_dev->dev, "could not determine device resources\n");
661 kfree(ssi_private);
662 return ret;
663 }
664 ssi_private->ssi = ioremap(res.start, 1 + res.end - res.start);
665 ssi_private->ssi_phys = res.start;
666 ssi_private->irq = irq_of_parse_and_map(np, 0);
17467f23 667
f0fba2ad
LG
668 /* Are the RX and the TX clocks locked? */
669 if (of_find_property(np, "fsl,ssi-asynchronous", NULL))
670 ssi_private->asynchronous = 1;
671 else
672 ssi_private->cpu_dai_drv.symmetric_rates = 1;
17467f23
TT
673
674 /* Initialize the the device_attribute structure */
f0fba2ad
LG
675 dev_attr = &ssi_private->dev_attr;
676 dev_attr->attr.name = "statistics";
17467f23
TT
677 dev_attr->attr.mode = S_IRUGO;
678 dev_attr->show = fsl_sysfs_ssi_show;
679
f0fba2ad 680 ret = device_create_file(&of_dev->dev, dev_attr);
17467f23 681 if (ret) {
f0fba2ad 682 dev_err(&of_dev->dev, "could not create sysfs %s file\n",
17467f23 683 ssi_private->dev_attr.attr.name);
f0fba2ad
LG
684 kfree(ssi_private);
685 return ret;
17467f23
TT
686 }
687
f0fba2ad
LG
688 /* Register with ASoC */
689 dev_set_drvdata(&of_dev->dev, ssi_private);
3f4b783c 690
f0fba2ad 691 ret = snd_soc_register_dai(&of_dev->dev, &ssi_private->cpu_dai_drv);
3f4b783c 692 if (ret != 0) {
f0fba2ad
LG
693 dev_err(&of_dev->dev, "failed to register DAI: %d\n", ret);
694 kfree(ssi_private);
695 return ret;
696 }
697
698 /* Trigger the machine driver's probe function. The platform driver
699 * name of the machine driver is taken from the /model property of the
700 * device tree. We also pass the address of the CPU DAI driver
701 * structure.
702 */
703 sprop = of_get_property(of_find_node_by_path("/"), "model", NULL);
704 /* Sometimes the model name has a "fsl," prefix, so we strip that. */
705 p = strrchr(sprop, ',');
706 if (p)
707 sprop = p + 1;
708 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
709 make_lowercase(name);
710
711 ssi_private->pdev =
712 platform_device_register_data(&of_dev->dev, name, 0, NULL, 0);
713 if (IS_ERR(ssi_private->pdev)) {
714 ret = PTR_ERR(ssi_private->pdev);
715 dev_err(&of_dev->dev, "failed to register platform: %d\n", ret);
716 kfree(ssi_private);
717 return ret;
3f4b783c 718 }
17467f23 719
f0fba2ad 720 return 0;
17467f23 721}
17467f23
TT
722
723/**
8cf7b2b3 724 * fsl_ssi_destroy_dai: destroy the snd_soc_dai object
17467f23 725 *
f0fba2ad 726 * This function undoes the operations of fsl_ssi_probe()
17467f23 727 */
f0fba2ad 728static int fsl_ssi_remove(struct of_device *of_dev)
17467f23 729{
f0fba2ad 730 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&of_dev->dev);
17467f23 731
f0fba2ad
LG
732 platform_device_unregister(ssi_private->pdev);
733 snd_soc_unregister_dai(&of_dev->dev);
734 device_remove_file(&of_dev->dev, &ssi_private->dev_attr);
3f4b783c 735
17467f23 736 kfree(ssi_private);
f0fba2ad
LG
737 dev_set_drvdata(&of_dev->dev, NULL);
738
739 return 0;
17467f23 740}
f0fba2ad
LG
741
742static const struct of_device_id fsl_ssi_ids[] = {
743 { .compatible = "fsl,mpc8610-ssi", },
744 {}
745};
746MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
747
748static struct of_platform_driver fsl_ssi_driver = {
749 .driver = {
750 .name = "fsl-ssi-dai",
751 .owner = THIS_MODULE,
752 .of_match_table = fsl_ssi_ids,
753 },
754 .probe = fsl_ssi_probe,
755 .remove = fsl_ssi_remove,
756};
17467f23 757
a454dad1
TT
758static int __init fsl_ssi_init(void)
759{
760 printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");
761
f0fba2ad
LG
762 return of_register_platform_driver(&fsl_ssi_driver);
763}
764
765static void __exit fsl_ssi_exit(void)
766{
767 of_unregister_platform_driver(&fsl_ssi_driver);
a454dad1 768}
f0fba2ad 769
a454dad1 770module_init(fsl_ssi_init);
f0fba2ad 771module_exit(fsl_ssi_exit);
a454dad1 772
17467f23
TT
773MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
774MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
f0fba2ad 775MODULE_LICENSE("GPL v2");
This page took 0.233283 seconds and 5 git commands to generate.